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Stability Analysis of the Linear Time-Invariant Ultra-WideBand

Channel

Abstract. The stability of a general Linear Time-Invariant (LTI) Ultra-WideBand (UWB) Channel Impulse Response (CIR) model is investigated.
Since the s-domain or z-domain function of the UWB CIR has an extremely high number of singularities, it cannot be automatically guaranteed that
none of the poles falls on the right-half of the s-plane or outside the unit-circle of the z-plane. Hence the stability analysis necessitates the exhaustive
testing of classical stability criterion for a potentially excessive number of poles. We circumvent this arduous task by developing the closed-form
time-domain response of the so-called homogenous, non-homogenous and vectorial LTI causal UWB system. Furthermore, the normalized settling
time of the step response is evaluated for diverse damping coefficients. Finally, a stability case-study is provided with the aid of Nichols chart.

Streszczenie. Zbadano stabilno$¢ ultra szerokopasmowego kanatu LTI. Poniewaz na ptaszczyznie s i z odpowiedz impulsowa ma wiele osobliwo$ci
nie mozna automatycznie zagwarantowac, ze wszystkie sg w prawe potowce pfaszczyzny s lub w2ewngtrz kofa jednostkowego z. W pracy
zaproponowano metode okre$lania stabilno$ci kanatu. (Analiza stabilno$ci ultra szerokopasmowego kanatu LTI)
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Introduction and the Problem Statement

Ultra-WideBand (UWB) is a fast emerging technology
after the Federal Communications Commission (FCC) ruling
in the United States, unleashing huge bandwidth (3.1 -
10.6) GHz where UWB radios overlaying coexistent RF
systems can operate using low-power ultra-short
information bearing pulses [1]. These pulses based on the
emission of low power and having an effective bandwidth
larger than 500 MHz are being considered for the next
generation of wireless short range communication systems
[2]. In the recent years, UWB communication systems have
attracted the attention of many disciplines including, among
others, antennas and propagation, electromagnetic
compatibility, electronics, and signal processing for
communications.

A general Linear Time-Invariant (LTI) Ultra-WideBand
(UWB) Channel Impulse Response (CIR) of the form [3] is

L K . e
M RO = 3D by e

=0 k=0

considered, where by is the weight of the #” CIR tap in
the I cluster, 7, is the delay of the /" cluster, and 7, is the
delay of the " MultiPath Component (MPC) relative to the
" tap-cluster's commencement time 7). The phases Ppy are
uniformly distributed, i.e., for a bandpass system the phase
is assumed to be a random variable uniformly distributed in
the range of [0, 27]. The classic Saleh-Valenzuela (SV)
model [4] does not specify the number of clusters occurring.
Rather, it assumes that their number is theoretically infinite,
and that their amplitude decreases exponentially with time;
for practical purposes, an arbitrary threshold has to be
introduced so that the clusters having an amplitude below
that threshold are no longer considered in the simulations.

Problem Statement: The Given the nature of the UWB
CIR of Eq (1), the corresponding s-domain or z-domain
transfer function has an extremely high number of
singularities and it cannot be automatically guaranteed that
none of the poles falls on the right-half of the s-plane or
outside the unit-circle of the z-plane. In this letter, we
demonstrate for three specific scenarios that the LTI system
described by Eq (1) retains stability.

We deviated from the conventional approach where the
linear system is said to be asymptotically stable if and only
if all the roots of the transcendental equation describing the
CIR are on the left half of the complex s-plane. Since there
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are a high number of roots to be examined, the
corresponding stability analysis is a complex task. We
circumvent this arduous task by developing the closed-form
time-domain response of the LTI system. These
expressions are developed using the s-transform of the
system model and the general form of the Leibniz integral
rule [5]. To elaborate a little further, the normalized settling
time and % overshoot of the step response provide a
tangible quantitative characterization of the LTI system’s
stability. The corresponding derivation requires somewhat
tedious algebraic manipulations but circumvents the
arduous task of checking the position of a potentially
excessive number of roots of the transcendental equation in
the complex s-plane.

The rest of this letter is organized as follows. Section Il
derives the time-domain responses of both homogenous
and non-homogenous systems. In Section Il the stability of
the so-called residential No-Line-of-Sight (NLOS) system
model of [3] is analysed. The normalized settling time of the
step response versus the damping coefficients is
considered along with a stability case-study carried out with
the aid of the classic Nichols chart [6]. Finally, Section IV
provides our conclusions.

Methodology

The complex tap-values of a general LTI UWB CIR
given in Eq (1) obey the standard Poisson-distribution while
mixed Poissonian processes describe the number of
clusters, the clusters arrival times and the ray arrival times
within a specific cluster [3],

_(L)e”
pdf, (L) = T
(15.)= A ™15 0

(2)
[_/11 (z’(,(vl)_f(kflv’) ﬂ

p(r(k,l) | T(k—l,l)) = fle
(1= p)ad el g

where L is the average number of clusters, 4, is the cluster
arrival rate, f is the probability controlling the particular
mixture of the constituent Poisson processes and, 4,, 4, are
the ray arrival rates. These statistics will be used in our
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simulations of Section Ill. We commence from the system
model of Eq (1) and introduce the short-hand of:

j¢k71
Ciupy =bupe " fork=01,...K
[=0,1,..,L

We continue by partitioning the system model into L number
of constituent clusters of CIR taps. Each of the resultant
partitions can be viewed as a constituent model
characterized by a Poissonian process for each ray within
that cluster, as formulated below:

@)

h(k,0)cluster
—Togot... tCy 0T,
+
h(k,)cluster

Co’lé‘(t—ﬂ -7y, +...+CK,15(t—T1 _TK,1)

Co,oa(t - To
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h(k,L)cluster
Co0(t—T, -7y, +..+C 6 —T, —74 )
Taking the s-transform of a single constltuent model yields
(4) H*V(s)=C, e ++-+C, e """,
where vy, is defined as , ,
Wiy = T, T fork=0,1,...K
[=0,1,...L

Using the power series expansion of y; and neglecting the
higher-order terms, we have

®)

fork=0,1,....K
[=0,1,...,L

—sy,
e [CONP I_Sy/(k,l)

(6)

Upon substituting Eq (6) into Eq (4), we obtain the transfer
function of the constituent model as

cho‘//ko K
S ZCkO

@ HY(s)=|1-] =0
zcko k=0

The overall system transfer functlon can be obtained by
finding and summing all the constituent transfer functions.
Next, we elaborate the time domain system responses.

A. Time-Domain System Responses
The time-domain system model is obtained from Eqs (3-7)
by taking the inverse s-transform, which gives

L K (1
{Zzbm ¢ (Tl _T(k,l)):| );,(t )

=0 k=0

=0 0
_ AN )
_[;:;b(k,l)e (7} -7 1))}Lu(1)
Where
9) u'(t)=Lu(r)
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(10)a“ (b,4,T,7) ZL:ZK:

~0 k=0 b(k 1)

~

(T -7)

represents the damping coefficients, predetermining the
normalized settling time of the system response. More
explicitly, a4 (b,4,T, 7) is a function of the by, phase, cluster
arrival time T and ray arrival time z. The different model
parameters were specified in [3]. More specifically, for this
study we have used the so-called residential NLOS system
parameters of [3].

1) Homogenous System Response
This response is obtained by substituting «'(2)=0 in Eq (8)
and solving it for y(z), which gives

a0 p(0)=y(t)e TN vz,

It is readily seen in Eq (11) that the response exhibits a
decaying exponent which is directly proportional to both the
initial conditions at r=¢, and to the damping factor a .

2) Non-Homogenous System Response

In order to obtain the corresponding response, we will use
the general input u'(#) in conjunction with an Integrating
[ (D (p.g.1.0))ae

Factor (IF) of e
yielding the following response

Yy (f) =y (t )ei.[,;(”(k'])(b%T,r))dz
0
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Upon using the short hand of

o M B
Ly Bk ) r,‘,)

kil &) (T/_ ‘o

in order to solve Eq (8),

(13)

O(t,y)=e

in Eq (12), we can partition the overall response into the
Natural Response (N,) and Forced Response (F,):

t
y(t)= y(to)ﬁ(t,t0)+£0 O(t,y)u'(r)dy
%/—/

N, X
Observe in Eq (14) that N, is dependent on the initial
conditions y(z,) while F, is directly proportional to both u'(?)
and to the damping parameters of Eq (13). This partitioning
of the response characterizes the effect of the initial state
and that of the input before reaching the steady state value.
Furthermore, the partitioning in Eq (14) is also helpful in
designing the rise time of the LTI system describing the
UWB channel as well as its % overshoot in the transient
phase.

(14)

3) Vector Form
Upon rearranging Eq (8) to give a single state-model, we
arrive at:

(15)
|:ZL:ib /¢(A/):|
d)"(t) =0 k=0 ®) Ot Lult
dt L K et y( )+ u()
[;;b(m T - }
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The n-state-model can be expressed from Eq (15) in a
vectorial form as

o [3(1)],, =[A],, »(0),. +[x],. v (),

where A is the system matrix of order n. By comparing Eq
(8) with Eq (16), we hypothesize that the vector response of
the state-model of Eq (16) is

(1) ="y () + [ (7 yu(a))da

To prove this hypothesis, we need the Leibniz Integral rule
(see Appendix A) and the following power series expansion

) A (t-1,)
M) =I+A(t—to)+%+...,

(17)

(18)
as well as its derivative given by:
2 3
d w5 20% (t—1,) .\ 3A* (t—1,) .\
(19) dt 2 6

_ AeA(t—tO)
Check |: Substituting 7=t, in the hypothesized vector
response seen in Eq (17), we obtain

=0

(1) =€y (1) + j (eA(HZ) qu (a))da

=y(t)
Check II: Taking the derivative of Eq (17), we arrive at

(20)

(21)

$(0)=a" () + 2 [ (@ gu(@)) da |

Applying the Leibniz integral rule (see Appendix A), we
obtain

y(t)= AeA(H“)y(tO )+ AJ(eA(““);(u (a))da

l

(22)

+e{0};(u (t) + {0}
Finally, Eq (22) can be reduced to
(1)

@3 ()= A(eA(H“)y(’“) +[ (eA(HZ)Zu (a))da)

)

+yu(t)
It can be seen from Egs (20) and (23) that Eq (17) is indeed
the vector response of the state-model of Eq (16).

Stability Analysis Results

This section details the step response characteristics of
the LTI UWB channel derived in Section. Again, we have
used the residential NLOS channel parameters of [3] stated
in Table 1. Explicitly, the normalized settling time of the
system is considered. Furthermore, the conditions of
stability are determined for a unity feed-forward gain with
the aid of Nichols chart [6].

Let us now examine Fig. 1, which portrays the LTI UWB
channel’s step-response on an exaggerated scale in order
to facilitate this discussion. As indicated by the crosses in
Fig. 1, if the damping coefficient is a(b,4,T,7) = 1.0, the lower
limit of 0.95 is crossed when the normalized time is 4, while
the upper limit of 1.05 is never crossed. A damping
coefficient of a(b,4,7,7) = 0.7 has the lowest normalized
settling time in Fig. 1, where the response crosses the
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-5%line at 3. Also observe in Fig. 1 that when the damping
coefficient is about 0.7, the time response overshoots by
almost 5%, reaching its peak after about 4.4 units of
normalized time.

Table 1. Simulation parameters

Residential NLOS
valid range of distance 7-20m
Path Gain at the reference distance | -48.7
Gy[dB]
Path Gain Exponent n 4.58
Shadowing Gain S[dB] 3.51
Frequency Dependency decaying factor k | 1.53

T 3.5

L
A[1/ns] 0.12
A1, A[1/ns],pB 1.77,0.15,0.045
Gamma Function /Tns] 26.27
Nakagami Factor m, 0.69
Decay Time constant y, 17.5
Standard Deviation ,,.,[dB] 2.93
o105 'S : ‘
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Fig. 1. Normalized step response of the LTI UWB complex channel
of Eq (1) for different damping coefficient values a plotted on an
expanded scale.

Let us now examine Fig. 1, which portrays the LTI UWB
channel’s step-response on an exaggerated scale in order
to facilitate this discussion. As indicated by the crosses in
Fig. 1, if the damping coefficient is a(b,4,T,7) = 1.0, the lower
limit of 0.95 is crossed when the normalized time is 4, while
the upper limit of 1.05 is never crossed. A damping
coefficient of a(b,4,T,z77 = 0.7 has the lowest normalized
settling time in Fig. 1, where the response crosses the
-5%line at 3. Also observe in Fig. 1 that when the damping
coefficient is about 0.7, the time response overshoots by
almost 5%, reaching its peak after about 4.4 units of
normalized time.

As the damping coefficient drops further from 0.7 to
about 0.43, the upper limit of the 5% band is entered into
after the derivative has reached zero once (one extremum).
However, the lower limit is never violated for a = 0.43. Since
the settling-time threshold was chosen to be +5%, the
settling time is the lowest for a damping coefficient of about
0.7. The normalized settling time versus the damping
coefficient relationship plotted from a range of curves such
as those exemplified in Fig. 1 is seen in Fig. 2, where the
different line-types indicate, which of the consecutive step-
response extrema fell within the 5% settling-time
thresholds for the first time.
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Fig. 2. Normalized Settling time of the LTI UWB channel versus the
damping coefficient a of Eq (10).
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Fig. 3. Nichols Chart showing stability margins for unity feed
forward gain control with parameters listed in Table 1.

The Nichols chart of Fig. 3 shows the stability margins
for a unity feed-forward gain using the parameters listed in
Table 1. We would like to find the specific feed-forward gain
which provides a closed-loop resonance peak of 1dB.
Finding the specific value of the gain which meets this
specification is not as straightforward as satisfying a direct
gain-margin or phase-margin specification. This is because
it is not easy to locate the specific point on the original
curve exemplified in Fig. 3 by inspection, which would
become tangential to the required M-contour' of Fig. 3. We
proceed by trial and error. For the design problem under
consideration, the trial and error procedure gives a gain
adjustment factor 8.25/20. As illustrated by Fig. 3, a peak
gain of 26dB associated with the frequency of 4e™"
(rad/sec), phase margin of 34.2 degrees, delay margin of
3.19 sec with the frequency of 0.187(rad/sec) confirms
closed loop stability.

Conclusion

A technique of assessing the stability of the LTI UWB
channel was presented. The proposed method is based on
developing closed-form analytical time-domain response

! Curves connecting equal values of magnitude for the closed-loop
response in Nichols chart are referred to as M-contours.

expressions. The normalized settling-time and %overshoot
of the step-response with respect to the damping coefficient
provides a tangible metric of the system’s stability. There
are two important findings of the work.

1. The proposed method constitutes an alternative way of
characterizing the LTI UWB channel’s stability compared to
the classical approach because in the classic approach it is
a challenge to find all the roots of the transcendental
equation in the complex s-plane.

2. This approach also provides a more convenient way of
selecting the channel parameters satisfying a certain
settling time, %overshoot, peak response and rise time

specifications with the aid of analytical time-domain
responses.
APPENDIX A: The Leibniz Integral General Form

Differentiation under the integral sign is a useful operation
in the mathematical field of calculus [5]. Explicitly, when
assuming

(24)  F(x)= Lb((:))f(x,t)dt, where x, <x < x,

0
and that if f{x, ¢) and —f(x,t), are continuous in both ¢,
ot

and x, in some region of the (7, x), plane, including a(x) <
t <b(x), xp <x <x;and if a(x), and b(x), are continuous and
have continuous derivatives for x, <x <x;, then we have

(25)

d OF \db (0OF \da b O

ZF N el I el il i

dx (x) ( oa ] dx ( Oa j dx " IH(X) 6xf(x’t)dt

:f(x,b(x))b'(x)—f(x,a(x))a'(x)+I;((:))a%f(x,t)dt
for xp<x<x,.
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