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1 Introduction

A computer experiment uses a computer simulator based on a mathematical model of a

physical process as an experimental tool to determine “responses” or “outputs” at a set of

user-specified input sites. These input sites constitute the design for the computer experi-

ment. Sophisticated computer codes may take hours or even days to produce an output and,

therefore, a flexible and rapidly-computable predictor, sometimes called a code emulator or

metamodel, is often fitted to the inputs/outputs of the design, which are then called training

data. An emulator allows the detailed, albeit approximate, exploration of the output over

the entire experimental region (see, for example, Sacks, Welch, Mitchell, and Wynn 1989b;

Santner, Williams, and Notz 2003). A sensitivity analysis, based on the outputs of either

the simulator or emulator, enables the researcher to assess the variation in the output due

to changes in individual inputs or groups of inputs (see, for example Saltelli, Tarantola, and

Campolongo 2000; Helton, Johnson, and Storlie 2006; Oakley and OHagan 2004).

In this paper, we assume that the computer simulator has d continuous input variables

denoted by the vector x = (x1, . . . , xd) and that the (one-dimensional) output of the sim-

ulator, denoted by y(x) = y(x1, . . . , xd), can be determined for x in the hyper-rectangle

X =
∏d
j=1

[lj , uj], but is computationally expensive. The sensitivity of y(x) to the input val-

ues x can be measured locally or globally. A local sensitivity index is based on the change

in y(·) at a specified x0 = (x0

1
, . . . , x0

d) as the jth input varies by a small amount parallel to

the xj axis and this can be measured by the partial derivatives of y(·) with respect to xj . In

contrast, a first (or higher) order global sensitivity index measures the change in y(·) as one

(or more) inputs vary over their entire range, when the remaining inputs are fixed (see, for

example Saltelli 2002). Homma and Saltelli (1996) further defined the jth total sensitivity

index as a measure of the change in y(·) due to the jth input, both through its main effect

and its joint effect with other inputs. Chen, Jin, and Sudjianto (2005, 2006) defined subset

sensitivity indices based on non-overlapping partitions of the inputs. One popular definition

of global sensitivity indices is in terms of the variability of the (weighted) average output

y(x) over x ∈ X =
∏d
j=1

[lj , uj], as reviewed in Section 2.

As well as providing an understanding of the input/output relationship, sensitivity analysis

provides a tool for “screening”, that is for selecting the inputs that have major impacts on
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an input-output system, thereby allowing researchers to restrict attention to these important

inputs while setting the others to nominal values in their computational simulator For various

discussions and applications of sensitivity analysis and screening, see for example, Welch,

Buck, Sacks, Wynn, Mitchell, and Morris (1992), Linkletter, Bingham, Hengartner, Higdon,

and Ye (2006), Moon, Santner, and Dean (2012), and the references cited therein.

For estimating local sensitivity indices, Morris (1991) proposed the use of “elementary ef-

fects” calculated directly from the simulator output, with inputs selected according to a

“one-at-time” sampling design. This methodology was extended by Campolongo, Cariboni,

and Saltelli (2007). Sampling designs for estimating global sensitivity indices were presented

and discussed by, for example, Saltelli (2002), Morris, Moore, and McKay (2008), Da Viega,

Wahl, and Gamboa (2009), and Saltelli, Annoni, Azzini, Campolongo, Ratto, and Tarantola

(2010). In the case when the simulator is expensive to run, such estimation methods may

require more simulator runs than is feasible to produce accurate global sensitivity index esti-

mates. Chen et al. (2005), Oakley and OHagan (2004), Marrel, Iooss, Lauren, and Roustant

(2009), and Storlie, Reich, Helton, Swiler, and Sallaberry (2013) gave alternative estimation

methods based on analytical and probabilistic methods using emulators.

In this paper, we use the popular y(x) emulator based on a Gaussian process model as

proposed, for example, by Sacks et al. (1989b), and which has the form

Y (x) = f⊤(x)β + Z(x), (1.1)

where f⊤(x)β is a linear function of an unknown regression parameter vector β, and Z(x) is

a zero-mean Gaussian process having variance σ2. Assuming this type of model, Sacks et al.

(1989b), Sacks, Schiller, and Welch (1989a), and Welch et al. (1992) used a y(x) predictor

derived from the classical theory of best linear unbiased prediction. Other authors, including

Currin, Mitchell, Morris, and Ylvisaker (1991), O’Hagan (1992), Oakley and OHagan (2004),

have viewed the random function Y (x) as representing prior uncertainty about the true

function and adopted a Bayesian approach to estimation.

The purpose of this paper is to give specific formulae for global sensitivity index estimates

for a broad class of regression plus Gaussian process models (1.1) with independent inputs in

the special case of stationary Z(x) with compactly supported Bohman and cubic (separable)

correlation functions. As compared with the often-used Gaussian correlation function, use of

compactly supported correlation functions together with a suitably rich mean structure has

the potential to provide sparse correlation matrices, thus allowing prediction to be performed
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with larger data sets within the Gaussian process framework (see Kaufman, Bingham, Habib,

Heitmann, and Frieman 2011).

In Section 3, we give formulae for quadrature-based methods of estimation using Gaussian

processes with polynomial mean and either Gaussian or Bohman correlation functions. In

the on-line Supplementary Material, we provide the corresponding formulae for the cubic

correlation function. In Section 4, together with the Supplementary Material, we derive the

specific formulae required to compute both fully Bayesian and empirical (plug-in) Bayesian

estimates of sensitivity indices. The formulae in these two sections extend the work of Chen

et al. (2005), Oakley and OHagan (2004), Marrel et al. (2009), and others, who provide ex-

plicit formulae for global sensitivity estimators for Gaussian process emulators with constant

mean and Gaussian correlation function.

In Section 6, it is shown via two examples that sensitivity indices estimated using output from

a Gaussian process emulator under the compactly supported Bohman, and cubic correlation

functions are similar to the estimates obtained using the Gaussian correlation function, but

that the computational times are much shorter. Although the current examples are not

extremely large, they illustrate the potential computational savings, described by Kaufman

et al. (2011), that can be achieved when handling large data sets and/or large numbers

of inputs. In line with previous studies, our examples also illustrate that calculation of

sensitivity indices using a moment-based estimation method (based on “permuted column

sampling” as described by Morris et al. 2008) is less accurate when using only a moderate

number of simulator runs. Finally, Section 7 shows how to restrict the parameter space for

the Bohman and cubic correlation functions so that (at least) a given proportion of the

training data correlation entries are zero.

2 Calculation of Main Effect and Total Effect Sensitivity Indices

In this section, we review definitions of main effect and total effect global sensitivity indices,

as described by Homma and Saltelli (1996); Saltelli (2002); Chen et al. (2005, 2006), for

example. Throughout the paper, Q = {k1, . . . , ks} ⊂ {1, 2, . . . , d} denotes a non-empty

subset of the input variables and xQ denotes the vector of inputs (xk1, . . . , xks
) where, for

definiteness, it is assumed 1 ≤ k1 < k2 < · · · < ks ≤ d. The vector of the remaining

inputs will be denoted by x−Q also arranged in lexicographical order of their input index.

By rearranging the order of the entire set of input variables we write the input vector x as

x = (xQ,x−Q) in a slight abuse of notation.
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Throughout the paper, we take [lj, uj] = [0, 1], for all inputs xj , j = 1, . . . , d, so that

X = [0, 1]d. The formulae can be extended to the more general hyper-rectangle case. Also

for simplicity of notation, it is assumed that the weight function can be specified by a

joint density function over X = [0, 1]d having independent and identically distributed xj

components each with probability density function g(x). For any subset E ⊆ {1, . . . , d} the

notation g(xE) denotes
∏
ℓ∈E gℓ(xℓ). It is a straightforward generalization to allow the weight

function to have independent but not identically distributed components.

For any non-empty Q = {k1, . . . , ks} ⊂ {1, 2, . . . , d}, the uncorrected mean effect (also known

as the joint effect function) of the input vector xQ on y(·) is defined to be the average

y(xQ,x−Q) over x−Q; that is,

uQ(xQ) =
∫
y(xQ,x−Q)g(x−Q)dx−Q = Eg[y(X)|XQ = xQ], (2.1)

and u{1,...,d} = y(x). The notation makes clear that the function average can be viewed as

an expectation with respect to subcomponents of X defined by Q. When Q = {j} for a

given j ∈ {1, . . . , d}, then uj(xj) is called the (uncorrected) main effect function of input j

associated with y(x). Plots of the main effect functions uj(xj) versus xj , and plots of the

joint effect functions uj1j2(xj1 , xj2) versus pairs of inputs (xj1 , xj2) can be used to provide a

visual understanding of the change in the averaged y(x) with respect to each single input or

pairs of inputs (see, for example, Jones, Schonlau, and Welch 1998).

To define global sensitivity indices, Sobol´ (1990) and Sobol´ (1993) advocated the use of a

functional analysis of variance (ANVOA) decomposition of y(x) as follows:

y(x) = y0 +
d∑

j=1

yj(xj) +
∑

1≤j1<j2≤d

yj1,j2(xj1 , xj2) + · · ·+ y1,2,...,d(x1, . . . , xd) , (2.2)

where

y0 =
∫
y(x)g(x) dx = Eg [y(X)] (2.3)

denotes the overall (weighted) mean of y(x), expressing the fact that inputs x1, . . . , xd have

distribution g(·). The component terms of (2.2), called corrected mean effect functions, are

defined recursively to be

yQ(xQ) = uQ(xQ) −
∑

E⊂Q

yE(xE) − y0, (2.4)

where the sum is over the collection of all non-empty, proper subsets E of Q ⊆ {1, . . . d}
(Q non-empty). The components of (2.2) satisfy Eg[yQ(XQ)] = 0 with respect to any sub-
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component of XQ, for Q ⊂ {1, 2, . . . , d}, and are pairwise orthogonal, meaning that for any

Q1 6= Q2 ⊂ {1, . . . , d} and Q = Q1 ∪ Q2, Eg [yQ1
(XQ1

)yQ2
(XQ2

)] = 0, (cf. Van Der Vaart

1998, Section 11.4). Using these facts, global sensitivity indices,

SQ = vQ/v, (2.5)

are defined as functions of the variances vQ of the corrected effect functions:

vQ = V arg[yQ(XQ)] =
∫
y2

Q
(xQ)g(xQ) dxQ , (2.6)

where v is the total variance of y(x); that is,

v = V arg[y(X)] =
∫
y2(x)g(x)dx− y2

0
, (2.7)

(cf. Homma and Saltelli 1996; Saltelli 2002). Due to the pairwise orthogonality of the com-

ponents of (2.2), the total variance can be partitioned as

v =
d∑

j=1

vj +
∑

1≤j1<j2≤d

vj1j2 + · · ·+ v1,2,...,d , (2.8)

with vQ defined as in (2.6). The quantity Sj = vj/v is called the jth main effect sensitivity

index and Sj1j2 = vj1j2/v is a two-factor sensitivity index. By (2.8),

d∑

j=1

Sj +
∑

1≤j1<j2≤d

Sj1j2 + · · ·+ S1,2,...,d = 1.

The total effect sensitivity index of input xj was defined by Homma and Saltelli (1996) to

be the sum of all sensitivity indices involving input xj ,

Tj = Sj +
∑

k 6=j

Skj + · · ·+ S1,2,...,d. (2.9)

For example, when there are d = 3 inputs, then T1 = S1 + S12 + S13 + S123. Notice that by

construction, Sj ≤ Tj for all j ∈ {1, . . . , d}. The difference between Tj and Sj will be large

if interactions involving xj account for a large proportion of the variance v.

The main effect sensitivity indices Sj = vj/v, j = 1, . . . , d, can also be computed easily in

terms of the variances, vuj = V arg[uj(xj)], of the uncorrected main effect functions, since

vj = V arg [yj(Xj)] = V arg[uj(Xj) − y0] = V arg[uj(Xj)] = vuj . (2.10)
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The total effect sensitivity index, Tj , can also be computed efficiently in terms of the variances

of uncorrected mean functions (Homma and Saltelli 1996) as follows. For given nonempty

Q ⊆ {1, . . . d}, the variance vu
Q

of the uncorrected mean effect function uQ(xQ) is

vu
Q

= V arg[uQ(XQ)] = V arg [Eg[y(X)|XQ] ] = V arg[y(X)] − Eg [V arg(y(X)| XQ)] .

So vu
Q

can be interpreted as the expected reduction in uncertainty in y(X) due to observing

xQ. Denoting the set of indices {1, . . . , j − 1, j + 1, . . . , d} by “−j”, (2.4)–(2.6) imply that

vu−j = V arg[u−j(X−j)] = V arg
[∑

yQ(XQ)
]

=
∑

vQ , (2.11)

where the sum is over nonempty sets Q contained in {1, . . . , d}\{j}. In words, vu−j is the sum

of all vQ components that do not involve the subscript j in the variance decomposition (2.8).

Thus, v − vu−j is the sum of all vQ components for which j ∈ Q, and so the total effect

sensitivity index Tj in (2.9) can be expressed as

Tj = (v − vu−j)/v . (2.12)

Consequently, if only the main effect and total effect sensitivity indices {Sj}dj=1
and {Tj}dj=1

are to be estimated, then one need only estimate the variances of 2d uncorrected effect

functions rather than the variances of 2d− 1 corrected effect functions required by (2.9); see

Homma and Saltelli (1996).

Sections 3 and 4 describe two general methods of estimating the variance vu
Q
, each using a

Gaussian process underlying model (1.1). The first uses quadrature-based estimation, while

the second uses Bayesian or empirical Bayesian process-based estimation. The estimates are

compared via examples in Section 6.

3 Quadrature-based Estimators of Global Sensitivity Indices

This section describes the calculation of quadrature-based estimators of global sensitivity

indices which rely on predictors based on the Gaussian process model (1.1) which has a

regression mean. Quadrature-based estimation replaces y(x) in the variance expressions such

as v in (2.7) and vuj , j = 1, . . . , d, in (2.10) by a predictor ŷ(x) and integrates the associated

expectations. We illustrate the calculations for the special case of predictors based on a
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stationary process Z(x) with separable correlation function

Cor(Z(xi), Z(xk)) =
d∏

j=1

R(xij − xkj | ψj ) , (3.1)

for xℓ = (xℓ1, . . . , xℓd) with R(· | ψj ) known up to an unknown (vector of) parameter(s), ψj ,

associated with the jth input, and each input xj scaled to [0, 1]. When Z(x) has a correlation

function of the form (3.1) and the weight function g(x) consists of independent components,

g(x) = Πd
j=1

gj(xj), then variances such as v and vuj can be calculated as a product of one-

dimensional integrals. For some correlation functions and choices of independent components

for g(x), these one-dimensional integrals can be integrated explicitly.

The most widely-applied version of (3.1) is the separable Gaussian correlation function

RG(hj | ψj ) = exp
[
−ψj h2

j

]
ψj > 0 . (3.2)

The Bohman and cubic correlation functions are other useful examples of (3.1) for which

quadrature-based estimators can be derived explicitly. These are compactly supported cor-

relation functions which allow large data sets to be handled (see Kaufman et al. 2011). The

Bohman correlation function has the form

RB(hj |ψj ) =






(
1 − |hj |

ψj

)
cos

(
π|hj |

ψj

)
+ 1

π
sin

(
π|hj |

ψj

)
, |hj| < ψj ;

0, ψj ≤ |hj | ;
(3.3)

where ψj > 0, while the cubic correlation function has the form

RC(hj | ψj) =






1 − 6
(
hj

ψj

)2

+ 6
(
|hj |

ψj

)3

, |hj | ≤ ψj

2
;

2
(
1 − |hj |

ψj

)3

,
ψj

2
≤ |hj| ≤ ψj ;

0, ψj < |hj | ,

(3.4)

where ψj > 0.

General formulae for quadrature-based estimators of global sensitivity indices are described

next under a regression mean and correlation functions of the form (3.1) and g(x) =

Πd
j=1

gj(xj). Then explicit formulae are given under Gaussian and Bohman correlation func-

tions with gj(xj) being U(0, 1). . The corresponding formulae for the cubic case are provided

in the Supplementary Materials. These formulae provide extensions to the cases studied by
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Chen et al. (2005) who gave explicit integrals under constant mean and Gaussian correlation

function for normal and uniform weight functions, as well as other types of emulator.

As shown, for example, by Santner et al. (2003), an empirical best linear unbiased predictor

(EBLUP) of y(x∗) at input x∗ based on (1.1) with training data {xi = (xi1, . . . , xid), y(xi)}ni=1

has the form

ŷ(x∗) = d0(x
∗) +

n∑

i=1

di
d∏

j=1

R(x∗j − xij
∣∣∣ ψ̂j ) (3.5)

where ψ̂j is a REML (or other) estimate of the unknown correlation parameter (vector) ψj ,

and where d0(x
∗) = f⊤(x∗)β̂, with β̂ = (F⊤R−1F )−1F⊤R−1y(x) being the weighted least

squares estimator of β, F = [f (x1), . . . ,f (xn)]
⊤ is the matrix of regression functions for the

training data, R is the matrix with (i, k)th element
∏d
j=1

R
(
xij − xkj

∣∣∣ ψ̂j
)
, and y(x) is the

n×1 vector of output training data; di is the ith element of the vector R−1(y(x)−F β̂). The

expression (3.5) with parameter values replacing point estimators is the conditional predictor

of y(x∗) given (β,ψ).

As an illustration of the method of calculation, consider the quadrature-based estimator of

the total variance v in (2.7), when Y (x) has regression mean

f⊤(x)β =

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd

d∏

j=1

x
kj

j (3.6)

for integers mkj
≥ 0, j = 1, . . . , d, and has arbitrary but separable correlation function of

the form (3.1).

Using (3.5), the first term of v = Eg [y2 (X)] − (y0)
2 in (2.7) is estimated by

Eg
[
ŷ2 (X)

]
=
∫

1

0

· · ·
∫

1

0



d0(x
∗) +

n∑

i=1

di
d∏

j=1

R(x∗j − xij
∣∣∣ ψ̂j )




2

d∏

j=1

gj(x
∗
j ) dx

∗
j

=
∫

1

0

· · ·
∫

1

0



d2

0
(x∗) + 2 d0(x

∗)
n∑

i=1

di
d∏

j=1

R(x∗j − xij | ψ̂j)

+
n∑

i=1

d2

i

d∏

j=1

R2(x∗j − xij | ψ̂j) (3.7)

+ 2
∑

1≤i<k≤n

didk
d∏

j=1

R(x∗j − xij | ψ̂j)R(x∗j − xkj | ψ̂j)



d∏

j=1

gj(x
∗
j ) dx

∗
j ,

and each component in (3.7) can be expressed as a product of one-dimensional integrals, as
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follows. First, for Y (x) having mean (3.6), the first term of (3.7) is

∫
1

0

· · ·
∫

1

0

d2

0
(x∗)

d∏

j=1

gj(x
∗
j ) dx

∗
j =

∫
1

0

· · ·
∫

1

0




mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

(
x∗j
)kj




2

d∏

j=1

gj(x
∗
j ) dx

∗
j ,

(3.8)

and if gj(·) is uniform, (3.8) reduces to

mk1∑

k1=0

. . .

mkd∑

kd=0

mk1∑

k′
1
=0

. . .

mkd∑

k′
d
=0

β̂k1...kd
β̂k′

1
...k′

d

d∏

j=1

(
kj + k′j + 1

)−1

= m2{1,...,d}(β̂) . (3.9)

The ith component of the second term in (3.7) involves the integral

∫
1

0

· · ·
∫

1

0

d0(x
∗)

d∏

j=1

R
(
x∗j − xij

∣∣∣ ψ̂j
) d∏

j=1

gj(x
∗
j ) dx

∗
j

=
∫

1

0

· · ·
∫

1

0

mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

(x∗j)
kjR

(
x∗j − xij

∣∣∣ ψ̂j
)
gj(x

∗
j ) dx

∗
j

=

mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

S1kj
(xij; ψ̂j) (3.10)

where

S1kj
(xij ; ψ̂j) =

∫
1

0

(x∗j )
kjR

(
x∗j − xij

∣∣∣ ψ̂j
)
gj(x

∗
j )dx

∗
j , (3.11)

where S1kj
(·; ·) denotes an integral over a single variable with integrand involving oneR(· | ·)

term. The third and fourth terms in (3.7) can be expressed as a product of one-dimensional

integrals involving

∫
1

0

· · ·
∫

1

0

d∏

j=1

R
(
x∗j − xij

∣∣∣ ψ̂j
)
R(x∗j − xkj | ψ̂j)

d∏

j=1

gj(x
∗
j ) dx

∗
j

=
d∏

j=1

∫
1

0

R(x∗j − xij | ψ̂j)R(x∗j − xkj | ψ̂j) gj(x∗j ) dx∗j =
d∏

j=1

S2(xij, xkj ; ψ̂j) ,

(3.12)

for 1 ≤ i ≤ k ≤ d. Here S2 (·, ·; ·) denotes an integral over a single variable with integrand

involving two R( · | · ) terms.

Using (2.3) and (3.5), an estimate of the overall mean y0 is

ŷ0 = m1(β̂) +
n∑

i=1

di
d∏

j=1

S10(xij ; ψ̂j) (3.13)
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where

S10(xij ; ψ̂j) =
∫

1

0

R(x∗j − xij
∣∣∣ ψ̂j ) gj(x∗j ) dx

∗
j , (3.14)

and

m1(β̂) =
∫

1

0

· · ·
∫

1

0

mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

(x∗j )
kj gj(x

∗
j ) dx

∗
j .

If gj(·) is uniform, j = 1, . . . , d, then d0 becomes

m1(β̂) =

mk1∑

k1=0

. . .

mkd∑

kd=0

β̂k1...kd

d∏

j=1

(kj + 1)−1 . (3.15)

Combining Eg [ŷ2 (X)] from (3.7) and ŷ0 from (3.13) gives an estimate for v. Corresponding

formulae for calculation of estimates for vj and v−j are given in the Supplementary Material.

3.1 Formulae using the Gaussian correlation function

For some correlation functions and the choice of gj(x
∗
j) being uniform, j = 1, . . . , d, the

integrals S1kj
(·; ·), S2 (·, ·; ·) and S10 (·; ·) in (3.11), (3.12), and (3.14), respectively, can be

expressed in closed form. For example, for the Gaussian correlation (3.2), S2(xij, xkj ; ψ̂j) is

exp{−ψ̂j(xij − xkj)/2} S10((xij + xkj)/2, ψ̂j) (3.16)

where S10(xij, ψ̂j) is is

√
π

√
ψ̂j

{
Φ
(√

2ψ̂j(1 − xij)
)
− Φ

(√
2ψ̂j(0 − xij)

)}
, (3.17)

cf. Chen et al. (2005). The integral S1kj
(xij ; ψ̂j) is

√
π

ψ̂j




Φ



 1 − xij√
1/(2ψ̂j)




kj∑

r=0

(
kj
r

)
x
kj−r
ij (2ψ̂j)

−r/2Ih1

r

− Φ



 −xij√
1/(2ψ̂j)




kj∑

r=0

(
kj
r

)
x
kj−r
ij (2ψ̂j)

−r/2Ih0

r




 (3.18)

where Φ (·) denotes the cumulative distribution function of the standard normal distribution,

h0 = −xij/
√

1/(2ψ̂j), h1 = (1 − xij)/
√

1/(2ψ̂j), and Ihr is defined recursively by Ih
0

= 1,

Ih
1

= −φ(h)/Φ(h), and

Ihr =
1

Φ (h)

[
−hr−1φ(h) + (r − 1)Ihr−2

]
, r ∈ {2, 3, . . . , } ,
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where φ(·) denotes the probability density function of the standard normal distribution.

3.2 Formulae using the Bohman correlation function

For the Bohman correlation function (3.3), S2(xij , xkj; ψ̂j) depends on the relationships

among xij , xkj, and ψ̂j and can be written as shown in (3.19) with ψj replaced by ψ̂j , and

with ml = med
(
xij , 0, xkj − ψ̂j

)
and mu = med

(
xkj , 1, xij + ψ̂j

)
:

1[|xij−xkj |<2ψj]×
{∫ xij

ml

[(
1 − xij − x∗j

ψj

)
cos

(
π(xij − x∗j )

ψj

)
+

1

π
sin

(
π(xij − x∗j )

ψj

)]

[(
1 − xkj − x∗j

ψj

)
cos

(
π(xkj − x∗j )

ψj

)
+

1

π
sin

(
π(xkj − x∗j )

ψj

)]
dx∗j

+
∫ xkj

xij

[(
1 − x∗j − xij

ψj

)
cos

(
π( x∗j − xij)

ψj

)
+

1

π
sin

(
π( x∗j − xij)

ψj

)]

[(
1 − xkj − x∗j

ψj

)
cos

(
π(xkj − x∗j )

ψj

)
+

1

π
sin

(
π(xkj − x∗j )

ψj

)]
dx∗j

+
∫ mu

xkj

[(
1 − x∗j − xij

ψj

)
cos

(
π( x∗j − xij)

ψj

)
+

1

π
sin

(
π( x∗j − xij)

ψj

)]

[(
1 − x∗j − xkj

ψj

)
cos

(
π( x∗j − xkj)

ψj

)
+

1

π
sin

(
π( x∗j − xkj)

ψj

)]
dx∗j

}

(3.19)

where 1E is the function which is 1 or 0 as E occurs or not. Further simplification of these

integrals can be made but the expressions are lengthy and omitted here. For purposes of

computer code implementation, the symbolic tool box in MATLAB, for example, can be

used to provide code. The integral S1kj
in (3.11) is

∫
1

0

( x∗j )
kjRB

(
x∗j − xij | ψj) dx∗j =

∫ xij

l∗
( x∗j )

kj

{(
1 − xij − x∗j

ψj

)
cos

(
π(xij − x∗j )

ψj

)
+

1

π
sin

(
π(xij − x∗j )

ψj

)}
dx∗j

+
∫ u∗

xij

( x∗j)
kj

{(
1 − x∗j − xij

ψj

)
cos

(
π( x∗j − xij)

ψj

)
+

1

π
sin

(
π( x∗j − xij)

ψj

)}
dx∗j

(3.20)

where l∗ = max(0, xij − ψj) and u∗ = min(1, xij + ψj), and ψj is replaced by ψ̂j . Equation

(3.20) can be simplified using formulas for the sine and cosine of the difference of two angles.

12



The Supplementary Material supplies further (but lengthy) simplifications of S1kj
.

Lastly, S10(xij ; ψ̂j) can be written as

{
4 ψj
π2

−2 ψj
π2

cos(l∗∗(xij)) −
2 ψj
π2

cos(u∗∗(xij))

}

+

{(
ψj
π

− ψj l
∗∗(xij)

π2

)
sin(l∗∗(xij)) +

(
ψj
π

− ψj u
∗∗(xij)

π2

)
sin(u∗∗(xij))

}
, (3.21)

with l∗∗(xij) = ((xij − max(0, xij − ψj))π) /ψj , and u∗∗(xij) = ((min(1, xij + ψj) − xij)π) /ψj,

and ψj replaced by ψ̂j . The Supplementary Material gives additional details of these calcu-

lations and the corresponding expressions for the cubic correlation function. It also shows

how the terms vuj and vu−j in (2.10) and (2.11) can be calculated.

4 Process-based Estimation of Global Sensitivity Indices

This section presents Bayesian and empirical (plug-in) Bayesian estimates of main effect and

total sensitivity indices when the true simulator output y(x) can be modeled as a draw from

a (smooth) Gaussian stochastic process, Y (x), that has polynomial mean (3.6) and separable

covariance function (3.1). To allow a greater breath of applications, this section allows the

observed output from the simulator at x, say zsim(x), be the true simulator value y(x) plus

noise, for example, numerical noise. The model for zsim(x) used throughout is

Zsim(x) = Y (x) + ǫsim(x) , (4.1)

where ǫsim(x) is an independent white noise process with mean zero and variance σǫ. The

term ǫsim(x) can be thought of as modeling non-deterministic computer output or of enhanc-

ing numerical stability in the estimation of the correlation parameters. For truly deterministic

outputs, σǫ can be set to zero in the formulae below. Here, and below, Ep[·] and Covp[·, ·]

denote expectation and covariance with respect to the process to distinguish them from

expectations with respect X which are denoted by Eg[·].

Assuming simulator evaluations are made at input sites x1, . . . , xn, the n × 1 vector of

observed outputs is viewed as a realization of the stochastic process

Zsim = (Zsim(x1), . . . , Zsim(xn))
⊤
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which has mean vector Fβ with F = [f (x1), . . . ,f(xn)]
⊤ and polynomial f⊤(x)β as in (3.6),

and covariance matrix

ΣZ
sim = σ2R+ σ2

ǫ In = σ2 (R+ aIn)

with a = σ2

ǫ /σ
2, where the (i, k)th element of the n× n matrix R is of the form (3.1) and I

is the n× n identity matrix.

To simplify the expressions derived below, the following additional assumption is made that

the weight function g(·) is uniform on [0, 1]d. However, as in Section 3, any weight function

with independent components can be used.

4.1 Bayesian and Empirical Bayesian estimators of sensitivity indices

By (2.5), (2.10), and (2.12), the jth main effect sensitivity index, Sj, and total effect sensitivity

index, Tj, can be expressed in terms of vuQ forQ = {j}, and {1, . . . , d}, and {−j} = {1, . . . , j−
1, j+1, . . . , d}. Bayesian and empirical Bayesian estimation of vuQ firstly replaces y(·) by the

process Y (·) yielding a random variable

V u
Q = V arg [Eg[Y (X)|XQ]] .

Then the calculations below give the EP{·} expectation of V u
Q given the observed data

Zsim = zsim and the GP model parameters, say ξ = (β, σ2, a,ψ), i.e.,

EP
{
V u
Q

∣∣∣ Zsim = zsim, ξ
}
. (4.2)

Empirical Bayesian estimators of Sj and Tj are obtained by plugging an estimate (for exam-

ple, MLE or REML) of ξ into (4.2). If prior information about the values of ξ is available in

the form of a distribution [ξ], then fully Bayesian estimators can be obtained as

EP
{
V u
Q

∣∣∣ Zsim = zsim
}

= E[ξ|Zsim]

{
EP

{
V u
Q

∣∣∣ Zsim = zsim, ξ
}}

, (4.3)

which is (4.2) weighted by draws from the posterior of the parameters given the data.

A formula for (4.2) is presented in the following theorem which uses S1kj
(xij ;ψj), S2(xij , xkj;ψj),

S10(xkj;ψj), and m1 (β) in (3.11), (3.12), (3.14), and (3.15), respectively, with ψ̂j and β̂
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replaced by ψj and β, and

D(ψj) =
∫

1

0

∫
1

0

R(w − x| ψj) dx dw,

m2Q(β) =
∑

k1,...kd

∑

k′
1
,...k′

d

βk1,...kd
βk′

1
,...k′

d

×



∏

j 6∈Q

(kj + 1)
(
k′j + 1

)



−1 


∏

ℓ∈Q

(kℓ + k′ℓ + 1)




−1

.

Theorem 1 Assume that the true simulator output, y(x) can be modeled by a Gaussian

process Y (·) with mean and covariance function of the form (3.6) and (3.1), respectively.

Also assume that the observed output zsim at the training data sites, is modeled by a process

Zsim(x) satisfying (4.1). For a fixed Q ⊆ {1, . . . d},

v̂uQ(ξ) = EP
{
V u
Q | Zsim = zsim, ξ

}

=




σ
2

Y

∏

j 6∈Q

D(ψj) − trace
[(

ΣZ
sim

)−1

C

]



+
{
m2Q(β) − m12(β) + 2

(
t⊤ − m1(β)q⊤

) (
ΣZ
sim

)−1 (
zsim − F⊤β

)

+
(
zsim − F⊤β

)⊤ (
ΣZ
sim

)−1 (
C − qq⊤

) (
ΣZ
sim

)−1 (
zsim − F⊤β

)}

−



σ
2

Y

d∏

j=1

D(ψj) − trace
[(

ΣZ
sim

)−1

qq⊤
]

 , (4.4)

where q is the n× 1 vector with ith element

qi = q(xi,ψ) = σ2

d∏

j=1

S10(xij ;ψj), 1 ≤ i ≤ n,

C is the n× n matrix with (i, k)th element

Cik = σ4
∏

j 6∈Q

S10(xij ;ψj) S10(xkj;ψj)
∏

j∈Q

S2(xij , xkj;ψj), 1 ≤ i, k ≤ n ,

t is the n× 1 vector with ith element
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t(xi,β, ψ,β) =



σ2
∏

j 6∈Q

S10 (xij ;ψj)





×
mk1∑

k1=0

. . .

mkd∑

kd=0




βk1...kd

∏

j 6∈Q

(kj + 1)−1
∏

ℓ∈Q

S1kℓ
(xhℓ;ψℓ)




 , 1 ≤ i ≤ n,

Proof. The proof of Theorem 1 involves three steps: (i) the derivation of the conditional

distribution of the process UQ(xQ) ≡ Eg[Y (X)|XQ = xQ] given ξ; (ii) the determination

of the conditional distribution of [UQ(xQ)| Zsim, ξ]; and (iii) the derivation of a formula for

EP [V arg (UQ(xQ)) | Zsim, ξ]. The details are given in the Supplementary Material.

An example of a prior used for fully Bayes estimation of sensitivity indices for the zero

mean, Gaussian correlation model are given by Higdon, Gattiker, Williams, and Rightley

(2008). As an example of Empirical Bayes estimation, Sj and Tj are computed using the

facts that the estimate v̂(ξ̂) of the total variance v is given by (4.4) for Q = {1, . . . , d}.
The main effect sensitivity index Sj in (2.5) with Q = {j} for the individual input xj is

estimated by Ŝj = v̂uj (ξ̂)/v̂(ξ̂) , where v̂uj (ξ̂) is obtained from (4.4). The total effect sensitivity

index is estimated by T̂j =
(
v̂(ξ̂) − v̂u−j(ξ̂)

)
/v̂(ξ̂), where v̂u−j(ξ̂) is obtained from (4.4) with

Q = {1, . . . , i− 1, i+ 1, . . . , d}.

Given the model parameters, all components of v̂uQ are specified above except the integrals

S1k, D, S2, which depend on the user-selected correlation function. Formulas for these

integrals are stated next for the Gaussian and Bohman correlation functions and, in the

Supplementary Material, for the cubic correlation function RC(w− x| ψ) in (3.4) for ψ > 0.

4.2 Formulae for the Gaussian correlation function

The integrals S2(xij, xkj ;ψj), S10(xkj;ψj), and S1kj
(xij ;ψj), were given for the Gaussian

correlation function (3.2) in (3.16), (3.17), and (3.18) respectively, with ψ̂j and β̂ replaced

by ψj and β. In addition, the integral D (ψj) is

D(ψj) =
∫

1

0

∫
1

0

exp
[
−ψj(w − x)2

]
dx dw

=
1

ψj

[√
2πφ

(√
2ψj

)
− 1

]
+

√
π

ψj

[
2Φ

(√
2ψj

)
− 1

]
.
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4.3 Formulae using the Bohman correlation function

For the Bohman correlation function, RB(w − x| ψj) in (3.3) the integrals S2, S1kj
, S10,

are as given in (3.19), (3.20), and (3.21), respectively. For ψj > 0, the integral for D(ψj) is

defined piecewise by

D(ψj)=






4ψj

π2 +
2ψ2

j

π2 − 4ψj

π2 (ψj − 1.0) , 0 < ψj < 1.0

4ψj

π2 +
2ψ2

j

π2

{
1 +

(
1.0−ψj

ψj

)
cos

(
π
ψj

)
− 3

π
sin

(
π
ψj

)}
, 1.0 ≤ ψj .

5 Sparse correlation matrices

The motivation for providing sensitivity index estimators for compactly supported correlation

functions is that they can provide sparse correlation matrices which makes their inversion

numerically more stable (see Barry and Pace (1997) and, in MATLAB, Gilbert, Moler,

and Schreiber (1991)) and allows the analysis of larger training data sets than using the

widely-used Gaussian correlation function. Indeed, Kaufman, Bingham, Habib, Heitmann,

and Frieman (2010) demonstrated that, using a suitably rich regression mean with such a

sparse correlation matrix, the predictive ability of the stochastic model is comparable to that

based on a model with Gaussian correlation function when both correlation functions can

be implemented.

Let ψ = (ψ1, . . . ψd) denote the parameter vector for the Bohman or cubic correlation func-

tion. Kaufman et al. (2010) proposed enforcing sparsity in the matrix of correlations by

restricting attention to a parameter space of the form

Ω(K) =




ψ ∈ R
d : ψj ≥ 0 ∀ j ∈ {1, . . . , d};

d∑

j=1

ψj ≤ K




 , (5.1)

where K > 0 is chosen so that at least a given proportion α of the n(n − 1)/2 off diagonal

elements of ΣZ
sim are zero. We note that one method of selecting K to force at least a

proportion α of zeroes among the off-diagonal elements of ΣZ
sim is as follows. Calculate

d1

i,k ≡
∑d
j=1

|xij − xkj | for each of the (xi,xk) pairs with 1 ≤ i < k ≤ n. Then, set K to be

the ⌊
(
n
2

)
×α⌋th smallest value among the d1

i,k’s where ⌊·⌋ denotes the integer part of
(
n
2

)
×α.

It follows that, for any ψ ∈ Ω(K), at most α100% of the off-diagonal elements of ΣZ
sim are
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nonzero. To see that this is true for the Bohman and cubic correlation functions, first note

that R(xi,xk|ψj) = 0 for each as long as |xij − xkj | ≥ ψj for some j ∈ {1, . . . d}. Now select

any (xi,xk) with d1

i,k ≥ K; there are at least (1 − α) × 100% such pairs among the
(
n
2

)

pairings of rows. To see that
d∏

j=1

R(xij , xkj|ψj) = 0 (5.2)

for any ψ ∈ Ω(K), assume instead that (5.2) is positive, for some ψ ∈ Ω(K). Then |xij −
xkj| < ψj for all j ∈ {1, . . . d}. Hence d1

ik ≡ ∑d
j=1

|xij − xkj | <
∑d
j=1

ψj ≤ K where the last

inequality holds because ψ ∈ Ω(K). But this contradicts the assumption that d1

i,k ≥ K and

hence |xij − xkj | ≥ ψj for some j and hence (5.2) holds.

6 Two Examples

Two examples are given below to compare the results of applying the estimation methods

described in this paper. The first example, which uses a relatively small sample size, is the

Sobol´-Levitan function introduced in Sobol´ and Levitan (1999). The second example uses

a closed-form “synthetic” function which Oakley and OHagan (2004) present with n = 250

function evaluations to illustrate their fully Bayesian sensitivity index (SI) calculations.

6.1 Sensitivity Indices for the Sobol´-Levitan function

This example uses a scaled version of the function

y(x1, . . . , xd) = exp




d∑

j=1

bjxj



− Id , x ∈ [0, 1]d, (6.1)

introduced in Sobol´ and Levitan (1999) where Id =
∏d
j=1

(
ebj − 1

)
/bj . Analytical formulas

for the main effect and total effect SIs are known for y(x) for any d, any b = (b1, . . . , bd),

and uniform weight on each input; the SIs are the same for any scaled version of y(x). The

d = 8 input Sobol´-Levitan function, scaled to have variance 100, is used as the response

in the following calculations where b is selected so that y(x) has the {Sj}dj=1
and {Tj}dj=1

values shown in Table 6.1. This choice of b produces an output function with substantial

interactions because the sum of the main effect sensitivity indices is only 50% of the total

y(x) variance.
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Table 6.1

Parameters, true main effect and total effect sensitivity indices for the Sobol´-Levitan y(x) (6.1).

j 1 2 3 4 5 6 7 8

bj 3.2797 2.6467 2.0606 1.5258 1.0476 0.6340 0.2973 0.0638

Sj 0.2003 0.1370 0.0863 0.0487 0.0234 0.0087 0.0019 0.0001

Tj 0.5477 0.4342 0.3136 0.1985 0.1039 0.0406 0.0092 0.0004

First, n = 64 function runs were used to estimate the SIs using seven estimators (permuted

column sampling, a quadrature-based method, four different empirical Bayesian methods,

and a fully Bayesian method). The permuted column sampling method was implemented

using the permutations specified by the OA(64,9,8,2) design (from

http://www.research.att.com/˜njas/oadir) applied to the maximin Latin Hypercube (LH)

base design scaled to its midpoints (http://www.spacefillingdesigns.nl/) . The remaining es-

timators use y(x) evaluations from x that form a 64 × 8 maximin LH design obtained from

http://www.spacefillingdesigns.nl/ and scaled to include endpoints.

The quadrature-based method and the EBG empirical Bayesian estimator assume a GP

process with constant mean and the Gaussian correlation function. The remaining three

empirical Bayesian estimators (EBC , EBcC , EBB) are based on GP models having cubic

means and either a Bohman and cubic correlation function. The EBC and EBB estimators

are based on the REML estimate of ψ in the unconstrained parameter space. The estimator

EBcC is based on cubic correlation function with parameter space restricted by (5.1) to

provide a sparse correlation function with no more than 15% nonzero off-diagonal correlations

and REML estimation of the parameter. The quadrature-based estimates were computed

using the Gaussian process modeling tool of the JMP software (JMP 2011). All the EB

estimators were computed using MATLAB code written by the first and fourth authors of

this paper. The fully Bayesian method assumes a GP with constant mean, the Gaussian

correlation function, and the default prior specified by gpmsa (see Gattiker 2008).

The absolute error of estimation of the main effect SIs, Sj , j = 1, . . . , 8, are listed in Ta-

ble 6.2 for the seven methods. The quadrature, EB, and fully Bayesian estimators provide

comparable estimates of all main effect sensitivity indices with respect to the absolute error

of estimation and appear to be the preferable methods. For all but S2, the permuted column

sampling estimator is inferior to the other six estimators. This is in line with the findings of,

for example, Oakley and OHagan (2004) and Chen et al. (2005) for small sample sizes.
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Table 6.2

Errors estimating the main effect SIs of the Sobol´-Levitan function (6.1) with b listed in Table 6.1

based on n = 64 function runs using (1) Permuted column sampling (PermS); (2) quadrature-based

estimation (Quad), and (3) four empirical Bayes Estimators, and (4) a fully Bayesian method based

on the Gaussian correlation function with prior described in gpmsa (see Gattiker (2008))

Sj 0.2003 0.1370 0.0863 0.0487 0.0234 0.0087 0.0019 0.0001

|ŜPermSj − Sj| 0.0885 0.0368 0.0349 0.0175 0.0187 0.0253 0.0366 0.0043

|ŜQuadj − Sj| 0.0525 0.0675 0.0235 0.0031 0.0028 0.0066 0.0051 0.0025

|ŜEBG

j − Sj| 0.0474 0.0634 0.0213 0.0023 0.0032 0.0066 0.0051 0.0025

|ŜEBC

j − Sj| 0.0505 0.0635 0.0262 0.0063 0.0014 0.0065 0.0063 0.0028

|ŜEBcC

j − Sj| 0.0179 0.0140 0.0657 0.0242 0.0559 0.0649 0.0293 0.0411

|ŜEBB

j − Sj| 0.0506 0.0633 0.0204 0.0073 0.0016 0.0074 0.0053 0.0022

|Ŝgpmsa

j − Sj| 0.0447 0.0613 0.0249 0.0008 0.0036 0.0064 0.0056 0.0027

Comparing the six superior methods further, we see in Table 6.3 that, for inputs with large

total effect, i.e., those with Tj > 0.10, aside from the parameter constrained EBcB, the EB

estimators and the fully Bayesian estimator have slightly smaller absolute error than the

quadrature-based estimator. For T2, the fully Bayesian estimator appears to have superior

performance. We increased the percentage of non-zero non-diagonal correlation elements to

allow more data in the prediction process up to 50%. The errors of estimation of the total

effect SIs remained substantially larger than those of the other EB estimators. Of course

allowing all the data to be used in the estimation of ψ as for EBB or EBC does produce

reasonable SI estimates. EB estimation based on a constrained parameter space suffers from

the same type of estimation errors as does EBcB. In sum, when the amount of data used to

estimate the model parameters is too “small”, the EB estimators of the SIs can be severely

negatively impacted.

We increased the number of function evaluations to 81, using the orthogonal arrayOA(81, 10, 9, 2)

from the website above for the permuted column sampling. All methods provided better es-

timates, but the relative performance remained the same. Consequently, it appears that, on

the whole, the Bayesian methodology preforms slightly better than the other two methods

for estimation of main effect and total effect sensitivity indices.
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Table 6.3

Errors estimating the total effect SIs of the Sobol´-Levitan function (6.1) with b listed in Table 6.1

based on n = 64 function runs using (1) quadrature-based estimation (Quad), and (2) three (em-

pirical) Bayesian Estimation based on the Gaussian, Bohman, and cubic correlation functions, and

(3) a fully Bayesian method based on the Gaussian correlation function with prior described in

gpmsa (see Gattiker (2008)))

Tj 0.5477 0.4342 0.3136 0.1985 0.1039 0.0406 0.0092 0.0004

|T̂Quad
j − Tj | 0.0733 0.0342 0.1165 0.0798 0.0660 0.0020 0.0028 0.0036

|T̂EBG

j − Tj | 0.0479 0.0080 0.0974 0.0656 0.0614 0.0068 0.0053 0.0045

|T̂EBC

j − Tj | 0.0605 0.0096 0.0905 0.0672 0.0640 0.0065 0.0074 0.0040

|T̂EBcC

j − Tj | 0.1771 0.0845 0.0204 0.0195 0.1670 0.1654 0.2361 0.2467

|T̂EBB

j − Tj | 0.0491 0.0147 0.1044 0.0646 0.0621 0.0066 0.0055 0.0035

|T̂ gpmsa

j − Tj | 0.0585 0.0064 0.0780 0.0694 0.0624 0.0059 0.0122 0.0066

6.2 Estimating Sensitivity Indices in a Synthetic Example

Oakley and OHagan (2004) presented the d = 15 input example

y(x) = a⊤
1
x+ a⊤

2
sin(x) + a⊤

3
cos(x) + x⊤Mx (6.2)

with input space IR15 and independent N(0, 1) weight functions gj(xj) on each component.

We use their function y(x) but with input space [0, 1]15 and independent uniform weight

functions on each component. This function is smooth and was constructed to have five

relatively inactive inputs (x1-x5), five moderately active inputs (x6-x10), and five very active

inputs (x11-x15); y(x) has numerous local maxima and minima.

As in Oakley and OHagan (2004), the estimates of main effect and total effect sensitivity

indices were based on n = 250 evaluations of y(x). The 250 × 15 input design was selected

to be an (approximate) maximin Latin Hypercube which was computed using the genetic

algorithm implemented in the software bestlh.m (Forrester, Sobester, and Keane (2008)).

Table 6.4 lists the estimated main effect and total effect sensitivity indices based on this

data for two different empirical Bayesian (EB) methods and one fully Bayesian method.

It also lists the total cpu time required to estimate parameters or make draws from the
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posterior distribution and compute both main effect and total effect sensitivity indices for

all 15 inputs (all computations performed on a Linux machine with two eight core Xeon

E5-2680 processors running at 2.7GHz). The first EB method, denoted EBG, is based on

a GP prior for y(x) with Gaussian correlation function and (the frequently-used choice of)

constant mean. The second EB method, denoted EBcB, is based on a GP with Bohman

correlation function (3.3) and cubic mean

EP{Y (x)} = β0 +
15∑

j=1

xj +
15∑

j=1

x2

j +
15∑

j=1

x3

j . (6.3)

For EBcB, ψ parameters were restricted to the parameter space (5.1) where K was selected

so that at most 15% of the off-diagonal entries of the correlation matrix were zero. Both

EB methods use REML estimation of ψ. The EB SI estimates were computed using the

same MATLAB code as for Sobol´-Levitan example and the fully Bayesian estimate was

computed using gpmsa.

For this smooth function, n = 250 observations are more than sufficient to provide a good

overall estimate (see Loeppky, Sacks, and Welch (2009)). The results listed in Table 6.4

show that all three methods provide comparable estimates of both the main effect and total

effect sensitivity indices. However the methods are distinguished by the times required to

produce these estimates. The EBcB method with sparse correlation matrix required only

1,167 seconds of cpu time to produce estimates similar to those given by the EBG estimator

while the latter required over 9,000 seconds of cpu time. This example provides another

illustration suggesting that, even with a more complicated fitted mean, the GP model with

a sparse correlation matrix induced by the Bohman correlation, can be used to estimate

and predict in cases of larger n than is possible with the Gaussian correlation function with

constant mean (see Kaufman et al. (2011)). In fact, an additional SI estimation based on GP

with Gaussian correlation function model but with a cubic mean (6.3) (not shown) required

12,926 seconds of cpu time (and resulted in essentially equivalent numerical SI estimates).

The fully Bayesian FB method required much longer, 46,380 seconds of cpu time, than

either EB method to estimate the SIs; of this computational time, 41,167 seconds were used

to construct 10,000 posterior draws of the parameters and an additional 5,213 seconds to

evaluate the SI formulas for the 500 equally-spaced of the posterior draws selected from

the 10,000 generated. We conclude by noting that estimates of the SIs based on a GP with

cubic correlation and cubic mean produced similar numerical estimates to those shown in

Table 6.4 and required 1,139 seconds of cpu time, a value comparable to the Bohman-based
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Table 6.4

Estimated ME and TE Sensitivity Indices Using Empirical Bayesian and Full Bayesian Methods

(EBG denotes the Empirical Bayesian with Constant Mean and Gaussian Correlation), (EBB

denotes the Empirical Bayesian with Cubic Mean and Bohmans Correlation), (FB denotes the Fully

Bayesian Estimator with Constant Mean and Gaussian Correlation as computed using gpmsa)

Sj Tj

EBG EBcB FB EBG EBcB FB

x1 0.0111 0.0114 0.0112 0.0146 0.0179 0.0130

x2 0.0040 0.0044 0.0047 0.0065 0.0105 0.0066

x3 0.0212 0.0202 0.0221 0.0228 0.0250 0.0230

x4 0.0078 0.0078 0.0086 0.0103 0.0136 0.0102

x5 0.0017 0.0014 0.0017 0.0029 0.0087 0.0023

x6 0.0181 0.0196 0.0171 0.0199 0.0274 0.0176

x7 0.0244 0.0263 0.0260 0.0261 0.0334 0.0270

x8 0.0525 0.0559 0.0529 0.0554 0.0639 0.0547

x9 0.0455 0.0467 0.0439 0.0479 0.0523 0.0454

x10 0.0165 0.0140 0.0156 0.0179 0.0204 0.0162

x11 0.1847 0.1942 0.1889 0.1883 0.1999 0.1904

x12 0.1764 0.1759 0.1736 0.1792 0.1834 0.1740

x13 0.1782 0.1741 0.1791 0.1815 0.1820 0.1803

x14 0.1207 0.1163 0.1218 0.1237 0.1239 0.1229

x15 0.1205 0.1236 0.1243 0.1238 0.1298 0.1253

cputime (s) 9,308 1,167 46,380 — — —

estimates. In sum, this example provides additional evidence of the value of using compactly

supported correlation functions when the amount of the data is “large.”

7 Summary and Discussion

This paper presents estimation formulae for quadrature-based, Bayesian, and empirical

Bayesian estimators of main effect and total effect sensitivity indices. The Bayesian esti-

mator is a posterior mean of the variance of an averaged output value using a Gaussian

process prior for the output function. Specific estimation formulae are given for a broad

class of regression plus stationary Gaussian process priors models that are based on the

Gaussian, Bohman or cubic correlation functions. For small n/d, all methods yield numer-
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ically similar estimates. For larger n/d, estimators based on compactly supported Bohman

and cubic correlation functions (when used with non-constant regression means) can provide

significant cpu savings when the correlation matrix is constrained to be sparse and they are

numerically similar to sensitivity index estimates based on non-compactly supported corre-

lation functions. To facilitate the use of sparse correlation structures, we provide a method

determining the parameter space that controls the degree of sparsity for the Bohman and

cubic correlation functions.
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