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[1] A number of studies have set out to obtain a range of atmosphere and ocean model
behavior by perturbing parameters in a single climate model (perturbed physics ensemble:
PPE). Early studies used shallow layer slab ocean or flux-adjusted coupled ocean-
atmosphere models to obtain a broad range of behavior as characterized by climate
sensitivity. A recent study reports a relatively narrow range of sensitivities (2.2–3.2�C) in a
PPE of 35 coupled models without flux adjustment, raising the question whether previous
broad ranges were an artifact of the use of models that were not in top-of-atmosphere
(TOA) energy balance. Moreover, no PPE experiment has reported a large spread of
behavior of the ocean compared to that exhibited in a multi-model ensemble (MME) such
as Coupled Model Intercomparison Project phase 3 (CMIP3). In this work, we randomly
perturb model parameters of a coupled ocean-atmosphere general circulation model using a
space-filling design containing 10,000 combinations. The ensemble is run over the
distributed computing platform of climateprediction.net under fixed pre-industrial forcing
without flux adjustment. We resample a second, 20,000-member, ensemble with
perturbations conditioned on the TOA fluxes from the first ensemble to not drift
significantly from a realistic base state while targeting a range of behavior. Models within
the targeted ensemble show realistic regional control climates when compared to the
CMIP3 ensemble, although there is a bias in global mean surface temperature. The range of
predicted equilibrium climate sensitivities of the targeted ensemble is substantially smaller
than that obtained with flux adjustment, but larger than the range in the CMIP3 ensemble or
in the 35-model un-flux-adjusted PPE in a recent study mentioned above. The Atlantic
meridional overturning circulation in the targeted ensemble exhibits a spread in strength as
wide as that found in the CMIP3 ensemble. We conclude that flux adjustment is not a pre-
requisite for obtaining a broad spread of behavior in a perturbed physics ensemble.
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1. Introduction

[2] Perturbed physics ensembles (PPE) have been used in
many studies to date with the aim to statistically quantify un-

certainty in future projections of climate change. A PPE con-
sists of a number of variants of a single model, usually a
General Circulation (or Global Climate) Model (GCM). Var-
iants are constructed by perturbing the values of a relatively
small number (10–30) of model parameters that control the
sub-grid scale physical processes in the model within plausi-
ble ranges determined by expert consultation. The underly-
ing rationale of this approach may be summarized as
follows. Sub-grid scale processes are still poorly
understood or difficult to observe in nature, and so the
parameter values representing these processes have large
uncertainties on their bounds. Therefore, even the GCM’s
“standard” configuration, which has been tuned to reproduce
the present climate well, is subject to large uncertainty.
There may be other model variants that are statistically as
close to the true state of the Earth’s climate system, and
hence have the ability to simulate the climate of both the
present and the future as well as the standard version. The
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idea behind the PPE approach is to include such model
variants in producing climate projections.
[3] The PPE approach, however, can be computationally

expensive depending on the size of the ensemble; and for
this reason in many past studies, the parameters have
been varied over only a limited number of discrete values.
Therefore, there has always been a concern that some critical
corner of the O(10)-dimensional parameter space may have
been overlooked. In this study, we present an approach
that is both thorough and computationally efficient. We first
sweep over the entire parameter space to make random
perturbations, then run the perturbed model variants and
use a statistical emulator on the simulated results to predict
and focus on parameter perturbation combinations that meet
certain conditions of interest. Finally, we run simulations
with these targeted models, thereby making efficient use of
computational resources.
[4] Wide ranges of behavior of the atmosphere have been

documented in PPE experiments [e.g., Collins et al., 2006;
Rowlands et al., 2012]. On the other hand, obtaining a large
spread of ocean model behavior, expressed in terms of, for
example, ocean heat uptake efficiency and Atlantic meridio-
nal overturning circulation (AMOC) strength, has so far
been unsuccessful (e.g., Collins et al. [2007] and Brierley
et al. [2010], in which ocean parameters related to mixing
were perturbed individually). Brierley et al. [2010] discover
some compensation between the perturbed and unperturbed
ocean processes and suggest that this might further
reduce the impact of parameter perturbations to ocean heat
uptake, which is generally small to start with. For example,
since advection and diffusion, two of the key ocean mixing
processes, draw on the gradient of the temperature and
salinity, it is conceivable that if mixing (of temperature and
salinity, although not necessarily density) is increased by
perturbation of one process, another mixing process might
be forced to contribute less than in the standard configura-
tion. Atmosphere parameter perturbations made in past
studies have varied a wider variety of processes than just
mixing and therefore the atmosphere might be able to
respond more freely.
[5] Flux adjustments have traditionally been applied in

climate change simulations using GCMs to prevent modeled
oceans from drifting significantly away from a realistic
initial base state, by adding artificial heat, freshwater or
momentum flux terms at the surface of the ocean model.
Its use was phased out as models with improved top-of-
atmosphere (TOA) fluxes, hence less drift, were developed
[Randall et al., 2007]. With the advent of PPE experiments,
however, flux adjustments were reintroduced, as perturba-
tions to model physics meant that the small TOA flux
imbalance its unperturbed version was no longer guaranteed.
Collins et al. [2010] report that an unrealistic surface climate
causes climate change feedbacks to be different to those
for an unbiased surface climate and that flux adjusting
for sea surface temperature also improves modeled land
temperature.
[6] Flux adjustments, however, affect dynamical ocean

processes such as advection and meridional overturning
[e.g., Collins et al., 2006; Yamazaki, 2008], so it would be
better not to use it in experiments where ocean dynamics are
expected to play an important role. Furthermore, Marotzke
and Stone [1995] use a simple coupled model to show that

although the correct mean state may have been obtained
by the additive flux adjustments at the sea surface, the transient
behavior of the model is erroneous. Nonetheless, biases in the
baseline surface climate are clearly undesirable. We aim to
reduce this not by using flux adjustment but by targeting
parameter perturbations that have small top-of-atmosphere
(TOA) flux imbalance and yet retain the possibility for a wide
spread of atmosphere and ocean behaviors, such as manifested
in effective climate sensitivity and Atlantic meridional
overturning.
[7] Shiogama et al. [2012] generate 35 perturbed versions

of the Model for Interdisciplinary Research on Climate ver-
sion 5 (MIROC5) coupled GCM using a set of integrations
of the atmosphere-only version of the model to target
parameter combinations that were likely to have a substan-
tial impact on radiative forcing or feedback and filtered to
give low TOA flux imbalances. They ran each model
version for 30 years to evaluate the control climate and
computed their climate sensitivities by increasing CO2 in
year 10 and performing parallel integrations for the
remaining 20 years. They find a range of climate sensitivities
of 2.3–3.2�C. While larger than would be attributable to inter-
nal variability, this is clearly very substantially smaller than
the ranges obtained with flux-adjusted ensembles. The short
lengths of their integrations preclude an extensive discussion
of changes in ocean properties.
[8] In this paper, we outline the approach that we use to

generate new PPE members to obtain diverse behaviors
without the use of flux adjustment which is similar to that
of Shiogama et al. [2012], with three key differences:
(i) we estimate sensitivities from previously-undertaken
integrations of the slab versions of the model, exploiting
the fact that the climateprediction.net slab ensemble is now
so densely sampled, with hundreds of thousands of simula-
tions, that it is possible to accurately predict the climate
sensitivity of parameter combinations of interest without
performing doubled-CO2 experiments; (ii) we perform two
coupled ensembles, using TOA fluxes diagnosed from the
first to target stable versions in the second, rather than using
atmosphere-only integrations; and (iii) we extend integra-
tions of the perturbed physics coupled ensemble for up to
120 years, allowing us to investigate the impact of perturba-
tions on ocean behavior. Hereafter, we call the first and the
second ensembles the “raw” and the “targeted” ensembles,
respectively. We describe the model, experiment design
and ensemble design in section 2, compare the global mean
time series of the key model properties in the raw and the
targeted ensembles, present the estimated spread of effective
climate sensitivity in section 3, and give summary and
present conclusions in section 4.

2. Model and Methods

2.1. Model and Experiment Design

[9] The model we have used in this study is a version of
HadCM3, a Hadley Centre Global Climate Model [Gordon
et al., 2000]. The atmosphere component is a hydrostatic
model and has 3.75� � 2.5� (longitude, latitude) resolution
in the horizontal and 19 levels in the vertical with hybrid
vertical coordinates. The ocean component is a version of
the Cox [1984] ocean model and has 1.25� � 1.25� horizontal
resolution and 20 vertical levels, with finer resolution near the
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surface. A thermodynamic sea ice model is included. The
standard configuration of HadCM3 is well known for its small
TOA flux imbalance and thus can be run without flux adjust-
ment, apart from a very small freshwater flux adjustment in
the vicinity of land ice, to account for freshwater flux into the
ocean from iceberg calving, which is not explicitly modeled
in HadCM3. In perturbed physics experiments, however, the
perturbed model parameters may alter the physical processes
so TOA fluxes are no longer in balance. An interactive sulphur
cycle is activated in this experiment, which brings TOA fluxes
in the unperturbed model to a small negative value.
[10] The multi-thousand member ensemble of models are

sent out over the climateprediction.net (CPDN) distributed
computing platform and are computed on PCs on idle
processor time that has been donated by the participants from
across the world. To enable the models to run on as many PCs
as possible and to increase speed and reduce data size, we
converted the original full-resolution, 64-bit, multi-processor
HadCM3 configuration to run in 32-bit on a single processor.
Due to truncation errors, the ocean model was initially numer-
ically unstable and did not conserve heat and salt, but doubling
the numerical precision in key routines, including those that
solve the barotropic and the tracer diffusion equations, elimi-
nated the instability, and restored heat and salt conservation.
[11] A schematic diagram of the experiment design is

shown in Figure 1. All perturbed control simulations have
been initialized from the same ocean and atmosphere states.
The states have been initiated from year 100 of the original
HadCM3 control run [Jackson et al., 2011], then “spun up”

under the 32-bit, single processor configuration for a further
100 years. Each perturbed model-version was run as a
control simulation for 120 years, in 40-year segments,
under a fixed pre-industrial external forcing of the year
1900, with a seasonal cycle. After a 40-year task is completed
on a participant’s PC, the CPDN server automatically prepares
and distributes the experiment with the same parameter pertur-
bation for the next 40 years. The atmosphere and ocean states
obtained in the control experiment are used to initialize the
next stage of the experiment, one forced with idealized CO2

concentrations and another forced with observed or estimated
20th century natural and anthropogenic forcing. This paper
will focus on the control experiment.

2.2. Ensemble Design

[12] The complete list of parameters and their standard
values is given in Tables 1 and 2.We perturb 33model param-
eters, 22 of which are associated with the atmosphere model,
six with the ocean model and five with the external forcing
associated with aerosols. The atmosphere parameters are a
subset of those perturbed in Murphy et al. [2004], and the
ocean parameters are identical to those perturbed in Collins
et al. [2006]. Our experiment differs from these studies in that
all the parameters are perturbed not singly but simultaneously.
These parameters are selected as they are considered to have
large uncertainties. The parameters and their ranges have been
chosen by consulting the experts who originally designed and
implemented HadCM3 (Table 3).
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Figure 1. Schematic diagram of experiment design. “I.C.” indicates initial conditions (i.e., initial climate
states) for the atmosphere and the ocean model components.
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Table 2. Same as in Table 1 but for Ocean and Forcing

Description Component Default Value Name

Ocean parameters
Isopycnal diffusion of tracer at surface Dynamics 1000 (m2 s�1) AHI1_SI
Background vertical diffusion of tracer at surface Dynamics 1� 10�5 (m2 s�1) KAPPA0_SI
Increase of background diffusion of tracer with depth Dynamics 3� 10�8 (ms�1) DKAPPA_DZ_SI
Background vertical diffusion of momentum (viscosity) Dynamics 1� 10�5 (m2 s�1) FNUB_SI
Decay of wind mixing energy with depth Mixed layer 100 (m) DELTA_SI
Wind mixing energy scaling factor Mixed layer 0.7 LAMDA
Forcing Parameters
Scaling factor for emission from anthropogenic sulphate aerosols Chemistry 1000 ANTHSCA
Sulphate mass scavenging parameter L0 Chemistry 7� 10–5 (s�1) L0
Sulphate mass scavenging parameter L1 Chemistry 3� 10�5 (s�1) L1
Model level for SO2 (high level) emissions Chemistry 3 SO2_HIGH_LEVEL
Scaling factor for emission from natural (volcanic) emissions Chemistry 1 VOLSCA

Table 1. Atmospheric Parameters Used in Physical Parameterization Schemes in HadCM3a

Description Component Default Value Name

Rate at which cloud liquid water is converted to precipitation Cloud 1� 10�4 (s�1) CT
Threshold cloud liquid water content over sea Cloud 5� 10�5 (kgm�3) CW_SEA
Threshold cloud liquid water content over land Cloud 2� 10�4 (kgm�3) CW_LAND
Empirically adjusted cloud fraction Cloud b EACF
Critical relative humidity for cloud formation Cloud c RHCRIT
Ice fall speed Cloud 1 (ms�1) VF1
Entrainment rate coefficient Convection 3 ENTCOEF
Albedo at melting point of sea ice Radiation 0.5 ALPHAM
Temperature range over which ice albedo varies Radiation 10(�C) DTICE
Ice particle size Radiation 30� 10�6 (m) ICE_SIZE
Horizontal diffusion coefficient for temperature and wind speed Dynamics d DIFF_COEFF
Horizontal diffusion coefficient for water vapor Dynamics e DIFF_COEFF_Q
Order of horizontal diffusion for temperature and wind speed Dynamics f DIFF_EXP
Order of horizontal diffusion of water vapor Dynamics g DIFF_EXP_Q
Surface gravity wave drag: typical wavelength Dynamics 2� 104 (m) KAY_GWAVE
Surface gravity wave trapped lee wave constant Dynamics 3� 105 (m�3/2) KAY_LEE_GWAVE
Lowest model level for gravity wave drag Dynamics 3 START_LEVEL _GWDRAG
Number of soil levels from which water can be extracted Land surface 4,4,3,3 7 R_LAYERS
Vertical distance over which air parcels travel before mixing
with their surroundings

Boundary layer 0.15 ASYM_LAMBDA

Constant in Charnock formula for calculating roughness length
for momentum transport over sea

Boundary layer 1� 10�2 CHARNOCK

Used in calculation of stability function for heat, moisture,
and momentum transport

Boundary layer 10 G0

Roughness length for free heat and moisture transport over the sea Boundary layer 1� 10�3 (m) Z0FSEA

aThe columns show the description of the parameter, the component of the model in which the physical scheme is located, values the standard configu-
ration of HadCM3, unit and the name in the Unified Model code.

b0.5 in 19 levels.
c0.95, 0.9, 0.85, 0.7 in 16 levels.
d5.47� 108 in 18 levels, 4� 106.
e5.47� 108 in 13 levels, 1.5� 108 in 5 levels, 4� 106.
f3 in 18 levels, 1.
g3 in 13 levels, 2 in 5 levels, 1.

Table 3. Ranges of Estimated Climate Sensitivity, TOA Imbalance, Reflected Shortwave Radiation (RSR), and Outgoing Longwave
Radiation (OLR) for Different Model Ensembles

Raw
Ensemble

Targeted Ensemble

CMIP320% Confidence Region 99% Confidence Region

Climate sensitivity (K) 2.00–9.63 2.44–7.28 1.99–8.64 2.0–4.5
TOA imbalance (W/m2) –23.3–19.7 –0.84–1.35 –4.75–5.25 –0.74–4.62
RSR (W/m2) 70.8–154 95.6–99.3 89.2–106 98.5–111
OLR (W/m2) 197–262 242–245 238–250 231–242
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2.2.1. Raw Ensemble
[13] The raw ensemble has been designed to double as

the foundation ensemble for this work and as the primary
ensemble for a separate study investigating abrupt changes
of AMOC under increase in CO2 [Williamson et al., 2012].
The parameters are perturbed within plausible ranges elicited
from model developers in a space-filling Latin hypercube
design containing 10,000 parameter combinations. Together
with 40 models containing standard HadCM3 parameter
values (hereafter “standard physics” values), a total of
10,040 models have been distributed using CPDN. Hereaf-
ter, this ensemble will be called the raw ensemble. The
details of the design of the “raw” ensemble is found in
Williamson et al. [2012] In total, 8052 of the original set
of simulations have returned valid data to the CPDN servers.
2.2.2. TOA Flux Uncertainties
[14] Figure 2 shows the year 1–10 TOA flux components

from the raw ensemble, with horizontal and vertical lines
denoting the standard physics values. Given the random
sampling used by the space-filling design, the raw ensemble
shows a wide range in both components compared to that
observed across the CMIP3 ensemble (black dots). To gain
a more quantitative estimate, we have estimated uncer-
tainties in the components of TOA imbalance using
observed estimates from satellite observations.
[15] We estimate uncertainties in the individual compo-

nents of outgoing radiation, for both reflected solar radiation
(RSR) and outgoing longwave radiation (OLR), focusing on
both observational and modeling uncertainties that affect
outgoing radiation. Uncertainty estimates are made for the
2001–2005 period, based on the following sources and

assuming all are independent Gaussian distributions:
satellite measurement uncertainty for the individual compo-
nents of OLR and RSR [Loeb et al., 2009], uncertainty in
forcing that leads to changes in the top of atmosphere
radiation, uncertainty in natural aerosols, uncertainty in the
observed imbalance, uncertainty in the incoming radiation,
and uncertainty arising from internal variability.
[16] Total outgoing radiation (RSR+OLR) is computed

from the incoming minus the observed imbalance, and its
uncertainty is computed by combining uncertainty in the
incoming solar radiation and in the net imbalance. Uncertainty
in the total solar irradiance measurements is estimated to be
0.5W/m2 [Kopp and Lean, 2011]. Uncertainties in the
energy imbalance from two recent estimates are
0.86� 0.12W/m2 ([Willis et al., 2004] for the upper 750m)
and 0.55 to 0.73W/m2 [Lyman et al., 2010]. A value of
0.75� 0.25W/m2 includes both and we estimate the uncer-
tainty in the net flux as 0.25W/m2. The difference between
RSR and OLR is obtained by assuming that the difference
is a normal distribution with mean �40% (corresponding to
an albedo of 0.3) and standard deviation of 10% of the incom-
ing radiation. This covariance matrix was then combined
with the covariance estimate for the individual observations
for OLR and RSR (see Tett et al. [2012] for more detail).
[17] Uncertainty arising from internal climate variability

is estimated from a separate, initial condition ensemble of
118 coupled simulations of the standard configuration of
HadCM3 each of 120 years and almost negligible compared
to other sources of uncertainty. Uncertainty in radiative
forcing was computed by scaling based on atmospheric
simulations (see Tett et al. [2012] for details) the uncer-
tainties in the LW and SW forcings. These were computed
from Table TS.5 of Solomon et al. [2007] to give 1s uncer-
tainties of 1 and 0.20W/m2 for RSR and OLR. We computed
uncertainty in natural aerosols by using three simulations
from Penner et al. [2006]. After correcting the three contem-
porary simulations to the same RSR value that the range
in pre-industrial RSR was 1W/m2, which we used as our
1s uncertainty. These sources of uncertainty were combined
with the observational covariance derived above.
[18] Combining these uncertainties gives individual

standard errors of 1.65 and 0.94W/m2 in RSR and OLR
respectively, and a correlation between them of

2:7497660 -0:65229269
�0:65229269 0:87466201

� �

[19] An ellipse of the 99% confidence region shown in
Figure 2, containing 99% of (RSR,OLR) combinations
generated from this covariance, corresponds to a TOA imbal-
ance of 5W/m2 relative to the standard physics configuration.
[20] Estimation of uncertainties in the components of the

TOA imbalance described above requires a set of subjective
choices and judgments. We are mindful, therefore, to treat
this as an estimate; and in section 3.3, we investigate the
sensitivity of our results to an alternative formulation of
the uncertainty estimate.
2.2.3. Targeted Ensemble
[21] Given the very wide range of TOA flux components

observed in the raw ensemble, many simulations drift away
from the initial state taken from a long simulation of the
standard HadCM3 configuration. Since the initial TOA flux
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Figure 2. Global decadal mean reflected shortwave radia-
tion (RSR) and outgoing longwave radiation (OLR) from the
random ensemble, averaged over the first 10 years of the
control spin up and colored by estimated equilibrium climate
sensitivity. Intersection of the horizontal and vertical lines
denotes our standard 32-bit, single-processor HadCM3 config-
uration, which differs from the CMIP3 HadCM3. Black dots
denote comparable values from CMIP3 models/runs, obtained
as the average of the final 50 years of the pre-industrial control
experiment. The ellipse indicates the 99% confidence region.
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imbalance represents how much the model climate must
adjust to restore radiative balance, we can use this quantity
to target regions of parameter space that will not drift
significantly from the standard physics base state. The key
assumption we make is that the standard physics configura-
tion is a realistic base state to target (although the methodol-
ogy presented here can be applied to targeting any property
of the model).
[22] As Figure 2 indicates, the range of TOA flux compo-

nents from the raw ensemble vastly exceeds the estimated
uncertainty estimate, shown by the ellipse indicating the
99% confidence region. We find that approximately 29%
of the raw ensemble lies within the 99% confidence region.
Our goal here is to refine the ensemble design and increase
the sampling in regions of parameter space producing simu-
lations within the 99% confidence region.

[23] We add a further constraint that the ensemble should
explore a wide range of atmosphere and ocean properties:
this is to avoid producing many model-versions that are
virtually identical to the standard physics version, which is
clearly not useful for representing uncertainty in the climate
response to anthropogenic forcing. To guard against this, we
also target model versions showing a wide spread of equilib-
rium climate sensitivity, although in principle this could be
any property of the model (or combination thereof).
[24] The climate sensitivities are estimated using a

statistical emulator [Breiman, 2001] and results from the
original CPDN HadSM3 ensemble [Stainforth et al., 2005]
as discussed in Rowlands et al. [2012]. Figure 3a shows
predictions of climate sensitivity from the statistical emula-
tor in a 10-fold cross-validation experiment. The predictions
explain over 95% of the variance in simulated climate

a

c

e f

d

b

Figure 3. Validation of the random forecast statistical algorithm in predicting: (a) Climate Sensitivity
(b) Year 1–10 Reflected Shortwave Radiation, and (c) Year 1–10 Outgoing Longwave Radiation.
Figures 3a, 3c, and 3e show predicted values from the random forest against simulated values from
HadCM3/HadSM3, and Figures 3b, 3d, and 3f show the distribution of prediction errors. All results are
out-of-sample predictions which are generated automatically by the algorithm, with similar results found
in a 10-fold cross validation. Results in Figure 3a correspond to a 14,001 member ensemble of HadSM3
slab-ocean experiments, while Figures 3b and 3c are from the raw HadCM3 ensemble consisting of 8052
members. Horizontal and vertical dashed lines in Figures 3a, 3c, and 3e correspond to the simulated values
for the standard physics configuration. Dashed vertical lines in Figures 3b, 3d, and 3f correspond to the
root mean square prediction error. In all cases, the random forest predictions explain over 95% of the
variance in simulated values.
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sensitivity values, and the root-mean-square prediction
error of approximately 0.3K (Figure 3c) is consistent with
estimates of uncertainty arising from internal variability.
[25] The estimation of climate sensitivity only uses the

atmospheric portion of the parameter space, and, while
the slab model climate sensitivity will not fully quantify
the response of the coupled model, we are confident that it
will be a good indicator, given the dominant role that uncer-
tainties in atmospheric parameters have on uncertainty in
the climate response [e.g., Collins et al., 2010; Rowlands
et al., 2012].
[26] We use a similar statistical emulator to fit the relation-

ship between the full input parameter space and OLR
and RSR from raw ensemble. Figures 3b and 3c show
predictions from the emulator against simulated values in
another 10-fold cross validation. In both cases, the predicted
values explain over 95% of the variance in simulated
quantities. Importantly, the variances of prediction errors
(Figures 3d and 3e) are smaller than uncertainties discussed
above (by a factor of 3), indicating that the emulator is able
to provide information when interpolating within the 99%
confidence region.
[27] Given an accurate emulator of the model response

for these quantities of interest, we are now in a position to
estimate the model response at an arbitrary point in parame-
ter space. Thus, with a large candidate set of parameter
configurations and sampling design, we can select configura-
tions with a wide range of climate sensitivities that are
predicted to be close to the standard physics configuration
in the OLR/RSR space.
[28] The choice of sampling design is dependent on the

probabilistic interpretation of the ensemble. Here, we pres-
ent a traditional Bayesian importance sampling approach
often used in similar studies [e.g., Rougier and Sexton,
2007] and a threshold sampling case, which is more closely
tied to a frequentist interpretation. The importance
sampling approach could be interpreted as generating a
distribution of possible models corresponding to a
probability distribution of possible behavior, subject to
problematic issues regarding the specification of a prior
“probability density” to different regions of parameter
space. The threshold sampling approach simply aims to
explore the range of behavior accessible to the model
while satisfying a given goodness-of-fit threshold with
respect to an observational constraint (in this case the
TOA fluxes), and hence does not admit a probabilistic
interpretation. It should be noted that much of this
section attempts to highlight the methodology we have taken
rather than justifying the particular choices made.
[29] For both cases, we start with the same 106 member

candidate ensemble, produced through a Latin-hypercube
sampling of parameter space of parameters, which can be
interpreted as a joint uniform prior distribution on all
input parameters. This design implicitly ensures that all
factor/switch variables have an equal number of cases
for each value. A 10,000 member ensemble of candidate
parameter combinations is produced for each approach as
follows:
[30] 1. Importance Sample: To ensure a wide distribution of

climate sensitivity, we attach a prior weight to each candidate
ensemble member such that the resulting prior distribution of
estimated climate sensitivity is uniform. Second, we estimate

a likelihood weight for each candidate ensemble member
based on the predicted year 1–10 OLR and RSR from the em-
ulator. Specifically, we evaluate the likelihood based on a
Gaussian distribution with a mean given by the standard phys-
ics OLR/RSR and covariance matrix of the previous section.
We then combine the two weights to give a posterior weight
for each candidate, from which we sample 10,000 ensemble
members according to this weight.
[31] 2. Threshold Sample: We first subset the candidate

ensemble members, selecting those predicted to lie within
the 99% confidence region around the standard physics
values of OLR and RSR. To ensure a wide spread of
climate sensitivity, we then attach a weight to each
of the subset to ensure that the predicted distribution of
climate sensitivity was approximately uniform (it
will not be precisely uniform since we do not allow
duplicates), and sample 10,000 members according to
this weight.
[32] We discuss the properties of the two samples in the

next section, although in the rest of the paper we simply
combine the two, since our objective is to assess the range
of behavior that is accessible to non-flux-adjusted models
rather than to produce a distribution of models with a partic-
ular probabilistic interpretation. The combined distribution
can be thought of as threshold sampling with somewhat
denser sampling in regions of high likelihood, provided by
the importance sample. Overall, the threshold sampling
interpretation is more straightforward, given the difficulty
in defending a particular prior distribution for model param-
eters and also our inability to guarantee that all simulations
can be returned from CPDN. This is not as significant a
problem for threshold sampling as for importance sampling,
where the distribution of returned models is interpreted
probabilistically.

3. Results

3.1. Effectiveness of the Targeting Method

[33] In the importance sampling approach, the proportion
of ensemble members contributing 99% of the total
weighted likelihood is 25% for raw and 80% for the targeted
ensemble. In the threshold sampling approach, the propor-
tion of ensemble members within the 99% confidence region
is 29% for raw and 78% for targeted. As designed, the
threshold sample ensemble achieves this improved sampling
of low imbalance regions while still showing a wider range
of climate sensitivities.
[34] The histograms of quantities such as the RSR, OLR,

TOA imbalance and predicted climate sensitivity (not shown)
show that, apart from some tails on either side of the predicted
boundary, the simulated and the predicted distributions are
very similar. This shows that both ensemble targeting methods
have successfully resampled parameter perturbations resulting
in the desired TOA flux imbalance.
[35] Since the emphasis of this paper is purely on assessing

the range of behavior that can be found in perturbed-physics
models without the use of flux adjustment, from now on we
simply combine the importance-sampled and threshold-
sampled ensembles to provide a single targeted ensemble.
This provides greater sampling density in the region where
likelihoods are maximum (provided by the importance-
sampled ensemble) together with an artificially inflated spread
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to ensure that all parts of parameter-space that yield
models consistent with observations above a given threshold
are adequately sampled.

3.2. Behavior of Radiatively Balanced Models in the
Targeted Ensemble

[36] Table 3 shows the ranges of estimated climate sensi-
tivity, TOA imbalance, RSR, and OLR for the raw, targeted
and the CMIP3 ensembles. The range of climate sensitivities
in the targeted members are substantially smaller than that
obtained with flux adjustment, which spans 1.9–11.5K
[Stainforth et al., 2005] but still larger than the range in
the CMIP3 ensemble of opportunity [Solomon et al., 2007].

[37] Figure 4 shows the distribution of simulated global
decadal mean RSR and OLR from the targeted ensemble
(colored diamonds) over the first 10 years of the control
spin-up. Each filled circle indicates a model simulation
and is colored by estimated climate sensitivity. All
circles but a few are located very close to the predicted
99% confidence region defined by RSR and OLR. This
demonstrates the ability of the targeting method to identify
parameter perturbations that simulate desired TOA fluxes.
Furthermore, higher estimated climate sensitivities appear
where RSR is small and the net downward radiative flux
is positive (below the line of zero net radiative heat flux),
and lower estimated climate sensitivities emerge where
OLR is large and the net downward radiative flux is
negative (above the line of zero net radiative heat flux),
consistent with the results of Sanderson et al. [2008]. This
suggests that climate sensitivities estimated from the slab
ensemble [Stainforth et al., 2005] are an adequate indicator
of those of the coupled ensemble. We remind the readers
once again that all simulations described in this paper
are control runs, under fixed external forcing of year
1900, with a seasonal cycle. Our standard version of
HadCM3 gives different TOA fluxes because we use a fully
interactive sulphur cycle, as compared with the CMIP3
HadCM3 configuration in which the sulphur cycle is
parameterized from an offline calculation. Note that the
original HadCM3 model was tuned with the offline sulphur
cycle, but we have used the original model parameters as
our standard version without retuning.
[38] Figure 5 shows the time series of global area-

weighted mean air temperature at 1.5m in the targeted
ensemble. The radiatively balanced models are generally
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Figure 4. Distribution of global decadal mean reflected
shortwave radiation (RSR) and outgoing longwave radia-
tion (OLR) averaged over the first 10 years of the control
spin-up and colored by estimated equilibrium climate
sensitivity. Diamonds denote the targeted ensemble,
colored by estimated equilibrium climate sensitivity.
Colored circles with black outlines denote models from
the CMIP3 ensemble, values of which were obtained as
the average of the final 50 years of the pre-industrial con-
trol experiment. Intersection of the horizontal and vertical
lines denotes the default HadCM3 configuration. The di-
agonal line indicates the line of zero net radiative heat
flux. The ellipse indicates the 99% confidence region.
The numbers by the circles with black outlines indicate
CMIP3 models as follows: 1=CCCMA_CGCM3_1_T47
run01, 2=CCCMA_CGCM3_1_T63 run01, 3=CNRM_
CM3 run01, 4=CSIRO_MK3_0 run01, 5=CSIRO_MK3_0
run02, 6=GFDL_CM2_0 run01, 7=GFDL_CM2_1 run01,
8=GISS_Model_E_H run01, 9=GISS_Model_E_R run01,
10= IAP_FGOALS1_0_G run01, 11= IAP_FGOALS1_0_G
run02, 12= IAP_FGOALS1_0_G run03, 13= INMCM3_0
run01, 14= IPSL_CM4 run01, 15=MIROC3_2_HiRes run01,
16=MIROC3_2_MedRes run01, 17=MIUB_ECHO_G run01,
18=MPI_ECHAM5 run01, 19=MRI_CGCM2_3_2a run01,
20=NCAR_CCSM3_0 run01, 21=NCAR_CCSM3_0 run02,
22=NCAR_PCM1 run01, 23=UKMO_HadCM3 run01,
24=UKMO_HadCM3 run02, 25=UKMO_HadGEM1 run01.

Figure 5. Time series of surface air temperature in the
targeted ensemble. Light gray lines indicate the results from
the entire ensemble. Gray lines indicate models whose simu-
lated OLR and RSR are within the 20% confidence region,
with dark gray lines showing random samples. Thick black
lines indicate standard HadCM3 parameter configuration.
Box-whisker plot indicates the range of the same property in
25 CMIP3 models in the pre-industrial control runs at mini-
mum, 25%, median, 75%, and maximum.
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warmer than the CMIP3 models and exhibit double the
spread of the range of the models in the CMIP3 ensemble.
[39] Figure 6 is the same as Figure 5 but for TOA flux

imbalance. It is interesting that the flux imbalance is posi-
tively greater in the CMIP3 ensemble than the radiatively
balanced targeted ensemble. The fact that the global mean
air temperature at 1.5m is generally warmer in the targeted
ensemble despite the negative or smaller positive TOA flux
imbalance suggests that, on average, the ocean component
of the CMIP3 models must take up more heat than the
radiatively balanced targeted models.
[40] Ocean model behavior is often measured in terms

of how efficiently the ocean transports the excess heat
generated by radiative forcing under climate change from
the ocean surface to the deep ocean. Metrics such as ocean
heat uptake efficiency [Raper et al., 2002] are defined and
used for this purpose. In the present study based on control
simulations, however, it is not meaningful to assess this
quantity because radiative forcing is zero by construction
in balanced models, and hence there is no excess heat for
the ocean to take up in the annual mean and global mean
sense. However, the ocean’s uptake/release of heat from/
into the atmosphere is non-zero in the regional sense in
control simulations as well. Thus we exploit a metric
reflecting regional ocean behavior: the strength of the
Atlantic meridional overturning circulation (AMOC) to
quantify the behavior of the ocean.
[41] Figure 7 shows the time series of the strength of the

simulated AMOC in the targeted ensemble, measured as
the maximum strength between 500–2000m at 26�N. After
an initial drift over the first 30 years or so, in the models
subject to the constraint that TOA fluxes are close to obser-
vations, the AMOC appears to be steady, with natural
variability. The range of the spread in the strength of
AMOC is 8–28 Sv among the radiatively balanced mem-
bers of the targeted ensemble. It is slightly wider than
the range in the CMIP3 models of 9.8–25 Sv [Jackson
et al., 2011]. Since there is a strong correlation between

the AMOC strength in a control experiment and the change
of strength under increasing CO2 concentrations [Gregory
et al., 2005], the spread in our ensemble suggests a wide
spread in the change in the AMOC strength under climate
change.
[42] Direct comparison of the range of the AMOC strength

with that in flux-adjusted PPEs is not straightforward, as flux
adjustment tends to cause the AMOC to weaken (e.g.,
approximately 2 Sv over 100 years in Yamazaki, 2008).
The spread of the AMOC strength in a flux-adjusted PPE
in a control experiment using HadCM3L, a reduced-ocean
resolution version of HadCM3, is found to be 7 Sv (width
between two standard deviations) [Yamazaki, 2008].
Therefore, it might be possible to say that we have obtained
a wider range of behavior in ocean models without using
flux adjustment.
[43] Next, we examine diversity in model behavior with

regards to El Niño-Southern Oscillation (ENSO). The range
of ENSO behavior in a smaller coupled ensemble was
previously discussed in Philip et al. [2009] and Toniazzo
et al. [2008], but here, for the first time, we have a much
larger ensemble without flux adjustment, which has been
shown to adversely affect ENSO behavior [Neelin and
Dijkstra, 1995]. Figures 8a and 8b show two examples of
the time series of Southern Oscillation Index (SOI), which
describes the frequency and the amplitude of the fluctuations
of atmospheric pressure over the Equatorial Pacific Ocean
which is deeply tied to the sea surface temperature fluctua-
tions in the El Niño-La Niña events through atmospheric
convection. During El Niño, the pressure is high over the
western Pacific and low over the eastern Pacific and vice
versa during La Niña. SOI is designed to reflect the pressure
difference between Tahiti (149�W, 17�S) and Darwin
(130�E, 12�S), so positive (negative) values indicate the
occurrence of El Niño (La Niña). The model, shown in
Figure 8a, shows much greater frequency and amplitude
than the model shown in Figure 8b. The diversity in model

Figure 7. As in Figure 5 but for maximum Atlantic merid-
ional overturning circulation (AMOC) at 26�N in the
targeted ensemble. Box-whisker plot indicates the range of
the same property in 25 CMIP3 models in the pre-
industrial control runs at minimum, 25%, median, 75%,
and maximum (Jackson et al. 2010).

Figure 6. As in Figure 5 but for net TOA radiative flux in the
targeted ensemble. Box-whisker plot indicates the range of the
same property in 25 CMIP3 models in the pre-industrial con-
trol runs at minimum, 25%, median, 75%, and maximum.
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behavior is reflected in the plots of auto-correlation
(Figure 8c) and the power spectra (Figure 8d), in which
dashed black lines denote the two examples, solid black
lines the observed SOI over 1936–2011 and gray lines the
results from models within the 99% confidence region for
TOA fluxes.
[44] Now, we compare the ranges of simulated surface

temperature and precipitation in the targeted ensemble with
the CMIP3 models by howmuch they differ from observations.
The reader is reminded that the models are forced with atmo-
spheric CO2 concentrations from the year 1900, so we would
expect sea surface temperatures to be around 0.2–0.3�C
cooler than present day, with some reflection of this
appearing in the surface air temperature [Houghton et al.,
1996]. Figure 9a shows surface air temperature from the
ERA-Interim reanalysis data averaged over 1979–2011.
Figures 9b and 9c show the maximum and minimum
deviations, respectively, from (Figure 9a) the 40-year mean sur-
face temperature from twenty CMIP3 models. In each grid-cell,
the temperature in the twenty CMIP3 models is compared with
that of the ERA-Interim data, and the grid is colored with the
maximum temperature deviation. Over large regions, this

quantity is negative (albeit small), indicating the entire
CMIP3 ensemble lies below the ERA-Interim reanalysis.
The strong negative anomalies at high latitudes, in partic-
ular over the Nordic Seas, are likely due to changes in the
ice cover in that region compared with observations.
[45] Figure 9d shows the 40-year average surface temper-

ature from a model in the targeted ensemble with minimum
global mean root-mean-square error, and Figure 9e shows
the deviation of Figure 9d from Figure 9a. Figures 9f and
9g are as Figures 9d and 9e for a model in a subset of the
targeted ensemble with estimated climate sensitivity exceed-
ing 4.5�C. If we take Figures 9b and 9c as the upper and
lower range in surface temperature defined by the CMIP3
models, then Figures 9e and 9g appear to lie within this
range. This suggests that the targeted ensemble succeeds in
producing control climates that can be considered realistic
as far as the CMIP3 models are concerned. Similar conclu-
sions can be drawn for annual mean accumulated precipita-
tion, shown in Figure 10.
[46] Figures 9 and 10 demonstrate that the errors in base

climates of many members of the targeted ensemble are not
substantially worse than typical errors in members of CMIP3,
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Figure 8. Southern-Oscillation Index (SOI) simulated in the targeted ensemble members within the 99%
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de-trending (although this makes little practical difference) and are normalized by the standard-deviation
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even if we restrict attention to models with climate sensitivity
exceeding 4.5�C, often regarded as “anomalously high”.
Hence, we conclude it is possible to generate models with
climate sensitivities outside the 2–4.5�C considered “likely”
by the Intergovernmental Panel on Climate Change in 2007
[Solomon et al., 2007], although clearly the range of sensitiv-
ities in Table 3 is very substantially smaller than the range
obtained in flux-adjusted ensembles [Stainforth et al., 2005].

3.3. Sensitivity to Uncertainty in TOA Components

[47] As discussed in section 2.2.2, the estimation of
uncertainty in the components of the TOA flux relies on a
set of subjective choices. We therefore performed a separate
evaluation, using a second estimate of uncertainties in the
covariance, which is somewhat smaller.
[48] For the importance sample to estimate the distributions

as though this second confidence region had been used, we

take the models returned in the importance sample and attach
a weight to each based on the ratio of the likelihood with the
new confidence region to that with the old confidence region.
This set is then resampled with replacement. For the threshold
sample, we simply take the subset of the returned models
from the threshold sample that lie within the 99% confidence
region as the sample. The resulting distribution (not shown)
demonstrates that while the uncertainties for RSR/OLR are
smaller, owing to the smaller covariance term, the uncertainty
in TOA imbalance is somewhat similar to the original
distribution. Interestingly, the distributions of climate sensitiv-
ity are very similar. Another reason for the similarity is that
the estimation errors in RSR/OLR from the emulator are
now comparable to the size of the confidence region, and so
the emulators can no longer distinguish inside the confidence
region. Hence, the sample produced is probably quite similar
to that using the larger confidence region.
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4. Summary and Conclusion

[49] Within the perturbed physics framework, we aimed
to generate an ensemble of atmosphere-ocean coupled
GCMs that showed a wide spread of behavior and yet
balanced enough to have stable surface climate without
applying flux adjustment. Flux adjustment is to be avoided
because it alters the dynamics of the model ocean, which is
undesirable when the model is used to estimate uncertainty
in the ocean heat transfer processes, in which ocean dynam-
ics such as the AMOC is expected to play a large role.
We aimed to do this by first generating an O(106) parameter
perturbation combinations by filling the space of 33 model
parameters and performing control simulations. Condition-
ing on the results from the first (“raw”) ensemble, we gener-
ated a second (“targeted”) ensemble using a statistical
emulator, targeting parameter combinations with constrained
OLR and RSR and as wide a range as possible of estimated
climate sensitivity.
[50] Targeted ensemble members successfully matched

the distribution of OLR and RSR to those predicted. The
ensemble members exhibited a wide range of behavior in
both the atmosphere and the ocean. The range of climate

sensitivities in the radiatively balanced members was
substantially smaller than that obtained with flux adjustment
[Stainforth et al., 2005], which spans 1.9–11.5�C (not shown),
but is still as large or larger than the range in an ensemble
of opportunity [Solomon et al., 2007], which has a range of
2–4.5�C. The range of AMOC strength was slightly larger
than that in the ensemble of opportunity [Jackson et al.,
2011]. We conclude that flux adjustment is not a pre-
requisite for obtaining a broad spread of behavior in a
perturbed physics ensemble.
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