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Abstract Repetitive processes are a class of 2D systems where information prop-
agation in one direction is of finite duration. These processes make a series of
sweeps, termed passes, through a set of dynamics and on completion of each pass
resetting to the starting position occurs ready for the start of the next pass. The
control problem is that the previous pass output, termed the pass profile, acts as
a forcing function on the current pass and can result in oscillations that increase
in amplitude from pass-to-pass. In the case of discrete dynamics, these processes
have structural links with 2D systems described by the well known Roesser and
Fornasini-Marchesini state-space models but some applications require updating
structures that cannot be represented by these models. This requirement arises ei-
ther in adequately modeling the dynamics or as a result of the control law structure
and requires the development of a systems theory for eventual use in applications.
In this paper such a theory is advanced through the development of new control
law design algorithms.

1 Introduction

Repetitive processes make a series of sweeps, termed passes, through a set of
dynamics defined over a finite duration known as the pass length. Once a pass is
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completed the process resets to the initial position and the next one commences.
Each pass profile acts as a disturbance function on, and hence contributes to, the
dynamics of the next one [Rogers et al (2007)]. This interaction between successive
pass profiles can result in oscillations that increase in amplitude in the pass-to-
pass direction and the core requirement for any control law is to prevent such
oscillations from arising and hence facilitate tracking of a reference signal.

Consider the case of discrete dynamics and let yk(p), 0 ≤ p ≤ α − 1, k ≥ 0,
denote the, scalar or vector valued, pass profile which is of finite duration α. Then
in a repetitive process yk(p) acts as a forcing function on, and hence contributes
to, the dynamics of the next pass profile yk(p), k ≥ 0.

Repetitive processes have their origins in coal mining [Rogers et al (2007)]
where in the longwall mode of operation coal is extracted by a series of passes
of the finite length coal face by a coal cutting machine. During this operation, the
coal cutting machine rests on the pass profile produced during the previous pass,
that is, the height of the coal/stone interface above some datum line. The result
can be undulations in the pass profile that increase in amplitude from pass-to-pass
and require productive work to stop to enable their removal.

Applications also exist where adopting a repetitive process setting for anal-
ysis can be used to productive effect. Examples include iterative algorithms for
solving nonlinear dynamic optimal control problems based on the maximum prin-
ciple [Roberts (2000)]. In this case, use of the repetitive process setting pro-
vides the basis for the development of highly reliable and efficient solution al-
gorithms. More recent work on the use of the repetitive process setting for the
analysis of optimal control/optimization problems includes a gas pipeline applica-
tion [Azevedo-Perdicoúlis and Jank (2012)]. Also iterative learning control algo-
rithms can be designed in the repetitive process setting with very good agreement
between predicted and experimentally measured results [H ladowski et al (2010),
H ladowski et al (2011),H ladowski et al (2012)].

In some cases, the dynamics of discrete linear repetitive processes can be writ-
ten in the form of a 2D discrete linear system described by either the Roesser
[Roesser (1975)] or the Fornasini-Marchesini [Fornasini and Marchesini (1978)]
state-space model. The most useful case is examples where on pass k and in-
stance p, written (k, p), the only previous pass contribution comes from (k − 1, p)
where a strong form of repetitive process stability is equivalent to bounded-input
bounded-output stability of the Roesser or Fornasini-Marchesini state-space model
representations of the dynamics. Even for these cases, however, there are impor-
tant systems theoretic questions that have no equivalents for 2D discrete linear
systems described by these state-space models [Rogers et al (2007)].

This paper considers discrete linear repetitive processes that have no Roesser or
Fornasini state-space model descriptions, which arise from how the previous pass
profile contributes to the current one, either in forming an adequate model of the
dynamics for control law design or through application of the control law. At (k, p)
the vast majority of work to-date has used control laws that are actuated only by
the state or pass profile vector at (k, p) and pass profile vector at (k−1, p). However,
once pass k is complete the complete pass profile vector yk(p), 0 ≤ p ≤ α − 1 is
available for use in control law design and the questions are: i) when is such a
control law required and ii) how can control law design be undertaken? Moreover,
application areas arise where assuming that the only previous pass contribution
to the dynamics at (k, p) comes from (k − 1, p) does not give an adequate model
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on which to base subsequent analysis. After introducing models for the case when
the previous pass contribution at (k, p) arises from instances other than (k− 1, p),
from either constructing a model of the dynamics or application of a control law
or both, a Lyapunov function interpretation of stability is developed, leading to
Linear Matrix Inequality (LMI) based conditions that also produce formulas for
the design of implementable control laws.

Throughout this paper, the null and identity matrices with the required di-

mensions are denoted by 0 and I, respectively. Also,
⊕

(and ⊕) denotes direct

sum of matrices and ⊗ denotes the Kronecker product of matrices, M > 0 (< 0)
denotes a real symmetric positive (negative) definite matrix, X ≤ Y is used to
represent the case when X − Y is a negative semi-definite matrix and ? denotes a
block entry in a symmetric matrix.

2 State-space Models and Control Laws

2.1 Models for Repetitive Process Dynamics

Discrete linear repetitive processes evolve over the subset of the positive quadrant
in the 2D plane defined by {(p, k) : 0 ≤ p ≤ α − 1, k ≥ 0}, with state-space
model [Rogers et al (2007)]

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +B0yk(p)

yk+1(p) = Cxk+1(p) +Duk+1(p) +D0yk(p)
(1)

Here on pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the pass profile
vector, and uk(p) ∈ Rr is the vector of control inputs. The boundary conditions,
that is, the pass state initial vector sequence and the initial pass profile, are

xk+1(0) = dk+1, k ≥ 0

y0(p) = f(p), 0 ≤ p ≤ α− 1
(2)

where the n×1 vector dk+1 has known constant entries and f(p) is an m×1 vector
whose entries are known functions of p.

The state-space model (1) has similarities with the Roesser [Roesser (1975)]
and Fornasini-Marchesini [Fornasini and Marchesini (1978)] state-space models for
2D discrete linear systems. These similarities have led to the use of results from
the extensive literature for these models to solve systems theoretic questions for
examples described by (1) and (2). There are, however, important systems the-
oretic questions for these processes which cannot be answered in this way. For
example, pass profile controllability requires that for given boundary conditions
there exists a control input sequence can be constructed and implemented such
that an example described by (1) and (2) produces a pre-defined pass profile vector
either on some pass or with the pass number also pre-defined. This property is well
defined in terms of applications and has no 2D Roesser or Fornasini-Marchesini
state-space model interpretation, nor can conditions for its existence be established
using systems theory for these models.

As discussed in the previous section, longwall coal cutting can be modeled as a
repetitive process. In this application, the pass profile is the height of the stone/coal
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Fig. 1 Illustrating the updating of the current pass state vector structure in (3).

interface above some datum line. Also the cutting machine rests on the previous
pass profile during the production of the current pass profile. As the machines
used in this application area can be up to 5 tonnes in weight, it is unrealistic to
employ the model of (1) and (2). The reason is that the coal cutting machine rests
on top of the previous pass profile during the production of the current one and
the squashing effect on the previous pass profile makes a model of the form (1
unrelaistic.. An alternative in this case is to use a model [Rogers et al (2007),
Cichy et al (2010)] of the following form over k ≥ 0 and 0 ≤ p ≤ α− 1

xk+1(p+1)=Axk+1(p)+B̂uk+1(p)+
α−1∑
i=0

Biyk(i)+Eyk(p)

yk+1(p)=Cxk+1(p)+D̂uk+1(p)+
α−1∑
i=0

Diyk(i)+Fyk(p)

(3)

with the same notation and boundary conditions as (1) and (2). The dynamics
of (3) and, in particular, the updating structure can be visualized as shown in
Figs. 1 and 2, and the differences with (1) is apparent.

In this last state-space model the complete previous pass profile explicitly
contributes to the state and pass profile computation at any sample instant on the
current pass. This is known as interpass smoothing and the state-space model (3)
and (2) will play a critical role in the analysis to follow in this paper. A model of this
form has no 2D Roesser or Fornasini-Marchesini state-space model interpretations.
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Fig. 2 Illustrating the updating of the current pass profile vector in (3).

Another model for discrete linear repetitive process dynamics is of the form

xk+1(p+ 1) = Axk+1(p) + B̂uk+1(p) +

wh∑
i=−wl

Biyk(p+ i)

yk+1(p) = Cxk+1(p) + D̂uk+1(p) +

wh∑
i=−wl

Diyk(p+ i)

(4)

where wl and wh are positive integers and the boundary conditions are again taken
as (2), with the additional assumptions that yk(j) = 0, j = −wl,−wl+1, . . . ,−1 and
for j = α, α+1, . . . , α−1+wl. In this model the previous pass contribution at (k, p)
is modeled as a linear sum of the pass profile vectors for 0 ≤ p− wl ≤ p ≤ p+ wh.
Setting wl = 0 and wh = 0 recovers the model of (1) but there is no link between
this model and that of (3). On each pass in the model (4) the previous pass
contributions at (k, p) come from the ‘window’ of points p− wl ≤ p ≤ p+ wh that
moves along the pass as the dynamics are generated and also propagate from pass-
to-pass. This has led to term ‘wave’ repetitive process [Ga lkowski et al (2006)] to
describe examples represented by this model.

The dynamics of (4) and, in particular, the updating structure can be visualized
as in Figs. 3 and 4, and the difference with that of (1) and (3) is apparent.

A model of this form also has no 2D Roesser or Fornasini-Marchesini state-
space model interpretations.

As shown in [Palucki et al (2012)] a model of the form

xk+1(p) = A1xk(p− 1) +A2xk(p) +A3xk(p+ 1)

+B1u
1
k(p) +B2u

2
k(p) +Bbu

3
k(p) (5)

arises in the modeling of ladder circuits and is obtained from (4) by deleting the
first equation in this repetitive process model, replacing x by y, setting C = 0 and
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Fig. 3 Illustrating the updating structure of the current pass state vector in (4).
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Fig. 4 Illustrating the updating structure of the current pass profile vector in (4).

Fig. 5 A ladder circuit.

replacing uk+1 by uk. Consider also the ladder circuit of Fig. 5 and, in particular,
its p-th node and define the state vector for the p-th ladder as

x(p, t) =
[
uc(p, t) il(p, t) iL(p, t)

]T
(6)

where uc, il, iL denote condenser voltage and inductor currents, respectively.

The state-space model of the whole network [Palucki et al (2012)] can be writ-
ten over p = 0, 1, . . . , α− 1 in the form

d

dt
x(p, t) = A1x(p− 1, t) +A2x(p, t) +A3x(p+ 1, t) + Bi(p, t) (7)



Title Suppressed Due to Excessive Length 7

where

A1 =

 0 0 0
0 0 0
1
L 0 0

 , A2 =

 0 −1
c

1
c

1
l 0 0
− 1
L 0 0

 , A3 =

0 0 −1
c

0 0 0
0 0 0

 , B =

1
c
0
0

 (8)

and i(p, t), p = 0, 1, . . . , α − 1 represent inputs to the circuit realized as controlled
current sources, that is,

i(p, t) = u1(p, t) + u2(p, t) + u3(p, t) (9)

The controls ui, i = 1, 2, 3 can be taken as currents or voltages as required. The
boundary conditions are taken as

x(−1, t) =

u(t)
0
0

 , x(α, t) =

 0
0
i(t)

 , x(p, 0) = 0 (10)

This means that the circuit input (at node −1) is an autonomic voltage source
and the output (at node α) an autonomic current source.

Constructing a discrete representation of (7) using a direct method, such as

dx(p, t)

dt
=
x(p, (k + 1)∆T )− x(p, k∆T )

∆T
(11)

gives a model of the form (5) where states and input are

xk(p) =
[
uck(p) ilk(p) iLk(p)

]T
ik(p) = u1k(p) + u2k(p) + u3k(p)

(12)

respectively and

A1 = ∆TA1, A2 = I +∆TA2, A3 = ∆TA3, B1 = B2 = B3 = ∆TB (13)

The boundary conditions are

xk(−1) =

uk0
0

 , xk(α) =

 0
0
ik

 , x(p, 0) = 0 (14)

where uk = u(k∆t) and ik = i(k∆t). For ease of presentation, no further explicit
reference to the boundary conditions for any of the models will be made until the
numerical examples in the penultimate section of this paper.
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2.2 Control Laws

Given the previous pass profile contribution to the current pass dynamics, control
laws must be a combination of current pass feedback plus a contribution from
the previous pass. For examples described by (1), suppose that all entries in the
current pass state vector are available for measurement. Then one control law is
of the form over 0 ≤ p ≤ α− 1, k ≥ 0

uk+1(p) =
[
K1 K2

] [xk+1(p)
yk(p)

]
(15)

where K1 and K2 are appropriately dimensioned matrices to be designed. This
control law is composed of the weighted sum of current pass state feedback and
feedforward of the previous pass profile. If xk+1(p) is not available then one option
is to include an observer to estimate this vector and another to replace it with
the current pass profile vector. It is also possible to use a control law with its own
state dynamics and the standing assumption is that the levels of noise and other
disturbances on the entries in the measured vectors are negligible. Control laws of
these forms can also be applied to processes described by (3) and (4) but given
the extra previous pass profile contributions to the current pass profile they are
likely to be very weak.

It is possible that the control law (15) is unable to stabilize a process described
by (1) and a more stronger form is required. Once a pass is completed, the complete
previous pass profile is available for use in a control law. For example, the following
control law can be defined for processes described by (1)

uk+1(p) = Kx(p)xk+1(p) +
α−1∑
i=0

Kiyk(i) +Ky(p)yk(p)

=
[
Kx(p) K0 · · · Kα−1 Ky(p)

]

xk+1(p)
yk(0)

...
yk(α− 1)
yk(p)


(16)

where the matrix functions Kx(p) and Ky(p) depend on the sampling instance
p along the pass, 0 ≤ p ≤ α − 1. Again, in implementation terms, this control
law requires that all elements of the current pass state vector are available for
measurement. If this is not the case then an observer will be required or else the
state vector must be replaced by the pass profile vector. Applying (16) to (1)
results in a controlled process state-space model of the form (3).

It is also possible to replace the lower and upper limits in the sum that forms
the previous pass contribution in the above control law and hence only a restrictive
number of sample instances along the previous pass profile appear in the control
law. Hence an alternative control law to (16) is

uk+1(p) = Kxxk+1(p) +

wh∑
i=−wl

Kiyk(p+ i) (17)
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and applying this control law to (1) results in a controlled process state-space
model of the form (4). Another application for repetitive processes is the de-
sign of iterative learning control laws, the survey papers [Bristow et al (2006)],
[Hyo-Sung et al (2007)] are one starting point for background on this form of con-
trol, where design in this setting offers advantages over alternatives, such as si-
multaneous control over both error convergence from pass-to-pass (or trial-to-trial
in the iterative learning control literature) and guaranteed monotonic pass-to-pass
error convergence. A control law of the form (17) arises in the case when the first
Markov parameter in the system state-space model is zero [H ladowski et al (2011)].

The next section discusses the stability of the models introduced in this section
as a prelude to stabilizing control law design which is treated in the following one.

3 Stability Analysis

The stability theory [Rogers et al (2007)] for linear repetitive processes is based
on an abstract model in a Banach space setting that includes a large number of
such processes as special cases, including those considered in this paper. In this
setting, a bounded linear operator mapping a Banach space into itself describes
the contribution of the previous pass dynamics to the current one and the stability
conditions are described in terms of properties of this operator. Given the unique
feature of these processes, that is, oscillations that increase in amplitude from
pass-to-pass, the k direction in the notation for variables used so far in this paper,
this theory is based on ensuring that a bounded initial pass profile produces a
bounded sequence of pass profiles generated {yk}, where bounded is defined in
terms of the norm on the underlying Banach space.

Two forms of stability can be defined in this setting, which are termed asymp-
totic stability and stability along the pass, respectively. The former requires this
property with respect to the, finite and fixed, pass length and the latter uniformly,
that is, independent of the pass length.

The abstract model for linear constant pass length linear repetitive processes
of pass length α describes the process dynamics as

yk+1 = Lαyk + bk+1, k ≥ 0 (18)

where yk ∈ Eα and Eα is a suitably chosen Banach space and || · || is used to
denote both the norm on Eα and also the induced operator norm. Also Lα is a
bounded linear operator mapping Eα intro itself and bα ∈ Wα, where Wα is a
linear subspace of Eα. In this model the term Lαyk represents the contribution of
pass k to pass k + 1, k ≥ 0 and bk+1 represents terms that enter on pass k + 1,
that is, the control input and the effects of the current pass initial conditions and
any disturbances acting on this pass.

Asymptotic stability of (18) requires the existence of finite real scalars Mα > 0
and λα ∈ (0, 1) such that ||Lkα|| ≤ Mαλ

k
α, k ≥ 0, which, in turn, is equivalent to

r(Lα) < 1 where r(·) denotes the spectral radius. Also if this property holds then
the strong limit y∞ := limk→∞ yk is termed the limit profile and is the unique
solution of the linear equation

y∞ = Lαy∞ + b∞ (19)
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In the case of processes described by (1), it is known [Rogers et al (2007)] that
asymptotic stability holds if and only if all eigenvalues of the matrix D0 lie in the
open unit circle in the complex plane, that is, r(D0) < 1. If asymptotic stability
holds and the control input sequence applied is strongly convergent in the pass-
to-pass direction, the limit profile (19) is described by a 1D discrete linear system
state-space model with state matrix A+B0(I−D0)−1C and hence can be unstable
as the simple case when A = −0.5, B0 = 0.5 + β, C = 1, D = 0, and D0 = 0, where
β is a real scalar with |β| ≥ 1, demonstrates. The reason why this case arises is
due to the finite pass length over which duration even an unstable standard linear
system can only produce a bounded output.

To prevent examples such as the one given above from arising, stability along
the pass demands the existence of finite real scalars M∞ > 0 and λ∞ ∈ (0, 1), which
are independent of α, such that ||Lkα|| ≤ M∞λ

k
∞, k ≥ 0. In the case of processes

described by (1), it can be shown [?] that necessary and sufficient conditions for
stability along the pass of processes described by the state-space model (1) are

i) r(D0) < 1,
ii) r(A) < 1,
iii) all eigenvalues of the transfer-function matrix

G(z) = C(zI −A)−1B0 +D0

have modulus strictly less than unity for all |z| = 1.

Each of these conditions has a well defined physical interpretation and for the
simple example given above it is condition iii) that does not hold when |β| ≥
1. Moreover, each of these conditions has a well defined physical interpretation
but the interpretation of these conditions for processes described by the other
state-space models considered in this paper does not have the same transparency.
Consequently control law design is addressed using a Lyapunov function approach,
leading to algorithms that can be computed using LMIs.

Consider the following Lyapunov function for processes described by (1)

V (k, p) = V1(k, p) + V2(k, p) (20)

where

V1(k, p) = xTk+1(p)Pxk+1(p)

V2(k, p) = yTk (p)Qyk(p)
(21)

where P > 0 and Q > 0. The term V1(k) captures the current pass state vector
energy and V2(k) the previous pass profile energy. Also introduce the increment of
V (k, p) as

∆V (k, p) = V1(k, p+ 1)− V1(k, p) + V2(k + 1, p)− V2(k, p) (22)

Then it has been shown [Rogers et al (2007)] that processes described by (1) are
stable along the pass if

∆V (k, p) < 0 (23)

In the case of processes described by (3) introduce the Lyapunov function

V (k) = V1(k) + V2(k) (24)



Title Suppressed Due to Excessive Length 11

where

V1(k) =
α−1∑
i=0

yTk (i)Qiyk(i), V2(k) =
α−1∑
i=0

xTk (i)Pixk(i) (25)

where Qi > 0, i = 0, 1, . . . , α−1 and Pi > 0, i = 0, 1, . . . , α. The term V1(k) captures
the pass-to-pass energy change and V2(k) the change in energy along a pass. Also
introduce

V ′2(k) =
α∑
i=1

xTk (i)Pixk(i) (26)

and define the increment of this Lyapunov function as

∆V (k) = V1(k + 1)− V1(k) + V ′2(k + 1)− V2(k + 1) (27)

together with the notation

Â = I ⊗A, Ĉ = I ⊗ C, Ê = I ⊗ E, F̂ = I ⊗ F

Q̂ =
α−1⊕
i=0

Qi, P̂1 =
α−1⊕
i=0

Pi, P̂2 =
α⊕
i=1

Pi
(28)

and

B̃ =

B0 · · · Bα−1

...
. . .

...
B0 · · · Bα−1

 , D̃ =

D0 · · · Dα−1

...
. . .

...
D0 · · · Dα−1

 (29)

Then we have the following result.

Theorem 1 [Cichy et al (2010)] A discrete linear repetitive process described by (3)

is stable along the pass if there exist matrices Q̃i > 0, i = 0, 1, . . . , α− 1, and P̃i > 0,
i = 0, 1, . . . , α, such that the following LMI holds[

−P1 P1AT
AP1 −P2

]
< 0 (30)

where

P1 = P̄1 ⊕ Q̄, P2 = P̄2 ⊕ Q̄, A =

[
Â B̃ + Ê

Ĉ D̃ + F̂

]
(31)

and

Q̄ =
α−1⊕
i=0

Q̃i, P̄1 =
α−1⊕
i=0

P̃i, P̄2 =
α⊕
i=1

P̃i (32)

In the case of processes described by (4), consider the Lyapunov function

V (k, p) = V1(k, p) + V2(k, p) (33)

where

V1(k, p) =

wh∑
i=−wl

yTk (p+ i)Qiyk(p+ i) (34)
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and

V2(k, p) = xTk (p)Pxk(p) (35)

where P > 0 and Qi > 0, i = −wl, . . . , 0, . . . , wh. The term V1(k, p) captures
the pass-to-pass energy change and V2(k, p) the change in energy along a pass.
Moreover, the associated increment is

∆V (k, p) = yTk+1(p)
( wh∑
i=−wl

Qi
)
yk+1(p) + xTk+1(p+ 1)Pxk+1(p+ 1)

−
wh∑

i=−wl

yTk (p+ i)Qiyk(p+ i)− xTk+1(p)Pxk+1(p)

(36)

Summing over p = 0, 1, . . . , α gives the global Lyapunov function

V (k) =
α∑
p=0

V (k, p) (37)

with associated increment

∆V (k) =
α∑
p=0

∆V (k, p) (38)

The proof of the next result follows by routine extensions to that for a process
described by (1) given in [Rogers et al (2007)] and hence the details are omitted.

Theorem 2 A discrete linear repetitive process described by (4) is stable along the

pass if

∆V (k) < 0 (39)

where ∆V (k) is given by (38).

4 Stabilization

Consider first application of the control law (15) to processes described by (1).
Then the following result gives a sufficient condition for stability along the pass of
the resulting controlled process with formulas for designing the stabilizing control
law matrices

Theorem 3 [Rogers et al (2007)] Suppose that a control law of the form (15) is ap-

plied to a discrete linear repetitive process described by (1). Then the resulting con-

trolled process is stable along the pass if there exist matrices W = diag (W1,W2),
W1 > 0,W2 > 0, G, and

N =

[
N1 N2

N1 N2

]
(40)

such that [
−G−GT +W (ΦG+ B̂N)T

ΦG+ B̂N −W

]
< 0 (41)
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where Φ denotes the augmented system matrix

Φ =

[
A B0

C D0

]
(42)

If the LMI of (41) is feasible, stabilizing K1 and K2 in the control law (15) are given

by

K = NG−1 (43)

with

K =

[
K1 K2

K1 K2

]
, B̂ =

[
B 0
0 D

]
(44)

The conditions of Theorem 3 are sufficient only and hence there is an associated
level of conservativeness, which means that if this theorem does not hold for a given
example a stabilizing control law may exist. Hence there is a need to investigate
ways of reducing this level of conservativeness and this problem is considered in
the remainder of this section. The results developed are supported by two design
examples in the next section.

Applying the control law (16) to (1) gives the controlled process state-space
model

xk+1(p+ 1) =
(
A+BKx(p)

)
xk+1(p) +

α−1∑
i=0

BKiyk(i) +
(
B0 +BKy(p)

)
yk(p)

yk+1(p) =
(
C +DKx(p)

)
xk+1(p) +

α−1∑
i=0

DKiyk(i) +
(
D0 +DKy(p)

)
yk(p)

(45)

which is of the form of the state-space model (3) for a discrete linear repetitive
process with interpass smoothing.

To apply the result of Theorem 1, introduce the notation

B̂ = I ⊗B, D̂ = I ⊗D

K̂x =
α−1⊕
p=0

Kx(p), K̂y =
α−1⊕
p=0

Ky(p), K̂ =
α−1⊕
i=0

Ki

N̂x =
α−1⊕
p=0

Nx(p), N̂y =
α−1⊕
p=0

Ny(p), N̂ =
α−1⊕
i=0

Ni

B̄ =

B · · · B...
. . .

...
B · · · B

 , D̄ =

D · · · D...
. . .

...
D · · · D

 (46)

together with

AK = Â+ B̂K̂x, EK = B̂0 + B̂K̂y

CK = Ĉ + D̂K̂x, FK = D̂0 + D̂K̂y

BK = B̄K̂, DK = D̄K̂

(47)
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and

X = BK + EK = B̄K̂ + B̂0 + B̂K̂y

Y = DK + FK = D̄K̂ + D̂0 + D̂K̂y
(48)

Then (30) applied to this case can be written as
−P̄1 0 P̄1AT P̄1CT

0 −Q̄ Q̄XT Q̄YT
AP̄1 X Q̄ −P̄2 0
CP̄1 YQ̄ 0 −Q̄

 < 0 (49)

or 
−P̄1 ? ? ?

0 −Q̄ ? ?

ÂP̄1 + B̂K̂xP̄1 B̄K̂Q̄+ B̂0Q̄+ B̂K̂yQ̄ −P̄2 ?

ĈP̄1 + D̂K̂xP̄1 D̄K̂Q̄+ D̂0Q̄+ D̂K̂yQ̄ 0 −Q̄

 < 0 (50)

where B̂0 = I ⊗B0 and D̂0 = I ⊗D0.
This last condition is not in LMI form and hence there are no effective com-

putational methods available to compute the control law matrices. The following
result removes this difficulty.

Theorem 4 Suppose that a control law of the form (16) is applied to a discrete linear

repetitive process described by (1). Then the resulting controlled process is stable along

the pass if there exist matrices Q̃i > 0, i = 0, 1, . . . , α − 1, P̃i > 0, i = 0, 1, . . . , α,
Nx(p), Ny(p), and Ni, p, i = 0, 1, . . . , α− 1, such that the following LMI is feasible

−P̄1 ? ? ?

0 −Q̄ ? ?

ÂP̄1 + B̂N̂x B̄N̂ + B̂0Q̄+ B̂N̂y −P̄2 0

ĈP̄1 + D̂N̂x D̄N̂ + D̂0Q̄+ D̂N̂y 0 −Q̄

 < 0 (51)

If this LMI is feasible, stabilizing control law matrices are given by

K̂x = N̂xP̄
−1
1 , K̂y = N̂yQ̄

−1, K̂ = N̂Q̄−1 (52)

Proof Follows immediately on substituting

K̂xP̄1 = N̂x, K̂yQ̄ = N̂y, K̂Q̄ = N̂ (53)

into (50) to give (51).

The previous control law uses information of the pass profile from the complete
previous pass and hence, especially for large α, numerical difficulties may result.
An alternative is to use the control law (17) where only sampling instances in some
’window’ around p are used, resulting in the controlled process state-space model

xk+1(p+ 1) = Axk+1(p) +

wh∑
i=−wl
i 6=0

Biyk(p+ i) + B0yk(p)

yk+1(p) = Cxk+1(p) +

wh∑
i=−wl
i 6=0

Diyk(p+ i) + D0yk(p)

(54)
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where

A = A+BKx, Bi = BKi, B0 = B0 +BK0

C = C +DKx, Di = DKi, D0 = D0 +DK0

(55)

which is of the form (4) with boundary conditions (2).
To apply the result of Theorem 2, introduce the following notation

γ = wl + wh + 2 (56)

and

Q̂ =

wh⊕
i=−wl

Qi, Ẑ = P ⊕ Q̂, P̂ = I ⊗ P

B̃ =


A B−wl · · · B−1 B0 B1 · · · Bwh

0 0
...

. . .
...

0 0



D̃ =

C D−wl · · · D−1 D0 D1 · · · Dwh

...
...

...
C D−wl · · · D−1 D0 D1 · · · Dwh



(57)

where the block entry matrices B̃ and D̃ are of dimensions γ × γ and (γ − 1) × γ
respectively. It also follows that the condition of Theorem 2 can be written as

D̃T Q̂D̃ + B̃T P̂ B̃ − Ẑ < 0 (58)

This condition is not in LMI form and hence no effective methods are available to
compute the control law matrices. The following result removes this difficulty.

Theorem 5 Suppose that a control law of the form (17) is applied to a discrete linear

repetitive process described by (1). Then the resulting controlled process is stable along

the pass if exist matrices P̌ > 0, Nx, Q̌i > 0, and Ni, i = −wl, . . . , 0, . . . , wh such that

the following LMI is feasible  −Z̄ ? ?

ÂQ̄+ B̂N̂ −P̄ ?

ĈQ̄+ D̂N̂ 0 −Q̄

 < 0 (59)

where

Z̄ = P̌ ⊕ Q̄, P̄ = I ⊗ P̌ , P̌ = P−1

Â =


A 0 · · · 0 B0 0 · · · 0
0 0
...

. . .
...

0 0

 , B̂ =


B · · · B
0 · · · 0
...
. . .

...

0 · · · 0

 , Q̄ =

wh⊕
i=−wl

Q̌i

Ĉ =

C 0 · · · 0 D0 0 · · · 0
...

...
...

C 0 · · · 0 D0 0 · · · 0

 , D̂ =

D · · · D...
. . .

...

D · · · D

 , N̂ = Nx
⊕ wh⊕

i=−wl

Ni


(60)
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If the LMI (59) is feasible, stabilizing matrices in the control law (17) are given by

Kx = NxP̌
−1, Ki = NiQ̌

−1
i , i = −wl, . . . , wh (61)

Proof In the file I received it said multiply by diag
(
Ẑ−1, I, I

)
— this cannot be

correct as it does not say from the right or the left — I have modified this to that
below. This needs checking and if necessary correcting. Then remove this text in
red.

First make two applications of the Schur’s complement formula to (58), pre and

post-multiply the result by diag
(
Ẑ−1, I, I

)
and introduce the variable substitution

Q̄ = Q̂−1, P̄ = P̂−1, Z̄ = Ẑ−1

to obtain −Z̄ Z̄B̃T Z̄D̃T

B̃Z̄ −P̄ 0

D̃Z̄ 0 −Q̄

 ≺ 0

where

‘1 Q̄ =
ε⊕

i=−ε
Q̌i, Z̄ = P̄ ⊕ Q̄, P̄ = Iγ ⊗ P̌

where P−1 = P̌ � 0 and Q−1
i = Q̌i � 0, i = −wh, . . . , 0, . . . , wl. Finally, introducing

KxP̌ = Nx

KiQ̌i = Ni, i = −wl, . . . , wh
(62)

yields (59).

5 Design Examples

Direct application of the Theorem 4 technique can give solutions characterized by
very small entries in the control law matrices Ki, i = 0, 1, . . . , α− 1 that, in turn,
leads to a very large control demands. If, however, the LMI (51) holds there are
infinitely many other solutions and to obtain an appropriate set of control law
matrices it is necessary to introduce an additional optimization procedure. In this
work the optimization procedure used is

max

(
α∑
i=0

trace (P̃i) +
α−1∑
i=0

se(Ni)

)
subject to

−P̄1 ? ? ?

0 −Q̄ ? ?

ÂP̄1 + B̂N̂x B̄N̂ + B̂0Q̄+ B̂N̂y −P̄2 0

ĈP̄1 + D̂N̂x D̄N̂ + D̂0Q̄+ D̂N̂y 0 −Q̄

 < 0

(63)
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where the function se(M) on an n×m matrix, say M, is defined as

se(M) =
n∑
r=1

m∑
c=1

M(r, c) (64)

and M(r, c) denotes the element in row r and column c of M.

The problem above can also arise in the application of Theorem 5. If the
LMI (59) is feasible, there are infinitely many other solutions and one method
of selecting an appropriate set of Ki, i = −wl, . . . , wh, is to use the following
optimization procedure.

max

 wh∑
i=−wl

trace Q̌i +

wh∑
i=−wl

se(Ni)


subject to −Z̄ ? ?

ÂQ̄+ B̂N̂ −P̄ ?

ĈQ̄+ D̂N̂ 0 −Q̄

 < 0

(65)

5.1 Numerical Examples

Consider the case of (1) with α = 31 and

A =

[
0.19 1.62
0.76 0.4

]
, B =

[
−0.09
−1.28

]
, B0 =

[
0.69
0.53

]
C =

[
−1.48 −1.26

]
, D = −1.63, D0 = 1.17

with boundary conditions

xk+1(0) = 0, k ≥ 0

y0(p) = 1, 0 ≤ p ≤ α− 1

In this case the conditions of Theorems 3 and 5 do not hold and hence it is not
possible to find a stabilizing control laws using these results. The conditions of
Theorem 4 do hold and the value resulting from maximizing the cost function (63)
is one. The corresponding matrices in the control law (16) are listed in Table 5.1.

Figure 6 shows the sequence of pass profiles generated by the controlled process
over 50 passes and Fig. 7 the corresponding control signals. These are acceptable
initial designs. In applications terms, however, the control law in this example is
somewhat complex and this problem will increase with the dimension of the state
vector.

As a second example, consider the case of (1) with α = 31 and

A =

[
−0.59 −0.77
−0.77 0.09

]
, B =

[
−0.1
−0.23

]
, B0 =

[
0.31
0.47

]
,

C =
[
−0.59 1.18

]
, D = 1.22, D0 = −0.56
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Control law matrices

i Ki Kx(i) Ky(i)

0 9.9107× 10−7 [0.4797 0.7629] 0.6847

1 6.3563× 10−6 [0.5308 0.9256] 0.7298

2 −1.2454× 10−6 [0.5232 0.9583] 0.7477

3 −5.9614× 10−6 [0.5183 0.9735] 0.7571

4 −8.4821× 10−6 [0.5152 0.9828] 0.7631

5 −1.083× 10−5 [0.5129 0.9887] 0.7673

6 −1.3167× 10−5 [0.5111 0.9928] 0.7705

7 −1.5274× 10−5 [0.5095 0.9956] 0.7729

8 −1.6925× 10−5 [0.5082 0.9976] 0.7748

9 −1.8177× 10−5 [0.507 0.999] 0.7763

10 −1.9301× 10−5 [0.506 1.0001] 0.7776

11 −2.0518× 10−5 [0.5052 1.0009] 0.7786

12 −2.1828× 10−5 [0.5044 1.0017] 0.7795

13 −2.3059× 10−5 [0.5038 1.0023] 0.7802

14 −2.3924× 10−5 [0.5033 1.0027] 0.7808

15 −2.4092× 10−5 [0.5026 1.0029] 0.7813

16 −2.3415× 10−5 [0.5018 1.0027] 0.7817

17 −2.2273× 10−5 [0.5008 1.0021] 0.7821

18 −2.1328× 10−5 [0.4998 1.0014] 0.7825

18 −2.0833× 10−5 [0.4989 1.0007] 0.7829

20 −2.0591× 10−5 [0.4982 1.0001] 0.7831

21 −2.0068× 10−5 [0.4975 0.9995] 0.783

22 −1.8394× 10−5 [0.4962 0.998] 0.7826

23 −1.5326× 10−5 [0.494 0.9952] 0.782

24 −1.2414× 10−5 [0.4915 0.9915] 0.7814

25 −1.0159× 10−5 [0.4893 0.9887] 0.7812

26 −7.7009× 10−6 [0.4885 0.9859] 0.7797

27 −3.6404× 10−6 [0.4788 0.9759] 0.779

28 −9.928× 10−7 [0.4367 0.9123] 0.7733

29 −6.5606× 10−6 [0.0777 0.4671] 0.7689

30 −4.4439× 10−5 [−0.6184 − 0.4444] 0.7281

Table 1 The control law matrices of (16) for the first numerical example.

with boundary conditions

xk+1(0) = 0, k ≥ 0

y0(p) = 1, 0 ≤ p ≤ α− 1
(66)

For this example, Theorem 3 does not produce a stabilizing control law (15)
but a stabilizing control law of the form (17) with, for example, wl = 5 and wh = 5
can be designed using Theorem 5 and the optimization problem (65). The resulting
control law matrices are

Kx =
[
0.4178 −0.9647

]
, K0 = 0.1278

Ki = −2.0242× 10−5, i = −5, . . . ,−1, 1, . . . , 5
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Fig. 7 Control inputs required by the controlled process.

Figs. 8 and 9, respectively, show the pass profile and control input sequences
generated by the controlled process. These are acceptable but there may be a case
for redesign in an attempt to reduce the values of the control signals required for
the early passes. The simulations are for the case when

yk(i) = 0, −wl ≤ i ≤ −1

yk(i) = 0, α ≤ i ≤ α+ wh − 1
(67)

For this example, a control law of the form (16) may be found but the one
given above is clearly more efficient in terms of implementation.

6 Conclusions

This paper has considered an extension of control laws that result in, or exploit,
generalized discrete linear repetitive processes with state-space models that have
a nonlocal updating structure. The structure of the previous pass profile contri-
bution to the current pass state and pass profile dynamics takes many forms and
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Fig. 9 Control inputs required by the controlled process.

almost all of the control law design results currently available relate to the simplest
possible model structure of (1) and (2). Model structures of the form given by the
state-space model (4) do have physical relevance in physical applications where its
structure is one means of, at least for initial studies, including the effects of the
cutting machine in the longwall coal example. The wave repetitive process model
arises in the iterative learning control application and further research should aim
to maximize the potential with supporting experimental verification.

A major reason for using control laws with a non-local updating structure is
to reduce the conservativeness present in LMI based design of a stabilizing control
law. The method is to augment the original control law with extra contributions
from the previous pass profile and the new results in this paper enable control
law design for stabilization. Further research is required to extend the resulting
algorithms to also include performance. Other ongoing work includes replacing the
current pass state vector component in the control law by a current pass profile
term since the law used in this paper would require an observer unless all current
pass state vector terms are directly measurable.
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The results in this paper can be extended to many other analysis and control
law design problems for discrete linear repetitive processes. An example is the op-
timal robust control and filtering problem [Wu L. et al (2008),Wu L. et al (2009)]
under various norms.
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