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Abstract

The paper examines a new problem in the irregular packing literature that has many

applications in industry: two-dimensional irregular (convex) bin packing with guillotine

constraints. Due to the cutting process of certain materials, cuts are restricted to extend

from one edge of the stock-sheet to another, called guillotine cutting. This constraint is

common place in glass cutting and is an important constraint in two-dimensional cut-

ting and packing problems. In the literature, various exact and approximate algorithms

exist for finding the two dimensional cutting patterns that satisfy the guillotine cutting

constraint. However, to the best of our knowledge, all of the algorithms are designed

for solving rectangular cutting where cuts are orthogonal with the edges of the stock-

sheet. In order to satisfy the guillotine cutting constraint using these approaches, when

the pieces are non-rectangular, practitioners implement a two stage approach. First,

pieces are enclosed within rectangle shapes and then the rectangles are packed. Clearly,

imposing this condition is likely to lead to additional waste. This paper aims to gen-

erate guillotine-cutting layouts of irregular shapes using a number of strategies. The

investigation compares three two-stage approaches: one approximates pieces by rectan-

gles, the other two approximate pairs of pieces by rectangles using a cluster heuristic or

phi-functions for optimal clustering. All three approaches use a competitive algorithm
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for rectangle bin packing with guillotine constraints. Further, we design and implement

a one-stage approach using an adaptive forest search algorithm. Experimental results

show the one-stage strategy produces good solutions in less time over the two-stage

approach.

Keywords: heuristic, cutting and packing, forest search, bin packing, irregular,

phi-functions.

1. Introduction

There exist in the literature a high volume and variety of investigations into two-

dimensional (2D) cutting and packing problems, which reflects the large application

scope, such as ship building, shoe manufacturing, garment manufacturing and tool man-

ufacturing, and a range of materials, for example glass, metal, wood, and textiles. Within

these publications, a popular focus of research is generating cutting patterns that sat-

isfying guillotine cutting constraints. These constrain any cut to begin at one edge of

the stock sheet and continue in a straight line to another edge of the stock sheet. To

the best of our knowledge, all of the algorithms are designed for solving 2D rectangular

shape cutting problems where all cuts are orthogonal to the edges of the stock-sheet.

Guillotine cutting with irregular pieces has not been tackled directly. In this problem,

guillotine cuts are not constrained to be orthogonal to the rectangular stock sheet edges,

and pieces can be continuously rotated.

An example of the irregular shape bin packing problem with guillotine constraints

arises from the glass cutting industry and in particular the manufacture of conservato-

ries (glass houses). Although many of the pieces are rectangular, there is a substantial

number of irregular pieces. These are convex polygons with up to five sides in general,

and occasionally more. It is common for conservatories to be a bespoke design (usually

based on a standard style) to fit the specific building, hence, glass is cut to order. To

satisfy the guillotine cutting constraints in practice, items of irregular shapes are indi-

vidually, or in pairs, enclosed within rectangles and these rectangles are then arranged

into a cutting pattern. This adds a restriction that is not present in practice, which is

likely to create patterns with more waste than necessary.

In this paper, we implement four pattern generation strategies with the objective
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of minimizing the number of bins required to pack all items. Primarily, we aim to in-

vestigate the benefit of generating cutting patterns which satisfy the guillotine cutting

constraint by implementing the cuts directly on the irregular shapes instead of on rectan-

gle enclosures. This one-stage approach is based on an efficient forest search algorithm.

The forest constructs multiple layouts in parallel according to a dynamic measure of

the quality of the partial layout. In order to benchmark our approach we implement a

state of the art rectangle guillotine cutting algorithm of Charalambous and Fleszar [6]

and generate solutions by approximating each piece by its minimum enclosing rectangle.

Further, we attempt to improve on the two stage approach used in practice by using

phi-functions to cluster all pairs of pieces in their minimum rectangle enclosure and use

a greedy heuristic to select a subset to pack, again using the approach of Charalambous

and Fleszar [6].

The contributions of this paper are many. We have brought a new problem to the

literature that is found in practice. As a result, there is significant scope for further

research. We have designed an efficient search heuristic using a dynamic solution eval-

uation function. The approach can handle continuous rotation of the pieces, multiple

bins, and guillotine cuts. Irregular shape packing usually constrains the number of orien-

tations of the pieces, approaches generally only pack a single strip and to our knowledge

formulations have never included guillotine constraints. Further, the paper describes a

second approach, based on industry practice, but using state of the art techniques to

solve the problem by first optimizing the rectangle enclosure of pairs of pieces using

phi-functions and then packing using a rectangle guillotine packing approach. This in

itself is new to the literature. Finally, we have also introduced new benchmark data sets

for this problem.

In the next section (section 2), we give a more detailed description of the problem.

In section 3 we review some related literature on guillotine bin packing. Section 3

explains the one-stage approach, including some notation and definitions to describe the

important characteristics of the problem, and details of a core function, best match,

that forms the basis of the algorithm. It also includes a description of the forest search

algorithm. In section 5, we describe the two-stage approach based on the work of

Charalambous and Fleszar [6], minimum rectangle clustering based on phi-functions

and our greedy selection. Section 6 contains the computational study and the discussion

3



of the results. Finally, in Section 7 we present the conclusions.

2. Problem Description

The problem objective is to cut all demand pieces from the minimum number of

stock sheets possible, hence it is an input minimization problem. There are sufficient

standard size rectangular stock-sheets available to meet demand, where the stock sheet

has length L and width W . The demand set D contains N irregular shaped pieces, where

each piece is considered to be unique and the demand of each piece is one. According

to the typology proposed by Wäscher et al. [16] this is a single bin size bin packing

problem (SBSBPP).

Further refinements to the problem type are that all pieces are convex, and usually

irregular. Pieces can be rotated continuously i.e. there are no fixed rotation angles.

Further, the stock sheet can be rotated. In principle this is taken care of by rotating the

pieces. However, in Charalambous and Fleszar [6] the orientation of a non-square stock

sheet is important. Only guillotine cuts are allowed. A guillotine cut is a single straight

line cut that begins at an edge of the stock-sheet and ends at another edge. Unlike the

vast majority of the literature, the cutting line is not constrained to be parallel to an

edge of the stock-sheet. Often when considering guillotine constraints, pieces must be

cut free from the stock sheet with a maximum number of cuts, which is typically three.

In this problem there are no limits on the number cuts.

3. Literature Review

There are three key components of the problem under consideration: bin packing,

guillotine cuts, and irregular shapes. To our knowledge there are no papers that tackle

these three together. In addition, irregular shape packing literature is almost exclusively

strip packing (single infinite length stock sheet) with a finite fixed set of rotation an-

gles. Those who have tackled multiple stock sheet problems reduce the problem to a

one-dimensional cutting stock problem using pre-defined pattern layouts, for example,

Degraeve and Vandebroek [8]. A key challenge in packing irregular shapes is handling

complex geometry, particularly when pieces contain concavities. In this paper all pieces

are convex. Instead, the key challenge arises in modelling efficiently continuous rotation
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of the pieces, which is not commonly dealt with in the literature. For a discussion of

techniques for handling the geometry in irregular shape packing see Bennell and Oliveira

[4]. Aside from the geometry, solution approaches to irregular packing are almost all

heuristic and can be divided into those that build up to a final solution through se-

quentially adding to partial solutions, and those that work with complete solutions and

search by making small changes to the incumbent solution. The latter approach can

be subdivided into representing the solution by a sequence, or packing order, that is

decoded by a construction heuristic, or by the co-ordinate positions of the pieces in the

layout. For a review of solution approaches to the irregular packing problem see Bennell

and Oliveira [3].

The rectangle bin packing problem with guillotine constraints has the most similari-

ties to the problem we are tacking in this paper. Lodi et al. [12] survey two dimensional

rectangle bin packing, including algorithms that handle guillotine constraints. They

describe the one- and two-phase approach, where both consist of packing pieces onto

shelves along the width of the bin. The former directly packs pieces into the bin, where

as the latter optimizes the packing of the shelves into the bins by modelling as a one

dimensional bin packing problem. Lodi et al. [10] creates the shelves by solving a series

of 0-1 knapsack problems improving on the performance of the finite first fit and finite

best strip heuristics of Berkey and Wang [5]. More recent construction heuristics are

not constrained to creating shelves. Charalambous and Fleszar [6] start by generating

simple patterns, initially across the width of the bin, and subsequently within free rect-

angle areas. Pieces may shift horizontally or vertically in order to maximize the size of

the free rectangle, while maintaining the guillotine constraint. Fleszar [9] propose a con-

structive heuristic where the insertion decision is made by first-fit, best-fit or critical-fit

criteria. Patterns are generated using a tree structure where nodes determine the cuts

and the leaf nodes are pieces. Further improvement is made by a justification heuristic.

Polyakovsky and M’Hallah [13] modify the well know bottom left construction heuristic

to meet guillotine constraints. After placing each piece, they apply both horizontal and

vertical guillotine cuts and select the one that gives the largest rectangle area available

for packing. Pieces are assigned to bins using an agent-based algorithm. Pieces may be

agent-initiators attracting individual-agents (pieces) to their group in order to maximize

the fitness of the group. Individual-agents compete to join groups to maximize their
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purpose parameters. These groups are assigned to the same bin and arranged using the

guillotine bottom left heuristic. Lodi et al. [11] uses tabu search to assign pieces to

bins. Initially, one piece is packed in each bin. The heuristic attempts to empty weak

bins by assigning pieces to sub-instances that include the pieces from k bins. Instead of

assigning pieces to bins and then packing, Alvelos et al. [1] define a sequence for packing

the pieces while keeping a list of candidate locations for the next piece. The solution is

improved using variable neighborhood descent where moves are made within the pack-

ing sequence. Although none of these papers directly apply to the problem addressed

in this paper, we have made use of some core knowledge. We adopt methodologies for

efficiently processing the geometry of irregular convex shapes with free rotation using

some classic concepts and phi-functions. We follow the common theme of construction

methodologies for generating patterns while meeting guillotine constraints, and for the

two-stage strategies we directly use the approach of Charalambous and Fleszar [6].

4. One-stage approach

Our one-stage solution approach is a constructive heuristic where the algorithm be-

gins with generating efficient clusters of polygons, and then uses these clusters to con-

struct the bin packing solution. In the following sections we first define the process and

criteria for clustering two polygons, this is called a match. A match is accepted as a

node in the search forest if the utilization ratio meets or exceeds a certain acceptance

threshold θ. The forest is populated by matching polygons with polygons, polygons with

clusters, and clusters with clusters. The latter leading to the term forest search. These

clusters are called blocks. The forest is complete once there are no further matches for

the blocks, this may be as a result of the boundary constraint of the stock sheet or there

are no matches that meet the threshold. The bin packing step sequentially selects the

block with the greatest summed area of polygons, while removing any other blocks from

the forest that contain common polygons. If no further blocks can be placed in a bin

and the utilization ratio is below a given threshold θu, the forest is recreated with a

lower acceptance threshold. Eventually the threshold is set to zero so all polygons are

packed.
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4.1. Best match of two convex polygons

In this section we describe a core function of the overall methodology, the best match

of two convex polygons. For the purposes of this section, we describe the approach in

the context of the original convex polygons. Later we will generalize the procedure and

associated definitions for clusters of polygons.

4.1.1. Notation and definitions

A convex polygon, P , can be expressed by a set of vertices (p1, p2, ..., pn), where n is

the number of vertices of the convex polygon, and each vertex pi is defined by cartesian

co-ordinates (xi, yi) where i =, 1, ..., n. p1 is set as the origin of P . The ith edge can be

expressed by ei = (pi, pi+1) where i = 1, ..., n − 1, and the nth edge is en = (pn, p1). P

is convex if all vertices lie on, or to one side of, the infinite line concurrent with ei, for

each ei. Let INT (P ) be the interior of P and FR(P ) be the edges, or frontier, of P .

Let set D = {Pi | i = 1, ..., N} be customer demand, where N is the total number of

pieces ordered. Pi is called a basic polygon and has a demand of one.

Clearly because of the guillotine constraint, only convex shapes can be cut. When

combining two basic items, the resulting union may not be convex. Hence, two useful

convex approximations of the union are the convex hull and enclosing rectangle. Given

a point set S, let O(S) be the convex hull of S and R(S) be the minimum area enclosing

rectangle of S. For convex polygon P , O(P ) = P .

4.1.2. Transformation and overlap

A polygon can be transformed by three operations: reflection (mirror), translation

and rotation. Let f be a transformation of polygon P , which can be expressed by a four

element group {m, x, y, t}. m ∈ {0, 1} is a reflection transformation, where the values

1 and 0 represent reflection and no reflection respectively. Note that you only need to

reflect in one axis and all other reflections arise from rotating the reflected polygon. x, y

represent the translation distance along the x-axis and y-axis. t ∈ (−π, π] is the rotation

angle of the convex polygon around the origin p1. Obviously, the transformation space,

Ψ, is the composition of reflection, translation and rotation. We also call fi(Pi) the

transform of Pi.

Since it is possible to change the position, orientation and reflection of a polygon, it

is important to define the combinations of transformations of multiple polygons that are
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feasible with respect to mutual overlap. Hence, the set of non-overlapping transforma-

tions is defined in equation 1. A non-overlapping configuration of two polygons is called

a match.

f(Pi, Pj) = fi(Pi)
⋃

fj(Pj) and INT (fi(Pi))
⋂

INT (fj(Pj)) = ∅ (1)

4.1.3. Definition of best match

In order to construct the cutting pattern, we must decide where to place each polygon

relative to the other polygons. This amounts to choosing a match between two polygons.

Given we wish to minimize waste, we only consider positions where the two polygons

touch. A match that gives the minimum convex hull would arguably be a good choice.

Given the stock sheets are rectangular, then the minimum area enclosing rectangle would

also be a sensible measure and favor configurations that fit the boundary of the placement

area. Hence, we want to evaluate both these contributions to waste. Given polygons

P1, P2 ∈ D, the convex hull and rectangle enclosure of the match f(P1, P2) are denoted

as O(f(P1, P2)) and R(f(P1, P2)) respectively, see figure 1. For consistency with other

measures of solution quality, we define the utilization of the convex hull and rectangle

enclosure of f(P1, P2) using equations 2 and 3, where Area(.) is the area of the polygon.

U f(P1,P2)
cov =

Area(P1) + Area(P2)

Area(O(f(P1, P2)))
(2)

U f(P1,P2)
rec =

Area(O(f(P1, P2)))

Area(R(f(P1, P2)))
(3)

Figure 1: The waste contributions of the convex hull and enclosing rectangle.

Equation 2 measures the ratio of piece area and convex hull area, if high then the

match is tight. Equation 3 measures the ratio of convex hull area and rectangle enclosure

area, if high then the match generates a rectangle shape, which fits our global objective.

Since both attributes are desirable, we define a weighted sum of these measures of
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utilization. Given the weight w ∈ [0, 1], the weighted utilization ratio of the match

f(P1, P2) is given in equation 4.

U f(P1,P2)
w = wU f(P1,P2)

rec + (1− w)U f(P1,P2)
cov (4)

It is unlikely that there is one ideal value of w across all data instance. Note that

during the earlier stage of the search, tight combinations of polygons is desirable with

little concern for creating rectangular shaped clusters. A heavier weight on the convex

hull ratio would achieve this. While in the later stage of the search, achieving a rect-

angular cluster in order to not incur large amounts of waste between the convex hull of

the cluster and the edges of the stock sheet is more important. A heavier weight on the

rectangular enclosure would encourage this sort of configuration. In our experiments we

evaluate a number of different fixed and dynamic weighting strategies.

4.1.4. Heuristic method to find the best match

The heuristic procedure for finding the best match of two polygons uses three main

operations: Mirror, Attach and Slide, these are defined as follows:

Mirror(Pl, ml), l = 1, 2 and ml = 0, 1. If ml = 1 reflect Pl

Attach(P1, P2, i, j). Let P1 be the fixed polygon with counter clockwise direction and

P2 be the sliding polygon with clockwise direction. The attach operation between P1 and

P2 is as follows: move polygon P2 so that the j-th convex vertex on P2 coincides with

the i-th convex vertex on P1. Rotate P2 so that the j-th edge of polygon P2 coincides

with the i-th edge of polygon P1. Recall that the k-th edge of a polygon is between

vertices (k, k + 1). Since P1 and P2 have opposite orientation and are both convex, the

attach procedure will not result in the polygons overlapping.

Slide(P1, P2, i, j, d). After the attach operation, slide the j-th point on P2 along the

i-th edge of polygon P1. Let d be the slide distance, then d ≤ max{0, dis(ei)− dis(ej)},

where dis(ej) is the length of edge ej. Each call of slide(P1, P2, i, j, d) will slide polygon

P2 an additional distance ε. As long as we consider all combinations of Mirror(Pl, ml),

then all incremental slide points are captured. An illustration of an attached pair and the

slide operation is given in figure 2, where three candidate positions are shown including

the first and last positions.
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Figure 2: Attach and slide operators.

Since only the relative positions of the two polygons are of interest, we can find all

matches by rotating and translating just one of the polygons. Before sliding along a

certain edge attachment, we test the potential of that match on the given edge com-

bination, called the match degree, md(i, j). Only if the match degree is greater than a

threshold parameter, θd, will the algorithm proceed to the attach and slide operation.

The match degree of the attachment operation Attach(P1, P2, i, j) is defined in equation

5.

md(i, j) = 1− | dis(ei)− dis(ej) |
max{dis(ei), dis(ej)}

(5)

The match degree is high for edges that have similar lengths and low for edges that

have very different lengths. Note that if the match degree does not exceed θd then the

edge combination is rejected. If all edge combinations are rejected then the two polygons

are not matched. The best match procedure is given in algorithm 1.

4.2. Forest search

In this section we describe the definitions, functions and procedures to generate the

forest search. Some of the notation and definitions are analogous to those described

in the previous section. A key progression is that the operations are performed with

clusters of polygons rather than the original basic polygons.

4.2.1. Notation and definitions

Let set T be the subset of the demand set D, so T = {P1, P2, ..., Pt} ⊆ D . Let f(T ) =

f1(P1)
⋃

f2(P2)
⋃

...
⋃

ft(Pt) be a transformation of set T , where fi(Pi), i = 1, ..., t, is

a transformation of polygon Pi. All the transformations on T form the transformation

space, denoted by ΨT . The convex hull of f(T ) is O(f(T )). A uniform transformation

of T is when fi = fj, for all i, j ∈ [1, t].

4.2.2. Feasible transformations

In order for the transformation of set T to be feasible, f(T ) must satisfy two con-

ditions: no pair of polygons may overlap and every polygon can be removed from the

stock sheet using guillotine cuts.
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Algorithm 1 Best match

1: Input: Polygon P1, P2, θd, w, ε

2: Initialize MaxU = 0, match = 0

3: for each pair of vertices i on P1 and j on P2 do

4: if md(i, j) > θd then

5: match = 1

6: Create copies of polygons P ′
1 ← P1, P

′
2 ← P2

7: for m1 = 0, 1 do

8: Mirror(P ′
1, m1).

9: for m2 = 0, 1 do

10: Mirror(P ′
2, m2).

11: for d = 0, max{0, dis(ei)− dis(ej)}, step ε do

12: Attach(P ′
1, P

′
2, i, j)

13: Slide(P ′
1, P

′
2, i, j, d)

14: if U
f(P ′

1,P ′
2)

w > MaxU then

15: MaxU ← U
f(P ′

1,P ′
2)

w , best(m1) ← m1, best(m2) ← m2, best(i) ← i,

best(j)← j, best(d)← d

16: end if

17: end for

18: end for

19: end for

20: end if

21: end for

22: if match = 0 then

23: Return P1

⋃
P2 = ∅

24: end if

25: Mirror(P1, best(m1)), Mirror(P2, best(m1))

26: Attach(P1, P2, best(i), best(j)), Slide(P1, P2, best(i), best(j), best(d))

27: Return P1

⋃
P2
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Proposition 1: Algorithm 1 produces non-overlapping configurations of pieces.

Proof: The attach and slide operators only generate non-overlapping configurations

of P1 and P2. The convex hull of the best match from algorithm 1 is O(P1

⋃
f(P2)).

Let P ∗
1 = O(P1

⋃
f(P2)) and P ∗

2 be the next polygon to be matched, then the matching

of the three polygons will meet the no-overlap constraint. This is also true if P ∗
2 is the

convex hull of a cluster of polygons. Provided algorithm 1 is matching convex polygons,

or convex hulls of clusters of polygons, then the no-overlap constraint holds.

Proposition 2: Algorithm 1 produces guillotine-able configurations of pieces.

Proof: Let P1 and P2 be convex polygons and O(P1

⋃
f(P2)) be the convex hull of the

optimal match, where the match arises from edge ei from P1 and ej from P2 coinciding.

Let ~o be the infinite line coinciding with ei and ej, then ~o ⊃ FR(P1) and ~o ⊃ FR(P2).

Since P1 and P2 are convex then ~o
⋂

INT (Pi) = ∅ for i = 1, 2 then we know that ~o is

a feasible guillotine cut for P1 and P2 . Guillotine cuts are defined in reverse order, i.e.

the first match defines the last cut. In general, O(f(T )) is called guillotine-able if one

of the following two conditions is satisfied:

1. T only contains two convex basic polygons P1 and P2.

2. There exists one guillotine segment in O(f(T )), which divide T into two subsets

T1 and T2, and T1 and T2 are guillotine-able.

A non-overlapping guillotine-able transformation is called a feasible transformation.

4.2.3. Blocks

Blocks, Bi, populate the forest. In order for subsets of polygons to appear in the

forest, they must be part of a valid block. A valid block is the convex hull of a feasible

transformation of T with a utilization ratio of at least θ, where θ is the acceptance

threshold for blocks to appear in the forest. It can be defined by equation 6

Bi = {O(f(Ti)) | U f(Ti)
w ≥ θ, f is a feasible transformation} (6)

Equation 6 is a necessary condition to define a block but it does not fully describe

its composition. A block may be made up of several groups of pieces that have been

matched and approximated by their convex hull. Figure 3 shows a small portion of the

forest and illustrates the creation and composition of blocks through the levels of the
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search. At the top level the forest contains all basic items and each basic item is a

block. The second level contains pairs of basic items in the configuration that gives the

best Uw, these are the level two blocks. Level three adds a basic item to the level two

blocks. Level four contains a level three block combined with a basic item, but could

also contain two level two blocks. Level five is empty in this example, but could contain

combinations from level four and one or level two and three. Finally level six contains

all basic items made up from a block from levels two and four.

Figure 3: Example of a portion of the search forest.

In general, at the first level of the forest, m = 1, a block is a basic polygon. Applying

algorithm 1 directly to the basic polygons generates all candidate feasible transforma-

tions for m = 2. The convex hull of each feasible transformation becomes a block in the

second level if the weighted utilization ratio is at least θ. Note that the level refers to

the number of basic polygons in the subset. Hence, m = 3 would match a block from

level one and level two, using algorithm 1 and so on. Hence, the convex hull of a feasible

transform of subset T is a block, B, if one of the following two conditions is satisfied.

1. B contains only one element.

2. B can be divided into two subsets B1, B2, and the weighted utilization of B is

greater than θ, and B1, B2 are valid blocks.

In order to control the size of the forest, we only accept a new block in the forest if the

weighted utilization ratio meets, or exceeds, an acceptance threshold θ. The utilization

ratios and weighted utilization are calculated using equations 2, 3 and 4, where P1 is

replaced by B1 and P2 is replaced by B2.

As discussed earlier, the weighted utilization ratio represents the two aspirations of

tight packing and an overall rectangular layout to fit the stock sheet area. Initially the

tightness of the packing is more important. As the layout grows closer to the stock

sheet size, the rectangular shape is more important. As a result, we define a number of

alternative weighting schemes, both dynamic and fixed.

There are three fixed weighting schemes that set w = {0, 0.5, 1.0} for the entire search

process. The dynamic weighting schemes increases the value of w for each generation,
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m, where m = 1, ..., G, and G is the maximum number of generations. We use the

following S shape function to manage the transition of the weights.

wm = 1− 1

1 + e
2m−G

2K

(7)

K controls the linearity of the function. When K = 1, the range of the exponential

component is from almost zero to very large, hence the graph of wm is a sharp S shape

function from zero to one. When K is large wm is approximately linear. Also note that

at half the maximum generations wm = 0.5. In our experiments we use K = {3, 5, 15}

as illustrated in figure 4.

4.2.4. Forest construction

Figure 4: Plot of the dynamic weighting scheme.

The generation of the forest naturally extends from the definition of a block, and in

particular the concept of a block as a tree, where all the trees make up the forest. Note

that branches of blocks may be shared. Equation 8 provides a mathematical description

of each level of the forest. gθ,w
m where m is the level, θ is the acceptance threshold and w

is the weight applied to the utilization ratio. Level 1 is simply the basic polygons in the

demand set D. Subsequent levels are θ acceptable matches of blocks from the previous

level.

gθ,w
m =

 Pi, i ∈ D m = 1⋃
i+j=m{f(Bi, Bj) | Bi ∈ gθ,w

i , Bj ∈ gθ,w
j , U

fw(Bi,Bj)
w ≤ θ, Ti

⋂
Tj = ∅} m > 1

(8)

In addition to the acceptance threshold on weighted utilization, there are two further

constraints on the acceptability of a block. First, only one of each piece type can appear

across all the patterns. Before matching blocks, the procedure performs a conflict check

for common pieces. Hence, a match between Bi and Bj is made only if Ti

⋂
Tj = ∅.

Second, each new block must not violate the dimensions of the stock sheet. Hence, we

need to check if the length and width of the block is larger than those of the rectangle

stock sheet. Note that the entire block can be freely rotated and a block may exceed
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the boundaries of the stock sheet in one orientation and not in another. Since the

minimum area enclosing rectangle will have an edge collinear to the edge of the block

(Toussaint [15], then the worst case number of tests equals the number of edges of the

block. However, since we only need to satisfy this constraint, the number of tests may be

many fewer. Let l(R(B)), w(R(B)) be the length and width of the candidate rectangle

enclosure of block B, where the rectangle has at least one edge collinear with the block,

then l(R(B)) ≤ L, w(R(B)) ≤ W must hold for one of the candidates. Algorithm 2

details the procedure to generate a forest.

Algorithm 2 Forest Construction

1: Input: G, D, K, θ

2: Initialize gθ
m ← ∅ for all m. Set m = 1 and calculate wm according to K and G

3: gθ
1 ← D

4: for L = 2, ...,m do

5: for i = 1, ..., bL
2
c do

6: For each block Bx ∈ gθ
L combined with each block By ∈ gθ

L−i

7: if Tx

⋂
Ty = ∅ then

8: construct f(Bx, By) using algorithm 1

9: if U
f(Bx,By)
wL > θ then

10: gθ
L ← gθ

L

⋃
f(Bx, By)

11: end if

12: end if

13: end for

14: end for

4.3. Bin packing

The final step of the approach is to pack the blocks that populate the forest into

the bins. All blocks will satisfy the acceptance threshold, hence in this step we seek

to place blocks on stock sheets as efficiently as possible. Clearly, packing blocks into

bins will generate more waste between the edges of the stock sheet and the blocks, and

between adjacent blocks. A utilization threshold, θu, determines whether a bin packing

pattern is acceptable. Once the newly generated patterns are no longer acceptable, the

approach reduces both the acceptance threshold (θ) and θu and generates a new forest
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with the remaining unpacked pieces, repeating the bin packing procedure with the lower

utilization threshold. Eventually, both thresholds are set to zero to ensure all pieces are

packed. The procedure has a number of operations as follows:

Recursive fill (RF): select the block with the largest area that will fit into a given

size stock sheet/partial stock sheet, place the block at the top left corner. Note that

a block can come from any part of the forest. Mark that block, and any other block

containing common pieces, as used.

Single bin (SB): take a new stock sheet and call RF. Horizontal and vertical guil-

lotine cuts divide the unpacked areas into S1 and S2. Figure 5 shows the two possible

ways of generating these partial stock sheets, we generate both. Call RF for each partial

stock sheet and select the best. Continue this process until no further blocks can be

packed.

Bin packing (BP): generate the forest given the input data, acceptance threshold and

weighting scheme. θu initially is set to 0.8. Repeatedly call SB, and accept a pattern if

the stock sheet utilization is greater than θu. Otherwise reduce θ to 0.9 and θu to 0.7,

generate a new forest with the remaining pieces and call SB as before. The third and

final forest generation sets θ to 0.8 and θu to zero.

Note that initially we expect to fill a stock sheet with a single block, but it is highly

unlikely that all stock sheets can be filled this way. In order to control computation

time, the procedure generates at most three forests at reducing values of θ. After the

third forest, set θu = 0 so all pieces are packed, potentially individually as the forest

may not accept any matches. Since θ reduces the size of the forest, it should not be too

small, however, the decrease must be sufficient to generate useful size blocks. Algorithm

3 gives a summary of the one stage procedure.

Figure 5: The two arrangement of cuts to generate partial stock sheets.
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Algorithm 3 One-stage procedure

1: Input: G, D, K, W, L, θ, θd, θu, ε, k = 1

2: Generate forest using algorithm 2

3: Pack single bin, BINk

4: until no further blocks can be packed, call recursive fill

5: if stock sheet utilization ≥ θu then

6: go to 3

7: end if

8: if remaining blocks contain unused pieces then

9: Reduce θu and θ and go to 2

10: end if

11: Return BINi, i = 1, ..., k

5. Two-stage approach

In order to benchmark our approach we implement a two-stage procedure. The first

stage encloses individual or pairs of pieces into rectangles, the second stage packs the

rectangles. For the former we investigate two approaches. One clusters the pieces using

algorithm 1, described earlier. The other uses a state of the art convex polygon clustering

approach using phi-functions presented by Scheithauer et al. [14]. See Bennell et al. [2]

for a discussion of phi-functions. For the latter we use the recently published guillotine

bin packing approach of Charalambous and Fleszar [6].

5.1. Rectangle bin packing with guillotine cuts

The approach is directly taken from Charalambous and Fleszar [6] and therefore only

briefly described here.

The fundamental building block of the approach is a simple pattern generator that

arranges a subset of pieces side by side. Items that are available to be packed are sorted

in non-increasing order of the weighted sum of their normalized height and area and

then patterns are generated using the well-known first fit rule. Rotation is taken care of

by including two copies of each piece in each orientation, if one copy is used the other

becomes unavailable. They generate a number of alterative simple patterns by varying

the weights, and identify those that satisfying a sufficiency criterion, which reduces the
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greediness of the approach. From the identified patterns, they select the pattern with

the maximum total area of items, if no patterns satisfy the sufficiency criteria, they

select the pattern that violates it the least. Clearly the simple pattern must fit within

the available rectangle. Initially this rectangle is the size of the bin, but subsequent calls

to the generator will be for smaller empty rectangle areas remaining in the bin.

The procedure generates a simple pattern and places it in the bottom left corner of

the bin, this is the committed pattern. Then it identifies multiple empty overlapping

rectangles that are all above the simple pattern, removing any rectangle areas that

are too small for any available item. The simple pattern generator fills each rectangle

and selects the best when combined with the current committed pattern. Following

sets of overlapping empty rectangles may appear above, below or to the left of the

last committed pattern and are filled in that order. While maintaining guillotine cuts,

these rectangles are expanded to the maximum size by shifting sets of pieces in the

pattern vertically or horizontally. Once no further pieces can be added to the pattern,

the procedure begins again on the next bin until all items are packed. If the stock

sheet is not square, the complete procedure is repeated with the stock sheet rotated by

90 degrees. The authors suggest a further improvement to the constructive heuristic,

which involves varying the strength of the sufficiency criteria using a bias.

5.2. Clustering approach

The basic items are approximated by their enclosing rectangle individually and in

pairs. The minimum rectangle enclosure of a single piece is straightforward to find given

it will have one edge colinear with the edge of the piece (Toussaint [15]). The maximum

number of edges in our data sets is five, hence complete enumeration is quick and simple.

The minimum area enclosing rectangle for a pair of pieces, where the pieces can be freely

rotated is non-trivial. For one variant we cluster two pieces using algorithm 1. For the

other variant, we use the phi-function implementation of Scheithauer et al. [14].

The phi-function procedure is complex and only briefly outlined here. Given two

convex polygons, find the phi-function for the pair of polygons with free rotation and

the phi function for each polygon with free rotation and the complement of a rectangle

with variable length and width. See Chernov et al. [7] for details of this procedure.

These phi-functions are deconstructed into phi-trees where the terminal nodes corre-
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spond to systems of nonlinear inequalities, each focusing on a subset of configurations

of the polygons. Each set of inequalities are solved to minimize the size of the enclosing

rectangle using IPOPT and the best is selected. Since there are multiple local optima

for each set of inequalities, we define many starting solutions. Note that if the poly-

gons have fixed orientation, the procedure defines a linear set of inequalities that can be

solved to optimality.

5.3. Greedy selection

The clustering approach generates a complete set of candidate rectangles that include

multiple copies of each piece. In order to determine the set of rectangles to use as input

to the guillotine packing algorithm, we apply a greedy selection. This sorts all the

enclosing rectangle clusters, individual and pairs, from minimum to maximum waste,

where waste is defined by equation 9.

Wk = Area(R(f(P1, P2)))− (Area(P1) + Area(P2)) (9)

In the case of an individual piece, P2 is an empty set. The heuristic selects the

first rectangle on the sorted list, removes any rectangles that contain common piece(s),

selects the next available rectangle on the sorted list, and so on until the list is empty.

At this point all basic items will appear once in the rectangle clusters.

6. Experiments and results

In this section we provide details of the results for both the one-stage and two-

stage approach. For the one-stage approaches, we investigate two initial settings for the

acceptance threshold (θ). The two-stage approach includes three sets of experiments:

two variants that allow pieces to be clustered in pairs and one variant that only enclose

individual pieces in rectangles. Experiments were programmed using C++ and Java

and run on PC with 2.4GHz and 2G memory.

6.1. Data

Table 1 provides details of the test data to be packed on stock sheets of size 3210

by 2250. Sets coded J are taken from real industrial data provided by a company

specializing in glass cutting for conservatories. Sets coded H are generated using the
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Table 1: Test datasets

Ave. no. Stdev. Ave. Stdev. Irregular

Dataset edges edges area area degree

J40 3.56 0.741 1070889 864460 0.2741

J50 3.70 0.647 1104653 825371 0.3416

J60 3.73 0.607 1041775 791634 0.2986

J70 3.77 0.569 1018279 782675 0.2578

H80 3.67 0.508 727813 622035 0.2457

H100 3.83 0.493 968581 739522 0.2520

H120 3.61 0.562 819777 732018 0.3142

H149 3.82 0.695 932110 813401 0.2667

properties of the industrial data. The number indicates the number of pieces in each

data set. Recall each piece is considered unique. The table details the average number

of edges, standard deviation of edges, the average area and the standard deviation of

the area. The final column indicates the degree of irregularity of the data set found by

equation 10. These data sets are available on the European Working Group in Cutting

and Packing (ESICUP) website.

Irregular degree =
1

n

∑
P∈D

(1− Area(P )

R(P )
) (10)

6.2. Results

The tables 2 and 3 detail the results for the two approaches. The main body of the

tables include the following information for each data set and variant: total number of

bins to pack all pieces (N), stock sheet utilization (U), and the fractional number of

bins used (F ). The utilization is calculated by equation 11.

U =

∑n
i=1 Area(Pi)

((N − 1)× L×W ) + R∗ (11)

Where R∗ is the rectangle area of the stock sheet used once the reusable residual has

been removed by either a complete horizontal or vertical guillotine cut, depending on

which gives the largest reusable rectangle piece. This measure of utilization is helpful in
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differentiating the quality of competing methods when they produce solutions with the

same number of bins. The fractional number of bins is calculated as (N − 1) plus the

proportion of the final bin used once the reusable residual is removed.

For table 2, the results refer to two starting acceptance thresholds θ and for each

there are six weighting schemes for Uw. The first three are constant where w = 0

will focus solely on the convex enclosure and w = 1 will focus solely on the rectangle

enclosure. The former will report lower waste for the same match, so more solutions

will be accepted under this measure than the rectangle enclosure measures. This gives

greater opportunity to find blocks but will result in longer run times (see table 4).

w = 0.5 gives equal weight to each. The second three schemes change the weights as the

search moves through the levels of the forest, starting with a focus on convex enclosure,

corresponding to small w, and shifting the focus to rectangle enclosure later in the

search, corresponding to large w. The dynamic weights are linear, K = 3, which has the

steepest sigmoid curve, and K = 5, which is less steep. These will accept fewer blocks

than w = 0, but theoretically the accepted blocks will be more suitable for the final bin

packing. This is born out in the results where the better results arise from the dynamic

weighting schemes in general. Further, the S shaped weighting schemes consistently out

perform the linear weighting scheme, where the less steep function found with K = 5

does better for a lower initial θ and the steepest function, K = 3, does better for the

higher θ.

Table 3 retains the results for θ = 0.94 and K = 5, and θ = 0.97 and K = 3, and

compares them with the two-stage approach where rectangles are clustered individually

(single) and in pairs using algorithm 1 (Alg 1) and phi-functions (Phi fn). Clearly, clus-

tering individually consistently produces inferior solutions than all the other approaches.

Clustering in pairs using phi-functions performs better than algorithm 1 for all the data

sets. The benefit of phi-functions reduces as the data sets grow in size with 4.8% im-

provement in utilization for small data sets and 1.6 % for the largest. Clustering in pairs

(using phi-functions) and the one-stage approach do similarly well, with one-stage doing

better on five instances and two-stage doing better on three. The one-stage strategy

packs the beginning stock-sheets very well but has a weak tail, where as two-stage will

perform more consistently throughout. A key drawback of the two-stage approach using

phi-functions is the computational time. The pairing process takes just over an hour for
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Table 2: Results of the one-step approach

θ = 0.94 θ = 0.97

w = 0 w = 0.5 w = 1 linear K = 3 K = 5 w = 0 w = 0.5 w = 1 linear K = 3 K = 5

N 9 8 8 8 8 8 8 8 8 8 8 9

J40 U 0.686 0.816 0.801 0.781 0.821 0.821 0.819 0.787 0.791 0.804 0.83 0.727

F 8.85 7.44 7.58 7.77 7.39 7.39 7.41 7.72 7.68 7.55 7.32 8.35

N 10 9 10 9 9 9 10 9 10 9 9 10

J50 U 0.797 0.873 0.776 0.902 0.913 0.894 0.776 0.893 0.782 0.885 0.904 0.808

F 9.58 8.75 9.85 8.47 8.37 8.55 9.85 8.56 9.78 8.63 8.45 9.45

N 12 11 11 11 11 11 11 11 12 12 11 11

J60 U 0.735 0.828 0.798 0.812 0.82 0.845 0.807 0.814 0.752 0.761 0.823 0.802

F 11.77 10.44 10.84 10.65 10.54 10.23 10.72 10.62 11.5 11.36 10.51 10.78

N 14 13 14 14 13 13 13 13 14 14 13 14

J70 U 0.743 0.778 0.737 0.737 0.778 0.785 0.782 0.784 0.721 0.729 0.791 0.746

F 13.47 12.86 13.58 13.58 12.87 12.75 12.8 12.76 13.88 13.74 12.65 13.41

N 11 10 10 10 10 10 10 10 10 11 10 11

H80 U 0.785 0.863 0.843 0.846 0.835 0.881 0.839 0.865 0.853 0.807 0.863 0.799

F 10.38 9.45 9.67 9.63 9.76 9.25 9.71 9.42 9.56 10.1 9.45 10.2

N 18 17 18 17 17 17 17 17 17 17 17 18

H100 U 0.768 0.805 0.765 0.818 0.814 0.821 0.801 0.809 0.806 0.801 0.819 0.777

F 17.44 16.64 17.52 16.38 16.45 16.31 16.72 16.56 16.62 16.72 16.35 17.24

N 18 17 17 17 17 17 18 17 19 17 17 18

H120 U 0.777 0.834 0.82 0.827 0.834 0.844 0.79 0.834 0.752 0.791 0.827 0.799

F 17.65 16.44 16.73 16.58 16.44 16.25 17.36 16.44 18.24 17.33 16.58 17.17

N 24 23 24 23 23 23 23 23 23 23 23 23

H149 U 0.822 0.843 0.819 0.847 0.86 0.86 0.855 0.845 0.85 0.851 0.857 0.842

F 23.36 22.77 23.46 22.68 22.33 22.33 22.47 22.72 22.6 22.58 22.41 22.8
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the smallest data set (40 pieces) and over eighteen hours for the largest (149 pieces),

although the packing algorithm of Charalambous and Fleszar [6] takes only one or two

seconds for all data sets. Pairing using algorithm 1 also has negligible computational

times (less than a second for all data sets). The computational times for the one-stage

approach are in table 4. The weighting scheme that emphasizes convex hull will accept

more matches and lead to more branches, and as a result take longer to run. Also a

lower initial θ will accept more matches. A lower θ will provide more opportunity to find

better solutions, but the benefit of this is not clear cut in these results. Clearly there

are many parameters that can be varied in the one-stage approach, in particular the

acceptance thresholds at various points in the algorithm which control the relationship

between run time and scope of the search. For θ = 0.94, the number of nodes is just

over 10000 for the largest data set and the average is approximately 5000. Increasing θ

to 0.97 reduces the average to around 1000.

7. Conclusions

The paper addresses the irregular shape guillotine bin packing problem, which is

found in the glass cutting industry, specifically for this paper, in the manufacture of

conservatories. To the authors’ best knowledge, this problem has not been addressed

in the literature before. We propose a forest tree search algorithm to solve this prob-

lem approximately, which is novel in the literature. First, we develop a procedure to

find the best match of any two given convex shapes, which is evaluated using a newly

derived function that includes two measures: how tight the packing is and how well

it approximates to the rectangular stock sheet. The emphasis between these measures

is dynamic through the search. Secondly, we construct search forest by selecting only

those blocks with the utilization ratio function larger than a given value. Since this is a

new problem in the literature, we can not benchmark our results against previous work.

Instead, we implement a second approach, called two-stage. This clusters all possible

individuals and pairs into an enclosing rectangle, greedily selects a subset of rectangle

enclosures so that all pieces are represented once, then generates the bin packing layout

using a recently published guillotine cutting heuristic. The forest search and two-stage,

using phi-functions for pairing, perform similarly well, but the forest search is signifi-

cantly faster. A fast two-stage approach uses an alternative heuristic for pairing and
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Table 3: Results of one-step and two-step approach

Two-step One-step

Alg 1 Phi fn θ = 0.94 θ = 0.97

Single Pair Pair K = 5 K = 3

N 11 9 8 8 8

J40 U 0.593 0.718 0.787 0.821 0.83

F 10.26 8.47 7.72 7.39 7.32

N 13 11 10 9 9

J50 U 0.608 0.706 0.792 0.894 0.904

F 12.57 10.84 9.66 8.55 8.45

N 14 12 11 11 11

J60 U 0.628 0.746 0.794 0.845 0.823

F 13.78 11.59 10.89 10.23 10.51

N 15 13 12 13 13

J70 U 0.676 0.777 0.825 0.785 0.791

F 14.59 12.70 11.95 12.75 12.65

N 12 10 10 10 10

H80 U 0.687 0.823 0.8476 0.881 0.863

F 11.88 9.92 9.629 9.25 9.45

N 20 17 17 17 17

H100 U 0.679 0.803 0.819 0.821 0.819

F 19.76 16.70 16.39 16.31 16.35

N 21 17 17 17 17

H120 U 0.673 0.819 0.851 0.844 0.827

F 20.42 16.76 16.14 16.25 16.58

N 28 23 23 23 23

H149 U 0.704 0.847 0.863 0.86 0.857

F 27.33 22.69 22.29 22.33 22.41
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Table 4: Run times (sec) for one-step approach

θ = 0.94 θ = 0.97

w = 0 w = 0.5 w = 1 linear K = 3 K = 5 w = 0 w = 0.5 w = 1 linear K = 3 K = 5

J40 124 83 40 71 47 110 88 66 35 64 47 170

J50 171 110 80 95 51 130 119 87 78 82 74 176

J60 189 134 82 114 73 170 125 97 69 88 60 187

J70 214 152 119 148 103 200 176 132 91 111 98 245

H80 587 318 283 341 252 405 433 216 185 187 187 427

H100 818 512 460 446 394 700 585 339 275 281 201 549

H120 845 607 540 593 418 714 591 486 458 324 247 668

H149 1120 677 620 614 647 947 676 496 484 383 389 723

produces results with between 1% and 5% reduction in stock sheet utilization. We have

also introduced new benchmark data sets for this problem.

There is significant scope for more research on this problem, given its relevance and

lack of attention by researchers. Two suggestions for investigation that build on this

research are: to improve the quality of packing at the tail end of the pattern construction

for the one-stage approach, and investigating a larger clusters for the two-stage approach.
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