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Abstract

J. N. Srivastava was a tremendously productive statistical researcher for five decades.

He made significant contributions in many areas of statistics, including multivariate

analysis and sampling theory. A constant throughout his career was the attention

he gave to problems in discrete experimental design, where many of his best known

publications are found. This paper focuses on his design work, tracing its progres-

sion, recounting his key contributions and ideas, and assessing its continuing impact.

A synopsis of his design-related editorial and organizational roles is also included.
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1 Academic history

Jagdish Narain Srivastava was born in Lucknow, India, on June 20, 1933. His mother, Mad-

huri Devi, passed away when he was two years old; his father, Mahabir Prasad, married

again and young Jagdish was raised by his stepmother, Lila. Though his family struggled

financially, his father emphasized English and mathematics at an early age and enrolled

Jagdish in the fifth grade when he was only eight years old. Always younger than his class-

mates, Jagdish was nonetheless a superior student. He completed Bachelor’s and Master’s

degrees in Mathematical Statistics from Lucknow University, the latter in 1954 with highest

standing in the Master’s examination. Now a young man needing to support not just himself

but family members as well, Jagdish immediately sought employment. He worked at institu-

tions in Lucknow and Delhi in agricultural statistics from 1954 to 1959, during which time

he continued his study of statistical theory. In 1958 he traveled to Calcutta for a battery

of rigorous written and oral exams, leading to the Statistician’s Diploma from the Indian

Statistical Institute. His examiners included D. B. Lahiri, P. C. Mahalanobis and C. R. Rao,

among others.

Srivastava was very proud of this diploma as well as the Indian Statistical Institute, which

was thriving under Mahalanobis’ dynamic leadership. Also inspired by the deeply creative

contributions of Rao, then Director of the Research and Training School at ISI, Srivastava

grew determined to make his own mark in statistics. His papers with K. Kishen (Kishen

and Srivastava (1959a), Kishen and Srivastava (1959b)) developing a mathematical theory

for confounding of fractional factorials were his first publications in statistical theory. R.

C. Bose, who had earlier worked with Kishen (notably on the influential paper Bose and

Kishen (1940)), and who was by then well known throughout the statistical world for many

fundamental contributions in experimental design, had moved to the United States in 1947,

accepting a faculty position at the University of North Carolina (UNC) at Chapel Hill in

1949. At Kishen’s encouragement, and with financial constraints making it difficult for him

to pursue a doctoral degree at ISI, Srivastava also made the leap to the U.S. in hopes of

working with Bose. He gained admission to UNC as a graduate student in 1959 during the

early golden period of its Statistics Department, bringing him in contact not just with Bose

but with other giants such as H. Hotelling, W. Hoeffding, and S. N. Roy. He completed his

thesis under Bose in late 1961 (the doctoral degree was officially awarded in 1962), then

worked as a Post Doctoral Researcher with Bose and Roy until 1963. In 1963 he joined the

faculty at the University of Nebraska (UN) as Associate Professor, was soon promoted to

Full Professor, and from there moved in 1966 to the Department of Statistics at Colorado
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State University (CSU). Srivastava was instrumental in bringing Bose to CSU in 1971 where,

following his retirement from UNC, Bose was awarded a joint professorship in the Depart-

ments of Mathematics and of Statistics, cementing CSU as a world leader in combinatorial

design. In 1991 Srivastava received a joint appointment in the CSU Philosophy Department,

a result of his pursuit of interests in quantum mechanics, mathematical logic, and spirituality

(see, for example, Srivastava (2001)). Srivastava retired in early 2000 and became a College

of Natural Sciences Research Professor at CSU. He then moved to Northern California with

his wife Usha, to be close to their youngest son Ashok and his family. He remained an active

researcher up to his death on November 18, 2010.

Srivastava was an elected fellow of both ASA and IMS, an elected member of ISI, a foun-

dation fellow of the Institute of Combinatorics and Applications, and a Fellow of the Third

World Academy of Sciences. He was president of the Forum for Interdisciplinary Mathemat-

ics as well as the International Indian Statistical Association. Srivastava directed 16 doctoral

dissertations during his career, 13 at CSU and three at UN (see The Mathematics Genealogy

Project at genealogy.math.ndsu.nodak.edu for a complete list). A co-author of this paper, S.

Ghosh, was one of his CSU doctoral students.

2 The Early Years: Fractions and Balanced Arrays

Srivastava’s dissertation, under the direction of R. C. Bose as indicated above, was titled

Contributions to the Construction and Analysis of Designs. From 1963 to 1966, Srivastava

and Bose published five articles together, whose titles we list to aid exposition:

(1) Mathematical theory of factorial designs, Bose and Srivastava (1963)

(2) Analysis of irregular factorial fractions, Bose and Srivastava (1964a)

(3) Multidimensional partially balanced designs and their analysis, with applications to

partially balanced factorial fractions, Bose and Srivastava (1964b)

(4) Some economic partially balanced 2m factorial fractions, Srivastava and Bose (1966)

(5) On a bound useful in the theory of factorial designs and error correcting codes, Bose

and Srivastava (1964c)

Srivastava made important contributions to coding theory beginning with paper (5), but our

purpose here is to discuss experimental design. Papers (1)–(4) followed a common theme

which was to be richly developed by Srivastava over the coming decade. Like much design

work today, all assumed uncorrelated observations with common variance σ2. Perspective on
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what was being done in those papers is gained from this quote, from (4):

“In the beginning, the theory largely concerned itself with orthogonal fractions, in which

the estimates of the effects of interest to us are all uncorrelated. However the number of

assemblies required in such fractions is rather large, i.e. they are uneconomic. Attention

has therefore lately shifted more to the consideration of fractions which are economic but

which may give rise to correlated estimates. We shall call such fractions as irregular.”

The bold type is ours. The concepts of run-size economy and irregular/nonregular fractions

are still hotly pursued today, but their roots are fifty years in the past.

Here is another quote, from Harter (1963) in a review of (1): “In addition, these partial

replicates can in general be analyzed without resort to an electronic computer.” While not

something we would give much thought to today, this quote plainly reveals how different was

the mind set in design research 50 years ago. More directly, Harter’s statement implies that

the designs that Srivastava was exploring could be evaluated analytically for their statistical

performance, a crucial fact for work to follow, as we will explain.

Much work was then being done on the notion of partial balance of designs in conjunction

with association schemes as first introduced by Bose and Nair (1939). Indeed, this approach to

discrete design would continue apace for another decade. All of the papers (1)–(4) were built

on a partial balance framework, using what Srivastava and Bose called the multidimensional

partially balanced association scheme (MDPB scheme) defined as follows:

• There are m sets of objects S1, S2, . . . , Sm

• Set i contains ni objects: |Si| = ni

• Fix any (not necessarily distinct) i, j, k ∈ {1, 2, . . . ,m}
(a) Given xia ∈ Si, there is a partition of Sj into gij classes, where class q contains nq(i, j)

objects termed the qth associates of xia in Sj (q = 1, . . . , gij). The number gij does not

depend on the particular xia ∈ Si selected.

(b) The relationship is symmetrical, that is, if xjb ∈ Sj is the qth associate of xia ∈ Si, then

xia ∈ Si is the qth associate of xjb ∈ Sj. Consequently gij = gji.

(c) Given distinct objects xia ∈ Si, xjb ∈ Sj which are qth associates, let Ω(xia, u, k) denote

the set of uth associates of xia in Sk, and Ω(xjb, w, k) the set of wth associates of xjb in

Sk. Then

|Ω(xia, u, k) ∩ Ω(xjb, w, k)| = pqu,w(i, j, k)

does not depend on the particular objects xia, xjb chosen.
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In brief, partition a set of objects into m classes S1, S2, . . . , Sm. There is an MDPB scheme on

these objects if (i) there is an ordinary association scheme (as defined in Bose and Shimamoto

(1952)) for elements of any one class Si, (ii) there is an association relationship for any class

Si relative to any other class Sj, and (iii) there are set-dependent triangular parameters for

any three (not necessarily distinct) sets.

The terminology here has become nonstandard, for standard usage is now “design T is

partially balanced with respect to association scheme S.” That is, “partial balance” is a de-

sign property, while association schemes exist independently of designs. Terminology aside,

the MDPB scheme was a significant generalization of the original Bose-Shimamoto con-

cept (which itself formalized Bose and Nair (1939)). It is what is now in the combinatorial

mathematics community called a coherent configuration, introduced by Higman (1970) as an

approach to, in the words of Brouwer (2011), “group theory without groups.” Interestingly

Higman, despite publishing on the latter topic for over two decades, does not seem to have

ever been aware of Srivastava’s work, nor vice-versa. For Srivastava, these schemes were the

key to an analytic understanding of large classes of irregular fractions.

Write an N -run design for m factors as an N ×m array for which column i represents factor

Fi with levels in Si. The design is partially balanced with respect to the MDPB scheme if

• there is an MDPB association scheme on S1, . . . , Sm

• each level of Fi occurs on N/|Si| runs

• if xia ∈ Si and xjb ∈ Sj are qth associates, then the number of runs with (xia, xjb) is λq(i, j)

For instance, a traditional PBIBD with v treatments in b blocks of size k, whose dual is

also a PBIBD (and which consequently has an association scheme defined on the blocks),

can be expressed as a bk × 2 array that is a MDPB design. The N = bk experimental units

are the runs, the two columns correspond to treatments (S1) and blocks (S2), and a 2-class

association between S1 and S2 is defined by a treatment being a first associate of a block if

it occurs in that block, and second associate otherwise. The main idea was to capture the

partial balance notion for all cross-classifications, regardless of the number of blocking and

treatment factors. While Srivastava did publish work dealing with multiple blocking factors

(e.g. Srivastava and Anderson (1971)), his main emphasis was on unblocked fractions.

Any ordinary association scheme generates association matrices which collectively form a

linear associative algebra, called the Bose-Mesner algebra. A very interesting mathematical

feature of the MDPB scheme is that it generates a non-commutative algebra, whereas the

5



Bose-Mesner algebra is commutative. Nonetheless Srivastava and Bose in paper (3) were

able to construct an algorithm for inverting any matrix in the algebra, at that time a key

consideration for data analysis. Parts of each of the papers (1)–(4) were devoted to analysis

of various design classes, notably including irregular fractions.

There was also a nontrivial design construction problem to achieve partial balance in frac-

tions. Srivastava was able to obtain suitable designs by exploiting an associated structural

property for variances of estimated contrasts. Define a fraction to be completely balanced if

the variance matrix of the estimates is invariant to permutation among the factors. Thus

for 2m experiments estimating main effects and two-factor interactions, with an obvious

notation,

Var(F̂1) = Var(F̂2) = · · · = Var(F̂m)

and

Cov(F̂12, F̂13) = Cov(F̂12, F̂14) = · · · = Cov(F̂m−2,m−1, F̂m−2,m)

but not necessarily

Cov(F̂12, F̂13) = Cov(F̂12, F̂34).

Complete balance is a natural statistical expression of equal interest in the factors.

How does one achieve complete balance in a fraction, short of an orthogonal array? Let

TN×m be a completely balanced design. Let VT be the variance matrix of estimated effects

using T . Then VT = σ2(X′X)−1 for suitable model matrix X. Complete balance is a permu-

tation invariance property of (X′X)−1 and hence the same permutation invariance holds for

X′X. Thus complete balance is directly expressible in terms of the design matrix. This led

Srivastava to the idea of partially balanced arrays, or PBAs.

A partially balanced array of strength t on s symbols, PBA(N, sm; t), is an N ×m array for

which every permutation of any particular t-vector (i1, i2, . . . , it) on the s symbols occurs

with the same frequency in each and every N × t subarray. For 2-level arrays (s = 2), taking

the symbols as 0 and 1, that frequency may be denoted by µi for those t-vectors containing

exactly i ones. An example of a 2-level, strength 4 array is displayed in Table 1. PBAs of

strength t are necessarily PBAs of strength t′ < t; the array in Table 1 is also PBA(5, 24; 3)

having (µ0, µ1, µ2, µ3) = (1, 0, 1, 1) and PBA(5, 24; 2) having (µ0, µ1, µ2) = (1, 1, 2).
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Table 1

PBA(5, 24; 4) having (µ0, µ1, µ2, µ3, µ4) = (1, 0, 0, 1, 0). Rows are runs of a non-orthogonal, com-

pletely balanced, resolution III fraction.

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Srivastava found the nexus of complete balance and MDPB schemes in PBA’s. Start with a

2-level fraction with the standard parameterization for the linear model in terms of a grand

mean and main effect and interaction contrasts. The columns of the design matrix X then

correspond to the intercept and the various contrast parameters, which may be thought of

as objects on which an association scheme may be defined. It follows that X′X for a 2-level

partially balanced array is in the linear associative algebra induced by an MDPB association

scheme, where the sets Si correspond to different orders of factorial effects. Specifically, for a

2m experiment the Si are the effects of order i, and the association of two effects expressed as

words W1 ∈ Si, W2 ∈ Sj is the number of letters in the product word W1W2 (and indexed by

(i, j)). An example scheme appears in Figure 1. An important consequence is that X′X for

a 2-level PBA can be inverted analytically to obtain variances and so to evaluate a design’s

efficacy. As we will explain, Srivastava and his students exploited this in a long series of

papers, but first we consider the genesis of PBA’s.

Partially balanced arrays were originally defined by I. M. Chakravarti in Chakravarti (1956),

in work arising from his doctoral dissertation under C. R. Rao. Chakravarti pointed out the

relatively simple form for X′X but did not explicitly justify why he chose the PBA name.

It seems quite natural in light of the MDPB scheme. Srivastava, as he stated in Srivastava

(1984) (page 99), independently discovered the PBA concept five years after Chakravarti by

approaching from the partial balance perspective.

These arrays are known today by the simpler “balanced array” (BA), a term coined in

Srivastava and Chopra (1971b). Srivastava and Chopra justified the terminological change

by pointing out that the 2-level arrays of strength at least two are a generalization of BIBDs

(the N ×m array is also the N ×m incidence matrix of a pairwise balanced block design

with N blocks and m treatments). This is not a wholly satisfactory explanation; perhaps

equally compelling justification lies in the original notion of complete balance in the variance

matrix. In any case it is a simpler name and profitably serves to disassociate these widely
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MDPB Scheme for 2m with main effects and 2-f.i.’s only

S2 S3
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ivi
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length of word product

1

Fig. 1. A MDPB association scheme. The intercept, the main effects, and the 2-factor interactions

form three groups S1, S2, S3. There are two associate relationships of members of S2 with members

of S3, depending on whether a main effect shares, or does not share, its factor with a 2-factor

interaction. There are two associate relationships among members of S3 as two 2-factor interactions

share, or do not share, a common factor (this is the triangular association scheme within S3). Aside

from self-association, there are seven distinct associate relationships in this scheme.

applicable arrays (more on this below) from Bose and Nair’s partial balance.

Chakravarti was not impressed by the name change. In a review (Chakravarti (1974)) of

Chopra and Srivastava (1974) he wrote:

“This reviewer introduced partially balanced arrays and gave methods of construction of

such arrays for the first time [Sankhya 17 (1956), 143–164]. Subsequent papers on the

subject were published by the reviewer.... It seems incongruous to call the same object by

a different name fifteen years later.”

If you knew Chakravarti then you know how strong a statement this was for him. However he

later published two papers (Suen and Chakravarti (1985), Suen and Chakravarti (1986)) in

which the BA name was used without mention of PBAs, so he, too, seems to have accepted

the new name, by this time firmly ensconced. We are not aware of Chakravarti having

otherwise pursued this topic.
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Table 2

Quantities ci for investigating BAs of strength 4.

c1 = 3γ1 + (3m− 5)γ3 +m′′γ5

c2 = 3γ21 + 2γ1γ3(3m− 5) + 2m′′γ1γ5 +
(m− 1)(3m− 8)

2
γ23 +m′′(m− 1)γ3γ5 −mγ22

−m− 1

2
(2γ2 + (m− 2)γ4)

2

c3 = γ31 −
(
m

2

)
(m− 1)γ23 + 2

(m− 1)(3m− 8)

2
γ1γ

2
3 + (3m− 5)γ21γ3 +m′′(m− 1)γ1γ3γ5

+m′′γ21γ5 −mγ1γ22 −mm′′γ22γ5 + 2mγ22γ3 +m(m− 1)(m− 2)γ2γ3γ4

−m− 1

2
γ1(2γ2 + (m− 2)γ4)

2

Together with his student D. V. Chopra, Srivastava wrote a series of papers studying BAs as

factorial designs. They concentrated on two major questions: (i) existence, and (ii) optimality

within the class of all BAs. Both questions are somewhat delicate and required considerable

ingenuity to resolve over a practical range for design size. Part of the reason for this is that

unlike orthogonal arrays (OAs), which are a special case, BAs are much more widely existent.

For instance (see e.g. Srivastava (1978), page 303) there is a BA(N ,2m; t) of strength t ≥ 4

for every number of runs N ≥ 1+
(
m
1

)
+
(
m
2

)
. So if there are enough observations to estimate

all main effects and 2-factor interactions, it is possible to estimate them with a balanced

array and thus to have complete balance of the variance matrix. Unfortunately this simple

existence result offers no clue as to what is the best strength four array for given m and N ,

for there can be many arrays of a given size.

Srivastava attacked the confluence of the optimality and existence questions by seeking non-

negativity conditions, as functions of the 4-vector frequencies µi, on the eigenvalues of the

(necessarily nonnegative definite) X′X matrix corresponding to BA(N , 2m; 4); see Srivas-

tava (1972) and Srivastava and Chopra (1971b). For a 2-level strength 4 array BA(N, 2m)

define m′ = m(m − 3)/2, m′′ = (m − 2)(m − 3)/2, γ1 = µ0 + 4µ1 + 6µ2 + 4µ3 + µ4,

γ2 = (µ4 − µ0) + 2(µ3 − µ1), γ3 = µ4 − 2µ2 + µ0, γ4 = (µ4 − µ0) − 2(µ3 − µ1), and

γ5 = µ0 − 4µ1 + 6µ2 − 4µ3 + µ4. Now consider the three quantities listed in Table 2. Using

these, a set of necessary conditions for existence of BA(N ,2m; 4) is

(m− 1)(µ1 + µ3)≥ 2(m− 5)µ2

(m− 4)µ2
2≤µ2(µ1 + µ3) + (m− 2)µ1µ3 (1)

c1, c2, c3≥ 0
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Table 3

Determining the A-best fractions in the BA(N, 2m; 4) class

m N cite

4 11− 28 Srivastava and Chopra (1971a)

4 29− 64 Chopra (1975c)

5 16− 32 Srivastava and Chopra (1971a)

5 33− 64 Chopra (1975c)

6 22− 40 Srivastava and Chopra (1971a)

6 41− 64 Chopra (1975c)

7 29− 42 Chopra and Srivastava (1973b)

7 43− 48 Chopra and Srivastava (1975)

7 49− 55 Chopra and Srivastava (1973a)

7 56− 68 Srivastava and Chopra (1974)

8 37− 51 Chopra and Srivastava (1974)

8 52− 65 Chopra (1975a), Chopra (1975b)

Working with the inequalities (1) and directly with the eigenvalues of the information matrix,

Srivastava and Chopra wrote a series of papers in the first half of the 1970s determining A-

optimal BAs of strength 4 (resolution V); see Table 3. A few minor corrections are reported

in Chopra, Kipngeno, and Ghosh (1986). Srivastava (1970) further proved that completely

balanced main effects plans for 2-level factors are equivalent to BA(N ,2m; 4)s.

Though it was not possible at that time, we can now examine how the best BAs perform

within the wider class of all competing designs. A-efficiencies for a sampling of A-best,

strength 4 balanced arrays for seven and eight factors, relative to the overall best designs

found by search, is displayed in Table 4. For seven factors the designs are all excellent.

The small sacrifices in terms of A-efficiency seen in some cases will in most experimental

settings be more than compensated for by the complete balance. On the other hand, the

eight-factor designs do not fare so well. The greater dispersion in the frequencies µi may

be interpreted as greater departure from an idealized orthogonal design, inflating variances

as the cost of balance. Indeed, as pointed out by Nguyen and Miller (1997), in some cases

the best BA fractions can be dominated by non-balanced designs, in the sense that every

effect is estimated with smaller variance by the latter. In such cases BA fractions are clearly

unacceptable.

The point of these observations is not to disparage the balanced array work. It is not surpris-

ing that with the passage of time and rise of computational power some better designs have

been found. The point is to display and understand what was, in its time, very powerful work
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Table 4

Selected A-best BA(N, 2m; 4) with A-efficiencies

m N µ A-eff

7

43

44

45

46

47

48

(2, 3, 3, 2, 3)

(3, 3, 3, 2, 3)

(4, 3, 3, 2, 3)

(4, 3, 3, 2, 4)

(5, 3, 3, 2, 4)

(5, 3, 3, 2, 5)

1

1

0.994

0.974

0.954

0.928

8

43

44

45

46

47

48

(13, 4, 1, 1, 4)

(14, 4, 1, 1, 4)

(7, 4, 1, 2, 8)

(8, 4, 1, 2, 8)

(9, 4, 1, 2, 8)

(10, 4, 1, 2, 8)

0.630

0.602

0.613

0.614

0.591

0.578

and by doing so gain an appreciation of Srivastava’s intellectual arc in design theory and its

place in the history of the subject. Srivastava was pushing the research envelope for frac-

tional designs, establishing a large body of small, useful, irregular fractions at a time when

much of the world was preoccupied with orthogonal design. And we can see that this work

produced a number of designs that, forty years later, still stand as either mathematically or

pragmatically best in a much wider class of competitors.

Taking an even broader view, Srivastava’s extensive work firmly fixed the balanced array

idea in the statistical literature and the statistical consciousness. Today the search term

balanced array produces more than 180 matches on MathSciNet, including papers with no

direct connection to factorial experimentation. Recent examples include work on equidistant

codes (Sinha, Wang, and Wu (2008)), on resolvable designs (Morgan and Reck (2007)), and

on bootstrapping (Lin, Lu, and Sitter (2006)). One of Srivastava’s enduring legacies is as the

popularizer of balanced arrays.

3 Search linear models, search designs, and screening

3.1 Search linear models

As the last of the optimal BA papers was appearing, Srivastava was becoming increasingly

concerned with the bias problem inherent in the use of fractions. He would later write (Sri-
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vastava (1984)):

“All through the 1960’s the author felt uneasy over the basic assumption behind the work

on (fractional) factorial designs, namely, that 3-factor and higher effects are negligible. In

many areas where such designs are commonly used, the assumption is not very far from

correct, but certainly it is never exactly true either.... The idea that nature usually comes

in such a way that even over relatively large parts of the factor space, the above assumption

about all the higher order effects being negligible holds, is unfounded and incorrect. In view

of the above, the ‘optimality’ of the optimal balanced designs produced in the above work

is misleading, since it ignores the almost certain presence of unknown amounts of bias.”

Bias considerations began to dominate Srivastava’s design work from the mid-1970s. For

fractional factorial experiments, he introduced the fundamental ideas of “search designs and

search linear models” in Srivastava (1975a) and the attendant concepts of “optimum search

designs” and “bias-free optimality criteria” in Srivastava (1977). This novel, creative work

has had lasting and continuing impact, as we will show. In the pioneering 1975 paper, he

wrote

“ ....in almost every experiment, there do occur a few effects which were assumed negligible,

but which were not actually negligible. Although the number of such non-negligible effects

is, in almost all cases, very small, it is quite difficult to pinpoint in advance which effects

will turn out to be non-negligible.”

This observation led to the idea of the search linear model (SLM), expressed as

E(Y) = X1β1 + X2β2, Var(Y) = σ2I, (2)

where Y is a vector of n response variables, X1 (n× p1) and X2 (n× p2) are known model

matrices, β1 is a vector of p1 fixed unknown parameters (effects) of primary interest, and it

is believed that at most k elements of β2 are nonzero but the identity of these is unknown.

If the nonzero elements of β2 can be identified, they can then be estimated along with the

elements of β1, accounting for what would otherwise be a source of bias. In the terminology

coined by Srivastava, this entails a search for the nonzeros of β2. A design that makes this

search possible is called a search design (SD) of resolving power {β1;β2, k}; see Srivastava

(1975a) and more formally following Theorem 3.1 below.

To more fully explain the search concept and the SLM in (2), consider the
(
p2
k

)
models
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E(Y) = X1β1 + X2iβ2i, Var(Y) = σ2I, i = 1, ...,
(
p2
k

)
, (3)

where the β2i are the
(
p2
k

)
distinct (k× 1) sub-vectors of β2, and the X2i the corresponding

submatrices of X2. Each of these is a possible model, and if a successful search is to result,

the design employed must allow every one of these models (and their submodels) to be

estimated. Moreover, the design must not produce aliasing that makes competing models

indistinguishable; we must be able to discriminate among the models so as to determine

which one is correct. In the noiseless case (σ2 = 0) a least-squares fit will be perfect but

only to the correct model, so such a design should allow the correct model to be fit with

certainty, that is, it should allow perfect discrimination among the
(
p2
k

)
competing models.

With noisy data model discrimination cannot be perfect, but is still possible, again only if

all of the competing models are estimable and distinguishable from one another. Srivastava

established the condition for this in his first search design paper, shown here in a form he

later preferred (as in Srivastava (1996)).

Theorem 3.1 (Srivastava, 1975a) The Fundamental Theorem of the Search Linear

Model

(a) A necessary condition for discrimination of the correct model from among the
(
p2
k

)
models in (3) is

rank(X1,X2i,X2i′) = p1 + 2k (4)

for every i, i′ = 1, ...,
(
p2
k

)
such that β2i and β2i′ are disjoint (k × 1) subvectors of β2.

(b) If σ2 = 0, then the rank condition (4) is also sufficient and correct discrimination is

assured. If σ2 > 0, (4) implies that correct model discrimination is still possible, but with

probability less than one.

Naturally the probability of correct discrimination in the noisy case depends, in addition to

the magnitude of effects relative to σ2, on the selection procedure employed; this is discussed

further in Section 3.2. In light of Theorem 3.1 we now formally define a search design of

resolving power {β1;β2, k} as a design satisfying the necessary condition (a). With such

a design all the elements of β1 and β2i are estimable for each of the models (3) regardless

of σ2, and there is no aliasing among distinct members of β1, β2i, and β2i′ for any i 6= i′.

In the search design literature, the estimability is sometimes phrased as “each of the models

is identifiable.” The non-aliasing further makes discrimination among competing, estimable

models possible. Owing to the obvious necessary condition n ≥ p1 + 2k, a search design
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permits estimation of σ2 regardless of which of the models (3) is correct.

Before the advent of fast computers, establishing the rank condition (4) for every pair of

submatrices X2i and X2i′ of X2 could be a daunting task, leading Srivastava to develop a

number of methods for checking (4) in terms of smaller matrices. For example, in Srivastava

(1977) the n× p1 and n× p2 matrices X1 and X2 in (2) are partitioned as

X1 =

X1(1)

X1(2)

 X2 =

X2(1)

X2(2)


with X1(1) and X2(1) having the same number n1(< n) of rows and X1(1) having full column

rank. Using this partition, define Q as the matrix

Q = X2(2) − X1(2)

(
X′1(1)X1(1)

)−1
X′1(1)X2(1)

where X′ is the transpose of matrix X. Srivastava showed that a necessary and sufficient

condition for (4) to hold is that every set of 2k columns of Q are linearly independent (a

quality that he called property P2k). Although Q has the same number of columns as X2,

it has fewer rows and deals with X1 separately; this makes the linear independence check

easier. Later, Srivastava and Gupta (1979) took n1 = p1 with X1(1) square and full rank, in

which case Q simplifies to

Q = X2(2) − X1(2)X
−1
1(1)X2(1).

Notice that if k = 1, as in much of the work in this area, all that is needed is to check the

trivial condition that no two columns of Q are identical.

An alternative check was given by Srivastava and Ghosh (1977) based on the ranks of the

orthogonal projections of all n× 2k submatrices X∗ of X2 onto the column space of X1, so

that a necessary and sufficient condition for (4) to hold is that, for every such X∗,

rank
[
X∗′

(
I−X1 (X′1X1)

−1
X′1
)
X∗

]
= 2k . (5)

Since the matrix in (5) is a 2k× 2k matrix, the rank can again be checked easily for small k.

Furthermore, Srivastava and Ghosh (1977) pointed out that, for completely balanced designs

(as defined in Section 2), there are many symmetries so that only a few matrices in (5) need

to be checked.
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3.2 Identifying the non-zero effects

In the search for the correct model, provided that at most k of the effects in β2 are non-

zero, Theorem 3.1 with σ2 = 0 guarantees selection of the non-zero effects with probability

one. In the more realistic noisy case (σ2 > 0), selection of the correct model can still be

achieved but with probability less than one. A number of methods for detecting the non-

zero (or active) effects were suggested by Srivastava; for example, using a comparison of the

error sum of squares, or regression sum of squares, of competing models or, alternatively,

taking a selection of the k effects that occur most frequently in the h (> 1) models with

the smallest error sum of squares (Srivastava (1975a), Section 5). For k = 1, a method for

“dichotomizing” the interactions into subsets, one of which possibly contains the non-zero

effect in β2 and the other not, was described by Srivastava and Mallenby (1985).

Interestingly, in some of his later papers, Srivastava allowed assumptions to be made about

higher order interactions being negligible. This may seem somewhat at odds with his orig-

inal worries about unrealistic assumptions, but it did give scope for developing sequential

strategies to detect and estimate the k non-zero interactions using as few observations as

possible. Srivastava and Hveberg (1992) took this approach discounting 3-factor and higher

order interactions, so that β2 contains only the two-factor interactions (with β1 containing

the general mean and the main effects). Here, under the name probing designs (also see Sri-

vastava (1987b)), treatment combinations are observed in an order which is specified by the

values of previously observed treatment combinations (suggestive of the modern technique

of sequential bifurcation; see for example Bettonvil (1995)). Their search requires a “tree

structure” for the non-zero effects, similar to that of “strict weak heredity” (see, for exam-

ple, Wu and Hamada (2009)) and the general approach can be extended to models which

include higher order interactions. The multi-stage strategy of Srivastava and Chu (1999) is

similar to the technique of resolving confounding in regular designs by adding extra effects

in follow-up designs. This work, likewise, assumed negligible three-factor and higher order

interactions.

In the current literature, the term “active” is sometimes taken as above to mean “different

from zero,” but in other cases to mean “large enough to be of practical interest.” In the

latter case, detection of active effects can be done with probability close to one provided

that error variability is small. In fact, in Srivastava and Hveberg (1992), Srivastava stressed

that
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“... in practice, the words ‘zero’ and ‘non-zero’ should be interpreted as ‘small’ and ‘rela-

tively large’, where the meaning of these words will have to depend on the experimenter.”

With respect to the probability of correctly identifying the non-zero elements of β2, Srivas-

tava (1977) reasoned that, in drawing inferences from data obtained from a search design,

“... if a design does not work well for the noiseless case, it can not be expected to work in

the noisy case (σ2 > 0) either.”

Later, Shirakura, Takahashi, and Srivastava (1996) went on to examine the “probability of

correct search” and its use in comparing search designs in the noisy case. They gave an

explicit formula for the probability of correct selection of k = 1 non-zero effect from β2 when

the errors follow a N(0, σ2) distribution, and calculated this probability for two examples for

different values of the “signal to noise” ratio ρ = β21/σ (where β21 is the true value of the

non-zero effect from β2). The examples looked at a specific MEP.1 search design (defined in

Section 3.3) in the cases where (i) β2 contains only the two-factor interactions, and (ii) β2

contains the two-factor and the three-factor interactions. The probabilities are remarkably

high; above 0.95 for (i) with 5–10 factors and ρ > 1.5, and just a little lower for (ii) where the

search is more competitive. Ghosh and Teschmacher (2002) proposed two criteria based on

probabilities of correct search, in addition to that of Shirakura et al. (1996), for determining

which of several designs is more likely to identify the k = 1 non-zero interaction. That paper

also generalized the three criteria for all values of ρ so that comparison of search designs

can be made without requiring ρ to be known. A BA design was found there to be more

likely than two competing OA designs to identify the non-zero interaction. This finding was

no surprise to Srivastava as he mentioned many times in his writings and in conference and

seminar presentations that he believed in the superiority of BAs over OAs when one is not

sure about the true model.

3.3 Construction of search designs

During the 1970s, Srivastava wrote extensively on the problem of constructing search designs

of resolving power {β1;β2, k} for 2m factorial experiments, including the issue of optimality.

Many of his early papers deal with the situation that we label “Scenario 1”, namely that β1

contains the general mean, together with the main effects of the m 2-level factors and their

two-factor interactions, while β2 contains all of the higher order interactions, of which only

a small number (say, k = 1 or k = 2) are expected to be non-zero. Under Scenario 1 with
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k = 1, the number of observations needs to be at least

p1 + 2 = 1 +m+m(m− 1)/2 + 2 = (m2 +m+ 6)/2 (6)

for (4) to be satisfied. This is considerably fewer observations than would be needed for

a full factorial (e.g. 18 versus 32 for m = 5, and 24 versus 64 for m = 6). Notice that

effect hierarchy is not considered here, so that it would be possible, although unlikely, for

a 5-factor interaction to be selected as the non-zero interaction while declaring all three-factor

and four-factor interactions to be zero. Nevertheless, all hierarchical models can certainly be

distinguished.

For Scenario 1, Srivastava and Ghosh (1977) constructed search designs, which they called

Balanced Resolution V Plus One (BARE5.1) designs, based on BAs of strength 4. These

designs, for numbers of factors in the range 4 ≤ m ≤ 8, are a subset of the optimal BAs of

resolution V given in the papers of Srivastava and/or Chopra (see Table 3). They enjoy the

additional advantage of being BAs not only of strength four but of strength m. Tables in the

paper present BARE5.1 designs in easily constructable form along with their efficiencies. A

subset of these designs gives rise to an infinite series of search designs (Srivastava and Ghosh,

1976), each of which consists of all treatment combinations with weights 1,m − 2,m − 1,

and m, where the weight of a treatment combination is equal to the number of factors set

at their “non-zero” levels. This design has (m+ 1)(m+ 2)/2 observations in total, which is

only m− 2 observations more than the theoretical minimum (6).

A second setting, Scenario 2, considered by Srivastava for 2m designs, occurs when β1 contains

the general mean and just the main effects of the m factors, while β2 contains all of the

interactions. Srivastava called search designs under this scenario main effect plus k plans

(Srivastava, 1975a), also known as MEP.k plans or designs of Resolution III.k. One possibility

for constructing an MEP.k plan is to take a design (say, T1) that is optimal for estimating

the main effects in β1 when β2 = 0 and adding to it a design T2 that will allow the search

for the k non-negligible interactions. This strategy is attractive since optimal T1 are well-

known, but as Srivastava pointed out, the constraint of using an optimal T1 may not lead to

a good search design overall. Srivastava and Gupta (1979) took T1 to consist of the treatment

combinations with weights 1 and m and obtained conditions on the weights of the treatment

combinations in T2 to result in an MEP.1 plan. Srivastava and Arora (1991) turned attention

to search of k = 2 interactions (MEP.2 or Resolution III.2 designs). They gave methods for

checking whether a design (T1,T2) is an MEP.2 design and, among other results, showed that
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Table 5

Search scenarios (main effects and factor interactions denoted by m.e. and f.i.)

Scenario β1 β2

1 mean, m.e. and 2-f.i. all q-f.i., q ≥ 3

2 mean, m.e. all interactions

3 mean, m.e. 2-f.i., 3-f.i.

4 mean, m.e. 2-f.i.

5 mean all other effects

6 mean m.e., 2-f.i.

7 mean m.e.

T1 as above coupled with T2 containing treatment combinations with weights 0 and 2 does

satisfy these conditions. Scenario 2 was later examined by Gupta (1992) who considered

existence conditions for MEP.k designs for general k and presented search designs for 27

experiments when k = 1 and k = 2. From the 1980’s onward, many other authors began

working on search design problems, expanding beyond the two scenarios described above.

MEP.1 and MEP.2 designs were constructed by Ohnishi and Shirakura (1985) for Scenario 3

(see Table 5). Details about these and other plans are available in Ghosh (1996).

Much of the work on construction of search designs has been done in the context of 2-level

factors, but a number of authors have looked at more general cases; for example, Ghosh

and Zhang (1987), Anderson and Thomas (1980) and Chatterjee and Mukerjee (1993). For a

more expansive treatment of the major developments in the construction of search designs,

along with discussion and insights, see Ghosh, Shirakura, and Srivastava (2007).

An interesting issue in search design selection is how to assess design efficiency. Srivastava

and Ghosh (1977) measured the efficiency of estimation of β1 in a search design relative

to a design in which these are the only parameters of interest. Srivastava (1977), on the

other hand, looked at the sum and product of determinants of the information matrices for

estimation of the parameters in the possible models (3) to define the six average optimality

criteria: AD-, GD-, AT -, GT -, AMCR-, and GMCR, where A and G indicate arithmetic

and geometric mean, respectively, and D, T and MCR represent determinant, trace, and

maximum characteristic root, respectively. The AD criterion was used by Shirakura and

Ohnishi (1985) in designs for which β1 contains up to `-factor interactions and β2 contains

(` + 1)-factor interactions only. Ghosh and Tian (2006) presented tables of optimal search

designs with respect to all six criteria for Scenario 4, for the maximum value of k in 24 and

25 factorial experiments.
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3.4 Screening designs

The idea of screening was formulated as an application of the search linear model in the

pioneering paper Srivastava (1975a). The defining attribute of this setting is that β1 contains

only the mean, reflecting the experimenter’s belief that of the factors being examined, there

is no a priori sense of which are to be included. Thus β2 contains all of the potentially

relevant effects, for which there are several standard options, here labeled Scenarios 5–7 (see

Table 5). Recently, the topic of screening has found renewed interest due to its importance

for experiments in industry when budgets allow few observations in comparison with the

number of effects to be estimated. For simplicity, as well as greatest relevance to screening

applications, we consider only 2-level factors in this section (though Theorem 3.2 is not so

restricted).

For the screening context, define an active factor to be a factor with a non-zero main effect

and/or involved in at least one non-zero interaction. A modification of Theorem 3.1 for

screening, that explicitly takes hierarchy into account and can be used in any of Scenarios 5-

7, is (see Cheng (2006)):

Theorem 3.2 Suppose that there are at most k∗ active factors among m potentially active

factors, where k∗ is known, but it is unknown which of the factors are active. Let each

of S1 and S2 be a set of k∗ potentially active factors and let X(S1, S2) denote the matrix

whose columns are contrasts that measure the main effects of the factors in S1 ∪ S2, and the

interactions between factors within each of S1 and S2. A design under model (2) can identify

all of the active factors when σ2 = 0 if and only if

[1
¯
, X(S1, S2)] is of full column rank for all possible S1 and S2 .

Notice that, while Srivastava’s rank condition in Theorem 3.1 deals with a search for k

non-zero factorial effects in β2, here Theorem 3.2 searches for a model containing k∗ active

factors, with “active” as defined above the theorem. Nonetheless there are strong connections

between the two results. Take p1 = 1 in Theorem 3.1, and take any k∗ that is no more than

half the number of factors. It follows immediately that in Scenario 7, the numbers k in

Theorem 3.1 and k∗ in Theorem 3.2 are equal and the two theorems are equivalent. In fact,

Srivastava presented essentially this result as a special case of Theorem 3.1 in the 1975 paper

(his Theorem 2 restricted to Scenario 7).
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For Scenario 6, if we do not cap how many two-factor interactions are allowed among the

k∗ active factors, then setting k = k∗(k∗ + 1)/2 in Theorem 3.1 implies Theorem 3.2 for any

k∗ ≤ m/2. The two theorems are now distinguished by the sets of models within which they

discriminate. Cheng’s theorem considers each possible model with k∗ main effects and their

k∗(k∗ − 1)/2 two-factor interactions. Srivastava’s does much more, discriminating among

models containing any k parameters from among the m main effects and m(m− 1)/2 two-

factor interactions. Similar statements can be made when the number of 2-factor interactions

allowed in the model is capped at less than k∗(k∗ − 1)/2, and analogously for Scenario 5.

Though the Theorem 3.1 condition with suitable k implies the Theorem 3.2 condition, the

implication, as expected, is not generally reversible: the two theorems are not equivalent

outside of Scenario 7. Again for Scenario 6 consider any design found by selecting six columns

from a 12-run Plackett-Burman design (Hadamard matrix). The goal is to screen for two

factors and their possible interaction. Taking k∗ = 2 and so k = 3, any one of these designs

satisfies the rank condition of Theorem 3.2 and so can distinguish among the 15 competing

hierarchical models (and their submodels). However the rank condition of Theorem 3.1 is not

satisfied; no such design with just 12 runs can discriminate among all 1330 models containing

any 3 parameters from among the main effects and two-factor interactions.

Search designs for screening factor main effects (Scenario 7) were studied by Ghosh and Avila

(1985), among others. For main effects screening, the number of observations is only required

to be at least 1+2k∗, and this leads to the consideration of supersaturated designs where the

number of observations is less than the number of factors. There is now a huge literature on

the construction and analysis of supersaturated designs, not just for main effects screening,

but also for screening interactions (see Georgiou, Draguljic, and Dean (2009) for references

and further details).

The Theorem 3.2 rank requirement for screening designs has echoes in a design property

that has seen interest in the last 20 years; namely that of projectivity of non-regular frac-

tions (orthogonal arrays, in particular). Box and Tyssedal (1996) defined a design to be of

projectivity p if all subsets of p columns of the design contain a full factorial design among

their runs. Cheng (1998), dedicating his paper to Srivastava on his 65th birthday, gives a

very clear accounting of how projectivity and resolving power of two-level designs relate to

search design conditions. Cheng (1998) also discusses another related property, called hid-

den projectivity by Wang and Wu (1995). This refers to a design which “allows some (or

all) interactions to be estimated even when the design does not have the right resolution
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or other combinatorial design property for the same interactions to be estimated”. Consider

m = 8 factors specified by a choice of eight columns from a 12-run Plackett-Burman design.

One of the resulting, hidden projection properties is that any four main effects and three

two-factor interactions among them can be estimated. This is an instructive example of the

limitation of designing for projection properties alone, which though certainly necessary, are

not sufficient for the screening problem. While this design can estimate any of the models

just mentioned, it cannot discriminate amongst all such models. This is Scenario 6 with

k∗ = 4 and number of 2-factor interactions capped at three, for which either Theorem 3.1

(put k = 7) or Theorem 3.2 requires at least 15 runs to distinguish any two of these models.

For a recent review of work on design projection and related properties with many pertinent

references, see Xu, Phoa, and Wong (2009).

In this section, we have tried to demonstrate that Srivastava’s application of the search

linear model for factor screening was well ahead of its time. While most of Srivastava’s

direct contributions to screening were earlier, the ideas are still being explored, added to,

and rediscovered, at a rate that has accelerated from the 1990’s on.

4 Bias and Row-Column Designs

We now turn to another aspect of the bias problem - its implications for row-column designs

such as Latin squares. Looking back, Srivastava wrote in Srivastava and Wang (1998):

“The possibility of the presence of nonadditivity [due to row-column interaction], partic-

ularly in large Latin Squares, was apprehended by Fisher and Yates (1948), who pointed

out that this may invalidate the analysis of the experimental data, which is based on the

additive linear model. This remark was picked up by one of the authors (Srivastava), who

(in a conversation with R.C. Bose in October 1959) deemphasized large sized Latin Squares

from the statistical angle. The same point of view was taken for general row-column designs

when the papers of Kiefer (1975a), Kiefer (1975b) were being processed....

In 1981, Srivastava and Kiefer planned to systematically attack the non-additivity prob-

lem, but the project did not start because of Kiefer’s sudden death. Only in 1990, Srivas-

tava began the investigation, which were published in Srivastava (1993). Some alarming

conclusions were reached in this study....”
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Table 6

Analysis of published data for p× p Latin squares. See Srivastava and Wang (1998) for full details,

including individual cites and precise deletions.

Source p c s2full s2del
s2full
s2
del

p-value

Bliss 4 3 35.67 0.93 38.22 3.73× 10−7

Montgomery 4 3 1.75 0.17 10.29 5.14× 10−3

Senn 4 3 0.073 0.001 73.00 1.02× 10−11

Montgomery 5 3 10.67 2.83 3.77 0.1065

Montgomery 5 4 3.13 0.13 24.08 9.39× 10−5

Cox 6 3 1.62 0.71 2.28 0.4677

Evans and Alldredge 6 3 0.66 0.29 2.28 0.4677

Montgomery 6 3 9.90 5.06 1.96 0.6422

Cochran and Cox 6 4 3.33 0.95 3.51 0.1252

The Srivastava and Wang paper contains ample theory concerning identification of row-

column interaction and its impact on treatment comparisons. Some of this employs a search

linear model approach. Here we give information from that paper that helps to illustrate

the reality of the problem. Table 6 displays the impact on the variance estimate s2 due to

deletion of c cells. The ratio for the two variance values is displayed, as well as the simulated

p-value for such an extreme ratio under the null hypothesis of no row-column interaction. Of

nine cases, four show clear indication of nonadditivity, and two others are marginal. This is

not just an academic problem.

It can be argued that row-column interaction makes no sense from a randomization view-

point. In the randomization theory, the individual cells all have their own effects which are

averaged over rows and columns in the randomization process (producing row and column

effects in the randomization model). Srivastava would have none of this: though a believer

in randomization for practical reasons, he did not accept it as a valid basis for model justi-

fication and analysis. He wrote about this on several occasions, perhaps most succinctly in

Srivastava (1996):

“To avoid biases ... the concept of randomization was introduced. This ... should not

be confused with randomization analysis of designs. It is shown that, approximately, it

gives the same answers ... as the ones based on linear models and normality. Some people

regard this as an added justification of, or even a more desirable basis of, the usual analysis.

However, the latter is controversial. Consider two different acts of randomization Ai (i =

1, 2) with two different systems of probability Pi .... Since P1 and P2 are different, A1 and

22



A2 will generate two different universes (say, U1 and U2). However A1 and A2 could both

result in the same placement Π of treatments on the units. Now, the experiment depends

only on Π.... However, the analysis of the experiment using Ai (i = 1, 2) would be done

by averaging out Ui, which would generally lead to two different conclusions. This is a bit

discomforting ....”

Even if you disagree with this argument, there is another reason to dismiss a randomization

justification in the current situation. What Srivastava does not seem to have mentioned in

print, but which is easily demonstrated, is that if a few units have substantially different

effects than others (a plausible manifestation of serious non-additivity), then the normal

theory test can be an unacceptably poor approximation to the randomization F -test. Unless

one wants to use randomization analysis entirely, this seems adequate reason to take the

interaction problem seriously.

Though search design ideas could be implemented to detect the problem, Srivastava recom-

mended bypassing search in this instance. In Srivastava (1977) he wrote:

“However, in large designs of this type, like, for example, large row-column designs, the

author is of the opinion that instead of using such designs and searching for interactions,

we could almost bypass the latter by simply not using such designs. The reason is that a

new class of designs, whose concept we now introduce, seems to be by far more efficient

in an overall sense.”

This new class Srivastava called “block-treatment designs with two-dimensional blocks.”

Here is an example given in the 1977 paper for 5 treatments in 5 blocks of size 2× 2:

1 2

3 4

2 3

4 0

3 4

0 1

4 0

1 2

0 1

2 3

Lattice squares and other resolvable row-column designs were already available; Srivastava’s

notion was that the nesting block be incomplete rather than complete or multiply complete.

This would allow for shorter rows and columns, dampening the likelihood of departure from

the additive model due to fitting constants for larger collections of units.

The idea was picked up very quickly, notably by Singh and Dey (1979), who chose the alter-

native terminology “block design with nested rows and columns.” This terminology would

become the norm, sometimes shortened to “nested row-column design.” For an extensive

introduction to the topic, with many references, see Morgan (1996). MathSciNet now finds
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well over 50 publications dealing with this class of designs.

So Srivastava’s idea definitely caught on, though he did almost no work on nested row-column

designs after the 1977 paper. He put forth the concept, but little else; others developed his

idea, changing the name in the process. This placed Srivastava on the other side of a situation

paralleling the introduction and development of balanced arrays, a small irony that, had he

taken notice, he surely would have appreciated. Just as Chakravarti later accepted and used

Srivastava’s BA terminology, Srivastava later accepted and used “nested row-column” (e.g.

Srivastava and Beaver (1986)).

5 Other Design Work

A review of Srivastava’s design work would not be complete without mention of at least

two other areas in which he made significant contributions. Not surprisingly given its close

association with balanced arrays, one of these is orthogonal arrays.

An orthogonal array of strength t, OA(N, sm; t), is just a BA(N, sm; t) for which the permutation-

invariant frequency for row vectors in any N × t subarray is constant across all st vectors

(for s = 2 this is equality of the µi defined in Section 2). One standard construction for an

OA uses the finite field GFs as follows. For any vector v whose elements are drawn from

GFs, define the weight of v to be the number of nonzero elements in v. Let Ar×m and cr×1

be a known matrix and vector respectively with elements in GFs, and let A have rank r.

Then the sm−r solutions x to the equations Ax = c are the rows of OA(sm−r, sm; t) if,

and only if, every vector in the row space of A has weight at least t + 1 (Rao (1947),Rao

(1950)). Evidently the solutions x form an affine subspace, also called an (m− r)-flat, in the

m-dimensional Euclidean geometry EG(m,s).

Srivastava and Throop (1990) sought to understand the conditions that would produce an

OA when solving several such sets of equations. For i = 1, . . . , f let T i be the sm−r × m

array whose rows are all solutions x of Ax = ci where A is as above and the ci are known,

distinct vectors in EG(r,s). Let T (fsm−r×m) = [T ′
1|T ′

2| . . . |T ′
f ]

′ and let C = [c1, c2, ..., cf ].

They (also see Srivastava and Chopra (1973), where the result was first stated) proved:

Theorem 5.1 T is an orthogonal array of strength t if and only if, for any vector u(r×1) in

EG(r, s) with u′A 6= 0 and weight (u′A) ≤ t, the (f × 1) vector C′u is an orthogonal array

of strength 1.
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The T i share no common rows and so are parallel flats in EG(m,s). Consequently T is

termed a parallel flats fraction. Parallel flats fractions were introduced in Connor (1960) and

Connor and Young (1961) for s = 2, 3. Srivastava, Anderson, and Mardekian (1984) built a

general theory for these designs. Srivastava (1987a), Srivastava and Li (1996), and Li and

Srivastava (1997) further advanced the theory and provided optimal fractions. Many other

references for work in this area may be found in these papers.

Turning back to his earlier years, while a doctoral student at UNC, Srivastava began a col-

laboration with S. N. Roy on design for experiments with multivariate response. This work

became more vigorous during his post-doctoral appointment (see Section 1) and continued

until the sudden demise of Roy in 1964. Significant products of their collaboration included

Roy and Srivastava (1965) and the monograph Roy, Gnanadesikan, and Srivastava (1971)

(a project begun in the summer of 1962). These works established theory for hierarchical

designs for situations where fewer measurements were to be made on response variables of

lesser interest. They also introduced p-block designs for settings where variability in dif-

ferent responses is impacted by different blocking variables (the p refers to the number of

response variables). Srivastava was also independently authoring design papers for multivari-

ate response (Srivastava (1966), Srivastava (1968)) in addition to other work in multivariate

inference. Those papers were shortly followed by a series of articles with his doctoral student

L. L. McDonald (Srivastava and McDonald (1969), Srivastava and McDonald (1970), Sri-

vastava and McDonald (1971)) incorporating cost considerations into multi-response design.

Srivastava was a leader in this area through the 1960’s and into the early 1970’s, concur-

rent with other authors (notably Farrell, Kiefer, and Walbran (1967) and Fedorov (1972)),

opening research paths for others to follow and generalize.

6 Editor and Conference Organizer

Srivastava was tireless in the promotion of new statistical and combinatorial thinking in

experimental design. He organized four international conferences at Fort Collins, in 1971,

1973, 1978, and 1995. He edited volumes containing papers from the first three of these:

Srivastava, Harary, Rao, Rota, and Shrikhande (1973), Srivastava (1975b), and Srivastava

(1980). He published papers from the 1995 Bose Memorial Conference as special issues of

Journal of Statistical Planning and Inference (JSPI), volumes 72 and 73.

The 1973 conference “Statistical Design and Analysis of Experiments and Linear Models”
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was particularly significant in terms of both participation and impact. Srivastava (1975b)

contains the invited papers from this conference, including Srivastava (1975a) (discussed at

length earlier in this article) and the influential papers Hedayat and Afsarinejad (1975),

Huber (1975), and Kiefer (1975b). With emphasis in the research world about to shift from

purely combinatorial to optimal design, the conference brought together a wide swath of

statisticians at the cusp of a new era for planning experiments. It was also during this

conference that Srivastava began building widespread support for the creation of a new

journal that would be particularly encouraging of work in design and sampling. He and others

sensed that the Annals of Mathematical Statistics in its last years had become less receptive

to papers in design theory, a trend they saw continuing with the newly created Annals of

Statistics. Sam Hedayat, then associate editor for Annals of Statistics, was experiencing a

degree of this perceived design antipathy first hand, and was sympathetic to Srivastava’s

view. He was a participant in the 1973 conference as well as in much of the correspondence

on the “new journal issue” even while doing his best to push quality design papers in the

Annals. According to Hedayat,

“... there was no society which was willing to sponsor a new journal targeted to design

and sampling. I should say this much, if Srivastava was not behind the idea then there

would have been no new journal. He was passionate about it and frankly upset about the

direction of Annals of Statistics.”

Enlisting support from an impressive list of distinguished statisticians (interested readers

may wish to peruse the initial editorial board), Srivastava partnered with North Holland to

create JSPI with a driving spirit of cooperation, encouraging the interplay of design with

all areas of statistical activity. The first sentence of JSPI 1, issue 1 (1977), highlights this

perspective: “Journal of Statistical Planning and Inference has been established to provide a

common medium for the dissemination of significant information in all branches of statistical

planning and related inference problems.” By JSPI 7 (1982), this had evolved to “This is

a broad based journal covering all branches of statistics, with special encouragement to

workers in the field of statistical planning and related combinatorial mathematics.” Under

Srivastava’s direction a few prominent mathematicians were always present on the editorial

board of JSPI to encourage cross-fertilization, and new researchers were brought in to keep

the process dynamic and vigorous.

JSPI was officially “born” with the first call for papers in late 1975, with Srivastava as

Editor-in-Chief, a position he held with clarity of vision and a commitment to knowledge
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for 35 years. Preparing to step down, he wrote in Srivastava (2010):

“The Journal truly belongs to the world scientific community. I hope they continue to

nourish it and be nourished by it, without regard to geographical boundaries, race, religion,

ethnicity, and other such factors.”

But Srivastava would pass before his term ended. He wrote in 2010:

“It is said that all things that have a beginning also have an end. The same is true of me

as the Editor-in-Chief of JSPI. I will soon be moving onwards from this position. There

is a long list of people whom I must thank for the success of the journal. In spite of my

many inefficiencies, they have helped bring it into the category of the largest prestigious

Statistics journals in the world.”

7 Srivastava and design: an exceptional career

Not all of Srivastava’s ideas have stood the test of time, but no one’s do; this is part and

parcel of scientific progress. The MDPB association scheme underlying much of his earliest

design work, picked up by a few other authors, now seems inactive in the statistical literature

(though it has enjoyed an independent life among group theorists). Yet like many non-trivial

ideas, it put Srivastava on a path that has had many ramifications. His extensive explorations

on balanced arrays popularized the idea and has led to work that continues today, even in

areas removed from their originally intended application. He was an early proponent of run-

size economy in fractions, an early pursuant of optimal fractions, and a consistent voice

warning of the dangers of bias. Much of his work in fractions, especially that arising out of

the search design concept, is foundational to currently active research. He introduced the

notion of nested row-column designs. He was founding editor of JSPI. Ignoring all of his

work in other areas, his design contributions alone comprise an exceptional career.

Srivastava made significant contributions to areas of statistics apart from design, including

multivariate analysis and sampling; the interested reader is directed to Ghosh (1999) as a

good starting point for these topics. A deeply spiritual man, some of his writings in this

regard are available at higherreality.googlepages.com. A tribute to Srivastava and a list of his

publications are available in Ghosh (1999) and his obituary in Ghosh (2010).

We accept the reality: “... that all things that have a beginning also have an end.” Srivastava
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wrote in Sparks of Consciousness (Srivastava (2009)):

No one knows where we all came from,

We do not know if we shall ever meet again.

Yes, we do not know whether we shall see Jagdish again but we will long feel his absence at

professional meetings and conferences with his insightful, thought-provoking, and penetrating

questions. He is present and will remain present in our thoughts.
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