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Abstract

The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and
international travel. To understand human movement patterns on the network and their socioeconomic, environmental and
epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger
flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple
models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with
a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel
datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a
spatial interaction framework to predict the air transportation flows between airports. Training datasets based on
information from various transportation organizations in the United States, Canada and the European Union were
assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built
to predict passenger flows on the network, and compared to the results produced using previously published models.
Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to
previously published models, yielding the highest successful prediction rate at the global scale. Based on this model,
passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport
node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline
Importation Risk (VBD-Air) project at: www.vbd-air.com/data.
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Introduction

Demand for travel has boosted the growth of the global air

travel network at an unprecedented rate. In the past 20–30 years,

the network has expanded dramatically with a steady growth rate

of 4–5% per year [1], accompanied by a nearly 9% annual growth

rate of passenger and freight traffic [2]. In 2011, the worldwide

international and domestic passenger kilometers transported

reached a record-high of 5.2 trillion kilometers [3]. The large

volumes of air traffic, result in profound impacts on commodity

trade [4], regional development [5], cultural communication [6],

disease importation [7,8] and species invasion [9–11]. As humans

and commodities are transported at exceptional rates through

aviation compared to other modes of transportation, how these

patterns impact the socioeconomic, environmental and epidemi-

ological landscape is of significant interest [7,9,11,12].

Quantifying the volume of passengers on the air travel network

is critical to understanding the complicated spatial interaction

between origin and the destination cities [7,8]. Previously, studies

from a range of fields [9–11,13–16] have made use of data from

the International Air Transport Association (IATA) or the

International Civil Aviation Organization (ICAO). These data

are often restricted to scheduled flight plus seat capacity

information on routes. However, not all commercial flights

operate at full capacity; and such data often overestimate the

passenger numbers on affected routes [7]. Moreover, capacity data

provide information on only point-to-point connection; thus,

travel patterns that require a stopover and transfer of planes are

not captured [17]. Although origin-destination data derived from

air ticket sales are available (e.g. http://www.iata.org/ps/

intelligence_statistics/paxis/pages/index.aspx ), such data are

expensive for research purposes, running to many tens of

thousands of dollars, and can require significant legal and

confidentiality agreements for data usage. Other databases of

international flow by pair-wise airports are held by private

companies (e.g. Marketing Information Data Transfer, http://

ma.aspirion.aero/midt). These proprietary data bases are costly

and difficult to obtain; with payment required repeatedly to

maintain the latest data. Here we aim to outline a modeling
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framework to produce open-access estimates of global air traffic

flows for research purposes that can be regularly updated.

Spatial interaction models have been utilized to estimate the

volume of passengers given an origin and destination city where

data are lacking [4,14,15,18–25]. The most common of which is

the gravity-type model, which incorporates drivers such as the site

characteristics of origins and destinations, and measures of

‘‘locational separation’’ to depict the interaction between origins

and destinations for purposes of estimating flows. As Grosche et al

[25] summarized, commonly used drivers in the spatial interaction

model to estimate the air traffic include 1) socio-economic

characteristics of origins and destinations, such as population,

income, GDP, urban infrastructure, education level, and 2)

service-related factors such as the quality (e.g., flight frequency,

plane size and air fares) and the market demand of airline service.

The locational separation is usually calibrated by the distance or

travel time separating origins and destinations. The gravity model

provides a solid theoretical and practical background on under-

standing the movement of populations since it explicitly captures

the absolute and relative spatial relationship of origins and

destinations [19].

The utilization of network characteristics sheds light on the

identification of air service factors in the gravity model for flow

estimation, since 1) the layout of the global air travel network

follows the ‘‘hub-and-spoke’’ network model and 2) heterogeneities

in the network topologies are indicated by the demands of air

travel for the geographic areas in which the airports serves. Firstly,

large air travel companies in mature air travel markets adapt a

hub-and-spoke model to achieve a balance of travel time for

customers and increase efficiencies in the use of transportation

infrastructure. In this model, a single airport is assigned to a single

hub or multiple hubs to form a regional inter-connected

community [26–28], where ‘‘stop over’’ and ‘‘feeder’’ routes exist;

connecting the small airports with low degree connections to a

larger degree hub [29]. The locations of airport hubs are selected

as the optimum locations that satisfy the inter-regional travel

demands and minimize the total transportation cost [26,27].

Moreover, the hub-and-spoke layout can be reflected on the

‘‘small-world’’ and the ‘‘scale-free’’ characteristics on the network.

Guimera et al [30] studied the ‘‘small-world’’ feature and showed

that most airports can be reached from every other with only a

small number of connections. They also identified how central

nodes with low degree connectivity play an important role for

inter-regional and intra-regional communication. The ‘‘scale-free’’

feature ensures that the degrees of the air travel network follow a

power-law distribution as suggested by the nodal structure of flows

clusters [31] and described by the hierarchical span of the major

airports in the United States [16].

Secondly, the connectivity and centrality of airports in the air

travel network can act as indicators for air travel demand, since

the local measurement of air passenger volume, population, and

the level of economic activities at the periphery of the hub are

highly correlated [32–34]. Empirical research [35–37] suggests a

link between observed incremental growth of air passengers,

increased passenger flows, and economic growth. Liu et al. [38]

quantified the marginal effects of population growth in metropol-

itan areas on the air travel market, indicating that the odds of

having a ‘major’ air traffic market increase 41% per 100,000

population growth. Wang et al [39] studied the air travel network

in China and found that cities in the more urbanized area of East

China had a higher centrality score and a higher number of air

passenger volumes compared to the more rural West China. These

studies indicate the mutual correlation of network centralities and

urban development, and reflect the spatial agglomeration of

economic activities and unequal air travel service demands.

To study the movement of vector-borne disease on the air travel

network, Johansson et al [17,40] modeled the actual passengers

counts between 141 airports worldwide, for origins and destina-

tions that had epidemic significance. Utilizing the air travel

itineraries of the United States as a training set, they constructed a

generalized linear model with a Poisson link to estimate worldwide

passenger flows using nodes and routes characteristics as model

covariates. Their models provided reasonable flow predictions of

origin-destination travel. Our research follows the general

modeling framework used in Johansson et al [17,40], but extends

the specification to a global model which includes: 1) all nodes with

a host-city population of more than 100,000; 2) routes between all

airports that are within 0, 1 or 2 stops on the air travel network.

Materials and Methods

Airport Locations and Scheduled Routes
Information on a total of 3,416 airports across the world,

together with their coordinate locations was obtained using

Flightstats (www.flightstats.com) for 2010. The connectivity and

scheduled air travel network routes were defined by a 2010

scheduled flight capacity dataset purchased from OAG (www.oag.

com). These included information on direct links (if a commercial

flight is scheduled) of origin and destination airports, flight

distances, and passenger capacity by month for 2010. Directly

connected airports pairs were utilized to construct a graph for the

air travel network in 2010 with 3,416 nodes and 37,674 edges. The

average degree of the network was 22.06, with the maximal degree

recorded as 476 for Frankfurt Airport (IATA code: FRA). The

topology of the graph exhibited both small-world and scale-free

properties as already observed in similar global or regional air

travel dataset analyses [30,41,42]. The coefficients of the power

law function fitting the scaled-degree distribution was 1.0160.1,

which is in concordance with a previous study [30]. The average

path length is 4.11, measured as the average number of steps

travelling from any one node to any other node, while the

diameter of this network was 14 (which indicates the shortest path

between the two most remote airports). Based on the network

created by the flight statistics assembled, we calculated the degree,

centrality and strength for each node and use these measurements

as covariates at the modeling stage.

GDP and Population Information
Generally, socio-economic variables at a global scale are

difficult to obtain. The G-Econ data (http://gecon.yale.edu/)

provide indices representing both market exchange rates (MER)

and purchasing power parity (PPP) at a 1-degree longitude by 1-

degree latitude resolution at a global scale. Due to the large

geographical coverage of the grid cells, we extracted the closest

PPP value for an airport and calculated the PPP value per capita

in 2005 by dividing the purchasing power parity by the population

value in each grid cell. These data were utilized as local economic

measurements for each airport.

Given computing power limitations on the modeling and matrix

sizes, we selected the airports serving a city population number

more than 100,000. To select these airports, a web crawler built on

the WolframAlpha API (http://products.wolframalpha.com/api/)

was used to extract the city populations for each airport. Wolfram

alpha is a knowledge engine which is capable of computing

population information from various sources including: U.S census

data, United Nations urban agglomeration and City Population

(http://www.citypopulation.de/) data. These data capture the
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most recent city population estimates from these data sources (for

cities in United States, the US Census 2010 data were utilized). In

our database, there were 1,491 airports satisfying these criteria.

Actual Travel Passenger Flow
Data on passenger origins and destinations on the air travel

network were obtained from a variety of sources to construct a

training dataset:

1) The DB1B market data from the Airline Origin and

Destination Survey (DB1B) provides a 10% sample of U.S.

domestic passenger tickets from reporting carriers, including

information such as the reporting carrier, origin and

destination airports, prorated market fares, number of market

coupons, market miles flown, and carrier change indicators.

To create a training dataset, these data were aggregated

annually by the origin and the destination airport code with

the sum of counts of itineraries. This sum of counts was

simply multiplied by 10 to reflect the 10% sample schema. To

protect the US air travel industry, the reported international

Origin-Destination data by the U.S carriers is strictly

restricted to U.S citizens, and requires detailed statements

on the use of the data. Hence, the research presented here did

not take into account the international portion of the Origin-

Destination data from DB1B.

2) The Canadian transport department provides statistics

relating to the movement of aircraft, passengers and cargo

by air for both Canadian and foreign air carriers operating in

Canada (http://www23.statcan.gc.ca/imdb/p2SV.

pl?Function = getSurvey&SDDS = 2703

&lang = en&db = imdb&adm = 8&dis = 2). This survey pro-

vides estimates of the number of passengers traveling on

scheduled domestic commercial flights by directional origin

and destination city pairs. In this survey, significant numbers

of Canada-U.S trips were reported. The city pairs were

matched to the airport pair that had the shortest routes

defined by the OAG database with the passenger number

obtained from the above data source. For example, passenger

numbers between Toronto and New York City were matched

to the direct route of YYZ to JFK, since it is the shortest route

between these two cities.

3) Detailed route data for passenger numbers from EuroStat

(http://epp.eurostat.ec.europa.eu/portal/page/portal/

transport/data/database ). This database presents passenger

numbers between the main airports of reporting countries

and their main partner airports in the European Union.

All of these flow statistics were utilized to create a training

dataset O-D matrix. In this training dataset, there were 95,709

aggregated itineraries between 712 airports. The covariates used

for modeling are described below.

Network Covariate Processing
Cities are situated in a complex hierarchical network and the

flows between cities are either constrained or facilitated by this

hierarchical structure [4,43]. We defined three levels of economic

activity for each city per capita based on the 33% quartile of the

distribution of PPP per capita. Thus, nine types of economic links

were identified (low-low, low-medium, low-high, etc.) to reflect the

type of flow within/across the economic hierarchies. Similarly, we

defined four levels of hierarchy based on the degree distribution of

the airports, and sixteen types of flows were identified to reflect the

type of flow within/across the air service hierarchies.

A prediction dataset framework for routes was constructed

based on the adjacency matrix defined by the OAG dataset. For

each airport, destination airports via first-order connection,

second-order connection and third-order connections on the air

travel network were identified. Along these routes, information on

the minimum number of stopovers and the maximum seat

capacity were calculated. Moreover, following approaches out-

lined in Bhadra’s research [32] we defined a categorical variable

for distance classes to separate the markets by stage lengths, with 1

for short-haul (2,000 kilometers or less), 2 for medium-haul

(between 2,000 and 3,500 kilometers) and 3 for longer hauls (3,500

or more kilometers). We excluded routes less than 200 km since

passengers are believed to have more efficient and effective land-

based methods to travel such small distances. Note that only 3,842

possible routes (,0.001%) are less than 200 km. Finally, an origin-

destination (OD) pair list with 1,295,752 rows was created.

For analytical purposes, the global OD pair list was constructed

following these assumptions:

1) Passengers always take the shortest path to their destination

city, and they don’t stop at the connecting city. The data used

for modeling is itinerary data which represents the minimum

number of stops from one airport to another. Hence,

passenger numbers in our database represented the flows

for the first order, the second order and the third order of

network connections. We assumed that passengers choose the

first shortest path found by a breadth-first search algorithm,

as the route was found by iterating all the neighboring nodes

until a path from the origin and the destination was

identified. If both the origin and the destination cities have

multiple airports, the passengers were assumed to take the

shortest path from all possible routes between these airport

pairs, which usually resulted in the path between the two

largest airports in terms of capacity. This assumption is

supported by Button et al [44]’s research that passengers tend

to choose a larger hub for their travel.

2) Passengers do not choose routes with more than two stops.

We used the number of stops as a categorical variable rather

than a numeric variable since it is considered to be a measure

of hierarchical accessibility. In fact, for the air travel network

in 2010, all of the possible calculated routes within two stops

covered 83% of all the possible connections. Also, multiple-

stops (more than two stops) were comparatively rare as a

share of total passengers in our actual travel flow datasets. In

DB1B domestic datasets, there are no itineraries for travels

between cities with a population size more than 100,000

within two stops.

All the network characteristics were calculated using the igraph

(http://igraph.sourceforge.net/) library in R (http://www.r-

project.org/). Snowfall library (http://cran.r-project.org/web/

packages/snowfall/index.html ) was utilized for parallel processing

to accelerate calculations. A summary of variables included in the

model is presented in Table 1.

Model
We firstly constructed and tested a model based on our training

dataset and then applied the model to predict OD pairs globally.

The model we utilized takes the form of a spatial interaction

model:

Pij~f Nodei,Nodej ,Routeij ,Interactionsij

� �

where Pij is the annual aggregated passenger flow between node i

Global Air Passenger Flow Matrix in 2010
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and j. Nodei and Nodej denote the collection of node characteristics,

which are considered to be drivers of the size of the flow. Routeij

denote the collection of route characteristics, which are considered

to be the proximity measurements. Interactionsij denotes the

collection of two-way interaction effects between categorical

variables such as stops, country, degree link type, economic link

type and haul type, as well as other node and route characteristics.

For the purpose of enhancing estimation and thus prediction,

we tested four model specifications which include 1) a lognormal

model for main effects only. This model adopts the general gravity

model framework as the one described in Balcan et al [45]. To

utilize this model, a logarithm transformation is performed for

each quantitative variable. The main effects included both node

and route characteristics. 2) A generalized linear model for main

effects and interactions with Poisson distribution and a log link.

This model adapted the model utilized by Johansson et al [17,40]

for predictions of the traffic flows between epidemiologically

significant cities. 3) A generalized linear model for main effects and

interactions with a negative binomial distribution and a log link.

This model is similar to model 2 except that it utilized a negative

binomial distribution to account for the possible over-dispersion in

the data. 4) A lognormal mixed model with main effects,

interactions, and random effects on origin and destination city

(note that a logarithm transformation is performed for each

quantitative variable as well). This model assumed that the

passenger flows were independent between different degree link

types but correlated within the same degree link type, while model

1–3 made the assumption that all passenger flows were indepen-

dent of each other, which is very strong and unrealistic in practice.

Random effects were thus included to account for the dependence

among passenger flows and the possible heterogeneity between

levels of air travel services. More detailed model descriptions can

be found in Text S1.

Apart from model fitting on the entire training dataset, cross-

validation was performed to evaluate how accurately each model

would predict in practice: firstly, the training dataset was randomly

partitioned into 10 subsets, each consisting of 10% of the

observations. Then on each of the subsets (the cross-validation

testing set), we validated the analysis using the remaining data.

Lastly, the validation results were averaged over the rounds, with

ranges of percentages reported. Three criteria were chosen for

model evaluation: 1) the coverage rate of the 95% prediction

intervals, which measured the percentage of the observations that

fall into the corresponding 95% prediction intervals; 2) the

coverage rate of the 630% observation intervals, which measured

the percentage of the predictions that fall into the 630% intervals

of the corresponding observations; 3) the successful prediction

rate, which measured the percentage of predictions that fall

into the same magnitude category as the corresponding observa-

tions. These magnitude categories were defined by dividing the

passenger flow numbers into five groups: 102 and under, 102–103,

103–104, 104–105, and 105+, each group represents one category.

Table 1. Descriptions of covariates used in the modeling process.

Variables Descriptions

Node characteristics

Popi The population of the origin city

Popj The population of the destination city

PPP2005i The purchasing power index where the origin airport serves

PPP2005j The purchasing power index where the destination airport serves

PDA2005i The purchasing power per capita index where the origin airport serves

PDA2005j The purchasing power per capita index where the destination airport serves

Strengthi The sum of the edge weights of the adjacent edges for each vertex for the origin city

Strengthj The sum of the edge weights of the adjacent edges for each vertex for the destination city

Degree_Outi The degree number of the origin city on the air travel network

Degree_Inj The degree number of the destination city on the air travel network

Closeness_Centralityi The mean geodesic distance between a given node and all other nodes with paths from the given node to the
other node. This variable is calculated according to the origin city.

Closeness_Centralityj The closeness centrality measure for the destination city.

Betweeness_Centralityi The number of shortest paths going through the original airport.

Betweeness_Centralityj This is the calculation of betweeness centrality for the destination airport.

Route characteristics

Inverse Distance Inverse great circle distance between the origin and the destination airport

Country Indicates whether the origin and the destination are in the same country.

Alternative Number of alternative routes to the destination

Stops Number of stops on the shortest route from the origin to the destination

MaxC The maximum capacity along the shortest path

Degree Link Type This variable identifies the types of flows between different hierarchies of airports defined by the air travel services
level.

Economic Link Type This variable identifies the types of flows between different hierarchies of airports

Haul Type This variable differentiates the effect of long haul flights. 1 for short-haul (2000 kilometers or less), 2 for medium-
haul (between 2000 and 3500 kilometers) and 3 for longer hauls (3500 or more kilometers).

doi:10.1371/journal.pone.0064317.t001
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Results

Model Comparison on the Training Dataset
For each model, most coefficients were significant at the 0.05

significance level as the percentages of the significant coefficients

are about 90%, 100%, 96%, 95% respectively for model 1 to 4.

For the purpose of prediction, we kept all the covariates in the

model instead of removing the non-significant ones. Not surpris-

ingly, most of the interactions between node and route charac-

teristics played an important role in model estimation as we

treated the number of stops as a categorical variable. The

interaction between haul types and inverse distance was also

significant, which agreed with previous work [32].

Both model 1 and model 2 provided narrow confidence

intervals for predictions, while model 3 and model 4 provided

wider intervals to accommodate variation in the data. All of these

models had at least 68% successful prediction rates for predicting

the magnitude of passenger flow. According to the results

presented in Table 2, model 4 provided the most accurate

prediction.

For each of the models, we calculated the Root Mean Square

Error (RMSE) and Mean Absolute Error (MAE). RMSE is a

frequently used measure of the differences between estimate values

and the values actually observed. A smaller RMSE suggests a

better model fit. MAE is the average of the absolute value of the

prediction errors, which serves the same purpose as RMSE and is

believed to be more robust in many situations. As shown in

Table 3, model 4 yielded the lowest RMSE and MAE for the

majority of the data points except for extremely large observations.

For the largest observed passenger value category, model 2 gave

the lowest RMSE and MAE, while model 4 gave the second lowest

RMSE and MAE.

Figure 1 presented the prediction and diagnostic plots for Model

4. In figure 1, panel a) showed that most of the prediction values

are close to the y = x (prediction = observation) line; panel b)

showed that most of the residuals scatter along the y = 0

(residual = 0) line, yielding no obvious pattern. Both plots indicated

that Model 4 was a plausible model for the passenger flows.

However, the prediction seemed poor at the lower tail. This was

expected, given likely randomness in the smaller amount of

passenger exchanges between airports [17]. Diagnostic plots for

other models are presented in figure S1 and S2.

Alternative diagnostics for testing the model fit were performed

for model 4 as well. Firstly, a multilevel model described in

Snijders et al [46] and implemented in the SAS code written by

Recchia et al [47] to calculate r-squared measures for the fourth

model was utilized. The first level of the model which considered

only the individual connectivity was found to explain 84.0% of the

variance in the data, and the second level, which incorporated the

independency between different degree link type group and the

within-group correlation explained 98.7% of the variance,

indicating a good model fit, and an improved explanation power

in terms of variance. Secondly, for the directly connected flights,

we compared both the predicted value from model 4 and the

capacity data from OAG to the observed passenger flows on a log

scale using paired t-test. The results showed evidence of difference

between the mean predicted passenger number and mean

observed passenger number, and between the mean capacity

number and mean observed passenger number, both at the 0.05

significance level. However, the geometric mean ratio of log

(predicted value) to log (passenger number) was 1.01(panel c) in

Figure 1), while the geometric mean ratio of log (capacity) to log

(passenger number) was 1.08(panel d) in Figure 1). The predicted

values showed more agreement on the observed value, while the
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Table 3. Root Mean Squared Errors and Mean Absolute Errors for all models.

Measurement Categories
Number of
Records Model 1 Model 2 Model 3 Model 4

RMSE Observed Passenger
(OP),102

2379 1680 2923 1947 726

OP in 102–103 6440 3536 5127 32405 1802

OP in 103–104 7314 7397 8771 10639 4346

OP in 104–105 4817 20780 23002 41585 21940

OP.105 1132 163352 85897 216610 127194

MAE Observed Passenger
(OP),102

2379 286 538 402 120

OP in 102–103 6440 629 1073 1413 333

OP in 103–104 7314 2729 3218 3140 1621

OP in 104–105 4817 14697 14929 19689 13415

OP.105 1132 115710 61305 94447 89233

doi:10.1371/journal.pone.0064317.t003

Figure 1. Diagnostic plots for all models. a) Predicted vs. observed value of model 4. b) Residual vs. observed value of model 4. c) Distribution of
ratio of predicted value vs. observed value in log scale with 95% confidence interval for geometric mean. d) Distribution of ratio of capacity vs.
observed value in log scale with 95% confidence interval for geometric mean.
doi:10.1371/journal.pone.0064317.g001
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capacity data represented a significant overestimation of flows

between two directly connected airports. Hence, our predicted

values provided a closer approximation of the traffic flows on the

air travel network compared to the maximum seat capacity metric

for the directly connected cities, as used in previous studies [9–

11,13–16].

In summary, our model (Model 4) outperformed the lognormal

spatial interaction model (Model 1) used in Balcan et al [45] and

the Poisson model (Model 2) used in Johansson et al [17,40] for

the training dataset. Moreover, for direct flights, our estimates

showed more homogenous agreements with observed passenger

numbers compared to simple seat capacity data.

Prediction and Interpretation of the O-D Passenger Flow
Matrix

Model 4 was applied on the estimation dataset to predict

passenger flows with coefficients extracted from the training

datasets. We have identified the over-dispersed predictions that

exceeded the maximum capacity on the routes (3% of the data)

and replaced them with the product of the maximum capacity on

the routes. According to the training dataset, the maximum

numbers of itineraries for one-stop and two-stop connections were

140,086 and 8,060, respectively. Since these data were generated

from the mature air travel market and constrained by the network

structure, we considered them as the upper limits of the data

distribution. As such, we adjusted the prediction of the first-order

connection and the second-order connection flights scaled by these

two maximum numbers. We then removed all predictions that

were less than 1 person. Finally, 644,406 routes with origin/

destination airport codes, number of stops, and predicted

passenger numbers were produced.

As described before, the passenger counts were grouped into

five categories as a test of successful prediction rate in magnitude:

1–102,102–103,103–104,104–105and 105 and more. The first two

categories presented small numbers of passenger exchanges,

implying random flows between two airports, and the fourth and

fifth categories indicated a higher probability representing steady

flows between airports. Figure 2 a) showed all the flows with more

than 105 predicted passengers.

Secondly, given an origin/destination, the dataset produced

through the research outlined here can estimates the endpoints

and starting points with passenger flows on the air travel network.

Figure 2. Predicted air traffic flows. a) Predicted flights with passenger flows of more than 100,000. b) All possible passenger flows through
direct flights originating from Atlanta. c) All possible passengers’ flows through one-stop flights originating in Atlanta. d) All possible passengers’
flows through two-stop flights originating Atlanta. e) All airports with an incoming passenger numbers more than 5,000,000.
doi:10.1371/journal.pone.0064317.g002
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Figures 2 b)-d) illustrated the passenger flows and number

originating from Atlanta, categorized by number of transfer.

Figure 2 e) showed the distribution of airports with incoming

passenger numbers over 5,000,000. This reflected the mature air

markets of the United States and Europe, though noticeable

concentrations of airports could be observed in the emerging

markets such as India and China as well.

Discussion

With continuing growth of the global air travel network, we

must expect continued socioeconomic, environmental, cultural

and epidemiological impacts. This research shows how network

characteristics combined with multiple datasets on various

perspectives relating to the movements of passengers of passenger

flow on the global air network can be compiled to provide

estimates that are more accurate than previous modeling efforts.

Such a dataset provides a valuable resource for scientists and

decision makers to measure the global flow of air traffic and its

potential influences.

In the database outlined here, 644,406 unique routes spanning

1,491 airports serving city populations of more than 100,000 were

modeled based primarily on publicly available datasets. On the

training dataset, our model has outperformed similar research at

the global scale and can explain 98% of the variance in the data.

Within the database, 23,785 routes follow a direct connection,

291,745 routes are one-stop connections and 328,876 routes are

two-stop connections. Using this route and airport information,

anyone can construct flow matrices to describe the global air traffic

flow and assess its multiple impacts.

Due to data constraints, a range of uncertainties and limitations

exist in the output modeled datasets. The first inconsistence comes

with internal uncertainties within the DB1B dataset. To construct

the DB1B dataset, Transtat only requires US carriers to report O-

D pair data, hence the O-D data is likely to be inaccurate in

markets served with a significant number of foreign carriers (e.g.,

New York, Washington D.C., Chicago, and Los Angeles).Mean-

while, flights operated by foreign carriers usually have a share code

with U.S. carriers and these flights are included in our database. If

there is more than one airport in a city, each of the airports is

treated as a separate node. This may well result in overestimates of

the flow to secondary airports in a city.

The second set of inconsistency is the population data. Due to

data availability, only city population data were utilized, when it is

sometimes the case that people in neighboring metropolitan area

can access the airport in question through other ground-based

transportation methods (for example, people in Gainesville FL are

often likely to drive two hours to Jacksonville or Orlando to take a

plane, rather than utilize the Gainesville regional airport which is

10 miles away from the city center). As a result, our predictions

may overstate the markets for small airports.

The third source of uncertainty stems from the fact that the data

we utilized for the training datasets were only from the United

States, Canada and the European Union. Thus, international

flights are less well represented in our dataset and most of the flight

data describes the flows between airports in high income countries.

Additionally, long haul international flights with more than three

stops are absent.

The topology of air travel network is likely to vary at the

regional level. Wang et al [39] found that in terms of topological

measurements, the Chinese air travel network is similar to the

Indian one, but different than that of the US. As current air travel

networks in low income countries usually feature point-to-point

connections between city pairs [48], high income countries are

increasingly prompted to utilized a hub-and-spoke system due to

their mature air travel markets. On the other hand, it is observed

that some companies (such as Southwest Airlines and Jet Blue in

United States) in high income countries also adopt spoke-to-spoke

models to connect hot spots of air travel demand [32]. This

heterogeneity may affect the flow estimation country-wise and

overestimate the driving factor of hubs in both high and low

income countries.

The demand for air travel are heterogeneous and ‘‘largely

determined by the spending capacity of customers’’ [49]. Hence, it

could be anticipated that the demand for air travel in each country

varies and is correlated to GDP. Also, the demographic profile of

passengers on the air travel network is likely different between

countries. Under a regional context, this may affect the prediction

of domestic passenger numbers, while international heterogene-

ities in traffic flows may be attributed to differing visa policies

between countries [50]. Visa restrictions may reduce traffic flows

substantially between countries [51]. Moreover, cultural differ-

ences at a country level could represent indicators of attraction

and drivers of population movements [6,52].

The potential limitations discussed above arise through the

constraints of the data sources used. These may be alleviated

through incorporation of more publicly accessible data in future

work, including: 1) more detailed economic indicators (such as

GDP, income etc.) at the city level: such measures could further

describe drivers in the spatial interaction model; 2) itineraries from

low income regions of the world–such data would enlarge our

training and testing databases to avoid sampling errors; 3) hub

characteristics (such as the number of enplanements, transfers and

deplanements): these measures could help explain the function of

the hubs in controlling network flows. Alternatively, transportation

forecasting models [53,54] and mobility and migration models

[55] could be utilized to estimate the global O-D matrix based on

the traffic counts on nodes and edges.

Conclusion
The research presented here has documented the generation of

a world-wide Origin-Destination matrix of passenger flows in 2010

for airports with host city populations of more than 100,000.

Results show that the modeled dataset improves substantially on

the accuracy of datasets used in previous studies. The datasets are

freely accessible for academic use and are published as part of the

Vector-Borne Disease Airline Importation Risk (VBD-Air) project

at www.vbd-air.com/data/.
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