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Abstract

Error density estimation in a nonparametric functional regression model
with functional predictor and scalar response is considered. The unknown
error density is approximated by a mixture of Gaussian densities with means
being the individual residuals, and variance as a constant parameter. This
proposed mixture error density has a form of a kernel density estimator
of residuals, where the regression function is estimated by the functional
Nadaraya-Watson estimator. A Bayesian bandwidth estimation procedure
that can simultaneously estimate the bandwidths in the kernel-form error
density and the functional Nadaraya-Watson estimator is proposed. A kernel
likelihood and posterior for the bandwidth parameters are derived under
the kernel-form error density. A series of simulation studies show that the
proposed Bayesian estimation method performs on par with the functional
cross validation for estimating the regression function, but it performs better
than the likelihood cross validation for estimating the regression error density.
The proposed Bayesian procedure is also applied to a nonparametric functional
regression model, where the functional predictors are spectroscopy wavelengths
and the scalar responses are fat/protein/moisture content, respectively.
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1. Introduction

Functional regression models describe the relationship between the pre-
dictor and response variables, where at least one variable is functional in
nature. The first functional formulation of a linear model dates back to a
discussion by Hastie and Mallows (1993), and it is later extended in detail by
Ramsay and Silverman (2005). Since then, functional linear regression model
has been further extended or modified to take into account possible nonlinear
relationship, some of the regression models include the functional polyno-
mial regression model (Yao and Müller, 2010; Horváth and Reeder, 2012),
functional additive regression model (Müller and Yao, 2008; Febrero-Bande
and González-Manteiga, 2013; Fan and James, 2013), and nonparametric
functional regression model (Ferraty and Vieu, 2006; Ferraty, Van Keilegom,
and Vieu, 2010). Due to the fast development in functional regression models,
it has gained an increasing popularity in various fields of application, such
as atmospheric radiation (Hlubinka and Prchal, 2007), chemometrics (Frank
and Friedman, 1993; Ferraty and Vieu, 2002; Burba et al., 2009; Yao and
Müller, 2010), climate variation forecasting (Shang and Hyndman, 2011),
demographic modeling and forecasting (Hyndman and Ullah, 2007; Hynd-
man and Booth, 2008; Hyndman and Shang, 2009; Chiou and Müller, 2009),
earthquake modeling (Quintela-del-Rı́o et al., 2011), gene expression (Yao
et al., 2005a; Chiou and Müller, 2007), health science (Harezlak, Coull, Laird,
Magari, and Christiani, 2007), linguistics (Hastie et al., 1995; Malfait and
Ramsay, 2003; Aston et al., 2010), medical research (Ratcliffe et al., 2002; Yao
et al., 2005b; Erbas et al., 2007), ozone level prediction (Quintela-del-Ŕıo and
Francisco-Fernández, 2011), and sulfur dioxide level prediction (Fernandez de
Castro et al., 2005).

Despite the fast development in functional regression models for finding the
relationship between predictor and response variables, error density estimation
in functional regression models remains largely unexplored. However, the
estimation of error density is important to understand the residual behavior
and to assess the adequacy of error distribution assumption (see for example,
Akritas and Van Keilegom, 2001; Cheng and Sun, 2008); the estimation of
error density is also useful to test the symmetry of the residual distribution
(see for example, Ahmad and Li, 1997; Dette et al., 2002; Neumeyer and Dette,
2007); the estimation of error density is important to statistical inference,
prediction and model validation (see for example, Efromovich, 2005; Muhsal
and Neumeyer, 2010); and the estimation of error density is also useful for the
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estimation of the density of the response variable (see for example, Escanciano
and Jacho-Chávez, 2012). In the realm of financial asset return, an important
use of the estimated error density is to estimate value-at-risk for holding an
asset. In such a model, any wrong specification of the error density may
produce an inaccurate estimate of value-at-risk and make the asset holder
unable to control risk. Therefore, being able to estimate the error density is
as important as being able to estimate the regression function.

This motivates the investigation of a kernel-form error density for es-
timating unknown error density in a nonparametric functional regression
model with functional predictors and scalar responses. This kernel-form error
density depends on three parameters: 1) the type of semi-metric used to
measure distances among functions, such as semi-metric based on second-
order derivative; 2) residuals fitted through the functional Nadaraya-Watson
(NW) estimator of the regression function; 3) bandwidth of residuals. Cheng
(2002, 2004) studied weak and strong uniform consistency of such an error
density estimator, while Samb (2011) established the optimal convergence
rate of the kernel-form error density estimator in a multivariate framework.
In this paper, we aim to develop a Bayesian bandwidth estimation procedure
to simultaneously estimate the bandwidths in the functional NW estimator
of the regression function and the kernel-form error density.

2. Bayesian bandwidth estimation

Let y = (y1, y2, . . . , yn)> be a vector of scalar responses, and X =
(X1,X2, . . . ,Xn)> be a set of functional predictors. We consider a simple
nonparametric functional regression model with homoscedastic errors. Given
observations (yi,Xi)i=1,2,...,n, the model can be expressed as

yi = m(Xi) + εi, (1)

where m(Xi) = E(y|X ) is the conditional mean, and εi for i = 1, 2, . . . , n are
assumed to be independent and identically distributed (iid) with an unknown
error density, denoted as f(ε). We assume that there is no correlation between
the regression function and errors. In this paper, we investigate the problem
of nonparametric estimation of the probability density function of the error
term. As noted by Samb (2011), the difficulty of estimating error density
is the fact that the regression error term is not observed and thus must be
estimated.
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There is a growing literature on the development of nonparametric func-
tional estimators, such as functional NW estimator (Ferraty and Vieu, 2006),
functional local linear estimator (Barrientos-Marin et al., 2010), functional
k-nearest neighbour estimator (Burba et al., 2009), and distance-based local
linear estimator (Boj et al., 2010). In this paper, we demonstrate the idea by
using the functional NW estimator because of its simplicity and mathematical
elegance. For a detailed exposition on functional NW estimator, consult
Ferraty and Vieu (2006, Section 5.4).

In the functional NW estimator, the estimation accuracy of regression
function is mainly determined by two parameters; type of semi-metric and
bandwidth. While the semi-metric measures the distances among functions,
the bandwidth measures the amount of smoothing. The optimal selections
of these two parameters were two open questions given in Ferraty and Vieu
(2006, p.193).

Since our simulated and real data are quite smooth, we chose a semi-
metric based on second derivative. For a non-smooth functional data set, a
semi-metric based on functional principal component analysis is advocated
(see Ferraty and Vieu, 2006, Chapters 3 and 13 for detail on the choice of
semi-metric from the practical and theoretical aspects, respectively). Having
determined the type of semi-metric, the only unknown parameter in the
functional NW estimator is the bandwidth (also known as smoothing pa-
rameter). As it is always the case in nonparametric estimation, the role of
smoothing parameter is prominent. For example, the rates of convergence
of the nonparametric functional estimator can be divided into two parts: a
squared bias component which increases with the bandwidths, and a variance
component which decreases with the bandwidths. Therefore, there is a need
to select an optimal bandwidth in order to balance the trade-off between
squared bias and variance.

In the literature of nonparametric functional data analysis, the bandwidth
is commonly selected by a functional version of cross validation (CV) (see
for example, Benhenni et al., 2007; Rachdi and Vieu, 2007). It is designed to
assess the predictive performance of a model by an average of certain measures
for the ability of predicting a subset of functions by a model fit, after deleting
just these functions from the data set. Functional CV has the appealing
feature that no estimation of the error variance is required. However, since
residuals affect the estimation accuracy of regression function, functional CV
may select sub-optimal bandwidths. This in turn leads to inferior estimation
accuracy of regression function. As an alternative, we present a Bayesian
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bandwidth estimation method that simultaneously estimates the bandwidths
in the regression function and kernel-form error density.

2.1. Estimation of error density

The unknown error density can be estimated differently, such as by using
finite mixture models, log-spline approach or wavelet expansion (Schellhase
and Kauermann, 2012). Here, we assume that the unknown error density f(ε)
can be approximated by a mixture of Gaussian densities (see also Roeder
and Wasserman, 1997). Using such a mixture, any density on the real line
can be approximated to within any preassigned accuracy in the L1 norm
(Ferguson, 1983). Concretely, the unknown error density is estimated by a
location-mixture Gaussian density, given by

f(ε; b) =
1

n

n∑
j=1

1

b
φ

(
ε− εj
b

)
, (2)

where φ(·) is the probability density function of the standard Gaussian
distribution, and the component Gaussian densities have means at εj, for
j = 1, 2, . . . , n, and a common standard deviation b. Note that our proposed
kernel-form error density has only one bandwidth parameter to estimate, which
is its main advantage over the scale-mixture Gaussian density. Although
m(X ) is unknown, it can be estimated by the functional NW estimator. As
a result, the density of yi is approximated by the estimated error density
f̂(ε; bn), expressed as

f(ε; b) ≈ f̂(ε; bn) =
1

n

n∑
j=1

1

bn
φ

(
ε− ε̂j
bn

)
, (3)

where bn represents the estimate of residual bandwidth. As noted by Samb
(2011), the kernel estimator f̂(ε; bn) is a feasible estimator in the sense that
it does not depend on any unknown quantity, unlike (2).

Jaki and West (2008, p.989) and Jaki and West (2011) also proposed to
approximate the error density by a kernel density estimator given in (3), and
estimate parameters by maximizing the so-called kernel likelihood. The kernel
likelihood of y = (y1, y2, . . . , yn)> is essentially the product of the density
given by (3). However, it is impossible to estimate b by maximizing such
a likelihood, because it contains at least one unwanted term φ(0)/bn. The
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likelihood would approach infinity as bn tends to zero. To address this issue,
a leave-one-out version of the kernel likelihood is used, and given by

f̂(ε̂i; bn) =
1

n− 1

n∑
j=1
j 6=i

1

bn
φ

(
ε̂i − ε̂j
bn

)
,

where ε̂i = yi − m̂(Xi;hn) is the ith residual for i = 1, 2, . . . , n, and hn repre-
sents the bandwidth estimate in the functional NW estimator. Given (hn, bn)
and iid assumption of the errors, the kernel likelihood of y = (y1, y2, . . . , yn)>

can be approximated by

L̂(y|hn, bn) =
n∏
i=1

 1

n− 1

n∑
j=1
j 6=i

1

bn
φ

(
ε̂i − ε̂j
bn

) .
We now discuss the issue of prior density for the bandwidths. Let π(h2)

and π(b2) be the prior of squared bandwidths h and b. Since h2 and b2 play
the same role as a variance parameter in the Gaussian density, we assume
that the priors of h2 and b2 are inverse Gamma density, denoted as IG(αh, βh)
and IG(αb, βb), respectively. Therefore, the prior densities of h2 and b2 are
given by

π(h2) =
(βh)

αh

Γ(αh)

(
1

h2

)αh+1

exp

(
−βh
h2

)
,

π(b2) =
(βb)

αb

Γ(αb)

(
1

b2

)αb+1

exp

(
−βb
b2

)
,

where αh = αb = 1.0 and βh = βb = 0.05 are hyperparameters. Notice that
IG(1,0.05) has previously been used as a prior density in Geweke (2010).

2.1.1. Posterior sampler

According to Bayes theorem, the posterior of h2n and b2n is approximated
by (up to a normalizing constant)

π(h2n, b
2
n|y) ∝ L̂(y|h2n, b2n)π(h2)π(b2), (4)

6



where L̂(y|h2n, b2n) is the approximate likelihood function with squared band-
widths. Since we assume that there is no correlation between the regression
function and error density in (1), the bandwidths of the regression function
and error density are uncorrelated in (4).

In line with the Bayesian paradigm, statistical inference is drawn from
the posterior, which can be analytically intractable especially in the case of
multiple parameters. However, if we can sample the parameters from the
posterior, statistical inference about the parameters can be obtained using
the Monte Carlo method. The Markov chain Monte Carlo (MCMC) method
provides a general mechanism to sample the parameters from its posterior
density. In essence, the MCMC method sets up a Markov chain so that its
stationary distribution is the same as the posterior density. As the Markov
chain converges, the simulated realizations are treated as samples from the
posterior. Because of its mathematical properties, the MCMC strategy has
proved useful in many statistical applications and has many advantages over
classical methods (see a survey article by Geweke, 1999). Gilks et al. (1996)
presented a collection of papers on the application of MCMC algorithms,
while Robert and Casella (2010) presented the theoretical underpinnings of
MCMC methods.

From (4), we use the adaptive block random-walk Metropolis algorithm
of Garthwaite et al. (2010) to sample (h2n, b

2
n), the sampling algorithm is

briefly described below. For simplicity of notation, I shall let θn = (h2n, b
2
n) to

represent a vector of the squared bandwidths.

Algorithm

Step 0 Specify a Gaussian proposal distribution, with an arbitrary starting
point θ

(0)
n ∼ U(0, 1).

Step 1 At the kth iteration, the current state θ
(k)
n is updated as θ

(k)
n =

θ
(k−1)
n + τ (k−1)ε, where ε ∼ N(0, I), and τ (k−1) is an adaptive tuning

parameter with an arbitrary initial value τ (0).

Step 2 The updated θ
(k)
n is accepted with probability min

{
π
(
θ
(k)
n |y

)
π
(
θ
(k−1)
n |y

) , 1
}

,

where π symbolizes the posterior density.
Step 3 Using the stochastic search algorithm of Robbins and Monro (1951),
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the tuning parameter is set

τ (k) =

{
τ (k−1) + c(1− p)/k if θ

(k)
n is accepted

τ (k−1) − cp/k if θ
(k)
n is rejected

,

where c = τ (k−1)

p(1−p) is a fixed constant, and p = 0.234 is the optimal

acceptance probability for drawing multiple parameters (Roberts and
Rosenthal, 2009).

Step 4 Repeat Steps 1-3 for M + N times, discard
(
θ
(0)
n , θ

(1)
n , . . . , θ

(M)
n

)
for

burn-in in order to let the effects of the transients wear off, estimate

ĥn =
∑M+N

k=M+1 h
(k)
n

N
and b̂n =

∑M+N
k=M+1 b

(k)
n

N
. The analytical form of the

kernel-form error density can be derived based on ĥn and b̂n. Note that
a similar result can be obtained by taking the average of the kernel-form
error densities for all iterations, but at the cost of slower computational
speed.

2.1.2. Diagnostic checking

In the implementation of the MCMC algorithm, the sample path η(i) =[
h
(i)
n

]2
or η(i) =

[
b
(i)
n

]2
for i = 1, . . . , N forms a Markov chain, whose stationary

density is the posterior π(η|y). The sample estimate is summarized by the
ergodic averages in the form of

η̄ =
1

N

N∑
i=1

η(i).

Roberts (1996) pointed out that most Markov chains produced in MCMC
converge geometrically to the stationary distribution π(η|y), and a main
consequence of geometric convergence is the central limit theorem, i.e.,

√
N [η̄ − Eπ(η)] −→D N(0, σ2), (5)

where Eπ(·) denotes the expectation operator under π(η|y). From (5), the
sample average converges in distribution to the true posterior density. To
assess the accuracy of ergodic average as an estimate of Eπ(η), it is essential
to estimate σ2. One of the most commonly used methods for estimating σ2 is
the batch mean (Roberts, 1996).
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To estimate σ2 using the batch mean, the MCMC algorithm is run for
N = m× n iterations, where m is the number of batches and n is the batch
sample size. Thus, σ2 can be estimated by

σ̂2 =
n

m− 1

m∑
p=1

 1

n

pn∑
i=(p−1)n+1

[η(i) − η̄]

2

,

and the standard error (SE) of η̄ can be estimated by
√
σ̂2/N , which is known

as the batch-mean SE (Roberts, 1996).
Apart from the batch-mean SE, one may also compute the SE (σ̃) based

on the sample path using the formula

σ̃ =

{
1

N − 1

N∑
i=1

[η(i) − η̄]2

} 1
2

.

Kim et al. (1998), Meyer and Yu (2000) and Tse et al. (2004) noted that
the mixing performance of the sample paths can be measured by simulation
inefficiency factor (SIF), which is also known as the integrated autocorrelation
time by Berg (2005). It is estimated as the sample mean from a sampler that
draws iid observations from the posterior distribution, SIF is given by σ̂2/σ̃2.
In the following analyses, the burn-in period is taken as M = 1, 000 iterations
and the number of recorded iterations after the burn-in period is N = 10, 000
iterations. The number of batches is m = 200, and there are n = 50 draws
within each batch.

2.1.3. Adaptive estimation of error density

In kernel density estimation of directly observed data, it has been observed
that the leave-one-out estimator is heavily affected by extreme observations in
the sample (see for example, Bowman, 1984; Zhang and King, 2011). When
the true error density has sufficient long tails, the leave-one-out kernel density
estimator with its bandwidth estimated under the Kullback-Leibler criterion,
is likely to overestimate the tails of the density. Such a phenomenon is likely
to be caused by the use of a global bandwidth. A solution to this problem is
to use localized bandwidth (see for example, Zhang and King, 2011, in the
context of GARCH model).

The idea of the localized bandwidth is to assign small bandwidths to
the observations in the high density region, and large bandwidths to the
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observations in the low density region. One key issue is to choose different
bandwidths for different groups of observations. Following the work by
Zhang and King (2011), large absolute errors should be assigned relatively
large bandwidths, while small absolute errors should be assigned relatively
small bandwidths. Differing from Zhang and King (2011), we extend the
localized bandwidth idea from the multivariate to functional setting, where
the functional NW estimator is used instead of the multivariate NW estimator.
The localized error density estimator can be expressed by

f̂ (ε̂i; τ, τε) =
1

n− 1

n∑
j=1
j 6=i

1

τ (1 + τε|ε̂j|)
φ

(
ε̂i − ε̂j

τ(1 + τε|ε̂j|)

)
, (6)

where τ(1 + τε|ε̂j|) is the bandwidth assigned to ε̂j, for j = 1, 2, . . . , n, and
the vector of parameters is now (hn, bn, τ, τε). The error density given in (6)
can be interpreted as a mixture of n− 1 Gaussian densities with their means
being at the other errors and variances localized.

2.1.4. Two-stage cross validation

Despite the rapid development in estimating regression function, there is
little work on the estimation of error density in functional regression models.
Nonetheless, in econometrics literature, Engle and González-Rivera (1991)
proposed a two-stage estimation procedure; the first stage uses the quasi-
maximum likelihood estimator to obtain the residuals, from which error
density is constructed in the second stage using a nonparametric density
estimator. In statistics literature, Samb (2011) put forward a two-stage
bandwidth estimator, where the regression function is estimated by the NW
estimator in a multivariate regression model, and the regression error density is
estimated by a univariate kernel error density. Here, we aim to extend Samb’s
(2011) work to a nonparametric functional regression model, and also consider
a two-stage CV method as a competing method for separately estimating
regression function and regression error density. Concretely, we apply the
functional CV for selecting the bandwidth in the functional NW estimator
and obtain a vector of real-valued residuals; based on these residuals, we then
apply the likelihood CV (Bowman, 1984) to obtain the optimal bandwidth
for a univariate kernel error density estimator. The asymptotic optimality of
the bandwidth selected by the likelihood CV has been studied by Hall (1987)
and van der Laan et al. (2004).
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3. Simulation study

The main goal of this section is to illustrate the methodology through
simulated data. One way to do that consists in comparing the true error
density f(ε) with the estimated one f̂(ε). To measure the discrepancy between

f(ε) and f̂(ε), we use integrated squared error (ISE) criterion, defined by∫ b
a

[f(ε)− f̂(ε)]2dε for ε ∈ [a, b]. In practice, ISE can be approximated at 1001
grid points bounded between an interval, such as [−5, 5]. This can be given
by

ISE ≈ 1

100

1001∑
i=1

[
f

(
−5 +

(i− 1)

100

)
− f̂

(
−5 +

(i− 1)

100

)]2
. (7)

Then, we estimate the mean integrated squared error MISE=E{
∫ b
a
[f(ε) −

f̂(ε)]2dε} by the average of these integrated squared errors in (7) over 100
replications.

Building the simulated samples. First of all, we build simulated discretized
curves:

Xi(tj) = ai cos(2tj) + bi sin(4tj) + ci(t
2
j − πtj +

2

9
π2), i = 1, 2, . . . , n, (8)

where 0 ≤ t1 ≤ t2 · · · ≤ t100 ≤ π are equispaced points, ai, bi, ci are inde-
pendently drawn from a uniform distribution on [0, 1], and n represents the
sample size. The functional form of (8) is taken from Ferraty et al. (2010).
Figure 1 presents the simulated curves for one replication.

Once the curves are defined, we then simulate a nonparametric functional
regression model to compute the responses in the following steps:
• construct a regression function operator m, which performs the map-

ping from function-valued space to real-valued space. Two functional
operators were considered and they are expressed as{

Model 1: m(Xi) = 10× (a2i − b2i );
Model 2: m(Xi) =

∫ π
0
tcos(t)

(
X ′i (t)

)2
dt.

• generate ε1, ε2, . . . , εn, which are independent centered Gaussian of
variance equal to 0.1, 0.5, or 0.9 times the empirical variance of
{m(X1),m(X2), . . . ,m(Xn)} (i.e., signal-to-noise ratio (ξ) = 0.1, 0.5,
or 0.9)
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Figure 1: 250 simulated curves.

• compute the corresponding responses: yi = m(Xi)+εi, for i = 1, 2, . . . , n.

Estimating the regression function. For a fixed curve X and a fixed bandwidth
h, we compute the in-sample discrepancy between m(X ) and m̂(X ). To do
that, we use the following Monte-Carlo scheme:
• build 100 replications: {(X s

i , y
s
i )i=1,...,n}s=1,...,100;

• compute 100 estimates {m(X ) − m̂s
h(X )}s=1,...,100, where m̂s

h is the
functional NW estimator of the regression function computed over the
sth replication;
• obtain the mean squared error (MSE) by averaging over 100 replications

of the squared errors.
Table 1 presents MSE for the functional NW estimator with bandwidths

selected by functional CV, Bayesian methods with global bandwidth and
localized bandwidth for both models. For a small sample size (n = 50),
functional CV performs the best in estimating the regression function, result-
ing in smallest overall MSE and the standard deviation (sd) of the squared
errors. As sample size n increases, the difference in estimation accuracy
between the functional CV and Bayesian methods is marginal. In some cases,
the Bayesian methods with the global and localized bandwidths perform
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better than the functional CV. As the signal-to-noise ratio (ξ) increases, the
regression function becomes harder to estimate accurately for all the methods.

Functional CV Bayesian
Global bandwidth Local bandwidth

@
@@ξ
n

50 250 1000 50 250 1000 50 250 1000

Model 1

ξ = 0.1 2.9532 0.9807 0.6299 3.0224 0.9514 0.3847 3.0217 0.9510 0.3847
(0.6050) (0.1101) (0.0541) (0.6447) (0.1045) (0.0343) (0.6441) (0.1038) (0.0343)

ξ = 0.5 4.6516 1.6410 0.7924 4.7784 1.6576 0.7357 4.7791 1.6575 0.7364
(1.0667) (0.2496) (0.1053) (1.1396) (0.2513) (0.1039) (1.1376) (0.2515) (0.1041)

ξ = 0.9 6.0889 2.1334 0.9629 6.2438 2.1509 0.9715 6.2347 2.1504 0.9715
(1.6021) (0.3597) (0.1557) (1.7739) (0.3658) (0.1609) (1.7616) (0.3659) (0.1608)

Model 2

ξ = 0.1 16.3007 5.7414 4.2912 16.6050 4.9041 1.8208 16.5489 4.9019 1.8205
(3.2026) (0.4822) (0.2290) (3.3316) (0.5900) (0.1362) (3.3183) (0.5850) (0.1361)

ξ = 0.5 20.9213 7.5627 4.6785 21.4262 7.5131 3.1856 21.3503 7.5137 3.1854
(3.9197) (0.8952) (0.4056) (4.2405) (0.9140) (0.3221) (4.1461) (0.9114) (0.3220)

ξ = 0.9 24.7496 9.4166 5.0762 25.0736 9.5005 4.1242 25.0492 9.5005 4.1240
(4.9474) (1.3196) (0.5408) (5.1441) (1.3119) (0.4653) (5.0993) (1.3119) (0.4650)

Table 1: MSE comparison between the functional CV and Bayesian methods for estimating
the regression function. The number in parenthesis represents the sample sd of the squared
errors. The red colored text represents the minimal MSE, while the blue colored text
represents the minimal sd of the squared errors.

Estimating the error density. With a set of residuals and a fixed residual
bandwidth, one can apply a univariate kernel density estimator and compute
the discrepancy between f(ε) and f̂(ε). To do that, one uses the following
Monte-Carlo scheme:
• compute 100 replications of residuals {ysi − m̂s

h(Xi)}s=1,...,100;
• apply a univariate kernel density to estimate error density, where the

residual bandwidths are estimated by either the likelihood CV (Bowman,
1984) or the Bayesian methods for 100 replications;
• for s = 1, 2, . . . , 100, compute the MISE between the true error density
f s(ε) and estimated error density f̂ s(ε);
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• obtain the overall discrepancy by averaging over 100 replications of
discrepancy.

Table 2 presents MISE for the kernel-form error density with bandwidth
estimated by likelihood CV, Bayesian methods with global bandwidth and
localized bandwidth. The Bayesian methods perform uniformly better than
the likelihood CV, which is the second-stage of the two-stage CV. Between the
two Bayesian methods, there is an advantage in using the localized bandwidth
over the global bandwidth, especially for small sample size.

likelihood CV Bayesian
Global bandwidth Local bandwidth

@
@@ξ
n

50 250 1000 50 250 1000 50 250 1000

Model 1

ξ = 0.1 0.0651 0.0186 0.0091 0.0413 0.0094 0.0030 0.0392 0.0090 0.0029
(0.0129) (0.0069) (0.0044) (0.0111) (0.0027) (0.0008) (0.0105) (0.0025) (0.0007)

ξ = 0.5 0.1360 0.1138 0.0965 0.0086 0.0019 0.0006 0.0078 0.0018 0.0006
(0.0126) (0.0130) (0.0128) (0.0037) (0.0008) (0.0002) (0.0037) (0.0008) (0.0002)

ξ = 0.9 0.1576 0.1430 0.1296 0.0051 0.0011 0.0003 0.0046 0.0011 0.0003
(0.0119) (0.0129) (0.0129) (0.0027) (0.0006) (0.0001) (0.0025) (0.0006) (0.0002)

Model 2

ξ = 0.1 0.1573 0.1074 0.0830 0.0451 0.0138 0.0037 0.0438 0.0130 0.0035
(0.0151) (0.0099) (0.0049) (0.0091) (0.0026) (0.0006) (0.0090) (0.0022) (0.0006)

ξ = 0.5 0.1792 0.1606 0.1477 0.0062 0.0016 0.0005 0.0061 0.0016 0.0005
(0.0147) (0.0078) (0.0045) (0.0019) (0.0005) (0.0001) (0.0019) (0.0005) (0.0001)

ξ = 0.9 0.1878 0.1765 0.1658 0.0030 0.0008 0.0003 0.0029 0.0008 0.0002
(0.0140) (0.0074) (0.0046) (0.0010) (0.0003) (0.0001) (0.0010) (0.0003) (0.0001)

Table 2: MISE comparison between the likelihood CV and Bayesian methods for estimating
the error density. The number in parenthesis represents the sample sd. The red colored
text represents the minimal MISE, while the blue colored text represents the minimal sd of
the ISE.

Diagnostic check of Markov chains. As a demonstration with one replication,
we plot the MCMC sample paths of the parameters on the left panel of
Figure 2, and the ACFs of these sample paths on the right panel of Figure 2.
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Under model 1 with Gaussian error density and signal-to-noise ratio of 0.1,
these plots show that the sample paths are mixed reasonably well. Table 3
summarizes the ergodic averages, 95% Bayesian confidence intervals (CIs),
SE, batch mean SE, and SIF values.
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Figure 2: MCMC sample paths and ACF of the sample paths, for model 1 with Gaussian
error density and signal-to-noise ratio of 0.1.

Prior density: IG(α = 1, β = 0.05)
Parameter Mean Bayesian CIs SE Batch-mean SE SIF
hn 1.9151 (1.7375, 2.1936) 0.0187 0.0039 4.76
bn 0.4419 (0.3175, 0.5908) 0.0924 0.0253 3.65

Table 3: MCMC results of the bandwidth estimation under the prior density of IG(α =
1, β = 0.05), for model 1 with Gaussian error density and signal-to-noise ratio of 0.1.
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Using the coda package (Plummer et al., 2006), we further checked the
convergence of Markov chain with Geweke’s (1992) convergence diagnostic
test and Heidelberger and Welch’s (1983) convergence diagnostic test. Our
Markov chains pass both tests for all 100 replications.

Sensitivity analysis to the prior choice. To examine the robustness of the
results with respect to the choice of the priors, we change the priors in two
ways. First, we keep the same prior distributions as before but alter the
choice of hyperparameters. The results are very similar, as shown in Table 4.
Second, we change the prior distributions from Inverse Gamma distribution
to Cauchy distribution. The use of Cauchy prior for bandwidth estimation
has been studied by Zhang et al. (2009). The MCMC results for the same
sample reported in Table 3 are summarized in Table 4.

In comparison with the results shown in Table 3, the SIF values are
comparable, suggesting that the mixing performance is not affected much by
the different selections of prior density. There is also no obvious difference
in the ergodic averages and 95% Bayesian CIs under both sets of priors,
suggesting that the posterior distribution is robust to the change of priors.

Prior density: IG(α = 5, β = 0.25)
Parameter Mean Bayesian CIs SE Batch-mean SE SIF
hn 1.8538 (1.7220, 2.1006) 0.0134 0.0026 5.11
bn 0.3807 (0.2731, 0.5271) 0.1238 0.0288 4.30

Prior density: Cauchy(x0 = 0, γ = 1)
Parameter Mean Bayesian CIs SE Batch-mean SE SIF
hn 1.9399 (1.7461 2.2412) 0.0227 0.0043 5.28
bn 0.4795 (0.3523 0.6363) 0.1073 0.0239 4.50

Table 4: MCMC results of the bandwidth estimation under the different selections of prior
density, for model 1 with Gaussian error density and signal-to-noise ratio of 0.1.

4. Application to food quality control

Let us consider a food quality control application, previously studied
by Ferraty and Vieu (2006) and Aneiros-Pérez and Vieu (2006), among
many others. The data set was obtained from http://lib.stat.cmu.edu/

datasets/tecator. Each food sample contains finely chopped pure meat

16

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator


with different percentages of the fat, protein and moisture contents. For
each unit i (among 215 pieces of finely chopped meat), we observe one
spectrometric curve, denoted by Xi, which corresponds to the absorbance
measured at a grid of 100 wavelengths (i.e., Xi = (Xi(t1), . . . ,Xi(t100))).
For each unit i, we also observe its fat/protein/moisture content yi ∈ R
obtained by analytical chemical processing. The data set contains the pairs
(yi,Xi)i=1,...,215. Given a new spectrometric curve X , our task is to predict the
corresponding fat/protein/moisture content. As pointed out by Ferraty and
Vieu (2006), the motivation is that obtaining a spectrometric curve is less
time and cost consuming than the analytic chemistry needed for determining
the fat/protein/moisture content. A graphical display of spectrometric curves
is shown in Figure 3.

850 900 950 1000 1050

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Functional predictor: spectrometric curves

Wavelengths

A
bs

or
ba

nc
es

Figure 3: A Graphical display of spectrometric curves.

The first step is to study the relationship between the spectrometric curves
and the corresponding fat/protein/moisture content, respectively. We use
the nonparametric functional NW estimator in this paper. To assess the
out-of-sample accuracy of the nonparametric functional estimator, we split the
original samples into two subsamples (see also Ferraty and Vieu, 2006, p.105).
The first one is called learning sample, which contains the first 160 units
{(Xi, yi)i=1,...,160}. The second one is called testing sample, which contains the

17



last 55 units {(Xi, yi)i=161,...,215}. The learning sample allows us to build the
functional NW estimator with optimal bandwidth, where the learning sample
(Xi, yi)i=1,...,160 is used. To measure the prediction quality, we evaluate the
functional NW estimator at the testing sample (X161, . . . ,X215), from which
we predict responses (y161, . . . , y215).

For comparison, we also computed the nonparametric kernel regression
using the funopare.kernel.cv function provided in the npfda package. To
measure the performance of each functional prediction method, we consider

(i) the distribution of the error sei = (yi − ŷi), for i = 161, . . . , 215,
(ii) the empirical mean square prediction errors: MSPE = 1

55

∑215
i=161 se2i .

While criterion (i) gives an indication how well each hold-out observation is
predicted, criterion (ii) provides an overall error measure. The two different
models used and the corresponding values of MSPE are shown in Table 5. As
measured by the MSPE, there is a slight improvement in prediction accuracy
for the functional NW estimator with the bandwidth selected by the Bayesian
method over the functional CV method. For example, Figure 4 shows the
ability of the estimated model to predict the fat content.

Response variable
Method Fat Protein Moisture
Bayesian 5.3097 2.5313 4.1125

(7.1241) (7.6973) (5.9090)

Functional CV 5.3679 2.5417 4.3186
(7.4324) (7.6842) (6.3178)

Table 5: Out-of-sample MSPE for the functional NW estimator with the bandwidth
estimated by the Bayesian bandwidth estimation method and functional CV. The number
in parenthesis represents the sample sd. The red colored text represents the minimal MSPE,
while the blue colored text represents the minimal sd of the squared prediction errors.

We are also interested in computing the prediction interval nonparamet-
rically. To this end, we first compute the cumulative density function (cdf)
of the error distribution, over a set of grid points within a range, such as
between -8 and 8; we then take the inverse of the cdf and find two grid points
that are closest to the 2.5% and 97.5% quantiles; the 95% prediction interval
of the holdout samples is obtained by adding the two grid points to the point
forecast. For instance, the point forecasts of the fat content are shown as
black dots in Figure 5, while the 95% prediction intervals are shown as red
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Figure 4: Graphical display of the criterion (i), using the functional NW estimator with
two different bandwidth estimation methods.

parentheses in Figure 5.

5. Conclusions and some open questions

We propose a Bayesian approach to select optimal bandwidths in a nonpara-
metric functional regression model with homoscedastic errors and unknown
error density. Through a series of simulation, the Bayesian approach performs
on par with the functional CV for estimating the regression function, but it
is more superior to likelihood CV for estimating error density. Illustrated
by a spectroscopy data set, the Bayesian bandwidth estimation approach
allows the construction of nonparametric prediction interval for measuring
the prediction uncertainty.

As pointed out by the two referees, there are many ways in which the
proposed methodology can be extended, and we briefly mention a few at this
point.

1. Apply the proposed methodology and sampling algorithm to other
functional data sets, such as the ozone level prediction data studied in
Quintela-del-Ŕıo and Francisco-Fernández (2011).

2. Consider other functional regression estimators, such as functional local
linear kernel estimator of Benhenni et al. (2007) or k-nearest neighbour
kernel estimator of Burba et al. (2009). The functional local linear kernel
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Figure 5: Plot of predicted fat contents in percentage and the 95% prediction intervals.
The point forecasts of the fat content are shown as black dots, while the 95% prediction
intervals are shown as red parentheses.

estimator can improve the estimation accuracy of the regression function
by using a high-order kernel. The k-nearest neighbour kernel estimator
takes into account the local structure of the data and gives better
predictions when the functional data are heterogeneously concentrated.

3. Consider other bandwidth estimation methods for the kernel-form error
density, such as the iterative methods proposed by Müller and Wang
(1990) and Jones et al. (1991), which are based on relevant estimation
of mean integrated square error.

4. Extend to nonparametric functional regression model with heteroscedas-
tic errors. The covariate-dependent variance can be modeled by another
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kernel density estimator.

5. Extend to nonparametric functional regression model with functional
responses (see for example, Ferraty et al., 2011, 2012).

6. Extend to nonparametric functional regression model with dependent
functional data, where the functional predictors are lagged values of the
functional responses (see for example, Besse et al., 2000; Quintela-del-
Ŕıo and Francisco-Fernández, 2011).

7. Extend to nonparametric functional regression model with autoregressive
errors (see for example, Dabo-Niang and Guillas, 2010).

8. Extend to nonparametric functional regression model with mixed types
of (function-valued, continuous real-valued and discrete-valued) regres-
sors.

9. Extend to other functional regression models, such as functional single
index regression model, functional additive regression model, and semi-
functional partial linear regression model.
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APPENDIX: Monte-Carlo simulation results for more error
densities

As a sequel of the simulation study, we also investigate the MSE and
MISE of five other error densities, as shown in Tables (.6) and (.7). The
first four error densities are simulated from mixtures of Gaussian densities
selected from Marron and Wand (1992), while the last one is simulated from
a non-Gaussian error density. The five error densities are listed below,

(1) outlier density with the functional form 1
10
N(0, 1) + 9

10
N
(
0, ( 1

10
)2
)
,

(2) separate bimodal density with the functional form 1
2
N(−3

2
, 1
2
)+ 1

2
N(3

2
, 1
2
),

(3) skewed bimodal density with the functional form 3
4
N(0, 1)+ 1

4
N
(
3
2
, (1

3
)2
)
,

(4) claw density with the functional form 1
2
N(0, 1)+

∑4
l=0

1
10
N
(
l/2− 1, ( 1

10
)2
)
,

(5) student-t density with five degree of freedom.

Functional CV Bayesian
Global bandwidth Local bandwidth

HHH
HHf(ε)
n

50 250 1000 50 250 1000 50 250 1000

Model 1

(1) 2.4967 0.8093 0.5941 2.5652 0.6995 0.2377 2.5585 0.6963 0.2385
(0.6026) (0.0918) (0.0343) (0.6492) (0.0966) (0.0218) (0.6454) (0.0936) (0.0227)

(2) 3.1318 1.0780 0.6480 3.1898 1.0918 0.4482 3.1889 1.0922 0.4481
(0.6604) (0.1481) (0.0573) (0.7118) (0.1538) (0.0482) (0.7100) (0.1537) (0.0482)

(3) 2.8841 1.0132 0.7068 2.9625 0.9640 0.4538 2.9654 0.9639 0.4539
(0.6332) (0.1221) (0.0228) (0.7147) (0.1090) (0.0375) (0.7100) (0.1090) (0.0375)

(4) 2.6737 0.8826 0.6116 2.7316 0.8038 0.3029 2.7583 0.8035 0.3025
(0.5988) (0.0998) (0.0404) (0.6627) (0.0920) (0.0225) (0.6139) (0.0919) (0.0217)

(5) 2.8832 0.9794 0.6300 2.9275 0.9403 0.3805 2.9222 0.9405 0.3798
(0.6401) (0.1257) (0.0530) (0.6873) (0.1185) (0.0365) (0.6804) (0.1187) (0.0361)

Model 2

(1) 14.9589 5.2936 4.2154 15.2968 4.0553 1.2843 15.2504 4.0514 1.2817
(3.1366) (0.4287) (0.1657) (3.6445) (0.6043) (0.1325) (3.5283) (0.6049) (0.1326)

(2) 15.7507 5.5577 4.2869 16.1353 4.5648 1.6307 16.0842 4.5638 1.6311
(3.1294) (0.4826) (0.2080) (3.4815) (0.6346) (0.1119) (3.4706) (0.6349) (0.1120)
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(3) 15.6360 5.6672 4.5017 15.6004 4.3772 1.6443 15.9955 4.5193 1.6441
(3.2057) (0.4667) (0.1815) (3.5566) (0.6335) (0.1255) (3.6205) (0.6265) (0.1254)

(4) 15.1832 5.3566 4.2229 15.5061 4.1939 1.3778 15.4894 4.1921 1.3768
(3.2171) (0.4455) (0.1718) (3.4921) (0.5999) (0.1276) (3.4965) (0.5985) (0.1276)

(5) 15.3797 5.4495 4.2601 15.7671 4.3475 1.5098 15.7402 4.3491 1.5087
(3.0393) (0.4689) (0.1858) (3.3367) (0.5992) (0.1203) (3.2584) (0.6001) (0.1203)

Table .6: MSE comparison between the functional CV and Bayesian methods for estimating
the regression function. The number in parenthesis represents the sample sd of the squared
errors. The red colored text represents the minimal MSE, while the blue colored text
represents the minimal sd of the squared errors.
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likelihood CV Bayesian
Global bandwidth Local bandwidth

HH
HHHf(ε)

n
50 250 1000 50 250 1000 50 250 1000

Model 1

(1) 2.0776 1.7451 1.8712 2.0637 1.6605 1.1770 2.0453 1.5902 1.0830
(0.0371) (0.0456) (0.0636) (0.0667) (0.0523) (0.0483) (0.0710) (0.0775) (0.0514)

(2) 0.1557 0.1069 0.0598 0.1350 0.0837 0.0394 0.1339 0.0829 0.0394
(0.0088) (0.0066) (0.0054) (0.0132) (0.0097) (0.0039) (0.0120) (0.0097) (0.0037)

(3) 0.1021 0.0435 0.0365 0.0798 0.0387 0.0285 0.0774 0.0382 0.0285
(0.0129) (0.0032) (0.0014) (0.0129) (0.0027) (0.0019) (0.0124) (0.0027) (0.0018)

(4) 0.1770 0.0838 0.0659 0.1418 0.0757 0.0554 0.1466 0.0739 0.0546
(0.0173) (0.0063) (0.0017) (0.0173) (0.0050) (0.0015) (0.0152) (0.0047) (0.0013)

(5) 0.0615 0.0242 0.0146 0.0608 0.0228 0.0096 0.0590 0.0180 0.0044
(0.0179) (0.0087) (0.0062) (0.0176) (0.0084) (0.0046) (0.0172) (0.0075) (0.0019)

Model 2
(1) 2.2867 2.1694 2.1466 2.2421 2.0898 1.8438 2.2397 2.0579 1.7960

(0.0099) (0.0113) (0.0098) (0.0238) (0.0226) (0.0249) (0.0240) (0.0400) (0.0360)

(2) 0.2197 0.1630 0.1426 0.1838 0.1366 0.0958 0.1819 0.1366 0.0950
(0.0086) (0.0064) (0.0015) (0.0100) (0.0057) (0.0049) (0.0098) (0.0061) (0.0049)

(3) 0.1966 0.1144 0.0792 0.1451 0.0480 0.0360 0.1498 0.0666 0.0352
(0.0088) (0.0092) (0.0035) (0.0144) (0.0095) (0.0021) (0.0140) (0.0058) (0.0020)

(4) 0.3024 0.2102 0.1755 0.2584 0.1555 0.0888 0.2562 0.1472 0.0862
(0.0096) (0.0098) (0.0039) (0.0172) (0.0098) (0.0041) (0.0177) (0.0109) (0.0038)

(5) 0.1877 0.1145 0.0913 0.1432 0.0688 0.0283 0.1417 0.0650 0.0203
(0.0130) (0.0122) (0.0105) (0.0199) (0.0093) (0.0064) (0.0190) (0.0114) (0.0051)

Table .7: MISE comparison between the likelihood CV and Bayesian methods for estimating
the error density. The number in parenthesis represents the sample sd of the ISE. The
red colored text represents the minimal MISE, while the blue colored text represents the
minimal sd of the ISE.
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