Southampton Sabal of Floatronias

School of Electronics and Computer Science

Bridge Formation in Contaminated Transformer Oil by Shekhar Mahmud

Content

- Project aim
- Experimental setup for DC and AC
- DC test results
- AC test results
- Conclusion
- Future work

Aim of the Research

- Understanding the Pre-breakdown Phenomena of Transformer Oil
- Laboratory Experiment Conducted on Contaminated Transformer Oil
- Modelling the Characteristics with a Computer Simulation Package

Experimental Setup for DC

Experimental Setup for AC

Southampton

School of Electronics

DC Bridging in 0.001% Contamination with 150-250 µm Particles

Southampton

School of Electronics

DC Bridging in 0.001% Contamination with 250-500 µm Particles

School of Electronics

DC Current Comparison at 0.001% contamination

Southampton

School of Electronics

AC Bridging in different contaminations at 10kV

Southampton

School of Electronics

AC Bridging in different contaminations at 10kV

Current at different contaminations for at 10kV

Southampton School of Electronics and Computer Science

AC Bridging in different contaminations at 15kV

Southampton School of Electronics and Computer Science

AC Bridging in different contaminations at 15kV

Current at different contaminations at 15kV

Southampton School of Electronics and Computer Science

AC Bridging in different contaminations at 20kV

AC Bridging in different contaminations at 20kV

School of Electronics and Computer Science

Current at different contaminations at 20kV

Conduction current comparison between DC and AC

Conclusion

- A complete bridge doesn't form for AC electric field
- AC currents for different concentrations are almost constant for a certain applied voltage
- Clear evidences of two different mechanisms between DC and AC bridging
- Conductivity through the particles is the main cause of bridge formation

Future Work

- DC and AC experiments with covered electrodes
- Experiments under DC biased AC electric field
- Numerical Modelling of AC Dielectrophoresis

Any comments? Questions?