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Adaptive Weighted Expected Improvement With Rewards Approach in
Kriging Assisted Electromagnetic Design
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The paper explores kriging surrogate modelling combined with expected improvement approach for the design of electromagnetic
devices. A novel algorithm based on the concept of rewards is proposed, tested and demonstrated in the context of TEAM Workshop
Problem 22. Balancing exploration and exploitation is emphasized and robustness of the design considered.
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I. INTRODUCTION

HE paper builds on our previous publication [1] where

Adaptive Weighted Expected Improvement (AWEI) was
first introduced and the concept of rewards [2] implemented and
tested using the Schwefel test function [3]. In this paper the tech-
nique is investigated further, extended to real design problems
and illustrated using the TEAM Workshop Problem 22 [4]. The
algorithm exploits kriging [1], [5] as an efficient tool to balance
exploration with exploitation.

II. BALANCING EXPLORATION AND EXPLOITATION

A. Kriging

As a kind of regression model, kriging [5] is able to exploit
the spatial correlation of data in order to predict the shape of the
objective function based only on limited information. Moreover,
it can estimate the accuracy of this prediction, which may be ex-
tremely helpful in assisting the main decision of any optimiza-
tion process, namely where the next evaluation point (vector)
should be located.

Kriging exploits the spatial correlation of data in order to
build interpolation; therefore the correlation function is a crit-
ical element. This relies on the linear regression model (1) and
the Gaussian correlation model (2)
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where the global function Y ;" Ok fx(x) and an additive
Gaussian noise ¢(z) are integrated to the predicted value §(x)
of the objective function; f is the correlation amongst the data
in k-direction and pj, determines the ‘smoothness’ of (2). The
most popular correlation function is given by the Gauss model
where the value of py, is simply taken as equal to 2. For a given
set of data, the maximum likelihood estimation optimizes the
value of ¢ and then the correlation model is brought into the
regression model to evaluate the function with the best linear
unbiased predictor [5].
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B. Utility Functions

The ‘expected improvement’ utility function [6], based on a
potential error—the ‘Mean Square Error’ (MSE) produced by
the kriging model—is commonly used to select multiple designs
for further evaluation. Here the optimization problem is viewed
as minimizing the objective function. The Expected Improve-
ment (EI) function is defined as
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where §j(z) is the value of objective function predicted by
the kriging model, and $(x) is the root mean squared error
in this prediction. The first term of (3), including Gaussian
density, favors “exploitation”—searching the most promising
regions (high confidence); while the second term, containing
the Gaussian distribution, prefers “exploration”—searching
the regions that have high uncertainty. It has been found [2]
that in practical cases exploration performs dramatically better
in terms of finding the global optimum, whereas exploitation
often causes the kriging model to stop around a local minimum.
The termination criteria used by the kriging model are often
based on finding repeatedly the same sampling point within
prescribed tolerance, thus balancing exploration and exploita-
tion is vital. The EI algorithm distributes the weights equally
between the two terms and can be seen as a fixed compromise
between exploration and exploitation. In order to study the ef-
fect of different weights, the Weighted Expected Improvement
(WEI) [6] was derived from EI by adding a tuneable weighting
parameter. Through a set of experiments it was shown that
by changing the value of the tunable parameter the efficiency
of finding the global minimum can be affected. However, the
optimal value of the weight is hard to find and usually problem
dependent. Hence a modified strategy is required to design a
more intelligent method which could guide itself automatically
through the whole searching procedure using an iterative
process.

C. Adaptive Weighted Expected Improvement With Reward
Approach (AWEI)

Two algorithms inspired by reinforcement learning [7],
the Adaptive Weighted Expected Improvement (AWEI) and
the Surrogate Model based Weighted Expected Improvement
approach utilizing the concept of rewards [2] (SMWEI), were
proposed previously [1] to make the process of tuning weights
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Fig. 1. The decision-making chart for balancing exploration and exploitation
using AWEI algorithm.

more intelligent and self-guiding. The decision-making chart of
AWEI is shown in Fig. 1. Compared with the original [1] this
version is enhanced by the addition of a pre-test stage during
which a “cheap” simplified surrogate model is applied built
on a specific prediction and the potential error produced by
kriging. A pair of fixed weights (one emphasizing exploration
and the other exploitation) are initially set at equal values. The
Mean Square Error from the kriging model is used to calculate
the rewards. After comparing the rewards obtained from the
pre-test, the weights are redistributed on the terms favoring
exploration or exploitation. The weight with a better reward of
the two is then used to feed back—via the FEM module—into
the main iterative loop of the design process.

Although finding the global optimum is often sufficient, this
may not be enough when a robust design is considered, as in-
formation about the shape of the objective function and posi-
tion and shape of local minima is also relevant. The quality of
the approximation of the objective function is the most impor-
tant prerequisite when the robustness of the solution is based on
a kriging model rather than the real function. In the next sec-
tion the performance of the AWEI method will be assessed in
the context of finding the global optimum concurrently with ob-
taining a good quality function prediction for the search space
of interest.

III. NUMERICAL EXPERIMENTS

To explain the concepts we use a simple single-variable func-
tion shown graphically in Fig. 2. There are two local minima
(B and C) and one global minimum (A). When considering
practical factors such as uncertainty of the variables due to
manufacturing tolerances, non-uniform material properties or
imperfect control of operating conditions, the theoretically
best-performing point A may not be a practical optimal so-
lution. The final judgment will be influenced by the margin
of the uncertainty and by how much the objective function
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Fig. 2. The single-variable analytic function [8], [9]. The gradient index is de-
fined as the maximum component of the gradient of the objective function with
respect to design variables [8].
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Fig. 3. A two-variable objective function.

may change when the design variables assume limiting values.
For a minor uncertainty, even under extreme (but still small)
departure of the parameter from its nominal value, the objective
function may still be acceptable—even if worse than at the
theoretical “best”—and thus even a “sharp” optimum like A
may be judged as practical. But under increased uncertainty the
confidence in the final performance may be assured only by a
much more “shallow” minimum, such as B, or even C. Thus
the preferred practical design may be selected away from the
theoretical global optimum.

Various methods of assessing the robustness have been pro-
posed in literature. In [9], the initial optimization problem is
transformed into a multi-objective optimization where both the
objective function and the gradient index of this function are
minimized simultaneously. We take a similar approach; how-
ever, we calculate the gradient index using the predicted value
of the objective function rather than the function itself. The mo-
tivation behind such an approach is to reduce the computational
effort by avoiding the costly FEM (or similar) numerical solu-
tion. For this methodology to work it is very important to have
good prediction for the objective function. The quality of the
prediction will now be investigated, initially with the aid of a
popular test function [8], [9] defined as

xr) = — . -
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1+ (z; —25)2/30
in the range 5.6 < z; < 27. The two-variables (n = 2) version

is plotted in Fig. 3 and will be used to assess AWEI and compare
its performance against standard EI method.
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Fig. 4. Kriging assisted EI; (a) function after 324 iterations, (b) error.

For both the EI and AWEI tests, seven initial sampling points
were used (as in Table I). Kriging assisted EI needs 324 iter-
ations to find the global minimum and the predicted shape is
demonstrated in Fig. 4(a), with the error calculated against the
actual objective function shown in Fig. 4(b). The AWEI strategy
is more efficient in finding the global minimum, requiring 211
iterations (Fig. 5), but the final approximation is not as good as
that resulting from EI as the number of available points is less.
Nonetheless, in some regions, e.g., 5 < x71 < 27,25 < 5 <
750r25 < o £ 75,56 < wy <27, AWEI outperforms EI
(Fig. 5(b)).

IV. RESULTS FOR TEAM WORKSHOP PROBLEM 22

The full description of the TEAM 22 Benchmark problem
(superconducting magnetic energy storage system) may be
found in [10]. The goal of the optimization task is to achieve
the stored energy of Fi; = 180 MJ with a minimal stray field
Bgray . The objective function is defined as

B, |E — Eyet|
OF = stray re
B;Zlorm Efef (6)
where Bporm = 3 4T and Bsztray = (Z?il |Bstray,i|2)/(22)s

subject to some geometrical and “quench” constraints. We con-
sider here the 3 parameter problem, although initially—for the
purpose of demonstrating typical shapes of the objective func-
tion—one of the variables is fixed (R2 = 3.08 m), while d> and
ho varied. One of the challenges in creating the kriging correla-
tion matrix is the “combinatorial explosion” when many param-
eters are used [11] and we propose to use a successive “zoom
in” strategy to cope with this issue; a two-stage version imple-
mented in the context of the TEAM Problem 22 is described in
Table II.

The initial sampling points would normally be selected using
the Latin Hypercube [12]; in our tests we fixed the positions at
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Fig. 5. Kriging assisted AWEI; (a) function after 211 iterations, (b) error.

TABLE I
INITIAL SAMPLING POINTS

X1 X2 y X1 X2 y
10 7 7.9966 20 7 7.6024
10 10 8.1913 7 13 7.0688
5.7 10 6.4292 25 20 7.2927
13 7 7.0688

TABLE I1

THE ‘ZOOM IN” STRATEGY USING KRIGING ASSISTED EI FOR TEAM 22 TESTS

The first stage The second stage

hy(m)  dy(m) h,(m) d,(m)
Test ranee Min 0.408 0.1 0.464 0.35
= Max 22 0.4 0.576 0.4
Step size 0.056 0.01 0.007 0.001
0.4+ = i -
S |2 Contour lines of the objective function (OF) |
T Ty | * Sample points in the first stage (rough) test |
¥ K .| + Sample points during the second (final) stage |
03t K % The optimal point (h2=0.478 , d2=0.3940 ,OF=0.0874)

Up hilt
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-
*
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Fig. 6. The two-parameter SMES problem tested by kriging with EI.

(hQ = 0.744 m, (lz = 0.13 m), (hQ = 1.3047(12 = 0.22 m)
(he = 1.64 m, d2 = 0.40 m) and (hy = 2.088 m, do = 0.37 m)
to facilitate comparisons. Kriging with EI required 25 iterations
to complete the first “rough” stage, and further 29 iterations to
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Fig. 8. Kriging applied to three-parameter SMES problem (a) EI, (b) AWEL

TABLE III
THE THREE-PARAMETER KRIGING ASSISTED AWEI FOR TEAM 22 TESTS

The first rough stage The second stage
Rp[m] hy[m] dy[m]  Rp[m] hy[m] dy[m]
Test range Min 2.6 0.408 0.1 30 0408 03
£ Max 34 22 0.4 32 0744 04
Step size 0.1  0.056 0.01 0.01 0.007 0.001

find the best-performing solution (ke = 0.478 m, d2 = 0.394
m, OF = 0.0874 (Fig. 6). For kriging assisted AWETI the rele-
vant iteration numbers are 21 and 23 (Fig. 7). The ‘history’ of
the EI and AWEI strategies may be followed on the two figures.

The initial settings for the 3 parameter test are presented in
Table III. For kriging with EI, 79 sampling points were created
in the first stage, with further 132 points in the zoomed-in re-
gion; in the AWEI case, 156 sampling points were followed by
167 points in the second stage (Fig. 8). The total numbers quoted
include the initial sampling points needed by the kriging model.
It is no longer possible to conveniently display the objective
function itself for three parameters.

To demonstrate the advantages of the proposed methods over
other well-known stochastic algorithms, Table I'V has been com-
piled using available published data [19]. It is clear that kriging
assisted EI and AWEI both offer significant advantages in terms
much reduced number of computationally expensive function
calls to achieve required level of accuracy. However, those gains
are somewhat offset by the need to create the kriging correla-
tion matrix. Finally, the robustness of the design requires further
consideration and will be studied in the context of more rele-
vant test cases. A particular challenge is to select test functions
representative of the problems encountered in electromagnetic
design, although the prime concern remains to keep the number
of function calls low.

V. CONCLUSION

Exploration and exploitation in the design algorithm are con-
trolled via a kriging model, the Weighted Expected Improve-
ment strategy and the use of “rewards,” with robust design also
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

Algorithm  R,(m) dy(m)  hy/2(m) OF ltggﬁgis
GA 3040 0386 0240 0.134 2400
HUTS 3.080 0380 0246  0.089 3821
ITS 3100 0.388 0240 0.098 1824
SA 3078 0390 0237 0.008 5025
NTS 3.080 0370 0254 0.089 1800
PBIL 3110 0421 0241 0.101 3278
El(Kriging) ~ 3.090 0471 0197  0.0875 211
AWEI(Kriging) 3.090  0.464 0200 0.0875 323

Genetic Algorithm (GA) [13]; Tabu Search (HuTS) [14]; Improved Tabu
Search (ITS) [15]; Simulated Annealing Algorithm (SA) [16]; New Tabu
Search (NTS) [17]; Population-based Incremental Learning (PBIL) [18].

considered. To avoid problems associated with combinatorial
explosion a “zoom in” strategy is proposed.
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