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Research addressing two-dimensional irregular shape packing has largely focused on the strip pack-

ing variant of the problem. However, it can be argued that this is a simplification. Materials from

which pieces are required to be cut will ultimately have a fixed length either due to the physical

dimensions of the material or through constraints on the cutting machinery. Hence, in order to

cut all the pieces, multiple sheets may be required. From this scenario arises the two-dimensional

irregular shape cutting stock problem. In this paper, we will present implementations of cutting

stock approaches adapted to handle irregular shapes, including two approaches based on column

generation and a sequential heuristic procedure. In many applications, set up costs can be reduced

if the same pattern layout is cut from multiple sheets; hence there is a trade-off between material

waste and number of patterns. Therefore, we describe the formulation and implementation of an

adaptation of the column generation method to control the number of different patterns. Column

generation is a common method for the cutting stock problem, however when the pieces are ir-

regular the sub problem cannot be solved optimally. Hence we implement column generation and

solve the sub problem using the beam search heuristic. Further, we introduce a version of column

generation for instances where the number of rows is less than the number of columns.

Keywords: Column Generation; cutting and packing; heuristic; irregular.

1. Introduction

In this paper, we consider a variant of the two-dimensional (2D) cutting stock problem where the

pieces to be cut are of irregular shape. Customer orders are composed of a variety of different shapes

in various quantities. In our implementation, we only consider one stock sheet size, however, some

applications may have multiple stock sheet sizes or use off-cuts of partially cut sheets, provided

the off-cut is sufficiently large. The manufacturer needs to design a number of cutting patterns to

satisfy customer demand while keeping the operating cost at an acceptable level. Operating costs
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include minimising the number of standard rectangular stock sheets in the solution and number of

setups, where a setup is a change of pattern. Hence, the problem is a pattern restricted 2D irregular

cutting stock problem. According to the typology proposed by Wäscher et al. (2007), this problem

is a Single Stock Size Cutting Stock Problem (SSSCSP) with the refinement of irregular shapes.

Very few papers solve this problem and those that do reduce the problem to a one-dimensional

cutting stock problem (1DCSP) (Degraeve and Vandebroek (1998); Martens (2004); Rose and

Shier (2007)). They first construct patterns of subsets of irregular pieces (stencils) that span

the width of the stock sheet. The stencils form input pieces for the 1DCSP. Hence, this paper is

distinctive in directly tackling the layout of irregular shapes across multiple stock sheets.

Theoretically, 1D and 2D cutting stock problems are NP-hard as shown in Garey and Johnson

(1979). Thus, it becomes impractical to solve reasonable size problem to optimality. Researchers

frequently adopt approximate procedures such as linear programming based heuristic methods, be-

spoke heuristic procedure, and metaheuristics. For a detailed survey see Dyckhoff (1990), Haessler

and Sweeney (1991), Dowsland and Dowsland (1992) and Lodi et al. (2002). Given the extensive

literature on cutting stock problems and the specialist nature of the problem we are proposing

to tackle, our discussion of the literature will focus on problems with multiple-objectives and/or

multiple-constraints.

Although linear programming (LP) may not be sufficiently flexible to consistently solve problems

with multiple-objectives or with various additional restrictions that arise in practice, there are still

many papers solving this kind of problem with LP-based approaches for one-dimensional problems

(Belov and Scheithauer (2007); Diegel et al. (1996); Dyckhoff (1981); Gilmore and Gomory (1961,

1963); Haessler (1980); Valério and Rodrigues (1995); Vanderbeck (2000); Wäscher (1990); Zak

(2002)). Gilmore and Gomory (1961, 1963) worked on the 1DCSP and provided the foundation

for LP approaches for cutting stock problems. Haessler (1980) improved on their work by placing

restrictions on the number of times a given ordered item can appear in a pattern. This resulted

in LP solutions with the same trim loss values and fewer patterns. Dyckhoff (1981) developed

another LP model that improved on Gilmore and Gomory (1961, 1963) approach when there were

many items to be cut. Diegel et al. (1996) examined setup minimising conditions in the trim

loss problem in the paper industry. They formulate an LP with constraints to guarantee the least

setups. Valério and Rodrigues (1995) considered minimising setups and trim loss in the metal

cutting industry. The cutting process is multi-stage and produces intermediate rolls, which must

also be minimised. The multi-stage cutting stock problem also appears in the paper industry. Zak

(2002) followed a row and column generation approach (CG) where the rows are the intermediate
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roll sizes and the columns the cutting pattern. Vanderbeck (2000) considered a variant of 1DCSP

called the pattern minimisation problem (PMP) that minimizes the number of different cutting

patterns while also placing an upper bound on the number of stock sheets available. Their IP

formulation involves a large number of binary variables and associated columns. They propose

an exact branch-and-price algorithm using a column generation approach, where the sub-problem

is a non-linear IP that can be decomposed into a number of bounded knapsack problems. Belov

and Scheithauer (2007) considered a different formulation for PMP. They use a smaller number

of variables than that of Vanderbeck’s formulation, and developed another exact branch-and-price

algorithm.

Papers that address multi-objective, multi-constrained one-dimensional cutting stock problem

(1DCSP) using problem specific mathematical models and solve them using a heuristic include

(Antoni et al. (1999); Burkard and Zelle (2003); Chu and Antonio (1999); Coverdale and

Wharton (1976); Haessler (1971, 1975); Haessler and Sweeney (1991); Kasimbeyli et al. (2011);

McDiarmid (1999); Non̊as and Thorstenson (2000, 2008); Sinuany-Stern and Weiner (1994); Song

et al. (2006)). The Sequential Heuristic Procedure (SHP) is the most commonly applied. Haessler

(1971) described the first documented SHP capable of finding better solutions than those found

manually by schedulers. In Haessler (1975), the cutting stock problem is formulated to include

a fixed cost for changing cutting pattern in addition to trim loss. The SHP sets goals for certain

characteristics of the pattern in order for it to enter the solution. When no patterns satisfy these

goals, some of the goals are relaxed. Coverdale and Wharton (1976) also extended the work of

Haessler (1971) to consider factors such as set up time for the machine operators. Pure SHP has

been shown to increase the trim loss because of so-called ending conditions (Haessler and Sweeney

(1991)). Kasimbeyli et al. (2011) set up a two-objective mathematical model without cutting

patterns for one-dimensional assortment problems and proposed a special heuristic algorithm to

tackle the presented model.

A number of papers combine LP-based algorithms and heuristic techniques to obtain high

quality solutions to these types of cutting and packing problems (Foerster and Wäscher (2000);

Furini et al. (2012); Goulimis (1990); Gradǐsar et al. (1999); Gramani et al. (2009); Hendry

et al. (1996); Richard (1996); Sweeney and Haessler (1990); Umetani et al. (2006)). Sweeney

and Haessler (1990) combined LP within a two stage sequential heuristic to develop a procedure

for solving a 1DCSP with quality variations across the width of the stock rolls. Goulimis (1990)

used an SHP algorithm to generate a starting solution for the LP procedure to solve a 1DCSP in a

board mill. Hendry et al. (1996) presented a two-stage solution procedure for a combined cutting-
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stock and lot-sizing problem from the copper industry. Richard (1996) reported on a randomized

approach to the 1DCSP. Gradǐsar et al. (1999) examined a hybrid approach for optimising one-

dimensional cutting stock. Foerster and Wäscher (2000) proposed a pattern combination heuristic

algorithm called KOMBI, which starts from a solution obtained by LP, and combines patterns

while keeping the number of stock rolls the same. Umetani et al. (2006) considered a variant

of 1DCSP, called the pattern restricted problem (PRP), where the objective is to minimize the

number of stock rolls while constraining the number of different cutting patterns within a user

defined bound. They developed local search algorithms. As the neighbourhood size plays a crucial

role in determining the efficiency of local search, they employ linear programming techniques to

restrict the number of solutions in the neighbourhood. Gramani et al. (2009) set up a mathematical

model for a coupled lot-sizing and cutting stock problem and proposed a heuristic method based

on Lagrangian relaxation. Furini et al. (2012) tackled a two-dimensional rectangular guillotine

cutting problem with stock of different sizes with a column generation based heuristic algorithm.

The literature discussed above focuses on multi-objective or multi-constrained 1DSCP. Our

research has found very few papers solving the two-dimensional case. One exception is the paper

of Imahori et al. (2005) who used local search to solve the pattern restricted 2DCSP, in which

the pieces to be cut are all rectangles. In this research, we are interested in the irregular shape

cutting stock problem and, to our knowledge, there are only three papers found dealing with this

variant, all arising from the apparel industry (Degraeve and Vandebroek (1998); Martens (2004);

Rose and Shier (2007)). All three treated the problem as a 1DCSP by constructing the patterns,

called a stencil, for each size of garment separately. Degraeve and Vandebroek (1998) solved the

transformed problem with mixed integer programming and Martens (2004) used genetic algorithms.

The definition of the problem by Rose and Shier (2007) included a number of assumptions and

practical considerations. As a result, an exact enumerative approach can identify all optimal

solutions to the defined problem. In each case, the authors of these methods admit that the layout

obtained by constructing the stencils for each size of garment separately is not very efficient.

In this paper, we consider a generic irregular cutting stock problem, where most of the ordered

items have irregular shape. In addition to minimising trim loss, we want to use as few patterns as

possible in order to reduce setup costs. As a result, we set an upper limit, n, on the number of

patterns in the solution, where n is smaller than the number of item types. To solve this problem,

we design and evaluate three solution approaches; Column Generation (CG), an Adapted Column

Generation (ACG) algorithm and a Sequential Heuristic Procedure (SHP). Both our CG and ACG

algorithms follow the traditional CG approach in decomposing the master problem into a series of

4



sub-problems and improving the master problem by solving the corresponding sub-problems. The

CG approach applies the simplex method to basic feasible solution matrices with the same number

of rows and columns, where the number of rows equals the number of setups and the number of

columns equals the number of piece types. When the problem definition restricts the number of

setups to be less than or equal to a given number n, which is far smaller than the number of piece

types, the basic feasible solution matrices will have more rows than columns. Hence, we design

our ACG approach, which is an adaption of the simplex method in CG scheme, to deal with such

matrices. The SHP is an adaptation of Haessler (1975) work. The procedure generates patterns

that satisfy certain characteristics and uses them sequentially until all the requirements are met.

The contribution of this paper includes directly solving the irregular cutting stock problem,

without pre-constructing stencils, applying Beam Search (BS) algorithm (Bennell and Song (2010))

within CG, and developing the CG methodology to deal with matrices that have more rows than

columns. Each approach implemented includes methodology innovations to either make the ap-

proach capable of handing the irregular shape packing problem directly, or deal with the additional

set up constraint. Hence the paper includes contributions to methodology and to the application

of combinatorial optimisation in cutting and packing, as well as introducing benchmark instances.

The paper is organized as follows; in the next section, we give a mathematical description of

the problem. In section 3, we describe our implementation of column generation for the irregular

cutting stock problem, including the BS methodology for generating patterns. We describe the ACG

approach in section 4 and the SHP approach in section 5 and give the corresponding algorithm for

both. In section 6 we discuss computational experiments for some problem instances, which are

modified from the benchmark problems from ESICUP (www.fe.up.pt/esicup) to fit our problem

type.

2. Problem description

The problem considered can be formulated as follows: let bi, i = 1, 2, . . . ,m, be a finite number of

ordered items of type i, where m is the number of different items, and let there be a theoretically

infinite set of stock sheets of a given length L and width W . Let Π be a set containing all

feasible pattern layouts. Since each feasible pattern layout can be mapped into a feasible cutting

pattern column, we work with feasible cutting pattern columns only. Note, different layouts may

be mapped into the same column. Thus, we define A as a vector set containing all feasible cutting

pattern columns. The problem becomes: Given a set of feasible cutting pattern columns, aj =

(a1j , a2j , . . . , amj)
T ∈ A ̸= ϕ, j = 1, 2, . . . , where non-negative integer aij is the number of times
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ordered item i is cut in pattern aj , find xj that minimises the number of stock sheets required to

fulfil all ordered items, where xj is the number of times the solution uses each feasible pattern. The

number of patterns in the solution must be less than or equal to n, hence, only n variables may be

non-zero and positive. The mathematical description of this problem is as follows,

P: Minimize
∑
j∈J

xj

subject to
∑
j∈J

aijxj ≥ bi i ∈ I (1)∑
j∈J

yj ≤ n (2)

xj ≤ M · yj j ∈ J (3)

xj ≥ 0 integer, j ∈ J (4)

yj ∈ {0, 1} j ∈ J (5)

Where I = {1, 2, . . . ,m} is the index set of ordered irregular shape items, J = {1, 2, . . . } is the

index set of all feasible cutting pattern columns, non-negative M is an unlimited big number, and

yj is a binary variable that takes value 1 if pattern aj is used and zero otherwise. Constraint (1)

requires that the customers’ demands be met. Constraint (2) ensures that only n patterns are used.

Constraint (3) provides the proper definition of variable yj .

Set A can be huge and this problem is NP-hard, since its simplification is a generalization of the

Bin Packing Problem (BPP), which is know to be strongly NP-hard Garey and Johnson (1979).

3. Column Generation (CG) variant for the irregular shape 2DCSP

In this section, we describe the column generation scheme for the irregular shape cutting stock

problem. Since the sub-problem cannot be solved using the traditional optimization techniques

like dynamic programming or branch and bound, we propose a beam search heuristic to generate

feasible layouts based on Bennell and Song (2010). This section includes details of the algorithmic

procedure for this step.

3.1 Column generation scheme

In order to apply column generation, we need to convert problem P (see Section 2) into a linear

programming formulation by relaxing the integer requirement for xj , j ∈ J and simplify the problem

P by setting n → ∞. The LP is as follows.
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LP: Minimize
∑
j∈J

xj

subject to
∑
j∈J

aijxj ≥ bi i ∈ I (6)

xj ≥ 0 j ∈ J (7)

This LP problem is the master problem (MP) (Lübbecke and Desrosiers (2005)). To solve this

problem using the simplex method, we look for a non-basic variable to price out and enter the

basis. That is, given the dual multiplier vector π = (π1, π2, . . . , πm), we wish to find argmin{cj :=

cj − π · aj|j ∈ J}. In our LP problem, cj = 1, for all j ∈ J . |J | may be too large to make a

comprehensive search in reasonable computational time, hence it is common to work with a small

subset of columns, called the restricted master problem (RMP) (Lübbecke and Desrosiers (2005)).

The size of the small subset of columns in RMP should equal the number of elements in a feasible

cutting pattern column aj, j ∈ J , which is m. Thus, let J = {1, 2, . . .m} be the index set of

the small subset of columns in RMP, x and a be primal and dual optimal solutions of the RMP,

respectively. Since the cost coefficient cj = 1 for all aj , the reduced cost coefficient c of at least

one feasible cutting pattern a = (a1, a2, . . . , am)T ∈ A must satisfy inequality: c = 1 − π · a < 0,

otherwise x optimally solves the LP as well, where ai(i ∈ I) is the decision variable: the number of

times item i is selected in the feasible cutting pattern. Thus, to tell if x optimally solves the LP,

the following equivalent knapsack problem (KP) with geometric constraints needs to be solved to

optimality:

KP: Maximize π · a

subject to a = (a1, a2, . . . , am)T is a feasible cutting pattern (8)

ai ≥ 0 integer, i ∈ I (9)

Here the bound on the maximum number of times a piece may appear in the solution is un-

constrained. If the solution of the KP is larger than 1, then the LP is improved by replacing

the associated column to the RMP and updating the feasible basis. We continue to solve sub-

problems iteratively until the solution of the knapsack problem is less than or equal to 1. That is

c∗ = min{1− π · a|a∈ A} ≥ 0 , then we have the optimal solution x for the LP.

In our CG approach, the sub-problem KP is to generate feasible 2D irregular pattern layouts,

which can only be done reasonably using a heuristic. As a result, the KP cannot be guaranteed
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to be solved to optimality and the solution found from the above procedure is unlikely to be the

optimal solution for the LP. We use x̃ to represent the best solution found for the LP.

Clearly, an important component of our CG based heuristic approach is an efficient algorithm

for solving the KP sub-problem. We describe a beam search algorithm based on Bennell and Song

(2010) to find near optimal solution for this problem in the next section. Note that, the elements

x1, x2, · · · , xm in solution vector x̃ found by our CG are not generally integral. The quality of the

integer solution will depend on the algorithm for solving the sub-problem, the rounding procedure,

and the structure of the demands. The method we adopt is as follows; round down all non-integer

xj , j ∈ J leaving a residual problem of unsatisfied demand defined by ri = bi −
∑
j∈J

aij · ⌊xj⌋, i ∈ I.

Solve the residual problem greedily using SHP, where the solution is described by a set of cutting

patterns ar = {ar1 , ar2 , . . . } and the frequency of the patterns xr = {xr1 , xr2 , . . . }. We describe

the SHP in section 5.

3.2 Solving the sub-problem using the Beam Search (BS) heuristic

Bennell and Song (2010) demonstrated that beam search is an effective approach for solving the

irregular strip packing problem and has the advantage of generating many alternative solutions in

parallel. First, we introduce the main steps of the beam search algorithm for irregular packing and

then describe our implementation for the KP sub-problem.

The heuristic takes the form of constructing a pattern layout piece by piece where the selection

of the next piece is dynamic. BS allows us to explore a number of alternative dynamically generated

packing orders. It is analogous to branch and bound where the tree is searched breadth first and

aggressively pruned at each level. There is no backtracking and the user defines the maximum

number of branches. The approach uses local or global evaluation functions to select the most

promising nodes to branch from in the next level. A global evaluation will be accurate but may be

computationally expensive, whereas a local (approximate) evaluation can be fast but carries the

risk of discarding branches that lead to good solutions.

In our BS implementation, the search tree represents the packing order of the pieces on the

stock sheet. Each node in the search tree corresponds to a partial solution and a branch from a

node represents the decision to add a piece to generate the next partial solution. The basic idea of

BS implementation is given as follows:

Step 1: Select a piece as the as the initial partial solution forming the root node of the search

tree.
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Figure 1: (a) each of the beam search evaluation steps at each level, (b) illustration of an expanded
beam search tree.

Step 2: At each level,

Step 2.1: A local evaluation function evaluates all child nodes; which provides a crude

approximation of solution quality by measuring the incremental cost of adding a piece

to the partial solution. Using this evaluation, prune the tree by retaining the best α

nodes, where α is the filter width.

Step 2.2: Apply the global evaluation function to these nodes from Step 2.1, which evaluates

a complete packing order, and retain the best β nodes for branching, where β is the

beam width.

Step 3: Repeat step 2 until the packing order is complete.

The nodes at the lowest level of the tree represent a complete pattern. Figure 1a illustrates

the pruning process, where the local evaluation reduces the four child nodes to three (α = 3), and

the global evaluation reduces the three retained nodes to two (β = 2). Figure 1b illustrates an

expanded tree.

The local evaluation function must perform two sets of evaluations. It must determine the best

position for each piece type in the partial solution (placement evaluation), which become the child
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Figure 2: Illustration of variables used to formulate criteria for construction heuristic

nodes, and determine the best partial solutions (next piece evaluation), which are the child nodes

that go forward for global evaluation. We use the improved TOPOS approach of Bennell and Song

(2010), which builds on the work of Oliveira et al. (2000). In both cases, the first piece has an

orientation but no fixed position; this is the first partial solution. The pattern layout grows one

piece at a time. In order to add a piece, first identify the best position for each piece type in all

orientations. There exists a finite number of positions that will optimise the placement evaluation.

Given this set of alternative partial solutions, the next piece evaluation identifies the nodes that go

on to global evaluation. Note that the placement evaluation and the next piece evaluation can be

identical or different. In this research, they are different. See Bennell and Song (2010) for a full

analysis of evaluation approaches.

Bennell and Song (2010) identify three attributes of a partial solution that are useful in mea-

suring its quality. We adopt all three for the placement evaluation. Figure 2 illustrates these

attributes. These are: rectangular enclosure, R = W×H
x×y ; packing length, L = W

x ; and overlap,

O = overlap
x×y , where x and y are the maximum width and height respectively of the piece to be

added , W and H are the width and height of the enclosing rectangle of the partial solution after

the pieces is added, and overlap is the area of overlap between the enclosing rectangles of the piece

added and the pieces in the partial solution. Since we are using BS to solve the KP in this case,

the dual price of the piece is more important than the physical properties of the partial solution

when it comes to selecting which piece to place next. Hence, we define a new attribute Pi = π
x×y ,

where π is the dual price of the next piece. We use Pi, R and O for the next piece evaluation,

replacing L since this is less important for multi-stock sheet problems.

The attributes (R,L,O) for placement evaluation and (Pi,R,O) for next piece evaluation are
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aggregated using a priority strategy, which is a lexicographic preference. For example, if we used

Pi, R and O, in that priority order, then Pi is the primary objective, R is the secondary objective

considered when there are multiple solutions with the same maximum Pi, and O is considered

when there are ties in both Pi and R.

We find the global evaluation by continuing to pack greedily all remaining pieces after the child

node under consideration. At each level, the greedy decision is to select the node with the best

local evaluation function. The value of the global evaluation is the sum of the dual price of the

pieces in the order they are packed.

Our beam search implementation can be summarised by the below procedure, in which we

construct β parallel patterns, as(s = 1, 2, . . . , β), piece by piece. Since the stock sheet has fixed

dimensions, the numbers of pieces in each complete solution vary. Hence, let Ts(s = 1, 2, . . . , β)

be the total number of pieces packed in a feasible pattern as. Let m be the total number of piece

types including alternative orientations. Let PSt be a partial solution containing t nested pieces,

and let St and mt be the set of remaining pieces and piece types respectively to be nested at

stage t, corresponding to a given PSt. Let GLOBAL(PSt+1, t + 1, Ts) be the global evaluation

function that returns the sum of the dual price of the feasible pattern obtained using the improved

TOPOS strategy, where the piece order of the first t+ 1 pieces in the partial solution PSt+1 have

been determined by the search tree and only the following (Ts − t− 1) unpacked pieces need to be

ordered using TOPOS. Let LOCAL(PSt+1, t+1) be the local evaluation function that returns the

value determined by TOPOS strategy for the next piece (t+ 1).

Step 0: Generation of PS1. Let t = 1. If m < β, then use all m piece types (including rotations)

as root nodes, go to step 1. Otherwise, sort the piece types in descending order of dual price

and use the first β piece types in the ordered list as root nodes and initial beam nodes. For

each beam initialise St and mt, go to step 3.

Step 1: If the total number of nodes < β, then for all PSt move to next level by adding each piece

type i (for all i ∈ mt ) to the corresponding PSt, t = t + 1, repeat step 1. Otherwise, go to

Step 2.

Step 2: Select initial beam nodes. Compute the global evaluation function values for all the nodes

with GLOBAL(PSt+1, t+ 1, Ts) and select the best β nodes as initial beam nodes.

Step 3: Child node generation. For all PSt move to next level by adding piece type i (for all

i ∈ mt) to the corresponding PSt,
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Step 4: Filtering. Compute LOCAL(PSt+1, t+1) for each child node. For each parent node select

the best α child nodes and prune all remaining nodes.

Step 5: Select beam nodes. Compute GLOBAL(PSt+1, t+ 1, Ts) for selected child nodes. Select

the best β nodes out of all child nodes as beam nodes.

Step 6: Update sets. For each selected beam node, set PSt+1 by adding the beam node (piece j)

to PSt. Remove piece j from St, update mt, t = t+ 1 and Ts.

Step 7: Termination test. If t < min{Ts|s = 1, 2, . . . , β}, go to step 3.

Step 8: Finish all the β solutions using TOPOS strategy. Among the β solutions, select the one

with maximum sum of the dual price of the pieces packed.

The values of Ts are dependant on the previous packing decisions so can only be estimated by

each global evaluation; hence, we update Ts in step 6. Note that we terminate the BS Tree at the

minimum Ts. The other β − 1 layouts are completed greedily using the TOPOS strategy. Clearly,

continuing the search to the lowest level for all β solutions could yield better solutions. However,

our initial experiments indicate that the improvement does not warrant the significant increase in

computational effort.

4. Adapted Column Generation to control the number of patterns

In general the application of CG to the CSP does not restrict the maximum number of setups

or patterns, and can apply the simplex method to basic feasible solution matrices that have the

same number of rows and columns. In our application, the number of patterns is restricted to

n < m, requiring a basic feasible solution that has fewer non-zero decision variables than rows.

In order to force the restricted number of non-zero decision variables, we reduce the number of

columns in the basic feasible solution matrix and present an adaption of the simplex method to

deal with such matrices, called Adapted Column Generation (ACG). The ACG algorithm works

with basic feasible solution matrices Am×t = {a1,a2, . . . ,at}, which have more rows than columns

(m > n ≥ t ≥ nLB), where nLB is a lower bound on the number of cutting patterns required (see

section 4.2 for its derivation), and a1, a2, . . . , at are a set of feasible patterns from J . This problem

is called the restricted cutting stock problem.

Clearly, the solution to this restricted cutting stock problem is also a feasible solution for the

original problem P. The solution is iteratively improved by substituting or adding, provided t < n,
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the new cutting pattern into the initial solution matrix until no further improvement can be found.

In this section, we discuss the following implementation issues: how to generate an initial solution,

how to construct the new cutting pattern to improve the original solution, and how to adapt the

column generation method to solve the problem directly.

4.1 Outline of the ACG algorithm

Adapted column generation adopts the principles of classic column generation (CG) while adapting

certain aspects of the approach where the problem does not meet the necessary conditions. Specif-

ically, our problem formulation does not allow the construction of basic feasible solution that has

the same number of non-zero decision variables as rows. Since the number of setups and therefore

patterns are restricted to be less than or equal to n, which is much smaller than the number of piece

types, m. As a result, we are dealing with basic feasible solution matrices that have more rows

than columns. Like classic CG, we decompose the master problem into a series of sub-problems

and improve the master problem by solving the corresponding sub-problems.

Classic CG defines the dual price π as π = cB · B−1, where B is the basic solution matrix,

which is a square matrix with the rank m. Given that a non-square matrix does not have an

inverse, we adopt the idea of the pseudoinverse or generalized inverse matrix, A+, calculated by

A+ = (A′ ·A)−1 ·A′ (Penrose (1955)). Hence an approximation of the dual price is π̂ = cA ·A+. The

generalised inverse has the property that the solution vector x = A+ · b minimizes the Euclidean

length of the vector e, where e = A ·x−b, in which A ·x gives the calculated numbers of times that

the items are cutted out and vector b gives the actual customers’ demands. Since a true inverse

B−1 would give |e| = 0, but is unobtainable, then the minimum |e| is desirable.

From the above analysis and analogous to CG algorithm, max
∑
i∈I

(π̂i) · ai is one objective of the

sub-problem when using ACG algorithm, where ai (i ∈ I) is the number of times piece i is packed

in the new feasible pattern layout.

Since |e| ̸= 0 in ACG algorithm, we introduce the following measure of deviation; d = e
|e| =

(d1, d2, . . . , dm), where each element di (i ∈ I) gives us the weighted difference between the calcu-

lated number of item i to cut out and the actual customer’s demand. If more items are cut out than

necessary, more wastage will be incurred. Thus we also wish to minimize the sum of the deviation

of the pieces in the new feasible pattern layout. As a result, we derive a weighted objective function

for the sub-problem: max
∑
i∈I

(π̂i − di) · ai, where ai(i ∈ I) is the number of times piece i is packed

in the new feasible pattern layout.

Since we allow fewer patterns than piece types, it is possible to generate cutting patterns
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Figure 3: Simple example to illustrate that some patterns lead to infeasible solutions

that result in infeasible solutions. The simple example in figure 3 illustrates this. There are two

rectangular piece types; the first has both width and height one, the second has width two and

height one. The demand is five and ten respectively, the stock sheet has width and height two, and

the maximum number of patterns is one. It is clear that the optimal solution uses five copies of a

pattern that contains one of piece type one and two of piece type two. Patterns that contain two of

piece type one or more than two of piece type two would result in unsatisfied demand or the need

for another pattern, both of which are infeasible.

As a result, we need to set a good upper bound on the number of times a piece can appear in a

cutting pattern and add the constraint, ai ≤ UBi(i ∈ I). Any bound must ensure that every piece

type can appear at least once across all the permitted patterns. A good upper bound should take

account of the relative demand of the pieces to allow the higher demand pieces to appear more

frequently. The following procedure for generating the upper bound UBi crudely evaluates whether

the pieces will fit within the permitted patterns, and if not, considers patterns will be cut multiple

times:

Initialization: Let c = 1 and si denote the area of piece type i ∈ I.

Step 1: Calculate UBi = ⌈ bic ⌉(i ∈ I) and S =
m∑
i=0

si · UBi.

Step 2: If ⌈ S
L×W ⌉ ≤ nLB, return UBi(i ∈ I), else, set c = c+ 1, Return to step 1.

4.2 Construction of an initial solution

It is straightforward to construct the initial basic solution matrix for the LP problem described in

section 3.1. This problem has no restriction on the number of patterns nor on the number of times
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a piece appears on the cutting pattern. Hence, there are in total m cutting patterns, where each

cutting pattern contains only one type of piece.

To generate an initial solution to the pattern restricted CSP, we start with the minimum number

of cutting patterns, nLB required to meet demand. A simple lower bound would be nLB = ⌈
m∑
i=1

si/L·

W ⌉. This is not a tight lower bound, since it is rare for the shapes to fit together with close to

zero waste. Instead, we pack one of each type of piece using the following procedure to minimise

the number of the stock sheets.

Initialization: Set nmin = 1 as the minimum number of patterns used. Let bi = 1 be the demand

of the piece i ∈ I and A = ϕ be the set of cutting patterns.

Step 1: Construct a feasible cutting pattern a = {a1, a2, . . . , am}, where ai equals 1 if piece i has

been packed, 0 otherwise, using the beam search algorithm described in Section 3.2, where the

global evaluation function returns the total area of the pieces packed and the local evaluation

uses Priority(R, L, O) for both placement evaluation and next piece evaluation, which was

called one-step strategy in Bennell and Song (2010).

Step 2: Reduce the demand bi = bi−ai and add the feasible cutting pattern a to A, set A = A+a.

If
m∑
i=1

bi = 0, go to step 3, else, set nmin = nmin + 1, go to step 1.

Step 3: Set nLB = nmin. Stop.

The above procedure gives a tighter lower bound nLB on the number of patterns and provides

the initial solution matrix Am×nLB for the ACG procedure.

4.3 Solve the knapsack problem

The following knapsack problem arises from the discussion in Section 4.1:

KP+: Maximize
∑
i∈I

(π̂i − di) · ai

subject to a = (a1, a2, . . . , am)T is a feasible cutting pattern (10)

UBi ≥ ai ≥ 0 integer, i ∈ I (11)

We solve this KP+ with the beam search algorithm (see section 3.2). However, since we

only have the approximate dual, the local evaluation uses an alternative criterion. Let π̂ be the

approximate dual price and d be the deviation of the next piece to pack, as defined in section 4.1,
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then the local evaluation function is priority( π̂i−di
x·y , R, O). The global evaluation function is the

same as the KP+ objective function; sum of the approximate dual price minus sum of the deviation

of the pieces packed. The upper bound on the number of pieces packed in constraint (11) has been

given in Section 4.1.

4.4 The complete ACG procedure

Initialization: Generate initial solution matrix that has more rows than columns Am×nt in a greedy

way (as described in section 4.2), where nt denotes the temporary number of patterns and

nt < n. Initially, we set nt = nLB.

Step 1: Calculate π̂ = cnt · A+
m×nt

and d = e
|e| , where e = b − A · x. Solve the KP+ with beam

search algorithm (as described in section 3.2 and 4.3), where the beam width is set to β, to

obtain β feasible cutting pattern ak, (k = 1, 2, . . . , β).

Step 2: Substitute each ak, (k = 1, 2, . . . , β) with each column in aj , (j = 1, 2, . . . , nt) and solve

the following integer programming problem P+

P+: Minimize
nt∑
j=1

xj

subject to
nt∑
j=1

aijxj ≥ bi i ∈ I (12)

xj ≥ 0 integer, j = 1, 2, . . . , nt (13)

Determine the best substitution ak∗ and ar∗ , which gives minimum
nt∑
j=1

xj . If P
+ is improved,

go to Step 3.

Else, if nt < n, add abest to Am×nt , where abest is chosen from the β newly generated feasible

solutions using global evaluation function, set nt = nt + 1 and go to Step 1. Else STOP.

Step 3: Substitute ar∗ with ak∗ , giving a new matrix that have more rows than columns Am×nt ,

go to Step 1.

In step 2, we use XPRESS to solve the integer programming problem P+ and evaluate the

improvement the substitution makes.
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5. Adaptation of Sequential Heuristic Procedure (SHP) to solve
irregular shape 2DCSP

The sequential heuristic procedure (SHP) generates cutting patterns and uses them sequentially

until the solution meets all the problem requirements. Haessler (1971) first described a SHP

algorithm. He pointed out that the key to success with this type of procedure is to select intelligently

the patterns that are used early in the SHP. Ideally, the partial solution arising from the early

pattern selection should have low trim loss and leave a set of requirements for future patterns that

will combine well without excessive trim loss. Our SHP is based on the procedure described by

Haessler and Sweeney (1991), as follows:

Initialization: Let nt = 1 be the number of patterns used and xj = 0 (j = 1, 2, . . . , n) be the

frequency of use of pattern j. Thus the total stock sheets used is N =
n∑

j=1
xj . We have bi = bi

be the remaining demand of piece i ∈ I and A = ϕ be the cutting pattern set constructed.

Step 1: Construct feasible cutting pattern a = {a1, a2, . . . , am} with beam search algorithm

described in Section 3.2, where the global evaluation function returns the total area of the

pieces packed and the local evaluation uses Priority(R, L, O) for both placement evaluation

and next piece evaluation, which was called one-step strategy in Bennell and Song (2010).

Step 2: Let x be the number of times pattern a = {a1, a2, . . . , am} is used, set x = 0.

S1: Set x = x+ 1.

S2: If there exists piece i that satisfies bi − x · ai < 0, set x = x− 1, go to Step 3. Else, go to

S1.

Step 3: Reduce the demand bi = bi − x · ai for each piece i and add the feasible cutting pattern a

to A, set A = A+ a. If b = {b1, b2, . . . , bm} = 0, stop, else set xnt = x and nt = nt +1, go to

step 1.

In Step 1, we generate a new pattern and in Step 2 we determine how many times this pattern

will be used. (Note that although the beam search procedure in step 1 is deterministic, the demand

values are different for each call leading to alternative patterns).

In the same way as the ACG, we set an upper bound UBi on the number of times a piece can

appear in a pattern. As a result, the SHP can be used to control the number of patterns used,

however with no guarantee that a given number of patterns is attained. Also, a tradeoff between
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trim loss and number of patterns is hard to find because only one solution can be obtained using

SHP.

6. Experimental Results

We implement Column Generation (CG), Sequential Heuristic Procedure (SHP) and Adapted Col-

umn Generation (ACG) as described in section 4 and Section 5 for the irregular CSP, where their

sub problems are solved using a beam search algorithm. We use the Priority(R, L, O) to decide the

position of a piece in the pattern layout for all approaches. Given the candidate position for each

piece, the criterion to decide which piece to place next is different for different master problems.

In CG, we used Priority(Pi, R, O). In ACG, we used Priority( π̂i−di
x·y , R, O). In SHP, we used

Priority(R, L, O). The procedures were coded in Visual Studio C++ and the instances were run

on a PC with 512 MB, 1.6 GHz.

For each method, Beam widths of 1, 10 and 100 are tested across 14 benchmark data sets

for irregular shape strip packing from ESICUP (www.fe.up.pt/esicup), which we modify for our

irregular shape CSP. There are two changes: one is that the length of the stock sheet is set equal to

the width of the stock sheet, the other is to multiply the demand of each piece by 100 so that the

demand is highly enlarged. For each data set the filter width cannot be greater than the number of

piece types (including all orientations). Given that the filter width influences the number of global

evaluations for each beam at each level, a large filter width can be costly. However, it must be large

enough to provide scope to find good solutions arising from less greedy partial solutions. The filter

width is set as follows, filter width = min{10, no. of piece types} (Bennell and Song (2010)). For

ACG, We test NP = [nLB, 1.3*no. of piece type]. Table 1, 2 and 3 compare the CG, SHP and

ACG results in terms of solution quality and computation time where Beam width = 1, 10 and

100 respectively. Table 4 and 5 report the usage ratio of the stock sheets and computer running

time against the number of cutting patterns used for the ACG algorithm, where Beam width =

10 and 100 respectively. We do not report these results for beam width = 1, because they do not

inform our analysis. Finally, in Table 6, we give the average percentage times spent in the solution

of subproblems (single sheet heuristic) over the complete computer running time for CG and ACG

algorithms, where beam width = 1, 10 and 100.

In Table 1, 2 and 3, column “Data Set” gives the name of the 14 problem instances tested.

Column “no. of piece types” gives the number of piece types. Column “no. of pieces” gives

the total number of pieces to be cut out. Column “α” gives the filter width of the beam search.

Column “β” gives the beam width of the beam search. Column “CG”,“ACG” and “SHP” give
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the result from algorithm CG, ACG and SHP respectively. For each method, column “ratio”

gives the usage ratio of the stock sheets, which can be calculated as ratio=
∑m

i=1 si·bi∑nP
j=1 xj ·L·W

; column

“nSheet” gives the number of the stock sheets used, which is
∑nP

j=1 xj ; column “nP” gives the

number of patterns used and column “Time (s)” gives the computer running time in seconds. In

ACG, “ratio∗” and “nSheet∗” gives the best usage ratio and the least number of stock sheets used

respectively, regardless of the number of patterns used.

In Table 4 and 5, for each data set, the usage ratio of the stock sheets and computer running

time in seconds are reported against the number of cutting patterns used, where the number of

patterns are increased sequentially. Due to the size of the table, we don’t give the the numbers of

stock sheets used for each given pattern in Table 4 and 5, because these can be easily found out

with the usage ratio of the stock sheets. The second row contains the names of the 14 problem

instances, and column “nP” gives us the number of patterns used.

Table 1: Comparison of CG, ACG and SHP algorithms (Beam Width = 1)
Data no. of no. of β = 1

Set piece pieces α CG ACG SHP

types ratio nSheet nP Time (s) ratio∗ nSheet∗ nP Time (s) ratio nSheet nP Time (s)

Albano 8 2,400 6 0.83 213 11 15 0.83 215 7 26 0.79 225 7 0
Shapes2 7 2,800 6 0.81 178 9 5 0.79 183 7 8 0.74 194 5 0

Dagli 10 3,000 7 0.84 101 14 387 0.82 103 9 261 0.84 101 11 23
Dighe2 10 1,000 7 0.81 124 13 15 0.77 130 11 29 1.00 100 1 0
Dighe1 16 1,600 7 0.78 128 19 79 0.68 146 14 58 0.76 131 5 0

Fu 12 1,200 7 0.89 112 14 8 0.74 133 12 6 0.79 126 6 0
Jakobs1 25 2,500 7 0.83 329 28 78 0.80 339 13 74 0.86 315 9 0

Mao 9 2,000 6 0.67 164 12 137 0.76 144 7 129 0.71 154 7 1
Marques 8 2,400 6 0.84 137 9 49 0.58 200 1 0 0.83 139 6 4
Poly(5B) 25 2,500 7 0.77 64 33 1,656 0.65 76 6 69 0.73 68 10 37
Shapes1 4 4,300 4 0.69 144 5 6 0.66 150 4 12 0.67 148 7 3
Shirts 8 9,900 6 0.85 158 12 136 0.81 167 8 473 0.85 159 10 86
Swim 10 4,800 7 0.67 114 13 533 0.71 108 11 1,481 0.71 108 13 158

Trousers 17 6,400 7 0.75 367 20 1,471 0.63 434 3 9 0.71 385 13 6

From Table 1, 2 and 3, we can see that with larger beam width, the sub-problems of all the

algorithms provide better solutions and in turn the solutions of their master problems are better.

For the same problem instance, usage ratios of stock sheets are improved when the beam width is

changed from 1 to 10 to 100. For all beam widths, the usage ratios of CG algorithm are better

than those of SHP algorithm in general, however, CG algorithm is worse than SHP algorithm in

terms of number of patterns used. ACG algorithm gives solutions slightly worse than the other two

algorithms in terms of usage ratio, however, the maximum number of patterns can be controlled.

When nP is set to be the no. of piece types, ACG may produce inferior results to CG, because

the resolution of the ACG auxiliary problem is heuristic and the BS uses an alternative primary

selection criterion. On average, ACG is 4.7% worse than CG and 4.1% worse than SHP when
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Table 2: Comparison of CG, ACG and SHP algorithms (Beam Width = 10)
Data no. of no. of β = 10

Set piece pieces α CG ACG SHP

types ratio nSheet nP Time (s) ratio∗ nSheet∗ nP Time (s) ratio nSheet nP Time (s)

Albano 8 2,400 6 0.84 211 10 74 0.83 213 8 398 0.79 224 6 2
Shapes2 7 2,800 6 0.80 180 9 56 0.80 179 8 107 0.76 188 10 5

Dagli 10 3,000 7 0.85 99 12 5,979 0.82 103 9 1,869 0.84 100 9 49
Dighe2 10 1,000 7 0.90 111 11 252 0.82 122 9 111 1.00 100 1 0
Dighe1 16 1,600 7 0.83 121 16 984 0.77 130 13 1,025 0.82 122 8 21

Fu 12 1,200 7 0.90 110 15 77 0.81 123 12 93 0.84 119 5 0
Jakobs1 25 2,500 7 0.90 301 26 1,705 0.85 321 16 1,477 0.87 314 9 3

Mao 9 2,000 6 0.68 161 12 3,225 0.79 138 7 596 0.79 139 7 7
Marques 8 2,400 6 0.86 134 11 905 0.57 200 1 0 0.83 139 10 28
Poly(5B) 25 2,500 7 0.81 61 29 19,743 0.67 74 6 648 0.75 66 9 271
Shapes1 4 4,300 4 0.70 143 6 69 0.70 143 4 103 0.68 146 6 13
Shirts 8 9,900 6 0.87 155 11 6,983 0.86 157 9 7,309 0.87 156 12 1,029
Swim 10 4,800 7 0.72 106 13 6,373 0.71 109 13 28,949 0.73 105 9 1,145

Trousers 17 6,400 7 0.79 348 18 17,430 0.78 353 9 1,499 0.79 350 7 37

Table 3: Comparison of CG, ACG and SHP algorithms (Beam Width = 100)
Data no. of no. of β = 100

Set piece pieces α CG ACG SHP

types ratio nSheet nP Time (s) ratio∗ nSheetn∗ nP Time (s) ratio nSheet nP Time (s)

Albano 8 2,400 6 0.86 207 8 2,181 0.86 207 7 1507 0.88 205 2 30
Shapes2 7 2,800 6 0.83 174 9 476 0.77 186 7 430 0.77 186 7 23

Dagli 10 3,000 7 0.87 97 12 74,449 0.86 98 7 34334 0.85 100 8 312
Dighe2 10 1,000 7 0.93 108 8 2,002 0.87 115 2 2343 1.00 100 1 2
Dighe1 16 1,600 7 0.89 114 18 11,627 0.81 124 14 9965 0.85 118 4 42

Fu 12 1,200 7 0.92 108 15 580 0.84 119 10 1164 0.84 118 4 4
Jakobs1 25 2,500 7 0.92 296 30 20,524 0.83 327 21 7923 0.87 314 12 31

Mao 9 2,000 6 0.81 136 10 51,627 0.77 143 6 1020 0.79 139 7 50
Marques 8 2,400 6 0.87 132 11 10,713 0.58 200 1 11229 0.84 138 8 721
Poly(5B) 25 2,500 7 0.82 60 27 152,825 0.70 71 17 79158 0.78 63 8 2,169
Shapes1 4 4,300 4 0.71 140 6 335 0.71 141 5 2112 0.69 144 8 149

the beam width=10. Increasing the beam width to 100 gives better results in all cases where CG

exhibits the greatest improvement at 3.9% on average. However, run times grow significantly. Note

that the last three data sets are omitted in table 3 as the run time extended beyond a day.

From Table 4 and 5, we can see that although ACG is less efficient in getting high usage patterns,

we can obtain a list of pattern usage ratio against the number of patterns, which could provide the

opportunity to make a decision to balance the objectives of maximising usage ratio and minimising

the number of patterns. This feature may be favoured in industry when the set up cost is high.

The computer running times for ACG and CG are high in comparison to those of SHP.

Note, the cells marked “-” indicates that no result is reported in that cell. This is possible, since

for some given “nP”, the optimal solutions by XPRESS for solving integer programming problem

P+ in Step 2 in Section 4.4 returns zero for the number of times a specific pattern is used. In that

case, no usage ratio or running time is reported. Empty cells occur when “nP” is greater than the

number of piece types in the data set.
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Figure 4: Trade off of usage ratio and number of patterns used in problem instances

Figure 4 shows the trade off between the usage ratio of the solution and “nP” using ACG,

where beam width = 10, for two sets of instances. The four instances “Dighe1”,“Fu”,“Jakobs 1”

and “Swim” (see left) have a large no. of piece types giving a long list of patterns, whereas the

other 6 instances have a short list of patterns (see right). From Figure 4, we can see clearly that

the usage ratio of the stock sheets improves in general along with the increase of the number of

patterns used. However, this is not always the case. At some points, the usage ratio drops with

higher “nP”. There is no guarantee that the best usage ratio uses the least “nP”, because ACG is

heuristic.

Table 6 shows the average percentage time spent in the solution of the subproblem over the

complete computer running time for CG and ACG algorithms. With larger beam width, this

percentage increases in CG algorithm and decreases in ACG algorithm. Clearly, a larger beam

width will lead to an increase in computation time in generating patterns. Since CG improves the

restricted master problem using the revised simplex method, which is fast, the relative time spent

on the subproblem increases. ACG algorithm solves the integer programming problem P+ (Step

2 in Section 4.4) for each pattern arising from the beam search, which increases the computation

time for this step. The relative increase in run time for step 2 is greater than the the beam search,

thus the percentage of subproblem running time over the complete computer running decreases.

Overall, the results show that CG provides the best results in terms of trim loss, closely followed

by SHP. Further SHP has significantly lower computation times and can produce good results with

fewer patterns. However, neither approach can guarantee or control the maximum number of

patterns in the solution. ACG can control the maximum number of patterns and explore the trade-

off between the usage ratio of stock sheets and number of patterns used, but at a small cost in
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packing efficiency.

7. Conclusion

In this paper we present implementations of CG and SHP adapted to the irregular shape cutting

stock problem. The sub problems are solved using the beam search algorithm. We also designed an

ACG algorithm to control the number of different patterns, where the generalized inverse matrix

is used to generate the approximate dual price to generate the next pattern.

The experiments show that CG provides the most efficient solutions in terms of trim loss. SHP

can reduce the number of patterns and give good packing effciency, but the maximum number of

patterns cannot be controlled, as in the CG approach. The ACG algorithm provides a tool to

evaluate the trade off between trim loss and setup cost, but at a reduced packing efficiency. To a

certain extent, we can control the number of patterns without generating too much trim loss. The

running time of ACG and CG is much higher than SHP, which is due to the complexity of the

sub-problem they need to solve.

This paper has contributed to the field of cutting and packing in solving directly the irregular

cutting stock problem, without pre-constructing stencils. It has also contributed to the field of

combinatorial optimisation by applying BS within CG, and developing the CG methodology to

deal with basic feasible solution matrices that have more rows than columns. Each approach (CG,

ACG and SHP) has been innovated to be capable of handing the irregular shape packing problem

directly, or deal with the additional set up constraint.
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N
P

A
C
G

(β
=

1
0
)

A
l
b
a
n
o

S
h
a
p
e
s2

D
a
g
l
i

D
ig
h
e
2

D
ig
h
e
1

F
u

J
a
k
o
b
s1

M
a
o

M
a
r
q
u
e
s

P
o
ly

(5
B
)

S
h
a
p
e
s1

S
h
ir
t
s

S
w
im

T
r
o
u
se

r
s

r
a
t
io

t
im

e
(s
)

r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e
r
a
t
io

t
im

e

1
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
0.
58

0
-

-
-

-
-

-
-

-
-

-

2
0.
53

5
0.
48

3
0.
56

40
0.
50

0
-

-
-

-
-

-
0.
3
4

7
-

-
0.
4
9

0
0
.5
0

0
0.
4
5

0
0
.4
5

0
0.
69

45

3
0.
56

17
0.
58

5
0.
61

61
0.
60

7
-

-
-

-
-

-
0.
67

60
-

-
-

-
0
.5
2

42
0
.6
9

87
0

0.
57

1
94
1

-
-

4
0.
56

26
0.
59

8
0.
69

10
9

0.
61

14
0.
5
0

0
0
.6
1

7
0
.6
8

0
0
.7
7

4
62

-
-

0.
6
2

4
0
7

0
.7
0

1
03

0
.7
1

1
11
6

0.
62

2
42
0

0.
76

1
12

5
0.
66

57
0.
62

1
1

0.
70

18
8

0.
62

17
0.
5
9

51
0
.6
9

16
0
.7
4

67
-

-
-

-
0.
6
3

5
5
1

0
.7
0

2
6
7

0
.7
8

26
0
1

0.
65

33
5
6

0.
76

12
9

6
0.
78

14
4

0.
77

47
0.
70

22
0

0.
68

24
-

-
0.
7
1

1
9

-
-

0.
7
8

51
8

-
-

0.
6
7

6
4
8

0
.8
4

45
07

0
.6
5

40
18

-
-

7
0.
82

19
6

0.
80

77
0.
73

32
4

0.
69

32
0
.6
0

14
4

0.
71

28
0.
74

8
7

0.
79

5
96

-
-

-
-

0
.8
5

51
30

-
-

0
.7
7

18
5

8
0.
83

39
8

0.
81

10
7

0.
81

1,
71
2

0.
7
9

86
-

-
0
.7
8

60
0
.7
5

11
5

-
-

-
-

-
-

0
.8
5

58
25

-
-

0
.7
8

35
1

9
-

-
0.
82

1,
86
9

0.
82

11
1

0.
60

1
13

0.
7
8

64
0
.7
7

13
2

-
-

-
-

-
-

0
.8
6

73
09

-
-

0
.7
8

14
9
9

10
0.
82

5,
07
8

-
-

0.
6
1

19
2

-
-

0.
7
8

15
1

-
-

-
-

0.
69

7
33
9

-
-

11
0
.6
7

47
1

0.
7
9

74
0.
7
8

19
7

-
-

-
-

-
-

12
0
.7
0

79
7

0.
8
1

93
0.
7
8

22
6

-
-

0.
70

1
62
9
6

-
-

13
0
.7
7

1
02
5

-
-

-
-

-
-

0.
71

2
89
4
9

-
-

14
0
.6
9

69
9

-
-

0
.6
7

5
5
76

-
-

15
0
.7
7

1
10
7

0
.7
9

2
92

-
-

-
-

16
-

-
0.
85

1
47
7

-
-

-
-

17
-

-
0.
85

1
80
3

-
-

-
-

18
-

-
-

-
-

-

19
-

-
-

-

20
-

-
-

-

21
-

-
-

-

22
-

-
-

-

23
-

-
-

-

24
-

-
-

-

25
-

-
-

-

26
-

-
-

-

27
-

-
-

-

27



Table 5: The usage ratio of the stock sheets against nP for ACG (BW=100)
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Table 6: Average percentage times spent in the solution of subproblems

Percentage times spent on subproblems CG ACG

beam width =1 0.95 0.81

beam width = 10 0.97 0.78

beam width =100 1.00 0.66
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