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Abstract—This paper proposes a combined method
including adaptive segmentation and Higuchi fractal
dimension (HFD) of electroencephalograms (EEG) to monitor
depth of anesthesia (DOA). The EEG data was captured in
both ICU and operating room and different anesthetic drugs,
including propofol and isoflurane were used. Due to the non-
stationary nature of EEG signal, adaptive segmentation
methods seem to have better results. The HFD of a single
channel EEG was computed through adaptive windowing
methods consist of adaptive variance and auto correlation
function (ACF) based methods. We have compared the results
of fixed and adaptive windowing in different methods of
calculating HFD in order to estimate DOA. Prediction
probability (Py,) was used as a measure of correlation between

the predictors and BIS index to evaluate our proposed
methods. The results show that HFD increases with increasing
BIS index. In ICU, all of the methods reveal Dbetter
performance than in other groups. In both ICU and operating
room, the results indicate no obvious superiority in calculating
HFD through adaptive segmentation.
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1. INTRODUCTION

An anesthesiologist effort in providing optimal working
conditions to surgeons and also in ensuring patient safety is
essential in operating room. However awareness during
surgery with rate of 1:1000 [1, 2] and over dosing with
anesthetic agents are major clinical problems of anesthesia.
Subsequently necessity to assessment and monitoring depth
of anesthesia (DOA) is obvious. Monitoring DOA based on
autonomic responses of patient body such as respiration
pattern, blood pressure, body temperature, tearing, sweating
and heart rate is a classic method [3], but these responses are
affected indirectly by anesthetic agents however, it is known
that these agents have significant effects on the EEG
waveform.

A large amount of information can be extracted
from EEG waveform based on different signal processing
methods. Ability of this information to predict DOA depends

on the variation of its value in different levels of anesthesia,
but in general, the goal is to produce a unit less index that
monotonically quantifies DOA.

One of the earliest methods is based on the Fourier
transform that determines the power of EEG in different
frequency bands [4]. Zikov et al. proposed a wavelet based
anesthetic value for central nervous system monitoring
(WAVns) that quantifies the depth of consciousness
between awake and isoelectric state [5]. Ferenets et al.
analyzed the performance of several new measures based on
the regularity of the EEG signal. These measures consist of
spectral entropy, approximate entropy, fractal dimension and
Lempel-Ziv complexity. Their results show highly sensitive
behavior of the mentioned measures on frequency content of
signal and the dose of anesthetic agent [6]. Application of
neural networks (NN) and selecting proper parameters as NN
inputs in estimating DOA is reviewed by Robert et al.
Various strategies of choosing the NN model were presented
and discussed [7].

According to various mentioned methods, different
EEG monitors have been introduced. The Narcotrend™
monitor (Monitor Technik, Bad Bramsted, Germany) that
based on pattern recognition of the raw EEG and classifies
the EEG into different stages, introduce a dimensionless
Narcotrend™ index from 100 (awake) to 0 (electrical
silence). The algorithm uses parameters such as amplitude
measures, autoregressive modeling, fast Fourier transform
(FFT) and spectral parameters [8]. The SEDLine™ EEG
monitor that capable of calculating of PSI™ index uses the
shift in power between the frontal and occipital areas. The
mathematical analysis includes EEG power, frequency and
coherence between bilateral brain regions [9]. Datex-
Ohmeda™ s/5 entropy Module uses entropy of EEG waves
to predict DOA and finally BIS™ (Aspect Medical Systems,
Newton, MA) that is the first monitor in the marketplace and
has become the benchmark comparator for all other
monitors. The BIS™ (Bispectral) index is a unit-less number
between 100 (awake) and 0 (isoelectric) and according to
producer claim, the BIS index between 40 and 60 is a
suitable and safe range for operating purposes.



Fractal dimension is a measure of how ‘complicated’ a
self-similar figure is [10]. In the particular case of curves in a
plane, while a topological line is one-dimensional, a fractal
curve has a fractal dimension D that is in the range
ofl < D <2. The fractal dimension of an object provides
insight into how elaborate the process that generated the
object might have been, since the larger the dimension the
larger the number of degrees of freedom likely has been
involved in that process [10].

Calculation of fractal dimension of EEG-signal clearly
demonstrates an influence of magnetic field on the brain
[11]. In general, the compass fractal dimension represents a
measure of the degree of shape complexity or roughness of
the curve. Higuchi , Katz , Petrosian C , Petrosian D, Sevcik
, zero set, adapted box , compass, and variogram are some
methods to calculate fractal dimension of signals. Higuchi’s
method is the most accurate of the other methods for
calculating time series fractal dimension.

The aim of this study is to introduce an efficient method
with the application of adaptive segmentation, based on
fractal dimension to measure DOA. In section II, the
methodology is described. The results are presented in
section III. Finally, a detailed discussion and conclusion is
provided in section IV.

II.  METHODOLOGY

A. Patients

After study approval by ethical committee of medical
school and obtain written informed consent from all selected
(6 male, 2 female, with mean age: 56 year and weight: 68kg)
subjects, patient was premedicated by intramuscular
morphine 0.1 mg/Kg and promethazine 0.5 mg/kg. All
patients were coronary artery bypass graft candidate. After
arrival in  operating room, electrocardiogram, pulse
oxymetry, depth of anesthesia, and invasive blood pressure
monitoring was established. The BIS-QUATTRO sensor™
(Aspect Medical Systems, Newton, MA) applied to the
forehead of patient before induction of anesthesia. Then 8
patients were anesthetized in a same manner by intravenous
thiopental sodium (5mg/Kg), pancuronium Bromide(0.1
mg/Kg), fentanyl (5pg/kg), and lidocaine (1.5 mg/Kg).
Anesthesia continued by administration of isoflurane (1
MAC), morphine (0.2 mg/Kg) and O, (100%) until
cardiopulmonary bypass (CPB) beginning. During CPB,
patients were anesthetized by propofol under BIS control
(40-60) and O, (80%). Patients were undergone mild
hypothermia (31-33°C) during CPB. After coronary bypass
grafting and separating from CPB, anesthesia continued by
isoflurane (1 MAC) and O, (100%) administration. After
surgery, patients were transported to ICU (Intensive Care
Unit) under monitoring. Sedative regimen in ICU until
complete recovery and extubation was morphine (2 mg if
needed).

B. Data Acquisition

The EEG signal was collected using a BIS-QUATTRO
Sensor™ that composed of self-adhering flexible bands

holding four electrodes, applied to the forehead with a
frontal-temporal montage.

The used EEG lead was Fpz-Atl, and the reference lead
was placed at FP1. Sensor was connected to a BIS-XP
Monitor and all binary data packets containing raw EEG data
wave signals and BIS index were recorded via an RS232
interface on a laptop using a Bi-spectrum analyzer developed
with C™" Builder by Satoshi Hagihira [12].

The algorithms are presented in this study were tested on
this raw EEG signals (A/D-Converted in 128 Hz sampling
frequency).

Sensor was attached to patient forehead at beginning of
anesthesia and data were collected continuously until he/she
awaked at ICU. Therefore, in this study a large number of
EEG data with its BIS index for each patient was collected.
Some other events such as changes of anesthesia regimen,
intubations and applying CPB and transferring to ICU were
recorded. Because of short acting time of thiopental sodium
(approximately 15-20 sec), this part of EEG data were not
analyzed.

C. Adaptive and fixed segmentation

At first and with regards to other works in this area, fixed
window lengths would be applied [6,13]. We evaluated the
influence of a 60-seonds epoch lengths.

One of the limitations of short-time analysis lies with the
use of a fixed window duration. It would be desirable to
adapt the analysis window to changes in the given signal,
allowing the window to be as long as possible while the
signal remains stationary, and to start a new window at the
exact instant when the signal changes its characteristics [14].
In order to perform the described approach, two adaptive
windowing methods have been used, adaptive variance
detection and ACF (Auto-Correlation Function) distance
methods. In both approaches, a reference window is
extracted at the beginning of each scan, and the given EEG
signal is observed through a moving window. In adaptive
variance detection method, a segment boundary is drawn
when the variance of the moving window become m times
greater or larger than the variance of the reference window.
By considering the changes of EEG variance, m=10 is
chosen for applying the above procedure (We name this
method, “Adaptive variance method”). On the other hand,
for implementing ACF distance method, let ¢p (k) be the
ACF of the reference window at the beginning of a new
segmentation step, where k is the lag or delay. Let ¢ (n,k)
be the ACF of the test and sliding window positioned at time
instant n. A normalized power distance d,(n)between

ACFs is computed as:
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The condition where d,(n) becomes larger than a

d ,(n) (1)

specific threshold,7hp, is considered to represent a



significant change in ACF, and used to mark a segment
boundary [14]. Again, due to the variation of d,(n) values,
three different Thps (25000, 30000, and 35000), are
examined for evaluating the described approach and
Thp =30000 is used finally. (We name this method, “ACF
method”).

D. Fractal Dimension

Nonlinear methods that assess signal complexity matter if
the signal itself is chaotic or deterministic.

Consider the time series x(1), x(2),...,x(N) , where N is

the total number of samples. The algorithm constructs & new
time series as:

X, (k) = {x(m), x(m+k), x(m + 2k),..., x(m+| (N —=m) / k }k)}

where m=1,2,..., k. The length, L,, (k), is calculated as:
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Higuchi algorithm calculates fractal dimension of a time
series directly in the time domain. It is based on a measure of
length, L(k) of the curve. An average length is computed

for all time series having the same scalek , as the mean of
the &k length L, (k) for m=123,..., k. If L(k) scale like,

L(k) o< k"7, then the curve is said to show fractal

dimension D, [15].

The fractal dimension of EEG signal is calculated via
above method while applying adaptive and fixed windowing
methods.

E.  Statistical Analysis

The correlation between BIS index and the extracted sub-
parameters was investigated with the model-independent
prediction probability (Py). As a nonparametric measure, the
Px is independent of scale units and does not require
knowledge of underlying distributions or efforts to linearize
or otherwise transform scales. A Py value of 1 means that the
predicting variables always predict the value of the predicted
variable (e.g., BIS index) correctly. Py value of 0.5 means
that predictors predict no better than by chance only. The Py
values were calculated on a spreadsheet using the Excel 2003
software program and the PKMACRO written by Warren
Smith [16]. In the case of inverse proportionality between
indicator and indicated parameters, the actual measured Py
value is 1-Py.

III. RESULTS

The results presented in this section are categorized in
three groups of experiment which contain isoflurane,
propofol and ICU. Also, the performance of ACF method,
variance method and fixed length windowing is evaluated.

First of all the behavior of HFD due to the BIS index
changes is examined. The HDF increases while BIS index
increase and vice versa. This could be seen from Fig.1
through Fig. 3 in which the Bispectral index is plotted versus
HDF in three different groups.

In order to investigate the ability of described
windowing methods such as fixed or adaptive in estimating
DOA in different groups of drugs, the P, values are
calculated. The results are depicted in Fig.4 through Fig. 6.
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Figure 1. Bispctral Index versus Higuchi Fractal Dimension in ICU using
Fixed length windowing
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Figure 2. Bispctral Index versus Higuchi Fractal Dimension in ICU using
adaptive variance method
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Figure 3. Bispctral Index versus Higuchi Fractal Dimension in ICU using
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Figure 4. Prediction Probability value for Different methods of
windowing in calculation of Higuchi Fractal Dimension in ICU
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Figure 5. Prediction Probability value for Different methods of
windowing in calculation of Higuchi Fractal Dimension in Isoflurane
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Figure 6. Prediction Probability value for Different methods of
windowing in calculation of Higuchi Fractal Dimension in Propofol

Finally, for the comparison of the proposed algorithms in
different groups of drugs and via different methods of
segmentation, Fig. 7 could help us significantly.

IV. DISCUSSION AND CONCLUSION

Our results confirm the previous results which claim that
HFD decreased with increasing DOA. The reason is to some

extent due to the decreasing manner of EEG complexity.
According to Fig. 4, Fig. 5, and Fig. 6, there is no sensible
and visible difference in different methods of segmentation
based on extracted Py values. The above statement is correct

in each
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Figure 7. Prediction Probability value for Different methods of
windowing in calculation of Higuchi Fractal Dimension in all of the groups

of the methods. There is a slight difference in the ranges of
P, values which could not be observed as a measure of
superiority of each of the groups. Consequently, adaptive
segmentation is not able in improving the assessment of
DOA based on calculation of HFD. On the other hand and in
comparison to other methods in this literature HFD is an
appropriate method for estimating DOA. This could be
guessed out of relatively high Py values.

Finally, according to Fig. 7, the evaluation of different
algorithms in various groups reveals the dominance of
results obtained in ICU and the weakness in propofol. So,
other methods are required for estimating DOA in the case of
propofol anesthesia.
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