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Abstract—This paper proposes a combined method 
including adaptive segmentation and Higuchi fractal 
dimension (HFD) of electroencephalograms (EEG) to monitor 
depth of anesthesia (DOA). The EEG data was captured in 
both ICU and operating room and different anesthetic drugs, 
including propofol and isoflurane were used. Due to the non-
stationary nature of EEG signal, adaptive segmentation 
methods seem to have better results. The HFD of a single 
channel EEG was computed through adaptive windowing 
methods consist of adaptive variance and auto correlation 
function (ACF) based methods. We have compared the results 
of fixed and adaptive windowing in different methods of 
calculating HFD in order to estimate DOA. Prediction 
probability (Pk) was used as a measure of correlation between 
the predictors and BIS index to evaluate our proposed 
methods. The results show that HFD increases with increasing 
BIS index. In ICU, all of the methods reveal better 
performance than in other groups. In both ICU and operating 
room, the results indicate no obvious superiority in calculating 
HFD through adaptive segmentation.  
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I.  INTRODUCTION 
An anesthesiologist effort in providing optimal working 

conditions to surgeons and also in ensuring patient safety is 
essential in operating room. However awareness during 
surgery with rate of 1:1000 [1, 2] and over dosing with 
anesthetic agents are major clinical problems of anesthesia. 
Subsequently necessity to assessment and monitoring depth 
of anesthesia (DOA) is obvious. Monitoring DOA based on 
autonomic responses of patient body such as respiration 
pattern, blood pressure, body temperature, tearing, sweating 
and heart rate is a classic method [3], but these responses are 
affected indirectly by anesthetic agents however, it is known 
that these agents have significant effects on the EEG 
waveform. 

 A large amount of information can be extracted 
from EEG waveform based on different signal processing 
methods. Ability of this information to predict DOA depends 

on the variation of its value in different levels of anesthesia, 
but in general, the goal is to produce a unit less index that 
monotonically quantifies DOA.  

 One of the earliest methods is based on the Fourier 
transform that determines the power of EEG in different 
frequency bands [4]. Zikov et al. proposed a wavelet based 
anesthetic value for central nervous system monitoring 
(WAVCNS) that quantifies the depth of consciousness 
between awake and isoelectric state [5]. Ferenets et al. 
analyzed the performance of several new measures based on 
the regularity of the EEG signal. These measures consist of 
spectral entropy, approximate entropy, fractal dimension and 
Lempel-Ziv complexity. Their results show highly sensitive 
behavior of the mentioned measures on frequency content of 
signal and the dose of anesthetic agent [6]. Application of 
neural networks (NN) and selecting proper parameters as NN 
inputs in estimating DOA is reviewed by Robert et al. 
Various strategies of choosing the NN model were presented 
and discussed [7].  

 According to various mentioned methods, different 
EEG monitors have been introduced. The Narcotrend™ 
monitor (Monitor Technik, Bad Bramsted, Germany) that 
based on pattern recognition of the raw EEG and classifies 
the EEG into different stages, introduce a dimensionless 
Narcotrend™ index from 100 (awake) to 0 (electrical 
silence). The algorithm uses parameters such as amplitude 
measures, autoregressive modeling, fast Fourier transform 
(FFT) and spectral parameters [8]. The SEDLine™ EEG 
monitor that capable of calculating of PSI™ index uses the 
shift in power between the frontal and occipital areas. The 
mathematical analysis includes EEG power, frequency and 
coherence between bilateral brain regions [9]. Datex-
Ohmeda™ s/5 entropy Module uses entropy of EEG waves 
to predict DOA and finally BIS™ (Aspect Medical Systems, 
Newton, MA) that is the first monitor in the marketplace and 
has become the benchmark comparator for all other 
monitors. The BIS™ (Bispectral) index is a unit-less number 
between 100 (awake) and 0 (isoelectric) and according to 
producer claim, the BIS index between 40 and 60 is a 
suitable and safe range for operating purposes. 



Fractal dimension is a measure of how ‘complicated’ a 
self-similar figure is [10]. In the particular case of curves in a 
plane, while a topological line is one-dimensional, a fractal 
curve has a fractal dimension D that is in the range 
of 21 << D . The fractal dimension of an object provides 
insight into how elaborate the process that generated the 
object might have been, since the larger the dimension the 
larger the number of degrees of freedom likely has been 
involved in that process [10]. 

Calculation of fractal dimension of EEG-signal clearly 
demonstrates an influence of magnetic field on the brain 
[11]. In general, the compass fractal dimension represents a 
measure of the degree of shape complexity or roughness of 
the curve. Higuchi , Katz , Petrosian C , Petrosian  D, Sevcik 
, zero set, adapted box , compass, and variogram are some 
methods to calculate fractal dimension of signals. Higuchi’s 
method is the most accurate of the other methods for 
calculating time series fractal dimension. 

The aim of this study is to introduce an efficient method 
with the application of adaptive segmentation, based on 
fractal dimension to measure DOA. In section II, the 
methodology is described. The results are presented in 
section III. Finally, a detailed discussion and conclusion is 
provided in section IV. 

II. METHODOLOGY 

A. Patients 
After study approval by ethical committee of medical 

school and obtain written informed consent from all selected 
(6 male, 2 female, with mean age: 56 year and weight: 68kg) 
subjects, patient was premedicated by intramuscular 
morphine 0.1 mg/Kg and promethazine 0.5 mg/kg. All 
patients were coronary artery bypass graft candidate. After 
arrival in operating room, electrocardiogram, pulse 
oxymetry, depth of anesthesia, and invasive blood pressure 
monitoring was established. The BIS-QUATTRO sensor™ 
(Aspect Medical Systems, Newton, MA) applied to the 
forehead of patient before induction of anesthesia. Then 8 
patients were anesthetized in a same manner by intravenous 
thiopental sodium (5mg/Kg), pancuronium Bromide(0.1 
mg/Kg), fentanyl (5µg/kg), and lidocaine (1.5 mg/Kg). 
Anesthesia continued by administration of isoflurane (1 
MAC), morphine (0.2 mg/Kg) and O2 (100%) until 
cardiopulmonary bypass (CPB) beginning. During CPB, 
patients were anesthetized by propofol under BIS control 
(40-60) and O2 (80%). Patients were undergone mild 
hypothermia (31-33°C) during CPB. After coronary bypass 
grafting and separating from CPB, anesthesia continued by 
isoflurane (1 MAC) and O2 (100%) administration. After 
surgery, patients were transported to ICU (Intensive Care 
Unit) under monitoring. Sedative regimen in ICU until 
complete recovery and extubation was morphine (2 mg if 
needed). 

B. Data Acquisition 
The EEG signal was collected using a BIS-QUATTRO 

Sensor™ that composed of self-adhering flexible bands 

holding four electrodes, applied to the forehead with a 
frontal-temporal montage. 

The used EEG lead was Fpz-At1, and the reference lead 
was placed at FP1. Sensor was connected to a BIS-XP 
Monitor and all binary data packets containing raw EEG data 
wave signals and BIS index were recorded via an RS232 
interface on a laptop using a Bi-spectrum analyzer developed 
with C++ Builder by Satoshi Hagihira [12]. 

The algorithms are presented in this study were tested on 
this raw EEG signals (A/D-Converted in 128 Hz sampling 
frequency). 

Sensor was attached to patient forehead at beginning of 
anesthesia and data were collected continuously until he/she 
awaked at ICU. Therefore, in this study a large number of 
EEG data with its BIS index for each patient was collected. 
Some other events such as changes of anesthesia regimen, 
intubations and applying CPB and transferring to ICU were 
recorded. Because of short acting time of thiopental sodium 
(approximately 15-20 sec), this part of EEG data were not 
analyzed. 

C. Adaptive and fixed segmentation 
At first and with regards to other works in this area, fixed 

window lengths would be applied [6,13]. We evaluated the 
influence of a 60-seonds epoch lengths. 

One of the limitations of short-time analysis lies with the 
use of a fixed window duration. It would be desirable to 
adapt the analysis window to changes in the given signal, 
allowing the window to be as long as possible while the 
signal remains stationary, and to start a new window at the 
exact instant when the signal changes its characteristics [14]. 
In order to perform the described approach, two adaptive 
windowing methods have been used, adaptive variance 
detection and ACF (Auto-Correlation Function) distance 
methods. In both approaches, a reference window is 
extracted at the beginning of each scan, and the given EEG 
signal is observed through a moving window. In adaptive 
variance detection method, a segment boundary is drawn 
when the variance of the moving window become m times 
greater or larger than the variance of the reference window. 
By considering the changes of EEG variance, m=10 is 
chosen for applying the above procedure (We name this 
method, “Adaptive variance method”). On the other hand, 
for implementing ACF distance method, let )(kRφ  be the 
ACF of the reference window at the beginning of a new 
segmentation step, where k is the lag or delay. Let  ),( knTφ  
be the ACF of the test and sliding window positioned at time 
instant n. A normalized power distance )(nd p between 
ACFs is computed as:  
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The condition where )(nd p  becomes larger than a 

specific threshold, PTh , is considered to represent a 



significant change in ACF, and used to mark a segment 
boundary [14]. Again, due to the variation of )(nd p values, 
three different PTh s (25000, 30000, and 35000), are 
examined for evaluating the described approach and 

30000=PTh  is used finally. (We name this method, “ACF 
method”). 

D. Fractal Dimension 
Nonlinear methods that assess signal complexity matter if 

the signal itself is chaotic or deterministic. 

Consider the time series )(),...,2(),1( Nxxx , where N  is 
the total number of samples. The algorithm constructs k new 
time series as:  
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Higuchi algorithm calculates fractal dimension of a time 
series directly in the time domain. It is based on a measure of 
length, )(kL  of the curve. An average length is computed 
for all time series having the same scale k , as the mean of 
the k  length )(kLm  for km ,...,3,2,1= . If )(kL  scale like, 

fDkkL −∝)( , then the curve is said to show fractal 
dimension fD  [15]. 

The fractal dimension of EEG signal is calculated via 
above method while applying adaptive and fixed windowing 
methods. 

E. Statistical Analysis 
The correlation between BIS index and the extracted sub-

parameters was investigated with the model-independent 
prediction probability (Pk). As a nonparametric measure, the 
PK is independent of scale units and does not require 
knowledge of underlying distributions or efforts to linearize 
or otherwise transform scales. A Pk value of 1 means that the 
predicting variables always predict the value of the predicted 
variable (e.g., BIS index) correctly. Pk value of 0.5 means 
that predictors predict no better than by chance only. The Pk 
values were calculated on a spreadsheet using the Excel 2003 
software program and the PKMACRO written by Warren 
Smith [16]. In the case of inverse proportionality between 
indicator and indicated parameters, the actual measured Pk 
value is 1-Pk. 

III. RESULTS 
The results presented in this section are categorized in 

three groups of experiment which contain isoflurane, 
propofol and ICU. Also, the performance of ACF method, 
variance method and fixed length windowing is evaluated. 

First of all the behavior of HFD due to the BIS index 
changes is examined. The HDF increases while BIS index 
increase and vice versa. This could be seen from Fig.1 
through Fig. 3 in which the Bispectral index is plotted versus 
HDF in three different groups. 

 In order to investigate the ability of described 
windowing methods such as fixed or adaptive in estimating 
DOA in different groups of drugs, the Pk values are 
calculated. The results are depicted in Fig.4 through Fig. 6. 
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Figure 1.  Bispctral Index versus Higuchi Fractal Dimension in ICU using 
Fixed length windowing 
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Figure 2.  Bispctral Index versus Higuchi Fractal Dimension in ICU using 
adaptive variance method 
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Figure 3.  Bispctral Index versus Higuchi Fractal Dimension in ICU using 
ACF metohd  
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Figure 4.  Prediction Probability value for Different methods of 
windowing in calculation of Higuchi Fractal Dimension in ICU 
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Figure 5.  Prediction Probability value for Different methods of 
windowing in calculation of Higuchi Fractal Dimension in Isoflurane 
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Figure 6.  Prediction Probability value for Different methods of 
windowing in calculation of Higuchi Fractal Dimension in Propofol 

Finally, for the comparison of the proposed algorithms in 
different groups of drugs and via different methods of 
segmentation, Fig. 7 could help us significantly. 

IV. DISCUSSION AND CONCLUSION 
Our results confirm the previous results which claim that 

HFD decreased with increasing DOA. The reason is to some 

extent due to the decreasing manner of EEG complexity. 
According to Fig. 4, Fig. 5, and Fig. 6, there is no sensible 
and visible difference in different methods of segmentation 
based on extracted Pkvalues. The above statement is correct 
in each  
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Figure 7.  Prediction Probability value for Different methods of 
windowing in calculation of Higuchi Fractal Dimension in all of the groups 

of the methods. There is a slight difference in the ranges of 
Pk values which could not be observed as a measure of 
superiority of each of the groups. Consequently, adaptive 
segmentation is not able in improving the assessment of 
DOA based on calculation of HFD. On the other hand and in 
comparison to other methods in this literature HFD is an 
appropriate method for estimating DOA. This could be 
guessed out of relatively high Pkvalues. 

Finally, according to Fig. 7, the evaluation of different 
algorithms in various groups reveals the dominance of 
results obtained in ICU and the weakness in propofol. So, 
other methods are required for estimating DOA in the case of 
propofol anesthesia. 
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