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Abstract

An overview is given of the link between the k-circulant method of construction of two-level super-16
saturated designs and construction methods based on cyclic incomplete block designs. It is shown that
this link enables a simple formula for the Es2-efficiency of all such designs to be derived. Generators18
are given for Es2-optimal and near-optimal designs that extend the range of previously known designs
or that have a smaller number of highly correlated column pairs.20
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1. Introduction

The goal of a screening experiment is to identify the few most “active” factors from a very24

large number of potentially important factors. Supersaturated designs have been advocated
for screening when relatively few observations can be taken and when it can be assumed26

that the factor main effects will be much larger than the interactions. Some supersaturated
designs allow interactions to be investigated but, usually, main effect models are fitted.28

Various methods of analysis of supersaturated designs have been investigated in the lit-
erature. Frequentist methods include forward selection and stepwise regression (Westfall,30

Young and Lin, 1998; Abraham, Chipman and Vijayan, 1999; Kelly and Voelkel, (2000),
penalized least squares methods (Lin, 1995; Li and Lin, 2002), the Dantzig selector (Phoa,32
∗1559-8608/09-2/$5 + $1pp – see inside front cover
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Pan and Xu, 2007). Bayesian methods that can be used for analysing supersaturated designs
have been investigated by Chipman, Hamada and Wu (1997); Beattie, Fong and Lin, (2002)2

Meyer and Wilkinson, (1998), among others.
In trying to extract information about a large number of factor main effects from very few4

observations, it is inevitable that the chance of mis-identifying the most important effects can
be fairly high. This is due to the fact that main effect estimates are correlated and sometimes6

more than one model fits the data equally well. To minimize mistakes, it is advisible to use
designs with main effect contrast correlations as small as possible. Chen and Lin (1998) and8

Liu, Ruan and Dean (2006) suggest that a maximum correlation of 0.333 is desirable, but
this cannot always be achieved for very large numbers of factors. However, provided that10

there are very few active factors (factor sparsity, see Box and Meyer, 1986) and provided
that important effects are very large, it appears possible to identify most of the active factors,12

in general.
Supersaturated designs were introduced by Satterthwaite (1959) in terms of random bal-14

ance designs. The first systematic study of the construction of efficient supersaturated de-
signs was given by Booth and Cox (1962) who defined several criteria, including minimiza-16

tion of Es2 (or ave(s2)) and minimization of maximum column correlation, for evaluating
and comparing designs. In recent years, the construction and analysis of supersaturated18

designs has been an especially active area of research. Construction methods based on
Hadamard matrices have been investigated, for example, by Lin (1993), Wu (1993) Tang and20

Wu (1997), Cheng (1997), Butler, Mead, Eskridge and Gilmour (2001); methods based on
balanced incomplete block designs have been discussed by Nguyen (1996), Cheng (1997),22

Bulutoglu and Cheng (2004); computer algorithmic methods have been employed by Lin
(1995), Nguyen (1996), Li and Wu, (1997), and Bulutoglu and Cheng (2004); cyclic meth-24

ods of construction have been explored, for example, by Liu and Zhang (2000), Eskridge,
Gilmour, Mead, Butler and Travnicek (2004), Liu and Dean (2004), and Georgiou (2008).26

All of the designs listed in the above papers are optimal or highly efficient under the Es2

criterion. Cheng (1997), Butler, Mead, Eskridge and Gilmour (2001), and Bulutoglu and28

Cheng (2004) give fairly complete solutions to a wide range of Es2-optimal supersaturated
designs with number of runs n a multiple of 4 and also n = 10,14,18 for a wide range of30

numbers of factors m.
In this paper, we concentrate on the link between cyclic methods of construction of n-32

run supersaturated designs with m = k(n− 1) two-level factors (for any specified integer
k). The method described by Nguyen (1996) for construction of Es2-optimal supersaturated34

designs was to adjoin the incidence matrices of pairs of cyclic balanced incomplete block
designs (BIBD). An extension of this method was discussed by Eskridge, Gilmour, Mead,36

Bultler and Travnicek (2004), where the incidence matrices of regular graph designs as
well as balanced incomplete block designs were used. Liu and Zhang (2000) developed38

an algorithm for constructing Es2-optimal supersaturated designs from cyclic BIBDs. A
related method based on cyclic generators was given by Liu and Dean (2004). The link40

between these construction methods is explored in Section 3 and is exploited in Section 4
to give a simple formula for the Es2-efficiency of all such designs. Cyclic generators are42

given for Es2-optimal and near-optimal designs that extend the range of previously known
designs, or that have a smaller number of highly correlated pairs of columns.44

Since this paper concentrates on cyclic generation of supersaturated designs, it does not
cover all the known Es2-optimal designs. In particular Es2-optimal designs based on non-46
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cyclic Hadamard matrices and incomplete block designs are not covered. Various non-cyclic
solutions for Es2-optimal supersaturated designs for ranges of n and m have been provided2

by Butler, Mead, Eskridge and Gilmour (2001), Bulutoglu and Cheng (2004), Ryan and
Bulutoglu (2007) and Das, Dey, Chan and Chatterjee (2008).4

2. Bounds for Es2-efficiency

We represent a supersaturated design d with two-level factors by a “design matrix” or6

“treatment matrix”, T , whose rows represent the n treatment combinations to be observed
and whose columns designate the m factors to be examined. The (i, f )th element of T8

determines the level at which factor f is to be observed in the ith observation or “run”. We
code the high and low levels of each factor as +1 and −1 in T , and abbreviate these to10

“+” and “−” where convenient. For mean-orthogonal two-level designs, where the levels
of each factor are observed the same number of times, the columns of T coincide with main12

effect contrasts. We will use the standard main effects model

Y = Xφ + ε14

where X = [ 1n T ] and 1n denotes the n-dimensional column vector with all entries equal
to 1; φ is a vector containing the mean and main effect parameters and ε is a vector of n in-16

dependent and identically distributed normal random variables with mean zero and variance
σ2. The information matrix for estimating φ is18

[
n 0
0 T ′T

]
.

Let si j be the element in the ith row and jth column of T ′T (i, j = 1, . . . ,m). Then,20

si j = t ′i t j, where ti and t j are, respectively, the columns i and j of T . If si j = 0, the ith and jth
main effect contrasts are orthogonal and can be estimated independently. If n is even, but22

not a multiple of 4, then si j cannot equal 0 and the main effect contrasts for factors i and j
will be said to be nearly orthogonal if si j is close to 0 (that is, si j =±2 when n≡ 2(mod4)).24

When si j = ±n then the main effects of factors i and j are completely aliased, and such
designs are usually avoided.26

Booth and Cox (1962) proposed as a criterion for comparing designs the minimization of
the average correlation between the main effect contrasts, called ave(s2), or Es2, where28

Es2 = ∑
1≤i< j≤m

s2
i j/

(
m
2

)
. (2.1)

A supersaturated design is said to be Es2-optimal if no other design of the same size has30

higher Es2-efficiency, defined as LB/Es2 , where LB is an appropriate lower bound for Es2

as discussed below. Although minimizing Es2 (which is a function of the entries of T ′T )32

is not identical to the criterion of minimizing the average correlation between the contrast
estimators (which is a function of the entries of [X ′X ]−1), it does lead to highly efficient34

designs under this latter criterion provided that the designs are mean-orthogonal.
Lower bounds for Es2 for supersaturated designs with n runs and m = k(n− 1) factors36
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have been derived for n = 0 mod 4 by Nguyen (1996) and Tang and Wu (1997), and bounds
for other values of n and m have been given by Cheng (1997), Butler, Mead, Estridge and2

Gilmour (2001), and Das, Dey, Chan and Chatterjee (2008). Using the results of these papers
for the designs discussed here, with m = k(n− 1) factors (k > 1), we have the following4

lower bounds for Es2:

(i) Nguyen (1996), Tang and Wu (1997), Cheng (1997).6

If n≡ 0 (mod 4) with any k > 1 or if n≡ 2 (mod 4) with k even, then

Es2 ≥ LB =
m−n+1

(m−1)(n−1)
n2 . (2.2)8

(ii) Das et al. (2008).
If n≡ 2 (mod 4) with k odd, then10

Es2 ≥max{LB,4}, where LB =
n2(m−n+1)
(m−1)(n−1)

+
2n2−4n+ x

m(m−1)
(2.3)

and x = 32 if
{

m−1−2i
4 +

[
m+(1+2i)(n−1)

4(n−1)

]}
≡ (1− i) (mod 2) for i = 0 or 1, and [·] denotes12

integer part. Otherwise, x = 0. It can be shown that, for k ≥ 3, LB > 4 so that the bound is
given by (2.3).14

3. Cyclic construction methods

3.1. Cyclic generators16

The cyclic construction method used by Plackett and Burman (1946) for orthogonal
saturated designs was generalized by Liu and Dean (2004) to obtain a class of supersaturated18

designs called k-circulant designs. A k-circulant design with n = 2t runs (for t an integer)
and m = k(n− 1) factors each having two levels is constructed by cycling elements of a20

generator G = (g1, . . . ,gm) containing kt elements equal to −1 and k(t−1) elements equal
to +1, where the cycling is done k elements at a time. A row of +1’s is added to the22

resulting (n−1)×m array D to give the supersaturated design matrix T = [D′,1k(n−1)]′. The
generators listed by Liu and Dean (2004) give rise to designs that are mean-orthogonal and24

which are either Es2-optimal or have at least 96.4% efficiency. The following three results
summarize the links between k-circulant designs, the concatenation of k individual saturated26

cyclic (1-circulant) designs and the designs of Nguyen (1996), Eskridge, Gilmour, Mead,
Butler and Travnicek (2004), and Bulutoglu and Cheng (2004) formed from the incidence28

matrices of cyclic incomplete block designs. These links are illustrated in Example 3.1.

Result 3.1 (Liu and Dean, 2004, Section 3). Any k-circulant mean-orthogonal supersatu-30

rated design T = [D′,1]′ with n = 2t runs, m = k(n − 1) factors and generator
G = (g1,g2, . . . ,gm) is equivalent to the concatenation of k individual 1-circulant designs,32

T1,T2, . . . ,Tk, each having (n− 1) factors, where the ith design Ti = [D′
i,1n−1]′ is obtained

by cycling the elements of the generator Gi = (gi,gi+k,gi+2k, . . . ,gi+(n−2)k) and adding a34

row of 1’s, (i = 1, . . . ,k).
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Result 3.1, together with expression (2) of Eskridge, Gilmour, Mead, Butler and Travnicek
(2001) leads to the following result.2

Result 3.2. Any k-circulant supersaturated design matrix T = [D′,1k(n−1)]′ with n = 2t
runs and m = k(n−1) factors and generator G = (g1,g2, . . . ,gm) can be obtained from the4

incidence matrix, N = [N1, . . . ,Nk] of an incomplete block design consisting of k cyclic sub-
designs with n−1 blocks each, where the ith subdesign (1≤ i≤ k) has circulant incidence6

matrix Ni with first row

2−1 (
1+gi,1+gi+k,1+gi+2k, . . .1+gi+(n−2)k

)
.8

Then D = 2N−1n−11′m .

The third result links Es2-optimality of certain k-circulant designs and the existence of bal-10

anced incomplete block designs.

Result 3.3 (Cheng, 1997, Section 2). The incomplete block design in Result 3.2 with in-12

cidence matrix N is a balanced incomplete block design if and only if the corresponding
k-circulant design T is Es2-optimal attaining bound (2.2).14

Example 3.1. Consider the 3-circulant Es2-optimal supersaturated design with n = 12 = 2t
(t = 6) experimental runs and m = 33 = (2t−1)k factors listed in Table 4 of Liu and Dean16

(2004). The listed generator has kt = 18 elements equal to −1 and k(t−1) = 15 elements
equal to 1, as follows18

G = (−−−−−−−−−−−+++−−−++++−+−+−−++++++ ).

Cycling k = 3 elements at a time gives an Es2-optimal 3-circulant supersaturated design20

with maximum column correlation rmax = (max|si j|)/n = 0.67 and Es2 = 9. If the columns
of the design are rearranged into the following order:22

1,4,7, . . . ,31; 2,5, . . . ,32; 3,6, . . . ,33;

the design can be seen to be the concatenation of k = 3 separate cyclic (1-circulant) designs24

with respective generators

G1 = ( −−−−+−+−+++ )26

G2 = ( −−−−+−++−++ )
G3 = ( −−−+−++−−++ )28

where Gi consists of elements i, i + 3, i + 6, . . . , i + 30 of G. The generators can further be
rewritten by noting the positions which hold +1, that is the positions in the first rows of the30

cyclic subarrays that hold +1:

G(R)
1 = ( 5,7,9,10,11 ); G(R)

2 = ( 5,7,8,10,11 ); G(R)
3 = ( 4,6,7,10,11 ) .32

Arrays that are formed by cycling the rows may also be obtained by cycling the columns, so
we may rewrite the ith generator in terms of the (t− 1) positions pi1, . . . , pi,t−1 of the first34

column of array i which contain +1. Then, pi j = (n+1)−ai j, where ai j is the jth column
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entry in G(R)
i . Thus, with n = 12, the three generators become

G(C)
1 = ( 8,6,4,3,2 ); G(C)

2 = ( 8,6,5,3,2 ); G(C)
3 = ( 9,7,6,3,2 ) .2

In this form the generators can be regarded as the initial blocks of cyclic subdesigns with
v = 11 treatments (coded 1,2, . . . ,11) and b = 11 blocks of size 5. This is the notation4

used by Liu and Zhang (2000), Butler, Mead, Eskridge and Gilmour (2001), and Eskridge,
Gilmour, Mead, Butler and Travnicek (2004), after subtracting 1 from each entry. It can be6

verified that the three subdesigns, taken together, form a balanced incomplete block design
with 33 blocks of size 5.8

3.2. The autocorrelation function

Liu and Dean (2004, Theorem 3.2) showed that the elements si j of T ′T can be written10

in terms of the elements of the generators of the k-circulant design T . In Lemma 3.1, we
express this result in terms of the periodic autocorrelation functions, defined below, which12

are used in Section 4 for the construction of Es2-optimal and near optimal designs.
Let A be a (finite) sequence of ` real numbers {a0,a1, ...,a`−1}. The periodic autocorre-14

lation function PA(x) is defined by

PA(x) =
`−1

∑
q=0

aqaq+x, x = 0,1, ..., [`/2] (3.1)16

PA(x) = PA(`− x)

where q+ x is reduced modulo ` and [z] is the integer part of z.18

Lemma 3.1. Let T be a design matrix of the form T = [D′,1]′, where D is a 1-circulant
matrix with generator G = (g1,g2, . . . ,gn−1). Then, the (i, j)th element si j of the matrix T ′T20

can be expressed in terms of the generator elements as

si j = 1+
n−2

∑
q=0

gq+igq+ j = 1+
n−2

∑
q=0

gqgq+|i− j| = 1+PG(|i− j|), i, j = 1,2, . . . ,n−1 ,22

where g0 is defined to be gn−1. Also,

sq+i,q+ j = si j; i, j = 1,2, . . . ,(n−1); q = 0,1, . . . ,(n−2) ,24

where, if q+ x > n−1 then it is replaced by q+ x− (n−1).

In Theorem 3.1, we generate a k-circulant supersaturated design by concatenating k 1-26

circulant designs and show how the value of si j can be calculated by using the generators of
the k individual 1-circulant design matrices.28

Theorem 3.1. Suppose that Dz is a 1-circulant matrix with first row Gz =(g(z)
1 ,g(z)

2 , . . . ,g(z)
n−1),

g(z)
j ∈ {1,−1}, z = 1,2, . . . ,k, j = 1,2, . . . ,n− 1 and n = 2t, t > 0. Denote by T , the k-30
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circulant mean-orthogonal supersaturated design defined by

T =
[

D
1′k(n−1)

]
=

[
D1 D2 · · · Dk

1′n−1 1′n−1 · · · 1′n−1

]
. (3.2)2

The (i, j)th element 1 ≤ i, j ≤ k(n− 1) of T ′T can be expressed in terms of the generator
elements as4

si j = 1+
n−2

∑
u=0

g(z)
u+ag(w)

u+b,

where z,w are the unique integers such that 1≤ z,w≤ k and (z−1)(n−1) < i≤ z(n−1),6

(w−1)(n−1) < j≤ w(n−1), and where a = i− (z−1)(n−1) and b = j− (w−1)(n−1).

Proof. The proof follows from Lemma 3.1.8

Since any p-circulant supersaturated design is equivalent to concatenating p 1-circulant
designs, Theorem 3.1 can be extended by replacing any subset(s) of p 1-circulant matrices10

Di by a corresponding p-circulant matrix. The following Theorem 3.2 expresses the periodic
autocorrelation function of a k-circulant supersaturated design in terms of the si j’s (off-12

diagonal elements of T ′T ).

Theorem 3.2. Let T be an n×m k-circulant mean-orthogonal supersaturated design with14

generator G = {g1,g2, . . . ,gk,gk+1, . . . ,g2k, . . . ,gm−k+1, . . . ,gm} and m = k(n− 1), n = 2t,
t > 0. Then16

PG(x) =
k

∑
j=1

s j, j+x− k, x = 0,1, . . . , [m/2] . (3.3)

Proof. Define g0 = gm, then18

PG(x) =
m

∑
i=1

gigi+x

=
n−2

∑
q=0

gqk+1gqk+1+x +
n−2

∑
q=0

gqk+2gqk+2+x + . . .+
n−2

∑
q=0

gqk+k)gqk+k+x20

=
k

∑
j=1

(
n−2

∑
q=0

gqk+ jgqk+ j+x +1)− k

=
k

∑
j=1

s j, j+x− k ,22

where the last line follows from the fact that sqk+ j,qk+ j+x = s j, j+x, for all q = 0,1, . . . ,n−2,
and where k(n−1) is subtracted from any subscript greater than k(n−1).24

In Theorem 3.3, we show how the elements of T ′T for a mean-orthogonal supersaturated
design T are linked to the elements of the concurrence matrix of the dual of the corre-26

sponding incomplete block design. Then for the special case of k-circulant mean-orthogonal
supersaturated designs, Theorem 3.4 shows the link between the elements of T ′T and the28
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elements of the concurrence matrix of the corresponding incomplete block design. In the
theorem, the notation Ja,b denotes an a×b matrix of unit elements. If a = b, we write Ja.2

Theorem 3.3. Let N be the incidence matrix of the incomplete block design d corresponding
to supersaturated design T = [D′,1k(n−1)]′ so that N = [D+ J(n−1),k(n−1)]/2. Let µpq be the4

(p,q)th element of the concurrence matrix of the dual of d. Then

spq = 4µpq− (n−4) . (3.4)6

Proof. If N is the incidence matrix of d, then N′ is the incidence matrix and N′N is the
concurrence matrix of the dual of d (see Street and Street, 1987, Section 2.2). Further8

4N′N = D′D+D′J(n−1),k(n−1) + Jk(n−1),(n−1)D+ Jk(n−1),(n−1)J(n−1),k(n−1)

= D′D− Jk(n−1)− Jk(n−1) +(n−1)Jk(n−1)10

= D′D+(n−3)Jk(n−1) .

Since spq is the (p,q)th element of T ′T = D′D+ Jk(n−1), itfollows that12

4µpq = (spq−1)+(n−3) ,

and the result follows.14

Theorem 3.4. Let λpq be the (p,q)th element of the concurrence matrix NN′ of incom-
plete block design d with incidence matrix N = [N1,N2, . . . ,Nk], where Ni = [Di + Jn−1]/2,16

corresponding to k-circulant supersaturated design T as given in (3.2). Then

4λp,q =

[
k

∑
z=1

s(z)
n−p,n−q

]
+ k(n−4) ,18

where s(z)
n−p,n−q is element [(n− p),(n−q)] of (D′

zDz + Jn−1), z = 1, . . . ,k.

Proof. Let T be as given in (3.2) and let N = [D+ Jn−1,k(n−1)]/2 be the incidence matrix of20

the corresponding incomplete block design. Then,

4NN′ = [D+ Jn−1,k(n−1)][D
′+ Jk(n−1),n−1]22

= DD′+ Jn−1,k(n−1)D
′+DJk(n−1),n−1 + k(n−1)Jn−1

= DD′− kJn−1− kJn−1 + k(n−1)Jn−124

= DD′+ k(n−3)Jn−1 .

Let r(z)′
i be the reverse of row i of Dz. Then, due to the cyclic construction of Dz, column26

n− i of Dz is c(z)
n−i = r(z)

i . Also, element (p,q) of DzD′
z is r(z)′

p r(z)
q = c(z)′

n−pc(z)
n−q. Writing

d = [D1, . . . ,Dk],28

4NN′ = Σk
i=1DiD′

i + k(n−3)Jn−1 .
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Then since λpq is the (p,q)th element of NN′, we have

4λpq− k(n−3) =
k

∑
z=1

r(z)′
p r(z)

q2

=
k

∑
z=1

c(z)′
n−pc(z)

n−q

=
k

∑
z=1

(
s(z)

n−p,n−q−1
)

4

and the result follows.

4. Compatibility of circulant designs6

In order to achieve Es2-optimal supersaturated designs by concatenating cyclic saturated
designs, we look at the properties of the designs in terms of their autocorrelation functions8

as follows. Sequences Ai, i = 1,2, . . . ,k, of identical length ` are called compatible if the
sum of their periodic autocorrelations is a constant, say γ , except for the 0-th term. That is,10

k

∑
i=1

PAi(x) = γ, for all x = 1,2, . . . , [`/2] . (4.1)

We say that such sequences have constant periodic autocorrelation sum. If A1,A2, . . . ,Ak12

are compatible so that (4.1) holds, and if Di is a circulant matrix with first row given by the
elements of Ai, then14

k

∑
i=1

DiD′
i = (k`− γ)I` + γJ`, (4.2)

where I` is the identity matrix of order ` and J` is a square matrix of order ` with all its16

entries equal to one. Where there is no confusion, we will use the same symbols to represent
sequences and their corresponding circulant matrices.18

The following Theorem shows the link between the compatibility of sequences of length
` = n−1 and designs that attain bound (2.2).20

Theorem 4.1. Let T be as described in Theorem 3.2. The following are equivalent:

(a) The design T is an Es2-optimal k-circulant mean-orthogonal supersaturated design22

with n = 2t runs and m = (2t−1)k factors, satisfying bound (2.2).

(b)
k

∑
i=1

PGi(q) = γ, where γ =−k, for all q = 1,2, . . . , t−1.
24

Proof. The proof follows from Result 3.1 together with Theorem 2 in Georgiou [12].

We note that Theorem 4.1 provides an alternative proof of Result 3.3 (originally proved by26

Cheng, 1997, Section 2) since, from Result 3.2 N = [N1, . . . ,Nk] and Ni = [Di + Jn−1]/2, so
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2

NN′ =
k

∑
i=1

NiN′
i

=
k

∑
i=1

DiD′
i +

k

∑
i=1

DiJn−1 +
k

∑
i=1

Jn−1D′
i + k(n−1)Jn−14

=
kn
4

In−1 +
k(n−4)

4
Jn−1

which is the concurrence matrix for a BIBD with parameter λ = k(n− 4)/4. Thus, the6

balanced incomplete block design of Example 3.1 has λ = 3(12− 4)/4 = 6. Theorem 4.2
gives a formula for Es2-efficiency of a k-circulant design when the corresponding periodic8

autocorrelation sequences are not compatible.

Theorem 4.2. Let T be a mean-orthogonal supersaturated design as described in Theo-10

rem 3.2, with the property that ∑k
i=1 PGi(q) 6= γ for at least one value of q = 1,2, . . . , t− 1,

then the value of Es2 for T is12

Es2 =
nm(m−n)+(n−1)(∑n−2

j=1 γ2
j +2k2)

m(m−1)
,

where γ j = ∑k
z=1 PGz( j) and m = k(n−1).14

Proof. By definition, since T is a k-circulant mean-orthogonal supersaturated design, the
row sum of each of its first n−1 rows is equal to −k (see Section 3.1). Then from (3.2),16

T T ′ =

[
∑k

z=1 DzD′
z −k1(n−1)

−k1(n−1) k(n−1)

]

where [D′
z,1]′ is a 1-circulant design with first row Gz = (g(z)

1 ,g(z)
2 , . . . ,g(z)

n−1), z = 1,2, . . . ,k.18

Consider the (u,v)th element, d(z)
u,v, of DzD′

z and let x = |u− v|. Then d(z)
u,v = ∑n−1

j=1 g(z)
j g(z)

j+x.
So, the (u,v)th element of ∑k

i=1 DzD′
z is20

k

∑
z=1

DzD′
z =

k

∑
z=1

n−2

∑
i=0

g(z)
i+1g(z)

i+1+x =
k

∑
z=1

PGz(x) = γx.

Note that γ0 = k(n−1) = m, then22

T T ′ =




m γ1 γ2 · · · · · · γn−2 −k

γ1 m γ1
. . .

...
...

γ2 γ1 m
. . . . . .

...
...

...
. . . . . . . . . γ1 γ2 −k

...
. . . γ1 m γ1 −k

γn−2 · · · · · · γ2 γ1 m −k
−k −k · · · · · · −k −k m



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Since, from (3.1), γx = γ(n−1)−x, each of the first n−1 diagonal elements of (T T ′)(T T ′) is
m2 + k2 +∑n−2

i=1 γ2
i . The nth diagonal element is k2(n−1)+m2. Now, by (2.1), Es2 may be2

written

Es2 =
m

∑
i6= j=1

s2
i j/m(m−1) =

m

∑
i, j=1

(
s2

i j−mn2)/m(m−1)4

=
(
trace(T ′T T ′T )−mn2)/m(m−1)

=
(
trace(T T ′T T ′)−mn2)/m(m−1)6

=
nm2 +(n−1)∑n−2

1 γ2
i +2(n−1)k2−mn2

m(m−1)

=
nm(m−n)+(n−1)(∑n−2

i=1 γ2
i +2k2)

m(m−1)
8

In the following example, we illustrate the construction of Es2-optimal and near-optimal
k-circulant supersaturated designs using the information from the autocorrelation function.10

Example 4.1. Consider the construction of E(s2)-optimal and near-optimal 10-run supersat-
urated designs using Theorems 3.1 and 4.1 with n = 2t = 10 and m = 18,27,36,45 factors.12

There are in total 9−1
(9

5

)
= 14 distinct generators of length 9, where “distinct” means that

the generated designs have no duplicated columns. Table 4.1 displays the 14 generators14

together with their periodic autocorrelation functions PGi(q) for q = 1,2,3, and 4.
Consider the generators G2, G3, G4, G9 and G11 and their respective 1-circulant 10× 9

design matrices T2, T3, T4, T9 and T11. For example, G4 will produce

T4 =




+++−−−+−−
−+++−−−+−
−−+++−−−+
+−−+++−−−
−+−−+++−−
−−+−−+++−
−−−+−−+++
+−−−+−−++
++−−−+−−+
+++++++++




with PG4(1) = 1, PG4(2) =−3, PG4(3) =−3, PG4(4) = 1.

The 10-run design with m = 18 factors, [T2,T11], is E(s2)-optimal since ∑k=2
i=1 PGi(q) =−k16

for all q = 1,2,3,4. Similarly for m = 36, the design [T2,T3,T9,T11] has ∑PG(q) = −4 for
q = 1,2,3,4. There are no 10-run E(s2)-optimal designs for m = 27 or m = 45 using cyclic18

generators. Out of the
(14

3

)
= 364 possible designs, there are 69 which have E(s2) = 8.10.

Using equation (2.3) we obtain the lower bound of 7.92 which implies that all these designs20

are 97.7% efficient. One such design is [T2,T3,T11]. The two designs [T2,T3,T4,T9,T11] and
[T1,T3,T10,T12,T14] with m = 45 factors are near Es2-optimal designs with E(s2) = 9.23.22

Comparing this value to the lower bound we obtain 99.3% efficiency. It is interesting to note
very different autocorrelation function values in Table 4.1 for Ti’s which comprise these two24

designs.
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Table 4.1. Cyclic generators and their periodic autocorrelation functions

q
i Gi 1 2 3 4

1 ++++−−−−− 5 1 -3 -7
2 +++−+−−−− 1 1 -3 -3
3 +++−−+−−− 1 -3 -3 1
4 +++−−−+−− 1 -3 -3 1
5 +++−−−−+− 1 1 -3 -3
6 ++−++−−−− 1 -3 1 -3
7 ++−+−+−−− -3 1 -3 1
8 ++−+−−+−− -3 -3 5 -3
9 ++−+−−−+− -3 1 1 -3

10 ++−−++−−− 1 -7 -3 5
11 ++−−+−+−− -3 -3 1 1
12 ++−−+−−+− -3 -3 5 -3
13 ++−−−+−+− -3 1 -3 1
14 +−+−+−+−− -7 5 -3 1

Table 4.2. Equivalent generators for the designs with n = 10 and m = 9i, i≤ 7

Eskridge, Gilmour, Mead, Butler and Travnicek(2004) From Table 4.1
(0124) G5

(0125) (0137) G4 G9

(0134) (0135) G6 G13

(0124) (0146) G5 G11

Bulutoglu and Cheng (2004) gave the complete set of solutions for 10-run supersaturated
designs attaining bound (2.2) and they showed that they exist only for m = 18t factors with2

t = 1, . . . ,6. Eskridge, Gilmour, Mead, Butler and Travnicek (2004) provided seven gen-
erators for cyclic incomplete block designs that produce Es2 optimal (for k even) or near4

optimal (for k odd) supersaturated designs with n = 10 runs and m = 9i, i ≤ 7. Table 4.2
shows the seven generators provided by Eskridge, Gilmour, Mead, Butler and Travnicek6

(2004) and their equivalents from Table 4.1.

In Table 4.3, we present new Es2-optimal supersaturated designs with n runs (10 ≤ n ≤8

26) and m = k(n− 1) factors for and their properties. We enumerate the elements of the
cyclic generator and we present them in column ‘Generators’ using the incomplete block10

design notation. The second column of Table 4.3, labelled fh shows the frequency with
which each value of s2

i j = h occurs in T ′T for every integer h for which the frequency is12

non-zero. The third column gives the maximum value rmax of s2
i j/n. Table 4.4 lists further

new supersaturated designs with k odd and which are at least 98.5% efficient; that is, whose14

Es2 values are at least 0.985 of the corresponding lower bounds. The value of Es2, the lower
bound (2.3), and the efficiency LB/Es2 is given for each design in columns 5–7 of the table.16
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Table 4.3. Generators and properties for new Es2-optimal supersaturated designs with n runs and m
factors

n m fh rmax Generators

10 90 32402, 7656 0.6 G2−G9, G11, G13.

10 108 46402, 11346 0.6 G1−G5, G7−G12, G14.

10 126 63002, 15756 0.6 G1−G14.

12 77 11440, 16834, 998 0.667 (0,1,4,7,9); (1,5,6,8,10); (0,2,3,7,10); (0,3,7,8,9);
(0,1,3,5,6); (3,5,6,7,8); (0,1,6,7,8).

12 88 14520, 22444, 1328 0.667 (0,1,6,7,9); (1,5,7,8,9); (0,2,3,6,10); (0,3,5,6,7);
(0,3,5,8,9); (0,1,2,4,10); (0,2,4,6,7); (0,5,6,9,10).

12 99 19470, 26844, 2208 0.667 (0,1,5,6,7); (1,5,6,8,10); (0,2,3,6,8); (0,3,4,6,7);
(0,1,2,8,10); (0,1,2,4,5); (0,2,5,9,10); (0,2,5,6,9);
(0,2,3,5,6).

12 110 24310, 32674, 2978 0.667 (0,1,2,4,9); (1,4,6,7,8); (0,1,4,7,10); (0,2,6,7,9);
(0,1,2,3,7); (0,1,2,7,8); (0,1,2,4,5); (0,2,5,7,10);
(0,2,5,6,9); (0,2,3,5,6).

14 130 60322, 22626, 9110 0.714 (0,1,2,4,6,8); (2,4,5,6,10,11); (0,3,5,6,9,12);
(0,3,5,7,10,11); (0,1,5,7,8,12); (0,1,2,4,5,9); (1,2,4,5,6,11);
(0,2,3,5,6,7); (0,2,3,5,8,11); (0,7,8,10,11,12);

16 45 3600, 6004, 308 0.5 (0,1,2,3,7,8,13); (0,1,5,7,9,10,13); (0,3,4,6,7,8,10).

16 60 5100, 12004, 608 0.5 (0,1,2,5,7,11,13); (0,1,3,5,8,11,12); (0,1,2,4,5,7,14);
(3,4,5,9,10,12,13).

16 75 8700, 17404, 1658 0.5 (0,1,2,6,8,11,12); (0,1,3,5,9,10,12); (0,4,6,7,11,12,14);
(1,7,8,9,11,12,14); (0,1,2,3,4,6,9).

16 90 13500, 23404, 3158 0.5 (0,5,7,8,10,12,13); (1,3,5,6,9,12,14); (0,1,2,5,6,9,12);
(0,5,6,9,12,13,14); (1,3,7,8,12,13,14); (0,1,2,6,12,13,14).

16 105 18600, 31204, 4808 0.5 (0,1,2,5,7,9,10); (5,6,9,10,12,13,14); (0,2,7,9,11,13,14);
(3,6,8,9,11,13,14); (5,7,8,11,12,13,14);
(3,7,8,10,12,13,14); (2,7,8,10,11,13,14).

16 120 24000, 40804, 6608 0.5 (0,1,2,5,7,8,11); (5,6,8,9,12,13,14); (0,2,7,10,11,12,14);
(3,6,8,11,12,13,14); (0,1,2,4,6,8,13); (0,2,5,6,8,11,13);
(0,2,3,6,12,13,14); (2,3,5,6,7,12,13).

16 135 34200, 46204, 10058 0.5 (0,1,2,4,6,9,13); (0,2,5,6,10,12,13); (0,2,3,6,7,9,10);
(2,3,5,6,10,11,12); (0,1,2,4,5,6,12); (3,4,5,6,7,10,13);
(0,1,3,5,6,7,10); (0,3,4,5,9,11,13); (0,1,3,4,5,10,13).

18 68 15302, 7686 0.333 (0,1,5,6,12,13,14,15); (2,7,8,9,10,12,14,16);
(0,1,5,8,10,11,14,16); (2,6,8,11,12,13,15,16).

18 102 33492, 17346, 6810 0.556 (0,2,3,4,6,7,9,16); (0,3,6,8,9,10,15,16);
(0,2,3,6,7,11,12,16); (0,1,3,5,6,7,12,15);
(0,1,2,3,5,9,11,15); (0,2,6,9,10,11,12,15).

20 76 8550, 17104, 2858 0.4 (0,1,2,5,6,8,13,15,18); (4,5,7,8,10,12,14,16,17);
(0,1,2,5,6,11,13,16,17); (4,5,8,12,13,14,15,16,18).

20 95 12540, 26984, 5138 0.4 (0,1,3,5,6,7,9,10,17); (3,5,6,10,11,12,13,16,18);
(0,5,6,10,14,15,16,17,18); (0,1,2,5,6,9,11,14,17);
(4,5,7,8,11,12,14,16,18).

(Contd.)
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n m fh rmax Generators
20 114 21090, 34014, 9318 0.4 (0,1,3,5,8,14,16,17,18); (2,4,5,7,9,13,14,15,17);

(0,2,4,7,9,10,13,14,18); (0,1,3,5,6,7,10,13,14);
(3,5,6,9,10,11,12,13,18); (0,5,6,9,13,14,16,17,18).

20 133 29640, 44274, 13878 0.4 (0,1,5,7,8,13,15,16,18); (0,3,5,9,11,15,16,17,18);
(0,2,3,10,11,12,13,17,18); (4,6,7,8,10,11,13,14,16);
(0,1,4,5,7,9,12,14,16); (3,4,7,9,10,13,15,16,18);
(0,1,6,10,11,14,15,16,18).

22 84 20582, 14076, 2110 0.454 (0,1,6,8,9,12,14,15,18,19);
(1,4,8,12,13,14,15,16,17,18);
(0,2,5,7,9,10,11,13,18,19);
(2,4,7,11,12,13,14,17,18,19).

22 126 46832, 28986, 29410 0.454 (0,1,3,4,6,7,10,12,16,20); (0,3,4,5,6,8,10,18,19,20);
(0,3,7,9,10,11,12,13,19,20);
(0,2,7,10,12,14,15,17,19,20);
(1,5,6,9,10,12,14,15,19,20);
(0,3,6,7,10,12,13,14,18,19).

24 69 6210, 14724, 2538 0.333 (0,7,8,11,12,16,17,18,19,21,22);
(1,5,6,8,11,12,14,17,20,21,22);
(0,7,9,10,12,14,15,16,18,20,22).

24 92 9430, 26684, 5758 0.333 (0,3,6,7,10,14,16,17,18,19,21);
(2,5,8,10,12,13,14,19,20,21,22);
(0,7,8,9,10,12,13,14,15,18,19);
(1,5,6,9,11,12,14,18,19,20,22).

24 115 23460, 28524, 13578 0.333 (0,3,6,7,12,17,18,19,20,21,22);
(2,5,8,9,11,12,13,14,15,20,22);
(0,1,6,7,9,14,15,17,19,20,22);
(0,1,3,4,5,9,10,12,14,16,19);
(3,5,6,9,10,14,16,18,20,21,22).

24 138 30820, 43934, 19558, 2312 0.5 (0,1,3,7,8,9,12,17,19,20,22);
(2,3,4,5,9,11,14,15,18,20,21);
(0,4,11,12,13,14,15,16,19,20,21);
(0,3,6,7,8,10,11,13,15,16,20);
(0,2,6,8,10,11,14,15,19,20,21);
(1,5,6,7,8,10,11,13,19,21,22).

24 161 42780, 58654, 26228, 11512 0.5 (0,2,3,5,6,7,10,11,15,21,22);
(2,4,5,7,10,12,13,14,15,16,21);
(2,3,4,9,10,14,15,16,17,18,20);
(4,5,9,10,12,14,16,17,18,19,21);
(0,3,6,7,8,10,11,13,17,20,22);
(0,2,6,8,10,11,13,14,16,17,21);
(1,5,6,7,8,10,11,14,16,20,21).

26 50 8502, 3756 0.231 (0,2,6,7,9,12,14,17,18,21,23,24);
(0,8,10,12,13,16,17,18,21,22,23,24).

26 100 26502, 21756, 12510 0.385 (0,1,3,10,11,13,15,16,18,19,23,24);
(1,3,4,5,7,9,10,11,15,17,18,21);
(0,3,4,5,6,10,13,19,20,22,23,24);
(2,3,6,7,9,12,14,16,18,19,20,23).
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Table 4.4.Generators and properties for new near-optimal supersaturated designs with n runs and
m = k(n−1) factors, with k odd.

n m fh rmax Es2 LB Eff Generators
10 81 26282, 6126 0.6 10.04 10.02 99.8% G2−G9, G11.
10 99 39062, 9456 0.6 10.23 10.22 99.9% G1−G3, G5, G7−G13.
10 117 54362, 13506 0.6 10.37 10.36 99.9% G1, G3−G14.
14 39 5852, 1566 0.429 10.74 10.56 98.4% (0,5,6,8,9,11);

(2,6,7,8,11,12);(5,6,7,9,11,12).
14 65 15342, 5466 0.429 12.4 12.35 99.5% (0,2,3,6,11,12); (0,1,4,6,9,12);

(0,2,4,6,9,10); (0,1,2,7,11,12);
(0,2,4,6,7,12);

14 91 29252, 11706 0.429 13.14 13.11 99.8% (0,3,5,6,9,12); (1,4,6,9,10,11);
(0,4,6,7,11,12); (0,1,4,10,11,12);
(1,3,4,5,7,9); (0,3,5,7,10,11);
(0,1,2,4,5,9),

18 51 9012, 3746 0.333 13.39 13.19 98.5% (0,3,6,8,9,12,13,15);
(2,3,4,9,10,11,13,14);
(2,5,6,7,9,10,11,13).

18 85 22952, 12586, 1710 0.556 15.73 15.51 98.6% (0,2,3,6,10,12,14,15);
(5,6,9,10,13,14,15,16);
(1,5,6,8,12,13,14,16);
(3,8,10,11,12,13,14,15);
(1,2,4,9,10,13,15,16).

18 119 46412, 21936, 18710 0.556 16.55 16.52 99.8% (1,6,7,8,10,11,15,17);
(3,4,5,6,7,8,12,17);
(2,3,5,8,10,13,14,16);
(2,4,6,10,13,14,15,16);
(1,2,3,5,11,13,14,15);
(2,3,7,9,10,12,14,16);
(1,2,4,6,7,13,14,17).

22 63 12182, 7356 0.273 16.04 15.85 98.8% (0,3,4,6,7,9,10,16,18,20);
(3,6,9,10,11,12,14,18,19,20);
(1,5,10,11,12,13,15,17,18,20).

26 75 17502, 9006, 12510 0.385 18.70 18.50 98.9% (3,6,7,8,12,14,15,17,19,20,21,23);
(4,6,7,8,10,11,12,14,16,19,20,21);
(0,1,4,7,10,12,14,15,19,20,21,22).
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