# **Supplementary Information:**

Towards Predictable Transmembrane Transport: QSAR Analysis of the Anion Binding and Anion Transport Properties of Thioureas

Nathalie Busschaert, Samuel J. Bradberry, Marco Wenzel, Cally J. E. Haynes, Jennifer R. Hiscock, Isabelle L. Kirby, Louise Karagiannidis, Stephen J. Moore, Neil J. Wells, Julie Herniman, G. John Langley, Peter N. Horton, Mark E. Light, Igor Marques, Paulo J. Costa, Vítor Félix, Jeremy G. Frey, Philip A. Gale

Chemistry, University of Southampton, Southampton, SO17 1BJ, UK and Departamento de Química, CICECO and Secção Autónoma de Ciências da Saúde, Universidade de Aveiro, 3810-193 Aveiro, Portugal. Corresponding author: philip.gale@soton.ac.uk

| S1.  | OVERVIEW OF COMPOUNDS                   | 3   |
|------|-----------------------------------------|-----|
| S2.  | <u>SYNTHESIS</u>                        | 3   |
| S3.  | NMR SPECTRA                             | 11  |
| S4.  | SINGLE CRYSTAL X-RAY DIFFRACTION        | 33  |
| S4.1 |                                         |     |
| S4.2 |                                         |     |
| S4.3 |                                         |     |
| S4.4 | * * * * * * * * * * * * * * * * * * * * |     |
| S4.5 | 1 1                                     |     |
| S4.6 | •                                       |     |
| S4.7 | J 1 1                                   |     |
| S4.8 |                                         |     |
| S4.9 | • • • • • • • • • • • • • • • • • • • • |     |
| S4.1 |                                         |     |
| S4.1 | • • • • • • • • • • • • • • • • • • • • |     |
| S4.1 |                                         |     |
| S4.1 |                                         |     |
| S4.1 | • • • • • • • • • • • • • • • • • • • • |     |
| S4.1 | • • • • • • • • • • • • • • • • • • • • |     |
| S4.1 | 1 1                                     |     |
| S5.  | NMR BINDING STUDIES                     |     |
| S5.1 |                                         |     |
| S5.2 | 1 1                                     |     |
| S5.3 |                                         |     |
| S5.4 |                                         |     |
|      |                                         |     |
| S6.  | TRANSPORT STUDIES                       |     |
| S6.1 |                                         |     |
| S6.2 | ( iii)                                  |     |
| S6.3 | 1                                       |     |
| S6.4 | 1                                       |     |
| S6.5 | 1                                       |     |
| S7.  | QSAR ANALYSIS OF ANION TRANSPORT        |     |
| S7.1 | 207                                     |     |
| S7.2 |                                         |     |
| S7.3 |                                         |     |
| S7.4 | 1                                       |     |
| S7.5 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \   |     |
| S7.6 | · · · · · · · · · · · · · · · · · · ·   |     |
| S7.7 | QSAR Modelling Using Relative Values    | 162 |
| S8.  | PREDICTING ANION BINDING AND TRANSPORT  | 164 |
| S9.  | REFERENCES AND NOTES                    | 168 |
|      |                                         |     |

#### S1. OVERVIEW OF COMPOUNDS

#### S2. SYNTHESIS

**General.** <sup>1</sup>H NMR (300 MHz), <sup>19</sup>F NMR (282 MHz) and <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz) spectra were determined on a Bruker AV300 spectrometer. <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz) spectra were determined on a Bruker DPX400 spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and calibrated to the residual protio solvent peak in DMSO- $d_6$  (δ = 2.50 ( $^1$ H) and 39.51 ppm ( $^{13}$ C)). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad. Infrared (IR) spectra were recorded on a Matterson Satellite (ATR) and are reported in wavenumbers (cm<sup>-1</sup>). High resolution electron spray (ES) mass spectra were recorded on a Bruker maXis ESI. All mass spectra are reported as m/z (relative intensity). Melting points were determined by a Barnstead Electrothermal 9100 melting point apparatus and were not corrected. All reactions were performed using oven-dried glassware. Dichloromethane was distilled over calcium hydride under nitrogen prior to use and pyridine was dried with KOH prior to use. All other solvents and reagents were used as provided by the supplier. The synthesis and characterization of compound 2<sup>1</sup> and 9<sup>2</sup> were performed as previously reported. The majority of the compounds was obtained as a crystalline solid and further characterized by single crystal X-ray diffraction (see section S4).

**3-hexyl-1-(4-bromo-phenyl)thiourea** (1). A solution of 4-bromoaniline (0.41 g, 2.38 mmol) in 3 mL pyridine was treated dropwise with a solution of hexyl isothiocyanate (0.39 mL, 2.5 mmol) in 3 mL pyridine under an inert atmosphere. The reaction was stirred overnight at room temperature and concentrated *in vacuo* to give a clear, viscous oil. Trituration under hexane afforded an off-white solid that was isolated via filtration and washed with excess hexane. The resulting white solid was subsequently dried under high vacuum (0.53 g, 1.67 mmol). Yield: 85%; Mp: 102-104 °C (lit. 189 °C)<sup>3</sup>; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ )  $\delta$  ppm 0.87 (t, J=6.2 Hz, 3 H), 1.28 (m, 6 H), 1.52 (m, 2 H), 3.44 (q, J=4.4 Hz, 2 H), 7.44 (m, 4 H), 7.81 (br. s, 1 H), 9.49 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 22.1, 26.1, 28.3, 31.0, 43.8, 115.6, 124.6, 131.2, 138.9, 180.2; IR (solid): v= 3240, 3060, 2930, 2870, 1550, 1480, 1310, 1070, 1010, 825 cm<sup>-1</sup>; LRMS (ESI+): m/z= 315.3, 317.3 [M+H]<sup>+</sup>, 337.3, 339.4 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>13</sub>H<sub>19</sub>BrSN<sub>2</sub>Na

 $[M+Na]^+$ : m/z=337.0345 (calcd), 337.0341 (found). The structure of compound **1** was confirmed by single crystal X-ray diffraction (see section S4.1).

**1-(4-chlorophenyl)-3-hexylthiourea** (**3**). 4-Chloroaniline (0.50 g, 3.92 mmol) and hexyl isothiocyanate (0.6 mL, 3.91 mmol) were dissolved in 10 mL dry pyridine. The mixture was stirred overnight at 80°C under nitrogen atmosphere. The solvents were removed under reduced pressure and the residue was recrystallized from chloroform:hexane. A white crystalline solid was formed, filtered off and washed with hexane. The white solid was dried overnight *in vacuo* (0.98 g, 3.62 mmol). Yield: 92%; Mp: 91-92 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.87 (t, J=7.3 Hz, 3 H), 1.28 (m, 6 H), 1.52 (m, 2 H), 3.44 (q, J=4.8 Hz, 2 H), 7.34 (d, J=8.4 Hz, 2 H), 7.47 (d, J=9.1 Hz, 2 H), 7.80 (br. s, 1 H), 9.48 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9, 22.1, 26.1, 28.4, 31.0, 43.8, 124.4, 127.6, 128.3, 138.5, 180.3; IR (solid): v= 3250, 3060, 2930, 2850, 1540, 1490, 1090, 825 cm<sup>-1</sup>; LRMS (ESI-): m/z= 269.1 [M-H]<sup>+</sup>; HRMS (ES) for  $C_{13}H_{20}SN_2Cl$  [M+H]<sup>+</sup>: m/z= 271.1030 (calcd), 271.1032 (found). The structure of compound **3** was confirmed by single crystal X-ray diffraction (see section S4.3).

**1-(4-cyanophenyl)-3-hexylthiourea** (4). Hexylamine (0.22 mL, 1.66 mmol) was dissolved in 8 mL dry dichloromethane under nitrogen. 4-Cyanophenyl isothiocyanate (0.27 g, 1.68 mmol) in 8 mL dichloromethane was added dropwise to the reaction mixture over the course of 30 minutes. The reaction mixture was refluxed overnight under nitrogen atmosphere (40 °C). The reaction was quenched by the addition of 10 mL water, the organic phase was washed with water (2 x 10 mL) and dried over MgSO<sub>4</sub>. MgSO<sub>4</sub> was then removed by filtration, the solvents were removed under reduced pressure and the residue was recrystallized from dichloromethane:hexane. A white solid was formed, filtered off and dried on air (0.37 g, 1.42 mmol). Yield: 85%; Mp: 104-105 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ )  $\delta$  ppm 0.87 (t, J=6.2 Hz, 3 H), 1.28 (m, 6 H), 1.54 (m, 2 H), 3.46 (q, J=5.5 Hz, 2 H), 7.73 (m, 4 H), 8.14 (br. s, 1 H), 9.85 (br. s, 1 H);  $^{13}$ C{ $^{1}$ H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 22.0, 26.1, 28.1, 30.9, 43.8, 104.4, 119.1, 121.0, 132.7, 144.3, 179.9; IR (solid): v= 3340, 3175, 2930, 2850, 2230, 1525, 1310, 849 cm $^{-1}$ ; LRMS (ESI+): m/z= 262.4 [M+H] $^{+}$ , 284.3 [M+Na] $^{+}$ ; HRMS (ES) for C<sub>14</sub>H<sub>19</sub>SN<sub>3</sub>Na [M+Na] $^{+}$ : m/z= 284.1192 (calcd), 284.1193 (found). The structure of compound **4** was confirmed by single crystal X-ray diffraction (see section S4.4).

**1-hexyl-3-(4-(2,2,2-trifluoroacetyl)phenyl)thiourea** (**5**). A solution of 1-(4-aminophenyl)-2,2,2-trifluoroethanone (0.50 g, 2.64 mmol) and hexyl isothiocyanate (0.41 mL, 2.64 mmol) in 10 mL pyridine was heated to 70 °C overnight under nitrogen atmosphere. The mixture was then concentrated *in vacuo* to give a clear, viscous oil. The crude oil was dissolved in methanol and purified using an ion exchange column for bases (Isolute SCX-2, Biotage). The methanol fraction was allowed to evaporate to afford a white crystalline solid which was subsequently dried under high vacuum (0.23 g, 0.69 mmol). Yield: 26%; Mp: 88 °C;  $^{1}$ H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.88 (t, J=6.8 Hz, 3 H), 1.29 (m, 6 H), 1.56 (m, 2 H), 3.48 (q, J=6.0 Hz, 2 H), 7.85 (d, J=9.0 Hz, 2 H), 7.99 (d, J=8.7 Hz, 2 H), 8.32 (br. s, 1 H), 10.09 (br. s, 1 H);  $^{13}$ C ( $^{1}$ H) NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9, 22.1, 26.1, 28.0, 31.0, 43.9, 116.7 (q,  $J_{C,F}$ =291.9 Hz), 120.0, 122.7,

131.1, 147.4, 177.9 (q,  $J_{C-F}$ =33.7 Hz), 179.8; <sup>19</sup>F NMR (282 MHz, DMSO- $d_6$ )  $\delta$  ppm -69.82; IR (solid): v= 3240, 3060, 2930, 2850, 1700, 1600, 1530, 1140, 941, 845 cm<sup>-1</sup>; LRMS (ESI+): m/z= 333.4 [M+H]<sup>+</sup>, 355.4 [M+Na]<sup>+</sup>; HRMS (ES) for  $C_{15}H_{19}F_3N_2OSNa$  [M+Na]<sup>+</sup>: m/z= 355.1062 (calcd), 355.1058 (found). The structure of compound **5** was confirmed by single crystal X-ray diffraction (see section S4.5).

**1-(4-acetylphenyl)-3-hexylthiourea** (6). 4-Aminoacetophenone (0.3 g, 2.22 mmol) was dissolved in 10 mL dry pyridine. Hexyl isothiocyanate (0.34 mL, 2.22 mmol) was added to this mixture under nitrogen atmosphere. The reaction was stirred overnight under nitrogen atmosphere at 80°C. Pyridine was removed under reduced pressure and the crude oil was recrystallized from 1:1 dichloromethane:hexane to give a white solid. This solid was subsequently dissolved in a minimum amount of hot methanol and recrystallized from a two phase solution of methanol and hexane in equal amounts. The resulting off-white crystalline solid was subsequently dried under high vacuum (0.13 g, 0.46 mmol). Yield: 21%; Mp: 102 °C (lit. 118-119 °C)<sup>4</sup>; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.85 (t, J=6.2 Hz, 3 H), 1.27 (m, 7 H), 1.52 (m, 2 H), 3.44 (br q, J=4.4 Hz, 2 H), 7.64 (d, J=8.4 Hz, 2 H), 7.87 (d, J=8.4 Hz, 2 H), 8.02 (br. s, 1 H), 9.75 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9, 22.1, 26.1, 26.5, 28.2, 31.0, 43.8, 120.5, 129.0, 131.5, 144.3, 180.0, 196.5; IR (solid): v= 3290, 2920, 2850, 1660, 1600, 1540, 957, 825 cm<sup>-1</sup>; LRMS (ESI+): m/z= 279.3 [M+H]<sup>+</sup>, 301.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>15</sub>H<sub>22</sub>SON<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 301.1345 (calcd), 301.1345 (found). The structure of compound **6** was confirmed by single crystal X-ray diffraction (see section S4.6).

Methyl 4-(3-hexylthioureido)benzoate (7). Methyl-4-aminobenzoate (0.60 g, 3.97 mmol) was dissolved in 30 mL dichloromethane and thiophosgene (0.4 mL, 5.25 mmol) was added, followed by 30 mL of a saturated aqueous NaHCO<sub>3</sub> solution. The mixture was stirred gently for 12 hours at room temperature. The aqueous layer was removed and the dichloromethane phase was washed 20 mL saturated NaHCO<sub>3</sub> solution. The dichloromethane layer was subsequently dried with MgSO<sub>4</sub> for 1 hour, then MgSO<sub>4</sub> was removed by filtration and hexylamine (0.55 mL, 4.16 mmol) was added to the dried reaction mixture. The mixture was refluxed overnight under nitrogen atmosphere (40 °C). The solvents were removed under reduced pressure and the residue was recrystallized from chloroform:hexane. A white crystalline solid was formed, filtered off and washed with hexane. The white solid was then dried overnight in vacuo (0.64 g, 2.17 mmol). Yield: 55%; Mp: 127-129 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.87 (t, J=6.4 Hz, 3 H), 1.28 (m, 6 H), 1.55 (m, 2 H), 3.46 (q, J=5.5 Hz, 2 H), 3.82 (s, 3 H), 7.67 (d, J=8.4 Hz, 2 H), 7.88 (d, J=8.8 Hz, 2 H), 8.05 (br. s, 1 H), 9.79 (br. s, 1 H);  ${}^{13}C\{{}^{1}H\}$  NMR (75 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 22.0, 26.1, 28.2, 31.0, 43.8, 51.8, 120.6, 123.6, 129.8, 144.4, 165.8, 180.0; IR (solid): v = 3240, 3060, 2920, 2860, 1715, 1600, 1550, 1270, 1110 cm<sup>-1</sup>; LRMS (ESI-): m/z = 293.2 [M-H]<sup>-</sup>; HRMS (ES) for  $C_{15}H_{23}SN_2O_2$  [M+H]<sup>+</sup>: m/z = 295.1475 (calcd), 295.1479 (found). HRMS (ES) for  $C_{15}H_{22}SN_2O_2Na$  [M+Na]<sup>+</sup>: m/z=317.1294 (calcd), 317.1299 (found). The structure of compound 7 was confirmed by single crystal X-ray diffraction (see section S4.7).

**3-hexyl-1-(4-fluoro-phenyl)thiourea (8).** A solution of hexylamine (0.30 g, 2.96 mmol) in dichloromethane (5 mL) was treated dropwise with a solution of 4-fluorophenyl isothiocyanate (0.48 g, 3.13

mmol) in dichloromethane (5mL) under an inert atmosphere. The reaction was stirred overnight at room temperature. The solvents were removed under reduced pressure to yield a viscous yellow oil. Trituration under excess hexane (50 mL) afforded a white solid that was isolated via filtration and washed with hexane. The resulting solid was dried under high vacuum (0.57 g, 2.24 mmol). Yield: 76%; Mp: 77-78 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 0.87 (t, J=6.6 Hz, 3 H), 1.28 (m, 6 H), 1.52 (m, 2 H), 3.43 (m, 2 H), 7.14 (t, J=8.6 Hz, 2 H), 7.39 (dd, J=8.6, 5.1 Hz, 2 H), 7.69 (br. s, 1 H), 9.37 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 22.0, 26.0, 28.4, 31.0, 43.8, 115.0 (d, J=22.0 Hz), 125.5, 135.6, 158.8 (d, J=241.5 Hz), 180.6; <sup>19</sup>F NMR (282 MHz, DMSO- $d_6$ )  $\delta$  ppm -118.24; IR (solid): v= 3210, 2940, 2870, 1560, 1500, 1320, 1110, 1060, 837 cm<sup>-1</sup>; LRMS (ESI-): m/z= 253.2 [M-H]<sup>-</sup>; HRMS (ES) for C<sub>13</sub>H<sub>20</sub>SN<sub>2</sub>F [M+H]<sup>+</sup>: m/z= 255.1326 (calcd), 255.1323 (found); HRMS (ES) for C<sub>13</sub>H<sub>19</sub>SFN<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 277.1145 (calcd), 277.1143 (found). The structure of compound **8** was confirmed by single crystal X-ray diffraction (see section S4.8).

**1-hexyl-3-(4-iodophenyl)thiourea** (**10).** A solution of 4-(iodophenyl) isothiocyanate (0.30 g, 1.15 mmol) and hexylamine (0.15 mL, 1.15 mmol) in 2 mL dichloromethane was shaken in a sealed vial for 10 seconds and left at room temperature overnight. Hexane was subsequently added to the solution until a white precipitate formed. The precipitate was collected, washed with hexane (10 mL) and dried under high vacuum (0.41 g, 1.14 mmol). Yield: 99%; Mp: 89 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.88 (t, J=6.6 Hz, 3 H), 1.28 (m, 6 H), 1.53 (m, 2 H), 3.43 (br q, J=4.5 Hz, 2 H), 7.28 (d, J=8.6 Hz, 2 H), 7.62 (d, J=8.6 Hz, 2 H), 7.81 (br. s, 1 H), 9.47 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9, 22.0, 26.0, 28.3, 31.0, 43.8, 87.6, 124.8, 137.1, 139.4, 180.1; IR (solid): v= 3260, 3050, 2920, 2850, 1620, 1540, 1480, 1320, 822 cm<sup>-1</sup>; LRMS (ESI+): m/z= 363.3 [M+H]<sup>+</sup>, 385.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>13</sub>H<sub>19</sub>SIN<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 385.0206 (calcd), 385.0210 (found). The structure of compound **10** was confirmed by single crystal X-ray diffraction (see section S4.9).

**1-hexyl-3-(4-nitrophenyl)thiourea**<sup>5</sup> (**11). 4**-Nitroaniline (0.72 g, 5.21 mmol) was dissolved in 40 mL dichloromethane and thiophosgene (0.4 mL, 5.25 mmol) was added, followed by 30 mL of a saturated aqueous NaHCO<sub>3</sub> solution. The mixture was stirred gently for 12 hours at room temperature. The aqueous layer was removed and the dichloromethane phase was subsequently dried with MgSO<sub>4</sub> for 1 hour, then MgSO<sub>4</sub> was removed by filtration and hexylamine (0.69 mL, 5.22 mmol) was added to the dried reaction mixture. The mixture was stirred for 3 days under nitrogen atmosphere. The solvents were removed under reduced pressure and the residue was recrystallized from dichloromethane:hexane. The product was further purified via an ion exchange column for bases (Isolute SCX-2, Biotage) using methanol as eluent. After removing the solvents under reduced pressure a yellow solid was obtained and dried overnight *in vacuo* (0.74 g, 2.50 mmol). Yield: 48%; Mp: 103-104 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 0.88 (t, J=6.3 Hz, 3 H), 1.30 (m, 6 H), 1.56 (m, 2 H), 3.48 (q, J=6.1 Hz, 2 H), 7.83 (d, J=9.1 Hz, 2 H), 8.18 (d, J=9.1 Hz, 2 H), 8.27 (br. s, 1 H), 10.07 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 22.0, 26.1, 28.0, 31.0, 43.9, 120.2, 124.5, 141.6, 146.5, 179.9; IR (solid): v= 3330, 2920, 1590, 1525, 1495, 850 cm<sup>-1</sup>; LRMS (ESI-):

m/z=280.2 [M-H]<sup>-</sup>; HRMS (ES) for  $C_{13}H_{19}SN_3O_2Na$  [M+Na]<sup>+</sup>: m/z=304.1090 (calcd), 304.1088 (found). The structure of compound **11** was confirmed by single crystal X-ray diffraction (see section S4.10).

**4-(3-hexylthioureido)phenyl acetate (12).** A suspension of 10 % Pd/C (0.03 g) in a 4-nitrophenyl acetate (0.30 g, 1.66 mmol) and ethanol solution (10 mL) was vigorously stirred under a hydrogen atmosphere for 3 hours. The mixture was subsequently filtered through celite and concentrated *in vacuo* to afford a white crystalline solid. This solid was dissolved in pyridine (8 mL), hexyl isothiocyanate (0.25 mL, 1.66 mmol) was added and the solution was heated to 70 °C overnight under inert atmosphere. The solvents were removed under reduced pressure to yield a viscous oil that was subsequently dissolved in methanol and purified via an ion exchange column for bases (Isolute SCX-2, Biotage). The methanol fraction was taken to dryness and the product was recrystallized from ethyl acetate (2 mL), hexane (3 mL) and diethyl ether (10 mL) to give a white solid which was dried under high vacuum (0.32 g, 1.09 mmol). Yield: 65%; Mp: 72 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>) δ ppm 0.88 (t, *J*=6.6 Hz, 3 H), 1.29 (m, 6 H), 1.53 (m, 2 H), 2.26 (s, 3 H), 3.44 (br q, *J*=5.5 Hz, 2 H), 7.05 (d, *J*=8.8 Hz, 2 H), 7.41 (d, *J*=8.8 Hz, 2 H), 7.75 (br. s, 1 H), 9.42 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO-*d*<sub>6</sub>) δ ppm 13.9, 20.8, 22.0, 26.1, 28.4, 31.0, 43.8, 121.7, 124.0, 136.9, 146.6, 169.3, 180.4; IR (solid): v= 3340, 2920, 1720, 1500, 1240, 845 cm<sup>-1</sup>; LRMS (ESI+): *m/z*= 295.3 [M+H]<sup>+</sup>, 317.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>15</sub>H<sub>22</sub>O<sub>2</sub>SN<sub>2</sub>Na [M+Na]<sup>+</sup>: *m/z*= 317.1294 (calcd), 317.1298 (found). The structure of compound **12** was confirmed by single crystal X-ray diffraction (see section S4.11).

**1-hexyl-3-(4-(trifluoromethoxy)phenyl)thiourea** (**13).** p-(Trifluoro-methoxy)phenyl isothiocyanate (222 μL, 1.37 mmol) and hexylamine (199 μL, 1.51 mmol) were dissolved in 10 mL dry dichloromethane and the reaction mixture was stirred overnight at room temperature under nitrogen atmosphere. The solvents were removed under reduced pressure and the crude mixture was recrystallized from 1:1 chloroform:hexane. A white crystalline solid was obtained which was filtered off, washed with hexane and dried under high vacuum (0.35 g, 1.09 mmol). Yield: 80 %; Mp: 76-78 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.88 (t, J=6.8 Hz, 3 H), 1.29 (m, 6 H), 1.53 (m, 2 H), 3.44 (br. q, J=6.4 Hz, 2 H), 7.29 (d, J=8.7 Hz, 2 H), 7.54 (d, J=8.7 Hz, 2 H), 7.86 (br. s., 1 H), 9.54 (br. s., 1 H); <sup>13</sup>C {<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ ) δ ppm 14.0, 22.1, 26.2, 28.4, 31.1, 43.9, 120.18 (q,  $J_{C-F}$ =256.5 Hz), 121.3, 124.1, 138.8, 144.1, 180.4; <sup>19</sup>F NMR (282 MHz, DMSO- $d_6$ ) δ ppm -56.66; IR (solid): v= 3270, 3080, 2930, 2870, 1560, 1500, 1210, 1160, 849 cm<sup>-1</sup>; LRMS (ESI+): m/z= 321.3 [M+H]<sup>+</sup>, 343.4 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>14</sub>H<sub>19</sub>F<sub>3</sub>OSN<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 343.1062 (calcd), 343.1068 (found).

**1-(4-ethoxyphenyl)-3-hexylthiourea** (**14).** 4-Ethoxyphenyl isothiocyanate (0.29 g, 1.62 mmol) and hexylamine (0.25 mL, 1.89 mmol) were dissolved in 5 mL dichloromethane and stirred overnight at room temperature under nitrogen atmosphere. The solvents were reduced under reduced pressure and the crude mixture was recrystallized from chloroform hexane to yield a wite solid, which was filtered off and washed with hexane. This white solid was then dissolved in methanol and purified via an ion exchange column for bases (Isolute SCX-2, Biotage). The methanol fraction was taken to dryness and the product was

recrystallized from diethyl ether (10 mL). The resulting white crystalline solid was subsequently dried under high vacuum (0.41 g, 1.46 mmol). Yield: 90%; Mp: 61 °C (lit. 73-74 °C)<sup>6</sup>; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  ppm 0.88 (t, J=6.6 Hz, 3 H), 1.28 (m, 9 H), 1.50 (m, 2 H), 3.41 (br q, J=6.1 Hz, 2 H), 4.00 (q, J=6.7 Hz, 2 H), 6.87 (d, J=8.6 Hz, 2 H), 7.20 (d, J=9.1 Hz, 2 H), 7.46 (br. s, 1 H), 9.19 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 14.7, 22.0, 26.0, 28.5, 31.0, 43.9, 63.1, 114.4, 125.7, 131.7, 155.7, 180.6; IR (solid): v= 3210, 3040, 2920, 1540, 1250 cm<sup>-1</sup>; LRMS (ESI+): m/z= 281.3 [M+H]<sup>+</sup>, 303.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>15</sub>H<sub>24</sub>SON<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 303.1502 (calcd), 303.1502 (found). The structure of compound 14 was confirmed by single crystal X-ray diffraction (see section S4.12).

**1-Hexyl-3-(4-methoxyphenyl)thiourea (15).** Hexylamine (0.40 mL, 3.03 mmol) was dissolved in 20 mL dry dichloromethane and 4-methoxyphenyl isothiocyanate (0.42 mL, 3.03 mmol) was added dropwise. The mixture was stirred overnight at room temperature under nitrogen atmosphere. The solvents were removed under reduced pressure and the residue was recrystallized from chloroform:hexane. A white crystalline solid was formed, filtered off and washed with hexane. The white solid was then dried overnight *in vacuo* (0.67 g, 2.52 mmol). Yield: 83%; Mp: 59-60 °C (lit. 81-82 °C)<sup>6</sup>; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.87 (t, J=7.0 Hz, 3 H), 1.27 (m, 6 H), 1.50 (m, 2 H), 3.42 (q, J=5.9 Hz, 2 H), 3.74 (s, 3 H), 6.89 (d, J=8.8 Hz, 2 H), 7.22 (d, J=8.8 Hz, 2 H), 7.48 (br. s, 1 H), 9.20 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9, 22.0, 26.0, 28.5, 31.0, 43.8, 55.2, 113.8, 125.7, 131.8, 156.4, 180.5; IR (solid): v= 3240, 3070, 2920, 1560 1510, 1230, 1030 cm<sup>-1</sup>; LRMS (ESI-): m/z= 265.2 [M-H]<sup>-</sup>; HRMS (ES) for C<sub>14</sub>H<sub>22</sub>SN<sub>2</sub>ONa [M+Na]<sup>+</sup>: m/z= 289.1345 (calcd), 289.1347 (found). The structure of compound **15** was confirmed by single crystal X-ray diffraction (see section S4.13).

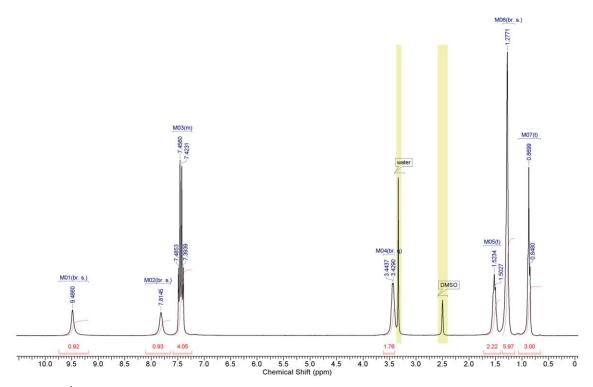
**1-hexyl-3-(4-(methylthio)phenyl)thiourea** (**16).** A solution of 4-(methylthio)phenyl isothiocyanate (0.30 g, 1.65 mmol) and hexylamine (0.22 mL, 1.65 mmol) in 2 mL dichloromethane was shaken in a sealed vial for 10 seconds. The solution was left at room temperature overnight. Hexane was then added to the solution until a white precipitate had formed. This was collected and washed with hexane (10 mL) and subsequently dried under high vacuum (0.37 g, 1.32 mmol). Yield: 80%; Mp: 82 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ ppm 0.88 (t, J=7.0 Hz, 3 H), 1.27 (m, 6 H), 1.52 (m, 2 H), 2.46 (s, 3 H), 3.43 (br q, J=5.1 Hz, 2 H), 7.22 (d, J=8.6 Hz, 2 H), 7.35 (d, J=8.6 Hz, 2 H), 7.69 (br. s, 1 H), 9.39 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ ) δ ppm 13.9, 15.4, 22.0, 26.1, 28.4, 31.0, 43.8, 123.8, 126.7, 133.0, 136.6, 180.3; IR (solid): v= 3240, 3040, 2920, 2850, 1540, 1310, 818 cm<sup>-1</sup>; LRMS (ESI+): m/z= 283.3 [M+H]<sup>+</sup>, 305.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>14</sub>H<sub>22</sub>S<sub>2</sub>N<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 305.1117 (calcd), 305.1119 (found).

**1-hexyl-3-(4-(methylsulfonyl)phenyl)thiourea (17).** A solution of 4-(methylsulfonyl)aniline (0.30 g, 1.75 mmol) and hexyl isothiocyanate (0.27 mL, 1.75 mmol) in 8 mL pyridine was heated to 70 °C overnight under inert atmosphere, then concentrated *in vacuo* to give a clear, viscous oil. The oil was dissolved in dichloromethane (2 mL) and a white precipitate was collected upon the addition of hexane. This white solid was then dissolved in methanol and purified via an ion exchange column for bases (Isolute SCX-2, Biotage).

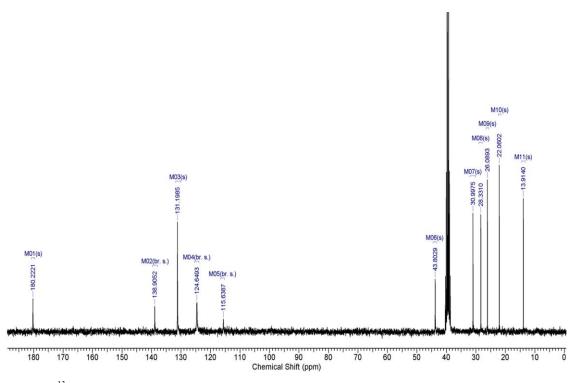
The methanol fraction was reduced to a volume of 5 mL and slow evaporation at room temperature resulted in a white crystalline product that was dried under high vacuum (0.18 g, 0.57 mmol). Yield: 33%; Mp: 120 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ )  $\delta$  ppm 0.88 (t, J=6.4 Hz, 3 H), 1.29 (m, 6 H), 1.56 (m, 2 H), 3.17 (s, 3H), 3.47 (br q, J=5.1 Hz, 2 H), 7.76 (d, J=8.8 Hz, 2 H), 7.82 (d, J=9.1 Hz, 2 H), 8.12 (br. s, 1 H), 9.86 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ )  $\delta$  ppm 13.9, 22.0, 26.1, 28.1, 31.0, 43.8, 121.0, 127.7, 134.3, 144.5, 180.1 (one peak underneath DMSO peak); IR (solid): v= 3230, 3040, 2930, 2850, 1600, 1540, 1290, 1140, 968 cm<sup>-1</sup>; LRMS (ESI+): m/z= 315.3 [M+H]<sup>+</sup>, 337.4 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>14</sub>H<sub>22</sub>S<sub>2</sub>O<sub>2</sub>N<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 337.1015 (calcd), 337.1018 (found).

**1-Hexyl-3-**(*p*-tolyl)thiourea (18). *p*-Toluidine (0.50 g, 4.67 mmol) was dissolved in 10 mL dry pyridine and hexyl isothiocyanate (0.70 mL, 4.56 mmol) was added dropwise. The mixture was stirred overnight at 80°C under nitrogen atmosphere. The solvents were removed under reduced pressure and the residue was recrystallized from chloroform:hexane. A white crystalline solid was formed, filtered off and washed with hexane. The white solid was then dried overnight *in vacuo* (1.06 g, 4.23 mmol). Yield: 93%; Mp: 70-72 °C;  $^{1}$ H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.87 (t, J=6.6 Hz, 3 H), 1.27 (m, 6 H), 1.51 (m, 2 H), 2.27 (s, 3 H), 3.43 (br q, J=5.5 Hz, 2 H), 7.11 (d, J=8.0 Hz, 2 H), 7.24 (d, J=8.0 Hz, 2 H), 7.59 (br. s, 1 H), 9.32 (br. s, 1 H);  $^{13}$ C ( $^{1}$ H) NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9, 20.4, 22.0, 26.1, 28.4, 31.0, 43.8, 123.4, 129.0, 133.3, 136.6, 180.2; IR (solid): v= 3240, 3070, 2930, 2850, 1550, 1510, 1320, 818 cm $^{-1}$ ; LRMS (ESI-): m/z= 249.0 [M-H] $^{-1}$ ; HRMS (ES) for C<sub>14</sub>H<sub>23</sub>SN<sub>2</sub> [M+H] $^{+1}$ : m/z= 251.1576 (calcd), 251.1578 (found). The structure of compound 18 was confirmed by single crystal X-ray diffraction (see section S4.14).

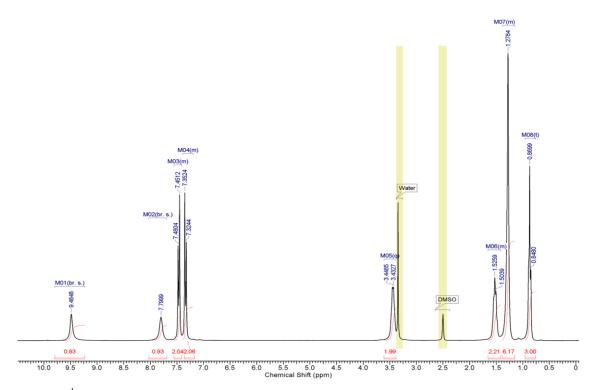
**1-(4-ethylphenyl)-3-hexylthiourea (19).** A solution of 4-(ethylphenyl) isothiocyanate (0.28 g, 1.84 mmol) and hexylamine (0.24 mL, 1.84 mmol) in 2 mL dichloromethane was shaken in a sealed vial for 10 seconds and then left at room temperature overnight. Hexane (5 mL) was added and the solution was left to evaporate giving off white crystals which were collected, washed with hexane (10 mL) and recrystallized from diethyl ether (10 mL). This afforded white crystals which were collected, washed with hexane (10 mL) and subsequently dried under high vacuum (0.40 g, 1.53 mmol). Yield: 82%; Mp: 64 °C; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ ppm 0.87 (t, J=6.6 Hz, 3 H), 1.17 (t, J=7.6 Hz, 3 H), 1.28 (m, 6 H), 1.52 (m, 2 H), 2.57 (q, J=7.6 Hz, 2 H), 3.43 (br q, J=5.6 Hz, 2 H), 7.15 (d, J=8.1 Hz, 2 H), 7.26 (d, J=8.1 Hz, 2 H), 7.60 (br. s, 1 H), 9.31 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ ) δ ppm 13.9, 15.6, 22.0, 26.1, 27.6, 28.4, 31.0, 43.9, 123.4, 127.8, 136.8, 139.7, 180.3; IR (solid): v= 3210, 2930, 2860, 1550, 1500, 1270, 829 cm<sup>-1</sup>; LRMS (ESI+): m/z= 265.3 [M+H]<sup>+</sup>, 287.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>15</sub>H<sub>24</sub>SN<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 287.1552 (calcd), 287.1555 (found). The structure of compound **19** was confirmed by single crystal X-ray diffraction (see section S4.15).


**1-(4-propylphenyl)-3-hexylthiourea (20).** A solution of 4-propylaniline (0.32 mL, 2.22 mmol) and hexyl isothiocyanate (0.34 mL, 2.22 mmol) in 8 mL pyridine was heated to 70 °C overnight under inert atmosphere, then concentrated under reduced pressure to give a clear, viscous oil. This oil was dissolved in

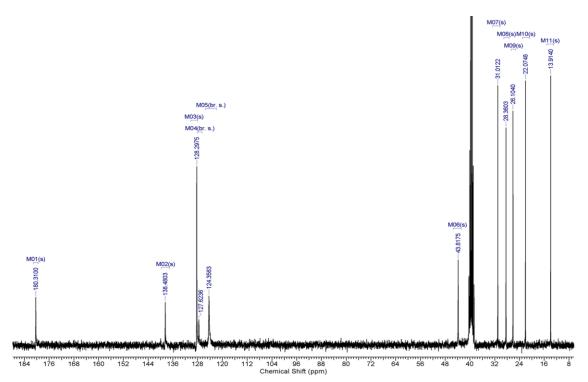
methanol and purified via an ion exchange column for bases (Isolute SCX-2, Biotage). The methanol fraction was taken to dryness and the product was recrystallized from diethyl ether (2 mL). The resulting off-white crystalline solid was subsequently dried under high vacuum (0.51 g, 1.83 mmol). Yield: 83 %; Mp: 46 °C;  $^{1}$ H NMR (300 MHz, DMSO- $d_{6}$ ) δ ppm 0.84-0.91 (m, 6 H), 1.27 (m, 6 H), 1.46-1.63 (m, 4 H), 2.48-2.53 (m, 2 H, overlap with DMSO), 3.42 (q, J=5.9 Hz, 2 H), 7.12 (d, J=8.4 Hz, 2 H), 7.25 (d, J=8.4 Hz, 2 H), 7.60 (br. s, 1 H), 9.30 (br. s, 1 H);  $^{13}$ C{ $^{1}$ H} NMR (75 MHz, DMSO- $d_{6}$ ) δ ppm 13.6, 13.9, 22.0, 24.1, 26.1, 28.4, 31.0, 36.7, 43.8, 123.2, 128.4, 136.8, 138.0, 180.2; IR (solid): v= 3220, 2930, 2860, 1550, 1500, 1270, 837 cm<sup>-1</sup>; LRMS (ESI+): m/z= 279.3 [M+H]<sup>+</sup>, 301.3 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>16</sub>H<sub>26</sub>SN<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 301.1709 (calcd), 301.1714 (found). The structure of compound **20** was confirmed by single crystal X-ray diffraction (see section S4.16).


**1-(4-butylphenyl)-3-hexylthiourea** (**21).** 4-Butylaniline (0.3 g, 2.01 mmol) was dissolved in 10 mL dry pyridine, hexyl isothiocyanate (0.3 mL, 2.01 mmol) was added dropwise and the solution was stirred overnight at 60 °C under nitrogen atmosphere. The solvents were removed under reduced pressure and the crude mixture was purified via an ion exchange column for bases (Isolute SCX-2, Biotage) to yield a yellow viscous oil. This oil was then purified by flash chromatography (100% diethyl ether) to give a waxy yellow solid, which was subsequently dried under high vacuum (0.54 g, 1.84 mmol). Yield: 92 %; Mp: 51 °C;  $^{1}$ H NMR (300 MHz, DMSO- $^{4}$ 6) δ ppm 0.86-0.92 (m, 6 H), 1.28 (m, 8 H), 1.49-1.58 (m, 4 H), 2.54 (t,  $^{2}$ 7.6 Hz, 2 H, overlap with DMSO), 3.44 (br q,  $^{2}$ 5.6 Hz, 2 H), 7.12 (d,  $^{2}$ 8.1 Hz, 2 H), 7.26 (d,  $^{2}$ 8.6 Hz, 2 H), 7.59 (br. s, 1 H), 9.30 (br. s, 1 H);  $^{13}$ C{ $^{1}$ H} NMR (75 MHz, DMSO- $^{4}$ 6) δ ppm 13.7, 13.9, 21.7, 22.0, 26.0, 28.4, 31.0, 33.1, 34.2, 43.8, 123.2, 128.3, 136.8, 138.2, 180.2; IR (solid):  $^{2}$ 93.0, 2860, 1550, 1500, 1270, 837 cm $^{-1}$ ; LRMS (ESI+):  $^{2}$ 93.4 [M+H] $^{+}$ , 315.4 [M+Na] $^{+}$ ; HRMS (ES) for C<sub>17</sub>H<sub>28</sub>SN<sub>2</sub>Na [M+Na] $^{+}$ :  $^{2}$ 15.1865 (calcd), 315.1870 (found).

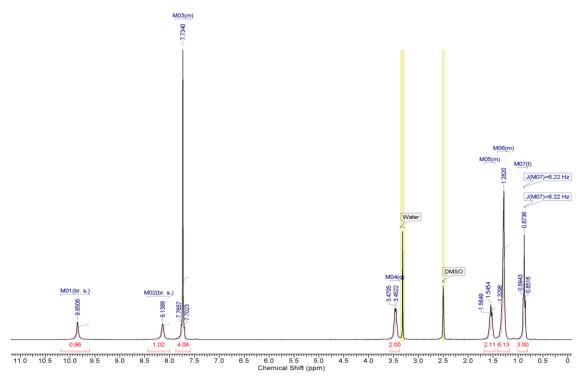
**1-(4-pentylphenyl)-3-hexylthiourea** (**22).** A solution of 4-pentylaniline (0.54 mL, 3.06 mmol) and hexyl isothiocyanate (0.47 mL, 3.06 mmol) in 10 mL pyridine was heated to 70 °C overnight under inert atmosphere and then concentrated *in vacuo* to give a clear, viscous oil. This oil was dissolved in methanol and purified via an ion exchange column for bases (Isolute SCX-2, Biotage). The methanol fraction was taken to dryness and the product was recrystallized from diethyl ether (2 mL). The product was then further purified via flash chromatography (diethylether:hexane 1:1) and subsequently dried under high vacuum to yield a waxy solid (0.72 g, 2.35 mmol). Yield: 77 %; Mp: 48 °C; <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ) δ ppm 0.85-0.89 (m, 6 H), 1.28 (m, 10 H), 1.48-1.61 (m, 4 H), 2.53 (t, J=7.3 Hz, 2 H, overlap with DMSO), 3.44 (q, J=5.9 Hz, 2 H), 7.12 (d, J=8.4 Hz, 2 H), 7.26 (d, J=8.4 Hz, 2 H), 7.60 (br. s, 1 H), 9.31 (br. s, 1 H); <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, DMSO- $d_6$ ) δ ppm 13.9 (2 peaks), 21.9, 22.0, 26.1, 28.4, 30.6, 30.9, 31.0, 34.5, 43.8, 123.2, 128.3, 136.8, 138.2, 180.2; IR (solid): v= 3190, 2920, 2850, 1540 cm<sup>-1</sup>; LRMS (ESI+): m/z= 307.4 [M+H]<sup>+</sup>, 329.4 [M+Na]<sup>+</sup>; HRMS (ES) for C<sub>18</sub>H<sub>30</sub>SN<sub>2</sub>Na [M+Na]<sup>+</sup>: m/z= 329.3027 (calcd), 329.2027 (found).


# S3. NMR SPECTRA

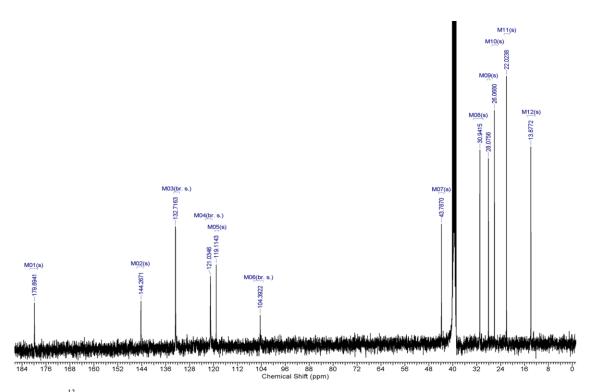



**Figure S1.** <sup>1</sup>H NMR spectrum of compound **1** (Br) in DMSO- $d_6$  at 298K.

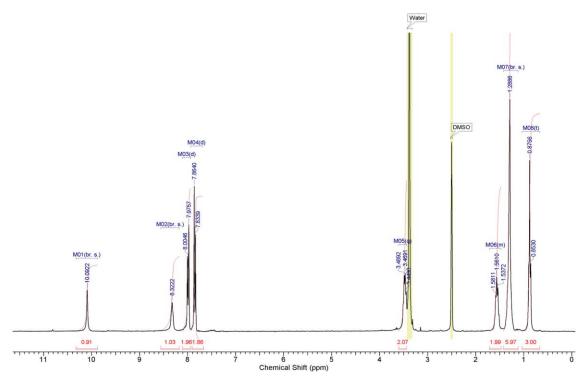



**Figure S2.**  $^{13}$ C NMR spectrum of compound **1** (Br) in DMSO- $d_6$  at 298K.

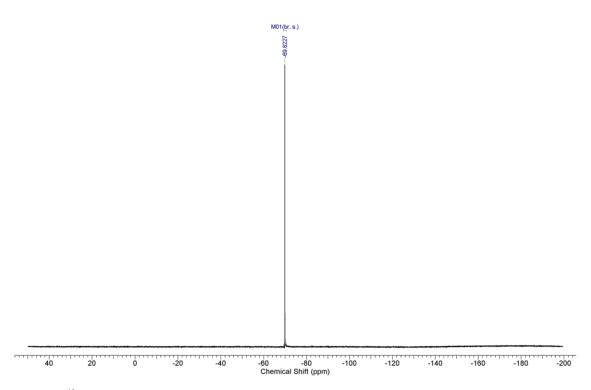



**Figure S3.** <sup>1</sup>H NMR spectrum of compound **3** (Cl) in DMSO- $d_6$  at 298K.

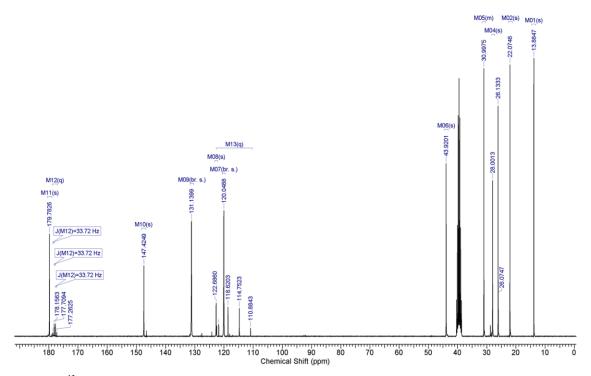



**Figure S4.**  $^{13}$ C NMR spectrum of compound **3** (Cl) in DMSO- $d_6$  at 298K.

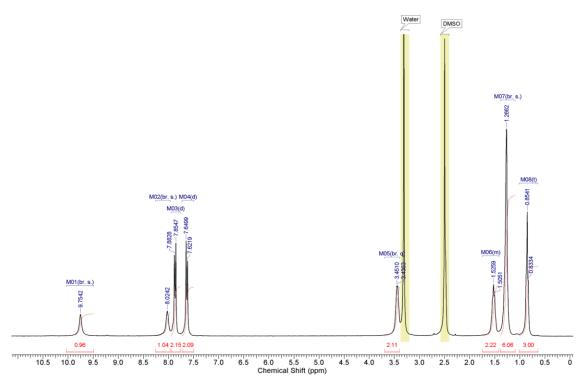



**Figure S5.**  $^{1}$ H NMR spectrum of compound **4** (CN) in DMSO- $d_6$  at 298K.

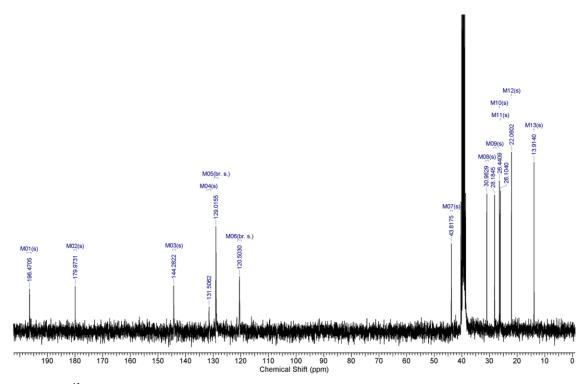



**Figure S6.**  $^{13}$ C NMR spectrum of compound **4** (CN) in DMSO- $d_6$  at 298K.

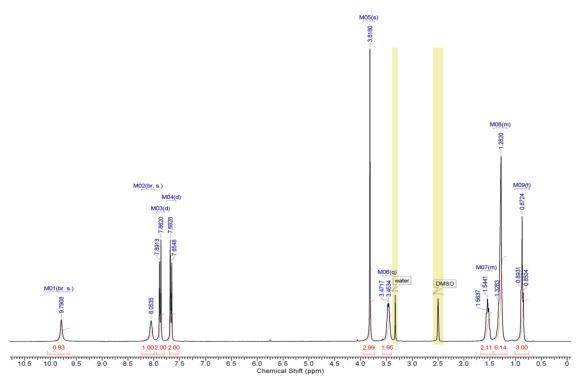



**Figure S7.** <sup>1</sup>H NMR spectrum of compound **5** (COCF<sub>3</sub>) in DMSO- $d_6$  at 298K.

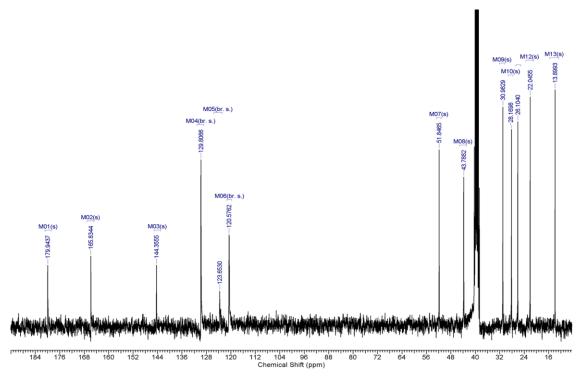



**Figure S8.** <sup>19</sup>F NMR spectrum of compound **5** (COCF<sub>3</sub>) in DMSO- $d_6$  at 298K.

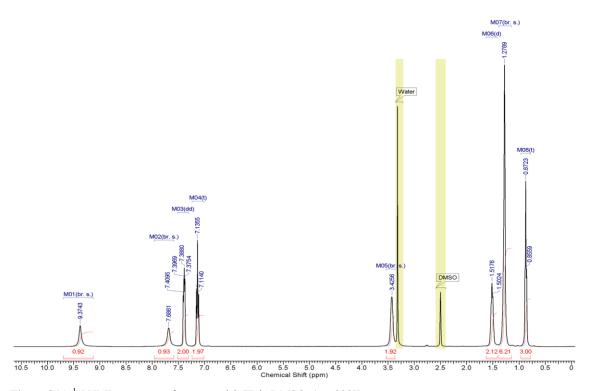



**Figure S9.**  $^{13}$ C NMR spectrum of compound **5** (COCF<sub>3</sub>) in DMSO- $d_6$  at 298K.

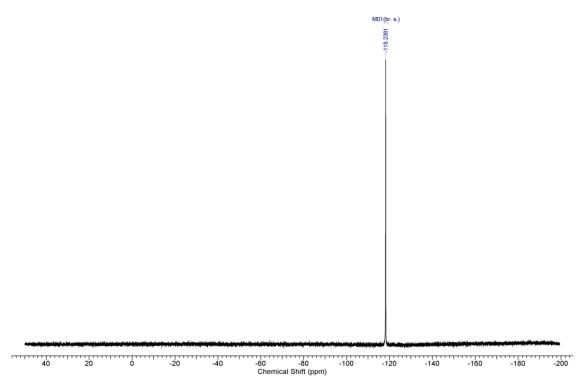



**Figure S10.** <sup>1</sup>H NMR spectrum of compound **6** (COMe) in DMSO- $d_6$  at 298K.

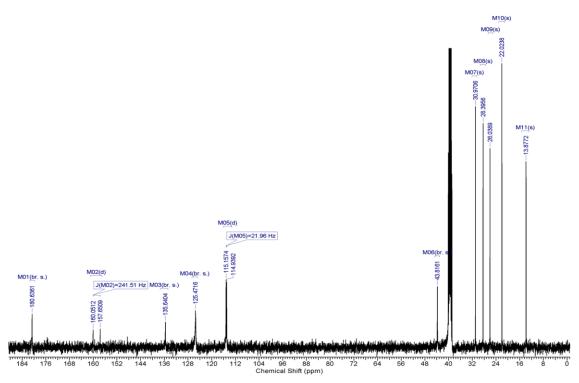



**Figure S11.**  $^{13}$ C NMR spectrum of compound **6** (COMe) in DMSO- $d_6$  at 298K.

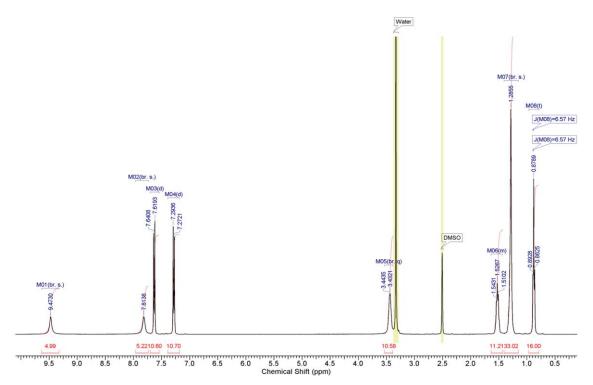



**Figure S12.** <sup>1</sup>H NMR spectrum of compound **7** (COOMe) in DMSO- $d_6$  at 298K.

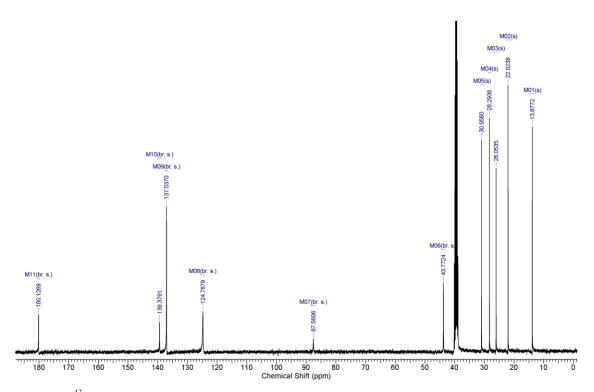



**Figure S13.**  $^{13}$ C NMR spectrum of compound **7** (COOMe) in DMSO- $d_6$  at 298K.

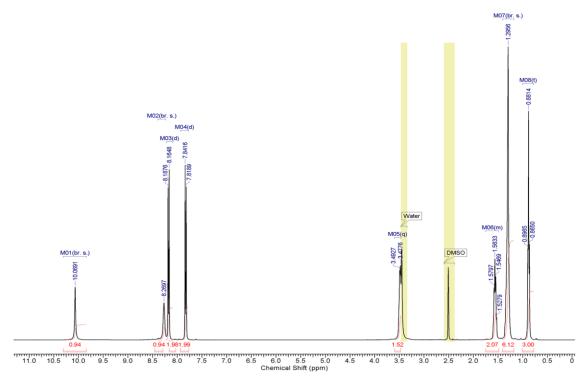



**Figure S14.** <sup>1</sup>H NMR spectrum of compound **8** (F) in DMSO- $d_6$  at 298K.

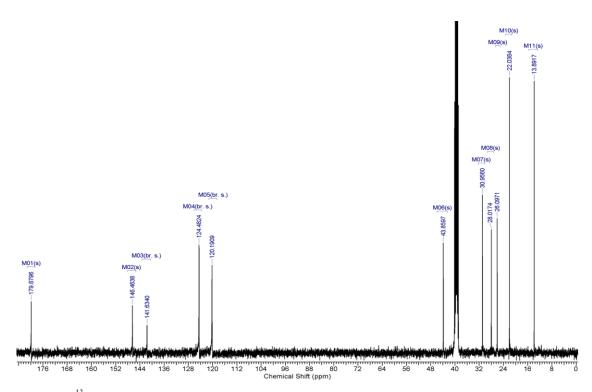



**Figure S15.** <sup>19</sup>F NMR spectrum of compound **8** (F) in DMSO- $d_6$  at 298K.

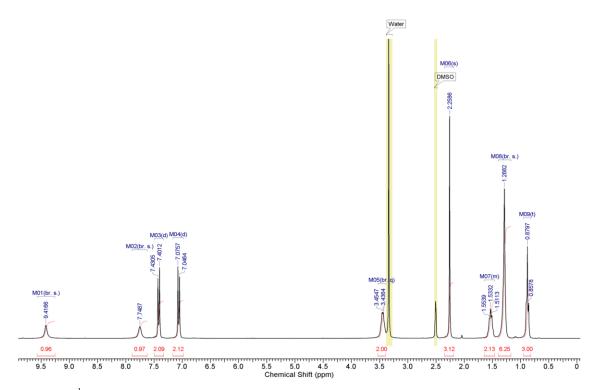



**Figure S16.** <sup>13</sup>C NMR spectrum of compound **8** (F) in DMSO- $d_6$  at 298K.

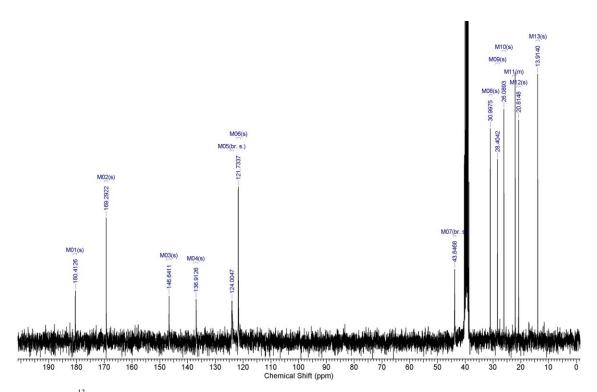



**Figure S17.** <sup>1</sup>H NMR spectrum of compound **10** (I) in DMSO- $d_6$  at 298K.

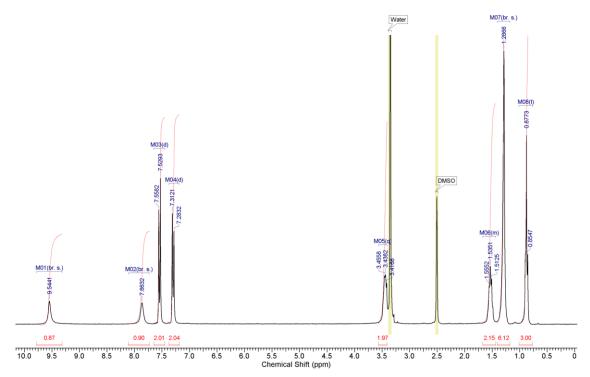



**Figure S18.**  $^{13}$ C NMR spectrum of compound **10** (I) in DMSO- $d_6$  at 298K.

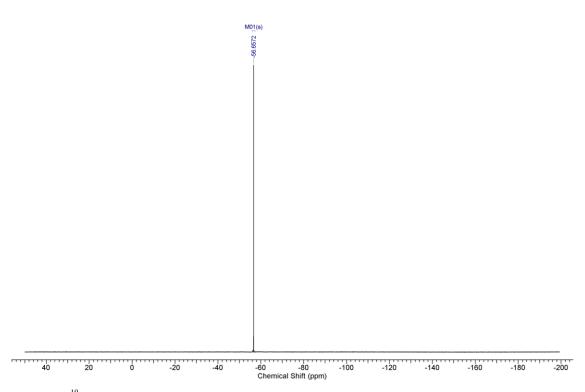



**Figure S19.** <sup>1</sup>H NMR spectrum of compound **11** (NO<sub>2</sub>) in DMSO- $d_6$  at 298K.

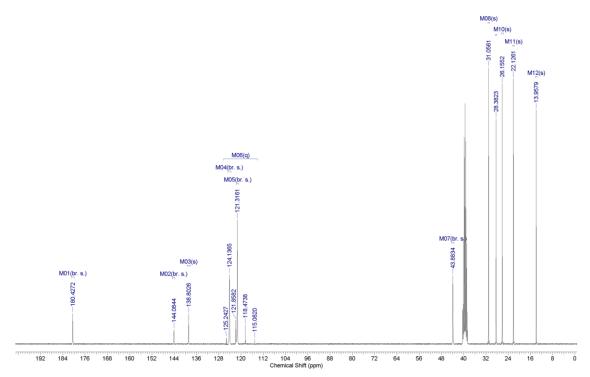



**Figure S20.**  $^{13}$ C NMR spectrum of compound **11** (NO<sub>2</sub>) in DMSO- $d_6$  at 298K.

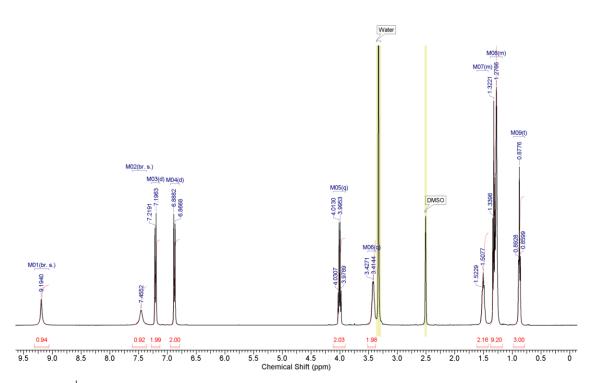



**Figure S21.** <sup>1</sup>H NMR spectrum of compound **12** (OCOMe) in DMSO- $d_6$  at 298K.

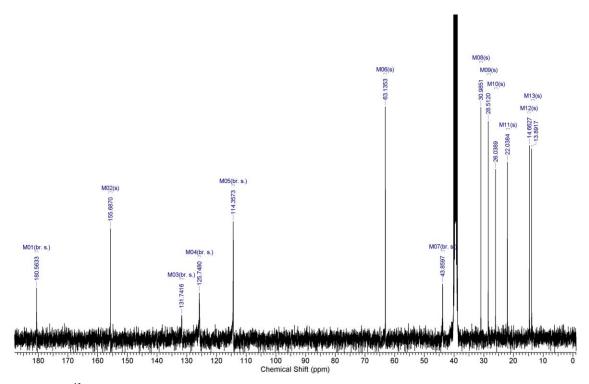



**Figure S22.**  $^{13}$ C NMR spectrum of compound **12** (OCOMe) in DMSO- $d_6$  at 298K.

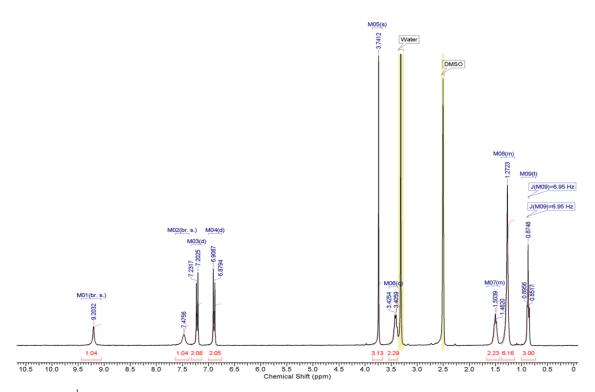



**Figure S23.** <sup>1</sup>H NMR spectrum of compound **13** (OCF<sub>3</sub>) in DMSO- $d_6$  at 298K.

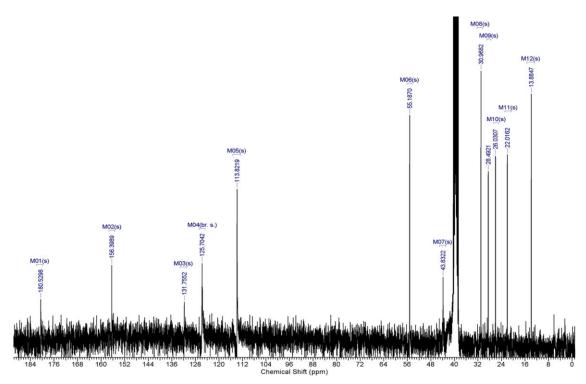



**Figure S24.**  $^{19}$ F NMR spectrum of compound **13** (OCF<sub>3</sub>) in DMSO- $d_6$  at 298K.

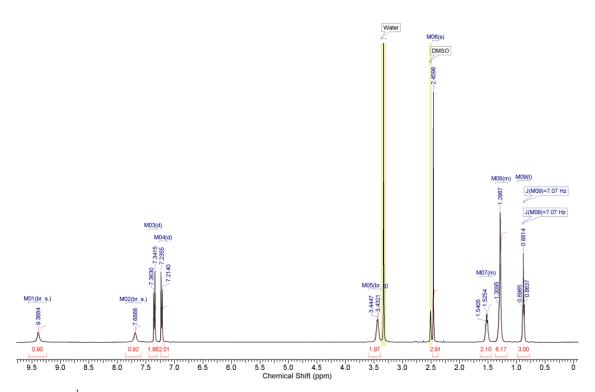



**Figure S25.**  $^{13}$ C NMR spectrum of compound **13** (OCF<sub>3</sub>) in DMSO- $d_6$  at 298K.

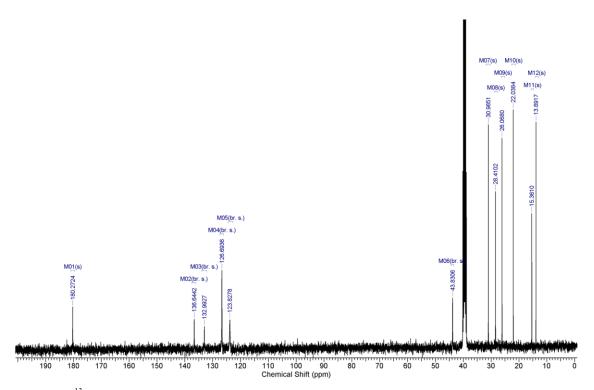



**Figure S26.** <sup>1</sup>H NMR spectrum of compound **14** (OEt) in DMSO- $d_6$  at 298K.

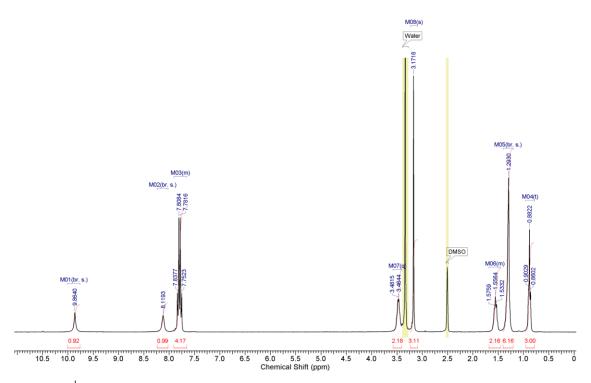



**Figure S27.** <sup>13</sup>C NMR spectrum of compound **14** (OEt) in DMSO- $d_6$  at 298K.

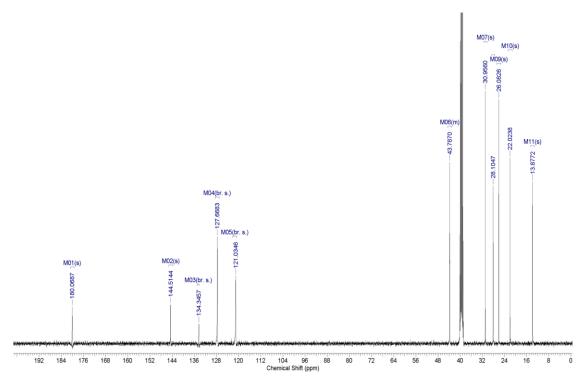



**Figure S28.** <sup>1</sup>H NMR spectrum of compound **15** (OMe) in DMSO- $d_6$  at 298K.

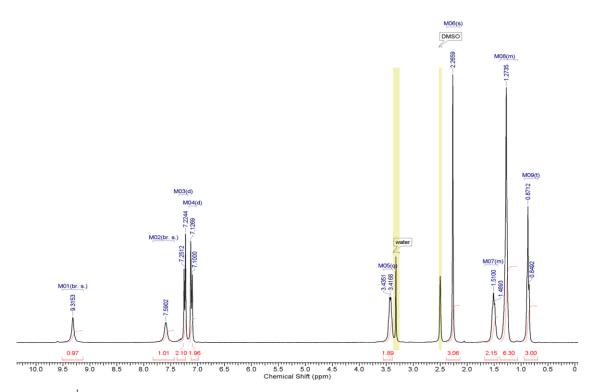



**Figure S29.**  $^{13}$ C NMR spectrum of compound **15** (OMe) in DMSO- $d_6$  at 298K.




**Figure S30.** <sup>1</sup>H NMR spectrum of compound **16** (SMe) in DMSO- $d_6$  at 298K.

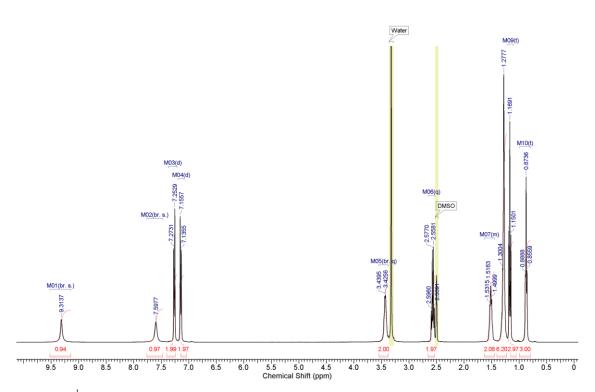



**Figure S31.**  $^{13}$ C NMR spectrum of compound **16** (SMe) in DMSO- $d_6$  at 298K.

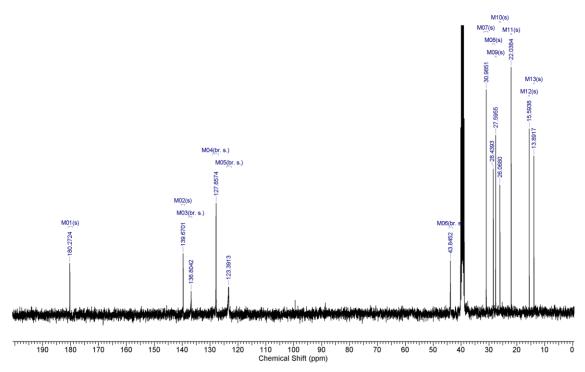


**Figure S32.** <sup>1</sup>H NMR spectrum of compound **17** (SO<sub>2</sub>Me) in DMSO- $d_6$  at 298K.

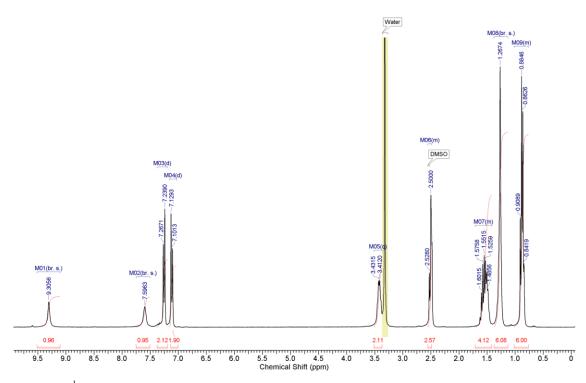



**Figure S33.**  $^{13}$ C NMR spectrum of compound **17** (SO<sub>2</sub>Me) in DMSO- $d_6$  at 298K.

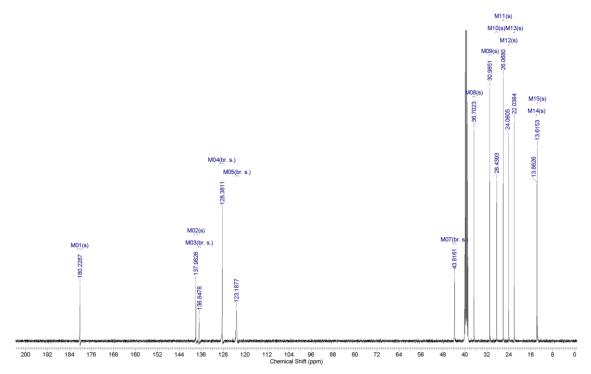



**Figure S34.** <sup>1</sup>H NMR spectrum of compound **18** (Me) in DMSO- $d_6$  at 298K.

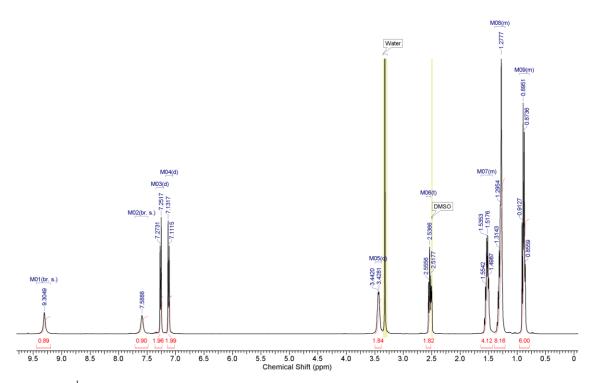



**Figure S35.**  $^{13}$ C NMR spectrum of compound **18** (Me) in DMSO- $d_6$  at 298K.

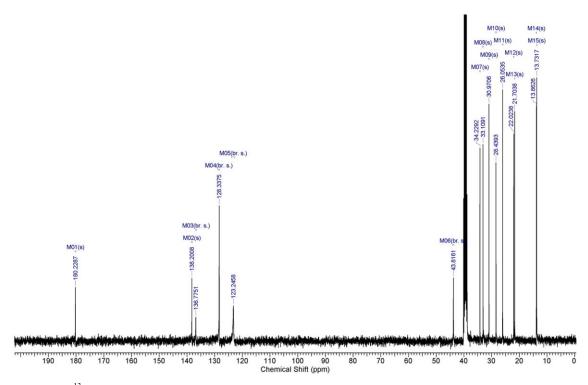



**Figure S36.** <sup>1</sup>H NMR spectrum of compound **19** (Et) in DMSO- $d_6$  at 298K.

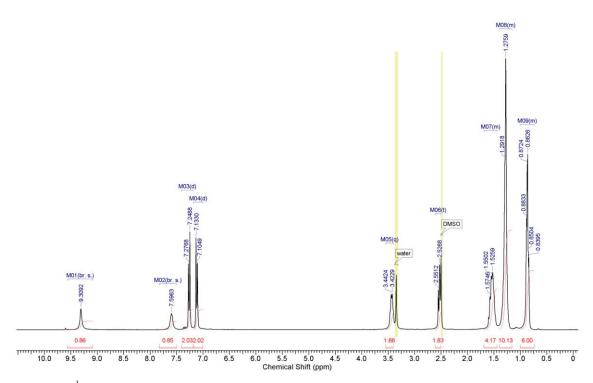



**Figure S37.**  $^{13}$ C NMR spectrum of compound **19** (Et) in DMSO- $d_6$  at 298K.

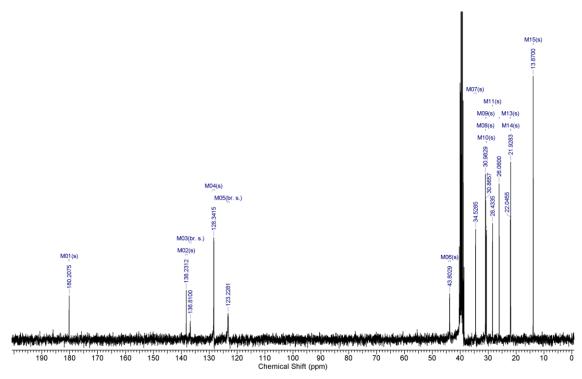



**Figure S38.** <sup>1</sup>H NMR spectrum of compound **20** (Pr) in DMSO- $d_6$  at 298K.




**Figure S39.**  $^{13}$ C NMR spectrum of compound **20** (Pr) in DMSO- $d_6$  at 298K.




**Figure S40.** <sup>1</sup>H NMR spectrum of compound **21** (Bu) in DMSO- $d_6$  at 298K.



**Figure S41.**  $^{13}$ C NMR spectrum of compound **21** (Bu) in DMSO- $d_6$  at 298K.



**Figure S42.** <sup>1</sup>H NMR spectrum of compound **22** (Pe) in DMSO- $d_6$  at 298K.



**Figure S43.**  $^{13}$ C NMR spectrum of compound **22** (Pe) in DMSO- $d_6$  at 298K.

# S4. SINGLE CRYSTAL X-RAY DIFFRACTION

Data were collected on various diffractometers at the University of Southampton. The crystal structure of compound **9** has been previously reported.<sup>2</sup> The structures were solved using SHELXS-97 (G. M. Sheldrick, Acta Cryst. (2008) A**64** 112-122)<sup>7</sup> and refined on *F2* by the full-matrix least-squares technique using the SHELXL-97 program package (G. M. Sheldrick (1997), University of Göttingen, Germany)<sup>8</sup>. Graphics are generated using ORTEP-III, MERCURY 3.0 or ViewerLite and Pov-Ray. In all cases the non-hydrogen atoms are refined anisotropically till convergence. Hydrogen atoms were stereochemically fixed at idealized positions and then refined isotropically. Hydrogen bonds are calculated using HTAB command in SHELXL-97. Structures were deposited with the Cambridge Crystallographic Database Centre (CCDC).

For 2 (-CF<sub>3</sub>, CCDC 927450), **3** (-Cl, CCDC 927445), **4** (-CN, CCDC 927447), **5** (-COCF<sub>3</sub>, CCDC 927456), **10** (-I, CCDC 927455), **11** (-NO<sub>2</sub>, CCDC 927446), **12** (-OCOMe, CCDC 927453), **14** (-OEt, CCDC 927454) and **18** (-Me, CCDC 927448): Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum rotating anode generator with VHF Varimax optics (70 μm focus). Cell determination, Data collection, Data reduction and cell refinement & Absorption correction: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011).

For 1 (-Br, CCDC 927451), 6 (-COMe, CCDC 927460), 7 (-COOMe, CCDC 927449), 8 (-F, CCDC 927452) and 20 (-Pr, CCDC 927459): Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum rotating anode generator with HF Varimax optics (100 µm focus). Cell determination, Data collection, Data reduction and cell refinement & Absorption correction: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011).

For 15 (-OMe, CCDC 927457) and 19 (-Et, CCDC 927458): Diffractometer: Beamline II9 situated on an undulator insertion device with a combination of double crystal monochromator, vertical and horizontal focussing mirrors and a series of beam slits (primary white beam and either side of the focussing mirrors). The experimental hutch (EH1) is equipped with a Crystal Logic 4-circle kappa geometry goniometer with a Rigaku Saturn 724 CCD detector and an Oxford Cryosystems Cryostream plus cryostat (80-500K). For conventional service crystallography the beamline operates at a typical energy of 18 keV (Zr K absorption edge) and a Rigaku ACTOR robotic sample changing system is available. Cell determination, Data collection, Data reduction and cell refinement & Absorption correction: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011).

# S4.1 X-ray data for compound 1 (-Br), CCDC 927451

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **1** in 1:1 chloroform:hexane. Crystal data for compound **1**:  $C_{13}H_{19}BrN_2S$ ,  $M_r = 315.27$  g/mol, crystal size = 0.26 x 0.03 x 0.01 mm, colourless needle, monoclinic, space group P2I/c, a = 17.3563(8) Å, b = 7.8428(3) Å, c = 21.0265(15) Å,  $\alpha = 90$  °,  $\beta = 97.599(7)$  °,  $\gamma = 90$  °, V = 2837.0(3) Å<sup>3</sup>, Z = 8,  $\rho_c = 1.476$  g cm<sup>-3</sup>,  $\mu = 3.026$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 27.48$ , reflections collected: 26506, independent reflections: 6491 ( $R_{int} = 0.0555$ ), 307 parameters, R indices (all data):  $R_1 = 0.0523$ , w $R_2 = 0.0739$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0328$ , w $R_2 = 0.0662$ , GOOF = 1.068, largest diff. peak and hole = 0.397 and -0.502 e Å.

Table S1. Hydrogen bond properties for 1

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å)  | D-H···A (°) |
|-------------------|---------|-----------|------------|-------------|
| N2-H2···S2        | 0.88    | 2.48      | 3.3124(17) | 158.3       |
| N3-H3···S1        | 0.88    | 2.58      | 3.3703(18) | 150.0       |
| N4-H4···S1        | 0.88    | 2.61      | 3.3423(16) | 141.1       |
| N1-H1···S2        | 0.88    | 2.75      | 3.5491(18) | 152.0       |

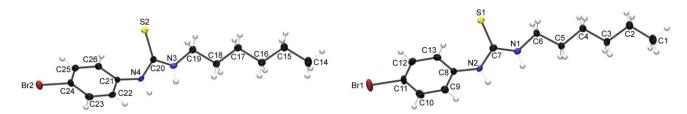
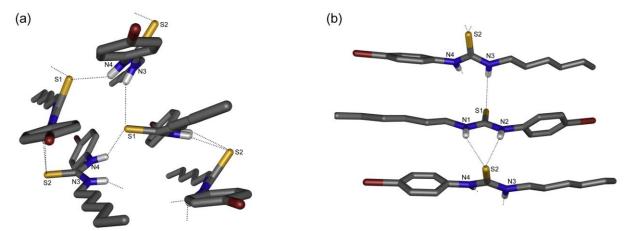




Figure S44. ORTEP diagram of 1 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S45.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **1** (two different views (a) and (b)). For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

## S4.2 X-ray data for compound 2 (-CF<sub>3</sub>), CCDC 927450

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 2 in 1:1 chloroform:hexane. Crystal data for compound 2:  $C_{14}H_{19}F_3N_2S$ ,  $M_r = 304.37$  g/mol, crystal size = 0.39 x 0.03 x 0.03 mm, colourless needle, monoclinic, space group P2I/c, a = 13.298(8) Å, b = 13.278(6) Å, c = 8.673(4) Å,  $\alpha = 90$ °,  $\beta = 91.912(18)$ °,  $\gamma = 90$ °, V = 1530.5(14) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.321$  g cm<sup>-3</sup>,  $\mu = 0.235$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 27.47$ , reflections collected: 8095, independent reflections: 3436 ( $R_{int} = 0.0772$ ), 181 parameters, R indices (all data):  $R_1 = 0.0888$ , w $R_2 = 0.1325$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0549$ , w $R_2 = 0.1192$ , GOOF = 1.053, largest diff. peak and hole = 0.590 and -0.452 e Å.

Table S2. Hydrogen bond properties for 2

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
|-------------------|---------|-----------|-----------|-------------|
| N1-H1····S1       | 0.88    | 2.61      | 3.465(2)  | 164.8       |
| N2-H2···S1        | 0.88    | 2.92      | 3.714(2)  | 150.7       |

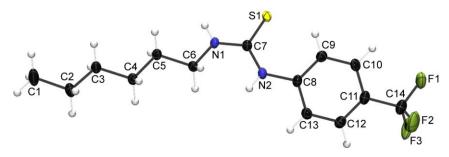
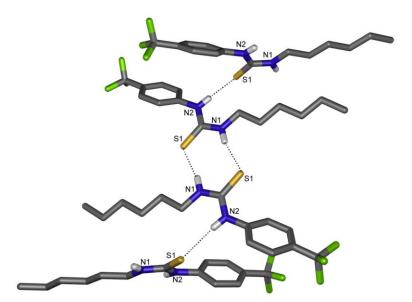




Figure S46. ORTEP diagram of 2 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S47.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **2**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

## S4.3 X-ray data for compound 3 (-Cl), CCDC 927445

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 3 in 1:1 chloroform:hexane. Crystal data for compound 3:  $C_{13}H_{19}ClN_2S$ ,  $M_r = 270.82$  g/mol, crystal size = 0.70 x 0.12 x 0.02 mm, colourless needle, orthorhombic, space group Pbcn, a = 13.987(7) Å, b = 8.170(4) Å, c = 24.959(12) Å,  $\alpha = 90$ °,  $\beta = 90$ °,  $\gamma = 90$ °, V = 2852(2) Å<sup>3</sup>, Z = 8,  $\rho_c = 1.262$  g cm<sup>-3</sup>,  $\mu = 0.396$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 25.03$ , reflections collected: 13636, independent reflections: 2526 ( $R_{int} = 0.0758$ ), 176 parameters, R indices (all data):  $R_1 = 0.1033$ , w $R_2 = 0.1342$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0914$ , w $R_2 = 0.1303$ , GOOF = 1.324, largest diff. peak and hole = 0.271 and -0.266 e Å . The hexyl chain was found to be disorder and was modeled with 2 separate orientations (occupancies of 1/3 and 2/3), thermal parameter constraints and geometrical restraints were applied (9 restraints).

**Table S3.** Hydrogen bond properties for **3** 

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D…A (Å)  | <b>D-H···A</b> (°) |
|-------------------|---------|-----------|----------|--------------------|
| N1-H1···S1        | 0.88    | 2.65      | 3.500(4) | 163.1              |
| N2-H2···S1        | 0.88    | 2.61      | 3.442(4) | 158.9              |

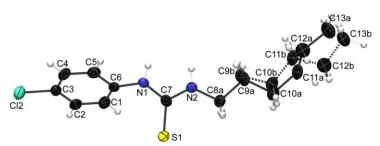
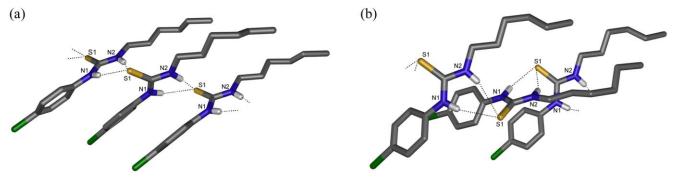
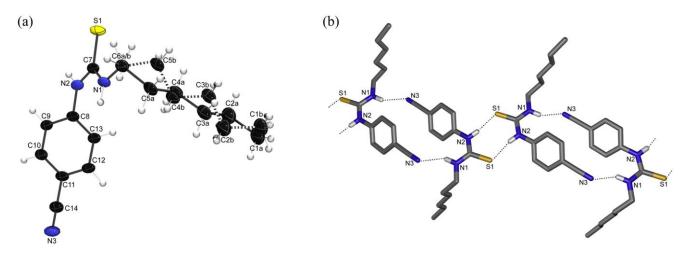




Figure S48. ORTEP diagram of 3 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.




**Figure S49.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **3** (two different views (a) and (b)). For clarity, only atoms involved in hydrogen bonding are labeled and disorder is omitted. Hydrogen bonds are represented by dashed lines.

# S4.4 X-ray data for compound 4 (-CN), CCDC 927447

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 4 in 1:1 dichloromethane:hexane. Crystal data for compound 4:  $C_{14}H_{19}N_3S$ ,  $M_r = 261.38$  g/mol, crystal size = 0.18 x 0.08 x 0.01 mm, colourless platelet, triclinic, space group P-I, a = 7.466(3) Å, b = 8.049(3) Å, c = 13.472(5) Å,  $\alpha = 82.276(9)$  °,  $\beta = 82.154(10)$  °,  $\gamma = 63.734(8)$  °, V = 716.7(5) Å<sup>3</sup>, Z = 2,  $\rho_c = 1.211$  g cm<sup>-3</sup>,  $\mu = 0.213$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 27.46$ , reflections collected: 6649, independent reflections: 3271 ( $R_{int} = 0.0820$ ), 179 parameters, R indices (all data):  $R_1 = 0.1143$ , w $R_2 = 0.2781$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.1018$ , w $R_2 = 0.2625$ , GOOF = 1.064, largest diff. peak and hole = 0.929 and -1.303 e Å . The hexyl chain was found to be disordered and was modeled with two separate orientations (occupancies of 1/3 and 2/3), thermal parameter and geometrical restraints were applied (195 restraints).

**Table S4.** Hydrogen bond properties for 4

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | <b>D-H···</b> A (°) |
|-------------------|---------|-----------|-----------|---------------------|
| N1-H1···N3        | 0.88    | 2.27      | 3.029(3)  | 144.0               |
| N2-H2···S1        | 0.88    | 2.52      | 3.327(3)  | 152.0               |



**Figure S50.** (a) ORTEP diagram of **4** with atom numbering, showing 50 % probability factor for the thermal ellipsoids. (b) Schematic representation of the intermolecular hydrogen bonds in the crystal of **4**. For clarity, only atoms involved in hydrogen bonding are labeled and disorder is omitted. Hydrogen bonds are represented by dashed lines.

# S4.5 X-ray data for compound 5 (-COCF<sub>3</sub>), CCDC 927456

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **5** in 1:1 chloroform:hexane. Crystal data for compound **5**:  $C_{15}H_{19}F_3N_2OS$ ,  $M_r = 332.38$  g/mol, crystal size = 0.27 x 0.10 x 0.02 mm, colourless plate, triclinic, space group P-I, a = 5.2392(4) Å, b = 11.0200(9) Å, c = 14.5788(11) Å,  $\alpha = 75.946(5)$ °,  $\beta = 79.884(6)$ °,  $\gamma = 79.501(6)$ °, V = 795.20(11) Å<sup>3</sup>, Z = 2,  $\rho_c = 1.388$  g cm<sup>-3</sup>,  $\mu = 0.237$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 27.48$ , reflections collected: 7651, independent reflections: 3632 ( $R_{int} = 0.0283$ ), 199 parameters, R indices (all data):  $R_1 = 0.0376$ , w $R_2 = 0.0952$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0331$ , w $R_2 = 0.0878$ , GOOF = 1.086, largest diff. peak and hole = 0.387 and -0.219 e Å.

Table S5. Hydrogen bond properties for 5

| DonorH···Acceptor | <b>D-H</b> (Å) | H···A (Å) | D…A (Å)    | D-H····A (°) |
|-------------------|----------------|-----------|------------|--------------|
| N1-H1···S1        | 0.88           | 2.48      | 3.3380(11) | 165.4        |
| N2-H2···O1        | 0.88           | 2.40      | 3.0444(15) | 130.4        |

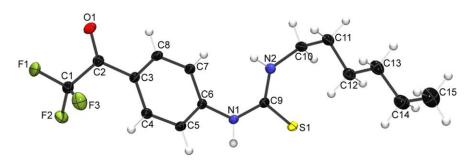




Figure S51. ORTEP diagram of 5 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S52.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **5**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

### S4.6 X-ray data for compound 6 (-COMe), CCDC 927460

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 6 in 1:1 methanol:hexane. Crystal data for compound 6:  $C_{15}H_{22}N_2OS$ ,  $M_r = 278.42$  g/mol, crystal size = 0.20 x 0.20 x 0.20 mm, colourless needle (fragment), orthorhombic, space group Pbca, a = 7.756(6) Å, b = 10.120(7) Å, c = 37.38(3) Å,  $\alpha = 90$  °,  $\beta = 90$  °,  $\gamma = 90$  °, V = 2934(4) Å<sup>3</sup>, Z = 8,  $\rho_c = 1.261$  g cm<sup>-3</sup>,  $\mu = 0.215$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 25.68$ , reflections collected: 12353, independent reflections: 2507 ( $R_{int} = 0.0793$ ), 172 parameters, R indices (all data):  $R_1 = 0.1142$ , w $R_2 = 0.2504$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0970$ , w $R_2 = 0.2373$ , GOOF = 1.111, largest diff. peak and hole = 0.384 and -0.331 e Å. Data completeness is only 89.8%, but this is sufficient for proof of structure and hydrogen bonding network.

Table S6. Hydrogen bond properties for 6

| DonorH···Acceptor | <b>D-H</b> (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
|-------------------|----------------|-----------|-----------|-------------|
| N1-H1···O1        | 0.88           | 2.50      | 3.125(6)  | 129.1       |
| N1-H1···S1        | 0.88           | 2.67      | 3.401(4)  | 141.2       |
| N2-H2···S1        | 0.88           | 2.78      | 3.576(4)  | 151.3       |

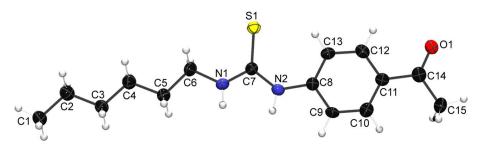
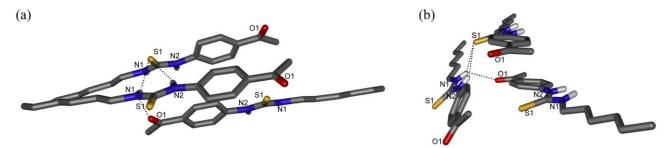
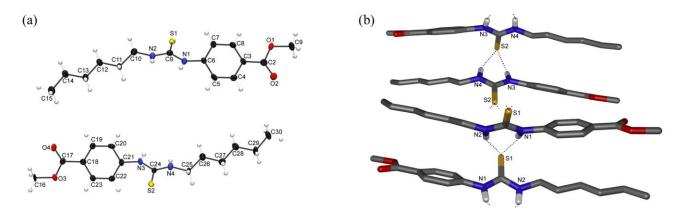




Figure S53. ORTEP diagram of 6 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.




**Figure S54.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **6** (two different views (a) and (b)). For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

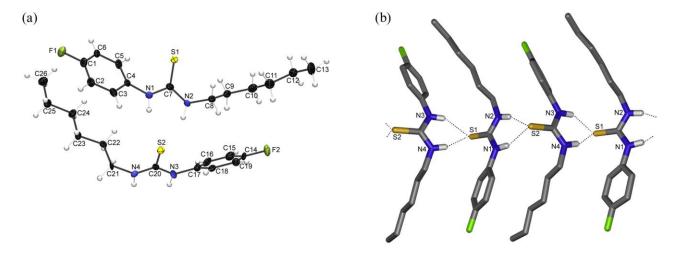
# S4.7 X-ray data for compound 7 (-COOMe), CCDC 927449

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 7 in 1:1 chloroform:hexane. Crystal data for compound 7:  $C_{15}H_{22}N_2O_2S$ ,  $M_r$  = 294.41 g/mol, crystal size = 0.04 x 0.04 x 0.01 mm , colourless plate, monoclinic, space group P2I/c, a = 11.0875(8) Å, b = 7.4703(6) Å, c = 37.579(3) Å,  $\alpha$  = 90 °,  $\beta$  = 100.356(7) °,  $\gamma$  = 90 °, V = 3061.8(4) Å<sup>3</sup>, Z = 8,  $\rho_c$  = 1.277 g cm<sup>-3</sup>,  $\mu$  = 0.215 mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max}$  = 25.03, reflections collected: 10229, independent reflections: 5045 ( $R_{int}$  = 0.0867), 365 parameters, R indices (all data):  $R_1$  = 0.1527, w $R_2$  = 0.2537, final R indices [I > 2 $\sigma I$ ]:  $R_1$  = 0.0864, w $R_2$  = 0.2149, GOOF = 1.042, largest diff. peak and hole = 0.821 and -0.515 e Å . Data completeness is only 93.5%, but this is sufficient for proof of structure and hydrogen bonding network.

Table S7. Hydrogen bond properties for 7

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | D-H····A (°) |
|-------------------|---------|-----------|-----------|--------------|
| N1-H1····S1       | 0.88    | 2.48      | 3.321(5)  | 159.9        |
| N2-H2···S1        | 0.88    | 2.60      | 3.440(5)  | 159.9        |
| N3-H3····S2       | 0.88    | 2.50      | 3.334(5)  | 157.7        |
| N4-H4A···S2       | 0.88    | 2.63      | 3.462(5)  | 159.1        |




**Figure S55.** (a) ORTEP diagram of **7** with atom numbering, showing 50 % probability factor for the thermal ellipsoids. (b) Schematic representation of the intermolecular hydrogen bonds in the crystal of **7**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

### S4.8 X-ray data for compound 8 (-F), CCDC 927452

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 8 in 1:1 chloroform:hexane. Crystal data for compound 8:  $C_{13}H_{19}FN_2S$ ,  $M_r = 254.36$  g/mol, crystal size = 0.55 x 0.50 x 0.01 mm, colourless plate, orthorhombic, space group Pca2I, a = 17.405(12) Å, b = 8.732(6) Å, c = 17.612(12) Å, a = 90°, a = 9

Table S8. Hydrogen bond properties for 8

| DonorH···Acceptor | D-H (Å) | H…A (Å) | D…A (Å)  | D-H····A (°) |
|-------------------|---------|---------|----------|--------------|
| N1-H2···S2        | 0.86    | 2.49    | 3.321(4) | 161.5        |
| N1-H2···S2        | 0.86    | 2.49    | 3.321(4) | 161.5        |
| N3-H3B···S1       | 0.88    | 2.56    | 3.383(4) | 155.4        |
| N4-H4···S1        | 0.88    | 2.56    | 3.373(4) | 154.3        |



**Figure S56.** (a) ORTEP diagram of **8** with atom numbering, showing 50 % probability factor for the thermal ellipsoids. (b) Schematic representation of the intermolecular hydrogen bonds in the crystal of **8**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

### S4.9 X-ray data for compound 10 (-I), CCDC 927455

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **10** in 1:1 methanol:hexane. Crystal data for compound **10**:  $C_{13}H_{19}IN_2S$ ,  $M_r = 362.26$  g/mol, crystal size = 0.10 x 0.01 x 0.01 mm, colourless needle, monoclinic, space group P2I/n, a = 11.4798(8) Å, b = 8.4051(6) Å, c = 15.6294(11) Å,  $\alpha = 90$ °,  $\beta = 102.550(7)$ °,  $\gamma = 90$ °, V = 1472.03(18) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.635$  g cm<sup>-3</sup>,  $\mu = 2.300$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 27.48$ , reflections collected: 13677, independent reflections: 3362 ( $R_{int} = 0.0483$ ), 154 parameters, R indices (all data):  $R_1 = 0.0327$ , w $R_2 = 0.0562$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0250$ , w $R_2 = 0.0541$ , GOOF = 1.021, largest diff. peak and hole = 0.488 and -0.571 e Å.

Table S9. Hydrogen bond properties for 10

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
|-------------------|---------|-----------|-----------|-------------|
| N1-H1···S1        | 0.88    | 2.49      | 3.328(2)  | 159.1       |
| N2-H2···S1        | 0.88    | 2.54      | 3.380(2)  | 159.5       |

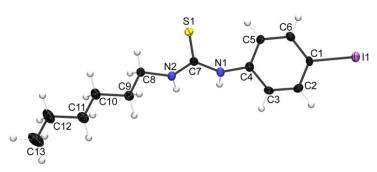
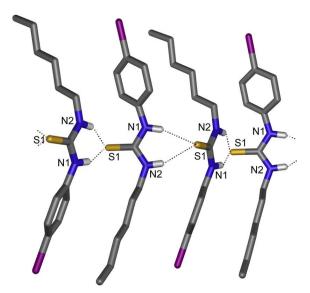
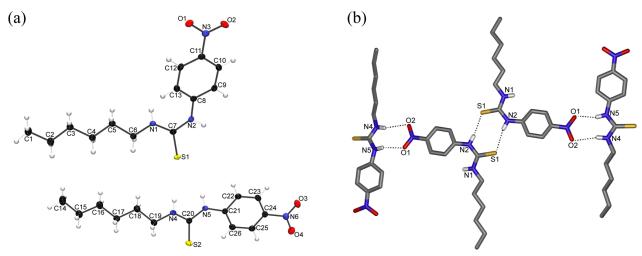




Figure S57. ORTEP diagram of 10 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.




**Figure S58.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **10**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

# S4.10 X-ray data for compound 11 (-NO<sub>2</sub>), CCDC 927446

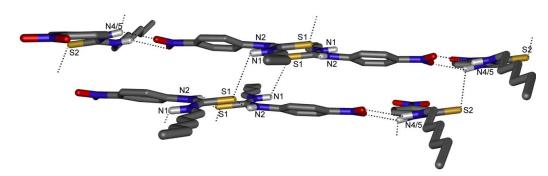

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **11** in 1:1 dichloromethane:hexane. Crystal data for compound **11**:  $C_{13}H_{19}N_3O_2S$ ,  $M_r = 281.37$  g/mol, crystal size = 0.20 x 0.08 x 0.03 mm , yellow block, triclinic, space group P-I, a = 5.2833(5) Å, b = 14.9019(15) Å, c = 18.0119(18) Å,  $\alpha = 91.957(7)$  °,  $\beta = 95.987(7)$  °,  $\gamma = 92.116(7)$  °, V = 1408.4(2) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.327$  g cm<sup>-3</sup>,  $\mu = 0.232$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 25.02$ , reflections collected: 11029, independent reflections: 4960 ( $R_{int} = 0.0211$ ), 343 parameters,  $R_{ind} = 0.0359$ , w $R_{ind} = 0.0874$ , final  $R_{ind} = 0.0359$ ;  $R_{ind} = 0.0321$ , w $R_{ind} = 0.0849$ ,  $R_{ind} = 0.0358$  e Å .

Table S10. Hydrogen bond properties for 11

| DonorH···Acceptor | D-H (Å) | H…A (Å) | D···A (Å)  | D-H···A (°) |
|-------------------|---------|---------|------------|-------------|
| N1-H1···S1        | 0.88    | 2.83    | 3.3296(13) | 117.9       |
| N2-H2···S1        | 0.88    | 2.56    | 3.4079(13) | 161.4       |
| N4-H4···O2        | 0.88    | 2.42    | 3.2625(17) | 159.2       |
| N4-H4···S2        | 0.88    | 2.90    | 3.4009(14) | 117.9       |
| N5-H5···O1        | 0.88    | 2.17    | 2.9811(16) | 153.0       |



**Figure S59.** (a) ORTEP diagram of **11** with atom numbering, showing 50 % probability factor for the thermal ellipsoids. (b) Schematic representation of the intermolecular hydrogen bonds in the crystal of **11**.



**Figure S60.** Second schematic representation of the intermolecular hydrogen bonds in the crystal of **11**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

# S4.11 X-ray data for compound 12 (-OCOMe), CCDC 927453

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound 12 in 1:1 dichloromethane:hexane. Crystal data for compound 12:  $C_{15}H_{22}N_2O_2S$ ,  $M_r = 294.41$  g/mol, crystal size = 0.11 x 0.10 x 0.02 mm , colourless platelet, monoclinic, space group P2I/n, a = 5.553(4) Å, b = 9.157(8) Å, c = 30.91(3) Å,  $\alpha = 90$  °,  $\beta = 93.215(8)$  °,  $\gamma = 90$  °, V = 1569(2) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.246$  g cm<sup>-3</sup>,  $\mu = 0.210$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 27.49$ , reflections collected: 24561, independent reflections: 3586 ( $R_{int} = 0.0661$ ), 181 parameters, R indices (all data):  $R_1 = 0.0848$ , w $R_2 = 0.1805$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0724$ , w $R_2 = 0.1729$ , GOOF = 1.187, largest diff. peak and hole = 0.449 and -0.438 e Å .

Table S11. Hydrogen bond properties for 12

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D…A (Å)  | D-H···A (°) |
|-------------------|---------|-----------|----------|-------------|
| N1-H1····O2       | 0.88    | 2.08      | 2.928(3) | 160.4       |
| N2-H2···O2        | 0.88    | 2.35      | 3.120(4) | 146.7       |

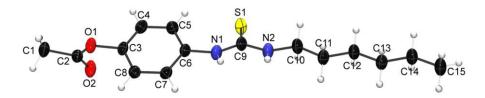
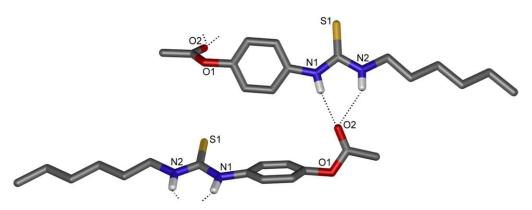




Figure S61. ORTEP diagram of 12 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S62.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **12**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

### S4.12 X-ray data for compound 14 (-OEt), CCDC 927454

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **14** in 1:1 chloroform:hexane. Crystal data for compound **14**:  $C_{15}H_{24}N_2OS$ ,  $M_r = 280.42$  g/mol, crystal size = 0.27 x 0.03 x 0.02 mm, colourless needle, triclinic, space group P-I, a = 8.39(1) Å, b = 9.689(11) Å, c = 19.62(2) Å,  $\alpha = 93.19(2)$  °,  $\beta = 101.167(18)$  °,  $\gamma = 90.09(3)$  °, V = 1562(3) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.192$  g cm<sup>-3</sup>,  $\mu = 0.203$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 25.03$ , reflections collected: 12058, independent reflections: 5451 ( $R_{int} = 0.0876$ ), 343 parameters, R indices (all data):  $R_1 = 0.1467$ , w $R_2 = 0.2111$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0970$ , w $R_2 = 0.1868$ , GOOF = 1.151, largest diff. peak and hole = 0.375 and -0.346 e Å.

Table S12. Hydrogen bond properties for 14

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
|-------------------|---------|-----------|-----------|-------------|
| N1-H1···S2        | 0.87    | 2.54      | 3.390(5)  | 165.7       |
| N2-H2···S2        | 0.88    | 2.67      | 3.502(5)  | 157.9       |
| N3-H3····S1       | 0.88    | 2.55      | 3.397(5)  | 161.2       |
| N4-H4···S1        | 0.88    | 2.62      | 3.453(5)  | 157.7       |

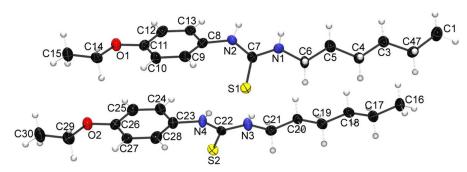
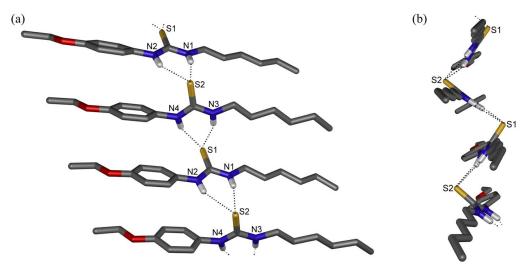




Figure S63. ORTEP diagram of 14 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S64.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **14** (two different views (a) and (b)). For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

# S4.13 X-ray data for compound 15 (-OMe), CCDC 927457

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **15**:  $C_{14}H_{22}N_2OS$ ,  $M_r = 266.40$  g/mol, crystal size = 0.12 x 0.08 x 0.01 mm, colourless plate, monoclinic, space group P2I/c, a = 36.040(5) Å, b = 4.347(5) Å, c = 9.590(5) Å,  $\alpha = 90$ °,  $\beta = 95.300(5)$ °,  $\gamma = 90$ °, V = 1496.0(19) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.183$  g cm<sup>-3</sup>,  $\mu = 0.208$  mm<sup>-1</sup>, radiation and wavelength = synchrotron (0.68890 Å), T = 100(2) K,  $\theta_{max} = 24.21$ , reflections collected: 8777, independent reflections: 2402 ( $R_{int} = 0.1318$ ), 163 parameters, R indices (all data):  $R_1 = 0.1509$ , w $R_2 = 0.2973$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0993$ , w $R_2 = 0.2443$ , GOOF = 0.953, largest diff. peak and hole = 1.085 and -0.782 e Å. Data completeness is only 90.8%, but this is sufficient for proof of structure and hydrogen bonding network.

Table S13. Hydrogen bond properties for 15

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | D-H····A (°) |
|-------------------|---------|-----------|-----------|--------------|
| N1-H1···S1        | 0.88    | 2.71      | 3.482(5)  | 147.6        |
| N2-H2···S1        | 0.88    | 2.65      | 3.434(5)  | 149.4        |

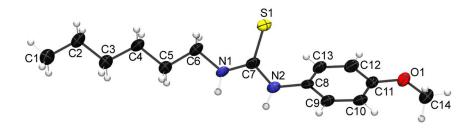
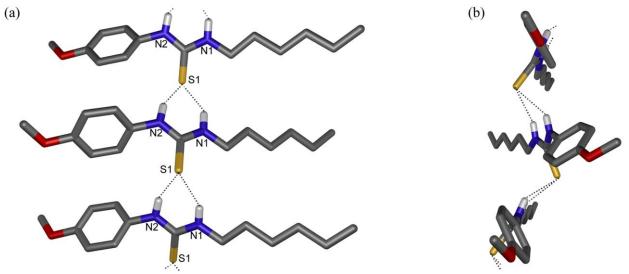




Figure S65. ORTEP diagram of 15 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S66.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **15** (two different views (a) and (b)). For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

# S4.14 X-ray data for compound 18 (-Me), CCDC 927448

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **18** in 1:1 chloroform:hexane. Crystal data for compound **18**:  $C_{14}H_{22}N_2S$ ,  $M_r = 250.40$  g/mol, crystal size = 0.32 x 0.02 x 0.01 mm, colourless needle, monoclinic, space group P2I/n, a = 10.731(3) Å, b = 8.475(2) Å, c = 16.092(4) Å,  $\alpha = 90$  °,  $\beta = 102.020(7)$  °,  $\gamma = 90$  °, V = 1431.5(6) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.162$  g cm<sup>-3</sup>,  $\mu = 0.208$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 25.03$ , reflections collected: 5504, independent reflections: 2520 ( $R_{int} = 0.0514$ ), 154 parameters, R indices (all data):  $R_1 = 0.1123$ , w $R_2 = 0.3108$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0980$ , w $R_2 = 0.3033$ , GOOF = 1.150, largest diff. peak and hole = 0.904 and -0.594 e Å.

Table S14. Hydrogen bond properties for 18

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D…A (Å)  | D-H···A (°) |
|-------------------|---------|-----------|----------|-------------|
| N1-H1····S1       | 0.88    | 2.50      | 3.344(6) | 160.2       |
| N2-H2···S1        | 0.88    | 2.54      | 3.371(6) | 156.9       |

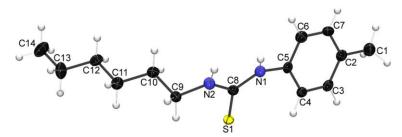
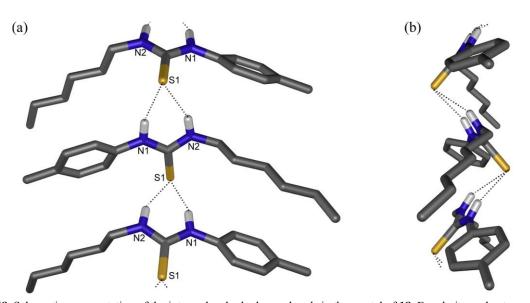




Figure S67. ORTEP diagram of 18 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S68.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **18**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

### S4.15 X-ray data for compound 19 (-Et), CCDC 927458

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **19**:  $C_{15}H_{24}N_2S$ ,  $M_r = 264.42$  g/mol, crystal size = 0.03 x 0.03 x 0.01 mm, colourless blade, monoclinic, space group P2I/c, a = 13.07(2) Å, b = 13.28(3) Å, c = 8.885(18) Å,  $\alpha = 90$ °,  $\beta = 93.56(2)$ °,  $\gamma = 90$ °, V = 1539(5) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.141$  g cm<sup>-3</sup>,  $\mu = 0.197$  mm<sup>-1</sup>, radiation and wavelength = synchrotron (0.68890 Å), T = 100(2) K,  $\theta_{max} = 24.20$ , reflections collected: 10433, independent reflections: 2637 ( $R_{int} = 0.2114$ ), 164 parameters, R indices (all data):  $R_1 = 0.1794$ , w $R_2 = 0.3229$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.1039$ , w $R_2 = 0.2559$ , GOOF = 1.075, largest diff. peak and hole = 0.432 and -0.614 e Å.

Table S15. Hydrogen bond properties for 19

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
|-------------------|---------|-----------|-----------|-------------|
| N2-H2···S001      | 0.88    | 2.57      | 3.437(7)  | 167.8       |

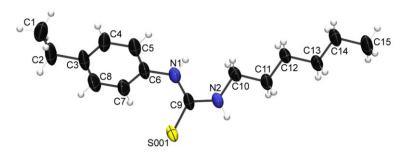



Figure S69. ORTEP diagram of 19 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S70.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **19**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

### S4.16 X-ray data for compound 20 (-Pr), CCDC 927459

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of compound **20**:  $C_{16}H_{26}N_2S$ ,  $M_r = 278.45$  g/mol, crystal size = 0.32 x 0.05 x 0.01 mm, colourless needle, monoclinic, space group P2I/c, a = 22.536(5) Å, b = 7.7393(16) Å, c = 9.223(2) Å,  $\alpha = 90$ °,  $\beta = 98.488(7)$ °,  $\gamma = 90$ °, V = 1591.0(6) Å<sup>3</sup>, Z = 4,  $\rho_c = 1.162$  g cm<sup>-3</sup>,  $\mu = 0.194$  mm<sup>-1</sup>, radiation and wavelength = MoK $\alpha$  (0.71075 Å), T = 100(2) K,  $\theta_{max} = 25.03$ , reflections collected: 11058, independent reflections: 2808 ( $R_{int} = 0.1524$ ), 174 parameters, R indices (all data):  $R_1 = 0.1934$ , w $R_2 = 0.1688$ , final R indices [ $I > 2\sigma I$ ]:  $R_1 = 0.0788$ , w $R_2 = 0.1361$ , GOOF = 0.935, largest diff. peak and hole = 0.264 and -0.306 e Å.

Table S16. Hydrogen bond properties for 20

| DonorH···Acceptor | D-H (Å) | H···A (Å) | D…A (Å)  | D-H···A (°) |
|-------------------|---------|-----------|----------|-------------|
| N1-H1····S1       | 0.88    | 2.83      | 3.595(4) | 146.6       |
| N2-H2···S1        | 0.88    | 2.54      | 3.346(4) | 153.4       |

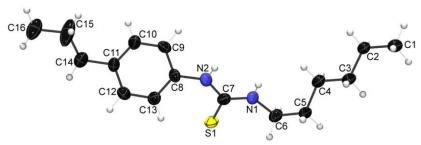
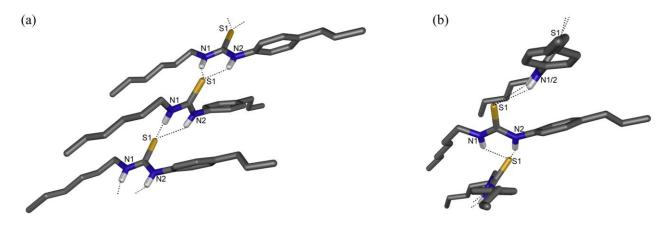




Figure S71. ORTEP diagram of 20 with atom numbering, showing 50 % probability factor for the thermal ellipsoids.



**Figure S72.** Schematic representation of the intermolecular hydrogen bonds in the crystal of **20**. For clarity, only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dashed lines.

#### **S5. NMR BINDING STUDIES**

#### **S5.1** Experimental procedure of binding studies

NMR titrations were performed by addition of aliquots of the putative anionic guest as the tetrabutylammonium (TBA) or tetraethylammonium (TEA) salt (0.15 M), in a solution of the receptor (0.01 M) in DMSO- $d_6/0.5\%$  H<sub>2</sub>O, to a 0.01 M solution of the receptor in DMSO- $d_6/0.5\%$  H<sub>2</sub>O. Both salt and receptor were dried under high vacuum prior to use. <sup>1</sup>H NMR spectra were recorded on a Bruker AV300 spectrometer and calibrated to the residual protio solvent peak in DMSO- $d_6$  ( $\delta = 2.50$  ppm). In most cases a change in the chemical shift of both (thio)urea NH protons was observed, as well as a shift in the *ortho*-CH proton of the aromatic ring (*ortho* with respect to thiourea functionality). Where possible, the WinEQNMR2 computer program<sup>9</sup> was used to curve-fit the data and to obtain binding constants (using a 1:1 model). Stack plots and fit plots can be found in figures S75-S162, whereas an overview of the obtained binding constants can be found in Sections 5.3 and 5.4. Data for compounds **2** and **9** has been previously reported<sup>1-2</sup> and is given for comparison.

Job plot analyses were performed in a separate experiment. 10 NMR tubes were filled with 0.5 mL of a DMSO- $d_6$ /water solution containing 0.01 M of an anion-receptor mixture in different ratios (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 molar fraction of the receptor). Both salt (TBA or TEA salts of various anions) and receptor were dried under high vacuum prior to use. <sup>1</sup>H NMR spectra were recorded on a Bruker AV300 spectrometer and calibrated to the residual protio solvent peak in DMSO- $d_6$  ( $\delta = 2.50$  ppm). Job plots were obtained by plotting the molar fraction of the receptor as a function of the relative change in chemical shift.

### S5.2 Hammett constant, $pK_a$ and $V_{S,max}$ calculations

Hammett constants were taken from ref 10 and pKa values were calculated using ACD Ilabs 2.0<sup>11</sup> and their values are given in Section S5.4.

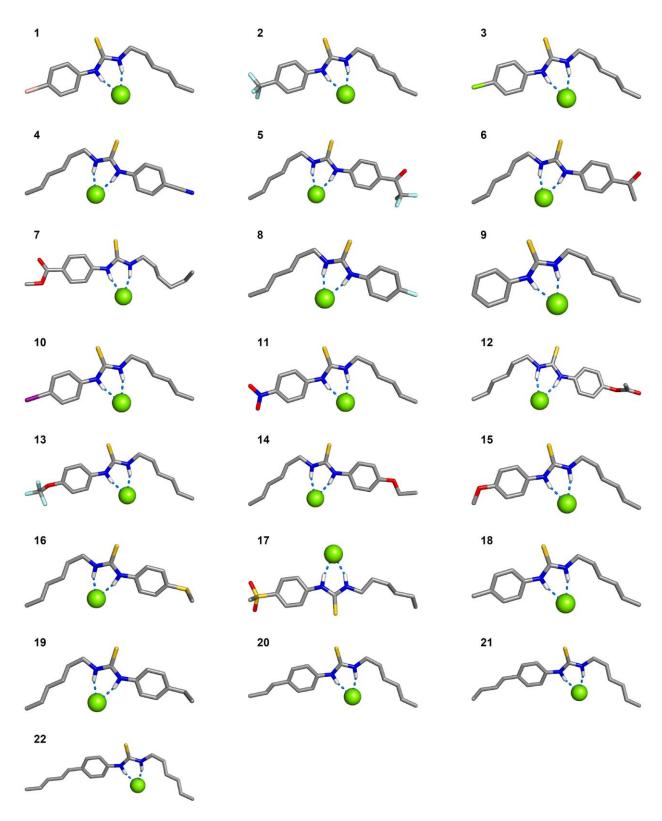
The DFT and  $V_{S,max}$  calculations were preceded by conformational analyses on chloride complexes, which were performed with AMBER12 suite. <sup>12</sup> The receptors **1-22** were described with General Amber Force Field (GAFF) parameters <sup>13-14</sup> and AM1-BCCatomic charges <sup>15-16</sup>. The anion was described with a net charge set to -1 and van der Waals parameters <sup>17</sup> developed for the TIP3P water model <sup>18</sup>. The Gaussian '09 package was used for all electronic structure calculations. <sup>19</sup>

#### Conformational analysis

The molecular mechanics (MM) optimized structures of 1-22 chloride complexes were submitted to a 1 ns MD quenched run in the gas phase at 500 K. 10,000 structures were saved and further full MM minimized until the convergence criterion of 0.0001 kcal mol<sup>-1</sup> was achieved. Afterwards, the conformations of each complex were energy sorted and the lowest energy conformation complex was selected for DFT geometry optimizations and determination of  $V_{S,max}$ .

#### DFT calculations

The structures of the chloride complexes with **1-22** previously determined by quenched MD were reoptimized by DFT methods using the B3LYP functional and 6-311+G\*\* basis set for all elements, except for iodine in **10**, which was described with 6-311G\* basis set. The DFT optimized structures of chloride complexes are represented in Figures S73.


#### Electrostatic potential calculations

Afterwards, single point energy calculations at the same level of theory were performed on the free receptors, after removal of the chloride anion and keeping the conformation observed in the complex. This calculation enabled the determination of the electrostatic potential maxima on these molecules. The electrostatic potential at any point r created by the molecule's nuclei and electrons is given by

$$V(r) = \sum_{A} \frac{Z_A}{|R_A - r|} - \int \frac{\rho(r')dr'}{|r' - r|}$$

Where  $Z_A$  is the charge of nucleus A located at  $R_A$  and  $\rho(r')$  is the molecule's electronic density. In this work, the V(r) was evaluated on the 0.001 electrons Bohr<sup>-3</sup>contour of  $\rho(r)$  and is henceforth labeled  $V_s(r)$ . The electrostatic potential surface maxima points,  $V_{S,max}$ , the electrostatic potential surface minima points,  $V_{S,min}$ , and the average absolute deviation values, PI, were computed using the Wavefunction Analysis Program gently provided by Bulat. <sup>20-21</sup>

The strength of  $V_{S,max}$  can be related with the hydrogen bond capacity as reported by Clark *et al.*<sup>22</sup> Additionally,  $V_{S,max}$  is also considered an excellent descriptor for the acidity.<sup>23</sup> The computed  $V_{S,max}$ ,  $V_{S,min}$  and PI values for **1-22** are in given in Section S5.4, while the electrostatic potential mapped on the molecular electron density surfaces are represented in Figures S74. All compounds'  $V_{S,max}$  are represented as pink dots in Figure S74, and they are located at the anion binding pocket, which is the most positive region of the molecules.



**Figure S73.** DFT optimized structures of **1-22** chloride complexes. Hydrogen atoms apart from the ones involved in hydrogen bonds were omitted for clarity. Hydrogen bonds are shown in blue dashes.

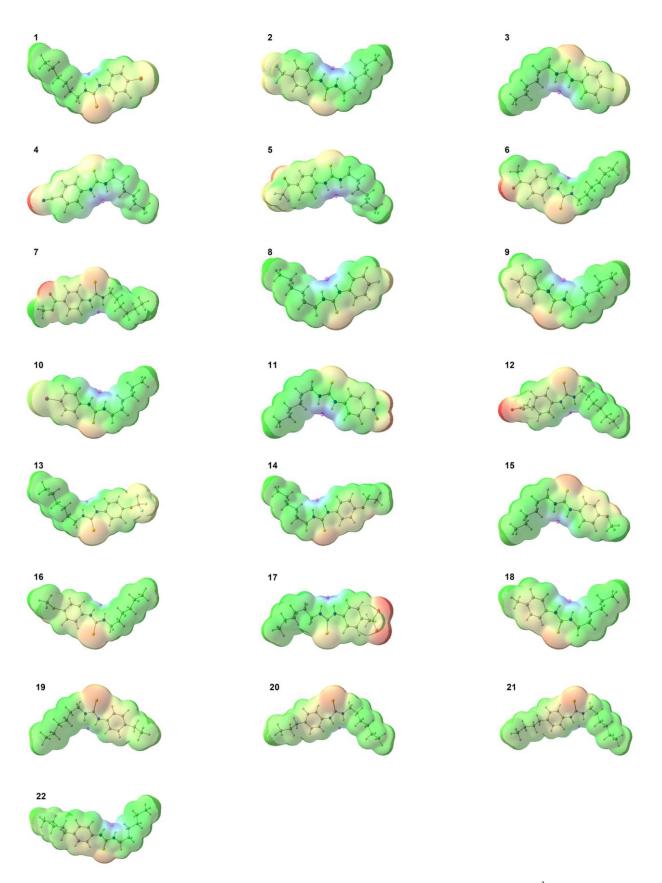
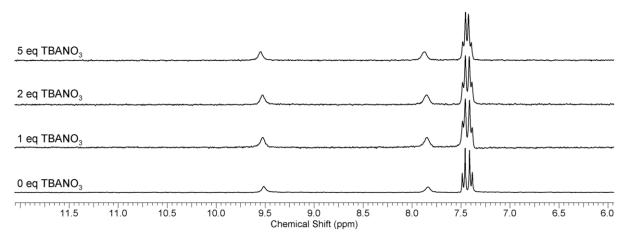
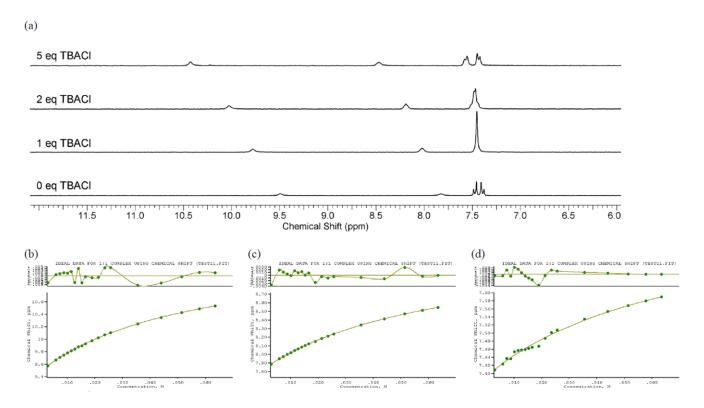
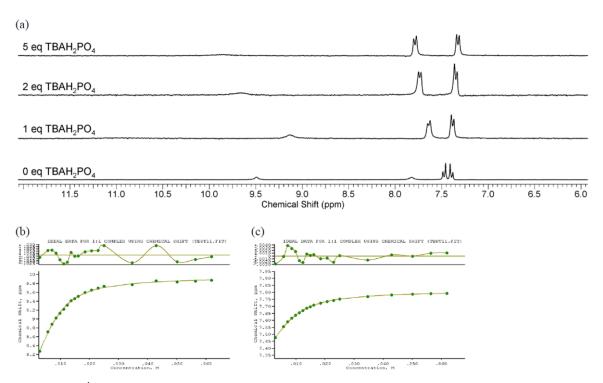
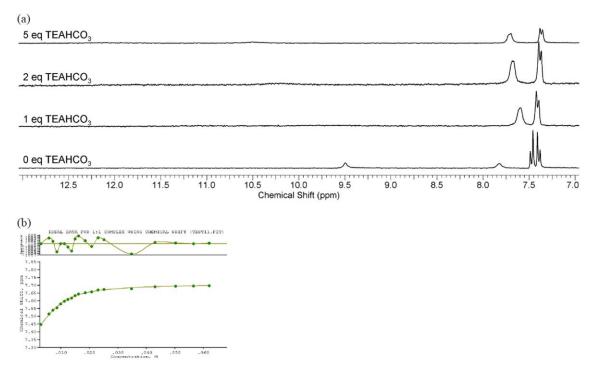



Figure S74. Electrostatic potential mapped on the molecular electron density surface (0.001 electrons Bohr<sup>-3</sup>) for 1-22. The colour scale ranges from blue (+0.11 a.u.) to red (-0.07 a.u.). The pink dots correspond to the location of the  $V_{S,max}$ .

# S5.3 Overview of <sup>1</sup>H NMR titrations

Interactions of compound 1 (Br) with various anions



Figure S75. <sup>1</sup>H NMR titration of compound 1 with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S76.** <sup>1</sup>H NMR titration of compound **1** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.49$  ppm.  $K_a = 22.0$  M<sup>-1</sup> (error 2 %). (c) Fit plot for NH proton at  $\delta = 7.81$  ppm.  $K_a = 18.6$  M<sup>-1</sup> (error 2 %). (d) Fit plot for CH proton at  $\delta = 7.38$  ppm.  $K_a = 16.5$  M<sup>-1</sup> (error 2 %).



**Figure S77.** <sup>1</sup>H NMR titration of compound **1** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.81$  ppm.  $K_a = 465$  M<sup>-1</sup> (error 5 %). (c) Fit plot for CH proton at  $\delta = 7.38$  ppm.  $K_a = 347$  M<sup>-1</sup> (error 2 %).



**Figure S78.** <sup>1</sup>H NMR titration of compound **1** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.38$  ppm.  $K_a = 447$  M<sup>-1</sup> (error 3 %).

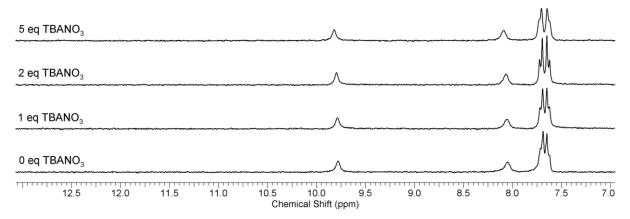
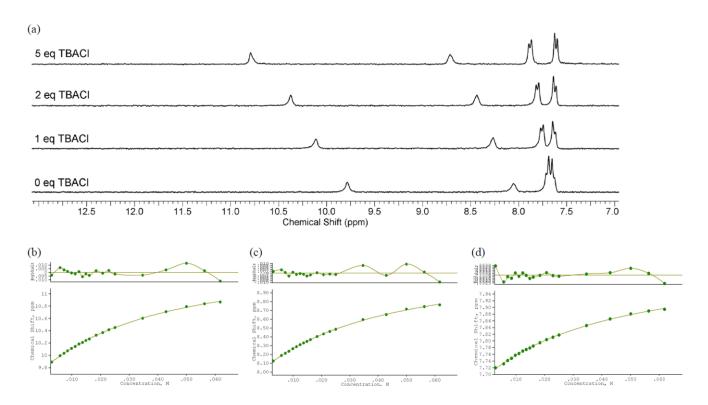
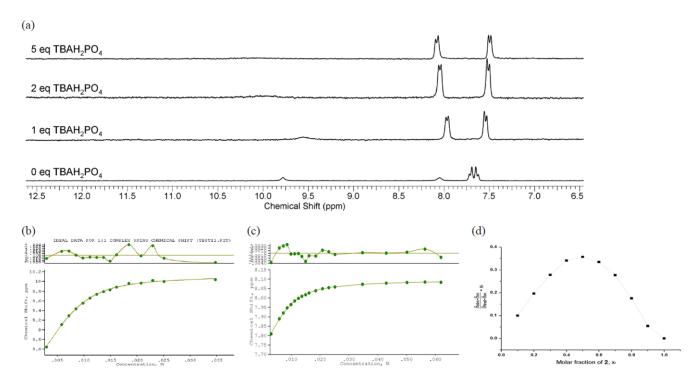





Figure S79. <sup>1</sup>H NMR titration of compound 2 with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S80.** <sup>1</sup>H NMR titration of compound **2** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.80$  ppm.  $K_a = 27.9$  M<sup>-1</sup> (error 3 %). (c) Fit plot for NH proton at  $\delta = 8.05$  ppm.  $K_a = 26.1$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.71$  ppm.  $K_a = 25.9$  M<sup>-1</sup> (error 5 %).



**Figure S81.** <sup>1</sup>H NMR titration of compound **2** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 8.05$  ppm.  $K_a = 852$  M<sup>-1</sup> (error 8 %). (c) Fit plot for CH proton at  $\delta = 7.71$  ppm.  $K_a = 532$  M<sup>-1</sup> (error 3 %). (d) Job plot for CH proton at  $\delta = 7.71$  ppm.

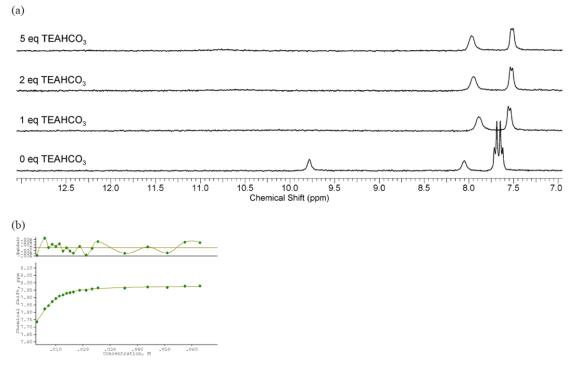
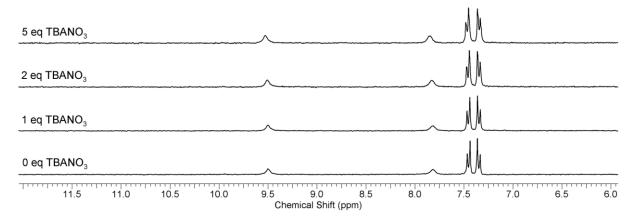
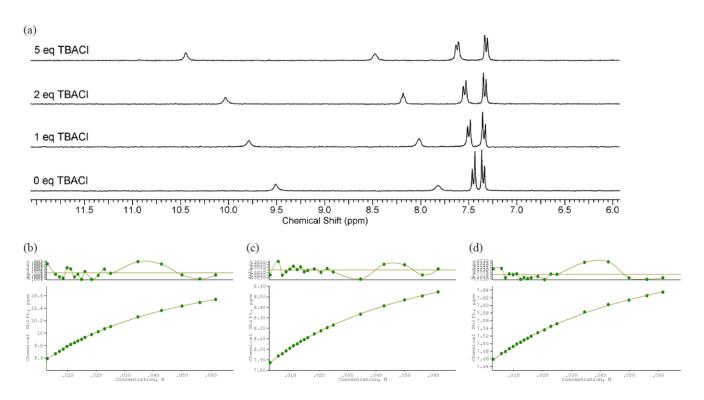
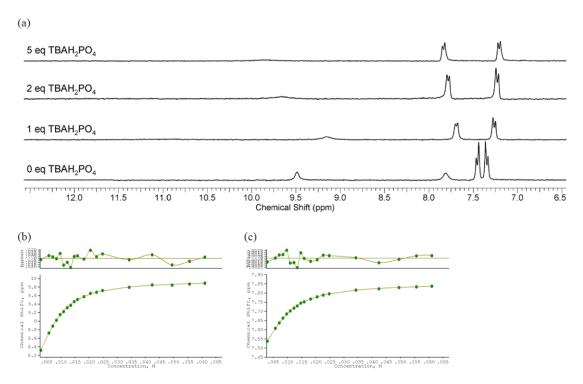
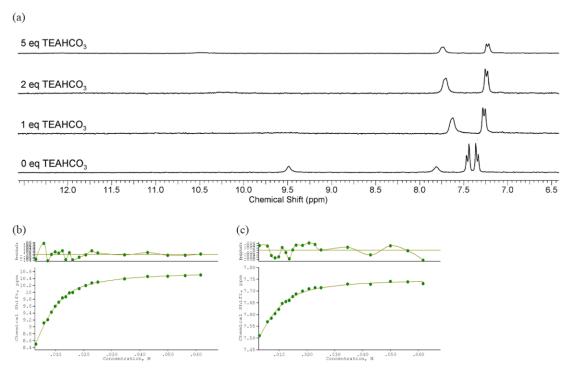
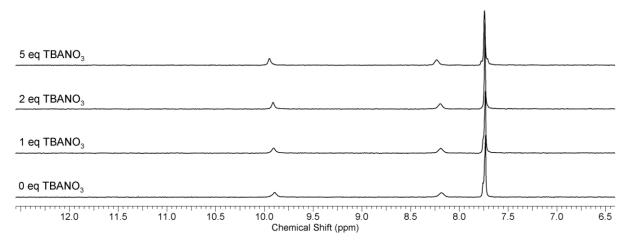



Figure S82. <sup>1</sup>H NMR titration of compound 2 with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.71$  ppm.  $K_a = 931$  M<sup>-1</sup> (error 7.5 %).

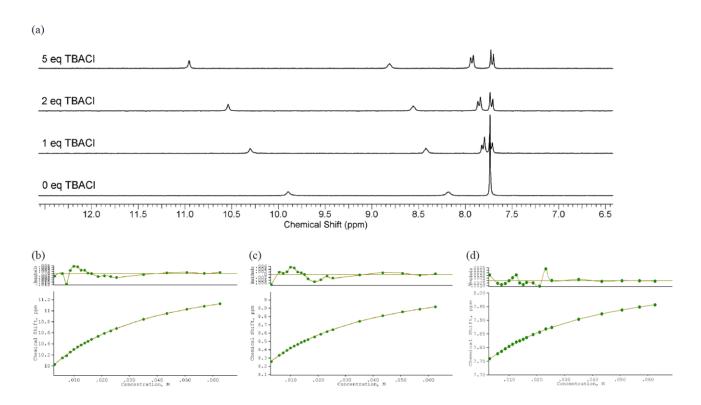






Figure S83. <sup>1</sup>H NMR titration of compound 3 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.




**Figure S84.** <sup>1</sup>H NMR titration of compound **3** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.48$  ppm.  $K_a = 22.2$  M<sup>-1</sup> (error 2 %). (c) Fit plot for NH proton at  $\delta = 7.80$  ppm.  $K_a = 19.9$  M<sup>-1</sup> (error 2 %). (d) Fit plot for CH proton at  $\delta = 7.47$  ppm.  $K_a = 19.1$  M<sup>-1</sup> (error 5 %).




**Figure S85.** <sup>1</sup>H NMR titration of compound **3** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.80$  ppm.  $K_a = 428$  M<sup>-1</sup> (error 3 %). (c) Fit plot for CH proton at  $\delta = 7.47$  ppm.  $K_a = 331$  M<sup>-1</sup> (error 2 %).



**Figure S86.** <sup>1</sup>H NMR titration of compound **3** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.80$  ppm.  $K_a = 452$  M<sup>-1</sup> (error 6 %). (c) Fit plot for CH proton at  $\delta = 7.47$  ppm.  $K_a = 428$  M<sup>-1</sup> (error 9 %).



**Figure S87.** <sup>1</sup>H NMR titration of compound **4** with TBANO<sub>3</sub> in DMSO-*d*<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S88.** <sup>1</sup>H NMR titration of compound **4** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.85$  ppm.  $K_a = 34.6$  M<sup>-1</sup> (error 2 %). (c) Fit plot for NH proton at  $\delta = 8.14$  ppm.  $K_a = 31.4$  M<sup>-1</sup> (error 3 %). (d) Fit plot for CH proton at  $\delta = 7.73$  ppm.  $K_a = 30.5$  M<sup>-1</sup> (error 2.5 %).

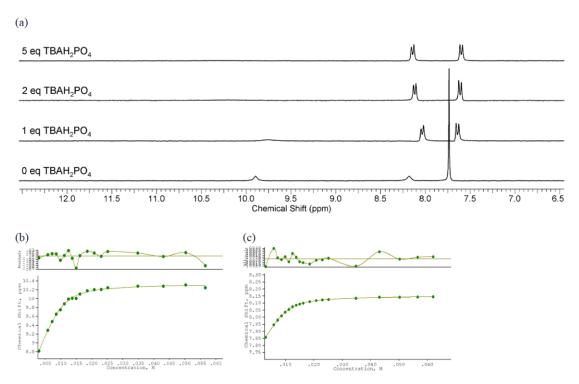



Figure S89. <sup>1</sup>H NMR titration of compound 4 with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 8.14$  ppm.  $K_a = 1103$  M<sup>-1</sup> (error 10 %). (c) Fit plot for CH proton at  $\delta = 7.73$  ppm.  $K_a = 921$  M<sup>-1</sup> (error 2 %).

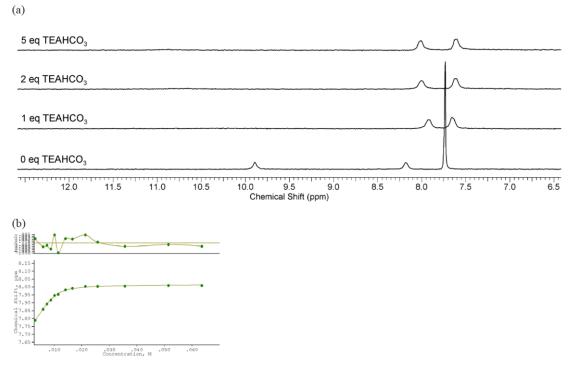



Figure S90. <sup>1</sup>H NMR titration of compound 4 with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.73$  ppm.  $K_a = 1550$  M<sup>-1</sup> (error 11 %).

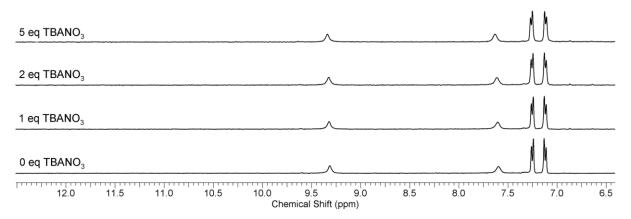
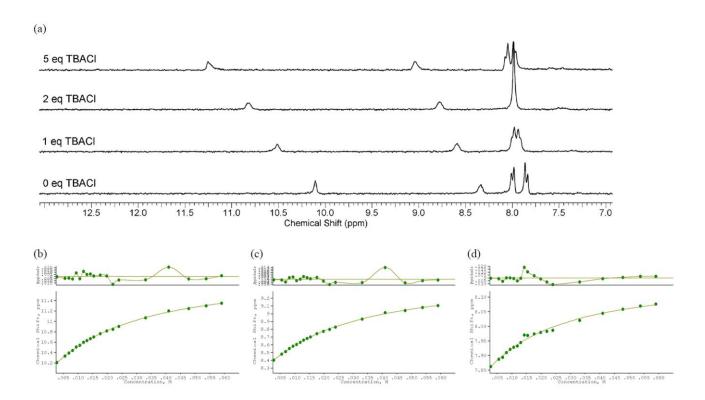




Figure S91. <sup>1</sup>H NMR titration of compound **5** with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S92.** <sup>1</sup>H NMR titration of compound **5** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 10.09$  ppm.  $K_a = 43.2$  M<sup>-1</sup> (error 4 %). (c) Fit plot for NH proton at  $\delta = 8.32$  ppm.  $K_a = 41.3$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.85$  ppm.  $K_a = 51.8$  M<sup>-1</sup> (error 17 %).

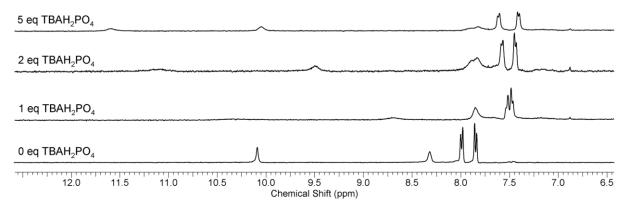



Figure S93. <sup>1</sup>H NMR titration of compound 5 with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. Compound decomposed.

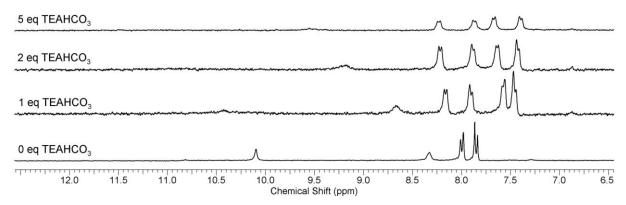



Figure S94. <sup>1</sup>H NMR titration of compound 5 with TEAHCO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. Compound decomposed.

Interactions of compound 6 (COMe) with various anions

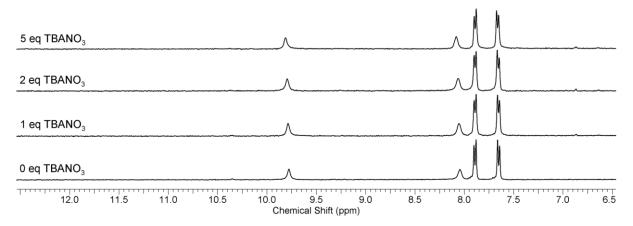
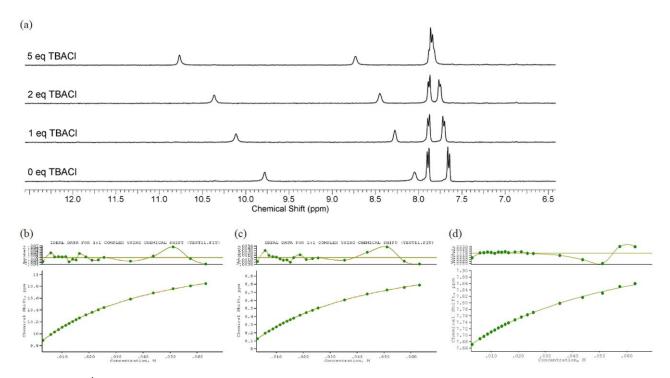
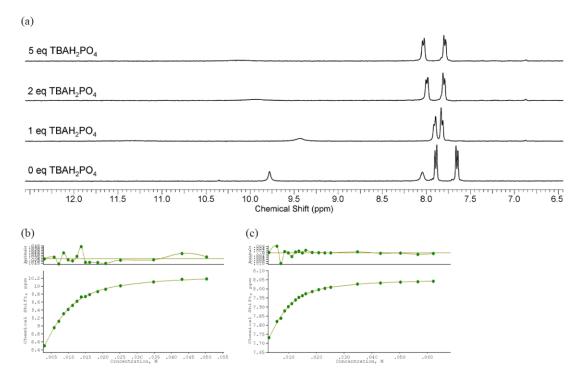





Figure S95. <sup>1</sup>H NMR titration of compound 6 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S96.** <sup>1</sup>H NMR titration of compound **6** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.75$  ppm.  $K_a = 28.6$  M<sup>-1</sup> (error 2 %). (c) Fit plot for NH proton at  $\delta = 8.02$  ppm.  $K_a = 26.8$  M<sup>-1</sup> (error 2 %). (d) Fit plot for CH proton at  $\delta = 7.64$  ppm.  $K_a = 18.8$  M<sup>-1</sup> (error 7 %).



**Figure S97.** <sup>1</sup>H NMR titration of compound **6** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 8.02$  ppm.  $K_a = 417$  M<sup>-1</sup> (error 4.5 %). (c) Fit plot for CH proton at  $\delta = 7.64$  ppm.  $K_a = 444$  M<sup>-1</sup> (error 4 %).

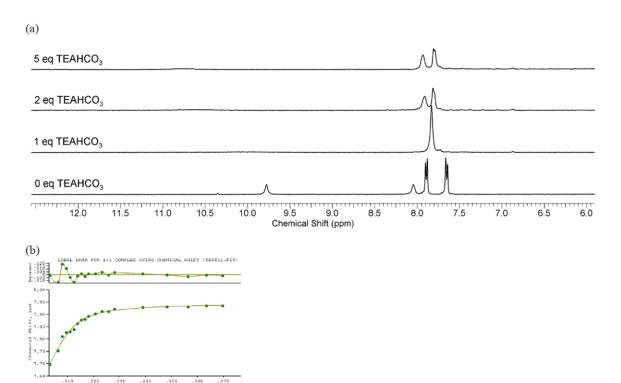



Figure S98. <sup>1</sup>H NMR titration of compound 6 with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.64$  ppm.  $K_a = 553$  M<sup>-1</sup> (error 13.5 %).

#### Interactions of compound 7 (COOMe) with various anions

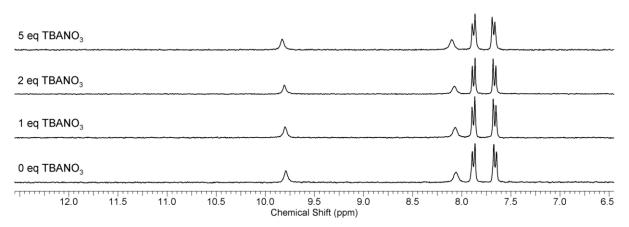
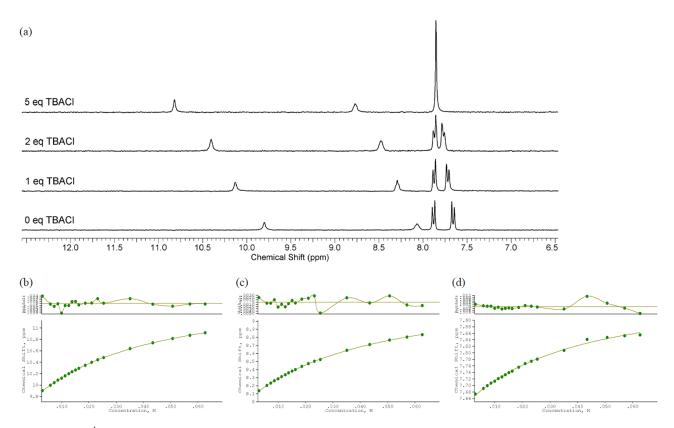
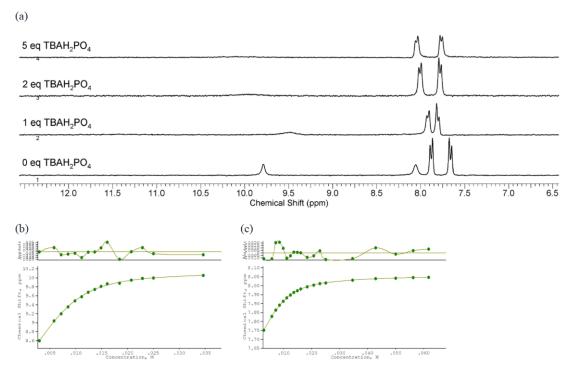
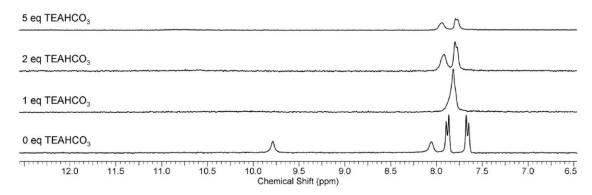
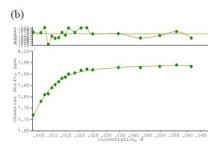




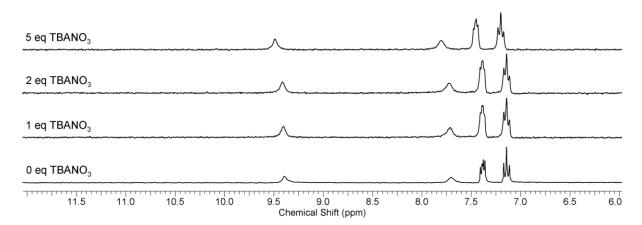

Figure S99. <sup>1</sup>H NMR titration of compound 7 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



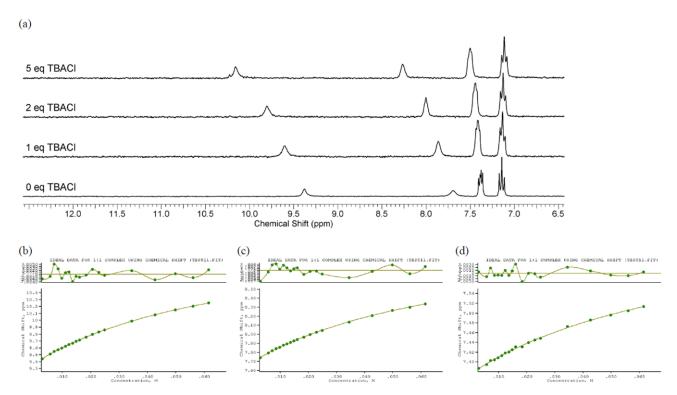


**Figure S100.** <sup>1</sup>H NMR titration of compound **7** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.79$  ppm.  $K_a = 28.1$  M<sup>-1</sup> (error 1 %). (c) Fit plot for NH proton at  $\delta = 8.05$  ppm.  $K_a = 25.6$  M<sup>-1</sup> (error 2 %). (d) Fit plot for CH proton at  $\delta = 7.67$  ppm.  $K_a = 29.2$  M<sup>-1</sup> (error 12 %).



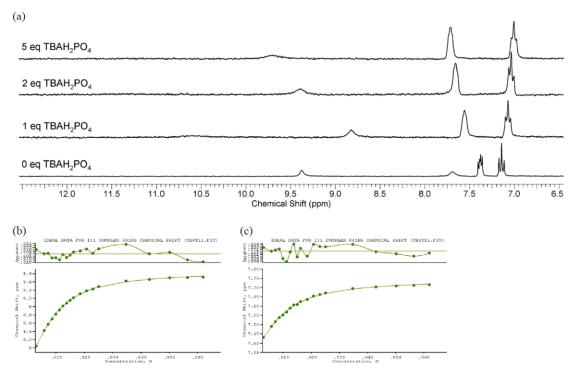
**Figure S101.** <sup>1</sup>H NMR titration of compound **7** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 8.05$  ppm.  $K_a = 700$  M<sup>-1</sup> (error 6 %). (c) Fit plot for CH proton at  $\delta = 7.67$  ppm.  $K_a = 511$  M<sup>-1</sup> (error 2 %).



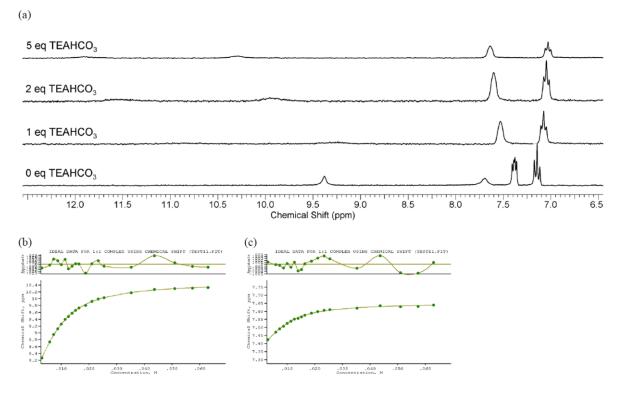



**Figure S102.** <sup>1</sup>H NMR titration of compound **7** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.67$  ppm.  $K_a = 589$  M<sup>-1</sup> (error 9.5 %).


#### Interactions of compound 8 (F) with various anions




**Figure S103.** <sup>1</sup>H NMR titration of compound **8** with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S104.** <sup>1</sup>H NMR titration of compound **8** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.37$  ppm.  $K_a = 16.8$  M<sup>-1</sup> (error 2 %). (c) Fit plot for NH proton at  $\delta = 7.69$  ppm.  $K_a = 15.5$  M<sup>-1</sup> (error 4.5 %). (d) Fit plot for CH proton at  $\delta = 7.39$  ppm.  $K_a = 13.8$  M<sup>-1</sup> (error 9 %).

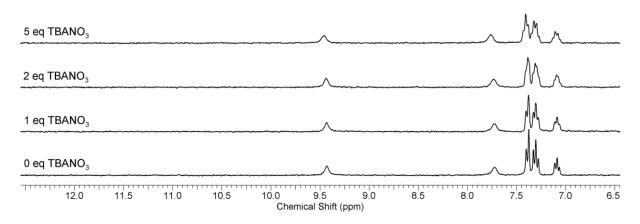
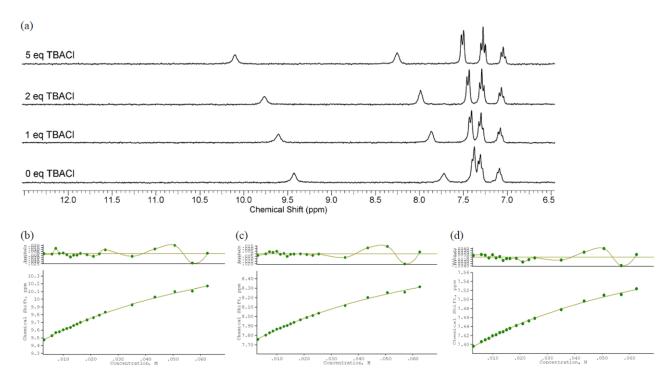


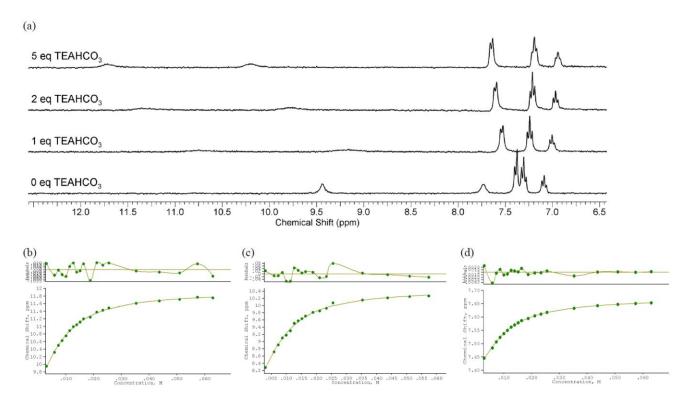
**Figure S105.** <sup>1</sup>H NMR titration of compound **8** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.69$  ppm.  $K_a = 272$  M<sup>-1</sup> (error 2.5 %). (c) Fit plot for CH proton at  $\delta = 7.39$  ppm.  $K_a = 229$  M<sup>-1</sup> (error 4 %).



**Figure S106.** <sup>1</sup>H NMR titration of compound **8** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.69$  ppm.  $K_a = 292$  M<sup>-1</sup> (error 3 %). (c) Fit plot for CH proton at  $\delta = 7.39$  ppm.  $K_a = 303$  M<sup>-1</sup> (error 5.5 %).

Interactions of compound 9 (H) with various anions



Figure S107. <sup>1</sup>H NMR titration of compound 9 with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S108.** <sup>1</sup>H NMR titration of compound **9** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.45$  ppm.  $K_a = 13.7$  M<sup>-1</sup> (error 12 %). (c) Fit plot for NH proton at  $\delta = 7.71$  ppm.  $K_a = 13.5$  M<sup>-1</sup> (error 12 %). (d) Fit plot for CH proton at  $\delta = 7.39$  ppm.  $K_a = 13.2$  M<sup>-1</sup> (error 10 %).

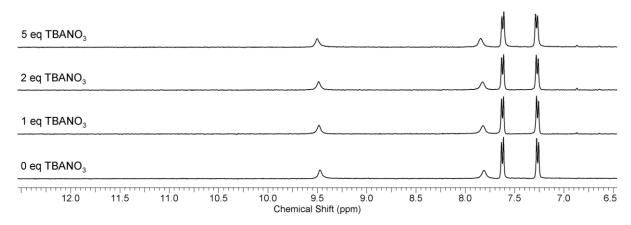
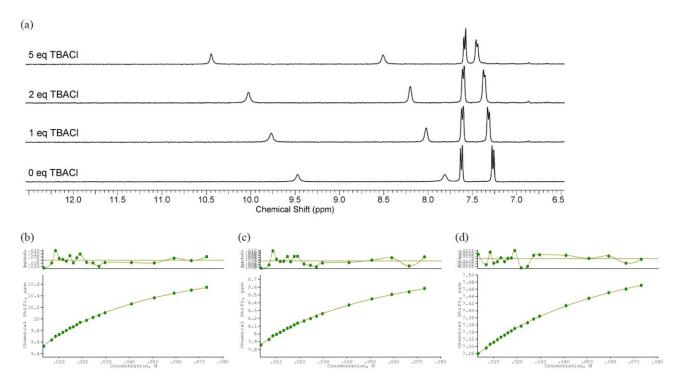
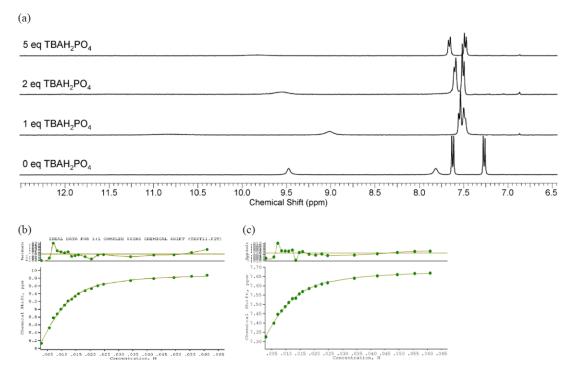


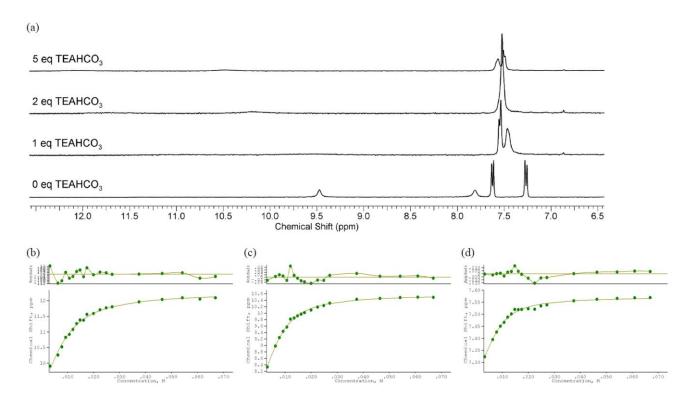
**Figure S109.** <sup>1</sup>H NMR titration of compound **9** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.71$  ppm.  $K_a = 211$  M<sup>-1</sup> (error 3 %). (c) Fit plot for CH proton at  $\delta = 7.39$  ppm.  $K_a = 169$  M<sup>-1</sup> (error 2 %).



**Figure S110.** <sup>1</sup>H NMR titration of compound **9** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.45$  ppm.  $K_a = 230$  M<sup>-1</sup> (error 4 %). (c) Fit plot for NH proton at  $\delta = 7.71$  ppm.  $K_a = 262$  M<sup>-1</sup> (error 8 %). (d) Fit plot for CH proton at  $\delta = 7.39$  ppm.  $K_a = 222$  M<sup>-1</sup> (error 2 %).

Interactions of compound 10 (I) with various anions



Figure S111. <sup>1</sup>H NMR titration of compound 10 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S112.** <sup>1</sup>H NMR titration of compound **10** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.47$  ppm.  $K_a = 22.7$  M<sup>-1</sup> (error 4.5 %). (c) Fit plot for NH proton at  $\delta = 7.81$  ppm.  $K_a = 19.9$  M<sup>-1</sup> (error 5 %). (d) Fit plot for CH proton at  $\delta = 7.28$  ppm.  $K_a = 17.8$  M<sup>-1</sup> (error 3 %).

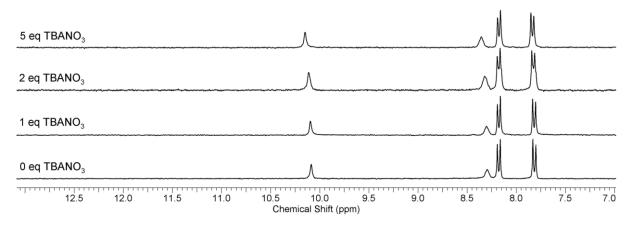
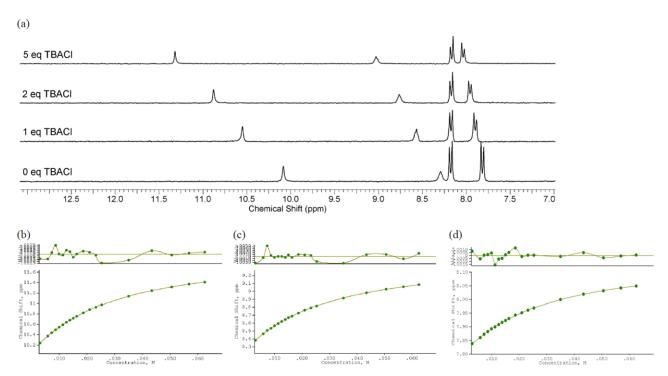
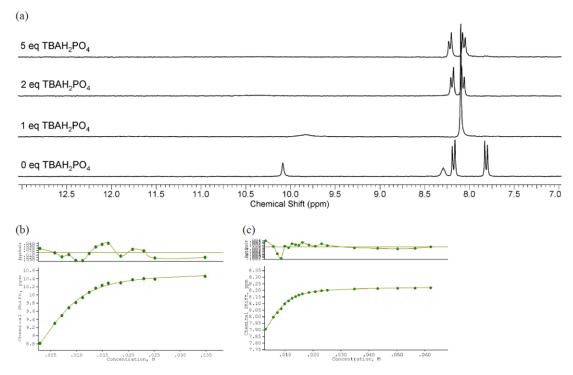


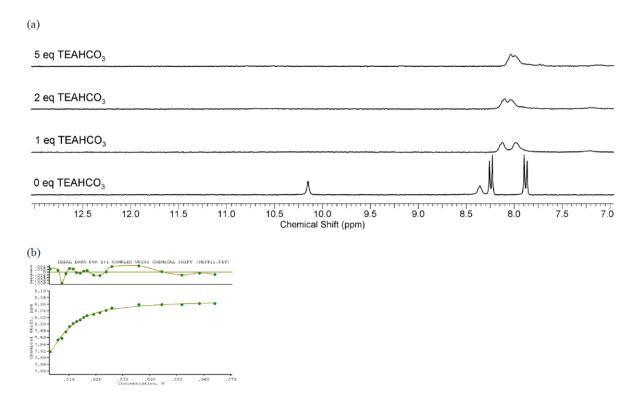
**Figure S113.** <sup>1</sup>H NMR titration of compound **10** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.81$  ppm.  $K_a = 448$  M<sup>-1</sup> (error 7.5 %). (c) Fit plot for CH proton at  $\delta = 7.28$  ppm.  $K_a = 354$  M<sup>-1</sup> (error 7 %).



**Figure S114.** <sup>1</sup>H NMR titration of compound **10** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.47$  ppm.  $K_a = 287$  M<sup>-1</sup> (error 10 %). (c) Fit plot for NH proton at  $\delta = 7.81$  ppm.  $K_a = 468$  M<sup>-1</sup> (error 6 %). (d) Fit plot for CH proton at  $\delta = 7.28$  ppm.  $K_a = 564$  M<sup>-1</sup> (error 11 %).

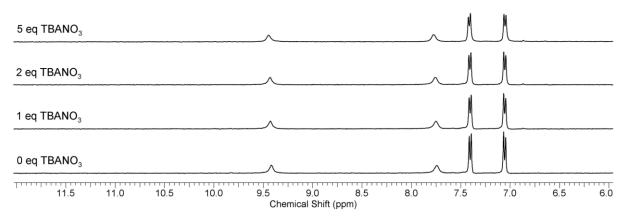
Interactions of compound 11 (NO<sub>2</sub>) with various anions

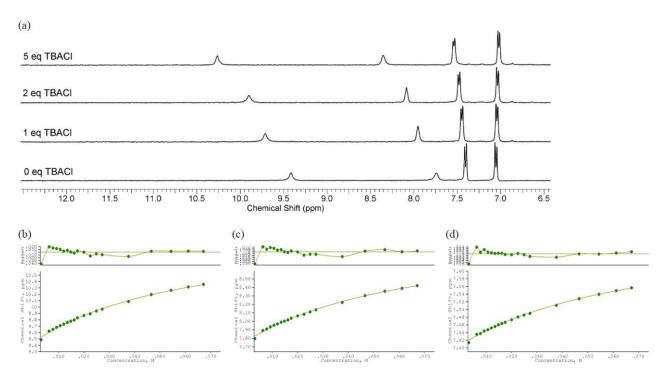


Figure S115. <sup>1</sup>H NMR titration of compound 11 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



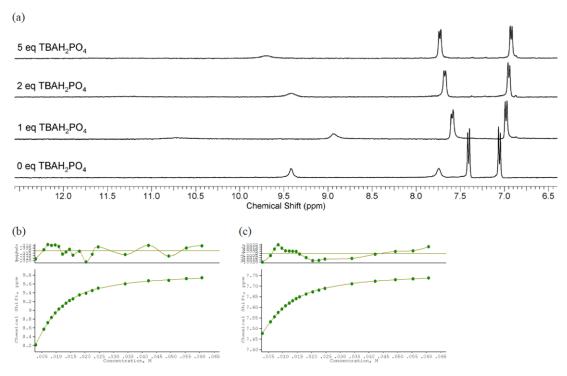
**Figure S116.** <sup>1</sup>H NMR titration of compound **11** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 10.07$  ppm.  $K_a = 45.1$  M<sup>-1</sup> (error 5 %). (c) Fit plot for NH proton at  $\delta = 8.27$  ppm.  $K_a = 42.7$  M<sup>-1</sup> (error 1.5 %). (d) Fit plot for CH proton at  $\delta = 7.83$  ppm.  $K_a = 42.3$  M<sup>-1</sup> (error 1.5 %).



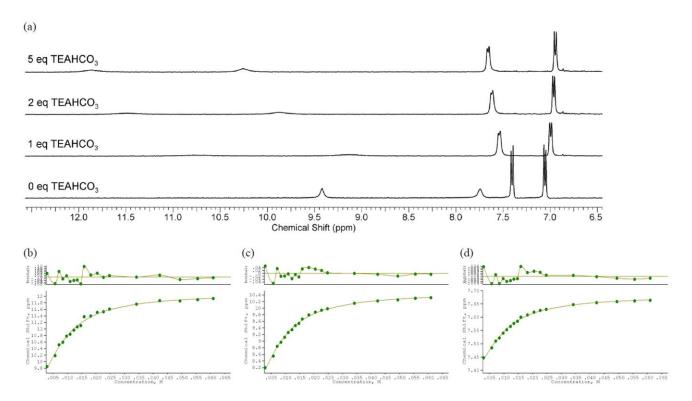

**Figure S117.** <sup>1</sup>H NMR titration of compound **11** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 8.27$  ppm.  $K_a = 827$  M<sup>-1</sup> (error 10 %). (c) Fit plot for CH proton at  $\delta = 7.83$  ppm.  $K_a = 912$  M<sup>-1</sup> (error 4 %).




**Figure S118.** <sup>1</sup>H NMR titration of compound **11** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.83$  ppm.  $K_a = 345$  M<sup>-1</sup> (error 8.5 %), estimate, data uncertain due to peak broadening and peak overlap.

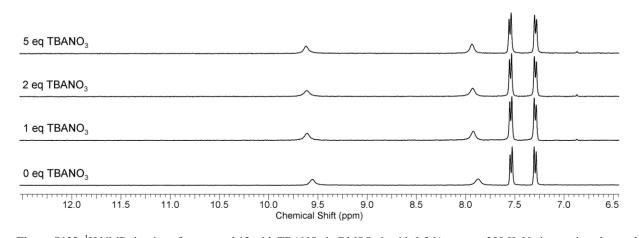

Interactions of compound 12 (OCOMe) with various anions



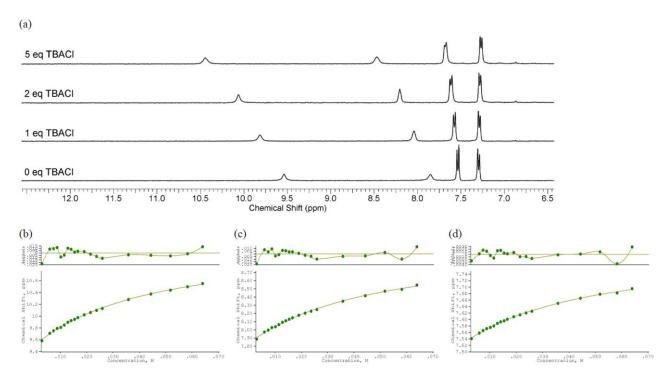

**Figure S119.** <sup>1</sup>H NMR titration of compound **12** with TBANO<sub>3</sub> in DMSO-*d*<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



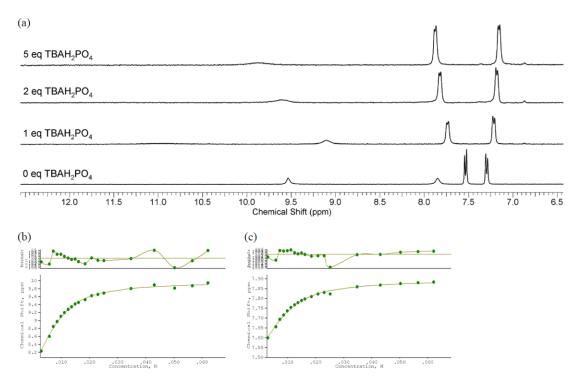
**Figure S120.** <sup>1</sup>H NMR titration of compound **12** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.42$  ppm.  $K_a = 19.4$  M<sup>-1</sup> (error 12 %). (c) Fit plot for NH proton at  $\delta = 7.75$  ppm.  $K_a = 17.3$  M<sup>-1</sup> (error 13 %). (d) Fit plot for CH proton at  $\delta = 7.41$  ppm.  $K_a = 16.6$  M<sup>-1</sup> (error 9 %).



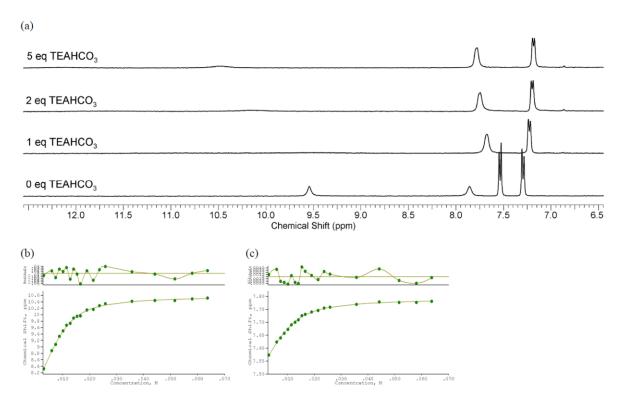

**Figure S121.** <sup>1</sup>H NMR titration of compound **12** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.75$  ppm.  $K_a = 277$  M<sup>-1</sup> (error 3 %). (c) Fit plot for CH proton at  $\delta = 7.41$  ppm.  $K_a = 217$  M<sup>-1</sup> (error 2 %).




**Figure S122.** <sup>1</sup>H NMR titration of compound **12** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. ((b) Fit plot for NH proton at  $\delta = 9.42$  ppm.  $K_a = 262$  M<sup>-1</sup> (error 10.5 %). (c) Fit plot for NH proton at  $\delta = 7.75$  ppm.  $K_a = 271$  M<sup>-1</sup> (error 6 %). (d) Fit plot for CH proton at  $\delta = 7.41$  ppm.  $K_a = 266$  M<sup>-1</sup> (error 4 %).

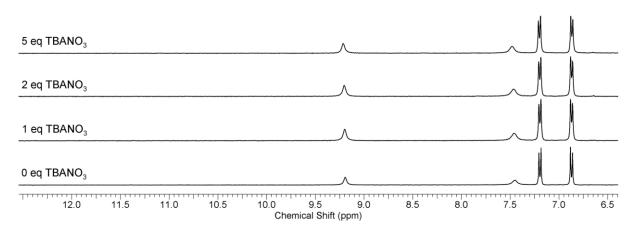

*Interactions of compound 13 (OCF<sub>3</sub>) with various anions* 



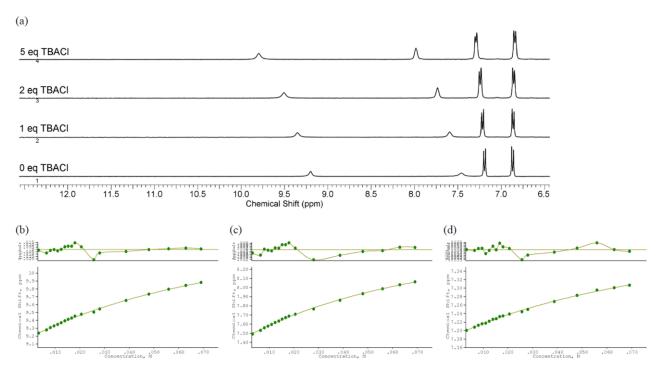

**Figure S123.** <sup>1</sup>H NMR titration of compound **13** with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



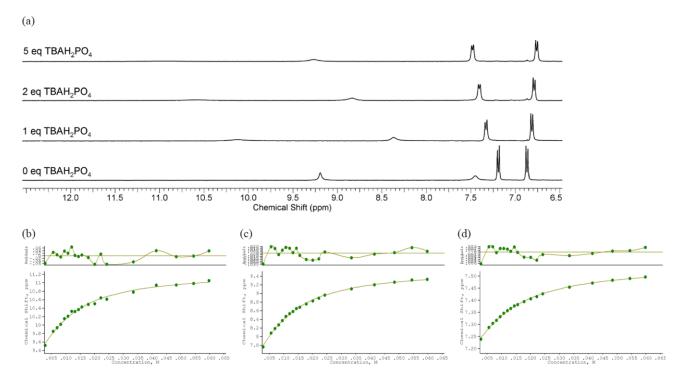
**Figure S124.** <sup>1</sup>H NMR titration of compound **13** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.54$  ppm.  $K_a = 28.1$  M<sup>-1</sup> (error 7 %). (c) Fit plot for NH proton at  $\delta = 7.86$  ppm.  $K_a = 24.8$  M<sup>-1</sup> (error 8.5 %). (d) Fit plot for CH proton at  $\delta = 7.54$  ppm.  $K_a = 24.8$  M<sup>-1</sup> (error 7 %).



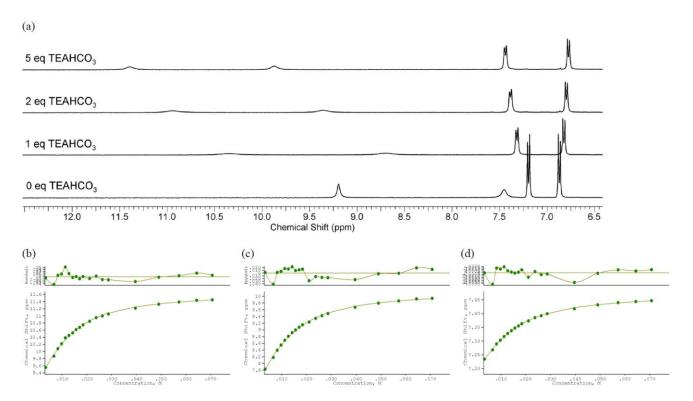

**Figure S125.** <sup>1</sup>H NMR titration of compound **13** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.86$  ppm.  $K_a = 426$  M<sup>-1</sup> (error 9 %). (c) Fit plot for CH proton at  $\delta = 7.54$  ppm.  $K_a = 327$  M<sup>-1</sup> (error 9 %).




**Figure S126.** <sup>1</sup>H NMR titration of compound **13** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.86$  ppm.  $K_a = 592$  M<sup>-1</sup> (error 5 %). (c) Fit plot for CH proton at  $\delta = 7.54$  ppm.  $K_a = 439$  M<sup>-1</sup> (error 3 %).

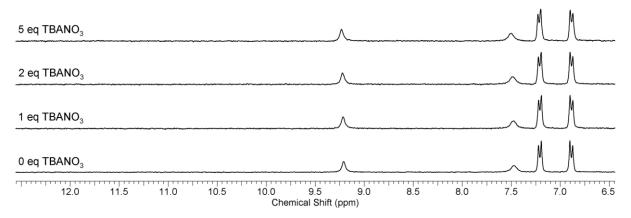

Interactions of compound 14 (OEt) with various anions




**Figure S127.** <sup>1</sup>H NMR titration of compound **14** with TBANO<sub>3</sub> in DMSO-*d*<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S128.** <sup>1</sup>H NMR titration of compound **14** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.19$  ppm.  $K_a = 10.8$  M<sup>-1</sup> (error 12 %). (c) Fit plot for NH proton at  $\delta = 7.46$  ppm.  $K_a = 12.3$  M<sup>-1</sup> (error 9.5 %). (d) Fit plot for CH proton at  $\delta = 7.20$  ppm.  $K_a = 9.5$  M<sup>-1</sup> (error 10.5 %).




**Figure S129.** <sup>1</sup>H NMR titration of compound **14** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.19$  ppm.  $K_a = 144$  M<sup>-1</sup> (error 12.5 %). (c) Fit plot for NH proton at  $\delta = 7.46$  ppm.  $K_a = 141$  M<sup>-1</sup> (error 5 %). (d) Fit plot for CH proton at  $\delta = 7.20$  ppm.  $K_a = 109$  M<sup>-1</sup> (error 5 %).



**Figure S130.** <sup>1</sup>H NMR titration of compound **14** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.19$  ppm.  $K_a = 172$  M<sup>-1</sup> (error 5 %). (c) Fit plot for NH proton at  $\delta = 7.46$  ppm.  $K_a = 163$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.20$  ppm.  $K_a = 141$  M<sup>-1</sup> (error 3 %).

Interactions of compound 15 (OMe) with various anions



**Figure S131.** <sup>1</sup>H NMR titration of compound **15** with TBANO<sub>3</sub> in DMSO-*d*<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.

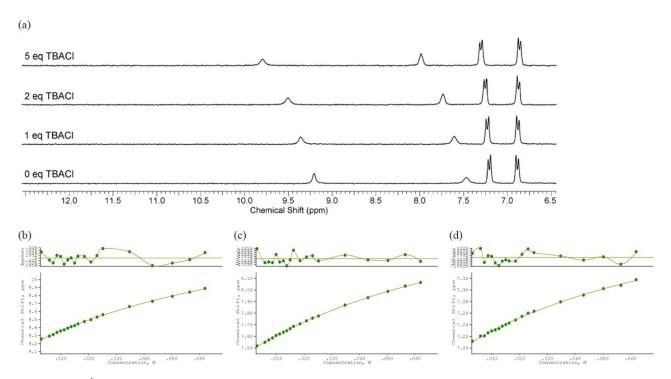
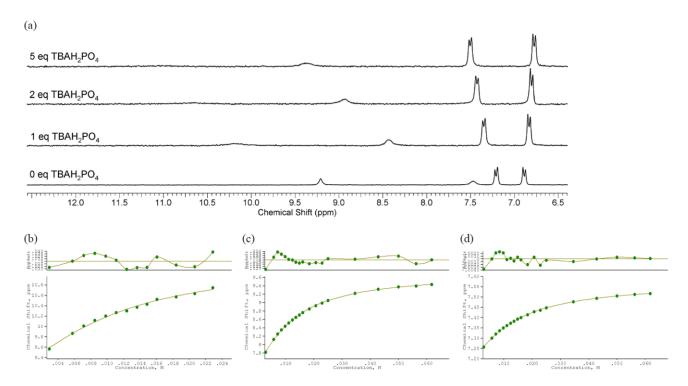
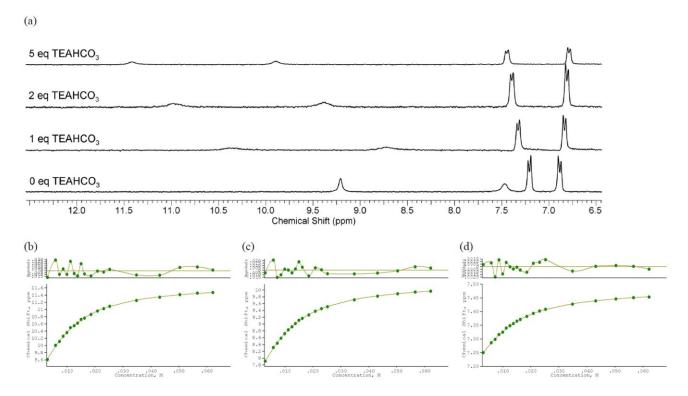





Figure S132. <sup>1</sup>H NMR titration of compound 15 with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.20$  ppm.  $K_a = 10.6$  M<sup>-1</sup> (error 6 %). (c) Fit plot for NH proton at  $\delta = 7.48$  ppm.  $K_a = 10.7$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.22$  ppm.  $K_a = 11.4$  M<sup>-1</sup> (error 9 %).

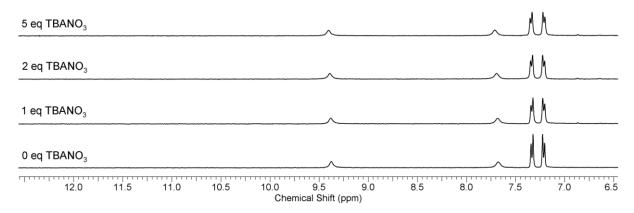
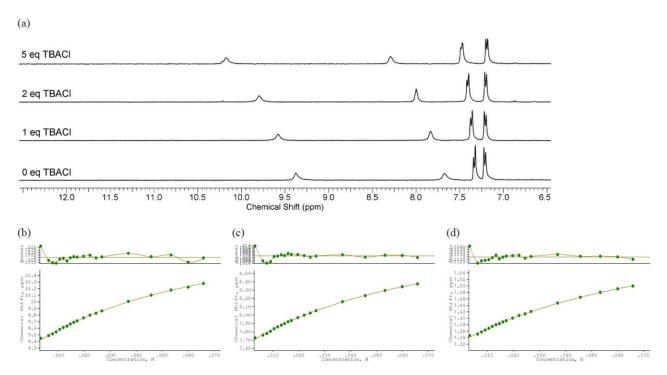
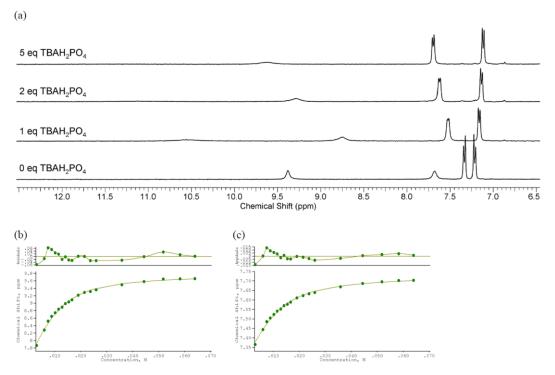


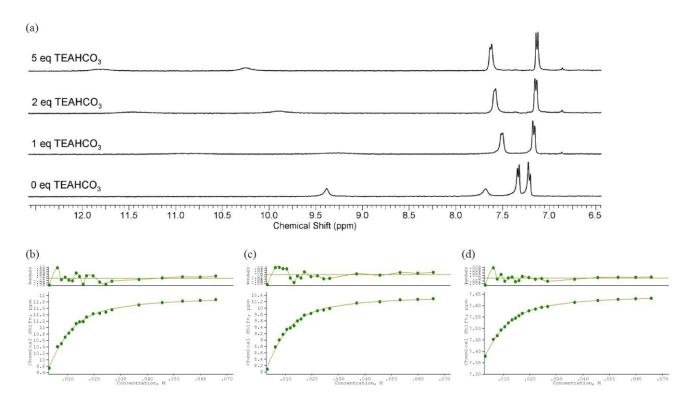
**Figure S133.** <sup>1</sup>H NMR titration of compound **15** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.20$  ppm.  $K_a = 162$  M<sup>-1</sup> (error 21 %). (c) Fit plot for NH proton at  $\delta = 7.48$  ppm.  $K_a = 131$  M<sup>-1</sup> (error 3 %). (d) Fit plot for CH proton at  $\delta = 7.22$  ppm.  $K_a = 102$  M<sup>-1</sup> (error 2 %).



**Figure S134.** <sup>1</sup>H NMR titration of compound **15** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.20$  ppm.  $K_a = 171$  M<sup>-1</sup> (error 3 %). (c) Fit plot for NH proton at  $\delta = 7.48$  ppm.  $K_a = 157$  M<sup>-1</sup> (error 2 %). (d) Fit plot for CH proton at  $\delta = 7.22$  ppm.  $K_a = 145$  M<sup>-1</sup> (error 2 %).

Interactions of compound 16 (SMe) with various anions



Figure S135. H NMR titration of compound 16 with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S136.** <sup>1</sup>H NMR titration of compound **16** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.39$  ppm.  $K_a = 15.0$  M<sup>-1</sup> (error 7 %). (c) Fit plot for NH proton at  $\delta = 7.69$  ppm.  $K_a = 14.8$  M<sup>-1</sup> (error 6 %). (d) Fit plot for CH proton at  $\delta = 7.35$  ppm.  $K_a = 12.2$  M<sup>-1</sup> (error 8 %).

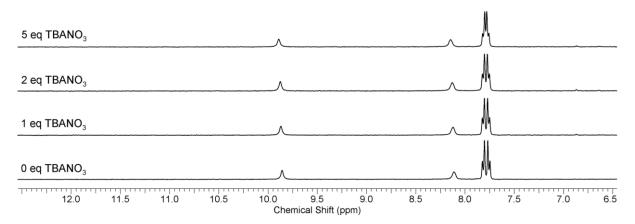
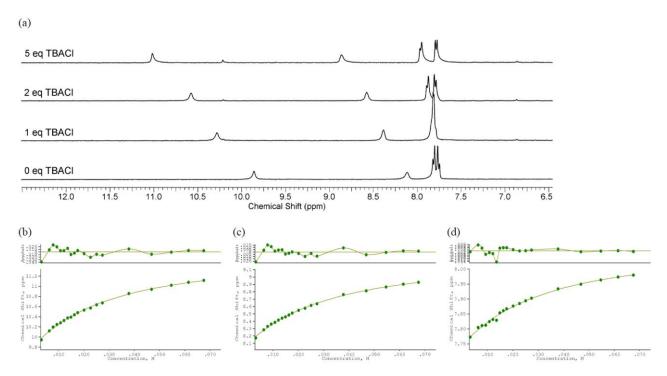
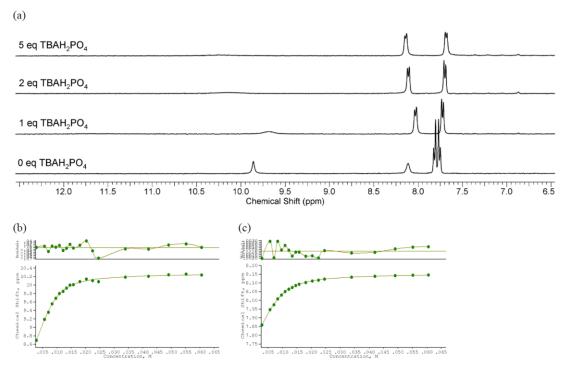


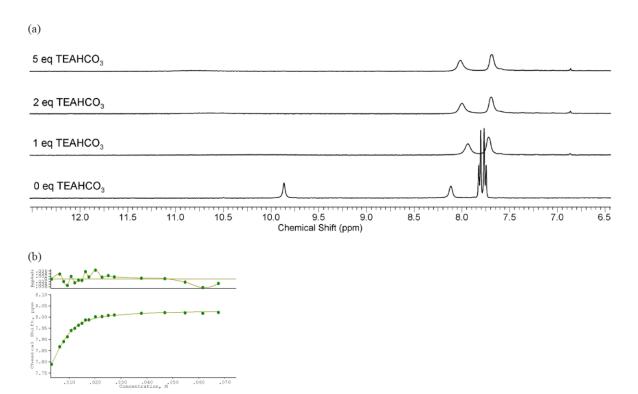
**Figure S137.** <sup>1</sup>H NMR titration of compound **16** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.69$  ppm.  $K_a = 285$  M<sup>-1</sup> (error 8 %). (c) Fit plot for CH proton at  $\delta = 7.35$  ppm.  $K_a = 233$  M<sup>-1</sup> (error 6 %).



**Figure S138.** <sup>1</sup>H NMR titration of compound **16** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.39$  ppm.  $K_a = 324$  M<sup>-1</sup> (error 8 %). (c) Fit plot for NH proton at  $\delta = 7.35$  ppm.  $K_a = 316$  M<sup>-1</sup> (error 4 %).

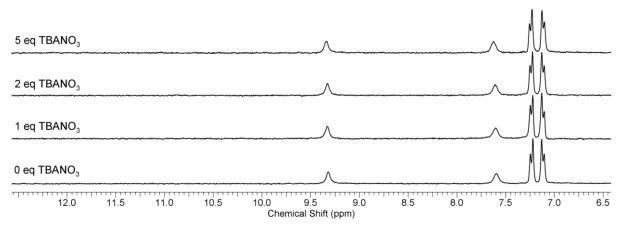
Interactions of compound 17 (SO<sub>2</sub>Me) with various anions

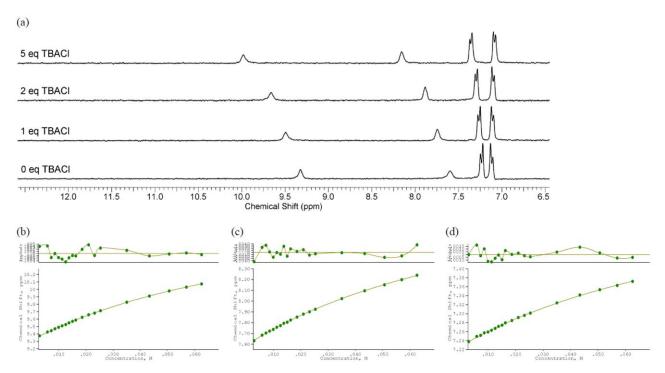


Figure S139. <sup>1</sup>H NMR titration of compound 17 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



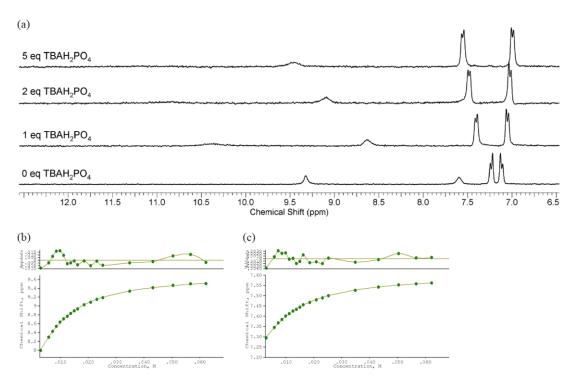
**Figure S140.** <sup>1</sup>H NMR titration of compound **17** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.86$  ppm.  $K_a = 40.3$  M<sup>-1</sup> (error 8 %). (c) Fit plot for NH proton at  $\delta = 8.12$  ppm.  $K_a = 37.8$  M<sup>-1</sup> (error 6.5 %). (d) Fit plot for CH proton at  $\delta = 7.76$  ppm.  $K_a = 38.1$  M<sup>-1</sup> (error 10.5 %).




**Figure S141.** <sup>1</sup>H NMR titration of compound **17** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 8.12$  ppm.  $K_a = 943$  M<sup>-1</sup> (error 7 %). (c) Fit plot for CH proton at  $\delta = 7.76$  ppm.  $K_a = 684$  M<sup>-1</sup> (error 2.5 %).




**Figure S142.** <sup>1</sup>H NMR titration of compound **17** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for CH proton at  $\delta = 7.76$  ppm.  $K_a = 702$  M<sup>-1</sup> (error 2 %).


Interactions of compound 18 (Me) with various anions



**Figure S143.** <sup>1</sup>H NMR titration of compound **18** with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S144.** <sup>1</sup>H NMR titration of compound **18** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.32$  ppm.  $K_a = 11.1$  M<sup>-1</sup> (error 4 %). (c) Fit plot for NH proton at  $\delta = 7.59$  ppm.  $K_a = 10.9$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.24$  ppm.  $K_a = 9.8$  M<sup>-1</sup> (error 5 %).

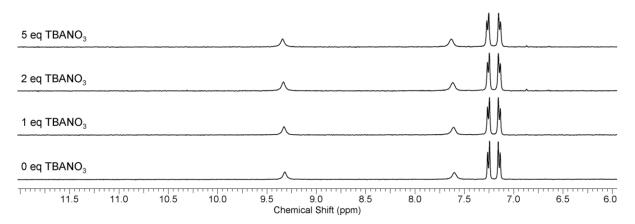
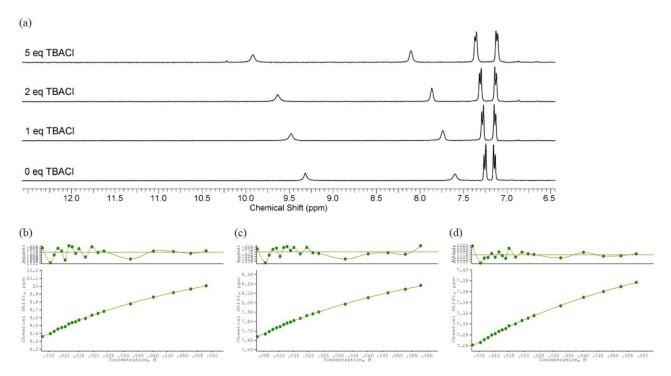
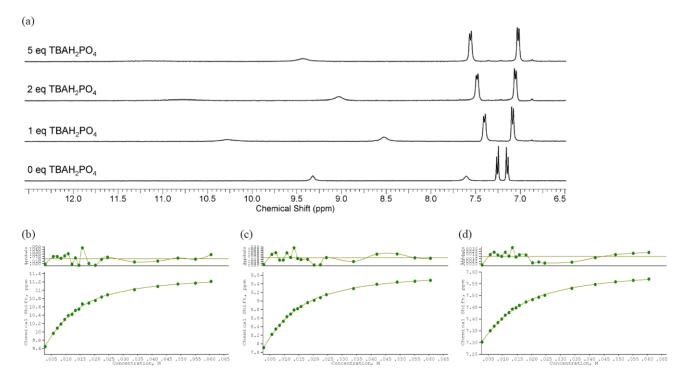


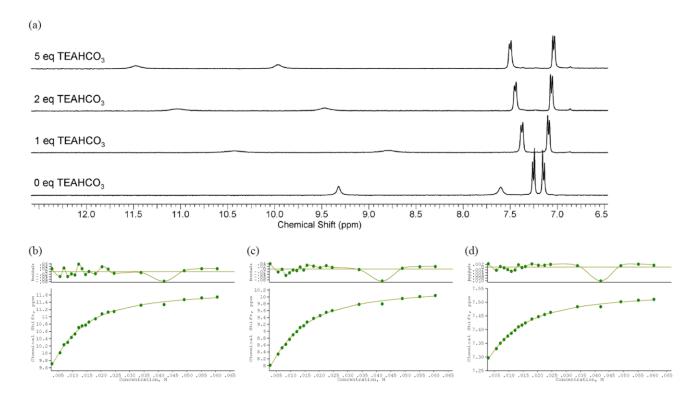
**Figure S145.** <sup>1</sup>H NMR titration of compound **18** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 7.59$  ppm.  $K_a = 164$  M<sup>-1</sup> (error 3 %). (c) Fit plot for CH proton at  $\delta = 7.24$  ppm.  $K_a = 134$  M<sup>-1</sup> (error 3 %).



**Figure S146.** <sup>1</sup>H NMR titration of compound **18** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.32$  ppm.  $K_a = 147$  M<sup>-1</sup> (error 4 %). (c) Fit plot for NH proton at  $\delta = 7.59$  ppm.  $K_a = 152$  M<sup>-1</sup> (error 2 %). (d) Fit plot for CH proton at  $\delta = 7.24$  ppm.  $K_a = 147$  M<sup>-1</sup> (error 1.5 %).

Interactions of compound 19 (Et) with various anions



Figure S147. <sup>1</sup>H NMR titration of compound 19 with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.



**Figure S148.** <sup>1</sup>H NMR titration of compound **19** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.31$  ppm.  $K_a = 14.4$  M<sup>-1</sup> (error 7.5 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 13.4$  M<sup>-1</sup> (error 6.5 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 10.7$  M<sup>-1</sup> (error 7.5 %).

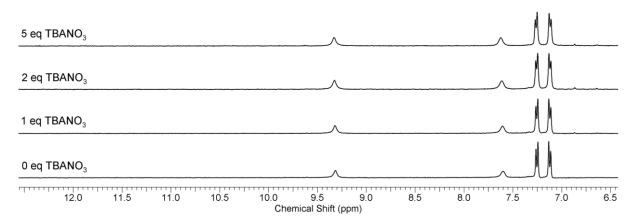
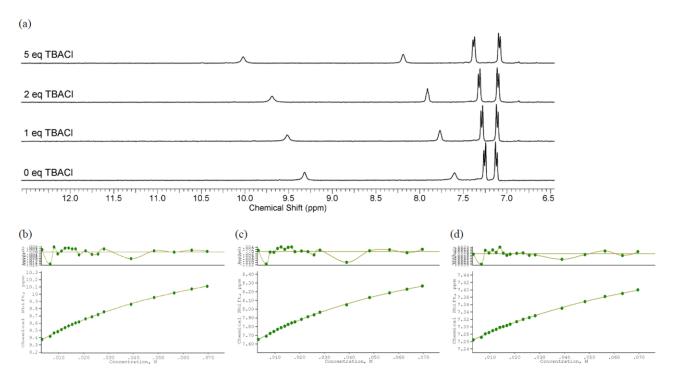
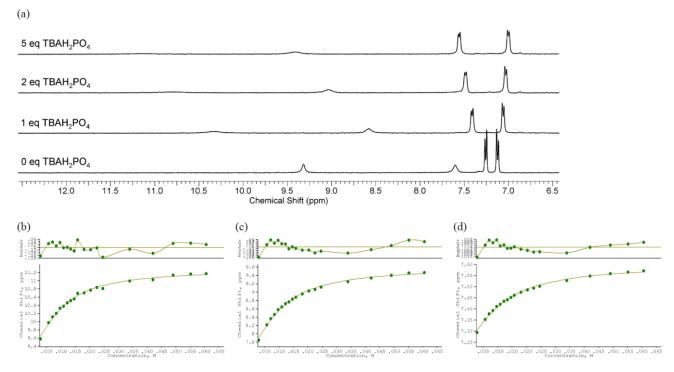


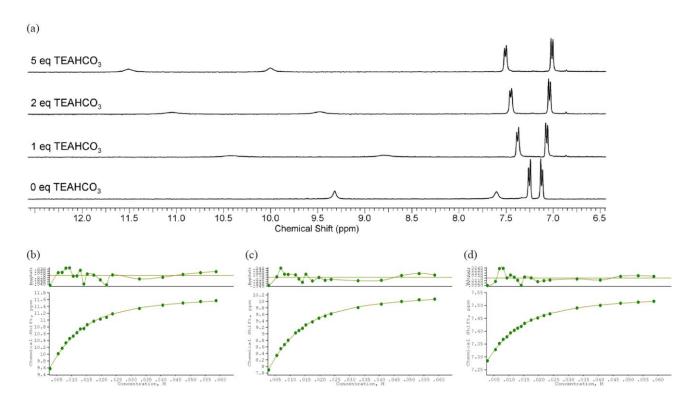
**Figure S149.** <sup>1</sup>H NMR titration of compound **19** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.31$  ppm.  $K_a = 191$  M<sup>-1</sup> (error 6 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 169$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 135$  M<sup>-1</sup> (error 3 %).



**Figure S150.** <sup>1</sup>H NMR titration of compound **19** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.31$  ppm.  $K_a = 188$  M<sup>-1</sup> (error 8 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 166$  M<sup>-1</sup> (error 7 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 150$  M<sup>-1</sup> (error 6 %).

Interactions of compound 20 (Pr) with various anions



Figure S151. <sup>1</sup>H NMR titration of compound 20 with TBANO<sub>3</sub> in DMSO-d<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S152.** <sup>1</sup>H NMR titration of compound **20** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.30$  ppm.  $K_a = 13.9$  M<sup>-1</sup> (error 6 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 13.1$  M<sup>-1</sup> (error 6 %). (d) Fit plot for CH proton at  $\delta = 7.25$  ppm.  $K_a = 10.4$  M<sup>-1</sup> (error 7.5 %).



**Figure S153.** <sup>1</sup>H NMR titration of compound **20** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.30$  ppm.  $K_a = 240$  M<sup>-1</sup> (error 10.5 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 208$  M<sup>-1</sup> (error 8.5 %). (d) Fit plot for CH proton at  $\delta = 7.25$  ppm.  $K_a = 158$  M<sup>-1</sup> (error 8 %).



**Figure S154.** <sup>1</sup>H NMR titration of compound **20** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.30$  ppm.  $K_a = 210$  M<sup>-1</sup> (error 6 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 196$  M<sup>-1</sup> (error 4 %). (d) Fit plot for CH proton at  $\delta = 7.25$  ppm.  $K_a = 188$  M<sup>-1</sup> (error 3.5 %).

Interactions of compound 21 (Bu) with various anions

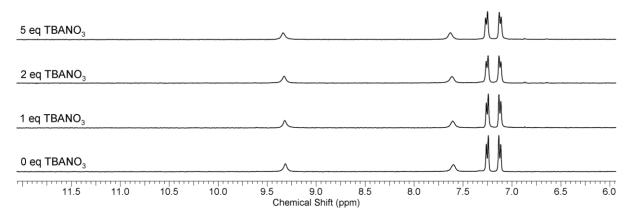



Figure S155. <sup>1</sup>H NMR titration of compound 21 with TBANO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. No interaction observed.

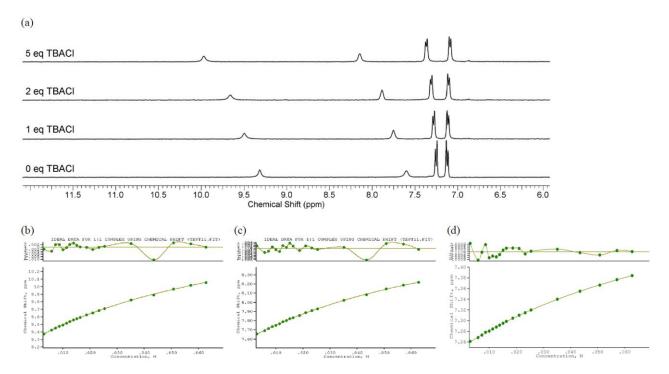
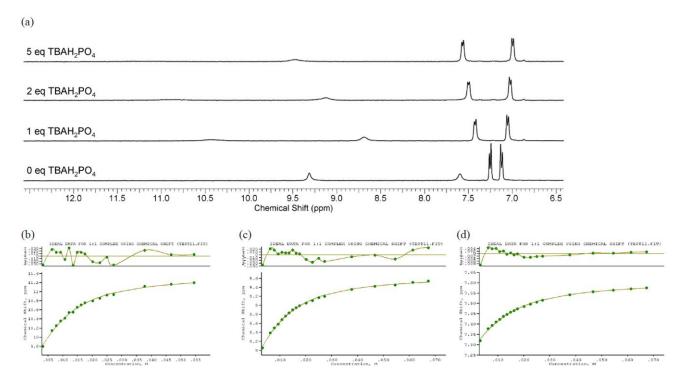
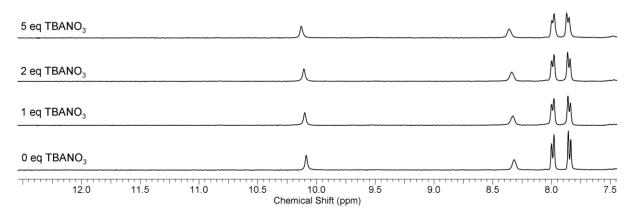
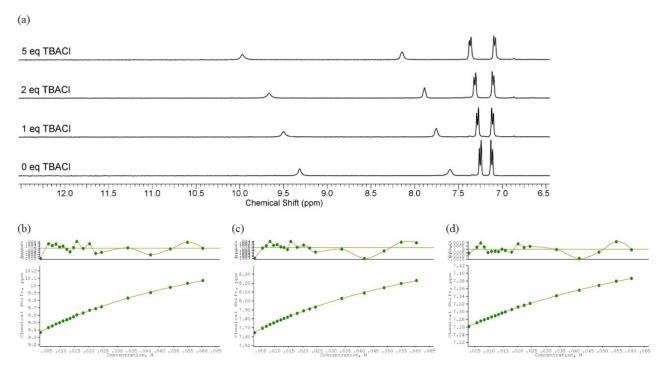





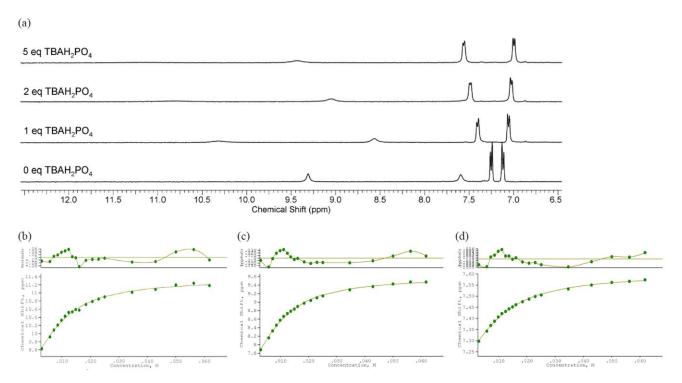
Figure S156. <sup>1</sup>H NMR titration of compound 21 with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.30$  ppm.  $K_a = 12.8$  M<sup>-1</sup> (error 4.5 %). (c) Fit plot for NH proton at  $\delta = 7.59$  ppm.  $K_a = 12.6$  M<sup>-1</sup> (error 4.5 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 10.7$  M<sup>-1</sup> (error 3.5 %).



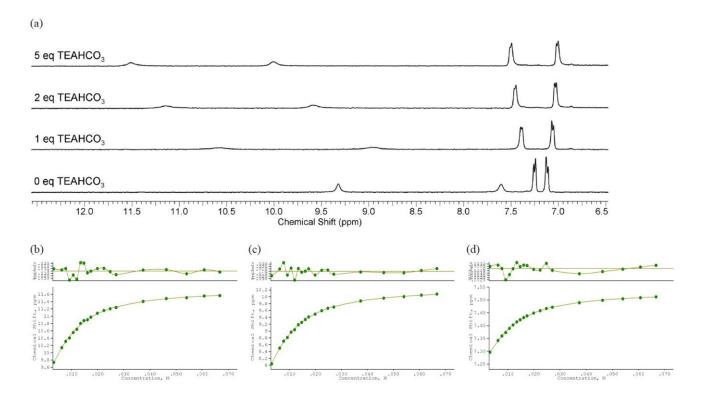

**Figure S157.** <sup>1</sup>H NMR titration of compound **21** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.30$  ppm.  $K_a = 187$  M<sup>-1</sup> (error 9 %). (c) Fit plot for NH proton at  $\delta = 7.59$  ppm.  $K_a = 163$  M<sup>-1</sup> (error 6 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 125$  M<sup>-1</sup> (error 6 %).




**Figure S158.** <sup>1</sup>H NMR titration of compound **21** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.30$  ppm.  $K_a = 243$  M<sup>-1</sup> (error 2 %). (c) Fit plot for NH proton at  $\delta = 7.59$  ppm.  $K_a = 249$  M<sup>-1</sup> (error 3.5 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 217$  M<sup>-1</sup> (error 2 %).


Interactions of compound 22 (Pe) with various anions




**Figure S159.** <sup>1</sup>H NMR titration of compound **22** with TBANO<sub>3</sub> in DMSO-*d*<sub>6</sub> with 0.5 % water at 298 K. No interaction observed.



**Figure S160.** <sup>1</sup>H NMR titration of compound **22** with TBACl in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.31$  ppm.  $K_a = 13.3$  M<sup>-1</sup> (error 6 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 12.8$  M<sup>-1</sup> (error 5 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 10.3$  M<sup>-1</sup> (error 4.5 %).



**Figure S161.** <sup>1</sup>H NMR titration of compound **22** with TBAH<sub>2</sub>PO<sub>4</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.31$  ppm.  $K_a = 217$  M<sup>-1</sup> (error 11 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 218$  M<sup>-1</sup> (error 6 %). (d) Fit plot for CH proton at  $\delta = 7.26$  ppm.  $K_a = 157$  M<sup>-1</sup> (error 5.5 %).



**Figure S162.** <sup>1</sup>H NMR titration of compound **22** with TEAHCO<sub>3</sub> in DMSO- $d_6$  with 0.5 % water at 298 K. Fit plots show chemical shift (ppm) versus anion concentration (M). (a) Stack plot. (b) Fit plot for NH proton at  $\delta = 9.31$  ppm.  $K_a = 208$  M<sup>-1</sup> (error 4 %). (c) Fit plot for NH proton at  $\delta = 7.60$  ppm.  $K_a = 182$  M<sup>-1</sup> (error 2 %).

## S5.4 QSAR analysis of anion binding

Table S17 gives an overview of the Hammett constants ( $\sigma$ , for substituents in meta and in para position), pK<sub>a</sub> values (for both NH functions of the thiourea moiety) and the V<sub>S,max</sub>, V<sub>S,min</sub> and PI values obtained through DFT calculations as described in Section S5.2. Tables S18-S20 give an overview of the association constants with chloride, dihydrogen phosphate and bicarbonate respectively, as described in Section S5.3. Values are given for each of the protons that are affected during association with the anion and Figure S163 represents how these protons are labeled.

Figure S163. Labeling of the various protons involved in anion binding (hydrogen bonding).

 $\textbf{Table S17.} \ \text{Overview of the Hammett constant } (\sigma), \ pK_{a}s \ \text{and electrostatic surface descriptors}.$ 

| Substituent                    | σ-para | σ-meta | pKa (arom NH) | pKa (alkyl NH) | $V_{S,max}$ | $V_{S,min}$ | PI        |
|--------------------------------|--------|--------|---------------|----------------|-------------|-------------|-----------|
|                                |        |        | tra           | ining set      |             |             |           |
| <b>2</b> (CF <sub>3</sub> )    | 0.54   | 0.43   | 11.96         | 15.56          | 66.575      | -23.2602    | 12.62661  |
| <b>3</b> (Cl)                  | 0.23   | 0.37   | 12.44         | 15.7           | 63.2372     | -25.9107    | 11.869437 |
| <b>4</b> (CN)                  | 0.66   | 0.56   | 11.71         | 15.59          | 68.111      | -42.1146    | 13.299468 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.80   | 0.63   | 11.53         | 15.61          | 70.3536     | -36.9306    | 13.108429 |
| 7 (COOMe)                      | 0.45   | 0.37   | 12.1          | 15.75          | 64.1963     | -39.1565    | 12.392093 |
| <b>8</b> (F)                   | 0.06   | 0.34   | 12.67         | 15.79          | 62.8197     | -26.5471    | 12.033459 |
| <b>9</b> (H)                   | 0.00   | 0.00   | 12.75         | 15.84          | 59.7756     | -29.0791    | 11.570452 |
| <b>10</b> (I)                  | 0.18   | 0.35   | 12.41         | 15.7           | 63.3237     | -25.8099    | 11.63142  |
| <b>11</b> (NO <sub>2</sub> )   | 0.78   | 0.71   | 11.35         | 15.34          | 70.1887     | -39.8408    | 13.750149 |
| <b>12</b> (OCOMe)              | 0.31   | 0.39   | 12.46         | 15.8           | 65.4778     | -43.5784    | 13.12108  |
| <b>13</b> (OCF <sub>3</sub> )  | 0.35   | 0.38   | 12.16         | 15.69          | 65.3214     | -24.3503    | 12.227026 |
| <b>15</b> (OMe)                | -0.27  | 0.12   | 12.76         | 15.88          | 59.1301     | -30.5202    | 12.16239  |
| <b>16</b> (SMe)                | 0.00   | 0.15   | 12.8          | 15.76          | 62.4402     | -26.724     | 12.033459 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.72   | 0.6    | 11.63         | 15.6           | 68.1084     | -43.951     | 13.96438  |
| <b>18</b> (Me)                 | -0.17  | -0.07  | 13.02         | 15.93          | 58.7091     | -30.0245    | 10.924613 |
| <b>19</b> (Et)                 | -0.15  | -0.07  | 13.02         | 15.93          | 58.8355     | -29.8674    | 10.426436 |
| <b>21</b> (Bu)                 | -0.16  | -0.08  | 13.04         | 15.93          | 58.438      | -30.2971    | 9.606557  |
| 22 (Pentyl)                    | -0.15  | -0.08  | 13.03         | 15.93          | 58.6686     | -30.3497    | 9.250343  |
|                                |        |        | 1             | est set        |             |             |           |
| <b>1</b> (Br)                  | 0.23   | 0.39   | 12.44         | 15.7           | 63.2297     | -25.7824    | 11.788309 |
| <b>6</b> (COMe)                | 0.5    | 0.38   | 12.02         | 15.76          | 65.3441     | -42.2773    | 12.930252 |
| <b>14</b> (OEt)                | -0.24  | 0.1    | 13.1          | 15.89          | 58.7365     | -30.8415    | 11.512424 |
| <b>20</b> (Pr)                 | -0.13  | -0.06  | 13.05         | 15.93          | 58.5161     | -30.1247    | 9.994914  |

**Table S18.** Overview of the association constants ( $K_a$  in  $M^{-1}$ ) and their log function ( $\log K_a$ ) for the interaction with TBA chloride in DMSO- $d_6/0.5\%$  water at 298 K.

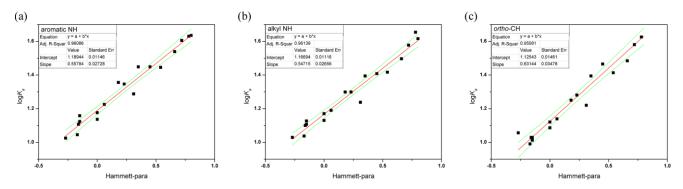
| Substituent                   | K <sub>a</sub><br>aromatic NH | <i>K<sub>a</sub></i><br>Alkyl NH | $K_a$ $o	ext{-CH}$ | logK <sub>a</sub><br>aromatic NH | log <i>K<sub>a</sub></i><br>alkyl NH | $\log K_a$ $o	ext{-CH}$ |
|-------------------------------|-------------------------------|----------------------------------|--------------------|----------------------------------|--------------------------------------|-------------------------|
|                               |                               |                                  | training set       | t                                |                                      |                         |
| <b>2</b> (CF <sub>3</sub> )   | 27.9                          | 26.1                             | 25.9               | 1.45                             | 1.42                                 | 1.41                    |
| <b>3</b> (Cl)                 | 22.2                          | 19.9                             | 19.1               | 1.35                             | 1.30                                 | 1.28                    |
| 4 (CN)                        | 34.6                          | 31.4                             | 30.5               | 1.54                             | 1.50                                 | 1.48                    |
| <b>5</b> (COCF <sub>3</sub> ) | 43.2                          | 41.3                             | 51.8               | 1.64                             | 1.62                                 | 1.71                    |
| 7 (COOMe)                     | 28.1                          | 25.6                             | 29.2               | 1.45                             | 1.41                                 | 1.47                    |
| <b>8</b> (F)                  | 16.8                          | 15.5                             | 13.8               | 1.23                             | 1.19                                 | 1.14                    |
| <b>9</b> (H)                  | 13.7                          | 13.5                             | 13.2               | 1.14                             | 1.13                                 | 1.12                    |
| <b>10</b> (I)                 | 22.7                          | 19.9                             | 17.8               | 1.36                             | 1.30                                 | 1.25                    |
| <b>11</b> (NO <sub>2</sub> )  | 45.1                          | 42.7                             | 42.3               | 1.65                             | 1.63                                 | 1.63                    |
| <b>12</b> (OCOMe)             | 19.4                          | 17.3                             | 16.6               | 1.29                             | 1.24                                 | 1.22                    |
| <b>13</b> (OCF <sub>3</sub> ) | 28.1                          | 24.8                             | 24.8               | 1.45                             | 1.39                                 | 1.39                    |

| <b>15</b> (OMe)                | 10.6 | 10.7 | 11.4     | 1.03 | 1.03 | 1.06 |
|--------------------------------|------|------|----------|------|------|------|
| <b>16</b> (SMe)                | 15.0 | 14.8 | 12.2     | 1.18 | 1.17 | 1.09 |
| <b>17</b> (SO <sub>2</sub> Me) | 40.3 | 37.8 | 38.1     | 1.61 | 1.58 | 1.58 |
| <b>18</b> (Me)                 | 11.1 | 10.9 | 9.8      | 1.05 | 1.04 | 0.99 |
| <b>19</b> (Et)                 | 14.4 | 13.4 | 10.7     | 1.16 | 1.13 | 1.03 |
| <b>21</b> (Bu)                 | 12.8 | 12.6 | 10.7     | 1.11 | 1.10 | 1.03 |
| 22 (Pentyl)                    | 13.3 | 12.8 | 10.3     | 1.12 | 1.11 | 1.01 |
|                                |      |      | test set |      |      |      |
| 1 (Br)                         | 22.0 | 18.6 | 16.5     | 1.34 | 1.27 | 1.22 |
| <b>6</b> (COMe)                | 28.6 | 26.8 | 18.8     | 1.46 | 1.43 | 1.27 |
| <b>14</b> (OEt)                | 10.8 | 12.3 | 9.5      | 1.03 | 1.09 | 0.98 |
| <b>20</b> (Pr)                 | 13.9 | 13.1 | 10.4     | 1.14 | 1.12 | 1.02 |

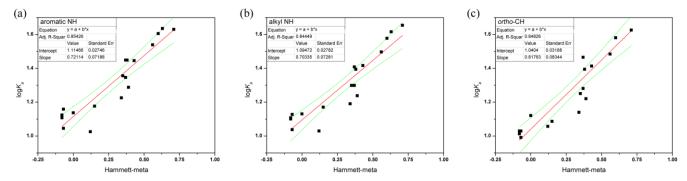
**Table S19.** Overview of the association constants ( $K_a$  in M<sup>-1</sup>) and their log function ( $\log K_a$ ) for the interaction with TBA dihydrogen phosphate in DMSO- $d_6/0.5\%$  water at 298 K.

| Substituent                    | $K_a$ aromatic NH | $K_a$ Alkyl NH | $K_a$ $o	ext{-}	ext{CH}$ | $\log\!K_a$ aromatic NH | $\log\!K_a$ alkyl NH | $\log K_a$ $o	ext{-CH}$ |
|--------------------------------|-------------------|----------------|--------------------------|-------------------------|----------------------|-------------------------|
|                                |                   |                | training set             | t                       |                      |                         |
| <b>2</b> (CF <sub>3</sub> )    | -                 | 852            | 532                      | -                       | 2.93                 | 2.73                    |
| <b>3</b> (Cl)                  | -                 | 428            | 331                      | -                       | 2.63                 | 2.52                    |
| <b>4</b> (CN)                  | -                 | 1103           | 912                      | -                       | 3.04                 | 2.96                    |
| <b>5</b> (COCF <sub>3</sub> )  | -                 | -              | -                        | -                       |                      |                         |
| 7 (COOMe)                      | -                 | 700            | 511                      | -                       | 2.85                 | 2.71                    |
| <b>8</b> (F)                   | -                 | 272            | 229                      | -                       | 2.43                 | 2.36                    |
| <b>9</b> (H)                   | -                 | 211            | 169                      | -                       | 2.32                 | 2.23                    |
| <b>10</b> (I)                  | -                 | 448            | 354                      | -                       | 2.65                 | 2.55                    |
| <b>11</b> (NO <sub>2</sub> )   | -                 | 827            | 912                      | -                       | 2.92                 | 2.96                    |
| <b>12</b> (OCOMe)              | -                 | 277            | 217                      | -                       | 2.44                 | 2.34                    |
| <b>13</b> (OCF <sub>3</sub> )  | -                 | 426            | 327                      | -                       | 2.63                 | 2.51                    |
| <b>15</b> (OMe)                | 162               | 131            | 102                      | 2.21                    | 2.12                 | 2.01                    |
| <b>16</b> (SMe)                | -                 | 285            | 233                      | -                       | 2.45                 | 2.37                    |
| <b>17</b> (SO <sub>2</sub> Me) | -                 | 943            | 684                      | -                       | 2.97                 | 2.84                    |
| <b>18</b> (Me)                 | -                 | 164            | 134                      | -                       | 2.21                 | 2.13                    |
| <b>19</b> (Et)                 | 191               | 169            | 135                      | 2.28                    | 2.23                 | 2.13                    |
| <b>21</b> (Bu)                 | 187               | 163            | 125                      | 2.27                    | 2.21                 | 2.10                    |
| 22 (Pentyl)                    | 217               | 218            | 157                      | 2.34                    | 2.34                 | 2.20                    |
|                                |                   |                | test set                 |                         |                      |                         |
| <b>1</b> (Br)                  | -                 | 465            | 347                      | -                       | 2.67                 | 2.54                    |
| <b>6</b> (COMe)                | -                 | 417            | 444                      | -                       | 2.62                 | 2.65                    |
| <b>14</b> (OEt)                | 144               | 141            | 109                      | 2.16                    | 2.15                 | 2.04                    |
| <b>20</b> (Pr)                 | 240               | 208            | 158                      | 2.38                    | 2.32                 | 2.20                    |

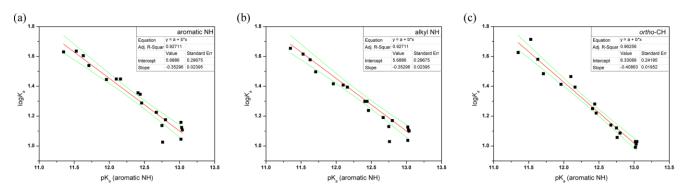
**Table S20.** Overview of the association constants ( $K_a$  in M<sup>-1</sup>) and their log function ( $\log K_a$ ) for the interaction with TEA bicarbonate in DMSO- $d_6/0.5\%$  water at 298 K.


| Substituent                    | $K_a$ aromatic NH | <i>K<sub>a</sub></i><br>Alkyl NH | K <sub>a</sub><br>o-CH | ${ m log}K_a$ aromatic NH | log <i>K<sub>a</sub></i><br>alkyl NH | $egin{aligned} \mathbf{log} K_a \ o	ext{-}\mathbf{CH} \end{aligned}$ |
|--------------------------------|-------------------|----------------------------------|------------------------|---------------------------|--------------------------------------|----------------------------------------------------------------------|
|                                |                   |                                  | training set           |                           |                                      |                                                                      |
| <b>2</b> (CF <sub>3</sub> )    | -                 | -                                | 931                    | -                         | -                                    | 2.97                                                                 |
| <b>3</b> (Cl)                  | -                 | 452                              | 428                    | -                         | 2.66                                 | 2.63                                                                 |
| <b>4</b> (CN)                  | -                 | -                                | 1550                   | -                         | -                                    | 3.19                                                                 |
| <b>5</b> (COCF <sub>3</sub> )  | -                 |                                  | -                      | -                         | -                                    | -                                                                    |
| 7 (COOMe)                      | -                 | -                                | 589                    | -                         | -                                    | 2.77                                                                 |
| <b>8</b> (F)                   | -                 | 292                              | 303                    | -                         | 2.47                                 | 2.48                                                                 |
| <b>9</b> (H)                   | 230               | 262                              | 222                    | 2.36                      | 2.42                                 | 2.35                                                                 |
| <b>10</b> (I)                  | 287               | 468                              | 564                    | 2.46                      | 2.67                                 | 2.75                                                                 |
| <b>11</b> (NO <sub>2</sub> )   | -                 | -                                | $(345)^{a}$            | -                         | -                                    | $(2.54)^{a}$                                                         |
| <b>12</b> (OCOMe)              | 262               | 271                              | 266                    | 2.42                      | 2.43                                 | 2.42                                                                 |
| <b>13</b> (OCF <sub>3</sub> )  | -                 | 592                              | 439                    | -                         | 2.77                                 | 2.64                                                                 |
| <b>15</b> (OMe)                | 171               | 157                              | 145                    | 2.23                      | 2.20                                 | 2.16                                                                 |
| <b>16</b> (SMe)                | 324               | 364                              | 316                    | 2.51                      | 2.56                                 | 2.50                                                                 |
| <b>17</b> (SO <sub>2</sub> Me) | -                 | -                                | 702                    | -                         | -                                    | 2.85                                                                 |
| <b>18</b> (Me)                 | 147               | 152                              | 147                    | 2.17                      | 2.18                                 | 2.17                                                                 |
| <b>19</b> (Et)                 | 188               | 166                              | 150                    | 2.27                      | 2.22                                 | 2.18                                                                 |
| <b>21</b> (Bu)                 | 243               | 249                              | 217                    | 2.39                      | 2.40                                 | 2.34                                                                 |
| 22 (Pentyl)                    | 208               | 197                              | 182                    | 2.32                      | 2.29                                 | 2.26                                                                 |
|                                |                   |                                  | test set               |                           |                                      |                                                                      |
| <b>1</b> (Br)                  | -                 | -                                | 447                    | -                         | -                                    | 2.65                                                                 |
| <b>6</b> (COMe)                | -                 | -                                | 553                    | -                         | -                                    | 2.74                                                                 |
| <b>14</b> (OEt)                | 172               | 163                              | 141                    | 2.24                      | 2.21                                 | 2.15                                                                 |
| <b>20</b> (Pr)                 | 210               | 196                              | 188                    | 2.32                      | 2.29                                 | 2.27                                                                 |

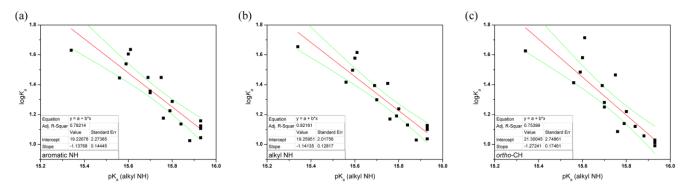
<sup>&</sup>lt;sup>a</sup> Peak broadening and overlap of CH peaks make determination uncertain.


## QSAR for interaction with TBA chloride

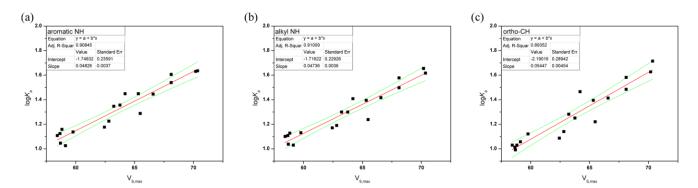
The anion binding properties of thioureas are most likely governed by electronic contributions of the substituents, which can be described by the Hammett constant,  $pK_a$  or  $V_{S,max}$ . Figures S164-S170 represent the correlation between the chloride binding abilities of the test set  $(logK_a)$  and the various electronic descriptors given in Table S17 calculated using Origin 8.1. It can be seen that the best correlation is obtained for the Hammett constant for substituent in the *para* position, the  $pK_a$  of the aromatic NH, or  $V_{S,max}$ . The correlation with the Hammett constant for substituent in the *meta* position is less good, indicating that the effect of the substituents on anion binding is due to their influence on the acidity of the aromatic NH and not due to the increased acidity of the *ortho*-CH. This is further confirmed by the fact that there is a good correlation with the  $pK_a$  of the aromatic NH and not the alkyl NH (which is not strongly influenced by the electronics of the substituent). The correlation with  $V_{S,min}$  and PI are also less good because these descriptors tend to correlate with hydrogen bond acceptor ability, while anion binding is regulated by anion bond donor


ability ( $V_{S,max}$ ). It can also be seen that the association constants obtained from the change in chemical shift of the aromatic NH, alkyl NH and *ortho*-CH give similar results, showing that all of them are a good measure for the association constant, which can also be seen from the fact that the values for the aromatic NH, alkyl NH and *ortho*-CH are all close to each other.




**Figure S164.** Correlation between  $\log K_a$  for the association with TBA chloride and the Hammett constant for substituents in the *para* position.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.




**Figure S165.** Correlation between  $\log K_a$  for the association with TBA chloride and the Hammett constant for substituents in the *meta* position.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



**Figure S166.** Correlation between  $\log K_a$  for the association with TBA chloride and the pK<sub>a</sub> of the aromatic NH.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



**Figure S167.** Correlation between  $\log K_a$  for the association with TBA chloride and the pK<sub>a</sub> of the alkyl NH.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



**Figure S168.** Correlation between  $\log K_a$  for the association with TBA chloride and  $V_{S,max}$ .  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.

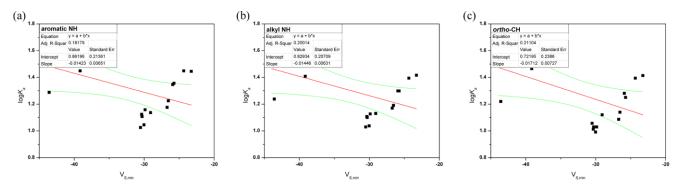
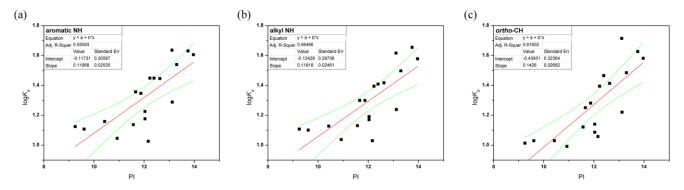




Figure S169. Correlation between  $\log K_a$  for the association with TBA chloride and  $V_{S,min}$ .  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



**Figure S170.** Correlation between  $\log K_a$  for the association with TBA chloride and PI.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.

## QSAR for interaction with TBA dihydrogen phosphate

Figures S171-S177 represent the correlation between the phosphate binding abilities of the test set ( $\log K_a$ ) and the various electronic descriptors given in Table S17 calculated using Origin 8.1. The same correlations are seen as for the association with chloride, with the best correlations observed with the Hammett constant for *para* substituents, pK<sub>a</sub> for the aromatic NH and V<sub>S,max</sub>. Similar to chloride, it can be seen that the association constants obtained from the change in chemical shift of the aromatic NH, alkyl NH and *ortho*-CH give similar results. However due to peak broadening of the NH peaks during NMR titrations, the association constants could not always be calculated from the aromatic NH signals. The data sets obtained for the alkyl NH and the *ortho*-CH are therefore the most complete. As the correlation found for both the alkyl NH and the *ortho*-CH are similar, both association constants can be used for building a QSAR model. The correlation with the *ortho*-CH are a bit lower than for the alkyl NH, which is probably due to the higher uncertainty of the association constants due to a smaller change in chemical shift for the *ortho*-CH signal. Log $K_a$  could not be obtained for 5 ( $-\text{COCF}_3$ ) due to decomposition of the compound during the titration.

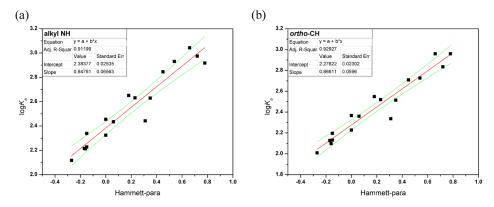



Figure S171. Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and the Hammett constant for substituents in the *para* position.  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH, (b) *ortho* CH.

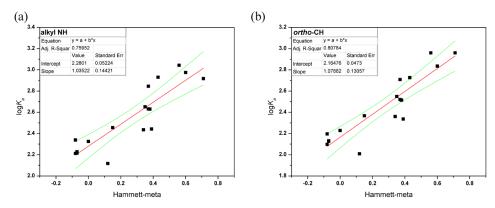
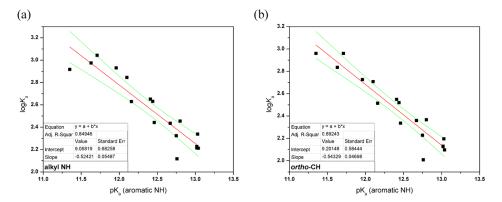




Figure S172. Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and the Hammett constant for substituents in the *meta* position.  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH, (b) *ortho* CH.



**Figure S173.** Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and the pK<sub>a</sub> of the aromatic NH.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



**Figure S174.** Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and the pK<sub>a</sub> of the alkyl NH.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.

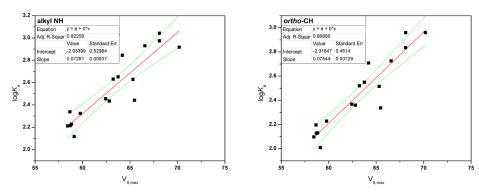
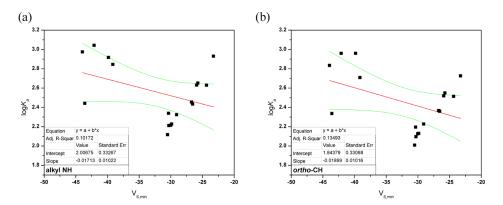
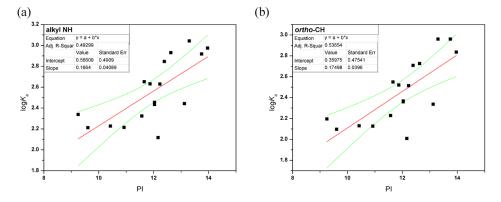
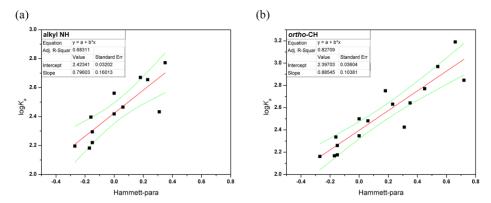



Figure S175. Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and  $V_{S,max}$ . Log $K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



Figure S176. Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and  $V_{S,min}$ . Log $K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.



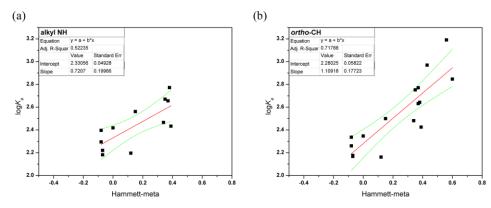
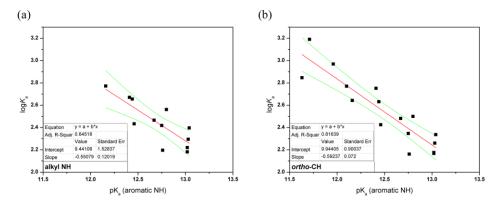
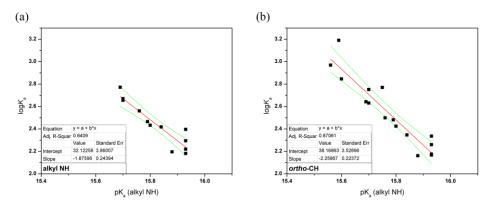
**Figure S177.** Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and PI.  $\log K_a$  was calculated using the change in chemical shift of (a) aromatic NH, (b) alkyl NH, (c) *ortho* CH.

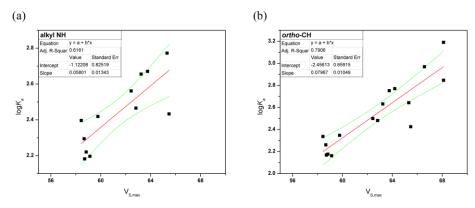
## QSAR for interaction with TEA bicarbonate

Figures S178-S184 represent the correlation between the bicarbonate binding abilities of the test set ( $\log K_a$ ) and the various electronic descriptors given in Table S17 calculated using Origin 8.1. The same correlations are seen as for the association with chloride and phosphate, with the best correlations observed with the Hammett constant for para substituents, pK<sub>a</sub> for the aromatic NH and V<sub>S,max</sub>. However, the correlations are less good than for chloride and phosphate, which might be due to competing deprotonation of the receptor. Similar to chloride, it can be seen that the association constants obtained from the change in chemical shift of the aromatic NH, alkyl NH and ortho-CH give similar results. However due to peak broadening of the NH peaks during NMR titrations, the association constants could not always be calculated from the aromatic and/or alkyl NH signals. The data obtained for the ortho-CH is therefore the most complete data set and it is clear from the data that the ortho-CH data is a good measure for the association constant due to the high correlation with the NH data (where it could be obtained, see interaction with chloride). The data set for the aromatic NH could only be obtained for the lowest values of the Hammett constant and the range is therefore not sufficient for a meaningful QSAR analysis. Furthermore, the data set for the alkyl NH suffered from the same problem to a lesser extend and was hindered by large inaccuracies of the  $log K_a$  values obtained from these NHs due to significant peak broadening. Log $K_a$  could not be obtained for 5 (-COCF<sub>3</sub>) and 11 (-NO<sub>2</sub>) due to decomposition of the compound during the titration (5) or broadening/overlap of the ortho-CH peak **(11)**.



**Figure S178.** Correlation between  $\log K_a$  for the association with TEA bicarbonate and the Hammett constant for substituents in the *para* position.  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.



Figure S179. Correlation between  $\log K_a$  for the association with TEA bicarbonate and the Hammett constant for substituents in the *meta* position.  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.



**Figure S180.** Correlation between  $\log K_a$  for the association with TEA bicarbonate and the pK<sub>a</sub> of the aromatic NH.  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.



**Figure S181.** Correlation between  $\log K_a$  for the association with TEA bicarbonate and the pK<sub>a</sub> of the alkyl NH. Log $K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.



**Figure S182.** Correlation between  $\log K_a$  for the association with TEA bicarbonate and  $V_{S,max}$ .  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.

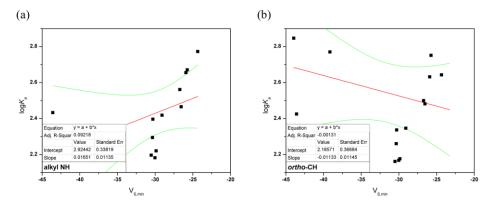
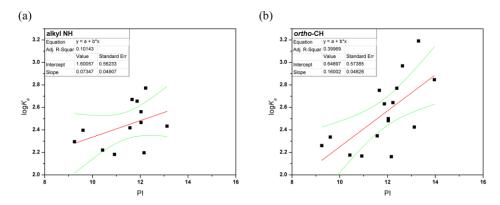
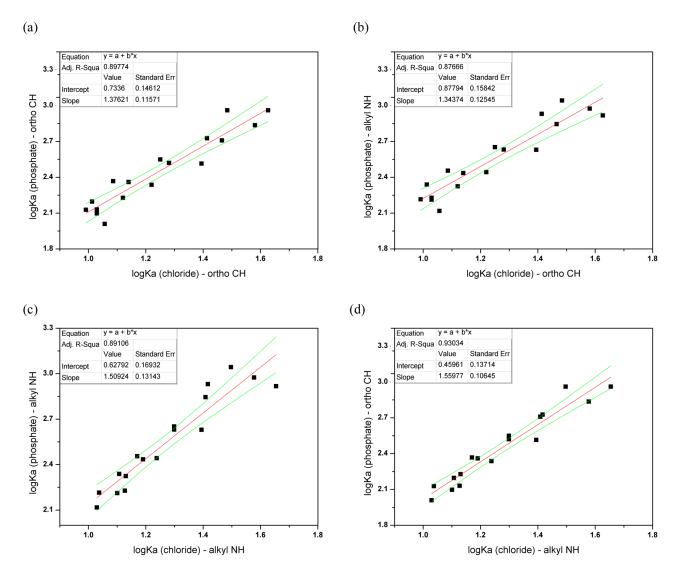
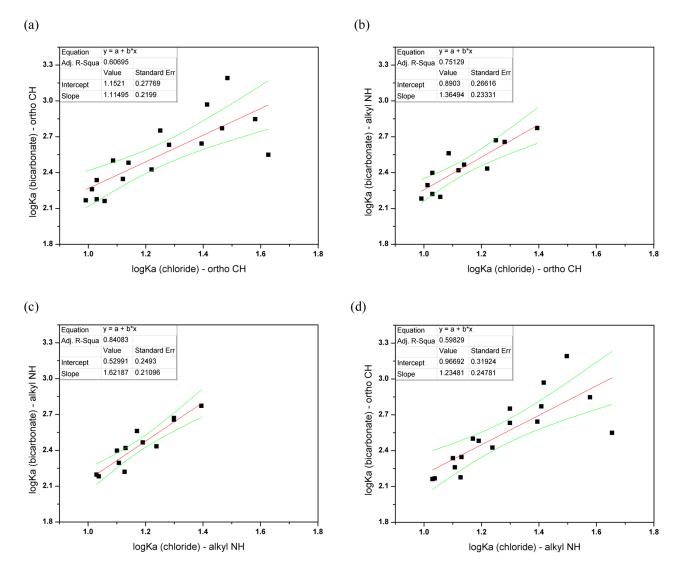
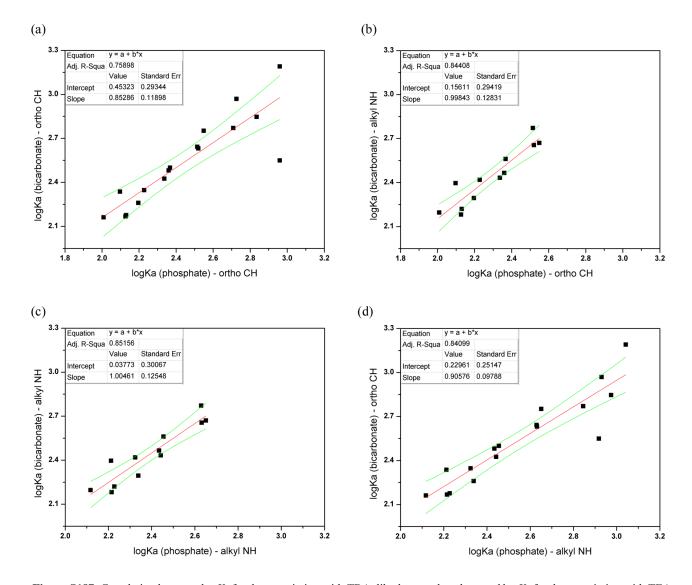





Figure S183. Correlation between  $\log K_a$  for the association with TEA bicarbonate and  $V_{S,min}$ .  $\log K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.




**Figure S184.** Correlation between  $log K_a$  for the association with TEA bicarbonate and PI.  $log K_a$  was calculated using the change in chemical shift of (a) alkyl NH (incomplete data set), (b) *ortho* CH.


Figures S185-S187 represent the correlation between the chloride binding abilities of the test set ( $\log K_a$ ) and the phosphate or bicarbonate binding abilities of the test set ( $\log K_a$ ) calculated using Origin 8.1. It can be seen that the associations with the different anions are highly correlated to one another. This means that the association with chloride, phosphate and bicarbonate are governed by similar factors (in this case mainly electronic factors). The largest deviation from a perfect correlation are seen for bicarbonate and for the most electron withdrawing substituents (highest values of the Hammett constant), which can indicate competing deprotonation of the receptor.



**Figure S185.** Correlation between  $\log K_a$  for the association with TBA chloride and  $\log K_a$  for the association with TBA dihydrogen phosphate.  $\log K_a$  values were calculated from the change in chemical shift of either the alkyl NH or the *ortho* CH.



**Figure S186.** Correlation between  $\log K_a$  for the association with TBA chloride and  $\log K_a$  for the association with TEA bicarbonate.  $\log K_a$  values were calculated from the change in chemical shift of either the alkyl NH or the *ortho* CH.



**Figure S187.** Correlation between  $\log K_a$  for the association with TBA dihydrogen phosphate and  $\log K_a$  for the association with TEA bicarbonate.  $\log K_a$  values were calculated from the change in chemical shift of either the alkyl NH or the *ortho* CH.

#### **S6. TRANSPORT STUDIES**

## **S6.1** Experimental procedures

These procedures describe typical membrane transport tests as referred to in the article. Internal and external solutions can vary (see caption of figures). Chloride concentrations during transport experiments were determined using an *Accumet* chloride-selective electrode (our lab posses 4 chloride selective electrodes and all of them were used during the preparation of this manuscript). POPC (1-palmitoyl-2-oleoyl-*sn*-glycero-3-phosphocholine) was supplied by *Genzyme* and was stored at –20°C as a solution in chloroform (1 g POPC in 35 mL chloroform). Polyoxyethylene(8)lauryl ether was used as detergent and was supplied by *TCI*.

#### Preparation of Vesicles

A lipid film of POPC was formed from a chloroform solution under reduced pressure and dried under vacuum for at least 4 hours. The lipid film was rehydrated by vortexing with a metal chloride (MCl) salt solution (489 mM MCl, 5 mM phosphate buffer at pH 7.2). The lipid suspension was then subjected to nine freeze-thaw cycles, where the suspension was alternatingly allowed to freeze in a liquid nitrogen bath, followed by thawing in a water bath. The lipid suspension was allowed to age for 30 min at room temperature and was subsequently extruded 25 times through a 200 nm polycarbonate membrane. The resulting unilamellar vesicles were dialyzed against the external medium to remove unencapsulated MCl salts.

#### Chloride/Nitrate Transport Assay

Unilamellar POPC vesicles containing NaCl, prepared as described above, were suspended in the external medium consisting of a 489 mM NaNO<sub>3</sub> solution buffered to pH 7.2 with sodium phosphate salts (5 mM buffer). The lipid concentration per sample was 1 mM. A DMSO solution of the carrier molecule was added to start the experiment and the chloride efflux was monitored using a chloride sensitive electrode. At 5 min, the vesicles were lysed with 50 µl of polyoxyethylene(8)lauryl ether (0.232 mM in 7:1 water:DMSO v/v) and a total chloride reading was taken at 7 min. The initial value was set at 0 % chloride efflux and the final chloride reading (at 7 minutes) was set as 100 % chloride efflux. All other data points were calibrated to these points.

#### Chloride/Bicarbonate Transport Assay

Unilamellar POPC vesicles containing 489 mM NaCl solution buffered to pH 7.2 with 20 mM sodium phosphate salts, prepared as described above, were suspended in the external medium consisting of a 162 mM Na<sub>2</sub>SO<sub>4</sub> solution buffered to pH 7.2 with sodium phosphate salts (20 mM buffer). The lipid

concentration per sample was 1 mM. A DMSO solution of the carrier molecule (10 mM) was added to start the experiment and chloride efflux was monitored using a chloride sensitive electrode. At 2 min, a NaHCO<sub>3</sub> solution (1 M in 162 mM Na<sub>2</sub>SO<sub>4</sub> buffered to pH 7.2 with 20 mM sodium phosphate salts) was added so that the outer solution contained 40 mM NaHCO<sub>3</sub>. At 7 min, the vesicles were lysed with 50  $\mu$ l of polyoxyethylene(8)lauryl ether (0.232 mM in 7:1 water:DMSO v/v) and a total chloride reading was taken at 9 min. The initial value was set at 0 % chloride efflux and the final chloride reading (at 9 minutes) was set as 100 % chloride efflux. All other data points were calibrated to these points.

# $S6.2 \quad Initial \ rate \ of \ chloride \ efflux \ (k_{ini}) \ determination$

The initial rate of chloride release ( $k_{ini}$ ) was obtained from chloride/nitrate transport experiments. For this a series of unilamellar 1-palmitoyl-2-oleoylphospatidylcholine (POPC) vesicles of defined size (200 nm in diameter) were prepared. The vesicles were loaded with a buffered sodium chloride solution (489 mM in 5 mM phosphate buffer at pH 7.2) and suspended in an isotonic sodium nitrate solution. A thiourea was then added as a solution in a small amount of DMSO (2 mol% thiourea to lipid) and the resultant transport of chloride out of the vesicles was monitored using an ion selective electrode (ISE). At the end of the experiment, the vesicles were lysed by addition of detergent and the final reading was used to calibrate the ISE to 100 % chloride release. It is possible to fit the obtained chloride efflux with the following asymptotic function using Origin 8.1, where y is the chloride efflux (%) and x is time (s):

$$v = a - b \cdot c^x$$

The initial rate of chloride release ( $k_{ini}$ ) is then given by  $k_{ini} = -b \cdot ln(c)$  and is obtained in % s<sup>-1</sup>. To ensure repeatability and precise data, the whole procedure was repeated a minimum of 3 times and was conducted each time with a newly prepared set of vesicles, a different experimenter and a different chloride selective electrode (out of 4 *Accumet* electrodes in total). The data given in the article represents the average initial rate of chloride release ( $k_{ini}$ ) between each repeat and the errors are given by standard deviations. Within each repeat, the chloride efflux by 2% thiourea was monitored a further 3 times to ensure stability of the data during that repeat. Figures S188-S209 show all of the obtained transport data for 2% thiourea to lipid and the corresponding asymptotic fit (both training and test set). An overview of the obtained initial rates of chloride release ( $k_{ini}$ ) can be found in Table S21 in Section S6.5.

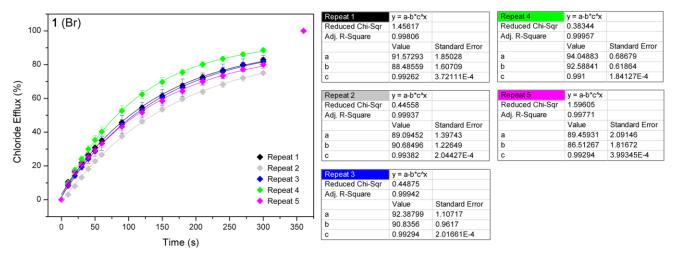



Figure S188. Overview of the initial rate of chloride release (kini) for compound 1. For experimental details, see main text.

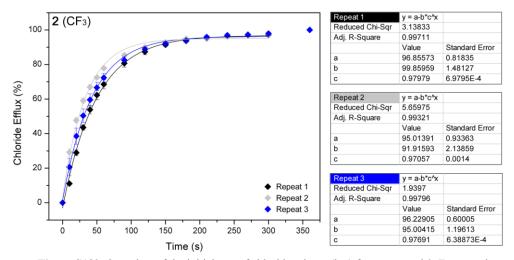



Figure S189. Overview of the initial rate of chloride release (kimi) for compound 2. For experimental details, see main text.

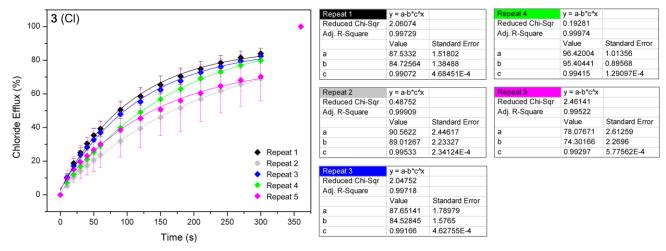



Figure S190. Overview of the initial rate of chloride release (k<sub>ini</sub>) for compound 3. For experimental details, see main text.

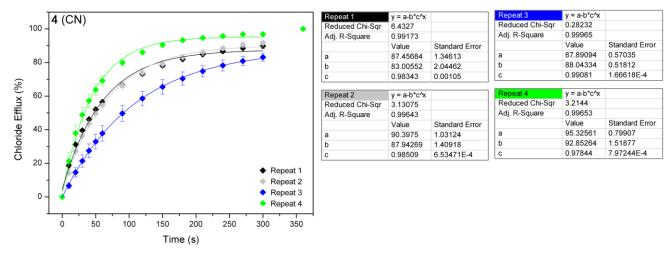



Figure S191. Overview of the initial rate of chloride release (kini) for compound 4. For experimental details, see main text.

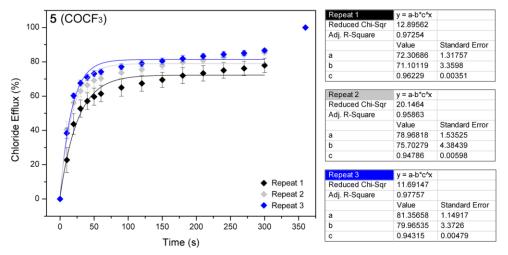



Figure S192. Overview of the initial rate of chloride release (kini) for compound 5. For experimental details, see main text.

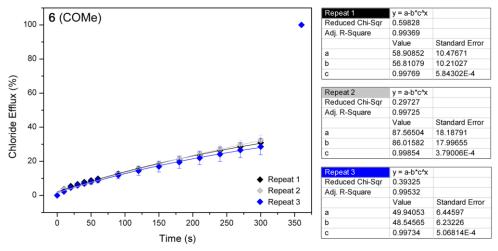



Figure S193. Overview of the initial rate of chloride release  $(k_{ini})$  for compound 6. For experimental details, see main text.

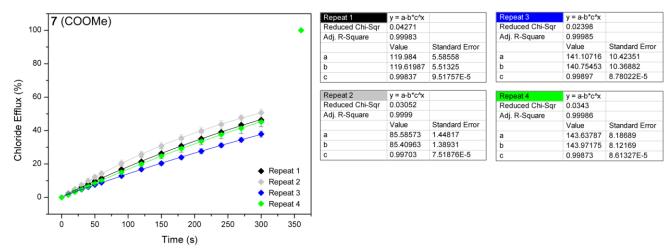



Figure S194. Overview of the initial rate of chloride release (kini) for compound 7. For experimental details, see main text.

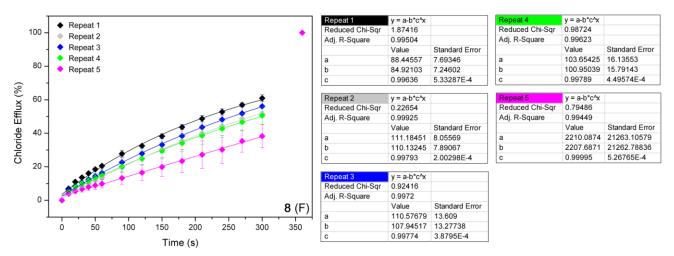



Figure S195. Overview of the initial rate of chloride release (kimi) for compound 8. For experimental details, see main text.

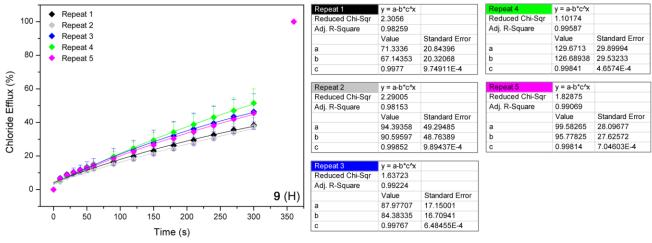



Figure S196. Overview of the initial rate of chloride release (kini) for compound 9. For experimental details, see main text.

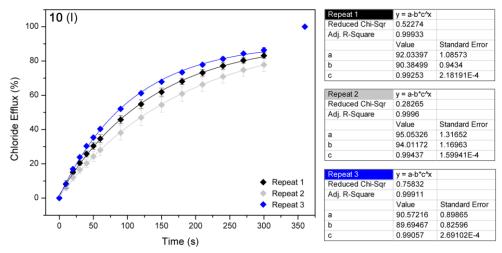



Figure S197. Overview of the initial rate of chloride release  $(k_{ini})$  for compound 10. For experimental details, see main text.

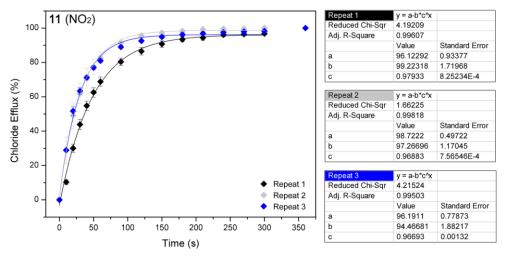



Figure S198. Overview of the initial rate of chloride release  $(k_{ini})$  for compound 11. For experimental details, see main text.

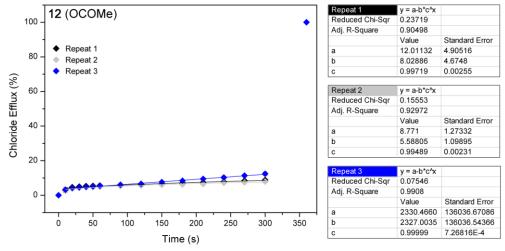



Figure S199. Overview of the initial rate of chloride release (k<sub>ini</sub>) for compound 12. For experimental details, see main text.

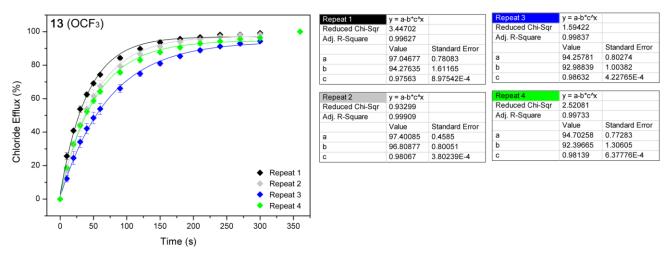



Figure S200. Overview of the initial rate of chloride release (kini) for compound 13. For experimental details, see main text.

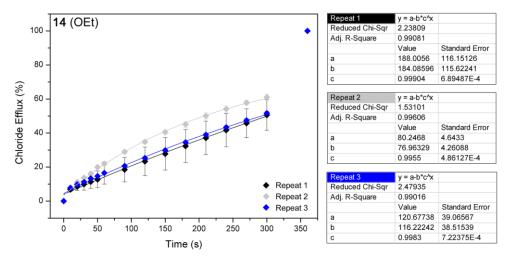
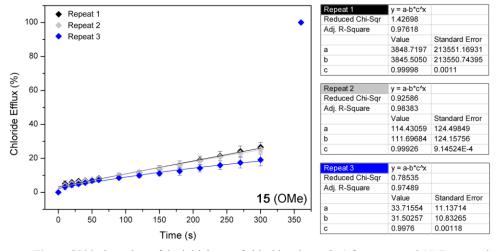




Figure S201. Overview of the initial rate of chloride release  $(k_{ini})$  for compound 14. For experimental details, see main text.



 $\textbf{Figure S202.} \ \ \text{Overview of the initial rate of chloride release } (k_{ini}) \ \ \text{for compound 15}. \ \ \text{For experimental details, see main text}.$ 

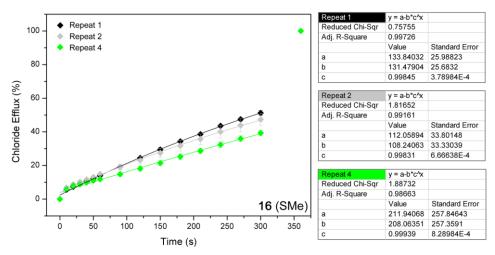



Figure S203. Overview of the initial rate of chloride release (kini) for compound 16. For experimental details, see main text.

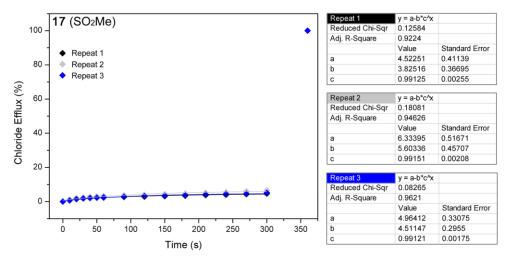



Figure S204. Overview of the initial rate of chloride release (kini) for compound 17. For experimental details, see main text.

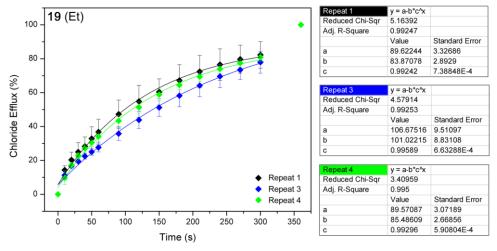



Figure S205. Overview of the initial rate of chloride release (k<sub>ini</sub>) for compound 19. For experimental details, see main text.

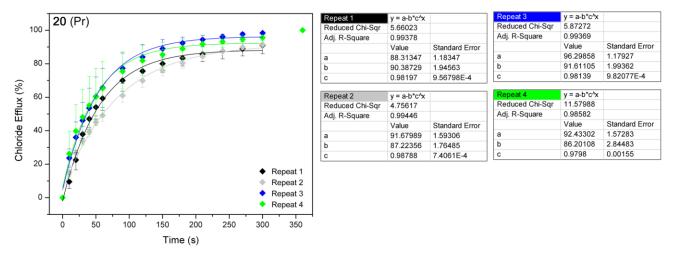



Figure S206. Overview of the initial rate of chloride release (kini) for compound 20. For experimental details, see main text.



Figure S207. Overview of the initial rate of chloride release (kini) for compound 21. For experimental details, see main text.

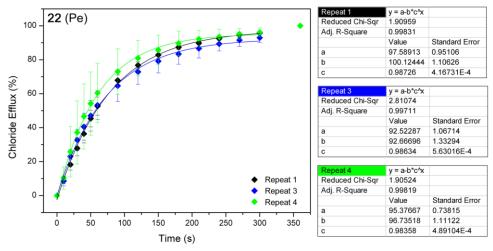



Figure S208. Overview of the initial rate of chloride release  $(k_{ini})$  for compound 22. For experimental details, see main text.

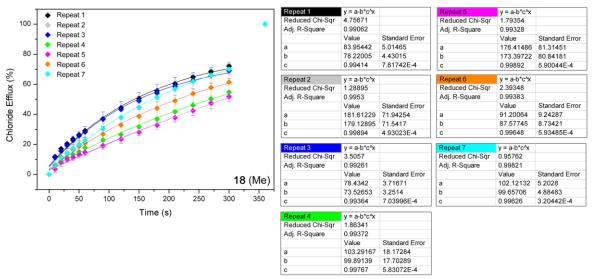
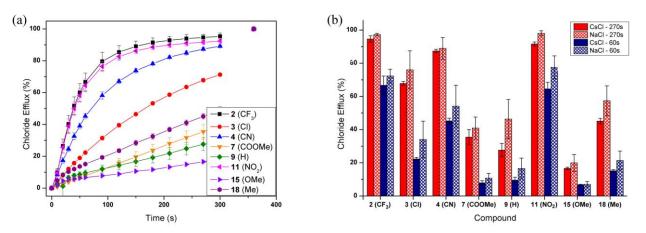
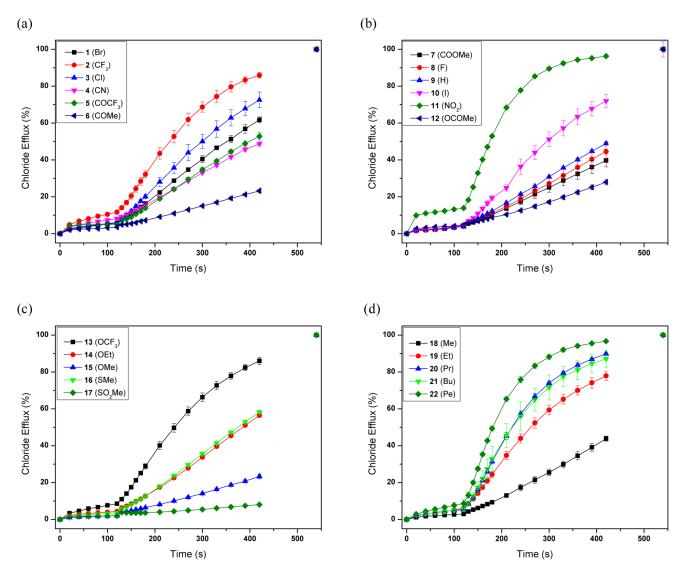




Figure S209. Overview of the initial rate of chloride release (k<sub>ini</sub>) for compound 18. For experimental details, see main text.

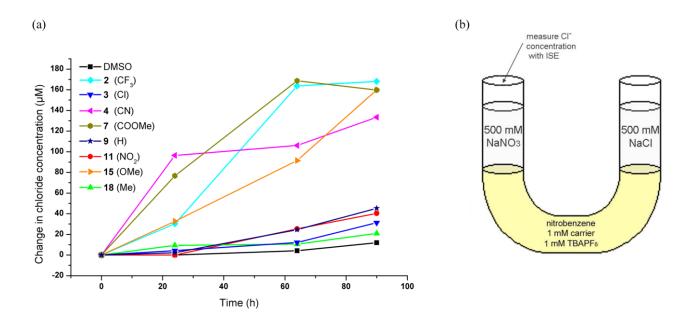
#### S6.3 Evidence for antiport and mobile carrier mechanisms

Symport vs. antiport: Cesium


To test whether the transporters function as symporters or antiporters, the chloride/nitrate tests were repeated with CsCl encapsulated in the vesicles instead of NaCl. Figure S210 shows that there is little difference (within error) between the chloride efflux observed in the case of CsCl and NaCl, indicating an antiport process.



**Figure S210.** (a) Chloride efflux promoted by a selection of **1-22** (2 % molar carrier to lipid) from unilamellar POPC vesicles loaded with 489 mM CsCl buffered to pH 7.2 with 5 mM sodium phosphate salts. The vesicles were dispersed in 489 mM NaNO<sub>3</sub> buffered to pH 7.2 with 5 mM sodium phosphate salts. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to 100 % chloride efflux. Each point represents the average of three trials. (b) Comparison between the chloride efflux from vesicles loaded with CsCl and with NaCl for different time intervals (60s and 270s after the addition of transporter).


#### Symport vs. antiport: Bicarbonate

To test whether the transporters function as symporters or antiporters, tests were conducted where the extravesicular anion was either nitrate, sulfate or bicarbonate. Figure S211 represent the results of these chloride/bicarbonate tests (experimental procedure in Section S6.1) and show a profound difference between the chloride efflux observed in the presence of sulfate and bicarbonate, indicating an antiport process.



**Figure S211.** Chloride efflux promoted by **1-22** (2 % molar carrier to lipid) from unilamellar POPC vesicles loaded with 450 mM NaCl buffered to pH 7.2 with 20 mM sodium phosphate salts. The vesicles were dispersed in 162 mM Na2SO4 buffered to pH 7.2 with 20 mM sodium phosphate salts. At t = 120s, a solution of NaHCO3 was added to give a 40 mM external concentration. At the end of the experiment, detergent was added to lyse the vesicles and calibrate the ISE to 100 % chloride efflux. Each point represents the average of three trials. (a) compounds **1-6**. (b) compounds **7-12**. (c) compounds **13-17**. (d) compounds **18-22**.

In a U-tube experiment the lipid bilayer is substituted with a bulk organic phase. In these conditions ion channel formation is virtually impossible. The organic phase consisted of 20 mL nitrobenzene (for solubility reasons) and contained 1mM of carrier and 1mM of TBAPF<sub>6</sub>. A control experiment was executed with neat nitrobenzene (no carrier). The same aqueous phases were used as for the vesicle experiments. The donating phase contained 500 mM NaCl and was buffered to pH 7.2 with 5 mM phosphate salts (10 mL). The receiving phase contained 500 mM NaNO<sub>3</sub> and was buffered to pH 7.2 with 5 mM phosphate salts (10 mL). The change in chloride concentration of the receiving phase was monitored with a chloride-selective electrode (the electrode was calibrated to convert the potential readings (mV) to chloride concentrations (M)). The experiments were conducted at room temperature and the results are shown in Figure S212 and show that chloride transport through a bulk organic layer is possible, indicating that the compounds function as mobile carriers.



**Figure S212.** U-tube experiment in nitrobenzene. (a) Graph showing the change in the chloride concentration of the receiving aqueous phase as a function of time for a selection of compounds. (b) Experimental set-up.

### S6.4 Hill plots

During the Hill plots the chloride/nitrate transport assays were performed as described above (see section S6.1) for various concentrations of carrier. The chloride efflux (%) 270 s after the addition of carrier was plotted as a function of the carrier concentration. Data points were fitted to the Hill equation using Origin 8.1:

$$y = V_{\text{max}} \frac{x^n}{k^n + x^n} = 100\% \frac{x^n}{(EC_{50})^n + x^n}$$

where y is the chloride efflux at 270 s (%) and x is the carrier concentration (mol% carrier to lipid).  $V_{max}$ , k and n are the parameters to be fitted.  $V_{max}$  is the maximum efflux possible (this was fixed to 100%, as this is physically the maximum chloride efflux possible), n is the Hill coefficient and k is the carrier concentration needed to reach  $V_{max}/2$  (when  $V_{max}$  is fixed to 100%, k equals  $EC_{50}$ ). From the Hill plot it is therefore possible to directly obtain  $EC_{50,270s}$  values, defined as the carrier concentration (molar % carrier to lipid) needed to obtain 50 % chloride efflux after 270 s. To ensure repeatability and precise data, each Hill plot was repeated a minimum of 3 times and was conducted each time with a newly prepared set of vesicles, a different experimenter and a different chloride selective electrode (out of 4 *Accumet* electrodes in total). The data given in the article represents the average  $EC_{50}$  values between each Hill plot and the errors are given by standard deviations. Within each Hill plot repeat, the chloride efflux for every concentration was monitored a further 3 times to ensure stability of the data during that repeat. Figures S213-S234 show all of the obtained Hill plots (including the results of the fit) and an overview of the obtained  $EC_{50}$ , n and the converted  $ext{log}(1/EC_{50})$  values can be found in Tables S21 and S22 in Section S6.5.

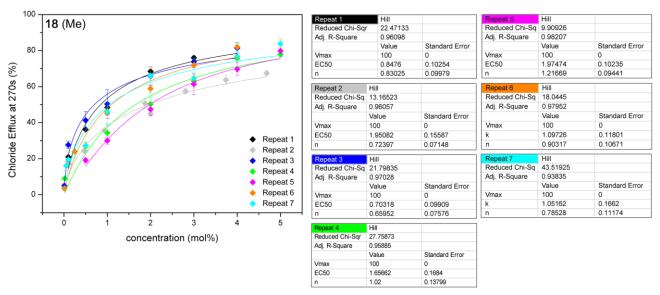



Figure S213. Overview of the Hill plots for compound 18. For experimental details, see main text.

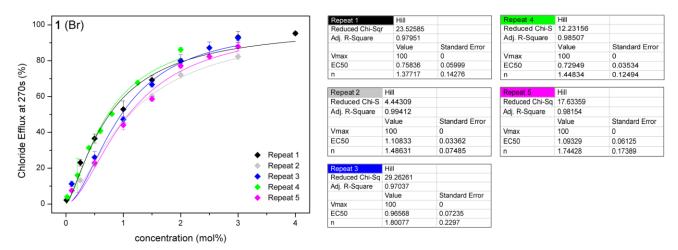



Figure S214. Overview of the Hill plots for compound 1. For experimental details, see main text.

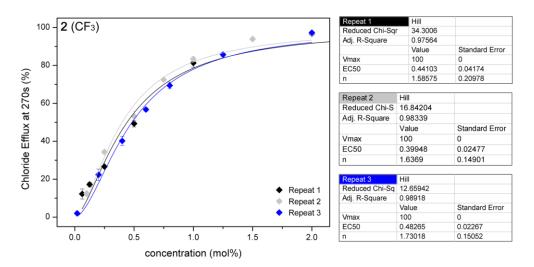



Figure S215. Overview of the Hill plots for compound 2. For experimental details, see main text.

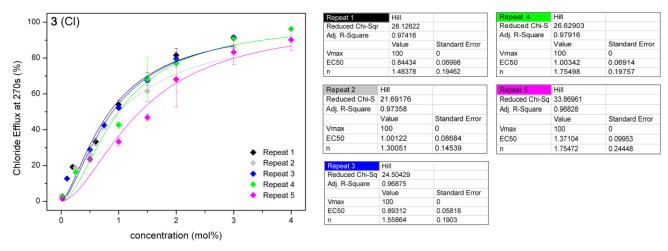



Figure S216. Overview of the Hill plots for compound 3. For experimental details, see main text.

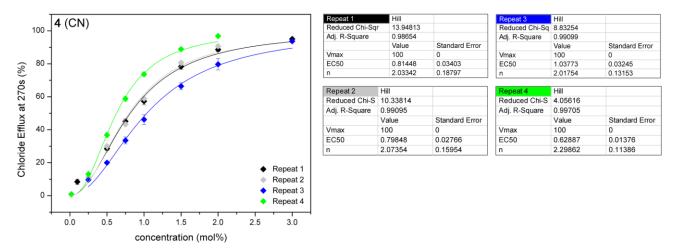



Figure S217. Overview of the Hill plots for compound 4. For experimental details, see main text.

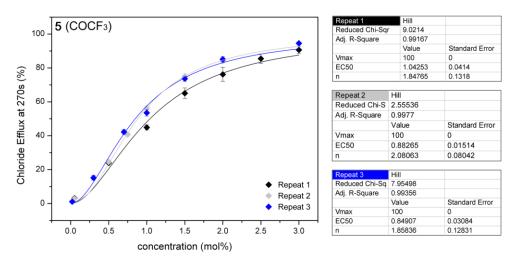



Figure S218. Overview of the Hill plots for compound 5. For experimental details, see main text.

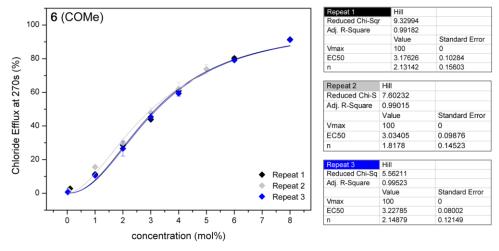



Figure S219. Overview of the Hill plots for compound 6. For experimental details, see main text.

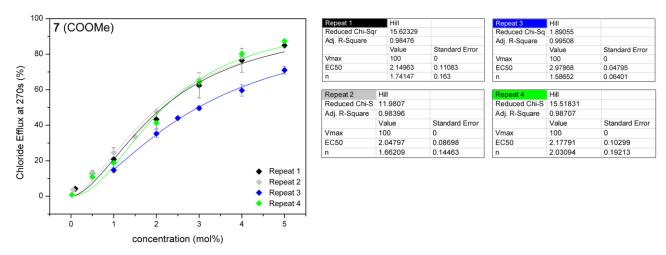



Figure S220. Overview of the Hill plots for compound 7. For experimental details, see main text.

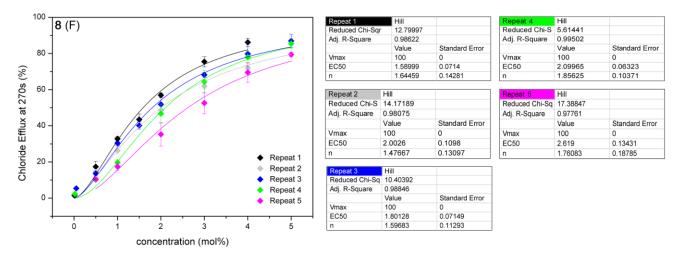



Figure S221. Overview of the Hill plots for compound 8. For experimental details, see main text.

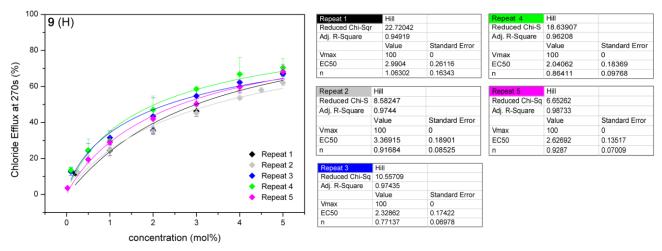



Figure S222. Overview of the Hill plots for compound 9. For experimental details, see main text.

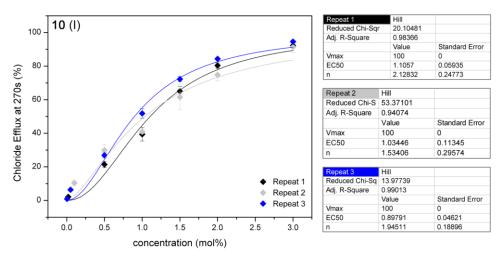



Figure S223. Overview of the Hill plots for compound 10. For experimental details, see main text.

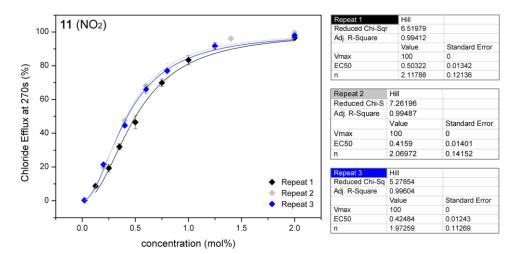



Figure S224. Overview of the Hill plots for compound 11. For experimental details, see main text.

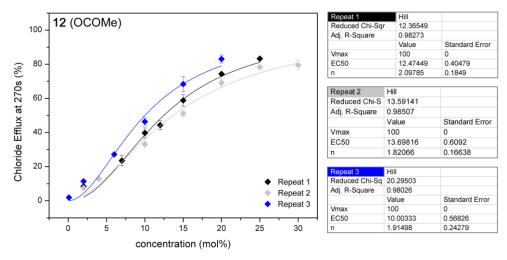



Figure S225. Overview of the Hill plots for compound 12. For experimental details, see main text.

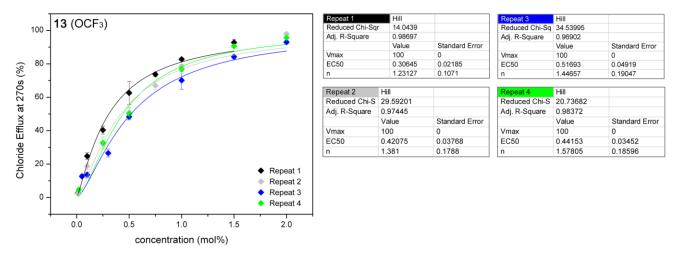



Figure S226. Overview of the Hill plots for compound 13. For experimental details, see main text.

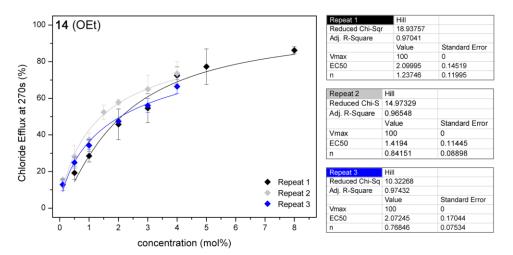



Figure S227. Overview of the Hill plots for compound 14. For experimental details, see main text.

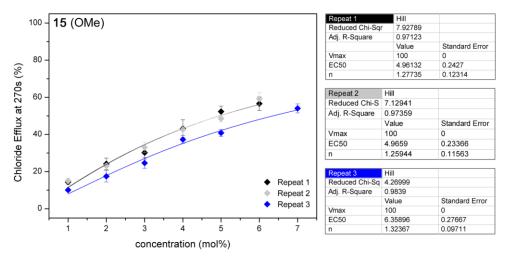



Figure S228. Overview of the Hill plots for compound 15. For experimental details, see main text.



Figure S229. Overview of the Hill plots for compound 16. For experimental details, see main text.

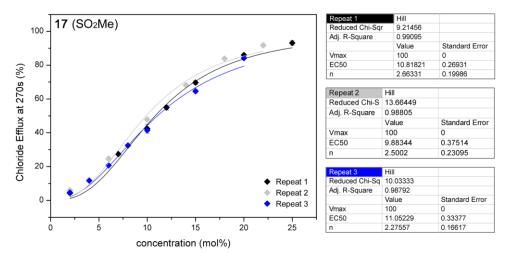



Figure S230. Overview of the Hill plots for compound 17. For experimental details, see main text.

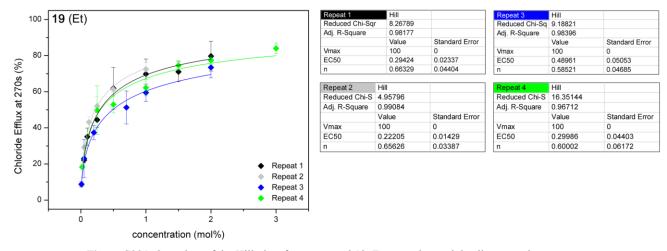



Figure S231. Overview of the Hill plots for compound 19. For experimental details, see main text.

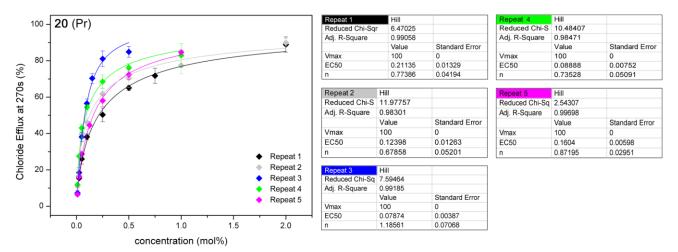



Figure S232. Overview of the Hill plots for compound 20. For experimental details, see main text.

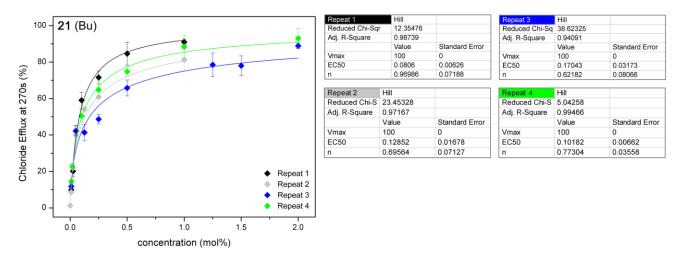



Figure S233. Overview of the Hill plots for compound 21. For experimental details, see main text.

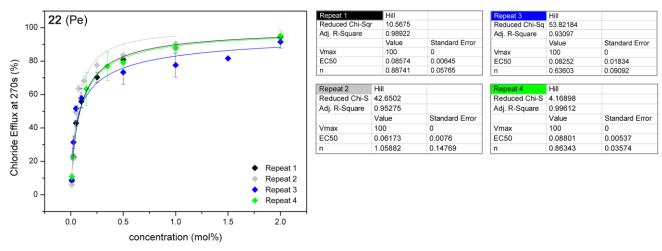



Figure S234. Overview of the Hill plots for compound 22. For experimental details, see main text.

# S6.5 Overview of anion transport results

Table S21 gives an overview of all of the obtained  $EC_{50}$ , n and  $k_{ini}$  values for each repeat, while Table S22 gives an overview of the average values and standard deviations obtained from the data in Table S21.

**Table S21a.** Overview of  $EC_{50}$ , n and  $k_{ini}$  values for each repeat. Part 1.

| compound                      | repeat   | EC <sub>50</sub> (mol%) | $log(1/EC_{50})$ | n    | $k_{ini}$ (%s <sup>-1</sup> ) |
|-------------------------------|----------|-------------------------|------------------|------|-------------------------------|
| 1 (Br)                        | repeat 1 | 0.758                   | 0.1203           | 1.38 | 0.655                         |
|                               | repeat 2 | 1.108                   | -0.0445          | 1.49 | 0.562                         |
|                               | repeat 3 | 0.966                   | 0.0150           | 1.80 | 0.644                         |
|                               | repeat 4 | 0.729                   | 0.1373           | 1.45 | 0.837                         |
|                               | repeat 5 | 1.093                   | -0.0386          | 1.74 | 0.613                         |
| <b>2</b> (CF <sub>3</sub> )   | repeat 1 | 0.441                   | 0.3556           | 1.58 | 2.039                         |
|                               | repeat 2 | 0.399                   | 0.3990           | 1.64 | 2.746                         |
|                               | repeat 3 | 0.483                   | 0.3161           | 1.73 | 2.219                         |
| 3 (Cl)                        | repeat 1 | 0.844                   | 0.0737           | 1.48 | 0.790                         |
|                               | repeat 2 | 1.001                   | -0.0004          | 1.30 | 0.417                         |
|                               | repeat 3 | 0.893                   | 0.0491           | 1.56 | 0.708                         |
|                               | repeat 4 | 1.003                   | -0.0013          | 1.75 | 0.560                         |
|                               | repeat 5 | 1.371                   | -0.1370          | 1.75 | 0.524                         |
| 4 (CN)                        | repeat 1 | 0.814                   | 0.0894           | 2.03 | 1.387                         |
| , ,                           | repeat 2 | 0.798                   | 0.0980           | 2.07 | 1.321                         |
|                               | repeat 3 | 1.038                   | -0.0162          | 2.02 | 0.813                         |
|                               | repeat 4 | 0.629                   | 0.2013           | 2.30 | 2.024                         |
| <b>5</b> (COCF <sub>3</sub> ) | repeat 1 | 1.043                   | -0.0183          | 1.85 | 2.733                         |
|                               | repeat 2 | 0.883                   | 0.0540           | 2.08 | 4.054                         |
|                               | repeat 3 | 0.849                   | 0.0711           | 1.86 | 4.680                         |
| <b>6</b> (COMe)               | repeat 1 | 3.176                   | -0.5019          | 2.13 | 0.131                         |
| ,                             | repeat 2 | 3.034                   | -0.4820          | 1.82 | 0.126                         |
|                               | repeat 3 | 3.228                   | -0.5089          | 2.15 | 0.129                         |
| 7 (COOMe)                     | repeat 1 | 2.150                   | -0.3324          | 1.74 | 0.195                         |
|                               | repeat 2 | 2.048                   | -0.3113          | 1.66 | 0.254                         |
|                               | repeat 3 | 2.979                   | -0.4741          | 1.59 | 0.145                         |
|                               | repeat 4 | 2.178                   | -0.3380          | 2.03 | 0.183                         |
| <b>8</b> (F)                  | repeat 1 | 1.590                   | -0.2014          | 1.64 | 0.310                         |
| . ,                           | repeat 2 | 2.003                   | -0.3017          | 1.48 | 0.228                         |
|                               | repeat 3 | 1.801                   | -0.2555          | 1.60 | 0.244                         |
|                               | repeat 4 | 2.100                   | -0.3222          | 1.86 | 0.213                         |
|                               | repeat 5 | 2.619                   | -0.4181          | 1.76 | 0.110                         |
| <b>9</b> (H)                  | repeat 1 | 2.990                   | -0.4757          | 1.06 | 0.155                         |
|                               | repeat 2 | 3.369                   | -0.5275          | 0.92 | 0.134                         |
|                               | repeat 3 | 2.329                   | -0.3672          | 0.77 | 0.197                         |
|                               | repeat 4 | 2.041                   | -0.3098          | 0.86 | 0.202                         |
|                               | repeat 5 | 2.627                   | -0.4195          | 0.93 | 0.178                         |
| <b>10</b> (I)                 | repeat 1 | 1.106                   | -0.0438          | 2.13 | 0.678                         |
| • /                           | repeat 2 | 1.034                   | -0.0145          | 1.53 | 0.531                         |
|                               | repeat 3 | 0.898                   | 0.0467           | 1.95 | 0.850                         |

**Table S21b.** Overview of  $EC_{50}$ , n and  $k_{ini}$  values for each repeat. Part 2.

| compound                       | repeat   | EC <sub>50</sub> (mol%) | $log(1/EC_{50})$ | n    | $k_{ini}$ (%s <sup>-1</sup> ) |
|--------------------------------|----------|-------------------------|------------------|------|-------------------------------|
| 11 (NO <sub>2</sub> )          | repeat 1 | 0.503                   | 0.2984           | 2.12 | 2.072                         |
|                                | repeat 2 | 0.416                   | 0.3809           | 2.07 | 3.080                         |
|                                | repeat 3 | 0.425                   | 0.3716           | 1.97 | 3.177                         |
| <b>12</b> (OCOMe)              | repeat 1 | 12.474                  | -1.0960          | 2.10 | 0.022                         |
|                                | repeat 2 | 13.698                  | -1.1367          | 1.82 | 0.029                         |
|                                | repeat 3 | 10.003                  | -1.0001          | 1.91 | 0.023                         |
| <b>13</b> (OCF <sub>3</sub> )  | repeat 1 | 0.306                   | 0.5143           | 1.23 | 2.326                         |
| , ,,                           | repeat 2 | 0.421                   | 0.3757           | 1.38 | 1.890                         |
|                                | repeat 3 | 0.517                   | 0.2865           | 1.45 | 1.281                         |
|                                | repeat 4 | 0.442                   | 0.3546           | 1.58 | 1.736                         |
| <b>14</b> (OEt)                | repeat 1 | 2.100                   | -0.3222          | 1.24 | 0.177                         |
| , ,                            | repeat 2 | 1.419                   | -0.1520          | 0.84 | 0.347                         |
|                                | repeat 3 | 2.072                   | -0.3164          | 0.77 | 0.198                         |
| <b>15</b> (OMe)                | repeat 1 | 4.961                   | -0.6956          | 1.28 | 0.076                         |
|                                | repeat 2 | 4.966                   | -0.6960          | 1.26 | 0.083                         |
|                                | repeat 3 | 6.359                   | -0.8034          | 1.32 | 0.070                         |
| <b>16</b> (SMe)                | repeat 1 | 1.898                   | -0.2783          | 1.18 | 0.204                         |
| ,                              | repeat 2 | 2.184                   | -0.3393          | 1.44 | 0.183                         |
|                                | repeat 3 | 3.380                   | -0.5289          | 2.22 | -                             |
|                                | repeat 4 | 2.828                   | -0.4515          | 1.54 | 0.127                         |
| <b>17</b> (SO <sub>2</sub> Me) | repeat 1 | 10.818                  | -1.0341          | 2.66 | 0.034                         |
| , ,                            | repeat 2 | 9.883                   | -0.9949          | 2.50 | 0.048                         |
|                                | repeat 3 | 11.052                  | -1.0434          | 2.28 | 0.040                         |
| 18 (Me)                        | repeat 1 | 0.848                   | 0.0716           | 0.83 | 0.460                         |
| . ,                            | repeat 2 | 1.951                   | -0.2903          | 0.72 | 0.190                         |
|                                | repeat 3 | 0.703                   | 0.1530           | 0.66 | 0.469                         |
|                                | repeat 4 | 1.657                   | -0.2192          | 1.02 | 0.233                         |
|                                | repeat 5 | 1.975                   | -0.2956          | 1.22 | 0.187                         |
|                                | repeat 6 | 1.097                   | -0.0402          | 0.90 | 0.297                         |
|                                | repeat 7 | 1.052                   | -0.0220          | 0.78 | 0.373                         |
| <b>19</b> (Et)                 | repeat 1 | 0.294                   | 0.5317           | 0.66 | 0.638                         |
|                                | repeat 2 | 0.222                   | 0.6536           | 0.66 | -                             |
|                                | repeat 3 | 0.490                   | 0.3098           | 0.58 | 0.416                         |
|                                | repeat 4 | 0.300                   | 0.5229           | 0.60 | 0.604                         |
| <b>20</b> (Pr)                 | repeat 1 | 0.212                   | 0.6737           | 0.77 | 1.644                         |
|                                | repeat 2 | 0.124                   | 0.9066           | 0.68 | 1.064                         |
|                                | repeat 3 | 0.079                   | 1.1024           | 1.18 | 1.721                         |
|                                | repeat 4 | 0.089                   | 1.0506           | 0.74 | 1.759                         |
|                                | repeat 5 | 0.160                   | 0.7959           | 0.87 | -                             |
| <b>21</b> (Bu)                 | repeat 1 | 0.081                   | 1.0915           | 0.97 | 1.224                         |
|                                | repeat 2 | 0.128                   | 0.8928           | 0.70 | -                             |
|                                | repeat 3 | 0.170                   | 0.7696           | 0.62 | 0.959                         |
|                                | repeat 4 | 0.102                   | 0.9914           | 0.77 | 1.102                         |
| <b>22</b> (Pe)                 | repeat 1 | 0.086                   | 1.0655           | 0.89 | 1.284                         |
| · ·                            | repeat 2 | 0.062                   | 1.2076           | 1.06 | -                             |
|                                | repeat 3 | 0.082                   | 1.0862           | 0.64 | 1.275                         |
|                                | repeat 4 | 0.088                   | 1.0555           | 0.86 | 1.602                         |

**Table S22.** Overview of the average  $EC_{50}$ , n and  $k_{ini}$  values and the respective standard deviation (error).

| Compound                       | $EC_{50} \ (\mathbf{mol}\%)$ | Error $EC_{50}$ | n    | Error<br>n | $log(1/EC_{50})$ | Error $log(1/EC_{50})$ | $k_{ini}$ (%s <sup>-1</sup> ) | Error $k_{ini}$ |
|--------------------------------|------------------------------|-----------------|------|------------|------------------|------------------------|-------------------------------|-----------------|
| 1 (Br)                         | 0.93                         | 0.18            | 1.57 | 0.19       | 0.031            | 0.093                  | 0.66                          | 0.10            |
| <b>2</b> (CF <sub>3</sub> )    | 0.44                         | 0.04            | 1.65 | 0.08       | 0.356            | 0.043                  | 2.33                          | 0.37            |
| <b>3</b> (Cl)                  | 1.02                         | 0.21            | 1.57 | 0.19       | -0.011           | 0.100                  | 0.60                          | 0.15            |
| 4 (CN)                         | 0.82                         | 0.17            | 2.11 | 0.13       | 0.085            | 0.101                  | 1.39                          | 0.50            |
| <b>5</b> (COCF <sub>3</sub> )  | 0.93                         | 0.10            | 1.93 | 0.13       | 0.034            | 0.052                  | 3.82                          | 0.99            |
| <b>6</b> (COMe)                | 3.15                         | 0.10            | 2.03 | 0.19       | -0.4832          | -0.0004                | 0.129                         | 0.003           |
| 7 (COOMe)                      | 2.34                         | 0.43            | 1.76 | 0.19       | -0.372           | 0.091                  | 0.19                          | 0.05            |
| <b>8</b> (F)                   | 2.02                         | 0.39            | 1.67 | 0.15       | -0.304           | 0.090                  | 0.22                          | 0.07            |
| <b>9</b> (H)                   | 2.67                         | 0.53            | 0.91 | 0.11       | -0.427           | 0.095                  | 0.17                          | 0.03            |
| <b>10</b> (I)                  | 1.01                         | 0.11            | 1.87 | 0.31       | -0.005           | 0.048                  | 0.69                          | 0.16            |
| <b>11</b> (NO <sub>2</sub> )   | 0.45                         | 0.05            | 2.05 | 0.08       | 0.349            | 0.049                  | 2.78                          | 0.61            |
| <b>12</b> (OCOMe)              | 12.06                        | 1.88            | 1.94 | 0.14       | -1.080           | 0.073                  | 0.025                         | 0.004           |
| <b>13</b> (OCF <sub>3</sub> )  | 0.42                         | 0.09            | 1.41 | 0.15       | 0.375            | 0.101                  | 1.81                          | 0.43            |
| <b>14</b> (OEt)                | 1.86                         | 0.39            | 0.95 | 0.25       | -0.278           | 0.109                  | 0.24                          | 0.09            |
| <b>15</b> (OMe)                | 5.43                         | 0.81            | 1.29 | 0.03       | -0.738           | 0.073                  | 0.076                         | 0.007           |
| <b>16</b> (SMe)                | 2.57                         | 0.66            | 1.60 | 0.44       | -0.410           | 0.130                  | 0.17                          | 0.04            |
| <b>17</b> (SO <sub>2</sub> Me) | 10.58                        | 0.62            | 2.48 | 0.19       | -1.025           | 0.026                  | 0.041                         | 0.007           |
| <b>18</b> (Me)                 | 1.33                         | 0.53            | 0.88 | 0.19       | -0.123           | 0.220                  | 0.32                          | 0.12            |
| <b>19</b> (Et)                 | 0.33                         | 0.11            | 0.63 | 0.04       | 0.482            | 0.192                  | 0.55                          | 0.12            |
| <b>20</b> (Pr)                 | 0.13                         | 0.05            | 0.85 | 0.20       | 0.877            | 0.230                  | 1.55                          | 0.33            |
| <b>21</b> (Bu)                 | 0.12                         | 0.04            | 0.77 | 0.15       | 0.917            | 0.169                  | 1.10                          | 0.13            |
| <b>22</b> (Pe)                 | 0.08                         | 0.01            | 0.86 | 0.17       | 1.100            | 0.070                  | 1.39                          | 0.19            |

# S7. QSAR ANALYSIS OF ANION TRANSPORT

# S7.1 Correlation $EC_{50}$ , n and $k_{ini}$

Using JMP 9.0.0 we tried to find a correlation between  $log(1/EC_{50})$ , n and  $k_{ini}$ , by using any of the descriptors given in Table S23 (only data of the training set was used). A stepwise multiple linear regression was first executed, where the k-fold cross validation was set to 2 and all possible models with a maximum of three terms were calculated and subsequently ranked according to best fit (highest R). The results are given in Figure S235.

**Table S23.** Overview of combination between  $EC_{50}$ , n and  $k_{ini}$  for the training set, used as descriptors to find a correlation between them.

| Compound                       | EC <sub>50</sub> a | log(1/EC <sub>50</sub> ) | n <sup>b</sup> | n-sq | $\mathbf{k_{ini}}^{c}$ | $k_{ini}/n$ | n*log(1/k <sub>ini</sub> ) | log(1/k <sub>ini</sub> )/n | $log(1/k_{ini})$ |
|--------------------------------|--------------------|--------------------------|----------------|------|------------------------|-------------|----------------------------|----------------------------|------------------|
| <b>21</b> (Bu)                 | 0.12               | 0.917                    | 0.77           | 0.59 | 1.10                   | 1.431       | -0.030                     | -0.052                     | -0.039           |
| <b>2</b> (CF <sub>3</sub> )    | 0.44               | 0.356                    | 1.65           | 2.72 | 2.33                   | 1.415       | -0.608                     | -0.223                     | -0.368           |
| <b>3</b> (Cl)                  | 1.02               | -0.011                   | 1.57           | 2.46 | 0.60                   | 0.383       | 0.348                      | 0.142                      | 0.222            |
| <b>4</b> (CN)                  | 0.82               | 0.085                    | 2.11           | 4.43 | 1.39                   | 0.659       | -0.299                     | -0.067                     | -0.142           |
| <b>5</b> (COCF <sub>3</sub> )  | 0.93               | 0.034                    | 1.93           | 3.72 | 3.82                   | 1.980       | -1.124                     | -0.302                     | -0.582           |
| 7 (COOMe)                      | 2.34               | -0.372                   | 1.76           | 3.08 | 0.19                   | 0.111       | 1.249                      | 0.405                      | 0.712            |
| <b>19</b> (Et)                 | 0.33               | 0.482                    | 0.63           | 0.39 | 0.55                   | 0.884       | 0.161                      | 0.412                      | 0.258            |
| <b>8</b> (F)                   | 2.02               | -0.304                   | 1.67           | 2.78 | 0.22                   | 0.132       | 1.094                      | 0.393                      | 0.656            |
| <b>9</b> (H)                   | 2.67               | -0.427                   | 0.91           | 0.82 | 0.17                   | 0.191       | 0.691                      | 0.839                      | 0.761            |
| <b>10</b> (I)                  | 1.01               | -0.005                   | 1.87           | 3.50 | 0.69                   | 0.367       | 0.306                      | 0.087                      | 0.163            |
| <b>18</b> (Me)                 | 1.33               | -0.123                   | 0.88           | 0.77 | 0.32                   | 0.360       | 0.439                      | 0.572                      | 0.501            |
| <b>11</b> (NO <sub>2</sub> )   | 0.45               | 0.349                    | 2.05           | 4.22 | 2.78                   | 1.352       | -0.911                     | -0.216                     | -0.443           |
| <b>12</b> (OCOMe)              | 12.06              | -1.080                   | 1.94           | 3.78 | 0.025                  | 0.013       | 3.076                      | 0.847                      | 1.608            |
| <b>13</b> (OCF <sub>3</sub> )  | 0.42               | 0.375                    | 1.41           | 1.99 | 1.81                   | 1.282       | -0.363                     | -0.182                     | -0.257           |
| <b>15</b> (OMe)                | 5.43               | -0.738                   | 1.29           | 1.66 | 0.076                  | 0.059       | 1.438                      | 0.868                      | 1.117            |
| 22 (Pentyl)                    | 0.08               | 1.100                    | 0.86           | 0.74 | 1.39                   | 1.608       | -0.123                     | -0.165                     | -0.142           |
| <b>16</b> (SMe)                | 2.57               | -0.410                   | 1.60           | 2.54 | 0.17                   | 0.107       | 1.222                      | 0.480                      | 0.766            |
| <b>17</b> (SO <sub>2</sub> Me) | 10.58              | -1.025                   | 2.48           | 6.15 | 0.041                  | 0.016       | 3.449                      | 0.561                      | 1.391            |

<sup>&</sup>lt;sup>a</sup> concentration (in mol% transporter to lipid) needed to obtain 50% chloride efflux in 270 s. Obtained through Hill plot (see Section S6.4.). <sup>b</sup> Hill coefficient. Obtained through Hill plot (see Section S6.4.). <sup>c</sup> initial rate constant (in % per second) of chloride efflux when 2 mol% receptor was added to the vesicles.

| All Possible Models              |             |         |        |         |         |   |
|----------------------------------|-------------|---------|--------|---------|---------|---|
| Ordered up to best 10 models     | up to 3 ter | rms per |        |         |         |   |
| Model                            | Number      | RSquare | RMSE   | AICc    | віс     |   |
| log(1/k(ini))                    | 1           | 0,6922  | 0,3398 | 17,8212 | 18,7780 | 0 |
| k(ini)/n                         | 1           | 0,6449  | 0,3650 | 20,3975 | 21,3544 | 0 |
| n*log(1/kini)                    | 1           | 0,6409  | 0,3671 | 20,5960 | 21,5529 | 0 |
| log(1/k(ini))/n                  | 1           | 0,5846  | 0,3948 | 23,2203 | 24,1772 |   |
| k(ini)                           | 1           | 0,2837  | 0,5184 | 33,0254 | 33,9823 |   |
| n                                | 1           | 0,2525  | 0,5296 | 33,7932 | 34,7501 |   |
| n-sq                             | 1           | 0,2415  | 0,5335 | 34,0567 | 35,0135 |   |
| n,log(1/k(ini))/n                | 2           | 0,9507  | 0,1404 | -11,797 | -11,313 |   |
| n-sq,log(1/k(ini))/n             | 2           | 0,9195  | 0,1795 | -2,9563 | -2,4718 |   |
| n,log(1/k(ini))                  | 2           | 0,8580  | 0,2384 | 7,2599  | 7,7445  |   |
| n-sq,log(1/k(ini))               | 2           | 0,8336  | 0,2580 | 10,1094 | 10,5939 |   |
| k(ini),log(1/k(ini))             | 2           | 0,7992  | 0,2835 | 13,5000 | 13,9846 |   |
| k(ini),k(ini)/n                  | 2           | 0,7968  | 0,2852 | 13,7113 | 14,1958 |   |
| n,k(ini)/n                       | 2           | 0,7724  | 0,3018 | 15,7540 | 16,2386 |   |
| n-sq,k(ini)/n                    | 2           | 0,7699  | 0,3035 | 15,9476 | 16,4322 |   |
| n,n*log(1/kini)                  | 2           | 0,7270  | 0,3305 | 19,0233 | 19,5079 |   |
| k(ini)/n,log(1/k(ini))           | 2           | 0,7181  | 0,3359 | 19,6016 | 20,0862 |   |
| k(ini),k(ini)/n,log(1/k(ini))    | 3           | 0,9790  | 0,0948 | -23,241 | -23,789 |   |
| n,k(ini),log(1/k(ini))/n         | 3           | 0,9648  | 0,1229 | -13,914 | -14,462 |   |
| n,n-sq,log(1/k(ini))/n           | 3           | 0,9606  | 0,1301 | -11,876 | -12,424 |   |
| n,k(ini)/n,log(1/k(ini))/n       | 3           | 0,9558  | 0,1376 | -9,8440 | -10,392 |   |
| n,n*log(1/kini),log(1/k(ini))/n  | 3           | 0,9548  | 0,1392 | -9,4396 | -9,9878 |   |
| n,log(1/k(ini))/n,log(1/k(ini))  | 3           | 0,9547  | 0,1394 | -9,3849 | -9,9331 |   |
| k(ini),k(ini)/n,n*log(1/kini)    | 3           | 0,9395  | 0,1611 | -4,1702 | -4,7184 |   |
| n,n*log(1/kini),log(1/k(ini))    | 3           | 0,9377  | 0,1634 | -3,6603 | -4,2084 |   |
| n-sq,k(ini),log(1/k(ini))/n      | 3           | 0,9355  | 0,1663 | -3,0340 | -3,5822 |   |
| n-sq,n*log(1/kini),log(1/k(ini)) | 3           | 0,9302  | 0,1730 | -1,6120 | -2,1602 |   |

**Figure S235.** Overview of best 10 models with up to 3 term correlating  $log(1/EC_{50})$  with n and  $k_{ini}$ .

It seems that  $\log(1/\text{EC}_{50})$  can be described best by a model with two parameters, namely n and  $\log(1/k_{\text{ini}})/n$ . A multiple linear regression (standard least-squares method) was then run using JMP 9.0.0 where  $\log(1/\text{EC}_{50})$  was modeled as a function of n and  $\log(1/k_{\text{ini}})/n$ . The results of this regression are in Figure S236.

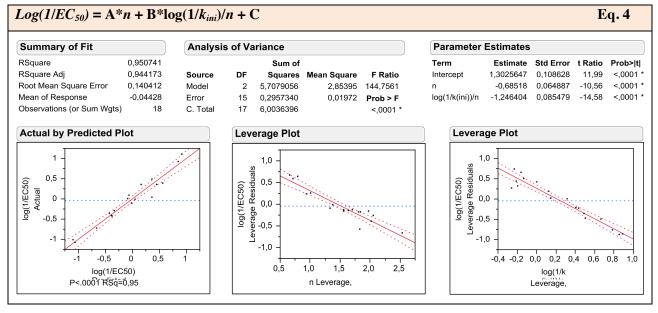



Figure S236. Overview of best model correlating log(1/EC<sub>50</sub>) with n and k<sub>ini</sub>.

The best transporter is the receptor with the highest value of  $\log(1/\text{EC}_{50})$ . From the obtained equation,  $\log(1/\text{EC}_{50}) = -0.68(\pm 0.06)*n -1.25(\pm 0.08)*log(1/k_{ini})/n + 1.3(\pm 0.1)$ , it is clear that a high n value will decrease the transport ability (which is logical because a high n value will make the transporter more concentration depended and so the transport activity will decrease rapidly with decreasing receptor concentration). Also, very negative values of  $\log(1/k_{ini})$  will result in better transport activity (which is expected because negative  $\log(1/k_{ini})$  means fast chloride release and hence good transport), but this effect can be counter-balanced by a high n value (therefore  $\log(1/k_{ini})/n$ ).

# S7.2 Correlation retention time and logP – choosing correct logP model

In order to assess the relative lipophilicity of the receptors studied, we utilised a previously reported HPLC experiment using a reverse phase column, as the retention time on the reverse phase column is related to its lipophilicity.<sup>24</sup> The HPLC mobile phase was prepared with LC-MS grade methanol and water (Fisher Scientific UK, Loughborough, UK) containing 0.1% HCOOH each. Samples were prepared as a solution in LC-MS grade methanol at a concentration of 50 μg/mL. HPLC separations were performed on a HP1050 Series system (Agilent Technologies, Palo Alto, CA, USA). Samples were injected (10 μL) directly onto a Xbridge C18 Column (50 mm X 2.1 mm 5 μm particle size; Waters, Milford, MA, USA) thermostatically controlled at 40°C. The separation was achieved using 20% methanol in water for 2 minutes followed by a linear gradient to 100% methanol over 10 minutes and held at 100% methanol for 4 minutes at a flow rate of 0.3 mL/min. UV data were recorded at 254 nm and mass spectra were recorded using a Platform LC single quadrupole mass spectrometer (Waters, Milford, MA, USA) using positive ion electrospray ionisation (120-1000 m/z) in order to assign to retention time to the respective receptor.

logP values were calculated with a variety of programs, including VCCLAB, Fieldview 2.0.2, Daylight version 4.73, ACD/I-Labs 2.0 and Accelrys Diamond Descriptors. The average logP (average of all the calculated logP values) is also included. Tables S24 and S25 give an overview of the obtained retention times and calculated logP values. They also show the R values obtained by linear fitting of the (RT, logP)-plots with the function RT = A\*logP + B using Microsoft excel 2007. From these R values it can be seen that the logP values calculated using Daylight version 4.73 method are the most suitable for this series of compounds.

**Table S24.** Overview of the reversed-phase HPLC retention times (minutes) and the various logP values calculated using VCCLAB ALOGPS 2.1 (reference 25).

| Compound                       | Retention time <sup>a</sup> | AlogPs | AC logP | AlogP | MlogP | KOWWIN | XlogP2 | XlogP3 | average |
|--------------------------------|-----------------------------|--------|---------|-------|-------|--------|--------|--------|---------|
| 21 (Bu)                        | 13.88                       | 5.19   | 5.57    | 5.94  | 4.11  | 5.89   | 5.69   | 5.74   | 5.45    |
| <b>2</b> (CF <sub>3</sub> )    | 13.28                       | 4.56   | 4.73    | 5.03  | 4.01  | 4.84   | 4.58   | 4.75   | 4.64    |
| <b>3</b> (Cl)                  | 12.79                       | 4.09   | 4.58    | 4.75  | 3.62  | 4.52   | 4.28   | 4.49   | 4.33    |
| <b>4</b> (CN)                  | 12.23                       | 3.31   | 3.78    | 3.96  | 2.7   | 3.97   | 3.38   | 3.58   | 3.53    |
| <b>5</b> (COCF <sub>3</sub> )  | 12.47                       | 4.48   | 4.37    | 4.91  | 3.33  | 3.97   | 4.19   | 4.66   | 4.27    |
| 7 (COOMe)                      | 12.44                       | 3.34   | 3.94    | 3.94  | 2.96  | 3.71   | 3.59   | 3.71   | 3.60    |
| <b>19</b> (Et)                 | 13.00                       | 4.36   | 4.64    | 5.03  | 3.61  | 4.91   | 4.56   | 4.66   | 4.54    |
| <b>8</b> (F)                   | 12.08                       | 3.58   | 4.02    | 4.29  | 3.49  | 4.07   | 3.82   | 3.96   | 3.89    |
| <b>9</b> (H)                   | 11.91                       | 3.43   | 3.96    | 4.09  | 3.09  | 3.87   | 3.66   | 3.39   | 3.64    |
| <b>10</b> (I)                  | 13.18                       | 4.75   | 4.9     | 4.66  | 3.88  | 5.04   | 4.72   | 4.51   | 4.64    |
| <b>18</b> (Me)                 | 12.51                       | 3.69   | 4.28    | 4.57  | 3.36  | 4.42   | 4.09   | 4.23   | 4.09    |
| <b>11</b> (NO <sub>2</sub> )   | 12.75                       | 3.61   | 3.83    | 3.98  | 3.03  | 3.69   | 3.55   | 3.69   | 3.63    |
| <b>12</b> (OCOMe)              | 11.77                       | 3.74   | 3.9     | 3.85  | 2.96  | 3.47   | 3.44   | 3.61   | 3.57    |
| <b>13</b> (OCF <sub>3</sub> )  | 13.24                       | 4.73   | 4.79    | 6.21  | 3.17  | 4.92   | 4.82   | 5.04   | 4.81    |
| <b>15</b> (OMe)                | 11.95                       | 3.52   | 3.86    | 4.07  | 2.79  | 3.95   | 3.57   | 3.83   | 3.66    |
| 22 (Pentyl)                    | 14.23                       | 5.71   | 6.03    | 6.4   | 4.34  | 6.38   | 6.26   | 6.28   | 5.95    |
| <b>16</b> (SMe)                | 12.61                       | 4.25   | 4.46    | 4.63  | 3.62  | 4.47   | 4.4    | 4.37   | 4.32    |
| <b>17</b> (SO <sub>2</sub> Me) | 11.42                       | 3.35   | 3.03    | 3.61  | 2.62  | 2.44   | 3.18   | 3.10   | 3.05    |
| R $(RT \text{ vs logP})^b$     | -                           | 0.80   | 0.89    | 0.78  | 0.72  | 0.87   | 0.87   | 0.86   | 0.89    |

<sup>&</sup>lt;sup>a</sup> Retention Time (in minutes) on reverse-phase C18 HPLC column.

**Table S25.** Overview of the reversed-phase HPLC retention times (minutes) and the various logP values calculated using Daylight v4.73, ACD/I-Labs 2.0, Accelrys Diamond Descriptor and Fieldview 2.0.2. (references 26-28)

| Compound                       | Retention time <sup>a</sup> | Daylight<br>ClogP <sup>b</sup> | ACD/labs<br>AlogP <sup>c</sup> | ACD/labs<br>ABlogP <sup>c</sup> | Accelrys<br>AlogP <sup>d</sup> | Fieldview<br>wclogP <sup>e</sup> | average of all $f$ |
|--------------------------------|-----------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|----------------------------------|--------------------|
| <b>21</b> (Bu)                 | 13.88                       | 5.612                          | 5.49                           | 5.52                            | 5.928                          | 4.9                              | 5.506              |
| <b>2</b> (CF <sub>3</sub> )    | 13.28                       | 4.938                          | 4.04                           | 5.18                            | 5.154                          | 4.57                             | 4.722              |
| <b>3</b> (Cl)                  | 12.79                       | 4.541                          | 4.22                           | 4.71                            | 4.79                           | 4.23                             | 4.426              |
| <b>4</b> (CN)                  | 12.23                       | 3.661                          | 3.28                           | 3.91                            | 4.137                          | 3.42                             | 3.620              |
| <b>5</b> (COCF <sub>3</sub> )  | 12.47                       | 4.075                          | 3.75                           | 4.68                            | 4.691                          | 4.3                              | 4.326              |
| 7 (COOMe)                      | 12.44                       | 4.046                          | 4.14                           | 3.72                            | 4.002                          | 3.34                             | 3.732              |
| <b>19</b> (Et)                 | 13.00                       | 4.554                          | 4.47                           | 4.93                            | 5.135                          | 4.12                             | 4.620              |
| <b>8</b> (F)                   | 12.08                       | 3.971                          | 3.68                           | 4.09                            | 4.411                          | 3.96                             | 3.970              |
| <b>9</b> (H)                   | 11.91                       | 3.526                          | 3.43                           | 3.96                            | 4.272                          | 3.55                             | 3.719              |
| <b>10</b> (I)                  | 13.18                       | 4.951                          | 4.71                           | 4.92                            | 5.529                          | 4.43                             | 4.769              |
| <b>18</b> (Me)                 | 12.51                       | 4.025                          | 3.96                           | 4.43                            | 4.739                          | 3.86                             | 4.176              |
| <b>11</b> (NO <sub>2</sub> )   | 12.75                       | 3.917                          | 3.79                           | 3.92                            | 4.225                          | 3.36                             | 3.740              |
| <b>12</b> (OCOMe)              | 11.77                       | 3.059                          | 2.84                           | 4.00                            | 3.77                           | 3.48                             | 3.561              |
| <b>13</b> (OCF <sub>3</sub> )  | 13.24                       | 4.738                          | 4.40                           | 4.94                            | 5.764                          | 4.45                             | 4.887              |
| <b>15</b> (OMe)                | 11.95                       | 3.629                          | 3.36                           | 4.06                            | 4.019                          | 3.56                             | 3.709              |
| 22 (Pentyl)                    | 14.23                       | 6.141                          | 6.00                           | 6.25                            | 6.324                          | 5.29                             | 5.990              |
| <b>16</b> (SMe)                | 12.61                       | 4.085                          | 4.29                           | 4.88                            | 4.362                          | 4.28                             | 4.375              |
| <b>17</b> (SO <sub>2</sub> Me) | 11.42                       | 2.641                          | 2.52                           | 3.17                            | 3.417                          | 2.96                             | 3.009              |
| R (RT vs logP)                 | -                           | 0.95                           | 0.90                           | 0.84                            | 0.88                           | 0.78                             | 0.91               |

<sup>&</sup>lt;sup>a</sup> Retention Time (in minutes) on reverse-phase C18 HPLC column.

### S7.3 QSAR modelling using retention time or logP only

JMP 9.0.0 was used to perform a standard least-squares fitting of the  $log(1/EC_{50})$  values as a function of the experimental retention times (RT). The results are given in Figure S237 and show a good correlation between  $log(1/EC_{50})$  and retention times, indicating the importance of lipophilicity in anion transport. Similarly, a standard least-square fitting was performed for  $log(1/EC_{50})$  versus the calculated logP values (calculated using method Daylight v4.73, see Section S7.2.) using JMP 9.0.0, showing the same results as for the retention time, although the correlation is less good. The results are given in Figure S238.

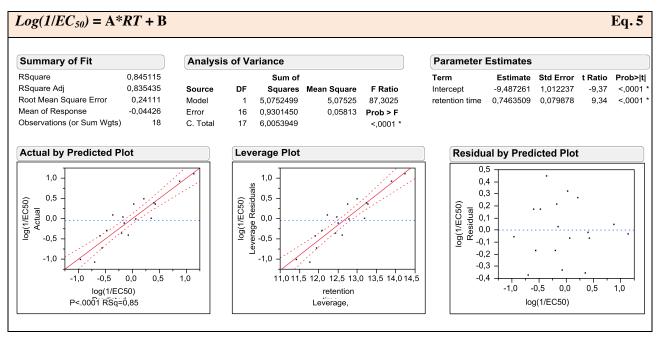
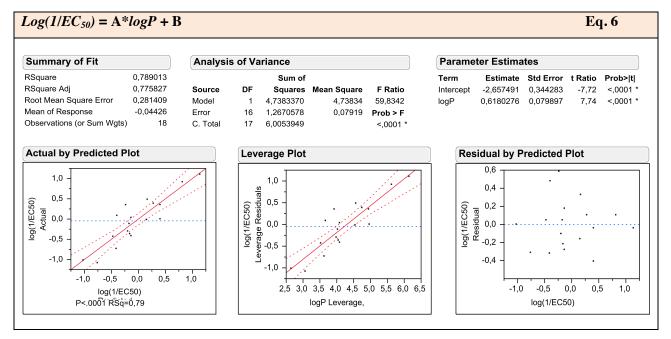




Figure S237. Overview of model correlating log(1/EC<sub>50</sub>) with retention time (RT) in a linear fashion.



**Figure S238.** Overview of models correlating log(1/EC<sub>50</sub>) with calculated logP in a linear fashion.

Often, a parabolic function is observed between anion transport ability and lipophilicity, where the anion transport initially increases with increasing lipophilicity, but then reaches an optimum lipophilicity. Increasing the lipophilicity even higher results in decreased anion transport ability, possibly due to low solubility or due to the fact that highly lipophilic compounds cannot move to the interphase anymore to pick up a suitable ion. In order to test whether that is the case for this set of compounds a squared term was included in the modelling to obtain a parabolic function (RT-sq is the squared form of the retention time, and logP-sq is the squared form of the calculated logP values). The results are shown in Figure S239 and indicated that the addition of the squared forms, does not significantly improve the model. Furthermore, t-values and prob|t| values show that the squared terms are not statistically significant. It therefore seems that the optimum logP value is not yet reached in this series of compounds.

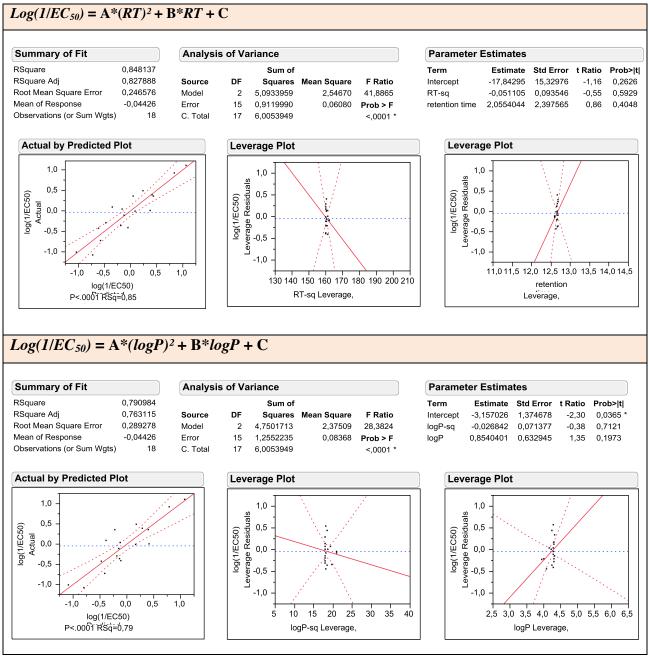



Figure S239. Overview of models correlating log(1/EC<sub>50</sub>) with retention time (RT) or calculated logP in a parabolic fashion.

#### S7.4 List of descriptors

A total of 286 molecular descriptors were calculating using various programs. The obtained values for the training set are given in Tables S26-S48. Hammett constants came from ref 10, all others from:

- *Chemdraw 12.0*: molecular weight "Mr(g/mol)".
- Daylight v4.73 (ref 26): logP (see Section S7.2.)
- ChemAxon (ref 29): PSA (polar surface area), solvent accesible suface area, (molecular) volume.
- *DFT calculations* (see Section S5.2): Surface Area, Molecular Volume, V<sub>S,max</sub>, V<sub>S,min</sub>, PI (average absolute deviation values).
- *ACD/I-Labs* 2.0 (ref 11): Molar refractivity, Molecular volume, Parachor Index of refraction, TPSA, Bp, logD (pH 1.7), logD (pH 4.6), logD (pH 6.5), logD (pH 7.4), logD (pH 8), pKa (arom NH), pKa (alkyl NH), pKa2 (NH), logS (pH 1.7), logS (pH 4.6), logS (pH 6.5), logS (pH 7.4), logS (pH 8), Vx, logPS, Vd, polarizability.
- *e-Dragon 1.0 (VCCLAB)* (ref 25): all other descriptors were calculated using e-Dragon 1.0. Only the constitutional descriptors (48 descriptors), topological descriptors (119), topological charge indices (21), geometrical descriptors (74), WHIM descriptors (99) and molecular properties (30) were calculated. Descriptors that had an identical value for all of the compounds were deleted (or only 1 or 2 values were different), any logP values were deleted and also atom, functional group and path counts. For the meaning of descriptors: <a href="http://www.vcclab.org/lab/indexhlp/dragon\_descr.html">http://www.vcclab.org/lab/indexhlp/dragon\_descr.html</a>.

**Table S26.** Overview of the descriptors calculated using ChemDraw, Daylight, ChemAxon and DFT calculations.

| Compound                       | Mr<br>(g/mol) | Ham-<br>mett | logP  | PSA   | solv acc<br>suface<br>area | volume | Surfac<br>e Area | Molecu<br>lar Vol. | Vsmax  | Vsmin  | PI    |
|--------------------------------|---------------|--------------|-------|-------|----------------------------|--------|------------------|--------------------|--------|--------|-------|
| <b>21</b> (Bu)                 | 292.48        | -0.16        | 5.612 | 24.06 | 515.03                     | 303.83 | 400.10           | 431.64             | 58.44  | -30.30 | 9.61  |
| <b>2</b> (CF <sub>3</sub> )    | 304.37        | 0.54         | 4.938 | 24.06 | 441.55                     | 267.89 | 349.87           | 374.15             | 66.58  | -23.26 | 12.62 |
| <b>3</b> (Cl)                  | 270.82        | 0.23         | 4.541 | 24.06 | 407.83                     | 249.89 | 335.20           | 358.80             | 63.234 | -25.91 | 11.87 |
| <b>4</b> (CN)                  | 261.39        | 0.66         | 3.661 | 47.85 | 408.4                      | 252.47 | 339.86           | 361.01             | 68.11  | -42.11 | 13.30 |
| <b>5</b> (COCF <sub>3</sub> )  | 332.38        | 0.80         | 4.075 | 41.13 | 467.58                     | 287.1  | 370.14           | 398.95             | 70.35  | -36.93 | 13.11 |
| 7 (COOMe)                      | 294.41        | 0.45         | 4.046 | 50.36 | 464.91                     | 281.29 | 364.46           | 394.31             | 64.20  | -39.16 | 12.39 |
| <b>19</b> (Et)                 | 264.43        | -0.15        | 4.554 | 24.06 | 454.11                     | 269.76 | 357.49           | 384.23             | 58.84  | -29.87 | 10.43 |
| <b>8</b> (F)                   | 254.37        | 0.06         | 3.971 | 24.06 | 398.43                     | 240.88 | 321.18           | 341.41             | 62.82  | -26.55 | 12.03 |
| <b>9</b> (H)                   | 236.38        | 0.00         | 3.526 | 24.06 | 391.34                     | 235.99 | 316.06           | 336.99             | 59.79  | -29.08 | 11.57 |
| <b>10</b> (I)                  | 362.27        | 0.18         | 4.951 | 24.06 | 416.96                     | 260.33 | 350.66           | 378.91             | 63.32  | -25.81 | 11.63 |
| <b>18</b> (Me)                 | 250.4         | -0.17        | 4.025 | 24.06 | 423.65                     | 252.8  | 336.91           | 360.39             | 58.71  | -30.02 | 10.92 |
| <b>11</b> (NO <sub>2</sub> )   | 281.37        | 0.78         | 3.917 | 69.88 | 432.43                     | 258.07 | 342.18           | 365.96             | 70.19  | -39.84 | 13.75 |
| <b>12</b> (OCOMe)              | 294.41        | 0.31         | 3.059 | 41.13 | 480.16                     | 289.03 | 368.70           | 396.17             | 65.48  | -43.58 | 13.12 |
| <b>13</b> (OCF <sub>3</sub> )  | 320.37        | 0.35         | 4.738 | 33.29 | 457.22                     | 276.98 | 361.43           | 385.94             | 65.32  | -24.35 | 12.23 |
| <b>15</b> (OMe)                | 266.4         | -0.27        | 3.629 | 33.29 | 439.56                     | 262.09 | 346.38           | 370.90             | 59.13  | -30.52 | 12.16 |
| 22 (Pentyl)                    | 306.51        | -0.15        | 6.141 | 24.06 | 545.57                     | 320.95 | 421.48           | 455.40             | 58.67  | -30.35 | 9.25  |
| <b>16</b> (SMe)                | 282.47        | 0.00         | 4.085 | 24.06 | 447.32                     | 271.69 | 361.47           | 389.16             | 62.44  | -26.72 | 12.03 |
| <b>17</b> (SO <sub>2</sub> Me) | 314.47        | 0.72         | 2.641 | 58.2  | 485.51                     | 288.75 | 371.42           | 405.02             | 68.11  | -43.95 | 13.96 |

**Table S27.** Overview of the descriptors calculated using ACD/I-Labs – part 1.

| Compound                       | Molar<br>refrac-<br>tivity | Molec.<br>volume | Parach<br>or | Index<br>refracti<br>on | TPSA   | Вр     | logD<br>(pH1.7) | logD<br>(pH4.6) | logD<br>(pH6.5) | logD<br>(pH7.4) | logD<br>(pH8) |
|--------------------------------|----------------------------|------------------|--------------|-------------------------|--------|--------|-----------------|-----------------|-----------------|-----------------|---------------|
| <b>21</b> (Bu)                 | 93.35                      | 287.5            | 735.5        | 1.562                   | 56.15  | 390.65 | 5.34            | 5.52            | 552             | 5.52            | 5.52          |
| <b>2</b> (CF <sub>3</sub> )    | 79.52                      | 255.2            | 636.5        | 1.535                   | 56.15  | 341.06 | 5.17            | 5.18            | 5.18            | 5.18            | 5.18          |
| <b>3</b> (Cl)                  | 79.43                      | 233.6            | 615.2        | 1.595                   | 56.15  | 357.38 | 4.66            | 4.71            | 4.71            | 4.71            | 4.71          |
| <b>4</b> (CN)                  | 78.14                      | 235.3            | 634.9        | 1.578                   | 79.94  | 391.61 | 3.91            | 3.91            | 3.91            | 3.91            | 3.91          |
| <b>5</b> (COCF <sub>3</sub> )  | 85.02                      | 269.6            | 688.1        | 1.543                   | 73.22  | 389.86 | 4.63            | 4.68            | 4.68            | 4.68            | 4.68          |
| 7 (COOMe)                      | 86.31                      | 259.6            | 684.2        | 1.579                   | 82.45  | 400.69 | 4.13            | 4.14            | 4.14            | 4.14            | 4.14          |
| <b>19</b> (Et)                 | 84.09                      | 254.5            | 655.9        | 1.574                   | 56.15  | 361.06 | 4.75            | 4.92            | 4.93            | 4.93            | 4.93          |
| <b>8</b> (F)                   | 74.53                      | 225.9            | 586.5        | 1.573                   | 56.15  | 330.44 | 3.96            | 4.09            | 4.09            | 4.09            | 4.09          |
| <b>9</b> (H)                   | 74.54                      | 221.7            | 579.3        | 1.587                   | 56.15  | 331.21 | 3.79            | 3.96            | 3.96            | 3.96            | 3.96          |
| <b>10</b> (I)                  | 87.45                      | 243.8            | 654.9        | 1.636                   | 56.15  | 387.31 | 4.86            | 4.92            | 4.92            | 4.92            | 4.92          |
| <b>18</b> (Me)                 | 79.36                      | 238              | 617          | 1.581                   | 56.15  | 347.6  | 4.25            | 4.43            | 4.43            | 4.43            | 4.43          |
| $11(NO_2)$                     | 81.08                      | 233.5            | 634.8        | 1.611                   | 104.98 | 402.44 | 3.92            | 3.92            | 3.92            | 3.92            | 3.92          |
| <b>12</b> (OCOMe)              | 85.88                      | 259.3            | 680.8        | 1.576                   | 82.45  | 397.27 | 3.97            | 4.00            | 4.00            | 4.00            | 4.00          |
| <b>13</b> (OCF <sub>3</sub> )  | 81.67                      | 262.1            | 659.6        | 1.535                   | 65.38  | 342.6  | 4.89            | 4.94            | 4.94            | 4.94            | 4.94          |
| <b>15</b> (OMe)                | 81.22                      | 245.7            | 636          | 1.575                   | 65.38  | 368.81 | 3.46            | 4.06            | 4.06            | 4.06            | 4.06          |
| <b>22</b> (Pentyl)             | 97.99                      | 304              | 775.3        | 1.557                   | 56.15  | 404.97 | 6.07            | 6.25            | 6.25            | 6.25            | 6.25          |
| <b>16</b> (SMe)                | 86.21                      | 255.5            | 677.9        | 1.589                   | 81.45  | 390.46 | 4.71            | 4.88            | 4.88            | 4.88            | 4.88          |
| <b>17</b> (SO <sub>2</sub> Me) | 87.02                      | 263.5            | 705.2        | 1.574                   | 98.67  | 461.48 | 3.17            | 3.17            | 3.17            | 3.17            | 3.17          |

**Table S28.** Overview of the descriptors calculated using ACD/I-Labs – part 2.

| Compound                       | pKa<br>(arom<br>NH) | pKa<br>(alkyl<br>NH) | pKa2<br>(NH) | logS<br>(pH1.7) | logS<br>(pH4.6) | logS<br>(pH6.5) | logS<br>(pH7.4) | logS<br>(pH8) | Vx   | logPS | Vd   | polari<br>zabili<br>ty |
|--------------------------------|---------------------|----------------------|--------------|-----------------|-----------------|-----------------|-----------------|---------------|------|-------|------|------------------------|
| <b>21</b> (Bu)                 | 13.04               | 15.93                | 13           | -4.81           | -4.83           | -4.83           | -4.83           | -4.83         | 2.59 | -1.1  | 3.33 | 37.01                  |
| <b>2</b> (CF <sub>3</sub> )    | 11.96               | 15.56                | 12.5         | -4.59           | -4.61           | -4.61           | -4.61           | -4.61         | 2.22 | -1.1  | 2.73 | 31.52                  |
| <b>3</b> (Cl)                  | 12.44               | 15.7                 | 12.8         | -4.16           | -4.19           | -4.19           | -4.19           | -4.19         | 2.15 | -1.1  | 2.45 | 31.49                  |
| <b>4</b> (CN)                  | 11.71               | 15.59                | 12.4         | -4.05           | -4.08           | -4.08           | -4.08           | -4.08         | 2.18 | -1.2  | 2.12 | 30.98                  |
| <b>5</b> (COCF <sub>3</sub> )  | 11.53               | 15.61                | 12.8         | -4.7            | 4.72            | -4.72           | -4.72           | -4.72         | 2.37 | -1.1  | 2.4  | 33.7                   |
| 7 (COOMe)                      | 12.1                | 15.75                | 12.6         | -3.99           | -4.01           | -4.01           | -4.01           | -4.01         | 2.38 | -1.2  | 2.11 | 34.21                  |
| <b>19</b> (Et)                 | 13.02               | 15.93                | 13           | -4.12           | -4.14           | -4.14           | -4.14           | -4.14         | 2.3  | -1.1  | 2.7  | 33.33                  |
| <b>8</b> (F)                   | 12.67               | 15.79                | 12.9         | -3.66           | -3.68           | -3.68           | -3.68           | -3.68         | 2.04 | -1.1  | 2.2  | 29.54                  |
| <b>9</b> (H)                   | 12.75               | 15.84                | 13           | -3.4            | -3.41           | -3.41           | -3.41           | -3.41         | 2.02 | -1.1  | 2.17 | 29.55                  |
| <b>10</b> (I)                  | 12.41               | 15.7                 | 12.8         | -4.09           | -4.11           | -4.11           | -4.11           | -4.11         | 2.28 | -1.1  | 2.64 | 34.66                  |
| <b>18</b> (Me)                 | 13.02               | 15.93                | 13           | -3.77           | -3.79           | -3.79           | -3.79           | -3.79         | 2.16 | -1.1  | 2.48 | 31.46                  |
| <b>11</b> (NO <sub>2</sub> )   | 11.35               | 15.34                | 12.3         | -4.12           | -4.14           | -4.14           | -4.14           | -4.14         | 2.2  | -1.2  | 2.11 | 32.14                  |
| <b>12</b> (OCOMe)              | 12.46               | 15.8                 | 12.7         | -3.45           | -3.48           | -3.48           | -3.48           | -3.48         | 2.38 | -1.2  | 2.1  | 34.04                  |
| <b>13</b> (OCF <sub>3</sub> )  | 12.16               | 15.69                | 12.8         | -4.89           | -4.91           | -4.91           | -4.91           | -4.91         | 2.28 | -1.1  | 2.59 | 32.38                  |
| <b>15</b> (OMe)                | 12.76               | 15.88                | 13.2         | -3.55           | -3.57           | -3.57           | -3.57           | -3.57         | 2.22 | -1.1  | 2.13 | 32.19                  |
| 22 (Pentyl)                    | 13.03               | 15.93                | 13           | -5.15           | -5.16           | -5.16           | -5.16           | -5.16         | 2.73 | -1.3  | 4.36 | 38.84                  |
| <b>16</b> (SMe)                | 12.8                | 15.76                | 13           | -4.27           | -4.29           | -4.29           | -4.29           | -4.29         | 2.33 | -1.1  | 2.42 | 34.17                  |
| <b>17</b> (SO <sub>2</sub> Me) | 11.63               | 15.6                 | 12.3         | -3.59           | -3.61           | -3.61           | -3.61           | -3.61         | 2.44 | -1.4  | 1.43 | 34.49                  |

**Table S29.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 1.

| Compound                       | MW     | AMW   | Sv    | Se    | Sp    | Ss    | Mv   | Me   | Mp   | Ms   | SCBO | ARR   | RBN |
|--------------------------------|--------|-------|-------|-------|-------|-------|------|------|------|------|------|-------|-----|
| <b>21</b> (Bu)                 | 292.54 | 6.09  | 27.85 | 46.77 | 30.56 | 37.67 | 0.58 | 0.97 | 0.64 | 1.88 | 24   | 0.300 | 9   |
| <b>2</b> (CF <sub>3</sub> )    | 304.42 | 7.81  | 23.39 | 39.65 | 25.09 | 56.42 | 0.60 | 1.02 | 0.64 | 2.82 | 24   | 0.300 | 6   |
| <b>3</b> (Cl)                  | 270.86 | 7.52  | 22.16 | 35.56 | 24.37 | 35.28 | 0.62 | 0.99 | 0.68 | 2.08 | 21   | 0.353 | 6   |
| <b>4</b> (CN)                  | 261.43 | 7.07  | 22.85 | 36.45 | 24.76 | 39.67 | 0.62 | 0.99 | 0.67 | 2.20 | 24   | 0.333 | 6   |
| <b>5</b> (COCF <sub>3</sub> )  | 332.43 | 8.11  | 24.9  | 41.98 | 26.54 | 65.08 | 0.61 | 1.02 | 0.65 | 2.96 | 27   | 0.273 | 7   |
| 7 (COOMe)                      | 294.46 | 7.01  | 25.08 | 41.77 | 27.18 | 45.33 | 0.60 | 0.99 | 0.65 | 2.27 | 25   | 0.300 | 8   |
| <b>19</b> (Et)                 | 264.48 | 6.30  | 24.65 | 41.00 | 27.03 | 34.67 | 0.59 | 0.98 | 0.64 | 1.93 | 22   | 0.333 | 7   |
| <b>8</b> (F)                   | 254.41 | 7.07  | 21.57 | 35.75 | 23.45 | 39.17 | 0.60 | 0.99 | 0.65 | 2.30 | 21   | 0.353 | 6   |
| <b>9</b> (H)                   | 236.42 | 6.57  | 21.46 | 35.23 | 23.51 | 31.5  | 0.60 | 0.98 | 0.65 | 1.97 | 20   | 0.375 | 6   |
| <b>10</b> (I)                  | 362.31 | 10.06 | 22.88 | 35.30 | 26.17 | 33.29 | 0.64 | 0.98 | 0.73 | 1.96 | 21   | 0.353 | 6   |
| <b>18</b> (Me)                 | 250.45 | 6.42  | 23.05 | 38.12 | 25.27 | 33.17 | 0.59 | 0.98 | 0.65 | 1.95 | 21   | 0.353 | 6   |
| $11(NO_2)$                     | 281.42 | 7.41  | 22.88 | 38.11 | 24.67 | 47.17 | 0.60 | 1.00 | 0.65 | 2.48 | 25   | 0.316 | 7   |
| <b>12</b> (OCOMe)              | 294.46 | 7.01  | 25.08 | 41.77 | 27.18 | 45.33 | 0.60 | 0.99 | 0.65 | 2.27 | 25   | 0.300 | 8   |
| <b>13</b> (OCF <sub>3</sub> )  | 320.42 | 8.01  | 23.9  | 40.98 | 25.54 | 59.92 | 0.60 | 1.02 | 0.64 | 2.85 | 25   | 0.286 | 7   |
| <b>15</b> (OMe)                | 266.45 | 6.66  | 23.57 | 39.44 | 25.73 | 36.67 | 0.59 | 0.99 | 0.64 | 2.04 | 22   | 0.333 | 7   |
| 22 (Pentyl)                    | 306.57 | 6.01  | 29.45 | 49.65 | 32.32 | 39.17 | 0.58 | 0.97 | 0.63 | 1.87 | 25   | 0.286 | 10  |
| <b>16</b> (SMe)                | 282.52 | 7.06  | 24.14 | 39.19 | 26.92 | 35.00 | 0.60 | 0.98 | 0.67 | 1.94 | 22   | 0.333 | 7   |
| <b>17</b> (SO <sub>2</sub> Me) | 314.52 | 7.49  | 25.17 | 41.85 | 27.83 | 48.08 | 0.60 | 1.00 | 0.66 | 2.40 | 26   | 0.300 | 7   |

**Table S30.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 2.

| Compound                       | RBF   | ZM<br>1 | ZM1V    | ZM<br>2 | ZM2V    | Qind<br>ex | SNar   | HNar  | GNar  | Xt    | Dz    | Ra<br>m | Pol |
|--------------------------------|-------|---------|---------|---------|---------|------------|--------|-------|-------|-------|-------|---------|-----|
| <b>21</b> (Bu)                 | 0.188 | 86      | 150.444 | 91      | 160.667 | 6          | 13     | 1.818 | 1.916 | 0.277 | 41    | 3       | 22  |
| <b>2</b> (CF <sub>3</sub> )    | 0.154 | 92      | 300.444 | 99      | 242.667 | 9          | 12.307 | 1.702 | 1.85  | 0.285 | 45.5  | 5       | 24  |
| <b>3</b> (Cl)                  | 0.167 | 74      | 138.049 | 78      | 145.778 | 6          | 10.92  | 1.789 | 1.901 | 0.303 | 35.33 | 3       | 18  |
| <b>4</b> (CN)                  | 0.162 | 78      | 178.444 | 83      | 178.667 | 6          | 11.614 | 1.8   | 1.906 | 0.293 | 37.5  | 3       | 20  |
| <b>5</b> (COCF <sub>3</sub> )  | 0.171 | 102     | 352.444 | 111     | 282.667 | 10         | 13.405 | 1.682 | 1.839 | 0.273 | 50.5  | 6       | 28  |
| 7 (COOMe)                      | 0.19  | 88      | 226.444 | 95      | 212.667 | 7          | 12.712 | 1.765 | 1.888 | 0.28  | 43    | 4       | 24  |
| <b>19</b> (Et)                 | 0.167 | 78      | 142.444 | 83      | 152.667 | 6          | 11.614 | 1.8   | 1.906 | 0.293 | 37    | 3       | 20  |
| <b>8</b> (F)                   | 0.167 | 74      | 186.444 | 78      | 170.667 | 6          | 10.92  | 1.789 | 1.901 | 0.303 | 36.5  | 3       | 18  |
| <b>9</b> (H)                   | 0.167 | 68      | 130.444 | 71      | 136.667 | 5          | 10.515 | 1.846 | 1.929 | 0.308 | 33    | 2       | 16  |
| <b>10</b> (I)                  | 0.167 | 74      | 137.469 | 78      | 143.289 | 6          | 10.92  | 1.789 | 1.901 | 0.303 | 34.4  | 3       | 18  |
| <b>18</b> (Me)                 | 0.154 | 74      | 138.444 | 78      | 146.667 | 6          | 10.92  | 1.789 | 1.901 | 0.303 | 35    | 3       | 18  |
| <b>11</b> (NO <sub>2</sub> )   | 0.184 | 84      | 234.444 | 90      | 222.667 | 7          | 12.019 | 1.754 | 1.882 | 0.288 | 41.5  | 4       | 22  |
| <b>12</b> (OCOMe)              | 0.19  | 88      | 226.444 | 93      | 218.667 | 7          | 12.712 | 1.765 | 1.888 | 0.28  | 43    | 4       | 22  |
| <b>13</b> (OCF <sub>3</sub> )  | 0.175 | 96      | 336.444 | 101     | 274.667 | 9          | 13     | 1.714 | 1.857 | 0.277 | 48.5  | 5       | 23  |
| <b>15</b> (OMe)                | 0.175 | 78      | 174.444 | 83      | 172.667 | 6          | 11.614 | 1.8   | 1.906 | 0.293 | 38    | 3       | 20  |
| 22 (Pentyl)                    | 0.196 | 90      | 154.444 | 95      | 164.667 | 6          | 13.693 | 1.826 | 1.919 | 0.27  | 43    | 3       | 23  |
| <b>16</b> (SMe)                | 0.175 | 78      | 138.889 | 83      | 146     | 6          | 11.614 | 1.8   | 1.906 | 0.293 | 37    | 3       | 20  |
| <b>17</b> (SO <sub>2</sub> Me) | 0.167 | 92      | 210.889 | 99      | 154     | 9          | 12.307 | 1.702 | 1.85  | 0.285 | 43    | 5       | 24  |

**Table S31.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 3.

| Compound                       | LPRS   | VDA     | MSD   | SM<br>TI | SMTIV    | GM<br>TI | GMTIV     | Xu     | SPI    | W    | WA    | Har    |
|--------------------------------|--------|---------|-------|----------|----------|----------|-----------|--------|--------|------|-------|--------|
| <b>21</b> (Bu)                 | 93.112 | 108.1   | 0.346 | 4246     | 5218.444 | 3982     | 5798.667  | 21.002 | 10.126 | 1081 | 5.689 | 31.518 |
| <b>2</b> (CF <sub>3</sub> )    | 92.241 | 103.2   | 0.329 | 4050     | 7366.444 | 3774     | 10986.667 | 20.754 | 12.611 | 1032 | 5.432 | 32.441 |
| <b>3</b> (Cl)                  | 73.742 | 78.353  | 0.349 | 2649     | 3406.16  | 2475     | 3886.407  | 18.022 | 8.817  | 666  | 4.897 | 26.395 |
| <b>4</b> (CN)                  | 80.008 | 87.333  | 0.346 | 3108     | 4665.778 | 2904     | 6095.333  | 19.003 | 9.27   | 786  | 5.137 | 28.16  |
| <b>5</b> (COCF <sub>3</sub> )  | 105.05 | 121.545 | 0.319 | 5222     | 9863.111 | 4876     | 15371     | 22.535 | 14.7   | 1337 | 5.788 | 36.345 |
| 7 (COOMe)                      | 92.548 | 104.9   | 0.335 | 4116     | 6365.111 | 3846     | 8537.667  | 20.84  | 11.469 | 1049 | 5.521 | 31.982 |
| <b>19</b> (Et)                 | 80.008 | 87.333  | 0.346 | 3108     | 3941.778 | 2904     | 4464.667  | 19.003 | 9.27   | 786  | 5.137 | 28.16  |
| <b>8</b> (F)                   | 73.742 | 78.353  | 0.349 | 2649     | 4095.444 | 2475     | 5377.667  | 18.022 | 8.817  | 666  | 4.897 | 26.395 |
| <b>9</b> (H)                   | 67.701 | 70.375  | 0.355 | 2256     | 2991.778 | 2114     | 3504      | 17.073 | 6.852  | 563  | 4.692 | 24.443 |
| <b>10</b> (I)                  | 73.742 | 78.353  | 0.349 | 2649     | 3341.491 | 2475     | 3737.281  | 18.022 | 8.817  | 666  | 4.897 | 26.395 |
| <b>18</b> (Me)                 | 73.742 | 78.353  | 0.349 | 2649     | 3429.444 | 2475     | 3939.667  | 18.022 | 8.817  | 666  | 4.897 | 26.395 |
| $11(NO_2)$                     | 86.166 | 95.579  | 0.339 | 3575     | 5978.111 | 3337     | 8430.333  | 19.905 | 11.036 | 908  | 5.31  | 30.176 |
| <b>12</b> (OCOMe)              | 92.822 | 106.4   | 0.34  | 4178     | 6467.778 | 3910     | 8708.333  | 20.912 | 11.557 | 1064 | 5.6   | 31.801 |
| <b>13</b> (OCF <sub>3</sub> )  | 99.083 | 114.857 | 0.332 | 4725     | 8922.778 | 4419     | 13792.333 | 21.767 | 13.203 | 1206 | 5.743 | 33.996 |
| <b>15</b> (OMe)                | 80.008 | 87.333  | 0.346 | 3108     | 4389.778 | 2904     | 5427.333  | 19.003 | 9.27   | 786  | 5.137 | 28.16  |
| 22 (Pentyl)                    | 99.909 | 119.81  | 0.347 | 4933     | 5990.778 | 4639     | 6615.667  | 22.003 | 10.537 | 1258 | 5.99  | 33.162 |
| <b>16</b> (SMe)                | 80.008 | 87.333  | 0.346 | 3108     | 3799.556 | 2904     | 4143.778  | 19.003 | 9.27   | 786  | 5.137 | 28.16  |
| <b>17</b> (SO <sub>2</sub> Me) | 92.241 | 103.2   | 0.329 | 4050     | 5931.556 | 3774     | 7647.778  | 20.754 | 12.611 | 1032 | 5.432 | 32.441 |

**Table S32.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 4.

| Compound                       | Har2   | QW      | TI2   | HyD<br>P | RHyD<br>p | w    | ww   | Rww    | D/D     | Wap  | WhetZ   | Whetm    |
|--------------------------------|--------|---------|-------|----------|-----------|------|------|--------|---------|------|---------|----------|
| <b>21</b> (Bu)                 | 57.918 | 967.167 | 5.367 | 4854     | 36.916    | 1285 | 6264 | 26.515 | 161.592 | 2140 | 921.134 | 921.175  |
| <b>2</b> (CF <sub>3</sub> )    | 59.611 | 918.167 | 5.212 | 4430     | 38.16     | 1236 | 5804 | 27.36  | 160.934 | 2046 | 853.134 | 851.205  |
| <b>3</b> (Cl)                  | 46.231 | 606.667 | 4.969 | 2585     | 30.676    | 834  | 3761 | 20.976 | 112.362 | 1293 | 550.933 | 550.736  |
| <b>4</b> (CN)                  | 50.191 | 708.5   | 5.068 | 3197     | 32.837    | 966  | 4439 | 22.771 | 127.553 | 1542 | 650.759 | 650.793  |
| <b>5</b> (COCF <sub>3</sub> )  | 68.789 | 1186.83 | 5.422 | 6089     | 43.023    | 1565 | 7631 | 31.971 | 199.029 | 2654 | 1106.24 | 1104.12  |
| 7 (COOMe)                      | 58.864 | 935.167 | 5.251 | 4568     | 37.562    | 1253 | 5954 | 26.923 | 161.172 | 2078 | 863.509 | 863.591  |
| <b>19</b> (Et)                 | 50.191 | 708.5   | 5.068 | 3197     | 32.837    | 966  | 4439 | 22.771 | 127.553 | 1542 | 662.902 | 662.935  |
| <b>8</b> (F)                   | 46.231 | 606.667 | 4.969 | 2585     | 30.676    | 834  | 3761 | 20.976 | 112.362 | 1293 | 555.952 | 555.429  |
| <b>9</b> (H)                   | 42.075 | 521.833 | 4.886 | 2093     | 28.283    | 719  | 3215 | 19.355 | 98.496  | 1076 | 476.67  | 476.696  |
| <b>10</b> (I)                  | 46.231 | 606.667 | 4.969 | 2585     | 30.676    | 834  | 3761 | 20.976 | 112.362 | 1293 | 547.097 | 546.83   |
| <b>18</b> (Me)                 | 46.231 | 606.667 | 4.969 | 2585     | 30.676    | 834  | 3761 | 20.976 | 112.362 | 1293 | 561.286 | 561.316  |
| <b>11</b> (NO <sub>2</sub> )   | 54.651 | 812.333 | 5.15  | 3812     | 35.332    | 1100 | 5120 | 24.899 | 143.743 | 1793 | 735.232 | 735.287  |
| <b>12</b> (OCOMe)              | 58.45  | 950.167 | 5.32  | 4700     | 37.298    | 1268 | 6098 | 26.819 | 161.41  | 2108 | 863.509 | 863.629  |
| <b>13</b> (OCF <sub>3</sub> )  | 63.329 | 1074    | 5.427 | 5456     | 40.029    | 1422 | 6932 | 29.343 | 179.838 | 2394 | 970.75  | 968.816  |
| <b>15</b> (OMe)                | 50.191 | 708.5   | 5.068 | 3197     | 32.837    | 966  | 4439 | 22.771 | 127.553 | 1542 | 650.652 | 650.717  |
| 22 (Pentyl)                    | 61.758 | 1126    | 5.587 | 5938     | 38.903    | 1474 | 7450 | 28.416 | 180.348 | 2491 | 1079.75 | 1079.795 |
| <b>16</b> (SMe)                | 50.191 | 708.5   | 5.068 | 3197     | 32.837    | 966  | 4439 | 22.771 | 127.553 | 1542 | 632.277 | 632.285  |
| <b>17</b> (SO <sub>2</sub> Me) | 59.611 | 918.167 | 5.212 | 4430     | 38.16     | 1236 | 5804 | 27.36  | 160.934 | 2046 | 787.603 | 787.599  |

**Table S33.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 5.

| Compound                       | Whetv    | Whete    | Whetp    | J     | Jhet<br>Z | Jhet<br>m | Jhetv | Jhete | Jhetp | MAX<br>DN | MA<br>XDP | DELS   |
|--------------------------------|----------|----------|----------|-------|-----------|-----------|-------|-------|-------|-----------|-----------|--------|
| <b>21</b> (Bu)                 | 1143.937 | 928.24   | 1201.166 | 2.012 | 2.393     | 2.393     | 1.895 | 2.375 | 1.798 | 0.942     | 1.628     | 8.303  |
| <b>2</b> (CF <sub>3</sub> )    | 1177.029 | 861.428  | 1274.298 | 2.103 | 2.565     | 2.569     | 1.872 | 2.541 | 1.736 | 5.559     | 4.392     | 31.251 |
| <b>3</b> (Cl)                  | 727.409  | 563.731  | 766.573  | 1.983 | 2.404     | 2.405     | 1.794 | 2.357 | 1.693 | 0.996     | 1.693     | 9.48   |
| <b>4</b> (CN)                  | 839.073  | 657.023  | 887.225  | 2.004 | 2.433     | 2.433     | 1.855 | 2.41  | 1.748 | 1.031     | 2.689     | 11.356 |
| <b>5</b> (COCF <sub>3</sub> )  | 1491.205 | 1115.566 | 1605.264 | 2.167 | 2.638     | 2.642     | 1.978 | 2.618 | 1.845 | 6.107     | 4.277     | 38.64  |
| 7 (COOMe)                      | 1163.963 | 870.834  | 1237.08  | 2.07  | 2.533     | 2.533     | 1.878 | 2.513 | 1.766 | 2.006     | 4.294     | 16.848 |
| <b>19</b> (Et)                 | 847.918  | 669.138  | 895.159  | 2.004 | 2.400     | 2.400     | 1.841 | 2.378 | 1.737 | 0.948     | 1.586     | 7.636  |
| <b>8</b> (F)                   | 750.453  | 562.088  | 803.938  | 1.983 | 2.388     | 2.389     | 1.753 | 2.363 | 1.636 | 1.908     | 4.669     | 14.933 |
| <b>9</b> (H)                   | 623.9    | 482.037  | 661.152  | 1.946 | 2.309     | 2.309     | 1.729 | 2.284 | 1.625 | 0.956     | 1.525     | 6.232  |
| <b>10</b> (I)                  | 720.669  | 566.915  | 758.919  | 1.983 | 2.417     | 2.418     | 1.806 | 2.347 | 1.706 | 0.956     | 1.556     | 7.076  |
| <b>18</b> (Me)                 | 727.409  | 567.087  | 769.655  | 1.983 | 2.371     | 2.371     | 1.794 | 2.347 | 1.688 | 0.953     | 1.558     | 6.991  |
| <b>11</b> (NO <sub>2</sub> )   | 1006.114 | 742.259  | 1078.829 | 2.045 | 2.534     | 2.534     | 1.846 | 2.511 | 1.721 | 2.423     | 3.509     | 19.558 |
| <b>12</b> (OCOMe)              | 1236.196 | 871.039  | 1324.093 | 2.041 | 2.534     | 2.534     | 1.765 | 2.513 | 1.646 | 1.991     | 3.800     | 16.526 |
| <b>13</b> (OCF <sub>3</sub> )  | 1497.035 | 980.046  | 1637.862 | 2.085 | 2.612     | 2.615     | 1.714 | 2.588 | 1.574 | 5.926     | 4.011     | 29.717 |
| <b>15</b> (OMe)                | 894.659  | 657.055  | 953.969  | 2.004 | 2.437     | 2.436     | 1.764 | 2.413 | 1.652 | 0.989     | 1.600     | 9.447  |
| <b>22</b> (Pentyl)             | 1321.446 | 1087.29  | 1383.669 | 2.005 | 2.369     | 2.368     | 1.907 | 2.352 | 1.815 | 0.94      | 1.644     | 8.505  |
| <b>16</b> (SMe)                | 843.947  | 665.66   | 875.897  | 2.004 | 2.495     | 2.495     | 1.848 | 2.388 | 1.768 | 0.955     | 1.581     | 7.195  |
| <b>17</b> (SO <sub>2</sub> Me) | 1084.325 | 848.647  | 1106.91  | 2.103 | 2.760     | 2.760     | 1.995 | 2.574 | 1.943 | 4.064     | 4.335     | 23.077 |

**Table S34.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 6.

| Compound                       | TIE    | S0K    | S1K    | S2K    | S3K   | PHI   | BLI   | PW2   | PW3   | PW4   | PW5   | PJI2  | CS<br>I |
|--------------------------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| <b>21</b> (Bu)                 | 38.298 | 82.439 | 17.286 | 10.955 | 8.21  | 9.468 | 1.246 | 0.525 | 0.277 | 0.14  | 0.079 | 1     | 466     |
| <b>2</b> (CF <sub>3</sub> )    | 58.461 | 77.684 | 17.091 | 8.353  | 6.868 | 7.139 | 1.059 | 0.564 | 0.286 | 0.128 | 0.066 | 1     | 426     |
| <b>3</b> (Cl)                  | 27.776 | 63.487 | 14.58  | 8.587  | 6.737 | 7.365 | 1.202 | 0.537 | 0.277 | 0.135 | 0.075 | 0.857 | 332     |
| <b>4</b> (CN)                  | 32.436 | 71.059 | 14.787 | 8.765  | 6.307 | 7.201 | 1.12  | 0.531 | 0.288 | 0.14  | 0.074 | 1     | 372     |
| <b>5</b> (COCF <sub>3</sub> )  | 73.596 | 89.353 | 18.763 | 8.989  | 7.027 | 7.666 | 1.025 | 0.569 | 0.297 | 0.131 | 0.066 | 0.875 | 503     |
| 7 (COOMe)                      | 43.22  | 82.439 | 16.923 | 9.724  | 6.749 | 8.228 | 1.097 | 0.54  | 0.299 | 0.141 | 0.071 | 0.875 | 445     |
| <b>19</b> (Et)                 | 30.193 | 71.059 | 15.292 | 9.202  | 6.682 | 7.817 | 1.218 | 0.531 | 0.288 | 0.14  | 0.074 | 1     | 372     |
| <b>8</b> (F)                   | 33.815 | 65.487 | 14.231 | 8.288  | 6.467 | 6.938 | 1.135 | 0.537 | 0.277 | 0.135 | 0.075 | 0.857 | 332     |
| <b>9</b> (H)                   | 22.838 | 57.245 | 13.299 | 8.393  | 6.444 | 6.977 | 1.188 | 0.523 | 0.272 | 0.14  | 0.072 | 1     | 294     |
| <b>10</b> (I)                  | 26.436 | 65.487 | 15.02  | 8.966  | 7.081 | 7.922 | 1.326 | 0.537 | 0.277 | 0.135 | 0.075 | 0.857 | 332     |
| <b>18</b> (Me)                 | 26.44  | 65.487 | 14.295 | 8.343  | 6.517 | 7.016 | 1.19  | 0.537 | 0.277 | 0.135 | 0.075 | 0.857 | 332     |
| <b>11</b> (NO <sub>2</sub> )   | 44.621 | 74.711 | 15.861 | 8.829  | 6.5   | 7.371 | 1.079 | 0.546 | 0.289 | 0.135 | 0.07  | 1     | 399     |
| <b>12</b> (OCOMe)              | 41.221 | 82.439 | 16.923 | 9.724  | 7.927 | 8.228 | 1.104 | 0.541 | 0.27  | 0.14  | 0.075 | 0.875 | 447     |
| <b>13</b> (OCF <sub>3</sub> )  | 57.693 | 83.484 | 18.05  | 9.107  | 8.786 | 7.827 | 1.031 | 0.559 | 0.261 | 0.133 | 0.072 | 0.875 | 476     |
| <b>15</b> (OMe)                | 29.099 | 71.059 | 15.253 | 9.168  | 6.653 | 7.769 | 1.143 | 0.531 | 0.288 | 0.14  | 0.074 | 1     | 372     |
| <b>22</b> (Pentyl)             | 42.603 | 86.239 | 18.283 | 11.846 | 8.971 | 10.31 | 1.258 | 0.524 | 0.275 | 0.138 | 0.075 | 0.889 | 518     |
| <b>16</b> (SMe)                | 29.511 | 71.059 | 15.641 | 9.506  | 6.945 | 8.26  | 1.347 | 0.531 | 0.288 | 0.14  | 0.074 | 1     | 372     |
| <b>17</b> (SO <sub>2</sub> Me) | 56.552 | 80.439 | 17.247 | 8.475  | 6.978 | 7.308 | 1.362 | 0.564 | 0.286 | 0.128 | 0.066 | 1     | 426     |

**Table S35.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 7.

| Compound                       | ECC | AECC   | DEC<br>C | MDDD   | UNI<br>P | CEN<br>T | VAR | BAC | Lop   | ICR   | D/Dr06 | GGI<br>1 | GGI<br>2 |
|--------------------------------|-----|--------|----------|--------|----------|----------|-----|-----|-------|-------|--------|----------|----------|
| <b>21</b> (Bu)                 | 239 | 11.95  | 2.05     | 22.32  | 79       | 582      | 86  | 27  | 2.704 | 3.084 | 77.792 | 3        | 1.111    |
| <b>2</b> (CF <sub>3</sub> )    | 218 | 10.9   | 1.91     | 20.04  | 76       | 544      | 86  | 37  | 2.561 | 2.909 | 77.134 | 5        | 2        |
| <b>3</b> (Cl)                  | 169 | 9.941  | 1.599    | 14.138 | 57       | 363      | 63  | 18  | 2.606 | 2.778 | 64.562 | 3        | 1.111    |
| <b>4</b> (CN)                  | 190 | 10.556 | 1.778    | 16.741 | 64       | 420      | 70  | 21  | 2.636 | 2.933 | 68.753 | 3        | 1.111    |
| <b>5</b> (COCF <sub>3</sub> )  | 258 | 11.727 | 2.091    | 23.686 | 89       | 716      | 104 | 51  | 2.559 | 2.959 | 86.229 | 5.5      | 2.444    |
| 7 (COOMe)                      | 228 | 11.4   | 1.94     | 20.88  | 77       | 558      | 86  | 31  | 2.641 | 2.971 | 77.372 | 3.5      | 1.778    |
| <b>19</b> (Et)                 | 190 | 10.556 | 1.778    | 16.741 | 64       | 420      | 70  | 21  | 2.636 | 2.933 | 68.753 | 3        | 1.111    |
| <b>8</b> (F)                   | 169 | 9.941  | 1.599    | 14.138 | 57       | 363      | 63  | 18  | 2.606 | 2.778 | 64.562 | 3        | 1.111    |
| <b>9</b> (H)                   | 149 | 9.313  | 1.563    | 12.547 | 51       | 310      | 56  | 13  | 2.625 | 2.733 | 60.696 | 2        | 0.667    |
| <b>10</b> (I)                  | 169 | 9.941  | 1.599    | 14.138 | 57       | 363      | 63  | 18  | 2.606 | 2.778 | 64.562 | 3        | 1.111    |
| <b>18</b> (Me)                 | 169 | 9.941  | 1.599    | 14.138 | 57       | 363      | 63  | 18  | 2.606 | 2.778 | 64.562 | 3        | 1.111    |
| $11(NO_2)$                     | 204 | 10.737 | 1.856    | 18.731 | 70       | 486      | 78  | 28  | 2.604 | 2.931 | 72.943 | 3.5      | 1.556    |
| <b>12</b> (OCOMe)              | 229 | 11.45  | 1.995    | 21.48  | 78       | 568      | 86  | 31  | 2.641 | 2.971 | 77.61  | 4        | 1.111    |
| <b>13</b> (OCF <sub>3</sub> )  | 244 | 11.619 | 2.077    | 22.884 | 84       | 648      | 95  | 40  | 2.603 | 2.951 | 82.038 | 5.5      | 1.333    |
| <b>15</b> (OMe)                | 190 | 10.556 | 1.778    | 16.741 | 64       | 420      | 70  | 21  | 2.636 | 2.933 | 68.753 | 3        | 1.111    |
| <b>22</b> (Pentyl)             | 266 | 12.667 | 2.222    | 25.288 | 87       | 689      | 95  | 30  | 2.739 | 3.118 | 82.548 | 3        | 1.111    |
| <b>16</b> (SMe)                | 190 | 10.556 | 1.778    | 16.741 | 64       | 420      | 70  | 21  | 2.636 | 2.933 | 68.753 | 3        | 1.111    |
| <b>17</b> (SO <sub>2</sub> Me) | 218 | 10.9   | 1.91     | 20.04  | 76       | 544      | 86  | 37  | 2.561 | 2.909 | 77.134 | 5        | 2        |

**Table S36.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 8.

| Compound                       | GGI3  | GGI4  | GGI5  | GGI6  | GGI7  | GGI8  | GGI9  | GGI1<br>0 | JGI1  | JGI2  | JGI3  | JGI4  | JGI5  |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|
| <b>21</b> (Bu)                 | 0.625 | 0.622 | 0.319 | 0.283 | 0.165 | 0.082 | 0.066 | 0.037     | 0.15  | 0.048 | 0.028 | 0.031 | 0.017 |
| <b>2</b> (CF <sub>3</sub> )    | 1.125 | 0.702 | 0.528 | 0.264 | 0.262 | 0.107 | 0.086 | 0.07      | 0.25  | 0.077 | 0.047 | 0.033 | 0.031 |
| <b>3</b> (Cl)                  | 0.625 | 0.582 | 0.229 | 0.223 | 0.106 | 0.057 | 0.046 | 0.037     | 0.176 | 0.056 | 0.035 | 0.039 | 0.016 |
| <b>4</b> (CN)                  | 0.625 | 0.622 | 0.292 | 0.223 | 0.137 | 0.057 | 0.046 | 0.037     | 0.167 | 0.053 | 0.031 | 0.037 | 0.019 |
| <b>5</b> (COCF <sub>3</sub> )  | 1.375 | 0.982 | 0.493 | 0.424 | 0.231 | 0.206 | 0.106 | 0.087     | 0.25  | 0.084 | 0.049 | 0.039 | 0.022 |
| 7 (COOMe)                      | 0.875 | 0.662 | 0.438 | 0.263 | 0.2   | 0.107 | 0.066 | 0.054     | 0.175 | 0.074 | 0.036 | 0.032 | 0.024 |
| <b>19</b> (Et)                 | 0.625 | 0.622 | 0.292 | 0.223 | 0.137 | 0.057 | 0.046 | 0.037     | 0.167 | 0.053 | 0.031 | 0.037 | 0.019 |
| <b>8</b> (F)                   | 0.625 | 0.582 | 0.229 | 0.223 | 0.106 | 0.057 | 0.046 | 0.037     | 0.176 | 0.056 | 0.035 | 0.039 | 0.016 |
| <b>9</b> (H)                   | 0.563 | 0.391 | 0.174 | 0.141 | 0.075 | 0.033 | 0.026 | 0.021     | 0.125 | 0.037 | 0.035 | 0.028 | 0.013 |
| <b>10</b> (I)                  | 0.625 | 0.582 | 0.229 | 0.223 | 0.106 | 0.057 | 0.046 | 0.037     | 0.176 | 0.056 | 0.035 | 0.039 | 0.016 |
| <b>18</b> (Me)                 | 0.625 | 0.582 | 0.229 | 0.223 | 0.106 | 0.057 | 0.046 | 0.037     | 0.176 | 0.056 | 0.035 | 0.039 | 0.016 |
| <b>11</b> (NO <sub>2</sub> )   | 0.875 | 0.662 | 0.41  | 0.223 | 0.2   | 0.082 | 0.066 | 0.054     | 0.184 | 0.068 | 0.04  | 0.035 | 0.026 |
| <b>12</b> (OCOMe)              | 0.875 | 0.782 | 0.347 | 0.344 | 0.137 | 0.132 | 0.066 | 0.054     | 0.2   | 0.046 | 0.04  | 0.037 | 0.018 |
| <b>13</b> (OCF <sub>3</sub> )  | 1.125 | 0.942 | 0.375 | 0.424 | 0.168 | 0.181 | 0.086 | 0.07      | 0.262 | 0.049 | 0.049 | 0.041 | 0.018 |
| <b>15</b> (OMe)                | 0.625 | 0.622 | 0.292 | 0.223 | 0.137 | 0.057 | 0.046 | 0.037     | 0.167 | 0.053 | 0.031 | 0.037 | 0.019 |
| <b>22</b> (Pentyl)             | 0.625 | 0.622 | 0.319 | 0.283 | 0.181 | 0.103 | 0.066 | 0.054     | 0.143 | 0.046 | 0.027 | 0.03  | 0.016 |
| <b>16</b> (SMe)                | 0.625 | 0.622 | 0.292 | 0.223 | 0.137 | 0.057 | 0.046 | 0.037     | 0.167 | 0.053 | 0.031 | 0.037 | 0.019 |
| <b>17</b> (SO <sub>2</sub> Me) | 1.125 | 0.702 | 0.528 | 0.264 | 0.262 | 0.107 | 0.086 | 0.07      | 0.25  | 0.077 | 0.047 | 0.033 | 0.031 |

**Table S37.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 9.

| Compound                       | JGI6  | JGI7  | JGI8  | JGI9  | JGI<br>10 | JGT   | W3D      | J3D   | H3D     | AGDD    | DDI     | ADDD   |
|--------------------------------|-------|-------|-------|-------|-----------|-------|----------|-------|---------|---------|---------|--------|
| <b>21</b> (Bu)                 | 0.018 | 0.012 | 0.006 | 0.006 | 0.004     | 0.32  | 8463.403 | 3.44  | 244.862 | 352.642 | 1143.54 | 47.648 |
| <b>2</b> (CF <sub>3</sub> )    | 0.018 | 0.019 | 0.007 | 0.009 | 0.008     | 0.498 | 4774.758 | 3.275 | 177.915 | 244.859 | 762.547 | 39.105 |
| <b>3</b> (Cl)                  | 0.019 | 0.01  | 0.006 | 0.007 | 0.006     | 0.369 | 3798.21  | 3.239 | 158.763 | 211.012 | 649.62  | 36.09  |
| <b>4</b> (CN)                  | 0.017 | 0.011 | 0.005 | 0.006 | 0.005     | 0.352 | 4128.441 | 3.239 | 164.81  | 223.159 | 686.428 | 37.104 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.025 | 0.014 | 0.013 | 0.007 | 0.008     | 0.512 | 5488.705 | 3.308 | 190.867 | 267.742 | 838.046 | 40.88  |
| 7 (COOMe)                      | 0.018 | 0.014 | 0.008 | 0.006 | 0.006     | 0.393 | 6020.361 | 3.253 | 196.13  | 286.684 | 882.718 | 42.034 |
| <b>19</b> (Et)                 | 0.017 | 0.011 | 0.005 | 0.006 | 0.005     | 0.352 | 5821.687 | 3.348 | 200.9   | 277.223 | 874.67  | 41.651 |
| <b>8</b> (F)                   | 0.019 | 0.01  | 0.006 | 0.007 | 0.006     | 0.369 | 3785.711 | 3.246 | 159.297 | 210.317 | 647.261 | 35.959 |
| <b>9</b> (H)                   | 0.013 | 0.008 | 0.004 | 0.004 | 0.004     | 0.272 | 3776.732 | 3.252 | 159.793 | 209.818 | 645.566 | 35.865 |
| <b>10</b> (I)                  | 0.019 | 0.01  | 0.006 | 0.007 | 0.006     | 0.369 | 3809.957 | 3.232 | 158.361 | 211.664 | 651.865 | 36.215 |
| <b>18</b> (Me)                 | 0.019 | 0.01  | 0.006 | 0.007 | 0.006     | 0.369 | 4757.331 | 3.283 | 179.438 | 243.966 | 758.394 | 38.892 |
| $11(NO_2)$                     | 0.016 | 0.015 | 0.006 | 0.007 | 0.007     | 0.404 | 4447.192 | 3.255 | 171.477 | 234.063 | 723.05  | 38.055 |
| <b>12</b> (OCOMe)              | 0.023 | 0.01  | 0.01  | 0.005 | 0.006     | 0.396 | 6033.28  | 3.246 | 196.203 | 287.299 | 879.506 | 41.881 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.027 | 0.011 | 0.013 | 0.006 | 0.007     | 0.483 | 5142.346 | 3.281 | 184.938 | 257.117 | 793.19  | 39.659 |
| <b>15</b> (OMe)                | 0.017 | 0.011 | 0.005 | 0.006 | 0.005     | 0.352 | 5067.614 | 3.318 | 186.899 | 253.381 | 784.712 | 39.236 |
| <b>22</b> (Pentyl)             | 0.016 | 0.011 | 0.007 | 0.005 | 0.005     | 0.307 | 10057.21 | 3.476 | 267.515 | 394.401 | 1294.89 | 50.78  |
| <b>16</b> (SMe)                | 0.017 | 0.011 | 0.005 | 0.006 | 0.005     | 0.352 | 5198.882 | 3.249 | 183.989 | 259.944 | 800.303 | 40.015 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.018 | 0.019 | 0.007 | 0.009 | 0.008     | 0.498 | 5885.456 | 3.316 | 197.804 | 280.26  | 886.475 | 42.213 |

**Table S38.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 10.

| Compound                      | G1     | G2     | RGyr  | SPAN   | SPA<br>M | SPH   | ASP   | FDI   | PJI3  | L/B<br>w | SEig   | HOM<br>A | RCI   |
|-------------------------------|--------|--------|-------|--------|----------|-------|-------|-------|-------|----------|--------|----------|-------|
| <b>21</b> (Bu)                | 25.735 | 12.377 | 5.217 | 10.412 | 0.466    | 0.942 | 0.875 | 0.997 | 0.91  | 36.32    | 98.213 | 0.994    | 1.389 |
| <b>2</b> (CF <sub>3</sub> )   | 28.682 | 12.884 | 4.942 | 10.415 | 0.517    | 0.95  | 0.88  | 1     | 0.965 | 31.2     | 80.56  | 0.994    | 1.389 |
| <b>3</b> (Cl)                 | 23.112 | 10.996 | 4.692 | 9.678  | 0.519    | 0.947 | 0.894 | 1     | 0.927 | 31.94    | 74.203 | 0.994    | 1.389 |
| <b>4</b> (CN)                 | 23.022 | 11.394 | 4.656 | 9.475  | 0.506    | 0.951 | 0.883 | 1     | 0.912 | 28.56    | 76.198 | 0.98     | 1.398 |
| <b>5</b> (COCF <sub>3</sub> ) | 32.622 | 14.25  | 5.107 | 10.911 | 0.516    | 0.955 | 0.849 | 1     | 0.846 | 22.29    | 85.423 | 0.697    | 1.401 |
| 7 (COOMe)                     | 27.09  | 12.945 | 5.009 | 10.289 | 0.495    | 0.962 | 0.869 | 1     | 0.909 | 24.76    | 86.417 | 0.696    | 1.398 |
| <b>19</b> (Et)                | 23.191 | 11.24  | 4.681 | 9.55   | 0.477    | 0.947 | 0.868 | 0.997 | 0.852 | 28.14    | 85.779 | 0.994    | 1.389 |
| <b>8</b> (F)                  | 22.305 | 10.881 | 4.492 | 9.24   | 0.507    | 0.947 | 0.877 | 1     | 0.883 | 27.46    | 73.744 | 0.995    | 1.389 |
| <b>9</b> (H)                  | 20.301 | 10.091 | 4.265 | 8.748  | 0.493    | 0.947 | 0.854 | 1     | 0.866 | 23.03    | 73.46  | 0.994    | 1.389 |
| <b>10</b> (I)                 | 28.575 | 12.426 | 5.056 | 11.409 | 0.563    | 0.947 | 0.942 | 1     | 0.966 | 58.28    | 74.712 | 0.994    | 1.389 |
| <b>18</b> (Me)                | 21.77  | 10.671 | 4.472 | 9.15   | 0.484    | 0.952 | 0.865 | 1     | 0.968 | 24.94    | 79.814 | 0.994    | 1.389 |
| <b>11</b> (NO <sub>2</sub> )  | 26.027 | 12.646 | 4.813 | 9.943  | 0.512    | 0.954 | 0.885 | 1     | 0.959 | 29.36    | 78.175 | 0.994    | 1.389 |
| <b>12</b> (OCOMe)             | 27.318 | 13.037 | 4.996 | 10.29  | 0.495    | 0.956 | 0.878 | 1     | 0.941 | 34.93    | 86.364 | 0.996    | 1.389 |
| <b>13</b> (OCF <sub>3</sub> ) | 31.555 | 13.809 | 5.081 | 10.8   | 0.52     | 0.95  | 0.898 | 0.997 | 0.869 | 40.15    | 83.432 | 0.996    | 1.389 |
| <b>15</b> (OMe)               | 23.909 | 11.597 | 4.623 | 9.53   | 0.488    | 0.955 | 0.857 | 0.987 | 0.857 | 23       | 81.868 | 0.996    | 1.389 |
| <b>22</b> (Pentyl)            | 26.956 | 12.946 | 5.528 | 10.869 | 0.462    | 0.948 | 0.884 | 1     | 0.942 | 40.58    | 104.61 | 0.994    | 1.389 |
| <b>16</b> (SMe)               | 24.687 | 11.892 | 4.843 | 9.995  | 0.5      | 0.952 | 0.886 | 1     | 0.886 | 30.2     | 83.132 | 0.995    | 1.389 |
| 17 (SO <sub>2</sub> Me)       | 30.758 | 15.426 | 5.003 | 10.625 | 0.503    | 0.941 | 0.872 | 1     | 0.88  | 30.38    | 87.454 | 0.994    | 1.389 |

**Table S39.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 11.

| Compound                       | ARO<br>M | HO<br>MT | DISP<br>m | QXX<br>m | QYYm    | QZZm    | DISPv  | QXXv   | QYYv    | QZZv    | DISPe | QXXe   |
|--------------------------------|----------|----------|-----------|----------|---------|---------|--------|--------|---------|---------|-------|--------|
| <b>21</b> (Bu)                 | 0.993    | 5.961    | 5.075     | 28.705   | 647.94  | 653.376 | 6.037  | 39.827 | 905.059 | 915.052 | 0.039 | 88.303 |
| <b>2</b> (CF <sub>3</sub> )    | 0.993    | 5.961    | 27.637    | 31.687   | 707.208 | 722.189 | 12.948 | 28.894 | 572.655 | 587.712 | 1.008 | 68.102 |
| <b>3</b> (Cl)                  | 0.993    | 5.966    | 26.953    | 23.374   | 569.069 | 583.554 | 19.559 | 26.057 | 510.19  | 524.495 | 0.358 | 56.807 |
| <b>4</b> (CN)                  | 0.982    | 5.881    | 21.176    | 22.032   | 507.608 | 521.075 | 19.636 | 26.931 | 553.879 | 568.919 | 0.3   | 58.587 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.969    | 5.578    | 29.254    | 49.425   | 819.456 | 850.996 | 15.448 | 37.958 | 655.28  | 678.886 | 1.164 | 88.582 |
| 7 (COOMe)                      | 0.981    | 5.567    | 16.128    | 29.869   | 628.289 | 648.718 | 11.326 | 37.922 | 700.274 | 725.132 | 0.454 | 82.938 |
| <b>19</b> (Et)                 | 0.993    | 5.961    | 9.54      | 22.493   | 474.965 | 484.582 | 9.375  | 30.788 | 647.205 | 660.187 | 0.087 | 69.677 |
| <b>8</b> (F)                   | 0.993    | 5.97     | 21.537    | 21.129   | 463.488 | 475.983 | 14.737 | 25.139 | 466.292 | 479.833 | 0.482 | 56.641 |
| <b>9</b> (H)                   | 0.993    | 5.961    | 15.34     | 19.451   | 366.195 | 377.173 | 14.13  | 24.954 | 458.009 | 471.384 | 0.151 | 55.852 |
| <b>10</b> (I)                  | 0.993    | 5.961    | 48.384    | 36.808   | 1166.16 | 1192.58 | 25.118 | 27.541 | 571.102 | 586.777 | 0.204 | 56.763 |
| <b>18</b> (Me)                 | 0.993    | 5.961    | 11.456    | 20.238   | 415.188 | 427.022 | 10.804 | 27.421 | 549.487 | 564.288 | 0.114 | 62.233 |
| <b>11</b> (NO <sub>2</sub> )   | 0.993    | 5.961    | 24.387    | 25.638   | 600.039 | 616.395 | 14.288 | 27.661 | 547.296 | 562.986 | 0.712 | 62.535 |
| <b>12</b> (OCOMe)              | 0.993    | 5.974    | 16.211    | 27.18    | 630.283 | 638.234 | 11.192 | 32.054 | 717.892 | 732.945 | 0.417 | 71.015 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.993    | 5.974    | 29.022    | 29.06    | 801.485 | 810.94  | 13.235 | 27.898 | 614.958 | 627.443 | 1.145 | 64.408 |
| <b>15</b> (OMe)                | 0.993    | 5.974    | 14.067    | 25.081   | 478.59  | 494.403 | 11.128 | 34.656 | 567.175 | 589.192 | 0.305 | 76.617 |
| <b>22</b> (Pentyl)             | 0.993    | 5.961    | 3.182     | 31.25    | 762.65  | 768.089 | 4.853  | 43.395 | 1067.11 | 1078.18 | 0.051 | 95.278 |
| <b>16</b> (SMe)                | 0.992    | 5.97     | 19.41     | 25.353   | 577.311 | 592.638 | 14.858 | 28.76  | 637.432 | 651.445 | 0.154 | 61.683 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.993    | 5.961    | 24.299    | 34.95    | 707.313 | 717.158 | 12.91  | 34.454 | 687.352 | 699.56  | 0.556 | 77.266 |

**Table S40.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 12.

| Compound                       | QYYe    | QZZe    | DISP<br>P | QXX<br>p | QYYp    | QZZp    | L1u    | L2u   | L3u   | P1u   | P2u   | G1u   |
|--------------------------------|---------|---------|-----------|----------|---------|---------|--------|-------|-------|-------|-------|-------|
| <b>21</b> (Bu)                 | 1691.44 | 1712.73 | 0.451     | 47.078   | 1005.68 | 1016.21 | 35.972 | 1.189 | 0.73  | 0.949 | 0.031 | 0.152 |
| <b>2</b> (CF <sub>3</sub> )    | 1080.17 | 1111.48 | 0.678     | 33.151   | 594.473 | 611.398 | 25.642 | 1.26  | 0.458 | 0.937 | 0.046 | 0.185 |
| <b>3</b> (Cl)                  | 807.23  | 835.045 | 1.551     | 31.491   | 564.251 | 580.971 | 22.119 | 1.21  | 0.421 | 0.931 | 0.051 | 0.177 |
| <b>4</b> (CN)                  | 877.28  | 906.521 | 1.329     | 31.847   | 586.118 | 603.167 | 23.599 | 1.224 | 0.415 | 0.935 | 0.048 | 0.161 |
| <b>5</b> (COCF <sub>3</sub> )  | 1221.38 | 1272.3  | 0.76      | 41.432   | 676.72  | 701.311 | 27.502 | 1.599 | 0.444 | 0.931 | 0.054 | 0.182 |
| 7 (COOMe)                      | 1290.84 | 1340.68 | 0.622     | 43.712   | 757.939 | 785.469 | 30.52  | 1.62  | 0.41  | 0.938 | 0.05  | 0.18  |
| <b>19</b> (Et)                 | 1177.29 | 1204.03 | 0.708     | 36.786   | 715.275 | 729.894 | 28.619 | 1.194 | 0.536 | 0.943 | 0.039 | 0.156 |
| <b>8</b> (F)                   | 812.05  | 839.85  | 0.997     | 30.153   | 497.519 | 513.092 | 21.956 | 1.204 | 0.419 | 0.931 | 0.051 | 0.177 |
| <b>9</b> (H)                   | 774.95  | 802.06  | 1.058     | 30.156   | 500.148 | 515.717 | 21.843 | 1.198 | 0.418 | 0.931 | 0.051 | 0.177 |
| <b>10</b> (I)                  | 794.92  | 822.82  | 2.553     | 34.814   | 708.421 | 728.142 | 22.278 | 1.22  | 0.42  | 0.931 | 0.051 | 0.162 |
| <b>18</b> (Me)                 | 974.89  | 1005.05 | 0.818     | 32.818   | 604.603 | 621.635 | 25.521 | 1.232 | 0.432 | 0.939 | 0.045 | 0.185 |
| <b>11</b> (NO <sub>2</sub> )   | 982.67  | 1015.43 | 0.852     | 32.346   | 573.921 | 591.401 | 24.672 | 1.26  | 0.407 | 0.937 | 0.048 | 0.16  |
| <b>12</b> (OCOMe)              | 1311.94 | 1342.34 | 0.729     | 37.469   | 778.486 | 795.429 | 31.092 | 1.251 | 0.48  | 0.947 | 0.038 | 0.169 |
| <b>13</b> (OCF <sub>3</sub> )  | 1191.56 | 1215.65 | 0.625     | 32.485   | 633.87  | 648.718 | 27.209 | 1.12  | 0.483 | 0.944 | 0.039 | 0.183 |
| <b>15</b> (OMe)                | 1027.97 | 1072.73 | 0.681     | 40.606   | 618.231 | 642.896 | 25.764 | 1.576 | 0.416 | 0.928 | 0.057 | 0.158 |
| 22 (Pentyl)                    | 2006.17 | 2029.51 | 0.299     | 51.066   | 1187.42 | 1198.87 | 40.235 | 1.211 | 0.737 | 0.954 | 0.029 | 0.15  |
| <b>16</b> (SMe)                | 1098.76 | 1124.24 | 1.32      | 35.204   | 728.016 | 745.146 | 27.909 | 1.128 | 0.474 | 0.946 | 0.038 | 0.158 |
| <b>17</b> (SO <sub>2</sub> Me) | 1247.41 | 1272.76 | 1.077     | 40.216   | 770.35  | 783.965 | 29.127 | 1.23  | 0.613 | 0.941 | 0.04  | 0.156 |

**Table S41.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 13.

| Compound                       | G2u   | G3u   | E1u   | E2u   | E3u   | L1m    | L2m   | L3m   | P1m   | P2m   | G1m   | G2m   | G3m   |
|--------------------------------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| <b>21</b> (Bu)                 | 0.172 | 0.276 | 0.587 | 0.36  | 0.382 | 26.125 | 0.719 | 0.457 | 0.957 | 0.026 | 0.152 | 0.181 | 0.152 |
| <b>2</b> (CF <sub>3</sub> )    | 0.185 | 0.279 | 0.58  | 0.424 | 0.38  | 27.63  | 0.886 | 0.306 | 0.959 | 0.031 | 0.173 | 0.179 | 0.204 |
| <b>3</b> (Cl)                  | 0.191 | 0.255 | 0.572 | 0.441 | 0.339 | 25.124 | 0.787 | 0.161 | 0.964 | 0.03  | 0.162 | 0.162 | 0.184 |
| <b>4</b> (CN)                  | 0.161 | 0.233 | 0.562 | 0.451 | 0.342 | 23.156 | 0.811 | 0.168 | 0.959 | 0.034 | 0.161 | 0.202 | 0.195 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.17  | 0.234 | 0.584 | 0.42  | 0.345 | 29.427 | 1.32  | 0.321 | 0.947 | 0.042 | 0.17  | 0.17  | 0.182 |
| 7 (COOMe)                      | 0.217 | 0.21  | 0.566 | 0.4   | 0.35  | 25.437 | 1.027 | 0.187 | 0.954 | 0.039 | 0.169 | 0.169 | 0.204 |
| <b>19</b> (Et)                 | 0.186 | 0.204 | 0.593 | 0.413 | 0.378 | 21.278 | 0.756 | 0.263 | 0.954 | 0.034 | 0.156 | 0.21  | 0.21  |
| <b>8</b> (F)                   | 0.237 | 0.255 | 0.578 | 0.437 | 0.335 | 21.712 | 0.791 | 0.171 | 0.958 | 0.035 | 0.177 | 0.205 | 0.177 |
| <b>9</b> (H)                   | 0.276 | 0.237 | 0.582 | 0.434 | 0.333 | 18.393 | 0.799 | 0.184 | 0.949 | 0.041 | 0.177 | 0.177 | 0.177 |
| <b>10</b> (I)                  | 0.177 | 0.237 | 0.565 | 0.446 | 0.339 | 38.916 | 0.668 | 0.12  | 0.98  | 0.017 | 0.162 | 0.191 | 0.184 |
| <b>18</b> (Me)                 | 0.204 | 0.259 | 0.583 | 0.434 | 0.372 | 19.708 | 0.79  | 0.18  | 0.953 | 0.038 | 0.173 | 0.159 | 0.204 |
| $11(NO_2)$                     | 0.2   | 0.246 | 0.572 | 0.435 | 0.333 | 25.455 | 0.867 | 0.181 | 0.96  | 0.033 | 0.16  | 0.174 | 0.174 |
| <b>12</b> (OCOMe)              | 0.169 | 0.246 | 0.557 | 0.386 | 0.324 | 25.317 | 0.725 | 0.381 | 0.958 | 0.027 | 0.169 | 0.163 | 0.281 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.238 | 0.238 | 0.572 | 0.41  | 0.339 | 29.691 | 0.739 | 0.333 | 0.965 | 0.024 | 0.158 | 0.158 | 0.183 |
| <b>15</b> (OMe)                | 0.209 | 0.223 | 0.593 | 0.435 | 0.333 | 21.372 | 0.929 | 0.192 | 0.95  | 0.041 | 0.158 | 0.171 | 0.196 |
| <b>22</b> (Pentyl)             | 0.217 | 0.229 | 0.578 | 0.34  | 0.393 | 29.373 | 0.724 | 0.499 | 0.96  | 0.024 | 0.15  | 0.229 | 0.182 |
| <b>16</b> (SMe)                | 0.196 | 0.238 | 0.563 | 0.399 | 0.353 | 24.407 | 0.808 | 0.191 | 0.961 | 0.032 | 0.158 | 0.183 | 0.183 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.192 | 0.263 | 0.587 | 0.406 | 0.377 | 26.634 | 0.877 | 0.354 | 0.956 | 0.031 | 0.156 | 0.21  | 0.192 |

**Table S42.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 14.

| Compound                       | E1m   | E2m   | E3m   | L1v    | L2v   | L3v   | P1v   | P2v   | G1v   | G2v   | G3v   | E1v   | E2v   |
|--------------------------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| <b>21</b> (Bu)                 | 0.31  | 0.154 | 0.129 | 31.966 | 0.894 | 0.535 | 0.957 | 0.027 | 0.152 | 0.172 | 0.177 | 0.464 | 0.204 |
| <b>2</b> (CF <sub>3</sub> )    | 0.674 | 0.208 | 0.179 | 24.191 | 0.94  | 0.295 | 0.951 | 0.037 | 0.173 | 0.159 | 0.159 | 0.516 | 0.239 |
| <b>3</b> (Cl)                  | 0.74  | 0.186 | 0.054 | 22.767 | 0.906 | 0.264 | 0.951 | 0.038 | 0.177 | 0.184 | 0.177 | 0.606 | 0.251 |
| <b>4</b> (CN)                  | 0.541 | 0.206 | 0.06  | 23.982 | 0.915 | 0.259 | 0.953 | 0.036 | 0.161 | 0.161 | 0.202 | 0.580 | 0.253 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.67  | 0.237 | 0.18  | 26.03  | 1.236 | 0.288 | 0.945 | 0.045 | 0.17  | 0.157 | 0.206 | 0.524 | 0.252 |
| 7 (COOMe)                      | 0.394 | 0.164 | 0.079 | 27.668 | 1.248 | 0.26  | 0.948 | 0.043 | 0.156 | 0.18  | 0.198 | 0.466 | 0.237 |
| <b>19</b> (Et)                 | 0.328 | 0.192 | 0.086 | 25.894 | 0.888 | 0.36  | 0.954 | 0.033 | 0.156 | 0.204 | 0.169 | 0.485 | 0.231 |
| <b>8</b> (F)                   | 0.566 | 0.207 | 0.062 | 21.353 | 0.897 | 0.268 | 0.948 | 0.04  | 0.162 | 0.255 | 0.162 | 0.547 | 0.247 |
| <b>9</b> (H)                   | 0.413 | 0.228 | 0.071 | 21.077 | 0.893 | 0.269 | 0.948 | 0.04  | 0.177 | 0.255 | 0.162 | 0.542 | 0.246 |
| <b>10</b> (I)                  | 1.746 | 0.097 | 0.03  | 24.719 | 0.925 | 0.256 | 0.954 | 0.036 | 0.162 | 0.177 | 0.177 | 0.695 | 0.254 |
| <b>18</b> (Me)                 | 0.348 | 0.200 | 0.069 | 23.561 | 0.916 | 0.273 | 0.952 | 0.037 | 0.185 | 0.159 | 0.173 | 0.497 | 0.243 |
| <b>11</b> (NO <sub>2</sub> )   | 0.609 | 0.203 | 0.073 | 23.664 | 0.948 | 0.261 | 0.951 | 0.038 | 0.16  | 0.255 | 0.174 | 0.526 | 0.249 |
| <b>12</b> (OCOMe)              | 0.369 | 0.139 | 0.209 | 28.288 | 0.939 | 0.339 | 0.957 | 0.032 | 0.169 | 0.231 | 0.18  | 0.461 | 0.219 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.681 | 0.212 | 0.158 | 25.411 | 0.844 | 0.322 | 0.956 | 0.032 | 0.183 | 0.177 | 0.189 | 0.499 | 0.238 |
| <b>15</b> (OMe)                | 0.409 | 0.161 | 0.071 | 23.804 | 1.198 | 0.268 | 0.942 | 0.047 | 0.158 | 0.177 | 0.196 | 0.507 | 0.253 |
| <b>22</b> (Pentyl)             | 0.308 | 0.129 | 0.17  | 35.693 | 0.925 | 0.548 | 0.96  | 0.025 | 0.15  | 0.206 | 0.196 | 0.455 | 0.199 |
| <b>16</b> (SMe)                | 0.434 | 0.217 | 0.057 | 26.107 | 0.878 | 0.304 | 0.957 | 0.032 | 0.158 | 0.171 | 0.158 | 0.493 | 0.25  |
| <b>17</b> (SO <sub>2</sub> Me) | 0.495 | 0.220 | 0.088 | 26.875 | 0.929 | 0.437 | 0.952 | 0.033 | 0.156 | 0.231 | 0.18  | 0.500 | 0.235 |

**Table S43.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 15.

| Compound                       | E3v   | L1e    | L2e   | L3e   | P1e   | P2e   | G1e   | G2e   | G3e   | E1e   | E2e   | E3e   | L1p    |
|--------------------------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| <b>21</b> (Bu)                 | 0.205 | 35.451 | 1.172 | 0.717 | 0.949 | 0.031 | 0.152 | 0.152 | 0.208 | 0.57  | 0.35  | 0.367 | 32.314 |
| <b>2</b> (CF <sub>3</sub> )    | 0.162 | 26.779 | 1.251 | 0.464 | 0.94  | 0.044 | 0.173 | 0.166 | 0.191 | 0.633 | 0.417 | 0.394 | 23.375 |
| <b>3</b> (Cl)                  | 0.139 | 22.296 | 1.19  | 0.408 | 0.933 | 0.05  | 0.177 | 0.255 | 0.177 | 0.581 | 0.429 | 0.321 | 22.861 |
| <b>4</b> (CN)                  | 0.139 | 23.665 | 1.205 | 0.403 | 0.936 | 0.048 | 0.161 | 0.291 | 0.175 | 0.565 | 0.438 | 0.326 | 23.381 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.145 | 28.654 | 1.652 | 0.449 | 0.932 | 0.054 | 0.157 | 0.157 | 0.194 | 0.634 | 0.441 | 0.351 | 25.185 |
| 7 (COOMe)                      | 0.143 | 30.507 | 1.589 | 0.396 | 0.939 | 0.049 | 0.169 | 0.169 | 0.174 | 0.565 | 0.385 | 0.327 | 27.588 |
| <b>19</b> (Et)                 | 0.171 | 28.191 | 1.176 | 0.524 | 0.943 | 0.039 | 0.156 | 0.156 | 0.156 | 0.575 | 0.401 | 0.362 | 26.048 |
| <b>8</b> (F)                   | 0.143 | 22.315 | 1.181 | 0.403 | 0.934 | 0.049 | 0.162 | 0.255 | 0.162 | 0.597 | 0.423 | 0.315 | 20.907 |
| <b>9</b> (H)                   | 0.143 | 21.588 | 1.177 | 0.408 | 0.932 | 0.051 | 0.177 | 0.162 | 0.205 | 0.569 | 0.42  | 0.32  | 20.964 |
| <b>10</b> (I)                  | 0.134 | 22.109 | 1.199 | 0.409 | 0.932 | 0.051 | 0.162 | 0.162 | 0.177 | 0.556 | 0.432 | 0.324 | 26.841 |
| <b>18</b> (Me)                 | 0.153 | 25.156 | 1.212 | 0.421 | 0.939 | 0.045 | 0.185 | 0.179 | 0.185 | 0.567 | 0.421 | 0.356 | 23.61  |
| $11(NO_2)$                     | 0.142 | 25.399 | 1.249 | 0.391 | 0.939 | 0.046 | 0.16  | 0.167 | 0.174 | 0.606 | 0.427 | 0.309 | 22.967 |
| <b>12</b> (OCOMe)              | 0.161 | 30.922 | 1.214 | 0.486 | 0.948 | 0.037 | 0.156 | 0.174 | 0.156 | 0.551 | 0.362 | 0.334 | 28.262 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.151 | 28.585 | 1.08  | 0.491 | 0.948 | 0.036 | 0.171 | 0.158 | 0.209 | 0.631 | 0.383 | 0.356 | 24.475 |
| <b>15</b> (OMe)                | 0.139 | 25.658 | 1.539 | 0.404 | 0.93  | 0.056 | 0.158 | 0.158 | 0.196 | 0.588 | 0.415 | 0.314 | 23.722 |
| <b>22</b> (Pentyl)             | 0.221 | 39.681 | 1.195 | 0.724 | 0.954 | 0.029 | 0.15  | 0.177 | 0.196 | 0.563 | 0.331 | 0.38  | 36.129 |
| <b>16</b> (SMe)                | 0.146 | 27.573 | 1.112 | 0.462 | 0.946 | 0.038 | 0.158 | 0.171 | 0.183 | 0.55  | 0.39  | 0.337 | 26.722 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.186 | 29.19  | 1.226 | 0.618 | 0.941 | 0.04  | 0.156 | 0.174 | 0.169 | 0.59  | 0.405 | 0.38  | 27.206 |

**Table S44.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 16.

| Compound                       | L2p   | L3p   | P1p   | P2p   | G1p   | G2p   | G3p   | E1p   | E2p   | ЕЗр   | L1s    | L2s   | L3s   |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| <b>21</b> (Bu)                 | 0.943 | 0.598 | 0.955 | 0.028 | 0.152 | 0.225 | 0.197 | 0.474 | 0.23  | 0.251 | 25.993 | 0.623 | 0.339 |
| <b>2</b> (CF <sub>3</sub> )    | 1.000 | 0.322 | 0.946 | 0.04  | 0.173 | 0.159 | 0.185 | 0.482 | 0.272 | 0.195 | 32.077 | 0.833 | 0.341 |
| <b>3</b> (Cl)                  | 0.983 | 0.299 | 0.947 | 0.041 | 0.177 | 0.177 | 0.177 | 0.611 | 0.299 | 0.183 | 23.41  | 0.658 | 0.113 |
| <b>4</b> (CN)                  | 0.987 | 0.296 | 0.948 | 0.04  | 0.161 | 0.189 | 0.189 | 0.551 | 0.298 | 0.185 | 26.861 | 0.682 | 0.106 |
| <b>5</b> (COCF <sub>3</sub> )  | 1.241 | 0.316 | 0.942 | 0.046 | 0.17  | 0.176 | 0.17  | 0.491 | 0.253 | 0.175 | 33.944 | 1.398 | 0.343 |
| 7 (COOMe)                      | 1.309 | 0.297 | 0.945 | 0.045 | 0.156 | 0.169 | 0.204 | 0.463 | 0.262 | 0.19  | 27.395 | 0.93  | 0.131 |
| <b>19</b> (Et)                 | 0.953 | 0.407 | 0.95  | 0.035 | 0.156 | 0.169 | 0.18  | 0.491 | 0.27  | 0.221 | 21.649 | 0.618 | 0.18  |
| <b>8</b> (F)                   | 0.977 | 0.308 | 0.942 | 0.044 | 0.162 | 0.255 | 0.177 | 0.524 | 0.299 | 0.194 | 24.615 | 0.638 | 0.107 |
| <b>9</b> (H)                   | 0.974 | 0.307 | 0.942 | 0.044 | 0.177 | 0.177 | 0.177 | 0.536 | 0.298 | 0.193 | 19.412 | 0.628 | 0.121 |
| <b>10</b> (I)                  | 0.991 | 0.279 | 0.955 | 0.035 | 0.162 | 0.198 | 0.184 | 0.821 | 0.28  | 0.162 | 22.716 | 0.67  | 0.115 |
| <b>18</b> (Me)                 | 0.988 | 0.311 | 0.948 | 0.04  | 0.185 | 0.179 | 0.198 | 0.499 | 0.285 | 0.202 | 20.394 | 0.643 | 0.114 |
| $11(NO_2)$                     | 1.012 | 0.299 | 0.946 | 0.042 | 0.16  | 0.174 | 0.174 | 0.496 | 0.288 | 0.191 | 29.59  | 0.811 | 0.128 |
| <b>12</b> (OCOMe)              | 1.002 | 0.377 | 0.954 | 0.034 | 0.169 | 0.231 | 0.174 | 0.46  | 0.252 | 0.2   | 26.72  | 0.614 | 0.375 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.927 | 0.343 | 0.951 | 0.036 | 0.183 | 0.177 | 0.171 | 0.463 | 0.292 | 0.171 | 33.93  | 0.617 | 0.368 |
| <b>15</b> (OMe)                | 1.267 | 0.309 | 0.938 | 0.05  | 0.158 | 0.158 | 0.183 | 0.503 | 0.284 | 0.186 | 22.36  | 0.807 | 0.118 |
| <b>22</b> (Pentyl)             | 0.967 | 0.613 | 0.958 | 0.026 | 0.15  | 0.168 | 0.212 | 0.466 | 0.218 | 0.273 | 29.043 | 0.658 | 0.357 |
| <b>16</b> (SMe)                | 0.959 | 0.334 | 0.954 | 0.034 | 0.158 | 0.165 | 0.189 | 0.517 | 0.302 | 0.179 | 22.818 | 0.643 | 0.144 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.971 | 0.471 | 0.95  | 0.034 | 0.156 | 0.18  | 0.174 | 0.513 | 0.26  | 0.216 | 27.487 | 0.913 | 0.351 |

**Table S45.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 17.

| Compound                       | P1s   | P2s   | G1s   | G2s   | G3s   | E1s   | E2s   | E3s   | Tu     | Tm     | Tv     | Te     |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| <b>21</b> (Bu)                 | 0.964 | 0.023 | 0.188 | 0.188 | 0.235 | 0.307 | 0.101 | 0.079 | 37.89  | 27.301 | 33.395 | 37.339 |
| <b>2</b> (CF <sub>3</sub> )    | 0.965 | 0.025 | 0.188 | 0.188 | 0.188 | 0.91  | 0.17  | 0.225 | 27.36  | 28.821 | 25.426 | 28.493 |
| <b>3</b> (Cl)                  | 0.968 | 0.027 | 0.197 | 0.197 | 0.217 | 0.641 | 0.136 | 0.027 | 23.751 | 26.072 | 23.937 | 23.893 |
| <b>4</b> (CN)                  | 0.971 | 0.025 | 0.193 | 0.193 | 0.193 | 0.728 | 0.133 | 0.025 | 25.237 | 24.135 | 25.156 | 25.272 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.951 | 0.039 | 0.183 | 0.183 | 0.198 | 0.895 | 0.236 | 0.199 | 29.546 | 31.068 | 27.555 | 30.755 |
| 7 (COOMe)                      | 0.963 | 0.033 | 0.188 | 0.188 | 0.205 | 0.458 | 0.13  | 0.036 | 32.551 | 26.651 | 29.176 | 32.493 |
| <b>19</b> (Et)                 | 0.964 | 0.028 | 0.193 | 0.23  | 0.193 | 0.339 | 0.118 | 0.043 | 30.349 | 22.297 | 27.142 | 29.891 |
| <b>8</b> (F)                   | 0.971 | 0.025 | 0.197 | 0.197 | 0.197 | 0.728 | 0.126 | 0.024 | 23.579 | 22.674 | 22.517 | 23.899 |
| <b>9</b> (H)                   | 0.963 | 0.031 | 0.2   | 0.2   | 0.2   | 0.46  | 0.131 | 0.031 | 23.46  | 19.375 | 22.24  | 23.173 |
| <b>10</b> (I)                  | 0.967 | 0.029 | 0.197 | 0.197 | 0.217 | 0.587 | 0.141 | 0.028 | 23.918 | 39.704 | 25.9   | 23.717 |
| <b>18</b> (Me)                 | 0.964 | 0.03  | 0.197 | 0.197 | 0.217 | 0.373 | 0.126 | 0.028 | 27.184 | 20.679 | 24.751 | 26.789 |
| <b>11</b> (NO <sub>2</sub> )   | 0.969 | 0.027 | 0.191 | 0.208 | 0.208 | 0.824 | 0.161 | 0.034 | 26.339 | 26.504 | 24.872 | 27.039 |
| <b>12</b> (OCOMe)              | 0.964 | 0.022 | 0.188 | 0.188 | 0.188 | 0.411 | 0.089 | 0.189 | 32.823 | 26.423 | 29.566 | 32.622 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.972 | 0.018 | 0.185 | 0.185 | 0.185 | 0.889 | 0.148 | 0.187 | 28.813 | 30.763 | 26.577 | 30.155 |
| <b>15</b> (OMe)                | 0.96  | 0.035 | 0.193 | 0.193 | 0.193 | 0.448 | 0.117 | 0.027 | 27.757 | 22.494 | 25.27  | 27.601 |
| 22 (Pentyl)                    | 0.966 | 0.022 | 0.185 | 0.215 | 0.185 | 0.301 | 0.101 | 0.093 | 42.183 | 30.596 | 37.166 | 41.6   |
| <b>16</b> (SMe)                | 0.967 | 0.027 | 0.193 | 0.193 | 0.193 | 0.378 | 0.141 | 0.032 | 29.511 | 25.406 | 27.289 | 29.147 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.956 | 0.032 | 0.188 | 0.188 | 0.205 | 0.53  | 0.218 | 0.072 | 30.97  | 27.864 | 28.24  | 31.035 |

**Table S46.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 18.

| Compound                       | Тр     | Ts     | Au     | Am     | Av     | Ae     | Ap     | As     | Gu    | Gm    | Gs    | Ku    |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| <b>21</b> (Bu)                 | 33.854 | 26.955 | 69.886 | 31.066 | 46.17  | 67.777 | 50.331 | 25.227 | 0.193 | 0.161 | 0.202 | 0.924 |
| <b>2</b> (CF <sub>3</sub> )    | 24.696 | 33.252 | 44.631 | 33.188 | 30.164 | 46.495 | 31.208 | 37.966 | 0.212 | 0.185 | 0.188 | 0.906 |
| <b>3</b> (Cl)                  | 24.143 | 24.18  | 36.6   | 23.933 | 26.873 | 36.099 | 29.595 | 18.117 | 0.205 | 0.169 | 0.203 | 0.897 |
| <b>4</b> (CN)                  | 24.663 | 27.65  | 39.177 | 22.792 | 28.392 | 38.518 | 30.282 | 21.251 | 0.182 | 0.185 | 0.193 | 0.903 |
| <b>5</b> (COCF <sub>3</sub> )  | 26.742 | 35.685 | 56.92  | 48.712 | 40.03  | 60.936 | 39.61  | 59.575 | 0.193 | 0.174 | 0.188 | 0.896 |
| 7 (COOMe)                      | 29.194 | 28.456 | 62.64  | 31.086 | 42.067 | 61.202 | 44.693 | 29.177 | 0.202 | 0.18  | 0.193 | 0.906 |
| <b>19</b> (Et)                 | 27.409 | 22.448 | 50.158 | 21.886 | 32.644 | 48.525 | 35.821 | 17.398 | 0.181 | 0.19  | 0.205 | 0.914 |
| <b>8</b> (F)                   | 22.192 | 25.359 | 36.138 | 21.018 | 25.114 | 35.822 | 27.166 | 18.401 | 0.22  | 0.186 | 0.197 | 0.897 |
| <b>9</b> (H)                   | 22.245 | 20.16  | 35.816 | 18.222 | 24.744 | 34.702 | 27.157 | 14.609 | 0.226 | 0.177 | 0.2   | 0.897 |
| <b>10</b> (I)                  | 28.111 | 23.501 | 37.05  | 30.74  | 29.424 | 36.04  | 34.359 | 17.903 | 0.189 | 0.178 | 0.203 | 0.897 |
| <b>18</b> (Me)                 | 24.909 | 21.151 | 42.983 | 19.268 | 28.271 | 41.583 | 30.966 | 15.508 | 0.214 | 0.178 | 0.203 | 0.908 |
| <b>11</b> (NO <sub>2</sub> )   | 24.279 | 30.529 | 41.635 | 26.839 | 28.853 | 42.133 | 30.421 | 27.904 | 0.199 | 0.169 | 0.202 | 0.905 |
| <b>12</b> (OCOMe)              | 29.641 | 27.709 | 54.426 | 28.281 | 36.469 | 53.156 | 39.326 | 26.647 | 0.191 | 0.198 | 0.188 | 0.921 |
| <b>13</b> (OCF <sub>3</sub> )  | 25.745 | 34.915 | 44.167 | 32.085 | 29.903 | 45.427 | 31.399 | 33.649 | 0.218 | 0.166 | 0.185 | 0.917 |
| <b>15</b> (OMe)                | 25.298 | 23.285 | 52.003 | 24.149 | 35.218 | 50.46  | 37.775 | 20.772 | 0.194 | 0.174 | 0.193 | 0.892 |
| 22 (Pentyl)                    | 37.708 | 30.058 | 79.269 | 36.284 | 53.092 | 77.013 | 57.663 | 29.708 | 0.195 | 0.184 | 0.195 | 0.931 |
| <b>16</b> (SMe)                | 28.015 | 23.605 | 45.247 | 24.54  | 31.131 | 43.908 | 34.863 | 18.05  | 0.195 | 0.174 | 0.193 | 0.919 |
| <b>17</b> (SO <sub>2</sub> Me) | 28.648 | 28.75  | 54.42  | 33.074 | 37.108 | 54.604 | 39.682 | 35.059 | 0.199 | 0.185 | 0.193 | 0.911 |

**Table S47.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 19.

| Compound                       | Km    | Kv    | Ke    | Kp    | Ks    | Du    | Dm    | Dv    | De    | Dp    | Ds    | Vu      | Vm     |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|
| <b>21</b> (Bu)                 | 0.935 | 0.936 | 0.924 | 0.932 | 0.946 | 0.443 | 0.198 | 0.291 | 0.429 | 0.318 | 0.162 | 138.987 | 66.961 |
| <b>2</b> (CF <sub>3</sub> )    | 0.938 | 0.927 | 0.91  | 0.92  | 0.947 | 0.462 | 0.354 | 0.306 | 0.481 | 0.316 | 0.435 | 86.789  | 69.49  |
| <b>3</b> (Cl)                  | 0.945 | 0.927 | 0.9   | 0.92  | 0.952 | 0.451 | 0.327 | 0.332 | 0.444 | 0.364 | 0.268 | 71.628  | 53.184 |
| <b>4</b> (CN)                  | 0.939 | 0.93  | 0.905 | 0.922 | 0.957 | 0.452 | 0.269 | 0.324 | 0.443 | 0.345 | 0.295 | 76.399  | 50.072 |
| <b>5</b> (COCF <sub>3</sub> )  | 0.921 | 0.917 | 0.898 | 0.913 | 0.927 | 0.45  | 0.362 | 0.307 | 0.475 | 0.306 | 0.443 | 106.016 | 92.241 |
| 7 (COOMe)                      | 0.932 | 0.922 | 0.908 | 0.917 | 0.944 | 0.439 | 0.212 | 0.282 | 0.426 | 0.305 | 0.208 | 115.479 | 62.631 |
| <b>19</b> (Et)                 | 0.931 | 0.931 | 0.915 | 0.926 | 0.947 | 0.461 | 0.202 | 0.296 | 0.446 | 0.327 | 0.167 | 98.825  | 48.417 |
| <b>8</b> (F)                   | 0.936 | 0.922 | 0.901 | 0.913 | 0.956 | 0.45  | 0.278 | 0.312 | 0.445 | 0.339 | 0.293 | 70.79   | 46.629 |
| <b>9</b> (H)                   | 0.924 | 0.922 | 0.897 | 0.914 | 0.944 | 0.45  | 0.237 | 0.311 | 0.436 | 0.342 | 0.207 | 70.227  | 40.302 |
| <b>10</b> (I)                  | 0.97  | 0.932 | 0.898 | 0.932 | 0.95  | 0.45  | 0.625 | 0.361 | 0.438 | 0.421 | 0.252 | 72.382  | 73.565 |
| <b>18</b> (Me)                 | 0.93  | 0.928 | 0.909 | 0.922 | 0.946 | 0.463 | 0.206 | 0.298 | 0.448 | 0.329 | 0.176 | 83.735  | 42.752 |
| $11(NO_2)$                     | 0.941 | 0.927 | 0.909 | 0.919 | 0.954 | 0.447 | 0.295 | 0.306 | 0.447 | 0.325 | 0.34  | 80.622  | 57.341 |
| <b>12</b> (OCOMe)              | 0.937 | 0.935 | 0.922 | 0.93  | 0.946 | 0.422 | 0.239 | 0.281 | 0.416 | 0.304 | 0.23  | 105.925 | 61.703 |
| <b>13</b> (OCF <sub>3</sub> )  | 0.948 | 0.934 | 0.922 | 0.926 | 0.958 | 0.44  | 0.351 | 0.296 | 0.457 | 0.309 | 0.408 | 87.706  | 70.157 |
| <b>15</b> (OMe)                | 0.925 | 0.913 | 0.894 | 0.907 | 0.94  | 0.453 | 0.214 | 0.3   | 0.439 | 0.325 | 0.197 | 96.677  | 50.465 |
| <b>22</b> (Pentyl)             | 0.94  | 0.941 | 0.931 | 0.937 | 0.949 | 0.437 | 0.202 | 0.292 | 0.425 | 0.319 | 0.165 | 157.354 | 77.494 |
| <b>16</b> (SMe)                | 0.941 | 0.935 | 0.919 | 0.931 | 0.95  | 0.438 | 0.236 | 0.297 | 0.426 | 0.333 | 0.184 | 89.676  | 53.712 |
| <b>17</b> (SO <sub>2</sub> Me) | 0.934 | 0.927 | 0.911 | 0.925 | 0.934 | 0.457 | 0.268 | 0.307 | 0.458 | 0.33  | 0.273 | 107.342 | 69.193 |

**Table S48.** Overview of the descriptors calculated using VCCLAB e-Dragon – part 20.

| Compound                       | Vv     | Ve     | Vp     | Vs     | nH<br>Ac | Ui   | Ну    | AMR    | TPS<br>A(N<br>O) | TPSA<br>(Tot) | BLT<br>F96 | BLT<br>D48 | BLT<br>A96 |
|--------------------------------|--------|--------|--------|--------|----------|------|-------|--------|------------------|---------------|------------|------------|------------|
| <b>21</b> (Bu)                 | 94.863 | 134.87 | 102.38 | 57.676 | 2        | 3    | 0.262 | 92.624 | 24.06            | 56.15         | -4.88      | -5.22      | -5.33      |
| <b>2</b> (CF <sub>3</sub> )    | 62.306 | 90.521 | 63.423 | 80.341 | 5        | 3    | 0.41  | 79.753 | 24.06            | 56.15         | -4.79      | -5.13      | -5.24      |
| <b>3</b> (Cl)                  | 56.25  | 70.804 | 60.451 | 44.032 | 2        | 3    | 0.411 | 78.585 | 24.06            | 56.15         | -4.47      | -4.76      | -4.85      |
| <b>4</b> (CN)                  | 59.23  | 75.265 | 61.775 | 50.851 | 3        | 3.17 | 0.374 | 79.517 | 47.85            | 79.94         | -3.69      | -3.89      | -3.93      |
| <b>5</b> (COCF <sub>3</sub> )  | 76.85  | 112.92 | 76.234 | 111.54 | 6        | 3.17 | 0.393 | 85.193 | 41.13            | 73.22         | -4.22      | -4.48      | -4.56      |
| 7 (COOMe)                      | 80.234 | 112.90 | 84.611 | 60.964 | 4        | 3.17 | 0.361 | 85.307 | 50.36            | 82.45         | -3.91      | -4.13      | -4.19      |
| <b>19</b> (Et)                 | 68.071 | 95.773 | 73.342 | 42.259 | 2        | 3    | 0.32  | 83.422 | 24.06            | 56.15         | -4.46      | -4.75      | -4.84      |
| <b>8</b> (F)                   | 52.765 | 70.346 | 55.65  | 45.434 | 3        | 3    | 0.411 | 73.996 | 24.06            | 56.15         | -4.36      | -4.64      | -4.72      |
| <b>9</b> (H)                   | 52.051 | 68.242 | 55.674 | 36.239 | 2        | 3    | 0.39  | 73.78  | 24.06            | 56.15         | -4.02      | -4.26      | -4.32      |
| <b>10</b> (I)                  | 61.177 | 70.594 | 69.893 | 43.152 | 2        | 3    | 0.411 | 86.188 | 24.06            | 56.15         | -4.69      | -5.01      | -5.11      |
| <b>18</b> (Me)                 | 58.918 | 81.199 | 63.12  | 38.156 | 2        | 3    | 0.353 | 78.821 | 24.06            | 56.15         | -4.24      | -4.51      | -4.59      |
| <b>11</b> (NO <sub>2</sub> )   | 59.581 | 81.565 | 61.658 | 61.513 | 4        | 3.32 | 0.445 | 81.104 | 69.88            | 101.9         | -3.96      | -4.2       | -4.26      |
| <b>12</b> (OCOMe)              | 75.04  | 104.02 | 79.625 | 60.502 | 4        | 3.17 | 0.361 | 84.912 | 50.36            | 82.45         | -3.91      | -4.13      | -4.19      |
| <b>13</b> (OCF <sub>3</sub> )  | 63.387 | 90.734 | 64.924 | 76.266 | 6        | 3    | 0.425 | 81.354 | 33.29            | 65.38         | -4.08      | -4.33      | -4.4       |
| <b>15</b> (OMe)                | 68.129 | 94.001 | 72.358 | 46.184 | 3        | 3    | 0.374 | 80.243 | 33.29            | 65.38         | -3.76      | -3.97      | -4.02      |
| <b>22</b> (Pentyl)             | 108.35 | 152.95 | 116.78 | 66.584 | 2        | 3    | 0.237 | 97.225 | 24.06            | 56.15         | -5.08      | -5.45      | -5.57      |
| <b>16</b> (SMe)                | 65.395 | 87.216 | 71.428 | 43.763 | 2        | 3    | 0.374 | 86.686 | 24.06            | 81.45         | -4.47      | -4.76      | -4.85      |
| <b>17</b> (SO <sub>2</sub> Me) | 76.255 | 107.77 | 80.764 | 72.615 | 4        | 3.32 | 0.41  | 87.534 | 58.2             | 98.67         | -3.62      | -3.81      | -3.85      |

# **S7.5 QSAR Modelling Using Retention Time**

With a dataset of 18 compounds, it is possible to have a QSAR model containing up to 3 descriptors. Therefore a stepwise multiple regression analysis was performed using JMP 9.0.0. Log $(1/EC_{50})$  was modeled against a total of 286 descriptors (see Section S7.5., only experimental retention times included and not calculated logP values), the k-fold cross validation was set to 2 and all possible models with a maximum of three terms were calculated (3,899,181 models in total) and subsequently ranked according to best fit (highest R ), as shown in Figure S240.

| Ordered up to best 20 models up to 3 terr | ns per |         |        |         |        |
|-------------------------------------------|--------|---------|--------|---------|--------|
| Model                                     | Number | RSquare | RMSE   | AICc    | В      |
| retention time                            | 1      | 0,8451  | 0,2411 | 5,4659  | 6,42   |
| logS (pH1,7)                              | 1      | 0,6979  | 0,3367 | 17,4930 | 18,449 |
| ogS (pH6,5)                               | 1      | 0,6957  | 0,3380 | 17,6223 | 18,57  |
| ogS (pH7,4)                               | 1      | 0,6957  | 0,3380 | 17,6223 | 18,57  |
| ogS (pH8)                                 | 1      | 0,6957  | 0,3380 | 17,6223 | 18,57  |
| logD (pH1,7)                              | 1      | 0,6717  | 0,3511 | 18,9907 | 19,94  |
| Vd                                        | 1      | 0,6644  | 0,3549 | 19,3858 | 20,34  |
| logD (pH7,4)                              | 1      | 0,6415  | 0,3668 | 20,5721 | 21,52  |
| logD (pH8)                                | 1      | 0,6415  | 0,3668 | 20,5721 | 21,52  |
| logD (pH4,6)                              | 1      | 0,6409  | 0,3671 | 20,6020 | 21,55  |
| BLTD48                                    | 1      | 0,5070  | 0,4301 | 26,3053 | 27,26  |
| BLTA96                                    | 1      | 0,5059  | 0,4307 | 26,3475 | 27,30  |
| BLTF96                                    | 1      |         |        |         |        |
| BL1F90                                    | 1      | 0,5035  | 0,4317 | 26,4340 | 27,39  |
|                                           |        | 0,3776  | 0,4833 | 30,5012 | 31,45  |
| J3D                                       | 1      | 0,3456  | 0,4956 | 31,4035 | 32,36  |
| E3u                                       | 1      | 0,2702  | 0,5234 | 33,3673 | 34,32  |
| G3m                                       | 1      | 0,2601  | 0,5270 | 33,6153 | 34,57  |
| PHI                                       | 1      | 0,2365  | 0,5353 | 34,1802 | 35,13  |
| S2K                                       | 1      | 0,2360  | 0,5355 | 34,1911 | 35,14  |
| Ну                                        | 1      | 0,2196  | 0,5412 | 34,5753 | 35,53  |
| retention time,E2m                        | 2      | 0,8982  | 0,2018 | 1,2678  | 1,75   |
| retention time,L/Bw                       | 2      | 0,8865  | 0,2132 | 3,2388  | 3,72   |
| retention time,P2m                        | 2      | 0,8822  | 0,2172 | 3,8998  | 4,38   |
| retention time,SPAN                       | 2      | 0,8788  | 0,2203 | 4,4208  | 4,90   |
| logS (pH1,7),Gs                           | 2      | 0,8782  | 0,2208 | 4,5015  | 4,98   |
| logS (pH6,5),Gs                           | 2      | 0,8771  | 0,2218 | 4,6640  | 5,14   |
| logS (pH7,4),Gs                           | 2      | 0,8771  | 0,2218 | 4,6640  | 5,14   |
| logS (pH8),Gs                             | 2      | 0,8771  | 0,2218 | 4,6640  | 5,14   |
| retention time,QYYm                       | 2      | 0,8760  | 0,2228 | 4,8293  | 5,31   |
| retention time,MW                         | 2      | 0,8759  | 0,2229 | 4,8390  | 5,32   |
| retention time,Mr (g/mol)                 | 2      | 0,8759  | 0,2229 | 4,8394  | 5,32   |
| retention time,Du                         | 2      | 0,8757  | 0,2231 | 4,8663  | 5,35   |
| retention time, Molar refractivity        | 2      | 0,8756  | 0,2232 | 4,8806  | 5,36   |
| retention time,polarizability             | 2      | 0,8756  | 0,2232 | 4,8905  | 5,37   |
| retention time,L1m                        | 2      | 0,8753  | 0,2234 | 4,9279  | 5,41   |
| retention time,QZZm                       | 2      | 0,8749  | 0,2238 | 4,9772  | 5,46   |
| retention time,P1p                        | 2      | 0,8748  | 0,2238 | 4,9923  | 5,47   |
| retention time,Tm                         | 2      | 0,8742  | 0,2244 | 5,0830  | 5,56   |
| retention time,P1m                        | 2      | 0,8730  | 0,2255 | 5,2511  | 5,73   |
| retention time,Kp                         | 2      | 0,8716  | 0,2268 | 5,4577  | 5,94   |
| retention time,SCBO,RGyr                  | 3      | 0,9476  | 0,1499 | -6,7706 | -7,31  |
| retention time,Har2,S1K                   | 3      | 0,9407  | 0,1596 | -4,5156 | -5,06  |
| retention time,pKa (arom NH),SPAN         | 3      | 0,9390  | 0,1617 | -4,0300 | -4,57  |
| retention time,S1K,VAR                    | 3      | 0,9385  | 0,1617 | -3,8678 | -4,41  |
|                                           | 3      |         | 0,1624 |         |        |
| retention time,Rww,S1K                    |        | 0,9379  |        | -3,7101 | -4,25  |
| retention time,Har,S1K                    | 3      | 0,9371  | 0,1643 | -3,4621 | -4,01  |
| retention time,D/D,S1K                    | 3      | 0,9368  | 0,1647 | -3,3735 | -3,92  |
| retention time,S2K,PHI                    | 3      | 0,9360  | 0,1656 | -3,1703 | -3,71  |
| retention time,RHyDp,S1K                  | 3      | 0,9357  | 0,1661 | -3,0695 | -3,61  |
| retention time,Hammett,SPAN               | 3      | 0,9356  | 0,1662 | -3,0432 | -3,59  |
| retention time,pKa (arom NH),MW           | 3      | 0,9351  | 0,1669 | -2,8922 | -3,44  |
| retention time,Mr (g/mol),pKa (arom NH)   | 3      | 0,9351  | 0,1669 | -2,8916 | -3,43  |
| retention time,pKa (arom NH),Tm           | 3      | 0,9328  | 0,1698 | -2,2739 | -2,82  |
| retention time,pKa (arom NH),L1m          | 3      | 0,9323  | 0,1704 | -2,1397 | -2,68  |
| retention time,Vsmin,Molar refractivity   | 3      | 0,9320  | 0,1707 | -2,0740 | -2,62  |
| retention time,Vsmin,polarizability       | 3      | 0,9320  | 0,1708 | -2,0692 | -2,61  |
| PI,Index of refraction,pKa (alkyl NH)     | 3      | 0,9304  | 0,1728 | -1,6396 | -2,18  |
| retention time,E1m,E2e                    | 3      | 0,9301  | 0,1731 | -1,5776 | -2,12  |
| retention time,Hammett,MW                 | 3      | 0,9296  | 0,1738 | -1,4431 | -1,99  |
| retention time,Mr (g/mol),Hammett         | 3      | 0,9296  | 0,1738 | -1,4425 | -1,99  |

**Figure S240.** Overview of best 20 models with up to 3 term correlating  $log(1/EC_{50})$  with various descriptors.

## One descriptor

From the list of all possible models, it is clear that the single term that has the highest contribution to the model is the retention times (R=0.84). Other descriptors that can explain the variation in  $log(1/EC_{50})$  by a single term are logS, logD and Vd values. However, logD (pH-dependent distribution coefficient), logS (aqueous solubility) and Vd (volume of distribution) are other types of descriptors to describe lipophilicity. The correlation matrix in Figure S241 (obtained using JMP 9.0.0) clearly shows that logS, logD and Vd are highly correlated with the retention time and therefore the most important descriptor is the lipophilicity (described by the retention time).

| Correlation    | ns                |                |              |                |               |              |               |               |               |               |           |         |
|----------------|-------------------|----------------|--------------|----------------|---------------|--------------|---------------|---------------|---------------|---------------|-----------|---------|
|                | retention time lo | gD (pH1,7) log | D (pH4,6) lo | gD (pH6,5) log | gD (pH7,4) le | ogD (pH8) lo | gS (pH1,7) lc | gS (pH4,6) lo | gS (pH6,5) lo | gS (pH7,4) le | ogS (pH8) | Vd      |
| retention time | 1,0000            | 0,9408         | 0,9326       | 0,4229         | 0,9326        | 0,9326       | -0,8685       | -0,2755       | -0,8673       | -0,8673       | -0,8673   | 0,9017  |
| logD (pH1,7)   | 0,9408            | 1,0000         | 0,9805       | 0,3232         | 0,9805        | 0,9805       | -0,8658       | -0,1362       | -0,8649       | -0,8649       | -0,8649   | 0,9170  |
| logD (pH4,6)   | 0,9326            | 0,9805         | 1,0000       | 0,3457         | 1,0000        | 1,0000       | -0,8288       | -0,1500       | -0,8273       | -0,8273       | -0,8273   | 0,9464  |
| logD (pH6,5)   | 0,4229            | 0,3232         | 0,3457       | 1,0000         | 0,3453        | 0,3453       | -0,3283       | -0,1407       | -0,3288       | -0,3288       | -0,3288   | 0,3552  |
| logD (pH7,4)   | 0,9326            | 0,9805         | 1,0000       | 0,3453         | 1,0000        | 1,0000       | -0,8284       | -0,1501       | -0,8269       | -0,8269       | -0,8269   | 0,9463  |
| logD (pH8)     | 0,9326            | 0,9805         | 1,0000       | 0,3453         | 1,0000        | 1,0000       | -0,8284       | -0,1501       | -0,8269       | -0,8269       | -0,8269   | 0,9463  |
| logS (pH1,7)   | -0,8685           | -0,8658        | -0,8288      | -0,3283        | -0,8284       | -0,8284      | 1,0000        | -0,0390       | 0,9999        | 0,9999        | 0,9999    | -0,7550 |
| logS (pH4,6)   | -0,2755           | -0,1362        | -0,1500      | -0,1407        | -0,1501       | -0,1501      | -0,0390       | 1,0000        | -0,0393       | -0,0393       | -0,0393   | -0,2129 |
| logS (pH6,5)   | -0,8673           | -0,8649        | -0,8273      | -0,3288        | -0,8269       | -0,8269      | 0,9999        | -0,0393       | 1,0000        | 1,0000        | 1,0000    | -0,7523 |
| logS (pH7,4)   | -0,8673           | -0,8649        | -0,8273      | -0,3288        | -0,8269       | -0,8269      | 0,9999        | -0,0393       | 1,0000        | 1,0000        | 1,0000    | -0,7523 |
| logS (pH8)     | -0,8673           | -0,8649        | -0,8273      | -0,3288        | -0,8269       | -0,8269      | 0,9999        | -0,0393       | 1,0000        | 1,0000        | 1,0000    | -0,7523 |
| Vd             | 0,9017            | 0,9170         | 0,9464       | 0,3552         | 0,9463        | 0,9463       | -0,7550       | -0,2129       | -0.7523       | -0,7523       | -0.7523   | 1,0000  |

Figure S241. Correlation matrix for retention time.

#### Two descriptors

From the 20 best models to contain only 2 terms, the majority of the models contain one term for lipophilicity (retention time or logS) and one term for the size of the molecule (SPAN, QYYm, MW, Mr(g/mol), L1m, QZZm, Tm, L/Bw, P2m, E2m, P1m). Some of the models consist of lipophilicity + polarizability (polarizability, molar refractivity, Kp or P1p), but also the polarizability terms show some correlation with the size terms and can be seen as equivalent. The correlation matrix in Figure S242 (JMP 9.0.0) clearly shows that all the different molecular size descriptors are highly correlated and therefore interchangeable. The two-term model suggests that the two most important factors that govern anion transport are lipophilicity and molecular size.

| Correlations       |                |         |         |         |         |         |         |         |            |         |                    |              |         |         |         |         |         |         |
|--------------------|----------------|---------|---------|---------|---------|---------|---------|---------|------------|---------|--------------------|--------------|---------|---------|---------|---------|---------|---------|
|                    | retention time | E2m     | L/Bw    | P2m     | SPAN    | Gs      | QYYm    | MW I    | Mr (g/mol) | Du Mol  | ar refractivity po | larizability | L1m     | QZZm    | P1p     | Tm      | P1m     | Kp      |
| retention time     | 1,0000         | -0,3932 | 0,5225  | -0,5535 | 0,4416  | 0,1847  | 0,4081  | 0,3376  | 0,3375     | -0,0753 | 0,5583             | 0,5589       | 0,4537  | 0,3962  | 0,5509  | 0,4524  | 0,3907  | 0,5631  |
| E2m                | -0,3932        | 1,0000  | -0,6867 | 0,6105  | -0,4213 | -0,2263 | -0,4693 | -0,3748 | -0,3748    | 0,3877  | -0,5760            | -0,5757      | -0,4929 | -0,4595 | -0,5106 | -0,4802 | -0,5281 | -0,4881 |
| L/Bw               | 0,5225         | -0,6867 | 1,0000  | -0,9486 | 0,6735  | 0,1063  | 0,7954  | 0,6768  | 0,6768     | -0,2679 | 0,4692             | 0,4693       | 0,8213  | 0,7824  | 0,7232  | 0,8030  | 0,9040  | 0,7118  |
| P2m                | -0,5535        | 0,6105  | -0,9486 | 1,0000  | -0,6394 | -0,0499 | -0,6867 | -0,5961 | -0,5961    | 0,3377  | -0,5093            | -0,5096      | -0,7247 | -0,6671 | -0,8237 | -0,7080 | -0,8635 | -0,8130 |
| SPAN               | 0,4416         | -0,4213 | 0,6735  | -0,6394 | 1,0000  | -0,3666 | 0,9389  | 0,9773  | 0,9773     | -0,3202 | 0,6969             | 0,6968       | 0,9271  | 0,9345  | 0,5321  | 0,9374  | 0,4978  | 0,5150  |
| Gs                 | 0,1847         | -0,2263 | 0,1063  | -0,0499 | -0,3666 | 1,0000  | -0,2131 | -0,3448 | -0,3448    | 0,3743  | -0,0353            | -0,0352      | -0,1859 | -0,2131 | 0,0844  | -0,2056 | 0,1602  | 0,0978  |
| QYYm               | 0,4081         | -0,4693 | 0,7954  | -0,6867 | 0,9389  | -0,2131 | 1,0000  | 0,9731  | 0,9731     | -0,2030 | 0,5231             | 0,5230       | 0,9934  | 0,9995  | 0,4697  | 0,9946  | 0,6707  | 0,4539  |
| MW                 | 0,3376         | -0,3748 | 0,6768  | -0,5961 | 0,9773  | -0,3448 | 0,9731  | 1,0000  | 1,0000     | -0,2240 | 0,5676             | 0,5674       | 0,9522  | 0,9729  | 0,4321  | 0,9603  | 0,5289  | 0,4153  |
| Mr (g/mol)         | 0,3375         | -0,3748 | 0,6768  | -0,5961 | 0,9773  | -0,3448 | 0,9731  | 1,0000  | 1,0000     | -0,2240 | 0,5675             | 0,5673       | 0,9522  | 0,9730  | 0,4321  | 0,9603  | 0,5289  | 0,4152  |
| Du                 | -0,0753        | 0,3877  | -0,2679 | 0,3377  | -0,3202 | 0,3743  | -0,2030 | -0,2240 | -0,2240    | 1,0000  | -0,4322            | -0,4324      | -0,2226 | -0,1936 | -0,4328 | -0,2252 | -0,1664 | -0,3974 |
| Molar refractivity | 0,5583         | -0,5760 | 0,4692  | -0,5093 | 0,6969  | -0,0353 | 0,5231  | 0,5676  | 0,5675     | -0,4322 | 1,0000             | 1,0000       | 0,5187  | 0,5096  | 0,7239  | 0,5297  | 0,1936  | 0,7156  |
| polarizability     | 0,5589         | -0,5757 | 0,4693  | -0,5096 | 0,6968  | -0,0352 | 0,5230  | 0,5674  | 0,5673     | -0,4324 | 1,0000             | 1,0000       | 0,5186  | 0,5095  | 0,7243  | 0,5296  | 0,1937  | 0,7160  |
| L1m                | 0,4537         | -0,4929 | 0,8213  | -0,7247 | 0,9271  | -0,1859 | 0,9934  | 0,9522  | 0,9522     | -0,2226 | 0,5187             | 0,5186       | 1,0000  | 0,9923  | 0,4923  | 0,9993  | 0,7231  | 0,4754  |
| QZZm               | 0,3962         | -0,4595 | 0,7824  | -0,6671 | 0,9345  | -0,2131 | 0,9995  | 0,9729  | 0,9730     | -0,1936 | 0,5096             | 0,5095       | 0,9923  | 1,0000  | 0,4486  | 0,9937  | 0,6630  | 0,4325  |
| P1p                | 0,5509         | -0,5106 | 0,7232  | -0,8237 | 0,5321  | 0,0844  | 0,4697  | 0,4321  | 0,4321     | -0,4328 | 0,7239             | 0,7243       | 0,4923  | 0,4486  | 1,0000  | 0,4829  | 0,5763  | 0,9979  |
| Tm                 | 0,4524         | -0,4802 | 0,8030  | -0,7080 | 0,9374  | -0,2056 | 0,9946  | 0,9603  | 0,9603     | -0,2252 | 0,5297             | 0,5296       | 0,9993  | 0,9937  | 0,4829  | 1,0000  | 0,6975  | 0,4660  |
| P1m                | 0,3907         | -0,5281 | 0,9040  | -0,8635 | 0,4978  | 0,1602  | 0,6707  | 0,5289  | 0,5289     | -0,1664 | 0,1936             | 0,1937       | 0,7231  | 0,6630  | 0,5763  | 0,6975  | 1,0000  | 0,5623  |
| Kp                 | 0,5631         | -0,4881 | 0,7118  | -0,8130 | 0,5150  | 0,0978  | 0,4539  | 0,4153  | 0,4152     | -0,3974 | 0,7156             | 0,7160       | 0,4754  | 0,4325  | 0,9979  | 0,4660  | 0,5623  | 1,0000  |

Figure S242. Correlation matrix for retention time and molecular size descriptors.

### Three descriptors

From the 20 best models that contain 3 terms, three classes of models can be discerned. The first class consists of the combinations {retention time, SCBO, RGyr}, {retention time, Har2, S1K}, {retention time, S1K, VAR}, {retention time, Rww, S1K}, {retention time, Har, S1K}, {retention time, D/D, S1K}, {retention time, S2K, PHI} and {retention time, RHyDp, S1K}. The correlation matrix in Figure S243 clearly shows that this models consist of a term for lipophilicity (retention time) + two highly correlated terms (usually size or shape indices such as the Kier shape index S1K). Because the two other terms are highly correlated (>0.8), these models are discarded and will not be considered further.

| Correlations   |             |        |        |        |        |        |        |        |        |        |        |        |
|----------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| ret            | ention time | SCBO   | Har2   | Har    | RHyDp  | D/D    | Rww    | S1K    | S2K    | PHI    | VAR    | RGyr   |
| retention time | 1,0000      | 0,0796 | 0,2597 | 0,2541 | 0,2485 | 0,3041 | 0,2558 | 0,3758 | 0,6242 | 0,6593 | 0,3039 | 0,5976 |
| SCBO           | 0,0796      | 1,0000 | 0,9363 | 0,9378 | 0,9379 | 0,9248 | 0,9315 | 0,8855 | 0,3428 | 0,3249 | 0,9257 | 0,6988 |
| Har2           | 0,2597      | 0,9363 | 1,0000 | 0,9998 | 0,9997 | 0,9963 | 0,9994 | 0,9795 | 0,4215 | 0,4268 | 0,9967 | 0,7811 |
| Har            | 0,2541      | 0,9378 | 0,9998 | 1,0000 | 0,9999 | 0,9948 | 0,9989 | 0,9785 | 0,4107 | 0,4167 | 0,9953 | 0,7781 |
| RHyDp          | 0,2485      | 0,9379 | 0,9997 | 0,9999 | 1,0000 | 0,9939 | 0,9989 | 0,9772 | 0,4024 | 0,4086 | 0,9945 | 0,7739 |
| D/D            | 0,3041      | 0,9248 | 0,9963 | 0,9948 | 0,9939 | 1,0000 | 0,9962 | 0,9847 | 0,4877 | 0,4904 | 0,9999 | 0,8068 |
| Rww            | 0,2558      | 0,9315 | 0,9994 | 0,9989 | 0,9989 | 0,9962 | 1,0000 | 0,9776 | 0,4135 | 0,4190 | 0,9966 | 0,7740 |
| S1K            | 0,3758      | 0,8855 | 0,9795 | 0,9785 | 0,9772 | 0,9847 | 0,9776 | 1,0000 | 0,5385 | 0,5619 | 0,9848 | 0,8775 |
| S2K            | 0,6242      | 0,3428 | 0,4215 | 0,4107 | 0,4024 | 0,4877 | 0,4135 | 0,5385 | 1,0000 | 0,9901 | 0,4826 | 0,7396 |
| PHI            | 0,6593      | 0,3249 | 0,4268 | 0,4167 | 0,4086 | 0,4904 | 0,4190 | 0,5619 | 0,9901 | 1,0000 | 0,4858 | 0,7854 |
| VAR            | 0,3039      | 0,9257 | 0,9967 | 0,9953 | 0,9945 | 0,9999 | 0,9966 | 0,9848 | 0,4826 | 0,4858 | 1,0000 | 0,8067 |
| RGyr           | 0,5976      | 0,6988 | 0,7811 | 0,7781 | 0,7739 | 0,8068 | 0,7740 | 0,8775 | 0,7396 | 0,7854 | 0,8067 | 1,0000 |

Figure S243. Correlation matrix for 3 descriptors – class I.

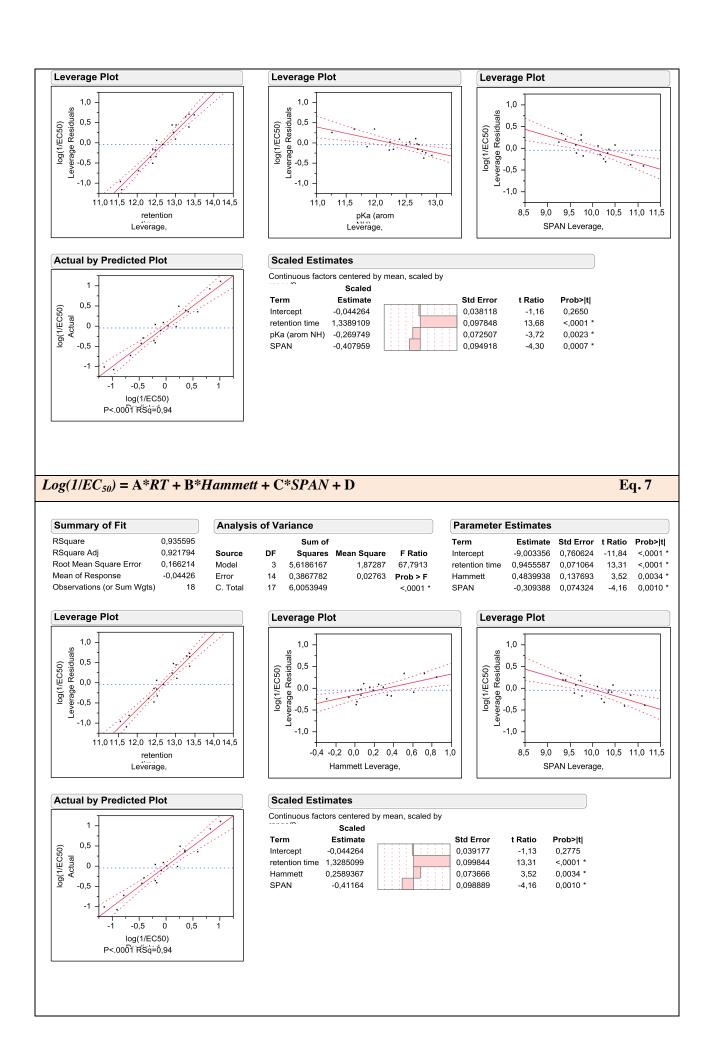
The second class consists of the combinations {retention time, Vsmin, molar refractivity}, {retention time, Vsmin, polarizability}. The correlation matrix in Figure S244 shows that this models consist of a term for lipophilicity (retention time) + Vsmin + polarizability (molar refractivity, polarizability). The correlation matrix also shows a small inverse correlation between  $V_{S,min}$  (the minimum of the surface electrostatic potential, usually correlated with hydrogen bond acceptor ability) and the Hammett constant (anion binding) and some degree of correlation between polarizability and size (molecular weight, Mr). This class of models thus describes a combination of lipophilicity, size and some form of binding.

| Correlations       |                |            |                    |              |         |            |
|--------------------|----------------|------------|--------------------|--------------|---------|------------|
|                    | retention time | Vsmin Mola | ar refractivity po | larizability | Hammett | Mr (g/mol) |
| retention time     | 1,0000         | 0,5075     | 0,5583             | 0,5589       | -0,2763 | 0,3375     |
| Vsmin              | 0,5075         | 1,0000     | -0,1472            | -0,1471      | -0,5434 | -0,0185    |
| Molar refractivity | 0,5583         | -0,1472    | 1,0000             | 1,0000       | -0,1551 | 0,5675     |
| polarizability     | 0,5589         | -0,1471    | 1,0000             | 1,0000       | -0,1551 | 0,5673     |
| Hammett            | -0,2763        | -0,5434    | -0,1551            | -0,1551      | 1,0000  | 0,3855     |
| Mr (a/mol)         | 0.3375         | -0.0185    | 0.5675             | 0.5673       | 0.3855  | 1 0000     |

Figure S244. Correlation matrix for 3 descriptors – class II.

The third class consists of the combinations {retention time, pKa (arom NH), SPAN}, {retention time, pKa (arom NH), MW}, {retention time, Mr (g/mol), pKa (arom NH)}, {retention time, pKa (arom NH), Tm}, {retention time, Hammett, MW}, {retention time, Mr(g/mol), Hammett} and {retention time, pKa (arom NH), L1M}. The correlation matrix in Figure S245 clearly shows that this models consist of a term for lipophilicity (retention time) + molecular size (SPAN, molecular weight (MW or Mr), Tm and L1M) + anion binding (Hammett constant or pKa of the aromatic NH).

| Correlations   | 8              |            |            |              |         |         |         |         |         |
|----------------|----------------|------------|------------|--------------|---------|---------|---------|---------|---------|
|                | retention time | Mr (g/mol) | Hammett pK | (a (arom NH) | Vsmax   | MW      | SPAN    | L1m     | Tm      |
| retention time | 1,0000         | 0,3375     | -0,2763    | 0,3048       | -0,3121 | 0,3376  | 0,4416  | 0,4537  | 0,4524  |
| Mr (g/mol)     | 0,3375         | 1,0000     | 0,3855     | -0,3646      | 0,3961  | 1,0000  | 0,9773  | 0,9522  | 0,9603  |
| Hammett        | -0,2763        | 0,3855     | 1,0000     | -0,9756      | 0,9750  | 0,3855  | 0,3381  | 0,3141  | 0,3274  |
| pKa (arom NH)  | 0,3048         | -0,3646    | -0,9756    | 1,0000       | -0,9643 | -0,3645 | -0,3054 | -0,2965 | -0,3091 |
| Vsmax          | -0,3121        | 0,3961     | 0,9750     | -0,9643      | 1,0000  | 0,3960  | 0,3396  | 0,3287  | 0,3406  |
| MW             | 0,3376         | 1,0000     | 0,3855     | -0,3645      | 0,3960  | 1,0000  | 0,9773  | 0,9522  | 0,9603  |
| SPAN           | 0,4416         | 0,9773     | 0,3381     | -0,3054      | 0,3396  | 0,9773  | 1,0000  | 0,9271  | 0,9374  |
| L1m            | 0,4537         | 0,9522     | 0,3141     | -0,2965      | 0,3287  | 0,9522  | 0,9271  | 1,0000  | 0,9993  |
| Tm             | 0,4524         | 0,9603     | 0,3274     | -0,3091      | 0,3406  | 0,9603  | 0,9374  | 0,9993  | 1,0000  |


Figure S245. Correlation matrix for 3 descriptors – class III.

Due to the ease of interpretation of the third class of combinations and due to the fact that the combination retention time + SPAN was one of the highest ranking 2-term combination, the final models that are selected include {retention time, SPAN, Hammett}, {retention time, SPAN, pKa (arom NH)} and {retention time, SPAN, Vsmax} as it was shown previously that the Hammett constant, pKa (arom NH) and  $V_{s,max}$  are all suitable descriptors for anion binding.

#### Final model

Firstly, a standard least-square fitting was performed for  $log(1/EC_{50})$  versus the retention time,  $pK_a$  and SPAN using JMP 9.0.0. Secondly, other equally valid models can be obtained by replacing the  $pK_a$  with the Hammett constant for substituents in the *para* position or  $V_{s,max}$  (it was shown in Section S5.4 that both  $pK_a$ , Hammett constants and  $V_{s,max}$  correlate with the anion binding ability). Therefore a standard least-square fitting was performed for  $log(1/EC_{50})$  versus the retention time, Hammett constant and SPAN; and for  $log(1/EC_{50})$  versus the retention time,  $V_{s,max}$  and SPAN using JMP 9.0. The results are summarized in Figure S246.

| ummary of Fit              |          | Analysis | s of Va | riance    |             |          | Parameter E    | stimates  |           |         |         |
|----------------------------|----------|----------|---------|-----------|-------------|----------|----------------|-----------|-----------|---------|---------|
| RSquare                    | 0,939031 |          |         | Sum of    |             |          | Term           | Estimate  | Std Error | t Ratio | Prob> t |
| RSquare Adj                | 0,925966 | Source   | DF      | Squares   | Mean Square | F Ratio  | Intercept      | -5,060439 | 1,224326  | -4,13   | 0,0010  |
| Root Mean Square Error     | 0,16172  | Model    | 3       | 5.6392499 | 1.87975     | 71,8745  | retention time | 0,9529615 | 0,069642  | 13,68   | <,0001  |
| Mean of Response           | -0.04426 | Error    | 14      | 0.3661450 | 0.02615     | Prob > F | pKa (arom NH)  | -0,319229 | 0,085807  | -3,72   | 0,0023  |
| Observations (or Sum Wgts) |          | C. Total | 17      | 6.0053949 | 5,02010     | <.0001 * | SPAN           | -0,306621 | 0,07134   | -4,30   | 0,0007  |



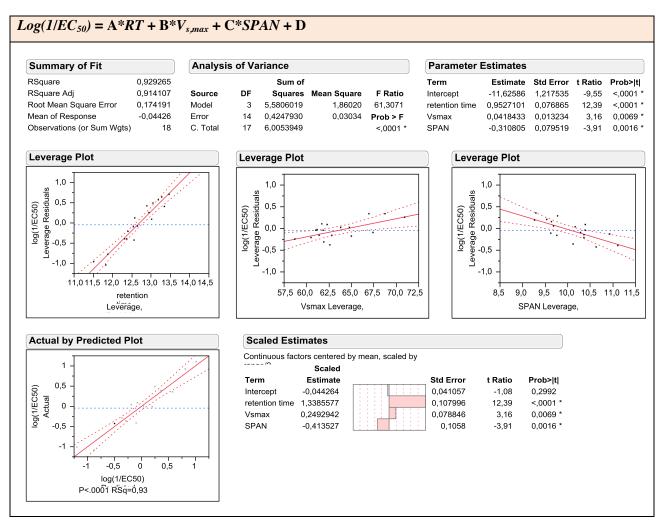



Figure S246. Overview of models correlating  $log(1/EC_{50})$  with retention time (RT), anion binding (Hammett,  $pK_a$  or  $V_{S,max}$ ) and SPAN

## S7.6 QSAR Modelling Using logP

It is also possible to perform the same analysis using calculated logP values instead of experimental retention times. Therefore a stepwise multiple regression analysis was performed using JMP 9.0.0. Log(1/EC<sub>50</sub>) was modeled against a total of 286 descriptors (see Section S7.4, only calculated logP values included, not retention times), the k-fold cross validation was set to 2 and all possible models with a maximum of three terms were calculated (3,899,181 models in total) and subsequently ranked according to best fit (highest R ). The results are shown in Figure S247 (left). Once again, the best model with only one term is observed for logP and the second best models with logS. However, logP and logS are highly correlated descriptors and are both measures for lipophilicity. In the subsequent 2-term and 3-term models logS is preferred over logP. As we are more interested in the effect of changing retention time to logP, the analysis was repeated but the logS

descriptors were excluded from the stepwise regression (total of 281 descriptors and 3,737,863 models). The results of the best models are given in Figure S247 (right).

| 0.1                                   |           |                  |                  |                    |         | 0.4                                  | 0.1    |         |                  |                    |                |
|---------------------------------------|-----------|------------------|------------------|--------------------|---------|--------------------------------------|--------|---------|------------------|--------------------|----------------|
| Ordered up to best 20 models up to 3  | terms per |                  |                  |                    |         | Ordered up to best 20 models up to   |        |         |                  |                    |                |
| Model                                 | Number    | RSquare          | RMSE             | AICc               | BIC     | Model                                | Number | RSquare | RMSE             | AICc               | B              |
| ogP                                   | 1         | 0,7890           | 0,2814           | 11,0299<br>17,4930 | 11,9868 | logP                                 | 1      | 0,7890  | 0,2814           | 11,0299<br>18,9907 | 11,98<br>19,94 |
| ogS (pH1,7)                           | 1         | 0,6979<br>0,6957 | 0,3367           |                    | 18,4498 | logD (pH1,7)<br>Vd                   | 1      | 0,6717  | 0,3511<br>0.3549 | 19,3858            |                |
| logS (pH6,5)                          |           |                  | 0,3380           | 17,6223            | 18,5792 |                                      | 1      | 0,6644  |                  |                    |                |
| logS (pH7,4)                          | 1<br>1    | 0,6957<br>0,6957 | 0,3380           | 17,6223            | 18,5792 | logD (pH7,4)                         | 1      | 0,6415  | 0,3668           | 20,5721            | 21,52          |
| logS (pH8)                            |           |                  | 0,3380           | 17,6223            | 18,5792 | logD (pH8)                           |        | 0,6415  | 0,3668           | 20,5721            | 21,52          |
| logD (pH1,7)                          | 1         | 0,6717           | 0,3511           | 18,9907            | 19,9475 | logD (pH4,6)                         | 1      | 0,6409  | 0,3671           | 20,6020            |                |
| Vd                                    | 1<br>1    | 0,6644<br>0.6415 | 0,3549<br>0.3668 | 19,3858            | 20,3427 | BLTD48                               |        | 0,5070  | 0,4301<br>0.4307 | 26,3053            |                |
| logD (pH7,4)                          |           |                  | 0,3668           | 20,5721            | 21,5289 | BLTA96                               | 1      | 0,5059  | 0,4307           | 26,3475            |                |
| logD (pH8)                            | 1<br>1    | 0,6415           |                  | 20,5721            | 21,5289 | BLTF96<br>PI                         | 1      | 0,5035  |                  | 26,4340<br>30,5012 |                |
| logD (pH4,6)<br>BLTD48                |           | 0,6409           | 0,3671           | 20,6020            | 21,5588 |                                      | 1      | 0,3776  | 0,4833           | 31,4035            |                |
|                                       | 1         | 0,5070           | 0,4301           |                    | 27,2621 | J3D                                  |        | 0,3456  | 0,4956           |                    |                |
| BLTA96                                | 1         | 0,5059           | 0,4307           | 26,3475            | 27,3043 | E3u                                  | 1      | 0,2702  | 0,5234           | 33,3673            |                |
| BLTF96                                | 1         | 0,5035           | 0,4317           | 26,4340            | 27,3909 | G3m                                  | 1      | 0,2601  | 0,5270           | 33,6153            |                |
| PI                                    | 1         | 0,3776           | 0,4833           |                    | 31,4580 | PHI                                  | 1      | 0,2365  | 0,5353           | 34,1802            |                |
| J3D                                   | 1         | 0,3456           | 0,4956           | 31,4035            | 32,3603 | S2K                                  | 1      | 0,2360  | 0,5355           | 34,1911            | 35,147         |
| E3u                                   | 1         | 0,2702           | 0,5234           | 33,3673            | 34,3241 | Hy                                   | 1      | 0,2196  | 0,5412           |                    |                |
| G3m                                   | 1         | 0,2601           | 0,5270           | 33,6153            | 34,5721 | L3u                                  | 1      | 0,2186  | 0,5416           | 34,5971            | 35,55          |
| PHI                                   | 1         | 0,2365           | 0,5353           | 34,1802            | 35,1371 | H3D                                  | 1      | 0,2154  | 0,5427           | 34,6716            | 35,62          |
| S2K                                   | 1         | 0,2360           | 0,5355           | 34,1911            | 35,1479 | E3p                                  | 1      | 0,2146  | 0,5429           | 34,6885            | 35,64          |
| Hy                                    | 1         | 0,2196           | 0,5412           | 34,5753            | 35,5321 | E3v                                  | 1      | 0,2119  | 0,5439           | 34,7501            | 35,70          |
| logS (pH1,7),Gs                       | 2         | 0,8782           | 0,2208           | 4,5015             | 4,9861  | PI,pKa (alkyl NH)                    | 2      | 0,8602  | 0,2366           | 6,9822             | 7,46           |
| logS (pH6,5),Gs                       | 2         | 0,8771           | 0,2218           | 4,6640             | 5,1486  | logP,E2m                             | 2      | 0,8516  | 0,2438           | 8,0622             | 8,54           |
| logS (pH7,4),Gs                       | 2         | 0,8771           | 0,2218           | 4,6640             | 5,1486  | logP,PSA                             | 2      | 0,8432  | 0,2506           | 9,0553             | 9,53           |
| logS (pH8),Gs                         | 2         | 0,8771           | 0,2218           | 4,6640             | 5,1486  | logP,Ui                              | 2      | 0,8377  | 0,2549           | 9,6734             | 10,15          |
| PI,pKa (alkyl NH)                     | 2         | 0,8602           | 0,2366           | 6,9822             | 7,4668  | logP,TPSA(NO)                        | 2      | 0,8325  | 0,2590           | 10,2400            | 10,72          |
| logS (pH1,7),Jhetm                    | 2         | 0,8564           | 0,2398           | 7,4663             | 7,9508  | PI,pKa (arom NH)                     | 2      | 0,8308  | 0,2603           | 10,4169            |                |
| logS (pH1,7),JhetZ                    | 2         | 0,8563           | 0,2399           | 7,4794             | 7,9639  | logP,pKa (arom NH)                   | 2      | 0,8285  | 0,2621           | 10,6677            | 11,15          |
| logS (pH6,5),Jhetm                    | 2         | 0,8558           | 0,2403           | 7,5473             | 8,0319  | logP,pKa2 (NH)                       | 2      | 0,8278  | 0,2626           | 10,7340            | 11,21          |
| logS (pH7,4),Jhetm                    | 2         | 0,8558           | 0,2403           | 7,5473             | 8,0319  | Hammett,logP                         | 2      | 0,8246  | 0,2650           | 11,0711            |                |
| logS (pH8),Jhetm                      | 2         | 0,8558           | 0,2403           | 7,5473             | 8,0319  | logP,pKa (alkyl NH)                  | 2      | 0,8244  | 0,2651           | 11,0880            | 11,57          |
| logS (pH6,5),JhetZ                    | 2         | 0,8556           | 0,2404           | 7,5613             | 8,0459  | logP,PJI2                            | 2      | 0,8227  | 0,2664           |                    |                |
| logS (pH7,4),JhetZ                    | 2         | 0,8556           | 0,2404           | 7,5613             | 8,0459  | logP,Vsmin                           | 2      | 0,8186  | 0,2695           | 11,6727            |                |
| logS (pH8),JhetZ                      | 2         | 0,8556           | 0,2404           | 7,5613             | 8,0459  | logP,BLTF96                          | 2      | 0,8185  | 0,2696           | 11,6853            | 12,16          |
| logS (pH1,7),G1                       | 2         | 0,8523           | 0,2432           | 7,9768             | 8,4613  | logP,BLTA96                          | 2      | 0,8178  | 0,2700           | 11,7476            | 12,23          |
| logP,E2m                              | 2         | 0,8516           | 0,2438           | 8,0622             | 8,5468  | logP,BLTD48                          | 2      | 0,8175  | 0,2703           | 11,7824            | 12,26          |
| logS (pH6,5),G1                       | 2         | 0,8506           | 0,2446           | 8,1833             | 8,6679  | logP,Vsmax                           | 2      | 0,8166  | 0,2710           | 11,8744            | 12,35          |
| logS (pH7,4),G1                       | 2         | 0,8506           | 0,2446           | 8,1833             | 8,6679  | logP,De                              | 2      | 0,8154  | 0,2718           | 11,9845            | 12,469         |
| logS (pH8),G1                         | 2         | 0,8506           | 0,2446           | 8,1833             | 8,6679  | logP,L/Bw                            | 2      | 0,8147  | 0,2724           | 12,0575            | 12,542         |
| logS (pH1,7),G2s                      | 2         | 0,8435           | 0,2503           | 9,0180             | 9,5025  | logP,E1e                             | 2      | 0,8136  | 0,2732           | 12,1603            | 12,644         |
| logS (pH6,5),G2s                      | 2         | 0,8433           | 0,2505           | 9,0379             | 9,5225  | logP,G2s                             | 2      | 0,8132  | 0,2735           | 12,1983            | 12,682         |
| PI,Index of refraction,pKa (alkyl NH) | 3         | 0,9304           | 0,1728           | -1,6396            | -2,1877 | PI,Index of refraction,pKa (alkyl NI |        | 0,9304  | 0,1728           | -1,6396            | -2,187         |
| PI,pKa (alkyl NH),ZM2V                | 3         | 0,9257           | 0,1785           | -0,4764            | -1,0246 | PI,pKa (alkyl NH),ZM2V               | 3      | 0,9257  | 0,1785           | -0,4764            | -1,02          |
| logS (pH6,5),H3D,SEig                 | 3         | 0,9246           | 0,1798           | -0,2106            | -0,7587 | PI,pKa (alkyl NH),BLI                | 3      | 0,9239  | 0,1806           | -0,0462            | -0,59          |
| logS (pH7,4),H3D,SEig                 | 3         | 0,9246           | 0,1798           | -0,2106            | -0,7587 | logP,SCBO,RGyr                       | 3      | 0,9222  | 0,1826           | 0,3467             | -0,20          |
| logS (pH8),H3D,SEig                   | 3         | 0,9246           | 0,1798           | -0,2106            | -0,7587 | PI,pKa (alkyl NH),GMTIV              | 3      | 0,9200  | 0,1853           | 0,8613             | 0,31           |
| logS (pH1,7),H3D,SEig                 | 3         | 0,9244           | 0,1801           | -0,1570            | -0,7051 | PI,pKa (alkyl NH),L1s                | 3      | 0,9199  | 0,1854           | 0,8840             | 0,33           |
| PI,pKa (alkyl NH),BLI                 | 3         | 0,9239           | 0,1806           | -0,0462            | -0,5943 | PI,pKa (alkyl NH),Ts                 | 3      | 0,9184  | 0,1871           | 1,2203             | 0,67           |
| logP,SCBO,RGyr                        | 3         | 0,9222           | 0,1826           | 0,3467             | -0,2014 | PI,pKa (alkyl NH),ZM1V               | 3      | 0,9175  | 0,1881           | 1,4039             | 0,85           |
| PI,pKa (alkyl NH),GMTIV               | 3         | 0,9200           | 0,1853           | 0,8613             | 0,3132  | logP,Vsmin,E2m                       | 3      | 0,9167  | 0,1890           | 1,5904             | 1,04           |
| PI,pKa (alkyl NH),L1s                 | 3         | 0,9199           | 0,1854           | 0,8840             | 0,3358  | PI,pKa (alkyl NH),nHAcc              | 3      | 0,9164  | 0,1894           | 1,6534             | 1,10           |
| Molecular volume,logS (pH1,7),E3p     | 3         | 0,9197           | 0,1855           | 0,9167             | 0,3685  | PI,pKa (alkyl NH),SMTIV              | 3      | 0,9159  | 0,1899           | 1,7493             | 1,20           |
| logS (pH1,7),BLI,Gs                   | 3         | 0,9191           | 0,1863           | 1,0629             | 0,5148  | logP,RGyr,Ui                         | 3      | 0,9154  | 0,1904           | 1,8559             | 1,30           |
| Molecular volume,logS (pH6,5),E3p     | 3         | 0,9190           | 0,1864           | 1,0778             | 0,5296  | PI,pKa (alkyl NH),GGI4               | 3      | 0,9146  | 0,1913           | 2,0257             | 1,47           |
| Molecular volume,logS (pH7,4),E3p     | 3         | 0,9190           | 0,1864           | 1,0778             | 0,5296  | PI,pKa (alkyl NH),Ss                 | 3      | 0,9140  | 0,1921           | 2,1605             | 1,61           |
| Molecular volume,logS (pH8),E3p       | 3         | 0,9190           | 0,1864           | 1,0778             | 0,5296  | logP,pKa (arom NH),Tm                | 3      | 0,9139  | 0,1922           | 2,1884             | 1,64           |
| Pl,pKa (alkyl NH),Ts                  | 3         | 0,9184           | 0,1871           | 1,2203             | 0,6721  | logP,pKa (arom NH),L1m               | 3      | 0,9126  | 0,1937           | 2,4589             | 1,91           |
| PI,pKa (alkyl NH),ZM1V                | 3         | 0,9175           | 0,1881           | 1,4039             | 0,8557  | PI,pKa (arom NH),Ks                  | 3      | 0,9121  | 0,1942           | 2,5550             | 2,00           |
| logS (pH6,5),BLI,Gs                   | 3         | 0,9173           | 0,1883           | 1,4508             | 0,9027  | logP,SPAN,Ui                         | 3      | 0,9113  | 0,1951           | 2,7194             | 2,17           |
| logS (pH7,4),BLI,Gs                   | 3         | 0,9173           | 0,1883           | 1,4508             | 0,9027  | logP,E2m,TPSA(NO)                    | 3      | 0,9109  | 0,1955           | 2,8067             | 2,25           |
| logS (pH8),BLI,Gs                     | 3         | 0,9173           | 0,1883           | 1,4508             | 0,9027  | logP,SCBO,S1K                        | 3      | 0,9108  | 0,1956           | 2,8213             | 2,27           |

Figure S247. Overview of best 20 models with up to 3 term correlating  $log(1/EC_{50})$  with various descriptors (left) logS included in the analysis. (right) logS values omitted from the analysis.

In the previous table the combinations containing PI+pKa can be discarded because these descriptors are highly correlated to each other and to the logP value (see correlation matrix in Figure S248). The models that are left are comparable to the ones obtained for the retention time and consist of logP + pKa (arom NH) + size (Tm, L1m). This shows that logP and retention time can be interchanged and the same models will be

built using logP as were built using retention time. The final models were calculated using a standard least-square fitting with JMP 9.0.0 for  $log(1/EC_{50})$  versus the retention time, pKa (or Hammett or  $V_{S,max}$ ) and SPAN. The results are summarized in Figure S249.

| Correlations   |         |                                 |         |         |  |  |  |  |
|----------------|---------|---------------------------------|---------|---------|--|--|--|--|
|                | logP    | PI pKa (alkyl NH) pKa (arom NH) |         |         |  |  |  |  |
| logP           | 1,0000  | -0,7580                         | 0,2853  | 0,3963  |  |  |  |  |
| PI             | -0,7580 | 1,0000                          | -0,7989 | -0,8511 |  |  |  |  |
| pKa (alkyl NH) | 0,2853  | -0,7989                         | 1,0000  | 0,9287  |  |  |  |  |
| pKa (arom NH)  | 0,3963  | -0,8511                         | 0,9287  | 1,0000  |  |  |  |  |

Figure S248. Correlation matrix with logP.



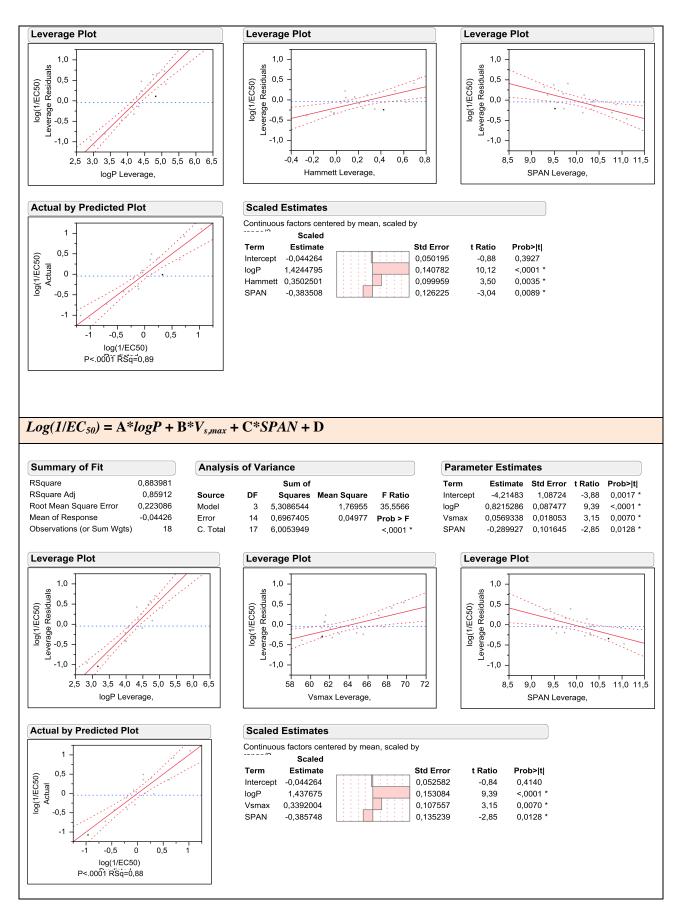
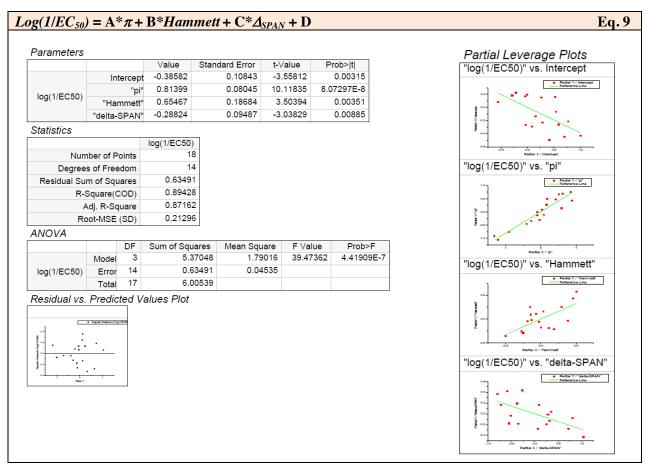
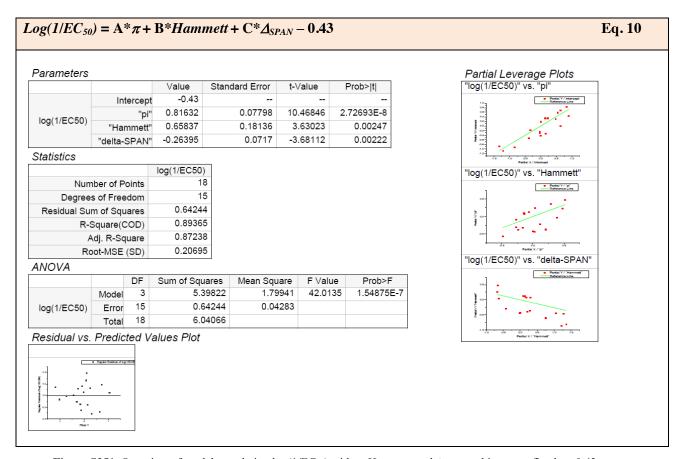




Figure S249. Overview of models correlating log(1/EC50) with logP, anion binding (Hammett, pKa or V<sub>S,max</sub>) and SPAN.


### **S7.7 QSAR Modelling Using Relative Values**

The Hammett constant is defined as a relative value against an unsubstituted benzene ring. It is also possible to define the lipophilicity of a given substituent ( $\pi$ ) by taking the logP value relative to the unsubstituted compound ( $\pi = logP(x)-logP(\mathbf{9}, -H)$ ). Similarly we can define  $\Delta_{SPAN}$  as the value of the SPAN descriptor relative to the parent, unsubstituted compound ( $\Delta_{SPAN} = SPAN(x)-SPAN(\mathbf{9}, -H)$ ). Origin 8.1 was used to perform a standard least-squares multiple linear regression for  $log(1/EC_{50})$  versus the relative descriptors  $\pi$ , Hammett and  $\Delta_{SPAN}$ . The results are shown in Figure S250.



**Figure S250.** Overview of model correlating log(1/EC<sub>50</sub>) with  $\pi$ , Hammett and  $\Delta_{SPAN}$ .

In principle when all of the descriptors are defined as a relative value against parent compound  $\bf 9$  (unsubstituted), the intercept of the model should correspond to the experimentally observed  $\log(1/EC_{50})$  value of the parent compound. Indeed, the optimized intercept from figure S250 (-0.38±0.10) corresponds well to the experimental  $\log(1/EC_{50})$  value for  $\bf 9$  (-0.43±0.10). We can reduce the amount of optimized parameters and alter the degrees of freedom by fixing the intercept to this experimental value. Origin 8.1 was used to obtain the multiple linear regressed model with the intercept fixed at -0.43, as shown in Figure S251



**Figure S251.** Overview of model correlating  $log(1/EC_{50})$  with  $\pi$ , Hammett and  $\Delta_{SPAN}$  and intercept fixed at -0.43.

## S8. PREDICTING ANION BINDING AND TRANSPORT

The best way to check the credibility of a QSAR model is to investigate its predictive power. For this reason, four receptors were initially excluded from the training set and used to test the predictability (they form the test set). The anion binding and the anion transport ability of the test set were assessed in the same way as the training set and an overview is given in Table S49.

**Table S49.** Overview of anion transport ( $\log(1/EC_{50})$ ) and anion binding ( $\log K_a$  in M<sup>-1</sup>) of the test set.

| Compound           | $log(1/EC_{50})$  | $\log K_a(\operatorname{Cl}^-)$ | $\log K_a(\mathrm{HCO_3}^-)$ | $\log K_a(\mathrm{H_2PO_4}^-)$ |
|--------------------|-------------------|---------------------------------|------------------------------|--------------------------------|
| <b>1</b> (Br)      | 0.03 (±0.09)      | 1.27                            | 2.65                         | 2.67                           |
| <b>6</b> (COMe)    | -0.4832 (±0.0004) | 1.43                            | 2.74                         | 2.62                           |
| <b>14</b> (OEt)    | -0.28 (±0.11)     | 1.09                            | 2.15                         | 2.04                           |
| <b>20</b> (Propyl) | 0.88 (±0.23)      | 1.12                            | 2.27                         | 2.20                           |

In order to predict the transport and binding ability, the molecular descriptors used to built equations 1-10 were calculated (including the retention times on a reversed-phase HPLC column, which were obtained experimentally after synthesis) and are shown in Table S50. With these descriptors, the anion transport and anion binding ability were calculated using equations 1-10 and these values are shown in Table S51.

**Table S50.** Overview of the descriptors of the test set used for predicting anion transport and binding abilities.

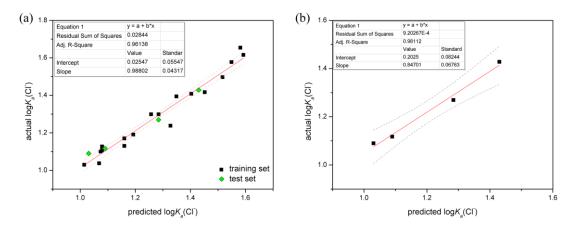
| Compound           | $\mathbf{RT}^{a}$ | $\log$ P $^{b}$ | Hammett <sup>c</sup> | SPAN d | $\pi^{e}$ | $\Delta_{\text{SPAN}}^f$ |
|--------------------|-------------------|-----------------|----------------------|--------|-----------|--------------------------|
| 1 (Br)             | 12.96             | 4.691           | 0.23                 | 10.615 | 1.165     | 1.867                    |
| <b>6</b> (COMe)    | 12.01             | 3.516           | 0.50                 | 9.877  | -0.010    | 1.129                    |
| <b>14</b> (OEt)    | 12.51             | 4.158           | -0.24                | 10.006 | 0.632     | 1.258                    |
| <b>20</b> (Propyl) | 13.49             | 5.083           | -0.13                | 9.983  | 1.557     | 1.235                    |

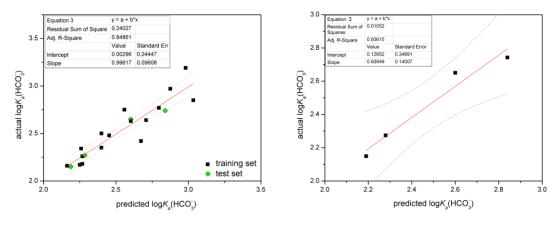
<sup>&</sup>lt;sup>a</sup> RT: retention time in min on reversed phase HPLC column; <sup>b</sup> logP calculated using Daylight v4.73; <sup>c</sup> Hammett constants for substituents in *para* position; <sup>d</sup> SPAN calculated using e-Dragon; <sup>e</sup>  $\pi = \log P(x) - 3.526$ : <sup>f</sup>  $\Delta_{SPAN} = SPAN(x) - 8.748$ .

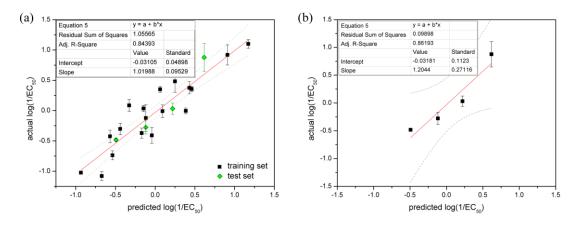
**Table S51.** Overview of the anion transport and binding abilities of the test set as calculated using Eq. 1-10.

|                    | Anion binding $(\log K_a)$ |      |      | Anion transport (log(1/EC <sub>50</sub> ) |       |       |       |       |       |
|--------------------|----------------------------|------|------|-------------------------------------------|-------|-------|-------|-------|-------|
| Compound           | Eq1                        | Eq2  | Eq3  | Eq5                                       | Eq6   | Eq7   | Eq8   | Eq9   | Eq10  |
| 1 (Br)             | 1.30                       | 2.57 | 2.60 | 0.22                                      | 0.31  | 0.002 | 0.14  | 0.17  | 0.19  |
| <b>6</b> (COMe)    | 1.44                       | 2.80 | 2.84 | -0.49                                     | -0.42 | -0.53 | -0.42 | -0.39 | -0.40 |
| <b>14</b> (OEt)    | 1.04                       | 2.18 | 2.19 | -0.12                                     | -0.02 | -0.46 | -0.42 | -0.39 | -0.40 |
| <b>20</b> (Propyl) | 1.10                       | 2.27 | 2.28 | 0.62                                      | 0.55  | 0.52  | 0.41  | 0.44  | 0.44  |

A good way to visualize the predictability of a model is to plot the actual versus the predicted values. These plots are given in Figures S252-S260 for all of the obtained QSAR models (equations 1-10). A linear fit of these plots was also performed using Origin 8.1, the R values of which provide a quantitative measure for predictability.







Figure S252. Actual vs. predicted plots for the anion binding constants ( $\log K_a$ ) for chloride obtained with equation 1:  $\log K_a(\text{Cl}^-) = 0.55(\pm 0.03)^* \sigma_p + 1.17(\pm 0.01)$ . (a) Training set + test set. (b) Test set only.



**Figure S253.** Actual vs. predicted plots for the anion binding constants ( $\log K_a$ ) for dihydrogen phosphate obtained with equation 2:  $\log K_a(H_2PO_4^-) = 0.84(\pm 0.06)*\sigma_p + 2.38(\pm 0.02)$ . (a) Training set + test set. (b) Test set only.



**Figure S254.** Actual vs. predicted plots for the anion binding constants ( $\log K_a$ ) for bicarbonate obtained with equation 3:  $\log K_a(\text{HCO}_3^-) = 0.88(\pm 0.10)*\sigma_p + 2.40(\pm 0.04)$ . (a) Training set + test set. (b) Test set only.



**Figure S255.** Actual vs. predicted plots for the  $log(1/EC_{50})$  values obtained with equation 5 (anion transport):  $log(1/EC_{50}) = 0.75(\pm 0.08)*RT - 9.5(\pm 1.0)$ . (a) Training set + test set. (b) Test set only.



Figure S256. Actual vs. predicted plots for the  $log(1/EC_{50})$  values obtained with equation 6 (anion transport):  $log(1/EC_{50}) = 0.62(\pm 0.08)*logP - 2.6(\pm 0.3)$ . (a) Training set + test set. (b) Test set only.




Figure S257. Actual vs. predicted plots for the  $log(1/EC_{50})$  values obtained with equation 7 (anion transport):  $log(1/EC_{50}) = 0.94(\pm 0.07)*RT + 0.48(\pm 0.14)*\sigma_p - 0.31(\pm 0.07)*SPAN - 9.0(\pm 0.8)$ . (a) Training set + test set. (b) Test set only.

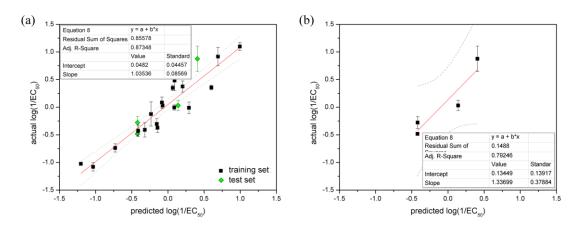



Figure S258. Actual vs. predicted plots for the  $\log(1/\text{EC}_{50})$  values obtained with equation 8 (anion transport):  $\log(1/\text{EC}_{50}) = 0.81(\pm 0.08)*logP + 0.65(\pm 0.19)*\sigma_p - 0.29(\pm 0.09)*SPAN - 0.73(\pm 0.79)$ . (a) Training set + test set. (b) Test set only.

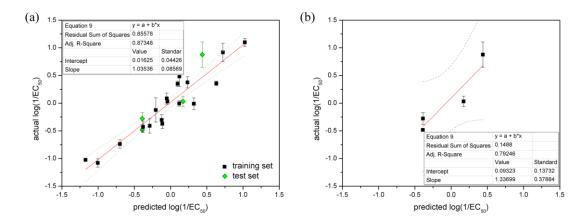



Figure S259. Actual vs. predicted plots for the  $\log(1/\text{EC}_{50})$  values obtained with equation 9 (anion transport):  $\log(1/\text{EC}_{50}) = 0.81(\pm 0.08)*\pi + 0.65(\pm 0.19)*\sigma_p - 0.29(\pm 0.09)*\Delta_{SPAN} - 0.38(\pm 0.11)$ . (a) Training set + test set. (b) Test set only.

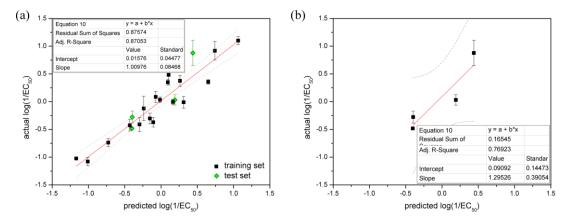



Figure S260. Actual vs. predicted plots for the  $log(1/EC_{50})$  values obtained with equation 10 (anion transport):  $log(1/EC_{50}) = 0.82(\pm 0.08)*\pi + 0.66(\pm 0.18)*\sigma_p - 0.26(\pm 0.07)*\Delta_{SPAN} - 0.43$ . (a) Training set + test set. (b) Test set only.

## **S9. REFERENCES AND NOTES**

- (1) S.J. Moore, M. Wenzel, M.E. Light, R. Morley, S.J. Bradberry, P. Gomez-Iglesias, V. Soto-Cerrato, R Perez-Tomas and P.A. Gale, *Chem. Sci.* 2012, **3**, 2501.
- (2) M. Wenzel, M.E. Light, A.P. Davis, and P.A. Gale, Chem. Commun. 2011, 47, 7641.
- (3) R.F. Hunter and C. Soyka, J. Chem. Soc. 1926, 2958.
- (4) L. Doub, L.M. Richardson, D.R. Herbst, M.L. Black, O.L. Stevenson, L.L. Bambas, G.P. Youmans and A.S. Youmans, *J. Am. Chem. Soc.* 1958, **80**, 2205.
- (5) T. Hayashita, T. Onodera, R. Kato, S. Nishizawa and N. Teramae, Chem. Commun. 2000, 9, 755.
- (6) M. Lipp, F. Dallacker and I.M. zu Kocker, Monatsh. Chem. 1959, 90, 41.
- (7) G.M. Sheldrick, Acta Cryst. 1990, A46, 467.
- (8) G.M. Sheldrick, University of Göttingen, Germany, 1997.
- (9) M.J. Hynes, J. Chem. Soc., Dalton Trans. 1993, 311.
- (10) C. Hansch, A. Leo, and R.W. Taft, Chem. Rev. 1991, 91, 165.
- (11) ACD/I-Lab 2.0; https://ilab.acdlabs.com/iLab2/ (accessed August 9, 2012); ACD/Labs 2010-2013.
- (12) AMBER 12; University of California: San Francisco, USA, 2012.
- (13) J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman and D.A. Case, J. Comput. Chem. 2004, 25, 1157.
- (14) J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman and D.A. Case, J. Comput. Chem. 2005, 26, 114.
- (15) A. Jakalian, B.L. Bush, D.B. Jack, C.I. Bayly, J. Comput. Chem. 2000, 21, 132.
- (16) A. Jakalian, D.B. Jack and C.I. Bayly, J. Comput. Chem. 2002, 23, 1623.
- (17) I.S. Joung and T.E. Cheatham, *J. Phys. Chem. B* 2008, **112**, 9020.
- (18) W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Klein, J. Chem. Phys. 1983, 79, 926.
- (19) Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford, CT, USA, 2009.
- (20) F.A. Bulat, A. Toro-Labbe, WFA: A suite of programs to analyse wavefunctions (unpublished).
- (21) F.A. Bulat, A. Toro-Labbe, T. Brinck, J.S. Murray, P. Politzer, J. Mol. Model 2010, 16, 1679.
- (22) J.S. Murray, K.E. Riley, P. Politzer, and T. Clark, Aust. J. Chem. 2010, 63, 1598.
- (23) Y.G. Ma, K.C. Gross, C.A. Hollingsworth, P.G. Seybold and J.S. Murray, J. Mol. Model 2004, 10, 235.
- (24) T. Braumann, J. Chromatogr. A 1986, 373, 191.
- (25) VCCLAB, Virtual Computational Chemistry Laboratory, ALOGPS 2.1 and e-Dragon 1.0; http://www.vcclab.org (accessed January 14, 2013); VCCLAB 2005.
- (26) Daylight ClogP, version 4.73; Daylight Chemical Information Systems Inc.: Laguna Niguel, CA, USA, 2001.
- (27) Accelrys Diamond Descriptors (ALogP), version 1.5; Accelrys software Inc.: San Diego, CA, USA.
- (28) Fieldview, version 2.0.2; Cresset BMD Ltd.: Hertfordshire, UK, 2011.
- (29) Chemicalize; http://www.chemicalize.org/ (accessed August 9, 2012); ChemAxon.