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Stability Analysis of the Linear Time-Invariant Ultra-WideBand 
Channel 

 
 

Abstract. The stability of a general Linear Time-Invariant (LTI) Ultra-WideBand (UWB) Channel Impulse Response (CIR) model is investigated. 
Since the s-domain or z-domain function of the UWB CIR has an extremely high number of singularities, it cannot be automatically guaranteed that 
none of the poles falls on the right-half of the s-plane or outside the unit-circle of the z-plane. Hence the stability analysis necessitates the exhaustive 
testing of classical stability criterion for a potentially excessive number of poles. We circumvent this arduous task by developing the closed-form 
time-domain response of the so-called homogenous, non-homogenous and vectorial LTI causal UWB system. Furthermore, the normalized settling 
time of the step response is evaluated for diverse damping coefficients. Finally, a stability case-study is provided with the aid of Nichols chart. 
 
Streszczenie. Zbadano stabilność ultra szerokopasmowego kanału LTI. Ponieważ na płaszczyźnie s i z odpowiedź impulsowa ma wiele osobliwości 
nie można automatycznie zagwarantować, że wszystkie są w prawe połówce płaszczyzny s lub w2ewnątrz koła jednostkowego z. W pracy 
zaproponowano metodę określania stabilności kanału. (Analiza stabilności ultra szerokopasmowego kanału LTI) 
 
Keywords: UWB, No-Line-of-Sight, Residential, Stability. 
Słowa kluczowe: kanał szeokopasmowy, stabilność, LTI. 
 
 
Introduction and the Problem Statement 

Ultra-WideBand (UWB) is a fast emerging technology 
after the Federal Communications Commission (FCC) ruling 
in the United States, unleashing huge bandwidth (3.1 − 
10.6) GHz where UWB radios overlaying coexistent RF 
systems can operate using low-power ultra-short 
information bearing pulses [1]. These pulses based on the 
emission of low power and having an effective bandwidth 
larger than 500 MHz are being considered for the next 
generation of wireless short range communication systems 
[2]. In the recent years, UWB communication systems have 
attracted the attention of many disciplines including, among 
others, antennas and propagation, electromagnetic 
compatibility, electronics, and signal processing for 
communications. 

A general Linear Time-Invariant (LTI) Ultra-WideBand 
(UWB) Channel Impulse Response (CIR) of the form [3] is 
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considered, where b(k,l) is the weight of the kth  CIR tap in 
the lth cluster, Tl is the delay of the lth cluster, and (k,l) is the 
delay of the kth MultiPath Component (MPC) relative to the 
lth tap-cluster’s commencement time Tl. The phases ϕ(k,l) are 
uniformly distributed, i.e., for a bandpass system the phase 
is assumed to be a random variable uniformly distributed in 
the range of [0, 2π]. The classic Saleh-Valenzuela (SV) 
model [4] does not specify the number of clusters occurring. 
Rather, it assumes that their number is theoretically infinite, 
and that their amplitude decreases exponentially with time; 
for practical purposes, an arbitrary threshold has to be 
introduced so that the clusters having an amplitude below 
that threshold are no longer considered in the simulations. 
 Problem Statement: The Given the nature of the UWB 
CIR of Eq (1), the corresponding s-domain or z-domain 
transfer function has an extremely high number of 
singularities and it cannot be automatically guaranteed that 
none of the poles falls on the right-half of the s-plane or 
outside the unit-circle of the z-plane. In this letter, we 
demonstrate for three specific scenarios that the LTI system 
described by Eq (1) retains stability. 
 We deviated from the conventional approach where the 
linear system is said to be asymptotically stable if and only 
if all the roots of the transcendental equation describing the 
CIR are on the left half of the complex s-plane. Since there 

are a high number of roots to be examined, the 
corresponding stability analysis is a complex task. We 
circumvent this arduous task by developing the closed-form 
time-domain response of the LTI system. These 
expressions are developed using the s-transform of the 
system model and the general form of the Leibniz integral 
rule [5]. To elaborate a little further, the normalized settling 
time and % overshoot of the step response provide a 
tangible quantitative characterization of the LTI system’s 
stability. The corresponding derivation requires somewhat 
tedious algebraic manipulations but circumvents the 
arduous task of checking the position of a potentially 
excessive number of roots of the transcendental equation in 
the complex s-plane. 
 The rest of this letter is organized as follows. Section II 
derives the time-domain responses of both homogenous 
and non-homogenous systems. In Section III the stability of 
the so-called residential No-Line-of-Sight (NLOS) system 
model of [3] is analysed. The normalized settling time of the 
step response versus the damping coefficients is 
considered along with a stability case-study carried out with 
the aid of the classic Nichols chart [6]. Finally, Section IV 
provides our conclusions. 
 
Methodology 

The complex tap-values of a general LTI UWB CIR 
given in Eq (1) obey the standard Poisson-distribution while 
mixed Poissonian processes describe the number of 
clusters, the clusters arrival times and the ray arrival times 
within a specific cluster [3], 
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where L  is the average number of clusters, Λl is the cluster 
arrival rate, β  is the probability controlling the particular 
mixture of the constituent Poisson processes and, λ1, λ2 are 
the ray arrival rates. These statistics will be used in our 
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simulations of Section III. We commence from the system 
model of Eq (1) and introduce the short-hand of: 
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We continue by partitioning the system model into L number 
of constituent clusters of CIR taps. Each of the resultant 
partitions can be viewed as a constituent model 
characterized by a Poissonian process for each ray within 
that cluster, as formulated below: 
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Taking the s-transform of a single constituent model yields 
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where ψ(k,l) is defined as 
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Using the power series expansion of ψ(k,l) and neglecting the 
higher-order terms, we have 
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Upon substituting Eq (6) into Eq (4), we obtain the transfer 
function of the constituent model as 
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The overall system transfer function can be obtained by 
finding and summing all the constituent transfer functions. 
Next, we elaborate the time domain system responses. 
 
A. Time-Domain System Responses 
The time-domain system model is obtained from Eqs (3-7) 
by taking the inverse s-transform, which gives 
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Where 
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represents the damping coefficients, predetermining the 
normalized settling time of the system response. More 
explicitly, a(k,l)(b,ϕ,T, ) is a function of the b(k,l), phase, cluster 
arrival time T and ray arrival time . The different model 
parameters were specified in [3]. More specifically, for this 
study we have used the so-called residential NLOS system 
parameters of [3].  
 

1) Homogenous System Response 
This response is obtained by substituting u′(t)=0 in Eq (8) 
and solving it for y(t), which gives 
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It is readily seen in Eq (11) that the response exhibits a 
decaying exponent which is directly proportional to both the 
initial conditions at t=t0 and to the damping factor a(k,l). 
 

2) Non-Homogenous System Response 
In order to obtain the corresponding response, we will use 
the general input u′(t) in conjunction with an Integrating 

Factor (IF) of  
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 in order to solve Eq (8), 
yielding the following response 
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in Eq (12), we can partition the overall response into the 
Natural Response (Nr) and Forced Response (Fr):  
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Observe in Eq (14) that Nr is dependent on the initial 
conditions y(t0) while Fr is directly proportional to both u′(t) 
and to the damping parameters of Eq (13). This partitioning 
of the response characterizes the effect of the initial state 
and that of the input before reaching the steady state value. 
Furthermore, the partitioning in Eq (14) is also helpful in 
designing the rise time of the LTI system describing the 
UWB channel as well as its % overshoot in the transient 
phase. 
 

3) Vector Form 
Upon rearranging Eq (8) to give a single state-model, we 
arrive at: 
(15) 
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The n-state-model can be expressed from Eq (15) in a 
vectorial form as 
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1 1 1 11 n n n nn

y t y t u t
   

       

where ∆ is the system matrix of order n. By comparing Eq 
(8) with Eq (16), we hypothesize that the vector response of 
the state-model of Eq (16) is 
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To prove this hypothesis, we need the Leibniz Integral rule 
(see Appendix A) and the following power series expansion 
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as well as its derivative given by: 
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Check I: Substituting t=t0 in the hypothesized vector 
response seen in Eq (17), we obtain 
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Check II: Taking the derivative of Eq (17), we arrive at 
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Applying the Leibniz integral rule (see Appendix A), we 
obtain 
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Finally, Eq (22) can be reduced to 
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It can be seen from Eqs (20) and (23) that Eq (17) is indeed 
the vector response of the state-model of Eq (16). 
 
Stability Analysis Results 
 This section details the step response characteristics of 
the LTI UWB channel derived in Section. Again, we have 
used the residential NLOS channel parameters of [3] stated 
in Table 1. Explicitly, the normalized settling time of the 
system is considered. Furthermore, the conditions of 
stability are determined for a unity feed-forward gain with 
the aid of Nichols chart [6]. 
 Let us now examine Fig. 1, which portrays the LTI UWB 
channel’s step-response on an exaggerated scale in order 
to facilitate this discussion. As indicated by the crosses in 
Fig. 1, if the damping coefficient is a(b,ϕ,T, ) = 1.0, the lower 
limit of 0.95 is crossed when the normalized time is 4, while 
the upper limit of 1.05 is never crossed. A damping 
coefficient of a(b,ϕ,T, ) = 0.7 has the lowest normalized 
settling time in Fig. 1, where the response crosses the 

−5%line at 3. Also observe in Fig. 1 that when the damping 
coefficient is about 0.7, the time response overshoots by 
almost 5%, reaching its peak after about 4.4 units of 
normalized time. 
 
Table 1. Simulation parameters 

Residential NLOS 
valid range of distance 7-20m
Path Gain at the reference distance 
G0[dB] 

-48.7

Path Gain Exponent n 4.58
Shadowing Gain S[dB] 3.51

Frequency Dependency decaying factor k 1.53

 L   
3.5

Λ[1/ns] 0.12

λ1, λ2[1/ns],β 1.77, 0.15,0.045

Gamma Function Γ[ns] 26.27

Nakagami Factor m0 0.69

Decay Time constant γ0 17.5

Standard Deviation σcluster[dB] 2.93 
 

 
Fig. 1. Normalized step response of the LTI UWB complex channel 
of Eq (1) for different damping coefficient values a plotted on an 
expanded scale. 
 
 Let us now examine Fig. 1, which portrays the LTI UWB 
channel’s step-response on an exaggerated scale in order 
to facilitate this discussion. As indicated by the crosses in 
Fig. 1, if the damping coefficient is a(b,ϕ,T, ) = 1.0, the lower 
limit of 0.95 is crossed when the normalized time is 4, while 
the upper limit of 1.05 is never crossed. A damping 
coefficient of a(b,ϕ,T, ) = 0.7 has the lowest normalized 
settling time in Fig. 1, where the response crosses the 
−5%line at 3. Also observe in Fig. 1 that when the damping 
coefficient is about 0.7, the time response overshoots by 
almost 5%, reaching its peak after about 4.4 units of 
normalized time. 
 As the damping coefficient drops further from 0.7 to 
about 0.43, the upper limit of the 5% band is entered into 
after the derivative has reached zero once (one extremum). 
However, the lower limit is never violated for a = 0.43. Since 
the settling-time threshold was chosen to be ±5%, the 
settling time is the lowest for a damping coefficient of about 
0.7. The normalized settling time versus the damping 
coefficient relationship plotted from a range of curves such 
as those exemplified in Fig. 1 is seen in Fig. 2, where the 
different line-types indicate, which of the consecutive step-
response extrema fell within the ±5% settling-time 
thresholds for the first time. 
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Fig. 2. Normalized Settling time of the LTI UWB channel versus the 
damping coefficient a of Eq (10). 

 
Fig. 3. Nichols Chart showing stability margins for unity feed 
forward gain control with parameters listed in Table 1. 
 
 The Nichols chart of Fig. 3 shows the stability margins 
for a unity feed-forward gain using the parameters listed in 
Table 1. We would like to find the specific feed-forward gain 
which provides a closed-loop resonance peak of 1dB. 
Finding the specific value of the gain which meets this 
specification is not as straightforward as satisfying a direct 
gain-margin or phase-margin specification. This is because 
it is not easy to locate the specific point on the original 
curve exemplified in Fig. 3 by inspection, which would 
become tangential to the required M-contour1

 of Fig. 3. We 
proceed by trial and error. For the design problem under 
consideration, the trial and error procedure gives a gain 
adjustment factor 8.25/20. As illustrated by Fig. 3, a peak 
gain of 26dB associated with the frequency of 4e-11 

(rad/sec), phase margin of 34.2 degrees, delay margin of 
3.19 sec with the frequency of 0.187(rad/sec) confirms 
closed loop stability. 
 
Conclusion 
 A technique of assessing the stability of the LTI UWB 
channel was presented. The proposed method is based on 
developing closed-form analytical time-domain response 

                                                 
1 Curves connecting equal values of magnitude for the closed-loop 
response in Nichols chart are referred to as M-contours. 

expressions. The normalized settling-time and %overshoot 
of the step-response with respect to the damping coefficient 
provides a tangible metric of the system’s stability. There 
are two important findings of the work. 
 
1. The proposed method constitutes an alternative way of 
characterizing the LTI UWB channel’s stability compared to 
the classical approach because in the classic approach it is 
a challenge to find all the roots of the transcendental 
equation in the complex s-plane. 
2. This approach also provides a more convenient way of 
selecting the channel parameters satisfying a certain 
settling time, %overshoot, peak response and rise time 
specifications with the aid of analytical time-domain 
responses. 
 
* 

 APPENDIX A: The Leibniz Integral General Form 
Differentiation under the integral sign is a useful operation 
in the mathematical field of calculus [5]. Explicitly, when 
assuming 
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