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Abstract

Energy metabolism is intrinsic to cell viability but surprisingly has been little studied in human embryonic stem cells (hESCs).
The current study aims to investigate the effect of environmental O2 tension on carbohydrate utilisation of hESCs. Highly
pluripotent hESCs cultured at 5% O2 consumed significantly more glucose, less pyruvate and produced more lactate
compared to those maintained at 20% O2. Moreover, hESCs cultured at atmospheric O2 levels expressed significantly less
OCT4, SOX2 and NANOG than those maintained at 5% O2. To determine whether this difference in metabolism was a
reflection of the pluripotent state, hESCs were cultured at 5% O2 in the absence of FGF2 for 16 hours leading to a significant
reduction in the expression of SOX2. In addition, these cells consumed less glucose and produced significantly less lactate
compared to those cultured in the presence of FGF2. hESCs maintained at 5% O2 were found to consume significantly less
O2 than those cultured in the absence of FGF2, or at 20% O2. GLUT1 expression correlated with glucose consumption and
using siRNA and chromatin immunoprecipitation was found to be directly regulated by hypoxia inducible factor (HIF)-2a at
5% O2. In conclusion, highly pluripotent cells associated with hypoxic culture consume low levels of O2, high levels of
glucose and produce large amounts of lactate, while at atmospheric conditions glucose consumption and lactate
production are reduced and there is an increase in oxidative metabolism. These data suggest that environmental O2

regulates energy metabolism and is intrinsic to the self-renewal of hESCs.
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Introduction

Human embryonic stem cells (hESCs) are pluripotent cells

derived from the inner cell mass (ICM) of the blastocyst, the final

stage of preimplantation embryo development. They proliferate

through self-renewal and provide an excellent model to investigate

developmental mechanisms since they have the potential to

differentiate into all cells of the body [1]. However, if these cells

are to be of therapeutic use it is imperative to ensure that a highly

pluripotent population of hESCs are maintained which can then

be directed down specific lineage pathways.

hESCs are notoriously difficult to maintain in vitro as the

colonies have a propensity to spontaneously differentiate sugges-

tive of suboptimal culture conditions; an effect which may be

circumvented by the use of low environmental O2 tensions [2].

Culture under atmospheric O2 tensions has been found to

decrease hESC proliferation and reduce pluripotency marker

expression compared to culture under low (2–5%) O2 tensions

[3,4,5], an effect regulated by hypoxia inducible factors (HIFs),

specifically HIF-2a [5]. This promotion of an immature, stem cell

like phenotype has also been observed in both malignant and non-

malignant cells cultured under hypoxic conditions [6]. Despite

these encouraging data, many of the biochemical and physiolog-

ical implications of hypoxic culture on hESCs remain to be

elucidated.

Among the ,200 genes regulated by HIFs, metabolic genes

feature extensively [7] suggesting that environmental O2 tensions

may also have a significant impact on hESC metabolism.

However, the metabolic status of hESCs and the impact of

environmental O2 tension have received remarkably little atten-

tion. Significantly, our previous work has shown that metabolic

activity is a central regulator of the phenotype and developmental

potential of human preimplantation embryos [8,9] and highlights

metabolism as a fundamental regulator of cellular function.

Morphologically, hESCs share many characteristics with ICM

cells; a high nuclear to cytoplasmic ratio, low mitochondrial

number, and expression of the same surface antigens

[10,11,12,13]. It is therefore likely that the nutrition of the ICM

may inform on the metabolism of hESCs. In terms of glucose

utilisation, the murine ICM is wholly glycolytic compared to the

differentiated trophectoderm where only 55% of the glucose

consumed may be accounted for by lactate production [14].

Moreover, the ICM is also metabolically relatively quiescent in

terms of mitochondrial activity, O2 consumption and ATP

production compared to the trophectoderm [15]. Knowledge of

the metabolism of hESCs is still in its infancy but it has been
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shown that pluripotency may be enhanced by inhibiting the

mitochondrial respiratory chain [16]. This data was further

supported by confirmation that hESCs and induced pluripotent

stem cells rely on glycolysis for their energy requirements

[17,18,40].

This study aims to investigate how environmental O2 tension

affects the regulation and energy metabolism of hESCs in terms of

O2, glucose and pyruvate consumption and lactate production.

Moreover, the effect of early hESC differentiation as demonstrated

by the short term removal of FGF2 on hESC metabolism and

pluripotency marker expression has also been investigated. These

data suggest that environmental O2 regulates glucose utilisation

and is intrinsic to the energy metabolism and self-renewal of

hESCs.

Materials and Methods

hESC Culture
Hues7 (D. Melton, Howard Hughes Medical Institute/Harvard

University) [41] and Shef3 (Supplied by the UK Stem Cell Bank)

hESCs were cultured at 20% O2 in Knockout DMEM (Invitrogen)

supplemented with 15% knockout serum replacement (Invitrogen),

100 mg/ml penicillin streptomycin (Invitrogen), 1 mM L-gluta-

mine (Invitrogen), 16 non-essential amino acids (Invitrogen),

0.1 mM 2-mercaptoethanol and 10 ng/ml FGF2 (Peprotech) on c
irradiated mouse embryonic fibroblasts (MEFs; a primary source

derived in institutional facilities following University of South-

ampton ethical review committee approval and in accordance with

UK Home Office regulations). hESCs were then transferred to

Matrigel (BD Biosciences) coated plates and cultured in MEF-

conditioned medium at both 20% and 5% O2. They were

maintained for a minimum of 3 passages on Matrigel at both O2

tensions prior to use.

Measurement of Carbohydrate Utilisation
hESCs were passaged on to 12-well Matrigel coated plates and

cultured in MEF conditioned medium. On day 2, 3 and 4 post-

passage hESCs were pre-incubated in a defined metabolic medium

[8] containing 1 mM glucose, 5 mM lactate, 0.47 mM pyruvate,

0.5% human serum albumin and amino acids [19] for 30 mins.

The medium was then replaced with pre-determined quantities

(300–500 ml) of defined medium for 1.5–3.5 h. At the end of the

incubation period, all but 100 ml of medium was removed from

each well and stored at 280uC prior to analysis of carbohydrate

content and the number of cells in each well was determined using

a haemocytometer. In subsequent experiments, the effect of

removing FGF2 for 16 hours on hESC metabolism was

monitored. FGF2 was removed from the medium prior to MEF

conditioning and used to replace regular, MEF conditioned

medium containing FGF2 on day 2 post-passage. Enzyme linked

biochemical assays were used to measure the concentration of

pyruvate, glucose and lactate in 180 ml of spent medium using a

Konelab 20 autoanalyser (Thermo Scientific). The concentration

of carbohydrates in cell containing wells was compared to cell-free

control wells and the consumption of pyruvate and glucose and the

production of lactate by hESCs calculated in pmol/cell/h.

O2 Assay
A 96-well O2 biosensor plate (BD Biosciences) containing 3

wells of 200 mM sodium sulphite (0% O2 control) and 3 wells of a

defined metabolic medium (20% O2 control) was incubated at

37uC in a fluorescence plate reader (BMG Labtech) for 30 mins.

Hues7 hESCs on day 3 post-passage were pre-incubated with

metabolic medium for 30 mins, harvested into 310 ml of fresh, pre-

warmed metabolic medium, added to a well of the O2 biosensor

plate and sealed using an adhesive PCR foil (Thermo Fisher) with

care taken to ensure the absence of air bubbles. The fluorescence

(excitation 485 nm and emission 612 nm) of each well was

recorded every 2 minutes over a two hour period. After the final

measurement, the protein content of each well was determined

using the Bradford assay. O2 consumption was calculated as ml
O2/mg protein/h.

RT-qPCR
RNA was isolated from Hues7 hESCs cultured under feeder-

free conditions on Matrigel on day 3 post-passage using

TriReagent (Sigma) and 2 mg reverse transcribed to cDNA using

MMLV-reverse transcriptase (Promega). cDNA (4 mg) was ampli-

fied in 20 ml reactions containing 1 ml probes and primer mix

(OCT4: Hs01895061_u1; SOX2: Hs00602736_s1; NANOG:

Hs02387400_g1; GLUT1: Hs00197884_m1; UBC

Hs00824723_m1) and 10 ml 26Taqman Universal PCR Master

Mix (Applied Biosystems) using an ABI 7500 real time PCR

system. The conditions used were 2 mins at 50uC, 10 mins at

95uC followed by 45 cycles of 95uC for 15 secs and 60uC for

1 min. Placental cDNA (0–10 ng) was used to produce a standard

curve for each gene of interest as well as the endogenous control,

UBC and used to quantify gene expression. All genes were

analysed in duplicate and normalised to UBC.

siRNA
siRNA was used to silence either HIF-1a, HIF-2a or HIF-3a in

Hues7 hESCs cultured on Matrigel coated plates at 5% O2. The

cells were passaged and the following day 50 nM siRNA (HIF-1a:
Hs_HIF1A_5; HIF-2a: Hs_EPAS1_5; or HIF-3a: Hs_HIF3A_1),

12 ml HiPerfect transfection reagent (Qiagen) and 200 ml knockout
DMEM were mixed, incubated at room temperature for 10 mins

and added in a drop wise manner to hESCs. Allstars negative

control siRNA (Qiagen) was used as a negative control. The ability

of these siRNA to silence individual HIF-a isoforms has previously

been validated [5]. The cells were harvested 48 h post-transfection

and GLUT1 mRNA quantified as above.

Western Blotting
Protein was isolated from Hues7 hESCs cultured on Matrigel

on day 3 post-passage by incubating in ice cold radio immuno-

precipitation assay (RIPA) buffer for 30 mins followed by

sonication for 30 secs. Protein (75 mg) was resolved on an 8%

SDS bisacrylamide gel, transferred to nitrocellulose membrane

and blocked in PBS containing 0.1% Tween-20 and 5% milk for

1 h at room temperature. The membrane was incubated in

primary antibody (OCT4 (Santa Cruz) 1:1000; SOX2 (Millipore)

1:1000; NANOG (Abcam) 1:1000) diluted in blocking buffer

overnight at 4uC. Membranes were washed and incubated in

horse radish peroxidase-conjugated secondary antibodies (anti-

mouse (GE Healthcare) 1:100,000 or anti-rabbit (GE Healthcare)

1:50,000) for 1 h at room temperature. The Enhanced chemilu-

minescence advanced Western blotting detection kit (GE Health-

care) was used to develop the membranes prior to imaging on the

Biorad Chemidoc XRS. Protein expression was quantified relative

to b-actin (mouse anti-b-actin peroxidise conjugated antibody

(Sigma) 1:50,000).

Chromatin Immunoprecipitation (ChIP) Assays
Hues7 hESCs cultured in normoxic (20% O2), or hypoxic (5%

O2) conditions were cross-linked with 1% formaldehyde for

10 min and the reaction blocked with 0.125 M glycine. ChIP
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experiments were performed with HIF-2a (Novus Biologicals) or

immunoglobulin G (IgG) antibody (Santa Cruz) as previously

described [20,21] except that immuno-complexes were washed

using high-salt buffers as followed: 10 times with 600 ml buffer A
(0.1% SDS, 2 mM EDTA, 20 mM Tris HCl pH8, 1% Triton X-

100, 500 mM NaCl), 8 times with 600 ml buffer B (0.1% SDS,

2 mM EDTA, 20 mM Tris HCl pH8, 1% Triton X-100, 1 M

NaCl), 3 times with 600 ml TE (10 mM Tris HCl H8, 1 mM

EDTA) buffer. Recovered DNA was amplified with custom

Taqman Assays (Applied Biosystems) spanning a predicted

hypoxia response element (HRE) site at 21691 bp of the GLUT1

proximal promoter (GLUT1 fwd: CAAATGTGTGGATGT-

GAGTTGC; GLUT1 rev: CCATCACGGTCCTTCTTCATG;

GLUT1 probe: AGGCTGAGCGTGTAAA). qPCR was per-

formed using an ABI 7900 HT Fast Real Time System (Applied

Biosystems) in a 384 well plate.

Statistical Analysis
All data were tested to determine whether they were normally

distributed using the Anderson Darling normality test. Any

differences in the utilisation of carbohydrates or glycolytic rate

with O2 tension were analysed using a Student’s t-test. Differences

in mRNA expression were normalised to the endogenous control,

UBC and then to 1 for cells cultured at 5% O2, or to Allstars

transfection controls when genes were silenced. Differences in

protein expression were normalised to b-actin and then to 1 for

cells cultured at 5% O2. In both cases a one sample t-test was used

to determine significance from either 5% O2 or transfection

controls. Differences in O2 consumption between hESCs main-

tained at 5%, 20% and 5% O2 in the absence of FGF2 was

determined using a one-way analysis of variance followed by a

Fisher’s test. Differences in binding of HIF-2a to the GLUT1

promoter with O2 tension was expressed as a percentage of input

(non-immunoprecipitated chromatin) calculated using 10062[Ct

(Input)-Ct (IP)] for each sample and expressed as box and whisker

plots. All data represent at least 3 independent experiments and

are presented as mean 6 SEM.

Results

Environmental O2 Tension Regulates Carbohydrate
Utilisation
hESCs maintained at 5% O2 display an increased proliferation

and expression of pluripotency markers compared to those

cultured at 20% O2 [5]. The current study aimed to determine

the impact of environmental O2 tension on the energy metabolism

of hESCs. Hues7 hESCs were cultured at either 5% or 20% O2

and the consumption of glucose and pyruvate and the production

of lactate were analysed on days two to four post-passage.

Similarly, the effect of environmental O2 tension on the depletion

of glucose and production of lactate by Shef3 hESCs on day 3

post-passage was also determined. Under each O2 tension, glucose

was found to be the predominant energy substrate utilised.

Interestingly, both cell lines consumed almost twice as much

glucose (P,0.001) and produced approximately 2–3 times the

amount of lactate (P,0.01–P,0.001) when cultured at 5% O2

compared to 20% O2 (Fig. 1A–D). A similar, low level

(,0.1 pmol/cell/h) of pyruvate was consumed by Hues7 hESCs

on each day post-passage (Fig. 1 A–C).

Environmental O2 and Short-term Removal of FGF2 Alters
hESC Energy Metabolism
To investigate whether the difference in energy substrate

utilisation between hESCs cultured at 5% and 20% O2 was a

reflection of the degree of cell pluripotency, FGF2 was removed

from the medium used to culture cells at 5% O2 for 16 hours.

Morphologically, there was no overt differentiation observed in

any of the treatment groups on day 3 post-passage (Fig. S1). This is

in agreement with previous observations of hESCs cultured at 5%

or 20% O2 [5].

In terms of metabolism, removing FGF2 for 16 hours from

hESCs cultured at 5% O2 resulted in a significant reduction in the

amount of glucose consumed in Hues7 cells and a near significant

reduction in Shef3 cells compared to those maintained in the

presence of FGF2 (Fig. 2A and B). However, in the absence of

FGF2, both cell lines displayed a significant reduction in the

amount of lactate produced. Interestingly, twice as much pyruvate

was consumed when Hues7 cells were cultured at 5% O2 in the

absence of FGF2 for 16 hours compared to when FGF2 was

present (P,0.01; Fig. 2 A). This suggests that even the very early

stages of differentiation are associated with an increased reliance

on oxidative metabolism.

To determine the global ability of hESCs to produce energy, O2

consumption was measured. Hues7 hESCs cultured at 20% O2

were found to consume approximately 4 ml O2/mg protein/h,

which was significantly greater than hESCs cultured at both 5%

O2 (P,0.001) and 5% O2 where FGF2 was removed for 16 hours

(P,0.001; Fig. 2 C). Interestingly, the removal of FGF2 for 16

hours from hESCs cultured at 5% O2 significantly increased O2

consumption compared to those cultured in the presence of FGF2

(P,0.05). This suggests that hESCs maintained at 20% O2 have a

greater energy requirement than those cultured at 5% O2 in the

absence of FGF2. hESCs cultured at 5% O2 in the presence of

FGF2 are the quietest metabolically having the lowest rate of O2

consumption.

Environmental O2 and Short Term FGF2 Removal
Regulates the Self-renewal of hESCs
In agreement with our previous report [5], OCT4 protein

expression was significantly decreased in Hues7 hESCs main-

tained at 20% O2 compared to those cultured at 5% O2 (P,0.05;

Fig. 3 A, B). A similar reduction in SOX2 (P,0.05) and NANOG

(P,0.05) expression was also observed at 20% O2 (Fig. 3 C–F).

Interestingly, when FGF2 was removed for 16 hours from hESCs

cultured at 5% O2, SOX2 protein expression decreased signifi-

cantly while OCT4 and NANOG expression displayed a non-

significant reduction to levels comparable to hESCs cultured

under atmospheric O2 tensions (Fig. 3A–F).

GLUT1 mRNA is Differentially Expressed Under Hypoxic
Conditions and Regulated by HIF-2a
To determine whether differences in glucose transport may be

responsible for the increased consumption observed by Hues7

hESCs maintained at 5% O2 compared to 20% O2, the expression

of GLUT1 was investigated. GLUT1 mRNA expression was

significantly decreased in cells maintained at 20% O2 compared to

those cultured at 5% O2 (Fig. 4 A). This suggests a correlation

between the mRNA expression of GLUT1 and the uptake of

glucose in hESCs.

Since HIFs are important regulators of the hypoxic response,

siRNA was used to determine whether any of the HIFa subunits

were responsible for the increased GLUT1 expression in hESCs

cultured at 5% O2. GLUT1 mRNA expression was not affected

when either HIF-1a or HIF-3a were silenced but was significantly

reduced when HIF-2a was knocked down (P,0.001; Fig. 4 B).

This suggests that HIF-2a is an upstream regulator of GLUT1 in

hESCs cultured at 5% O2.

Energy Metabolism of Human Embryonic Stem Cells
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Figure 1. Hypoxic culture promotes glucose uptake and lactate production in hESCs. Glucose, pyruvate and lactate utilisation were non-
invasively measured in a defined hESC medium. More glucose was consumed and lactate produced by Hues7 hESCs cultured at 5% O2 than at 20%
O2 on (A) day 2 (B) day 3 and (C) day 4 post-passage. In contrast, less pyruvate was consumed by hESCs at 5% O2 compared to 20% O2. The rate of
glucose consumption and lactate production was also greater on day 3 post-passage in Shef3 hESCs cultured at 5% O2 compared to those
maintained at 20% O2 (D). **P,0.01, ***P,0.001 significantly different to 5% O2 (n = 12–23).
doi:10.1371/journal.pone.0062507.g001
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HIF-2a Binds Directly to the GLUT1 Promoter
To determine whether HIF-2a binds directly to a potential

HRE in the proximal promoter of GLUT1 ChIP assays were

performed on Hues7 hESCs. We compared the enrichment, using

qPCR, of the sequence corresponding to the GLUT1 proximal

promoter when precipitating with an antibody specific for HIF-2a,
compared to the IgG isotype control. A 4-fold enrichment over the

IgG control was observed in the chromatin isolated from hESCs

maintained at 5% O2 (Fig. 4C). In contrast, no significant binding

of HIF-2a was observed in chromatin isolated from hESCs

maintained at 20% O2. This data reveals a specific HIF-2a
interaction with the GLUT1 proximal promoter only in hESCs

cultured under hypoxic conditions.

Discussion

hESC metabolism has received little attention, despite being

intrinsic to cellular function. Several studies have highlighted

beneficial effects of culturing hESCs at low O2 tensions including

improved morphology, increased expression of pluripotency

markers, a reduction in chromosomal abnormalities and a higher

Figure 2. Short term removal of FGF2 at 5% O2 alters hESC metabolism and promotes O2 consumption. Removal of FGF2 for 16 hours
from Hues7 hESCs cultured at 5% O2 (5% O2– FGF2) resulted in a reduction of glucose consumption and lactate production, whereas pyruvate
consumption dramatically increased (A). Shef3 hESCs cultured at 5% O2– FGF2 displayed a significant reduction in lactate production (B). **P,0.01,
***P,0.001 significantly different to 5% O2+FGF2 (n = 10–18). Hues7 hESCs cultured at 5% O2 consumed less O2 than when FGF2 was removed for 16
hours (C). hESCs maintained at 20% O2 consumed the greatest amount of O2. Bars with the same superscript are significantly different; a, b, P,0.001,
c, P,0.05 (n = 7–8).
doi:10.1371/journal.pone.0062507.g002
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Figure 3. hESCs maintained at atmospheric O2 levels express reduced levels of pluripotency markers compared to those cultured at
5% O2. Hues7 hESCs were cultured at either 5% O2, 5% O2 with FGF2 removed for 16 hours (5% O2– FGF2) or 20% O2. Protein was isolated and OCT4
(A and B), SOX2 (C and D) and NANOG (E and F) quantified using Western blotting. All data has been normalised to b-actin and to 1 for 5% O2.
*P,0.05, **P,0.01, ***P,0.001 significantly different from 5% O2 (n = 3–4).
doi:10.1371/journal.pone.0062507.g003
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rate of proliferation [3,4,5,22] but the impact on cellular

metabolism is unknown. Thus, this study sought to investigate

the influence of environmental O2 on the carbohydrate utilisation,

energy metabolism and self-renewal of hESCs.

Independent of O2 tension, glucose was found to be the

predominant substrate utilised by hESCs. However, highly

pluripotent hESCs cultured under hypoxic conditions were found

to deplete significantly more glucose and produce higher levels of

lactate than cells maintained at atmospheric O2 tensions. This was

intriguing and suggested a correlation between metabolism and

self-renewal. To investigate this further, FGF2, a factor required to

sustain self-renewal and support growth of undifferentiated hESCs

[23,24], was removed for just 16 hours from highly pluripotent

cells cultured at 5% O2. The removal of FGF2 resulted in a

reduced utilisation of glucose and significant decrease in the

amount of lactate produced. This was intriguing and highlights the

ability of hESC metabolism to adapt to changes in environmental

conditions. Moreover, the resultant rates of glucose utilisation and

lactate production observed in hESCs cultured in the absence of

FGF2 for 16 hours were similar to cells cultured at 20% O2. This

was interesting since cells maintained at 20% O2 expressed

significantly less OCT4, SOX2 and NANOG than those cultured

under hypoxic conditions. A similar trend was also mirrored by

hESCs cultured at 5% O2 in the absence of FGF2. These data

suggest that energy metabolism may represent a novel parameter

to quantify the self-renewal potential of hESC cultures.

The mechanism of how FGF2 regulates hESC energy

metabolism under hypoxic conditions is unknown but data from

adipocytes implicates the involvement of HIF-1a [25]. These

investigators found that the culture of adipocytes under hypoxic

conditions in the presence of FGF2 caused an increase in both

GLUT1 expression and lactate production through the induction

of HIF-1a. In hESCs HIF-1a is degraded after ,48 h of hypoxic

culture after which HIF-2a is stabilised [5]. Thus, it could be

speculated that the reduced amount of glucose consumed and

lactate produced by hESCs cultured at 5% O2 in the absence of

FGF2 may be due to the destabilisation/degradation of HIF-2a
and the resultant decrease in expression of hypoxia responsive

genes.

Hues7 hESCs cultured at 5% O2 consumed significantly lower

levels of O2 and pyruvate than those maintained at either 20% O2

or 5% O2 in the absence of FGF2. Since O2 consumption provides

the best global indication of the ability of a cell to produce energy,

this suggests that hESCs cultured at 5% O2 are more metabolically

quiescent than those cultured at 5% O2 in the absence of FGF2, or

at 20% O2. As OCT4, SOX2 and NANOG expression were also

significantly reduced in hESCs cultured at 20% O2 compared to

5% O2, this suggests that as differentiation occurs a more active

metabolism ensues. These results are comparable to that in the

mouse blastocyst where the ICM was found to be metabolically

relatively quiescent consuming low levels of O2 compared to the

differentiated trophectoderm [15].

Our data also suggest that hESCs display a glycolytic

metabolism consuming glucose and producing lactate. This is in

agreement with mouse ES cells and mesenchymal stem cells which

utilise glycolysis as a primary source of ATP production in the

undifferentiated state and switch to oxidative phosphorylation

upon differentiation [26,27]. Similarly, nuclear reprogramming

associated with induced pluripotent stem cells has been shown to

be associated with a shift from an oxidative metabolism to one

dependent on glycolysis [18,39]. Together with the current data,

this highlights the importance of glycolysis for maintaining the

pluripotent state.

hESCs cultured at 5% O2 expressed significantly more GLUT1

than those maintained at 20% O2. Glucose transporter expression

is known to increase the amount of glucose taken up by cells and

Figure 4. GLUT1 expression parallels glucose utilisation and is
directly regulated by HIF-2a under hypoxic conditions. RT-qPCR
was used to quantify GLUT1 mRNA expression in Hues7 hESCs cultured
at either 5% O2, or 20% O2 on day three post-passage (A). All data has
been normalised to UBC and to 1 for 5% O2. *P,0.05 significantly
different to 5% O2 (n = 3). Using siRNA to silence HIF-a subunits in
Hues7 hESCs cultured at 5% O2, GLUT1 mRNA was found to be
regulated by HIF-2a (B). All data has been normalised to UBC and to 1
for the transfection control. *P,0.05 significantly different to transfec-
tion control (n = 6). Using ChIP HIF-2a was found to bind to the
proximal promoter of GLUT1 only in hESCs cultured at 5% O2. ChIP
assays were performed with either a HIF-2a or IgG control antibody on
chromatin isolated from Hues7 hESCs cultured at either 20% O2 or 5%
O2. DNA enrichment is expressed as a percentage of input (non-
immunoprecipitated chromatin). *P,0.05, **P,0.01, NS indicates no
significant difference (n = 5).
doi:10.1371/journal.pone.0062507.g004
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GLUT1 is thought to be the predominant transporter in many cell

types including mouse ESCs, brain, placenta, and retina

[28,29,30]. Our finding of an increase in GLUT1 expression

under hypoxic conditions is in agreement with that observed in

mouse ESCs [31]. As a HRE is present in the promoter region of

the GLUT1 gene [32,33] we were interested to determine whether

any of the 3 regulated HIF-a subunits were responsible for this

increased expression. Using siRNA, HIF-a subunits were silenced

individually and the effect on GLUT1 expression determined.

GLUT1 mRNA was down-regulated only when HIF-2a was

silenced, suggesting that HIF-2a is an upstream regulator of

GLUT1. The HIF family of transcription factors have also been

found to mediate the expression of GLUT1 in mouse ESCs, MEFs

and cardiomyocytes [34,35,36]. However, in these cell types, it

was HIF-1a, not HIF-2a which regulated GLUT1 expression.

This represents a fundamental difference in the regulation of

GLUT1 between mouse and human ESCs.

Using ChIP, HIF-2a was found to bind directly to the region

containing a putative HRE in the proximal promoter of the

GLUT1 gene only in hESCs cultured at 5% O2. This was an

exciting finding since although GLUT1 has been extensively

studied as a hypoxia inducible gene, to the best of our knowledge

this is the first report of HIF-2a binding directly to GLUT1. It is

therefore possible that the increased expression of GLUT1

observed may be responsible for the greater uptake of glucose

into hESCs cultured at 5% O2. However, since many of the genes

involved in glucose metabolism including hexokinase, phospho-

fructokinase, glyceraldehyde-3-phosphate dehydrogenase, enolase,

pyruvate kinase and lactate dehydrogenase have also been shown

to be regulated by environmental O2, alternative mechanisms of

regulation remain a possibility [34,37,38].

Summary
These studies demonstrate that hESCs utilise glucose as a

predominant source of energy. Highly pluripotent hESCs cultured

at 5% O2 have a low level of O2 consumption, consume high levels

of glucose and produce large amounts of lactate. The onset of early

differentiation, through the removal of FGF2 for 16 hours in

hESCs cultured at 5% O2, or by maintaining cells at 20% O2 leads

to a more oxidative metabolism, demonstrated by an increased

consumption of O2 and a decreased uptake of glucose and

production of lactate. The rise in glucose uptake observed under

hypoxic conditions corresponds to an increased expression of

GLUT1 which is directly regulated by HIF-2a. This data provides

further metabolic support for maintaining hESCs under hypoxic

conditions, rather than culturing at atmospheric levels of O2.

Finally, our data highlights the intrinsic importance of energy

metabolism for hESC maintenance and may provide a novel

method for the assessment of self-renewal.

Supporting Information

Figure S1 Typical morphology of Shef3 hESCs on day 3
post-passage cultured at 5% O2 (A), 5% O2 in the
absence of FGF2 for 16 hours (5% O2– FGF2; B) and
20% O2. Scale bar = 100 mm.
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