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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

School of Ocean and Earth Science

Doctor of Philosophy

A MODEL STUDY OF DECADAL CLIMATE VARIABILITY AND
PREDICTABILITY ASSOCIATED WITH THE ATLANTIC MERIDIONAL
OVERTURNING CIRCULATION

by Aurélie S.A. Persechino

This study addresses the decadal variability and predictability of the Atlantic Meridional
Overturning Circulation (AMOC), and associated key variables, in two IPCC-class cli-
mate models. The AMOC variability is analyzed in a new climate model CHIME, which
features a novel (largely isopycnic) ocean component. Power Spectral analysis reveals en-
hanced variability for periods in the range 15-30 years. The primary mode of variability is
associated with decadal changes in the Labrador and the Greenland-Iceland-Norwegian
(GIN) seas, in both cases linked to the tropical activity about 15 years earlier. These
decadal changes are controlled by the low-frequency North Atlantic Oscillation (NAO),
associated with a tropical-extratropical teleconnection. Poleward advection of salinity
anomalies in the mixed layer also leads to AMOC changes that are linked to convective
processes in the Labrador Sea. A secondary mode of variability is associated with inter-
annual changes in the Labrador and GIN Seas, through the impact of the NAO on local
surface density. The decadal potential predictability of the AMOC and climate as repre-
sented in the non-isopycnic IPSL-CM5A model and CHIME is explored using prognostic
and diagnostic approaches. The modelled AMOC has an average predictive skill of 8
and 6 years, respectively. Over the ocean, surface temperature has the highest skill up
to 2 decades in the far north of the North Atlantic, in both models. Additional oceanic
areas of predictability are identified in IPSL-CM5A in the tropics and subtropics. The
spatio-temporal predictability of both surface temperature over land and precipitation
differs somewhat between the two models, but is of limited extent compared to that of
ocean variables. Predictability of climate arises from the mechanisms controlling the
decadal AMOC fluctuations. Predictive skills of AMOC and climate are favoured by
extreme AMOC events but the role of minimum versus maximum states remains to be
clarified. The expected better predictive skills of CHIME over non-isopycnic models
(due to its better preservation of water masses and more coherent internal structure to

the anomalies) are not borne out.
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Chapter 1

Introduction

1.1 The Ocean as a component of the climate system

In recent years, both natural and anthropogenic climate change have become a topic
of growing interest and concern for scientists, as shown by the increasing number of
international conferences held on the subject (e.g. United Nations Climate Change
Conferences in Copenhagen 2009, Cancun 2010, Durban 2011, Bonn 2012). The roles
of the atmosphere and greenhouse gases as well as the role of deforestation have been
widely acknowledged in the media. However, although the ocean covers 70% of the
global surface of our planet (hence the “blue planet”), the ocean’s importance for cli-
mate is somewhat neglected. Yet, like the atmosphere, the ocean redistributes the solar
heating from the equatorial regions (where there is a surplus of incoming over outgo-
ing radiations) toward the icy poles (where there is a deficit of incoming over outgoing

radiations), and therefore significantly contributes to the heat budget of the Earth.

One of the primary reasons for the strong influence of the ocean on the climate is due to
its great heat capacity. Indeed, the ocean stores more heat in the uppermost 3 m than the
entire atmosphere. It absorbs much of the solar energy that reaches earth, and thanks to
the high heat capacity of water, the ocean slowly releases heat over months or years. The
ocean’s vital role in the climate system results also from its great transport capability.
The ocean can transport heat, freshwater and other material properties, mainly achieved
by boundary currents, large gyres and by the large-scale ocean circulation known as the
thermohaline circulation. By both its storage and transport capacities, the ocean can
therefore be seen as a great reservoir, which continuously exchanges heat, moisture and
carbon with the atmosphere, driving our weather patterns and influencing the slow,

subtle changes in our climate.

In the context of climate change, the ocean also plays a major role. First, because of

its great heat capacity, it delays the warming of the atmosphere. Second, the ocean also
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represents a major sink for anthropogenic carbon dioxide (e.g. Le Quéré et al. 2009).
Third, its associated regional pattern of heat transport and absorption lead to significant
changes in regional rainfall and temperature distribution (e.g. causing droughts such as
in West Africa in the 1970’s, Conway et al. 2009). Fourth, the ocean heat absorption
leads to sea level rise through thermal expansion leading to coastal erosion and flooding
(e.g. Nicholls and Cazenave 2010). Fifth, changes in formation of deep-water masses at
high latitudes could lead to abrupt changes in the global ocean thermohaline circulation
that could result in a major rearrangement of global climate in the space of a few decades
(e.g. Clark et al. 2002; Rahmstorf 2002).

This latter point constitutes the basis of the present study. This large-scale thermohaline
circulation is considered as the “Achilles heel of the climate system” (Broecker 1997). It
is primarily (but not exclusively) meridional, and is often characterised as the Meridional
Overturning Circulation (MOC). Because the Atlantic MOC (AMOC) is thought to
play an important role in maintaining the Furopean and North Atlantic climate by
transporting heat from low to high latitudes (e.g. Hall and Bryden 1982; Trenberth and
Caron 2001; Gordon et al. 1992; Winton 2003; Knight et al. 2005; Sutton and Hodson
2005; Pohlmann et al. 2006; Sinha et al. 2012), the AMOC has been a major research

focus for many years.

1.2 The importance of decadal AMOC prediction to un-

derstand future climates

Because anthropogenic climate impacts are likely to be expressed on decadal timescales
(IPCC 1996), understanding processes behind naturally occurring decadal variability in
the climate system, is of primary importance. At multiyear to decadal timescales, the
memory (and hence the potential for predictability of the climate system) are thought
to reside in the ocean. The ocean indeed has a larger thermal inertia than land areas,
and observations suggest that it has enhanced variability at the decadal time scales (e.g.
Deser and Blackmon 2010; Czaja and Marshall 2001; Frankcombe et al. 2010). Most
studies thus point to oceanic mechanisms as central to climate memory, particularly
those related to reservoirs of ocean heat or slowly evolving circulation and their inter-
action with the atmosphere. For instance, sea surface temperatures in mid-latitudes are
well described by the stochastic climate model paradigm (Frankignoul and Hasselmann
1977), where random atmospheric surface forcing with “white noise” is integrated by
the ocean mixed layer to produce a “red noise” spectrum, in which power is ampli-
fied at lower frequencies (Deser et al. 1993). In addition, a number of ocean processes
(e.g. overturning and gyre circulations, the triggering of Rossby waves) are potential
candidates that may provide additional predictability by influencing atmospheric and

thus terrestrial variability. A potentially large source of predictability of natural climate
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variability on decadal timescales is thought to come from fluctuations in the AMOC
(e.g. Delworth and Mann 2000; Dijkstra et al. 2006; Zhang and Delworth 2006).

Due to a lack of AMOC observations, the impact of AMOC changes have been studied
using climate models. The most direct impact of changes in the AMOC is on the
ocean heat transport, with decreases in the AMOC leading to decreases in northward
heat transport (e.g. Stouffer et al. 2006; Vellinga and Wood 2008). If the AMOC
transports less heat northward this will impact sea surface temperatures and near-surface
air temperatures. Several modelling studies have indeed linked the leading pattern of
SST variability over the North Atlantic (known as the Atlantic Multidecadal Oscillation
or AMO, Schlesinger and Ramankutty 1994) to changes in the AMOC (e.g. Delworth
and Mann 2000; Knight et al. 2005), though models differ considerably in the timescale
of the AMO they reproduce (Knight 2009). Sutton and Hodson (2005) showed evidence
from observations that the AMO modulates the North American and European boreal
summer climate on multidecadal timescales. The presence of feedbacks linking AMOC,
SST, and the atmospheric circulation therefore open opportunities for predictability of
decadal climate variability over land associated with predictability of AMOC variations
(Knight et al. 2006). Because the AMOC influences many aspects of climate, it can be

considered as an important potential carrier of climate predictability.

Wunsch and Heimbach (2012) showed some observational evidence for the AMOC to ex-
hibit a stationary Gaussian red noise behaviour which is not particularly surprising since
the system is subject to continuous stochastic disturbances by external processes (winds,
precipitations, etc.), and to internal instabilities of a wide assortment. The Gaussian
behaviour is consistent with the central limit theorem for a process arising from numer-
ous independent disturbances (Wunsch and Heimbach 2012). However, it is somewhat
surprising that the frequency spectrum is not more “red” given the long-time scales of
ocean memory. This underlines the dominance of the known white noise behaviour of
the wind field, which is only slightly reddened by the longer oceanic timescales. A simple
model for red noise is the univariate AR(1) process. In the mathematical formulation
of the slow processes, atmospheric variability (weather) is treated as “noise”, which is
integrated by the ocean resulting in low-frequency variability (Hasselmann 1976). The
differential equation describing this AR(1) process for the oceanic mixed layer temper-
ature is given by:

%—f =T +e¢ (1.1)
where 7 is the damping coefficient and € is a random variable with Gaussian character-
istics. The latter term refers to the fact that as the correlation increases the equation
approximates more and more closely persistence with some added noise; it represents a
stochastic process with some memory. The mixed layer temperature is forced by white
(weather) noise € and is damped about its equilibrium temperature by feedback pro-
cesses represented by a damping time scale % If the long time scale variability of the

coupled system is a consequence of the damping of the weather noise forcing in the
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manner discussed by Hasselmann (1976) and Frankignoul and Hasselmann (1977), then

skilful forecasting is limited by the damping timescale.

Although there is several evidence for the power spectrum of modelled AMOC indexes
to show power resembling a theoretical red noise spectrum, the acquisition of long time
series with climate models (up to thousand years) also allowed identification of energy
peaks that are significantly above the red noise (e.g. Delworth et al. 1993; Jungclaus et al.
2005; Medhaug et al. 2011) with periods ranging from 10 to 100 years. Modelling studies
therefore show evidence that AMOC prediction is promising for potential predictability

of climate at multi-decadal timescales.

1.3 Potential for abrupt changes in the AMOC

Because of its long timescale, the AMOC is thought to provide a stabilizing effect on cli-
mate, but is also suspected (from paleoclimatic and modeling evidence) to cause abrupt
climatic change in the space of a few decades if it is disturbed in certain ways. Before
reviewing some of its past shifts and its possible future behaviour, a general description
of the AMOC is first given.

1.3.1 Overview of the AMOC

The AMOC is described as the zonally averaged meridional flow forced by winds and
buoyancy fluxes, transporting ~15 Sv of water and 1 PW of heat poleward (estimation at
40°N, Ganachaud and Wunsch 2000). It is usually defined as the basin-wide circulation
in the latitude-depth plane, as typically quantified by a meridional transport stream-
function. Thus, at any given latitude, the maximum value of this streamfunction, and
the depth at which it occurs specified the total amount of water moving meridionally

above this depth (and below it, in the reverse direction).

A schematic representation of the global MOC (which can be seen as the mean large-
scale circulation in the ocean) is shown in Figure 1.1. Essentially, cold, dense water
is formed in the Nordic Seas, Labrador Sea, and Weddell Sea through vertical mixing,
which sinks and flows out into the oceans. The North Atlantic Deep Water (NADW)
flows southward along Deep Western Boundary Currents (DWBCs) to the Southern
Ocean. The deep water joins the Antarctic Circumpolar Current (ACC), which mixes
and redistributes it to all ocean basins. Deep water is upwelled around Antarctica, along
the equator and along eastern coastlines (Gordon 1986). This cool water is warmed in
the tropics, and most of it is transported poleward along Western Boundary Currents

(WBCs), completing the circulation loop.

More specifically, in the North Atlantic (Figure 1.2), the warm and saline waters of
the Gulf Stream (originating from the Gulf of Mexico) are transported northward by



Chapter 1 Introduction 5

Figure 1.1: Schematic representation of the global Meridional Overturning Cir-
culation. Surface currents are shown in red, deep waters in light blue and
bottom waters in dark blue. The main deep-water formation sites are shown in
yellow. (From Rahmstorf 2002).

the North Atlantic Current (NAC). On its way to the Nordic and Labrador Seas, the
warm saline surface water loses heat to the cold atmosphere (warming it) whereas its
salt content remains relatively constant (as salt cannot be exchanged in more than trace
quantities at the air-sea interface). The increase in density resulting from the strong
heat loss renders the surface water unstable and it overturns, sinking in quite specific
areas to reach a depth where waters have the same density: NADW is ultimately formed.
Note that open ocean deep convection is more frequently observed in the Labrador Sea
than in the Greenland Sea (Marshall and Schott 1999). The newly formed NADW flows
southward as a deep western boundary current along the continental slope of America
to about 35°S (Stommel and Arons 1960), to counter-balance the northward export of
surface water (in accordance with mass conservation). In summary, the underpinning
concept for the Atlantic MOC (hereinafter AMOC) consists of four main components:
(i) upwelling mixing processes that transport volume from depth to near the ocean
surface, (ii) surface currents that transport relatively light water toward high latitudes,
(iii) deep-water regions where water become denser and sinks, (iv) deep currents closing

the loop.

1.3.2 Past AMOC shifts

Analysis of sediment cores and corals provides a wealth of information on past ocean
circulation and show that it has undergone major changes during the past 120,000 years
(Rahmstorf 2002). For example, time slice compilations suggest that at different times,
latitude shift of convection sites (between the Nordic Seas and the regions south of
Iceland) have occurred (e.g. Alley and Clark 1999), and that at certain times NADW
formation was even interrupted (Keigwin et al. 1994). Clark et al. (2002) and Rahmstorf
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Figure 1.2: Simplified representation of the present-day Atlantic Meridional
Overturning Circulation. Warm surface currents are shown in red, North At-
lantic Deep Water is shown in blue. (From Rahmstorf 1997).

(2002) also suggested that past reorganizations of the AMOC were involved in climatic

temperature changes of several degrees in a few decades.

The most dramatic abrupt climate changes are the Dansgaard-Oeschger warm events
(observed quasi-periodically during the last glacial period), with a warming that can ex-
ceed 10°C within a decade (Severinghaus et al. 2003). Another type of abrupt change is
the Heinrich events (also observed during the last glacial period); sediment data indicate
a large discharge of icebergs into the northern Atlantic (Heinrich 1988), decreasing the
density of surface water in the North Atlantic to such an extent that the NADW circu-
lation essentially shuts down in the course of a few decades, cooling the North Atlantic
dramatically (Keigwin et al. 1994). At the end of the last glacial period, rapid warming
occurred, as the AMOC restarted. As the climate warmed and ice sheets melted, the
ocean circulation went through a number of oscillations that may be explained by melt-
water input as the great northern ice sheets further disintegrated. The effect may have
been rapid cooling of up to 10°C in a matter of decades (causing the Younger Dryas
and 8.2 kyr cold events). The variability of the AMOC during the Holocene after the
8.2 kyr event is discussed by Keigwin and Boyle (2000). Variations are clearly much
smaller than during glacial times, but the evidence for them is still controversial and
not very strong. In the last decade or so, Bryden et al. (2005) reported that the AMOC
seems to have weakened by about 30% from 1957 to 2004. This work was followed
by an intense debate suggesting that the five snapshots used in this study might have
subsampled intense high-frequency variability. Indeed, there are at present no observa-
tions indicating a sustained weakening of the AMOC during the last few decades (e.g.
Knight et al. 2005; Cunningham et al. 2007; Cunningham and Marsh 2010). On the con-
trary, high-resolution modelling (Biastoch et al. 2008), and combined satellite altimetry
and in situ observations (Willis 2010) even hint at a weak upward trend in the AMOC
during the last decades. Evidence from both observational and modelling studies of a

weakening/strengthening of the AMOC during the last decades is still controversial.
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For the present-day climate system, the AMOC has been associated with a large north-
ward heat flux which transports about 1.2 PW of heat poleward of 25°N, or 20-30% of
the total heat flux carried by the atmosphere-ocean system at this latitude (Hall and
Bryden 1982; Trenberth and Caron 2001). Consequently, changes in the AMOC have the
potential to change the climate in this region (e.g. Manabe and Stouffer 1994; Vellinga
and Wood 2002), and to lead to a major rearrangement of global climate (e.g. Manabe
and Stouffer 1999) as already seen in the geological past. Abrupt changes in the AMOC
are considered as one of the major challenges in climate change (Broecker 1997; O’Neill
and Oppenheimer 2002).

1.3.3 Future behaviour of AMOC in a changing climate

In the future, there is a risk that substantial changes in the AMOC could occur as a
result of global warming from increasing levels of atmospheric greenhouse gases (Man-
abe and Stouffer 1994; Rahmstorf and Ganapolski 1999; Zickfeld et al. 2007). However,
there is still much uncertainty as to how it will respond. Indeed, even when forced by the
same scenario, climate models show a wide range of AMOC responses to global warm-
ing (IPCC 2001, Figure 1.3). Nevertheless, although some projections of greenhouse
gases-induced climate change show little or no weakening of the AMOC, the majority
of the state-of-the-art climate models show a weakening in the AMOC throughout the
215 century (e.g. Gregory et al. 2005; IPCC 2007; Medhaug and Furevik 2011). Most of
them assessed “very likely” that the AMOC would weaken (with an average predicted
slowdown of 25%, IPCC 2007) by 2100, in response to increase freshening and warming
in the subpolar seas (Rahmstorf 1999; Rahmstorf and Ganapolski 1999; Delworth and
Dixon 2000). Since the overflow and descent of cold, dense waters across the Greenland-
Scotland Ridge (i.e. NADW) is a principal mean by which the deep ocean is ventilated
and renewed, the suggestion is that a reduction in upper-ocean density at high northern
latitudes will weaken the AMOC. If this were to occur, northern Europe and the north-
eastern American continent would correspondingly cool. The climatic impacts would
not be restricted to the Atlantic regions but extend globally through atmospheric tele-
connections (e.g. Dong and Sutton 2002; Zhang and Delworth 2005) and through global
oceanic wave mediated adjustment (Goodman 2001; Johnson and Marshal 2004; Blaker
et al. 2006). Note that, although a transient weakening is the most common response
of the AMOC to greenhouse forcing, to date there is no published climate scenario run
that simulates a collapse of the AMOC before the year 2100 (Gregory et al. 2005).

For the Atlantic sector, the fate of the AMOC will be important in shaping both regional
and global climate change. However the fact that the climate exhibits strong internal
decadal to multidecadal variability in this sector (e.g. Latif et al. 2006) makes the
prediction of the AMOC challenging because of its likelihood to mask the anthropogenic
climate signal during the next few decades (e.g. Knight et al. 2005; Sutton 2003). This
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Figure 1.3: Evolution of the AMOC in greenhouse warming simulations with

different coupled ocean-atmosphere global climate models.
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is clearly illustrated in Figure 1.4, which shows four different greenhouse gas simulations

(with a COgq increase of 1% per year) initialized from different states of a control run

(Sutton 2003). Although the global mean temperature exhibits a rather monotonic

increase (left panel), the AMOC evolution closely follows of the control run for some

decades (right panel).
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Figure 1.4: Global mean surface air temperature (left panel) and meridional
overturning index (right panel) from the control run (black) and four greenhouse
gas experiments (colored lines) with the ECHAM5/MPI-OM climate model.

(From Sutton 200

3).

Because of the economic and socio-economic consequences (e.g. for fisheries, agriculture,

infrastructure), the ability to predict anthropogenic climate change therefore demands a

good understanding of the natural decadal variability associated with the AMOC, as it is

precisely on this timescale that anthropogenic impacts are likely to be expressed (IPCC

1996). Although a large body of literature exists on the processes that potentially give

rise to decadal climate variability, the subject is still under debate.
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1.4 Characteristics and mechanisms of decadal climate vari-
ability associated with the AMOC

In search of the origin of decadal variability in the climate system, the AMOC has long
been regarded as one of the best candidates. Indeed, both observational and modelling
studies support the idea that the decadal climate variability in the North Atlantic has
been closely related to the AMOC (e.g. Gordon et al. 1992; Winton 2003; Herweijer
et al. 2005; Latif et al. 2004). The question of how changes in the AMOC develop
and whether there are general modes describing the global overturning circulation have
been addressed by a large variety of numerical experiments and with models of varying
complexity. However, the nature and mechanism of the decadal variability of the AMOC

is still controversial.

In the existing literature, there are two leading mechanisms for the decadal AMOC
variability. The first idea is that it is part of a coupled ocean-atmosphere mode (e.g.
Timmerman et al. 1998; Vellinga and Wu 2004; Danabasoglu 2008), and the second
argument is that it is simply an oceanic response to low-frequency atmospheric forcing
(e.g. Delworth et al. 1993; Delworth and Greatbatch 2000; Dong and Sutton 2005; Born
and Mignot 2011).

Timmerman et al. (1998) illustrate the first idea by showing evidence for a coupled air-
sea mode with a 35-year period, in a multi-century integration of the ECHAM3/LSG
climate model. The mechanism for this mode is as follows. When the AMOC is anoma-
lously weak, the North Atlantic Ocean is dominated by negative sea surface temperature
(SST) anomalies. The atmospheric response to these SST anomalies involves a weak-
ened North Atlantic Oscillation (NAO, Hurrell 1995a), which then induces positive sea
surface salinity (SSS) anomalies in the convection site through anomalous freshwater
fluxes and Ekman transport. This in turn, enhanced deep convection and leads to an
intensified AMOC and an increased northward heat transport. As a result the North
Atlantic Ocean is dominated by positive SST anomalies, which completes the phase re-
versal of the oscillation. An active air-sea coupling is also found by Danabasoglu (2008)
in the CCSM3 model where a strong 21-year oscillation is seen in the AMOC time se-
ries. This study suggests a prominent role of the NAQ, in particular, in modulating the
subpolar gyre strength and contributing to the formation of temperature and salinity
anomalies that lead to positive/negative density anomalies at the deep-water formation
site. Vellinga and Wu (2004) also agree with the idea of a coupled ocean-atmosphere
mode. Using the HadCM3 climate model, they presented a mechanism to explain the
multi-decadal AMOC variations through slow advection of salinity anomalies from the
tropical Atlantic to the high latitudes. They argued that the salinity anomalies are gen-
erated by AMOC induced shifts in the location of the InterTropical Convergence Zone
(ITCZ) and that, in the North Atlantic, these anomalies act to reverse the phase of the

oscillation by changing the upper ocean density.
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In contrast, Delworth et al. (1993) support the second idea by showing evidence for a
pure damped oceanic mode excited by atmospheric forcing in the GFDL model. They
associated this mode with a 50-year period, which relates to changes of the subpolar
gyre strength. The mechanism is summarised as follows. A weak overturning reduces
the northward heat transport, which leads to a cooling of the North Atlantic Ocean and
an acceleration of the subpolar gyre (caused by the increase in density gradient). The
strengthening of the subpolar gyre increases the advection of salty water into the sinking
regions, enhancing deep-water formation, which intensifies the AMOC (phase reversal
of the oscillation). This is turn, enhances the northward heat transport, leading to the
transport of warmer, less dense water into the sinking area. As a result, the AMOC
weakens again, accompanied with reduced heat transport. This variability is interpreted
as a damped ocean-only mode excited by low-frequency atmospheric noise. Dong and
Sutton (2005) reached the same conclusions in the HadCM3 climate model. Although
the timescale is shorter in HadCM3 (~ 25 years), the mechanisms that they identified
are very similar to those of Delworth et al. (1993), which are related to changes in the
strength of the subpolar gyre that therefore modulate the transport of saline water into
the Nordic Seas. In good agreement with these two studies, Delworth and Greatbatch
(2000) found no conclusive evidence, in their analysis of a series of coupled and uncoupled
global climate model integrations, that the AMOC variability is part of a dynamically
coupled atmosphere-ocean mode. Recent results from Born and Mignot (2011) with
the IPSL-CM4 model, and Kwon and Frankignoul (2011) with the CCSM3 model, also
support the interpretation of the AMOC oscillating in response to stochastic forcing of
the atmosphere proposed by Delworth et al. (1993), and later confirmed by Delworth
and Greatbatch (2000) and Dong and Sutton (2005).

The conflict between these two viewpoints (truly coupled mode or not) arises mainly be-
cause of the uncertainties in the atmospheric response to the mid-latitude SST anomalies.
Indeed, the extent to which North Atlantic SST contributes to the variation in the main
mode of atmospheric circulation (and climate variability) in the North Atlantic/Euro-
pean sector, that is the NAO, is still questionable. Although several studies indicate
a strong impact of the leading pattern of SST variability over the North Atlantic (or
AMO) on the NAO (e.g. Rodwell et al. 1999; Sutton et al. 2001; Peng et al. 2003),
others suggest that this latter is rather impacted by tropical Pacific or Indo-Pacific SST
anomalies (e.g. Fraedrich and Miiller 1992; Hoerling et al. 2001; Merkel and Latif 2002;
Bader and Latif 2003). There are also several lines of evidence for the AMO to be a
direct response of the AMOC to the anomalous air-sea fluxes associated with the NAO
(e.g. Delworth et al. 1993; Curry et al. 1998; Marshall et al. 2001; Knight et al. 2005;
Collins et al. 2006a). Although these relationships between the NAO, AMOC and AMO
on decadal to multidecadal timescales are widely accepted, it is not clear to what extent
the NAO-induced multidecadal changes in the AMOC and AMO will feed back onto the
NAO itself.

In the existing literature, there are also two different viewpoints about the relative role
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of freshwater export from the Arctic (e.g. Delworth et al. 1997; Jungclaus et al. 2005;
Hawkins and Sutton 2007) and tropical processes (e.g. Vellinga and Wu 2004; Mignot
and Frankignoul 2005) in the decadal AMOC fluctuations.

For example, Hawkins and Sutton (2007) support the idea of a link with the Arctic.
They characterized low frequency AMOC variability (70-80 year period) as an internal
mode, dominated by changes in convection in the Nordic Seas, which lead the changes
in the AMOC after a few years. In this study, variations in salinity transports from the
Arctic and from the North Atlantic are the main feedbacks which control the oscillation.
A similar low-frequency ocean mode to Hawkins and Sutton (2007), also excited by the
atmosphere, was found in the ECHAM5/MPI-OM model (Jungclaus et al. 2005). In
this model, which has a relatively high resolution at high latitudes, they found that
variations in the Atlantic salt and heat transport drive circulation changes in the Nordic
Seas. These circulation changes modulate the storage and release of freshwater from
the Arctic. In agreement with the idea of a link with the Arctic, Delworth et al. (1997)
described a 40 to 80-year oscillation of the AMOC in the GFDL model which is found
to be associated with fluctuations in the Arctic, Greenland Sea and in the intensity of
the East Greenland Current (EGC); a similar mechanism has been found in the recent
study of Escudier et al. (2012) in the IPSL-CM5 model.

These above studies suggest a link with the Arctic different from the mechanism sug-
gested by Vellinga and Wu (2004). Indeed, as mentioned earlier, they presented a
mechanism to explain multidecadal AMOC variations through slow advection of salinity
anomalies from the tropical Atlantic to the high latitudes, in which there was no role
for the Arctic. Mignot and Frankignoul (2005) also identified a similar link with the
tropics in the Bergen Climate Model. They claimed that part of the salinity anomaly
in the tropical Atlantic (induced by El-Nifio events) is advected in the ocean interior
along the NAC, reaching the Irminger and Labrador Seas after about 35 years, where it

destabilizes the water column and favors deep convection.

In summary, the mechanisms responsible for the AMOC variability in the models have
been partially understood, but there appear to be significant differences of details be-
tween the different models (see Table 1.1). Although some modelling studies found that
mechanisms responsible for decadal variability of the AMOC are associated with a pure
damped oceanic mode excited by atmospheric forcing (which is e.g. related to changes
in the strength of the subpolar gyre, Delworth et al. 1993; Dong and Sutton 2005), oth-
ers found clear evidence of an active coupling between the ocean and the atmosphere
(either NAO or ITCZ-related, Timmerman et al. 1998; Danabasoglu 2008; Vellinga and
Wu 2004). In addition, while some studies suggest that the reversal of these AMOC
oscillations is triggered by an anomalous advection of salinity from the tropics (e.g. Vel-
linga and Wu 2004; Mignot and Frankignoul 2005), others argue that the main salinity
feedback comes from the Arctic (e.g. Jungclaus et al. 2005; Hawkins and Sutton 2007).
The driving mechanism(s) of the decadal AMOC fluctuations, known to strongly influ-

ence climate in the North Atlantic (e.g. Latif et al. 2004), remain largely unresolved,
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Table 1.1: Summary of some proposed mechanisms for decadal to multidecadal
AMOC variability from modelling studies (non-exhaustive list).

Reference Model AMOC Mechanism(s) Process(es)
cycle involved
Delworth et al. GFDL R15 40-80 Internal ocean- | A weak AMOC state is associated with
(1993) years only model | a reduced northward heat transport, cool-
excited by at- | ing the dense pool in central North At-
mosphere noise | lantic. Temperature anomaly generates cy-
(NAO) clonic anomaly in subpolar gyre circulation,
which transports salt into convection site,
strengthening the AMOC.
Delworth et al. GFDL R15 40-80 Internal ocean- | Enhanced transport of freshwater and sea
(1997) years only model | ice from the Arctic via the East Greenland
excited by at- | Current and Denmark Strait. These anoma-
mosphere noise. | lies propagate around the subpolar gyre into
Link with the | the Labrador Sea, capping the convection.
Arctic Greenland Sea oscillations are implicated,
but how they are generated is unknown.
Timmerman ECHAM3/ 35 years Coupled ocean- | An anomalous strong AMOC state tends to
et al. (1998) LSG atmosphere warm the North Atlantic. The atmospheric
mode response involves a strengthened NAO, lead-
ing to weak evaporation and Ekman trans-
port off Newfoundland and in the Greenland
Sea. This decreases SSS, weakening deep
convection in sinking regions, weakening the
AMOC.
Delworth and || GFDL R15 70-100 Damped ocean- | Same as Delworth et al. (1993).
Greatbatch years only mode,
(2000) excited by
low-frequency
atmospheric
forcing (NAO)
Vellinga  and HadCM3 70-200 Coupled ocean- | A strong AMOC state is associated with
Wu (2004) years atmosphere an enhanced northward heat transport, gen-
mode. Link with | erating cross-equatorial SST gradient. As
Tropics a consequence, I'TCZ is shifted northward,
increasing precipitation (hence decreasing
SSS) in northern tropical Atlantic. North-
ward advection of SSS into sinking regions,
weakening the AMOC.
Dai et al PCM 25 years Internal ocean- | Same as Delworth et al. (1993). It however
(2005) only model | suggests stronger ties to the NAO.
excited by at-
mosphere noise
(NAO)
Dong and Sut- || HadCM3 25 years Internal ocean- | Same as Delworth et al. (1993). It however
ton (2005) only model | suggests stronger ties to the NAO.
excited by at-
mosphere noise
(NAO)
Mignot and || BCM <50 Coupled ocean- | Part of the salinity anomaly in the tropical
Frankignoul years atmosphere Atlantic (induced by El-Nifio events) is ad-
(2005) mode. Link with | vected in the ocean interior along the NAC,
Tropics reaching the Irminger and Labrador Sea af-
ter about 35 years, where they destabilize
the water column and favour deep convec-
tion.
Jungclaus et al. ECHAMS5/ 70-80 Damped ocean- | Storage and release of freshwater from the
(2005) MPI-OM years mode excited | central Arctic to the Labrador Sea convec-
by atmosphere | tion site along with circulation changes in
noise. Link with | the Nordic Seas due to Atlantic heat and
the Arctic salt transports.
Hawkins  and HadCM3 centen- Damped ocean | Changes in the Nordic Seas convection lead
Sutton (2007) nial mode excited | to AMOC changes. Variations in salinity

by atmosphere
noise. Link with
the Arctic

transports from the Arctic and from the
North Atlantic are the main controlling feed-
backs. Similar to Delworth et al. (1997) and
Jungclaus et al. (2005), but convection re-
gions are different.
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Danabasoglu CCSM3 21 years Coupled ocean- | Prominent role of the NAO in modulating
(2008) atmosphere the subpolar gyre strength and contributing
mode to the formation of temperature and salin-
ity anomalies that lead to positive/negative
density anomalies at the deep-water forma-
tion site.
Msadek and || IPSL-CM4 ~100 Coupled ocean- | Convection is primarily influenced by the
Frankignoul years atmosphere anomalous advection of salinity due to
(2009) mode changes in the East Atlantic Pattern.
Medhaug et al. BCM 40-70 Coupled ocean- | The variability in the Labrador Sea and
(2011) years atmosphere the Nordic Seas convection is driven by
mode decadal scale air-sea fluxes in the convec-
tive region that can be related to oppo-
site phases of the NAO. The Labrador Sea
convection is directly linked to the vari-
ability in AMOC. Linkages between convec-
tion and water mass transformation in the
Nordic Seas are more indirect; the Scandi-
navian Pattern drives the ocean’s poleward
heat transport (PHT) affecting sea ice cov-
erage there. Increased PHT is both associ-
ated with an increased water mass exchange
across the Greenland-Scotland Ridge, and a
stronger AMOC.
Kwon and || CCSM3 20 years Internal ocean- | The NAO plays a major role in AMOC
Frankignoul only model | variability through setting the surface flux
(2011) excited by at- | anomalies in the Labrador Sea and affecting
mosphere noise | the subpolar gyre circulation strength.
(NAO)
Escudier et al. IPSL-CM5 20 years Coupled ocean- | Positive temperature and salinity anoma-
(2012) atmosphere lies in the Labrador Sea are advected east-
mode. Link with | ward (along the subpolar gyre), favouring
Arctic deep convection south of Greenland and Ice-
land, and strengthening the AMOC. These
anomalies eventually reach the Nordic Seas
inducing sea ice melting and anomalous cy-
clonic circulation there. This strengthens
the East Greenland Current, creating neg-
ative temperature and salinity anomalies in
the Labrador Sea.

showing differences among various climate models (Latif et al. 2006). As a consequence,
the inherent decadal predictability of the climate system is also not well established.
From the perspective of developing operational decadal prediction schemes, improving

our understanding of such variability is therefore pre-requisite.

1.5 Prospects for decadal climate prediction in the North

Atlantic sector

1.5.1 Why is climate predictable?

In the 1960’s Edward Lorenz made an “accidental” discovery in trying to model the
weather: the chaotic phenomenon known as the “butterfly effect”. This concept implies
that small deviations in the initial conditions affect the weather for regions thousands of
miles away some days later. Thus, for both the atmosphere and ocean being chaotic sys-

tems, detail of their state at a given time is strongly dependent on their previous state.
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Because of this “butterfly effect”, detailed day-to-day weather forecasting is effectively
impossible more than a couple of weeks ahead, and knowledge of initial conditions (or
states) is fundamental. But how could climate predictions be possible when weather
forecasts are limited to a couple of weeks in advance? The answer is actually in the
question: because climate and weather are fundamentally different. Weather forecasting
aims to predict how the weather will evolve over a few days, while climate prediction aims
to predict the weather we expect to have on average at both a given year and place. In a
narrow sense, climate is usually defined as the statistical description of weather elements
over a period of time, and describes the “macroscopic” weather characteristics like the
mean or the variance, not the “microscopic” single weather phenomenon. Thus for cli-
mate prediction, accurate knowledge of initial conditions is not as crucial as for weather
forecasting. In contrast, knowledge of average modifications (e.g. variation in atmo-
spheric greenhouse gas concentrations), although weak, is more important because the
associated signals, undetectable at a couple of weeks, accumulate with time. Therefore,
in certain circumstances “macroscopic” weather characteristics (climate) are predictable
although the forecast of “microscopic” characteristics (weather) are not. However, the
system being chaotic in both cases, it is important to make several ensemble experiments

to ensure the statistical robustness of the prediction.

1.5.2 Why is decadal climate prediction challenging?

Reliable predictions of the future climate mainly depend on sustained observations of
changes in the ocean. The lack of subsurface ocean observations (Cunningham et al.
2007) has been a limiting factor for realizing the full skill potential of such predictions
(Smith et al. 2007). Although the Atlantic Ocean has historically been the best ob-
served of the world’s oceans, the lack of sufficient subsurface data remains a limitation
for the initialization of hindcasts used to develop and test coupled prediction systems.
In addition, many observational gaps remain and the supply of data for the tropical
Atlantic is limited relative to, for instance, the tropical Pacific. There is also a need
for more atmospheric observations. Observations and the assimilation of salinity, which
plays a more important role in Atlantic than in Pacific climate, also remains a par-
ticular challenge. For modelers, the climate timescale presents different challenges as
compared to weather forecasting. Models tend to accumulate errors as computational
time is extended, and errors of no consequence for weather timescales can dominate the
calculation of the climate state. However, while ocean models are still not reproducing
many observed ocean signals well, these models have reached a level of realism sufficient

for serious experiment design and optimization studies to be usefully undertaken.
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1.5.3 Evidence for decadal climate predictability in the North Atlantic

Decadal climate prediction is a relatively new field in climate science with a number
of modelling groups performing near-term experiments for CMIP5 (Taylor et al. 2009)
to be assessed as part of the IPCC Fifth Assessment Report. The prospect of pro-
viding climate change information regarding the next several decades highlights the
strong need for assessing the potential predictability of climate on decadal timescales.
Three methods, which heavily rely on models, are commonly used to estimate potential
predictability. First, in the“Diagnostic Potential Predictability” (DPP) approach, the
predictability is analysed by decomposing the variance of a climate variable into a long
timescale component considered as potentially predictable, and an unpredictable noise
component. Previous studies using such an approach for both real and modelled systems
include those of Rowell (1998), Boer (2001, 2004, 2011), Boer and Lambert (2008), and
Hawkins et al. (2011). Second, in the“Prognostic Potential Predictability” (PPP) ap-
proach, the predictability is estimated prognostically, by re-running a climate simulation
with slightly perturbed initial conditions. This approach does not compare to observa-
tions directly, and only assesses the ability of the modelled climate to reproduce itself
given a certain uncertainty on initial conditions, representing for example the atmo-
spheric noise. These experiments are thus often called “perfect ensemble” experiments.
Predictability studies using such an approach began with Griffies and Bryan (1997a,b),
and have been followed by e.g. Grotzner et al. (1999), Boer (2000), Collins and Sinha
(2003), Pohlmann et al. (2004), Collins et al. (2006a), Hermanson and Sutton (2009),
Hurrell et al. (2009), Msadek et al. (2010). Third, in the ocean dynamics approach, the
predictability is quantified by comparing the variability simulated with and without the
inclusion of active ocean dynamics; it is likely that the regions in which ocean dynamics
are important in generating the variability, are also those of high potential predictability
(Pavan and Doblas-Reyes 2000).

All three methods (the DPP, PPP, and ocean dynamics approaches) indicate four regions
where predictability may exist at decadal timescales: the North Atlantic, the Southern
Ocean, the North Pacific, and the tropical Pacific. These regions are shown to be largely
model independent by Boer (2001), where the potential predictability of decadal means
of surface air temperature (SAT) from an ensemble of eleven state-of-art coupled climate
models was calculated (Figure 1.5). The most prominent regions are the North Atlantic
and the Southern Ocean, where more than 50% of the variance exists in the decadal
band. Because eddies are of primary importance in controlling the momentum and
buoyancy budget in the Southern Ocean (e.g. Hallberg and Gnanadesikan 2006), we can
however question the reliability of results from climate models for the Southern Ocean
since eddies are parametrized. Note that the oceans are a priori assumed to be among
the most predictable component of the climate system on the decadal timescale as they

provide long-term climatic memory due to their large thermal inertia.
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Figure 1.5: Potential predictability for decadal mean surface air temperatures
from a model ensemble of 11 coupled models. (From Boer 2001).

For the North Atlantic and the Southern Ocean, the results of the Collins and Sinha
(2003) and Pohlmann et al. (2004) PPP studies (with the HadCM3 and ECHAMS5/MPI-
OM models, respectively) are in good agreement with Boer (2001)’s study, showing
that these regions are predictable out to 10 years or longer. The North Atlantic has
received the largest amount of attention since it shows the largest potential for decadal
predictability and because of its potential influence on Western Europe and the Eastern
United States. Decadal variations of SST in the North Atlantic region (referred to as the
AMO) are thought to influence important climatic features, including rainfall over the
African Sahel, India and Brazil, Atlantic hurricanes and summer climate over Europe
and America (e.g. Pohlmann et al. 2004; Sutton and Hodson 2005; Zhang and Delworth
2006; Knight et al. 2006; Dunstone et al. 2011). Because of the evidence that the AMO
is linked to the AMOC (Knight et al. 2005), the latter has been considered as an ideal
candidate for the study of decadal potential predictability (e.g. Delworth and Mann
2000; Curry et al. 2003; Latif et al. 2004; Collins et al. 2006a).

There have been several studies investigating the predictability of the AMOC in coupled
models using the “perfect model” experiment approach (e.g. Griffies and Bryan 1997a,b;
Sutton 2003; Collins and Sinha 2003; Collins et al. 2006a; Hermanson and Sutton 2009;
Msadek et al. 2010). Most of them indicate that the AMOC variations are predictable
out to a decade or more (see Table 1.2). For instance, in the PREDICATE project (Sut-
ton 2003), a systematic comparison of the predictability of five state-of-the-art climate
models (HadCM3, ECHAM/MMPI-OM, ARPEGE3/ORCA, BCM, ECHAM4/ORCA)
is made. The results indicate that in general the strength of the AMOC is potentially
predictable at least a decade in advance and, in some situations, multidecadal predictions
of the AMOC may be possible. Consistent with earlier model comparisons of AMOC pre-
dictability made by Collins et al. (2006a), Msadek et al. (2010) recently found the leading
mode of AMOC variability to have predictability for nearly two decades in the GFDL
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model. There are even some hints of potential predictability for more than 50 years into
the future in the HadCM3 model according to Collins and Sinha (2003). Although all
the above predictability studies agree to some extent on the level of predictability of
the AMOC, there are some disagreements on the level and extent of predictability of
AMOC-related variation in North Atlantic SST. Results from Griffies and Bryan (1997b)
with the GFDL model suggest the variations in North Atlantic SST to be predictable
up to one to two decades, in good agreement with results from Pohlmann et al. (2004)
with the ECHAMS5/MPI-OM model. In contrast, Grotzner et al. (1999) found the North
Atlantic SST to be predictable only about one year in advance, although they found a
potential predictability of the AMOC up to one decade.

Table 1.2: Summary of AMOC predictive skills from modelling studies (non-
exhaustive list).

Reference Model(s) Experimental set-up | AMOC predictability skills
[ensemble(s), members,
integration-length)]
Griffies and Bryan || GFDL (2, 8, 30] ~ 20 years
(1997a)
Griffies and Bryan || GFDL (1, 12, 30] 20 years
(1997b)
Collins and Sinha || HadCM3 (3,9, 20] ([1, 3, 70]) ~ 15-20 (50) years; Bet-
(2003) ter predictive skills when
anomalously stronger over-
turning
Collins et al. || (i) ARPEGE3- | (i) [2, 6, 25]; (ii) [2, 3, | ~ 10-20 years; Better pre-
(2006a) ORCALIM; 20]; (iii) [3 ,6 , 20]; (iv) | dictive skills when anoma-
(i1) BCM; (iii) | [3, 8, 20]; (v) [2, 2, 20] lously stronger overturning
ECHAM5/MPI-
OM; (iv)
HadCM3; (v)
INVG
Hermanson and || HadCM3 [4, 10, 10] From 3 to 8 years or 5 years
Sutton (2009) on average
Msadek et  al GFDL CM2.1 [6, 10, 20] ~ 10-20 years; Evidence for
(2010) sensitivity to AMOC initial
states

Predictions of AMOC variability and related oceanic fields may be of interest to sci-
entists, but they would be of little relevance to society unless they are accompanied
by predictions of surface climate variables. However, as for the North Atlantic SST,
there are major disagreements on the level and extent of predictability of atmospheric
quantities such as SAT and precipitation (mainly over land). Although previous studies
(Griffies and Bryan 1997b; Grotzner et al. 1999) found little predictability of societally
relevant surface quantities associated with AMOC variations, more up-to-date stud-
ies found evidence for potentially predictable variation in SATs on decadal timescales.
Collins et al. (2006a) indeed found that the North Atlantic Ocean is a region in all
the models in which there is significant relationship between decadal variations in SAT
(and underlying SST) and the AMOC. In their study, the potential predictable surface
climate variations associated with variations in the AMOC appear consistent. However

potential predictive skill in surface climate variations appears to be less than those seen
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for AMOC variations. In addition, following Boer (2001) and using nine models par-
ticipating in the first Coupled Model Intercomparison Project (CMIP1), Boer (2004)
predominantly found potential predictability of SAT over the high latitude oceans, with
appreciable values on multidecadal timescales, especially in the North Atlantic. On
shorter timescales, he also found some hints of potential predictability in the tropical
Atlantic. Boer (2011) extended this study to simulations taking into account differ-
ent climate change scenarios and trying to distinguish between internal and externally
forced potential predictability. Using two different coupled climate models (HadCM3
and HadGEM1), Hawkins et al. (2011) identified the far North Atlantic in general, and
the NAC region in particular, as regions with high potential predictability. For climate
variables over land the evidence is much less clear. Grotzner et al. (1999) found that
predictability for land-surface variables was less than a year. Boer (2000, 2004) and
Collins (2002) also found no consistent evidence for predictability of surface tempera-
tures beyond seasonal timescales. Boer and Lambert (2008) showed evidence of some
predictability beyond seasonal timescales for surface temperature over land. In contrast,
Collins and Sinha (2003), Sutton and Hodson (2005) and Pohlmann et al. (2006) have
shown that the multidecadal AMOC predictability in HadCM3 and ECHAM3/MPI-
OM models can lead to some predictability of European climate on decadal timescales.
Pohlmann et al. (2004), Boer and Lambert (2008), and Boer (2011) all find that potential
predictability is largely absent for precipitation.

Many studies in decadal climate predictability have considered only average levels of
predictability. However, there is also evidence that decadal predictability of the AMOC
and associated impacts on climate may be sensitive to the initial oceanic conditions with
transitions around extreme states appearing as the most predictable events (e.g. Griffies
and Bryan 1997b; Collins and Sinha 2003; Collins et al. 2006a). For instance, the latter
study suggested that experiments initiated from stronger than normal AMOC states
show more potential predictability than those initiated from weaker than average states.
The possibility of predictability-dependence on initial oceanic state should be no surprise
in view of the considerable evidence that the skill of weather forecasts is state dependent,
and that the skill of seasonal forecasts varies with season and decade (Balmaseda et al.
1995; Pavan and Doblas-Reyes 2000). In the decadal case, however, there has been much
less research to explore and understand the degree to which predictability, for different
variables of interest, is sensitive to the initial oceanic state. Yet this is a very important
matter in view of the increasing attention that is being paid to initialised decadal climate

predictions.

In summary, there is a growing body of evidence from a variety of modelling studies that,
in general, the strength of the AMOC could be predicted at least a decade in advance
(e.g. Griffies and Bryan 1997b; Collins and Sinha 2003; Pohlmann et al. 2004; Sutton
and Hodson 2005; Collins et al. 2006a). However there are major disagreements on the
level and extent to which these AMOC variations lead to useful predictability of SST and
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any atmospheric quantities (such as SAT and precipitation). Most of the recent studies
would, nevertheless, tend to indicate that variations of SAT in the North Atlantic and
over Europe exhibits useful decadal predictability (e.g. Collins and Sinha 2003; Sutton
and Hodson 2005; Pohlmann et al. 2006), albeit with potential skill levels that are less
than those seen for AMOC variations. Although there has been an increasing number of
studies on decadal predictability of the climate system in the last few years due to the
impetus of the “near term” CMIP5 protocol (Taylor et al. 2009), the realism of decadal
climate predictability studies remains unclear as the level of predictability differs from
one study to another (e.g. Meehl et al. 2009). This may be subject to model differences
and uncertainties, as well as differences in the experimental protocol and metrics used.

Considerable technical and scientific issues remain unresolved.

1.6 Aim of the study

1.6.1 Overall presentation of the project

With all the current focus on rapid changes in the AMOC due to global warming, it
is important to understand its natural variability on decadal timescales, as this is pre-
cisely on this timescale that anthropogenic impacts in climate are likely to be expressed
(IPCC 1996). However, as mentioned earlier, the mechanisms behind this variability
have only been partially understood so far. As understanding the variability is an in-
tegral part of understanding the predictability, the inherent decadal predictability of
the climate system is, by consequence, also not well established. Improving our under-
standing of this variability is therefore pre-requisite for an accurate prediction of future
(anthropogenic) climate changes. The overall objective of the project is therefore to as-
sess the predictability of decadal fluctuations in the AMOC (and associated

climate impacts) by investigating processes that drive its decadal variability.

Given the lack of AMOC observations, numerical models need to be used to help with
the understanding of such processes. There are, indeed, indications that the current
generation of climate models can simulate aspects of decadal to multidecadal climate
variability, as seen in the instrumental record (Knight et al. 2005) and proxy data (Del-
worth and Mann 2000). However, the projections of such models for climate-related
variables (such as the AMOC strength, SAT) are widely different (IPCC 2001, 2007),
as are the mechanisms involved. Spread in climate projections may be associated with
differences in model resolution, parameter choice, the representation of physical and
dynamic processes, and in the representation of the vertical coordinate of the ocean
components. Hawkins and Sutton (2009) underline the importance of model uncer-
tainty in decadal climate projections (Figure 1.6). By comparing models with different

vertical representation of the ocean component, the present project also addresses, to
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some extent, the dependence of simulated AMOC variability and predictability

on ocean model type.

Fraction of total variance [%]

20 40 60
Lead time [years from 2000]

Figure 1.6: The fraction of total variance in global, decadal mean SAT pre-
dictions explained by three components of total uncertainty is shown. Green
regions represent scenario uncertainty, blue regions represent model uncertainty
and orange regions represent the internal variability component. (From Hawkins
and Sutton 2009).

1.6.2 Specific objectives

More specifically, the present study aims at:

(1) Improving our understanding of the potential mechanisms responsible
for the natural decadal variability of the AMOC.

The following questions mainly guide our investigation: (i) What is the spatial and
temporal variability of the AMOC? (ii) What are the oceanic and atmospheric impacts
of such variability? (iii) What are the mechanisms and key variables governing that
variability? For this purpose, a new coupled climate model CHIME (Coupled Hadley-
Isopycnic Model Experiment, Megann et al. 2010) developed at the National Oceanog-
raphy Centre in Southampton (UK) is used. CHIME is as similar as possible to the
widely used IPCC-class model HadCM3 (Gordon et al. 2000), with the important ex-
ception that the hybrid-coordinate ocean model HYCOM (Bleck 2002) has replaced the
ocean component of this latter. The pre-industrial control simulation has been used to

isolate the internal variability of the model under constant external forcing.

(2) Determining the extent to which decadal climate fluctuations associated
with the AMOC are predictable and the processes involved.

The following questions mainly guide our investigation: (i) Where do climate-related
fields exhibit the strongest sensitivity to decadal AMOC fluctuations? (ii) Are changes
in the AMOC potentially predictable and which observations of the ocean state are
likely to be of greatest value to constrain predictions? (iii) What is the spatio-temporal
predictability of the Atlantic climate and how does this link to low-frequency AMOC
variability? Because the CHIME model was made available late during my PhD allocated
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time, this objective has first been addressed using the latest version of the Institut Pierre-
Simon Laplace model (IPSL-CM5A, Dufresne et al. 2012), developed as part of the 5
phase of the Coupled Model Intercomparison Project (CMIP5, Taylor et al. 2009).This
model allowed us to develop an efficient experimental design prior to a similar such
study with the CHIME model. Pre-industrial control simulations of both the IPSL-
CM5A and CHIME models have been used to quantify their inherent predictive skills
of internal fluctuations under constant external forcing. Both diagnostic and prognostic

predictability approaches have been employed for this purpose.

(3) Better understanding of how the vertical representation of the ocean
component can affect mechanisms governing AMOC variability and the pre-
dictability skills of the model.

By comparing experiments with models featuring ocean components with two different
types of vertical coordinates, the dependence of simulated AMOC variability on ocean
model type has also been provisionally addressed in this study. Indeed, as CHIME and
HadCM3 differ only by their ocean components (hybrid and z-coordinates, respectively),
an assessment of the extent to which the structural biases inherent in the vertical repre-
sentation of the ocean model affect the decadal variability could be made. To do so, the
natural decadal variability in CHIME will be evaluated alongside corresponding vari-
ability found in previous studies with the HadCM3 model (e.g. Vellinga and Wu 2004;
Dong and Sutton 2005). However such a comparison with existing studies to evaluate
the impact of the vertical representation on predictive skills is more difficult, first be-
cause of the limited number of such studies with HadCM3 and second because of the
many differences in the experimental protocol for predictability studies. Since, here,
a near-identical experimental protocol has been used for CHIME and IPSL-CM5A, a
comparison of the results between these two models can still be useful considering that
this latter model belongs to the new generation of z-coordinate models, and could there-
fore be seen as a more up to date z-coordinate model than HadCM3. Nevertheless, it
has to be kept in mind that CHIME and IPSL-CM5A differ in more than the vertical

representation of their ocean components.

1.6.3 Anticipated achievements of the project

By improving our understanding of the mechanisms driving the decadal AMOC fluctu-
ations and associated impacts on the North Atlantic climate, this project contributes to
the improvement of our ability to predict climate on decadal timescales. Such decadal
climate forecasts may provide important information to decision makers since they have
application to strategic planning in many areas (e.g. energy, fisheries, financial services
and infrastructure). Decision makers in these sectors and European Union policy mak-
ers, will increasingly have to face up to the challenge of adaptation to anthropogenic

climate change and will therefore require access to the best possible decadal climate
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forecasts. In addition, by investigating the possible impact of using a different ocean
component on the mechanisms, frequencies and predictability of decadal variability in
climate models, this project contributes, to some extent, to a better understanding of the
sources of uncertainty in climate models, which is of primary importance in decadal cli-
mate projections (Hawkins and Sutton 2009). Finally by comparing different approaches
to quantify predictability and testing different measures of skill, this project also con-
tributes to the coordinated effort of determining a common skill evaluation framework
to evaluate decadal predictions; this is highly desirable to allow a comparison of decadal

prediction systems across different modelling centres (Meehl et al. 2012).

The structure of this thesis is as follows. An overview of the main characteristics of both
the CHIME and IPSL-CM5A models is presented in Chapter 2, followed in Chapter 3,
by a description of the data and methods used here in both variability and predictability
studies. Chapter 4 addresses objective (1), by analysing the natural variability of the
AMOC (along with the variability of associated oceanic and atmospheric fields) on the
shorter decadal timescale (i.e. 15-30 years) as seen in CHIME. Both Chapter 5 and
Chapter 6 address objective (2) by analysing the decadal potential predictability of the
North Atlantic climate associated with AMOC fluctuations as represented in both the
IPSL-CM5A and CHIME models. Chapter 7 briefly addresses objective (3) along with

a discussion and summary of the main results of the thesis.



Chapter 2
Description of Models

In this chapter, we present the two models used in the framework of this thesis. Firstly,
a full description of the new coupled climate model CHIME is given. This model is
used here to investigate both the mechanisms and predictability of decadal AMOC
fluctuations and climate in the Atlantic sector. Secondly, the ITPSL-CM5A model is
briefly described. The use of this model here is restricted to the study of the potential
predictability of decadal AMOC fluctuations and climate; it allowed us to develop an
efficient experimental design prior to a similar study with CHIME.

2.1 Coupled Hadley-Isopycnic Model Experiment (CHIME)

2.1.1 Model description

CHIME (Megann et al. 2010) is a new coupled climate model that features an innovative
hybrid coordinate in the ocean, but is otherwise identical to the widely used IPCC-class
model HadCM3 (Gordon et al. 2000). This has therefore the same atmosphere and ice
models as HadCM3 (with the same ocean resolution over most of the globe), but uses
the hybrid-coordinate ocean model HYCOM (Bleck 2002) instead of the conventional

constant-depth vertical coordinate system used in HadCMS3.

2.1.1.1 The ocean model (HYCOM) in CHIME

The oceanic component of CHIME is version 2.1.34 of HYCOM, which has been fully
described by Bleck (2002). HYCOM is a primitive equation ocean general circulation
model that evolved from MICOM, the Miami Isopycnic-Coordinate Ocean Model (Bleck
et al. 1992). Although this latter has been validated (Chassignet et al. 1996; Roberts

et al. 1996) and used in numerous ocean climate studies (New et al. 1995; Halliwell 1998;

23
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Paiva et al. 2000), MICOM has a major weakness in the inadequate vertical resolution of
weakly stratified regions. The HYCOM'’s hybrid coordinate algorithm was developed to
ameliorate this limitation of MICOM by assigning different vertical coordinates types in
those regions where they are quasi-optimum. HYCOM has become one of the primary
ocean models in use today (e.g. Chassignet et al. 2003; Halliwell 2004; Kara et al. 2008),
and has been adopted by the United States Navy as its main operational model. De-
velopment of the data assimilative system as well as ocean prediction through HY COM
have also been discussed by Chassignet et al. (2006, 2007). In this section, the salient

features of the oceanic component of CHIME are described.

Governing Equations

Like MICOM, HYCOM contains five prognostic equations, comprising two horizontal
velocity component equations (Equation 2.1); a mass continuity equation (Equation 2.2)
and two other conservation equations (Equation 2.3) for a pair of thermodynamic vari-
ables (chosen from density, salinity and temperature). Following Bleck et al. (2002), the

model equations are listed below:

Momentum:
gzwsf+(§+f)Exﬁ+(ng)§Z+st—pvsa = —gg;+(g§)‘lvs-(vg§vsm (2.1)
Continuity: ) 5
8;?:;) + V- (U%) + 8(2553) =0 (2.2)
TS 2z op,  AER0) op
Ve (05 0) + = =V (v VL0) + Hy (2.3)

where s is the vertical coordinate of HYCOM, § is the time derivative of s, ¥ = (u,v)
is the horizontal velocity vector, p is the pressure, 6 represents any one of the model’s
thermodynamic variables, o = p;OIt is the potential specific volume, £ = aaTZ — g—;s is the
relative vorticity, M = gz + pa is the Montgomery potential, gz = ® is the geopotential,
f is the Coriolis parameter, k is the vertical unit vector, v is the eddy viscosity, v is the
diffusivity coefficient, and 7 is the wind and bottom drag induced shear stress vector.
Hy represents the sum of diabatic source terms, including diapycnal mixing, acting on
#. Subscripts indicate which variable is held constant during partial differentiation. The
above prognostic equations are complemented by three diagnostic equations, including
the hydrostatic equation (%—% = p); the equation of state and an equation prescribing
the vertical mas flux S% through a s surface. The last equation controls both spacing

and movement of layer interfaces and this comprises the essence of hybrid modelling.

Transport and mixing processes

All prognostic equations are time-integrated using the split-explicit treatment of barotropic
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and baroclinic modes developed by Bleck and Smith (1990). The horizontal mass fluxes
are computed using the Flux Corrected Transport (FCT) scheme (Zalesak 1979) while
horizontal tracer transport is treated in flux form and handled by a variant of the
MP-DATA scheme (Drange and Bleck 1997). The K-profile parameterization (KPP)
diapycnal mixing scheme (Large et al. 1994) is used in CHIME, which was found by
Halliwell (2004) to afford superior performance to the Kraus-Turner bulk mixed layer
scheme when used with HYCOM. This is significantly different from the bulk mixed
layer scheme and the Pacanowski and Philander internal mixing parameterization used
in HadCM3, and we note that this introduces an additional difference between the two
models besides the vertical coordinate. The HYCOM parameter values used for this
scheme in CHIME are background internal wave viscosity difmiw = 1 x 10”4m?2s™1,

background internal wave diffusivity difsiw = 1 x 107>m?2s~!, and the critical bulk

Richardson number ricr = 0.45.

Vertical coordinate system

The oceanic component HYCOM uses 25 vertical layers combining potential density
layers in the ocean interior with constant depth layers near the surface. In the inte-
rior, which in the present model configuration constitutes more than 93% of the ocean
domain by volume, the vertical coordinate is close to isopycnic over the whole annual cy-
cle. However, layers smoothly transition to z-coordinates in the weakly stratified upper-
ocean mixed layer. Therefore HYCOM allows coordinate surfaces to locally deviate
from isopycnals wherever the latter may fold, outcrop, or generally provide inadequate
vertical resolution in portions of the model domain. The freedom to adjust the vertical
spacing of the coordinate surfaces in HY COM simplifies the numerical implementation
of several physical processes (e.g. mixed layer detrainment, convective adjustment, etc.)
without robbing the model of the basic and numerically efficient resolution of the verti-
cal structure that is characteristic of isopycnic models throughout most of the ocean’s
volume. In the near-surface waters (or wherever layer density is not used), the layers
that would be unused in a purely isopycnic model are constrained to have a minimum
thickness and their density is allow to vary. In the present implementation, the surface
layer thickness is 5 m, and the minimum thickness of subsurface layers increases to a
maximum of 15 m by layer 15. The vertical coordinate is potential density referred to
a pressure of 2000 dbar, and the thermobaric correction to the pressure gradient of Sun
et al. (1999) is applied. If the density in a given grid cell changes as a result of mixing,
HYCOM adjusts the depth of the upper or lower interface of each layer to return the
density toward the reference density of that layer; this regridding process is carried out
using a piecewise linear mapping algorithm. In the mixed layer, grid points are placed
vertically so that a smooth transition of each layer interface from an isopycnic to a
constant-depth surface occurs where the interface outcrops into the mixed layer. The
reference densities for the 25 layers (Table 2.1) were chosen to resolve the major water
masses of the global ocean, with enhanced resolution at low densities to improve the

accuracy of the mixing scheme in the mixed layer. HYCOM therefore behaves like a
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z-level coordinate model in the mixed layer or other unstratified regions, and like an
isopycnic-coordinate model in stratified regions. In doing so, the model is thought to

combine the advantages of the different types of coordinates.

Table 2.1: Layer target density, density resolution and minimum thickness in
CHIME (From Megann et al. 2010).

k or Aoy (m) Az (m)
1 29.60 0.6 5.0
2 30.20 0.6 7.0
3 30.80 0.6 9.8
4 31.40 0.6 13.7
5 32.00 0.6 15.0
6 32.60 0.6 15.0
7 3320 0.6 15.0
8 33.80 0.6 15.0
9 3440 0.6 15.0
10 35.00 0.3 15.0
11 35.30 0.3 15.0
12 35.60 0.25 15.0
13 35.85 0.2 15.0
14 36.05 0.2 15.0
15 36.25 0.2 15.0
16 36.45 0.15 15.0
17 36.60 0.15 15.0
18 36.75 0.11 15.0
19 36.86 0.10 15.0
20 36.96 0.08 15.0
21 37.04 0.08 15.0
22 37.12 0.08 15.0
23 37.20 0.12 15.0
24 37.32 0.12 15.0
25 37.44 0.12 15.0

Spherical grid

The east-west filtering procedure used in HadCM3 to prevent violations of the Courant-
Friedrich-Lewy (CFL) stability criterion (Courant et al. 1967) at latitudes poleward of
75°N is inappropriate in a layer model such as HY COM, where layer thickness is required
to be positive definite, so the spherical grid used throughout HadCM3 is not useable in
the Arctic in CHIME. The ocean model therefore uses a spherical-bipolar grid similar to
that described by Sun and Bleck (2001), which is composed of two regions: (i) from 55°N
to 78°S it has a constant angular resolution of 1.25° x 1.25° (where the mass points are
exactly coincident with those of the HadCM3 ocean model grid), and (ii) north of 55°N
the spherical grid is matched smoothly to a bipolar grid (avoiding problems caused by
the convergence of the meridians toward the North Pole). The poles of the bipolar grid
are situated at (55°N, 110°W) and (55°N, 70°E), with resolution at ocean points (north
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of 55°N) between 40 and 140 km. All HYCOM variables are stored on an Arakawa
C-grid.

2.1.1.2 The atmosphere model (HadAM3) in CHIME

The atmospheric component is described in detail in Gordon et al. (2000). The basic
features are as follows. HadAMS3 is a version of the UK Met Office Unified climate
model run with a horizontal grid spacing of 3.75° east-west and 2.5° north-south, and
19 vertical levels using a hybrid vertical coordinate. The timestep is 30 min, and it
uses an Arakawa B-grid. HadAM3 uses a prognostic cloud scheme, described by Smith
(1990) and modified by Gregory and Morris (1996), which diagnoses cloud ice, cloud
water and cloud amount from the primary model variables (total moisture) and liquid
water potential temperature. It also uses the precipitation scheme described by Senior
and Mitchell (1993). Moist and dry convection are modelled using the mass-flux scheme
of Gregory and Rowntree (1990) with the addition of convective downdrafts (Gregory
and Allen 1991). The parameterization of sub-grid scale orographic gravity-wave drag is
that of Gregory et al. (1998). The model uses the boundary layer scheme developed by
Smith (1990, 1993). It also uses the radiation scheme developed by Edwards and Slingo
(1996) and modified by Cusack et al. (1999). This has six shortwave bands and eight
longwave bands. As well as including the effects of CO9, H2O, and Og it also includes
the effects of Oy, NoO, CHy, CFCy; and CFCia. The model uses trace gas values
appropriate for the AMIP I period, i.e. 1979-1988. It also includes the developments
made by Cusack et al. (1998) to include the effects of background aerosols. The direct
impact of convection on momentum is included in HadAMS3 using the scheme developed
by Gregory et al. (1997). HadAM3 includes MOSES, the land surface scheme developed
by Cox et al. (1999). It includes a representation of the freezing and melting of soil
moisture, and a formulation of evaporation which includes the dependence of stomatal
resistance on temperature, vapour pressure deficit and COs. In the model, the critical
relative humidity is setup to 0.7 above level 3 (Pope et al. 2000). This value was chosen
to maintain a global mean radiation balance close to zero at the top of the atmosphere
in pre-industrial simulations. The coefficient known as Cw, which controls the rate at
which cloud liquid water is converted to large-scale precipitation, takes different values
over land (Cw = 2.0 x 10™%) to those over the sea (Cw = 0.5 x 10~%) in an attempt to

take account of the differences in cloud condensation nuclei.

2.1.1.3 The ice model in CHIME

A key feature of high-latitude climate is its snow and ice cover, which therefore has to be
well represented. The sea ice model (Cattle and Crossley 1995) is taken from HadCM3.
It is a simple thermodynamic model, plus ice drift with the ocean surface current, and

with partial ice coverage to allow representation of leads. The three scalar prognostic
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fields of the sea ice model are ice thickness, fractional ice cover, and snow depth. A simple
ice thickness advection scheme is used following Bryan et al. (1975). The formulation of
fractional ice cover is based on that of Hibler (1979), which assumes the ice-covered area
to have a uniform thickness distribution of mean thickness. The sea ice thermodynamics
formulation used in the model follows the zero-layer model of Semtner (1986) in which
the ice-snow layer is treated as single slab. For surface temperatures below -10°C, the
snow /ice surface albedo is taken to have constant value of 0.8. Above this temperature,
ice albedo decreases linearly to a value of 0.5 at the melting point (0°C) to allow for
the lowering of albedo caused by the presence of melt ponds on the ice surface. The
albedo of leads is assumed to be a constant 0.06. Any heat flux entering (or leaving)
the leads is partitioned between ice melt (or ice formation) and warming (or cooling) of
the upper layer of the ocean. The partitioning between ice melt/formation and ocean
warming/cooling is chosen to be directly proportional to the ice area. The advection
and diffusion scheme in the sea ice model are recoded for consistency with the Arakawa
C-grid used for the CHIME ocean model, the HadCM3 ocean being defined on a B-grid.

2.1.1.4 Bathymetry and coastlines

The bathymetry and coastlines used in CHIME are shown in Figure 2.1. The bathymetry
is derived from Sandwell and Smith (1997), interpolated onto the HYCOM mass grid
points. A minimum depth of 100 m is then imposed everywhere to prevent numerical
barotropic instabilities in shallow water (HadCM3, by comparison, has a minimum depth
of 139 m). Use of the bipolar grid in the Arctic means that the locations of grid points
(and hence of the coastlines) in this region cannot be identical to those in HadCM3,
so in CHIME the coastlines are defined everywhere at the ocean resolution, where in
HadCM3 coastlines are at the coarser resolution. The coastlines are at first defined to
be the zero-depth contour after interpolation, and are then adjusted to ensure critical
straits remain open to a realistic depth. The bathymetry was excavated in the North
Atlantic so that the sills between Greenland and Scotland have a minimum depth of 800
m, resulting in comparable sill depths to those in HadCM3. The Bering and Gibraltar
straits are both open in CHIME, and are represented by channels a single grid cell wide.
The continuity of the computational grid across Bering Strait is ensured by explicitly
copying all prognostic fields into “shadow zones” on each side of the strait. This is in
contrast to HadCM3, in which the numerical B grid of the ocean model prohibits flow
through single-grid point channels. Because the coastlines in CHIME do not correspond
exactly to the atmospheric grid north of 55°N, a coastal tiling and interpolation scheme
identical to that used by Sun and Bleck (2001) is employed to conserve fluxes passed

between the atmosphere and ocean.
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Figure 2.1: CHIME bathymetry and coastlines: gray shading denotes depths >
3000 m; dark gray denotes depths > 5000 m. (From Megann et al. 2010).

2.1.1.5 Atmosphere-ocean coupling

The ocean and ice fields are coupled daily to the atmosphere using the OASIS v2.4
coupler (Valcke et al. 2000). To avoid spurious maxima in the wind stress curl, the
wind stress passed from the atmosphere to the ocean is linearly interpolated between
the centres of each atmospheric cell. As is the case in HadCM3, no flux adjustment is

applied to the air-sea coupling.

2.1.2 Initial conditions and control runs

Both variability and predictability studies carried out with CHIME have been done using

two different control integrations, arbitrarily named as ¢D and E3.

2.1.2.1 Control integration for climate variability study: cD

The core of the variability study with CHIME is ¢D, its first 200-year control integration
(obtained prior to its port to a new operating system) which has been fully described and
analysed in Megann et al. (2010). ¢D was obtained by initializing the model from the full-
depth Levitus et al. (1998) autumn climatology, projected onto the model density layers.
Atmospheric forcing was with pre-industrial levels of greenhouse gases and aerosols,
therefore enabling us to isolate the internal variability of the model under constant
external forcing. The atmospheric initial state was identical to that in the HadCM3
control run described in Gordon et al. (2000). Initial sea ice cover was taken from
estimates of Gloersen et al. (1993), and the initial thickness of sea ice in all ice-covered

grid cells was set to 2 m. CHIME is run in fully coupled mode for 200 years from rest, and
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output is stored at monthly-mean time resolution. A spin-up time is clearly identified up
to year 80 as seen in the time series of the AMOC index (defined as the maximum of the
annual mean Atlantic meridional mass transport streamfunction at 30°N, Figure 2.2),
further described in Sect. 4.2.1. After year 80, the AMOC has nearly stabilized; we will
therefore restrict our variability analyses starting from this year (despite a decreasing

trend of about 1.5 Sv century ! thereafter).
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Figure 2.2: Time series of annual AMOC index for the whole 200-year simulation
¢D. Yellow shading corresponds to the time-period (80-200) analysed in the
variability study with CHIME.

2.1.2.2 Control integration for climate predictability study: E3

The core of the predictability study with CHIME is E3, a 445-year control integration
that is part of a set of trial runs obtained once CHIME has been ported to the new
operating system. For E3, the model has been initialized similarly to ¢D. Note, however,
that E'3 uses a slightly different version of HYCOM (v2.2.18, against v2.1.34 in ¢D),
and a higher-order vertical regridding scheme. For technical reasons, the Bering Strait
is also closed in F3 in contrast to c¢D. It is run in fully coupled mode for 445 years
from rest, and output is stored at monthly mean time resolution. As seen in Figure 2.3,
the AMOC index in E3 has the most stabilized state between year 105 and 305 (with
a slight decreasing trend of about 0.24 Sv century~!); prior to this period, a spin-
up time is clearly identified, after which a continuous decreasing trend is apparent.
This subsequent weakening of the AMOC is probably a consequence of the continuous
warming (freshening) of global mean SST (SSS) during the near-stabilized time-period
of the AMOC index (Figure 2.4), leading to an increase in the global SAT. In contrast
to F3, the decreasing trend also observed in ¢D during the near-stabilized time-period
of the AMOC was not accompanied by such continuous increasing (decreasing) trends
of temperature (salinity) fields. Although the worldwide warming (freshening) of SST

(SSS) appears to be problematic in E3, we could not wait for a more acceptable control
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integration to be run because of time constraints. In order to limit the impact of such
trends on our predictability study, we will therefore restrict our analyses to years 105-
305, that is when the AMOC has not been yet affected by the global warming and
freshening trends. Note also, that for all atmospheric output, the January months have
been accidentally lost. To settle this problem, we interpolated the values of December
and February to obtain the missing data. Such problems (i.e. climate drift and missing

data) have to be borne in mind when interpreting results obtained from E3.
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Figure 2.3: Time series of annual AMOC index for the whole 445-year simulation
E3. Yellow shading corresponds to the time-period (105-305) in the variability
study with CHIME.
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Figure 2.4: Time series of global mean SST, SSS, and SAT in F3 during the
analysed time-period (105-305).

2.1.3 How faithful is CHIME to the real climate system?

2.1.3.1 Control integration c¢D

Megann et al. (2010) analyzed ¢D, and showed that it has a generally realistic climate.

However some discrepancies with the real climate system have been identified, which are

130 155 180 205 230 255 280
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worth pointing out. Here is a summary of the main findings of Megann et al. (2010) on

model realism.

Surface temperature errors

Figure 2.5 shows SST anomalies with respect to the annual NOCS (1999) climatology
in CHIME. There are warm errors off the western coasts of South America and South
Africa most likely resulting from the unrealistically low cloud cover, as in HadCM3
(Gordon et al. 2000). In the Pacific, there is a significant cold bias of up to 1.5°C in the
equatorial band. In the North Pacific, there is also a moderate cold error of 0-1°C south
of 30°N and a warm error of similar magnitude in the subpolar gyre. The North Atlantic
is generally too warm in CHIME. The whole subpolar gyre is significantly warmer than
climatology, with an error of 6°C centered at (50°N,45°W). CHIME is also too warm
throughout the Southern Ocean, with errors of up to 3°C. This is at least partially due
to the use of the KPP mixing scheme in this model, which has been shown to produce
unrealistically shallow summer mixed layers in the Southern Ocean in HadCM3, leading
to warm errors (Gordon et al. 2000). Excluding the Southern Ocean and the region
affected by shortcomings in the cloud scheme, the overall impression, however, is that
the CHIME has a surface warm bias. As for the global mean SAT in CHIME, it is about
1°C warmer than that in the NOCS climatology.

BO°N —

40°N

o=

40°5

B0°5 —

=6 =5 =4 =3 =2 =1 1 2 3 4 -] &

Figure 2.5: CHIME ocean surface temperature anomalies (°C) with respect to
the annual NOCS (1999) climatology, averaged over years 80-119 of ¢D. (After
Megann et al. 2010).

Sea surface salinity errors

Figure 2.6 shows SSS anomalies from the annual Levitus et al. (1998) climatology. In
the Pacific, there is a tripolar error pattern; the surface is too fresh north of 30°N, too
salty between the equator and 30°N and in the Western Warm Pool on the equator west
of 180°, and too fresh in the Southern Hemisphere. CHIME is too fresh in the South
Atlantic, and too salty in both the subtropical and the subpolar North Atlantic. The
surface salinity is also too high over the whole Arctic, with an error of over 1 psu nearly

everywhere.
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Figure 2.6: CHIME ocean surface salinity anomalies (psu) with respect to the
annual Levitus et al. (1998) climatology, averaged over years 80-119 of ¢D.
(After Megann et al. 2010).

Precipitation/Inter-Tropical Convergence Zone (ITCZ)

Figure 2.7 shows the global annual mean precipitation in CHIME and the Global Pre-
cipitation Climatology Project climatology (GPCP, Huffman et al. 2001). CHIME gen-
erally simulates the main precipitation patterns as seen in the observations, except for
the double-ITCZ pattern in the Pacific sector similar to that produced by most of the
current state-of-the-art CGCMs (Lin 2007). This double-ITCZ problem has been a long-
standing tropical bias which is characterized by excessive precipitation off the equator
but insufficient precipitation on the equator. Schneider (2002) showed that the problem
is mainly caused by the atmosphere models rather than the ocean models; the fact that
HadCM3 also has this double-ITCZ structure (Harvey 2003) is in good agreement with
this statement given that CHIME and HadCM3 only differ from their ocean compo-
nents. In addition, although the CHIME model has generally slightly stronger (weaker)
precipitation in the tropical Pacific (tropical Atlantic) than in the observations, it at

least reasonably well simulates the correct placement of the precipitation maxima.
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Figure 2.7: Global annual mean precipitation in (a) CHIME and (b) GPCP
climatology (Huffman et al. 2001).
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Oceanic heat transport

The global northward oceanic heat transport in CHIME is in good agreement with the
observational estimates at 32°S, 19°S, and 48°N, but carries less heat at 24°N than that
estimates by Ganachaud and Wunsch (2000) and more heat north of 40°N (Figure 2.8).
In the North Atlantic (not shown), CHIME heat transport lies within observational
bounds at 48°N and does not at 24°N, whereas in the North Pacific (not shown) it lies
within observational estimates at 24°N and does not at 48°N. Overall, however, the
global heat transport in CHIME is generally within the error bars of the observational
estimates.

NCEP

ECMWF

CHIME years 80-120

HadCM3 years 80-120

Ganachaud and Wunsch, 2000 '."

Global meridional heat transport (PW)
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Figure 2.8: Global mean ocean heat transport in PW in CHIME (solid curve)
and HadCM3 (dashed curve). The stars show the estimates of Ganachaud and
Wunsch (2000). The dotted lines are from the reanalysis of Trenberth and Caron
(2001): the darker grey shading denotes the confidence limits of estimates based
on NCEP fluxes, while the light gray shading corresponds to estimates based
on ECMWF fluxes. (After Megann et al. 2010).

March Mixed layer depth

Figure 2.9 shows the average March Mixed Layer Depth (MLD) in both CHIME and
observations. Shallow biases are obvious in the Southern Hemisphere summer in CHIME;
the MLD is nowhere deeper than 50 m across the whole Southern Ocean, where in the
climatology there is a band of mixing to around 100 m between 40°S and 60°S spanning
the whole circumpolar region. This overly shallow MLD in the austral summer is the
principal reason for the SST being too warm in CHIME in this region. In the Northern
Hemisphere, the overall pattern of winter mixing in CHIME is similar to that in the
Levitus climatology. In the North Pacific, the tongue of mixing to 300-400 m in the
Kuroshio separation region, and the 100-200 m depth of the wintertime MLD north
of 20°N are well represented. In the North Atlantic, the mode-water formation region
extending northeastward from the Sargasso Sea to 30°W is also well represented by
CHIME, with realistic MLDs of 300-450 m. However the convection is too deep from
the Labrador Sea in the west to northwest of Scotland in the east. In the Nordic Seas,
the convection is also too deep (up to 4000 m) and extends not only across most of the

Nordic Seas but through Fram Strait and as far as the Canadian Basin. This excessive
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mixing is consistent with the anomalously high surface salinity that develops in CHIME
in the North Atlantic subtropical gyre and the Arctic. Overall, CHIME has mixed layer
depths that are too shallow in the summer but too deep in the winter; this is attributed

to the use of the KPP mixing scheme in this model (Megann et al. 2010).

3000

2500

2000

1500

1000

8

Figure 2.9: The mean mixed layer depth (m) in CHIME in March averaged over
years 80-119 (left panel) and the March mixed layer depth diagnosed from the
Levitus et al. (1998) climatology (right panel). (After Megann et al. 2010).

Ice cover

The annual range of ice cover in both hemispheres is rather larger than those in obser-
vations (Figure 2.10). The maximum Arctic (Antarctic) winter ice cover is over 40%
(50%) higher in CHIME than observed; this is likely to reduce the amount of winter
heat loss, and hence potentially the production of dense bottom water. CHIME tends,

however, to have rather less ice in the summer than in observations.
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Figure 2.10: Mean annual cycle of total ice area in the Northern Hemisphere and
the Southern Hemisphere. The ice cover in CHIME (the observations from Spe-
cial Sensor Microwave Imager) is shown by the solid line (dotted line). (Adapted
from Megann et al. 2010).

Wind stress

The large-scale structure of the wind stress field in CHIME is generally in good agreement
with observations (not shown). The mean wind stress is substantially weaker in the
North Atlantic than in the NOCS climatology (Josey et al. 1998), with a maximum
eastward stress at 40°W of around 0.06 Nm~—2, as compared with 0.10 Nm~2 in the
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climatology, and this is more likely to influence the strength and path of the ocean
circulation than the variability itself. Differences in the zero wind stress curl line (ZWCL)
off the eastern seaboard of the United States are clearly visible at about 37°N at 70°W,
while the position of the observed ZWCL (estimated from the NOCS climatology) at
this longitude is at 33°N.

North Atlantic Oscillation (NAO)

Figure 2.11 shows the NAO index time series (defined as the normalized pressure dif-
ference between Iceland and the Azores during the winter season) in CHIME and the
observations (Hurrell 1995b), together with their corresponding power spectrum. The
NAO oscillation in CHIME seems to have a weaker amplitude than in the observa-
tions, with a standard deviation of 1.6 and 1.9, respectively. The power spectrum of
the observed NAO shows most energy at a period of about 70 years (above the 95%
confidence limit) and then at about 8-9 years and 1-3 years (above the 80% confidence
limit). Because of the short time series available, CHIME does not capture the 70-year
peak. However, both peaks at 8-9 years and 1-3 years are well captured by the model
(although periods in the range 1-3 years are slightly below the 80% confidence limit).
Although the NAO in CHIME is slightly too weak than in the observations in term of

amplitude, it is reasonably well represented in term of variability.
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Figure 2.11: Time series of the NAO index in (a) CHIME and (b) the obser-

vations (Hurrell 1995b); the standard deviations are shown as the dashed lines.

Corresponding power spectrum in (¢) CHIME and (d) the observations. The

smooth red line is the power of a red noise spectrum with the same AR(1)
coefficient fitted from the NAO time series.
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Ocean surface circulation

In CHIME, the Gulf Stream separates at about 39°N, while observations suggest it
separates at Cape Hatteras at about 36°N. The more northerly separation of the Gulf
Stream in CHIME is therefore broadly consistent with the northerly position of the
ZWCL. At 65°W, the Gulf Stream transport at 15 Sv is considerably less than the 80 Sv
or so observed at this longitude (e.g. Johns et al. 1995). As in the North Atlantic, both
the ZWCL and separation of the western boundary current in the northwest subtropical
Pacific are farther north in CHIME than in observations. In the real ocean, the Kuroshio
separates from the coast of Japan at around 35°N (e.g. Qu et al. 2001), whereas in
CHIME it separates at 37-40°N. The separation in CHIME is therefore 3-4° too far to
the north. The observed transport in the Drake Passage is around 135 Sv (Cunningham
et al. 2003). The Drake Passage transport in CHIME has a realistic value of 140 Sv
in the first decade, but spins down to 60 Sv by year 200. Because Subantarctic Mode
Water (SAMW) and Antarctic Intermediate Water (AAIW) are well preserved (see
next paragraph), we suspect that the AMOC is relatively unaffected by this transport
drop in the Drake Passage. The flow through the Bering Strait into the Arctic, rather
variable, lies between 0 and +1 Sv, and compared reasonably well with an observed
barotropic flow of around 0.83 + 0.66 Sv (Roach et al. 1995). The flow through the
Canadian Archipelago has a transport of about 2 Sv through Davis Strait, which is in
good agreement with observations (e.g. Cuny et al. 2005). The southward export of
dense water through the Denmark Strait into the North Atlantic is about 3 Sv, with an
additional southward flow of about 3 Sv of dense water over the Iceland-Scotland ridge

system; this is in broad agreement with observations (e.g. Cuny et al. 2005).

Interior water mass preservation and structure

AAIW is formed through surface mixing around the Southern Ocean between 45°S and
55°S, and is characterized by a surface salinity minimum. Overall, the fresh signature
of AAIW is well maintained in CHIME. The ability of HYCOM to preserve water mass
characteristics is similarly evident in the North Pacific, where the fresh tongue of North
Pacific Intermediate Water is mainained with little variation over the 200-year run of
CHIME. SAMW is formed along the northern side of the ACC. In the real ocean it has
a clear minimum in stratification and hence potential vorticity, which is traceable for
thousand of kilometers. After 80 years, the low stratification of SAMW in the formation
region is well preserved, as is the subduction route. While the Antarctic Bottom Water
(AABW) cell (below 4000 m) is weaker than that observed, the region between 1500
m and 4000 m with low vertical shear associated with the North Atlantic Deep Water
(NADW) is well simulated.

Although the substantial warming and increasing salinity in the North Atlantic subpolar
gyre in cD are clearly not realistic, CHIME has overall a realistic climate and is therefore

considered as a useful tool for the study of climate variability in the real climate system.
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2.1.3.2 How is E3 different from ¢D?

Because cD is examined for investigating variability while E3 is used for investigating
predictability, the main differences between these two runs are highlighted, as these have
to be kept in mind as analogies are drawn between the mechanisms of AMOC variability

and predictability.

Sea surface temperature differences

Figure 2.12 shows differences in SST between E3 and c¢D. In E3, the Southern Ocean
is, overall, colder (up to 4°C) and the tropical regions warmer (up to 6°C). The colder
(and more realistic, see Sect. 2.1.8.1) Southern Ocean is possibly due to the use of
a higher-order regridding scheme in E3, consistent with a more stable Drake Passage
transport. The reason for warmer tropical regions still remains unclear. Note that the
strongest temperature differences are in the deep tropical Pacific, suggesting that E3
does not represent the main features of the typical El-Nino event. More specifically,
in the Atlantic Ocean (region of interest here), the strongest difference appears in the

tropics where E3 is warmer by about 1-2°C.
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Figure 2.12: Difference of annual SST mean averaged over the period of analysis
between E3 and cD. Positive values are for SSTg3 > SST.p.

Sea surface salinity differences

Figure 2.13 shows differences in SSS between E3 and cD. Overall, F3 is fresher than cD.
The main differences in SSS are localized in the tropical regions, especially in the Pacific
Ocean where E3 is fresher by up to 3 psu. This suggests again, some problems related to
the representation of the EI-Nifio phenomenon in £3. Concerning the Atlantic Ocean,
there are few differences compared to the other ocean basins although some significant
differences are identified in the southern tropics. The western Coast of Africa is generally
saltier (up to 3 psu), and the South Atlantic subtropical gyre fresher (up to 1.5 psu).
Higher salinity off the western coast of Southern Africa and lower salinity in the western
Indian Ocean suggest a difference in interbasin salt exchange between the two runs,

probably linked to the Agulhas leakage.
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Figure 2.13: Difference of annual SSS mean averaged over the period of analysis
between E3 and cD. Positive values are for SSSgz > SSS.p.

Surface air temperature differences

Figure 2.14 shows differences in SAT between E3 and c¢D. The SAT pattern is very
similar to the SST pattern (Figure 2.12) with generally colder temperatures over the
polar regions and most of the Eurasian continent, and warmer temperatures over the
tropics. We suspect that the difference over land is at least partly due to a bug in
cD, which removed all of the snow cover everyday making the land in ¢D warmer than
it should be. Once again, the strongest differences are situated in the tropical Pacific
where SAT is warmer by up to 5°C. Although the colder (and more realistic) Southern
Ocean has been associated with the use of a higher-order regridding scheme in E3, the
cooler (and less realistic, see Sect. 2.1.3.1) Arctic Ocean may be partly a consequence
of the Bering Strait being closed in that run. Similar to SST, the main differences in

the Atlantic Ocean are in the tropics where SAT is warmer by about 1-2°C in E3.
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Figure 2.14: Difference of annual SAT mean averaged over the period of analysis
between E3 and cD. Positive values are for SAT g3 > SAT.p.

Oceanic heat transport difference

Figure 2.15 shows differences in the Atlantic mean ocean heat transport between FE3
and ¢D. Although the ocean heat transport is slightly larger in E3 (up to 0.15 PW in
the northern tropics), they are overall very similar. This slight difference is probably

the consequence of the larger equator-to-pole SST difference in E'3.
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Figure 2.15: Upper-panel: Atlantic mean ocean heat transport in PW in ¢D
(grey curve) and E3 (black curve) averaged over the common period from years
105 to 199. Lower-panel: difference in Atlantic heat transport; positive (nega-
tive) values are for E3 stronger (weaker) than cD.

March Mixed Layer Depth differences

Figure 2.16 shows differences in March MLD between E3 and c¢D. The convection site
in the Labrador Sea is shallower in E3 by about 400-600 m. There are also significant
differences in the Greenland Sea where west of the Mid-Atlantic ridge, MLD is shallower
up to ~1000 m while it is ~600-800 m deeper east of the ridge. Note that although E3
and ¢D sometimes differ in their MLD depths in the high-latitude North Atlantic, similar
convection sites have been identified there in both runs. Because the Bering Strait
appears to exert some influence on the formation of deep water masses (by affecting
the freshwater budget of the Greenland and Norwegian Seas, Reason and Power 1994;
Goose et al. 1997), and a closed Bering Strait has been associated with a reduction of
the intensity of the Atlantic deep circulation of about 17% (Hasumi 2002), we suspect
the shallower MLD in the Northern high-latitude regions in E3 to be partly caused by
the closure of the Bering Strait. Note that there are no notable differences in MLD in

the Southern Ocean.
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Figure 2.16: Difference of March MLD mean averaged over the period of analysis
between E3 and cD. Positive values are for MLD g3 > MLD,p.

In summary, E3 is generally warmer and fresher in the tropical regions and colder in

the polar regions than c¢D. These discrepancies have to be kept in mind when analogies
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are sought between the mechanisms behind the AMOC variability and predictability.
Predictability results from E3 can be used as benchmark for future experiments once a

more reliable and control integration of CHIME will be available.

2.1.4 CHIME: an improved version of HadCM3?

The fact that CHIME shares its atmosphere and ice components with HadCM3 means
that comparison between the two models should allow a clear assessment to be made
of the extent to which structural biases inherent in the vertical representation of the
ocean model affect the mean state of the simulated climate system. But why has the
ocean component of HadCM3 been replaced by the hybrid-coordinate ocean model HY-
COM? The main advantages and disadvantages of the different vertical coordinates of
ocean models are first summarized here. The well-known systematic errors inherent to
HadCM3 are then briefly described before summarizing the main findings of Megann
et al. (2010) concerning comparison of the CHIME and HadCM3 control simulations.

2.1.4.1 Advantages/disadvantages of the different coordinates for ocean

models

As with any model, important decisions are made early in the development stage regard-
ing the coordinate system that determines how the model will be implemented and how
it will perform. Figure 2.17 shows traditional vertical coordinate choices (z-coordinates,
o-coordinates, p-coordinates), which are not by themselves optimal everywhere in the
ocean, as pointed out by model comparison exercises performed in Europe (DYnam-
ics of North Atlantic MOdels - DYNAMO, Willebrand et al. 2001) and in the United
States (Data Assimilation and Model Evaluation Experiment - DAMEE, Chassignet
et al. 2000). These and earlier comparison studies (Chassignet et al. 1996; Roberts
et al. 1996; Marsh et al. 1996) have shown that different models are able to simulate
the large-scale characteristics of the oceanic circulation reasonably well, but that the
interior water mass distribution and associated thermohaline circulation are strongly in-
fluenced by localized processes that are not represented equally by each model’s vertical

discretization.

: (S-coordinatés

o-coordinates

z-coordinates

Figure 2.17: The three main vertical coordinate systems of ocean models:
z-coordinates (left panel), terrain-following (middle panel), isopycnic (right
panel).
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Ideally, an ocean general circulation model should (i) retain its water mass characteristics
for centuries (a characteristic of p-coordinates), (ii) have adequate vertical resolution in
the surface mixed layer for proper representation of thermodynamic and biogeochemical
processes (a characteristic of z-coordinates), (iii) maintain sufficient vertical resolution
in unstratified or weakly-stratified regions of the ocean, and (iv) have high vertical reso-
lution in coastal regions (a characteristic of o-coordinates). z-coordinates are therefore
best used to provide high vertical resolution near the surface within the mixed layer,
isopycnal layers are best in the deep stratified ocean, and o-levels are often the best
choice in shallow coastal regions. Hence, many developers have been motivated to pur-
sue research into hybrid approaches, and the hybrid-coordinate models in which interior
isopycnal layers transition to z-levels in near-surface waters, should in principle combine
the advantages of both model types without the weakness of either. A brief descrip-
tion of the two main vertical coordinates inherent to the hybrid coordinate system (i.e.

z-coordinates and p-coordinates) in CHIME is given below.

The z-coordinate system (Figure 2.17, left-panel) is the simplest and best established,
primarily because it was adopted in the first models and valuable experience has been
built up over the years with this type of model. Examples of z-coordinate models are
CNRM-CM3 (Deque et al. 1994), MOM (Pacanowski 1995), HadCM3 (Gordon et al.
2000), and CCSM3 (Collins et al. 2006b). The fields at each water column are defined
at a set of constant depth levels, and the ocean is thus split into a 3-D array of points.
The levels are unevenly spaced in the vertical, to allow for more detail near the upper
(and sometimes lower) boundaries. This allows the ocean to have high resolution near
the surface, but generally leads to excessive diapycnal mixing (Sun and Bleck 2006). In
response to this and other problems with the z-coordinate formulation, models using

the isopycnal coordinate system have been developed.

Models with p-coordinates (Figure 2.17, right-panel) have the equations of motion formu-
lated on constant potential density surfaces. Examples of isopycnal models are MICOM
(Bleck et al. 1992), OPYC (Oberhuber 1993), HIM (Hallberg 1995, 1997), and NLOM
(Wallcraft et al. 2003). In the real ocean, mixing processes are believed to be pre-
dominantly along constant density surfaces. The isopycnal coordinate system therefore
mimics, as much as possible, real structures within the ocean. It has the advantage
of formulating the model in a manner that rigorously preserves the structure of water
masses faithfully over long time and length scales (Marsh et al. 1996). On the other
hand, problems arise when thickness of isopycnal layers drops to near zero or when they
intersect with the surface. Hybrid coordinate systems and model schemes have been

developed to overcome some of these problems.

The theoretical foundation for implementing hybrid coordinate systems was set forth by
Bleck and Boudra (1981) and Bleck and Benjamin (1993). The term “hybrid vertical co-
ordinate” can mean different things to different people: it can be a linear combination of

two or more conventional coordinates (Song and Haidvogel 1994; Ezer and Mellor 2004;
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Barron et al. 2006) or it can be truly generalized, i.e., aiming to mimic different types
of coordinates in different regions of a model domain(Bleck 2002; Burchard and Beckers
2004; Adcroft and Hallberg 2006; Song and Hou 2006). The hybrid models that have
much in common with isopycnal models are POSEIDON (Schopf and Loughe 1995) and
HYCOM (Bleck 2002). Other generalized vertical coordinate models include HYPOP
(Dukowicz 2005) and GOLD (Adcroft et al. 2008; Hallberg and Adcroft 2009). The
CHIME model (Megann et al. 2010) uses the hybrid-coordinate ocean model HYCOM,
in which interior isopycnal layers transition to constant-depth levels in near-surface wa-
ters (Figure 2.18), should in principle combine the advantages of both model types
without the weaknesses of either. The ocean interior is represented by layers of constant
potential density, but light layers that would outcrop and disappear in a pure isopycnic
model are reused as constant-depth near-surface coordinate levels with specified mini-
mum thicknesses. It is therefore largely an isopycnic ocean model, which reduces the
main deficiency of the latter, namely the loss of resolution in weakly stratified regions.
However, the advantages offered by a hybrid vertical coordinate do not come without
a price, and concerns associated with complexities introduced by variable-depth layer
models arise. One of the main concerns is the potential in hybrid-coordinate models
for excessive vertical diffusion caused by the dispersive character of vertical advection
schemes. If left uncontrolled, this diffusion can exceed that found in z-coordinate mod-
els, as the interlayer mass exchange can be much larger than the vertical transport rate
seen in fixed-grid models. Hybrid-coordinate models also have only approximate rep-
resentation of the pressure gradient (Sun et al. 1999). However, due to the vast range
of spatial scales that cannot explicitly be incorporated into global ocean models, it is
unlikely that we will ever find a model satisfactory to all users. Models built around
a hybrid vertical coordinate still provide flexibility not found in the classical z-level
and isopycnic coordinate models, in suppressing certain types of truncation errors while

resolving weakly stratified layers.
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Figure 2.18: Schematic of hybrid vertical coordinate system.

In summary, the majority of climate models developed to date use a z-coordinate ocean
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Table 2.2: Summary of main advantages and disadvantages of coordinate sys-
tems used in ocean models.

Vertical Coord.

Main Advantages

Main Disadvantages

z-coordinate

(the model fields
at each water
column are de-
fined at a set of
constant  depth,
e.g. HadCM3)

(i) Good vertical resolution in the
upper ocean (Sun and Bleck 2006);
(ii) Upper ocean mixed layer well
parametrized; (iii) Horizontal pres-
sure gradient can be easily repre-
sented in an accurate manner; (iv)
Equation of state for ocean water
can be accurately represented in a
straigthforward manner (McDougall
et al. 2003).

(i) Too much diffusion as flow
crosses coordinate surfaces (Sun and
Bleck 2006); (ii) Excessive mixing
at sill overflows which may have ad-
verse consequence in long-term cli-
mate simulations (Sun and Bleck
2006); (iil) Excessive diapycnal mix-
ing (Sun and Bleck 2006); (iv) Rep-
resentation and parameterization of
bottom boundary layer processes
and flow are inaccurate; (v) Repre-
sentation of tracer transport within
the quasi-adiabatic interior is com-
plicated.

p-coordinate
(discretization
of the vertical
into potential
density  classes,
e.g. MICOM)

(i) Better representations of near-
adiabatic flows along sloping isopy-
cnals; and (ii) Absence of spurious
numerical mixing of dense waters at
sill overflows (Roberts et al. 1996);
(iii) Preservation of water proper-
ties over long time and length scales
(Marsh et al. 1996); (iv) Tracer
transports in the ocean interior are
well represented (due to the natu-
ral ability to maintain water mass
properties); (v) Bottom topography
is represented in a piecewise linear
fashion (avoiding need to distinguish
bottom from side as done with z-
coordinate models); (vi) Horizontal
pressure gradient can be easily rep-
resented.

(i) Poor vertical resolution in weakly
stratified regions (i.e. at high lat-
itudes); (ii) Imprecise detrainment
from the mixed layer; (iii) Repre-
senting the effects of a realistic (non-
linear) equation of state is compli-
cated.

hybrid-
coordinate
(interior isopycnal
layers  transition
to constant-depth
levels in near-
surface waters,
e.g. HYCOM)

(i) Same as Isopycnic-coordinate
model (MICOM) plus better reso-
lution in weakly stratified regions
(Bleck (2005)); (ii) Well controlled
diffusion in ocean interior - T and
S are preserved over long timescales
(like MICOM); (iii) Good verti-
cal resolution in upper ocean (bet-
ter than MICOM); (iv) Reduction
of numerically induced diapycnal
fluxes (Bleck 2005); (v) Smooth lat-
eral transition between deep-ocean
and coastal-shelf domains (Bleck
2005); (vi) Simple modelling of
abyssal dense overflow (Bleck 2005);
(vii) Flexibility to accommodate
massless layers on the sea floor
(Bleck 2005).

(i) Excessive vertical diffusion
(Bleck 2005); (ii) Approximate
representation of pressure gradient
(Sun et al. 1999); (iii) Need to
cast transport equations in flux
form and to use relatively complex
lateral transport operators that
maintain the physical integrity of
mass field tracers when there are
strong changes in layer thickness.
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component which allows the ocean to have high resolution near the surface, but generally
leads to excessive diapycnal mixing that may have adverse consequences in long-term
climate simulations. Isopycnic models, which use potential density as their vertical coor-
dinate, preserve the structure of water masses faithfully over long periods and distance
but have poor vertical resolution in weakly stratified regions. Hybrid-coordinate mod-
els in which interior isopycnal layers transition to constant-depth levels in near-surface
waters, should in principle combine the advantages of both model types without the
weakness of either. Table 2.2 summarizes the main advantages and disadvantages of

z-levels, isopycnic and hybrid coordinates.

2.1.4.2 Brief summary of systematic errors in HadCM3

HadCMa3 is one of the models included in the climate change experiments described
in the IPCC Third and Fourth Assessment Reports (IPCC 2001, 2007), and has been
shown to have a remarkably stable climate when forced with preindustrial greenhouse
gas concentrations. However, like most numerical models, HadCM3 has systematic
errors which are not yet fully understood, and these may bias both the variability and
predictability of the AMOC. As described by Gordon et al. (2000), the mean SST field
in the model reproduces most of the characteristics of the observations in the World
Ocean Atlas (Levitus et al. 1995) to within 1°C over much of the ocean. However,
large discrepancies of over 3°C (and up to 6°C) occur in regions of large SST gradients,
including the NAC region where the model is too cool. HadCMS3 is also known to
overestimate the land temperature variability (Collins et al. 2001). The mean SSS field
is reproduced to within 1 psu in most regions (Pardaens et al. 2003). However, the model
is too salty in the Gulf Stream region of the North Atlantic (~2 psu), and too fresh in the
Beaufort Gyre region of the Arctic Ocean (~2 psu). In the upper ocean, the Labrador
Sea and Arctic Ocean are relatively cool and fresh, while lower latitudes are warmer
and saltier (Hawkins and Sutton 2007). Gamiz-Fortis and Sutton (2007) also showed
that the temperature and salinity contrast between the Labrador Sea/Arctic Ocean and
the North Atlantic is somewhat too large in HadCM3 (~3 K, 1.5 psu) as compared
to observations (~0.5-1 K, 1.0 psu). Below the surface in the Atlantic, the model is
generally too warm (~2°C) and too salty (~0.5 psu). Finally, HadCM3 simulates a
NAO in Northern Hemisphere winter which has a spatial pattern consistent with the
observations in the Atlantic region, but is too strongly teleconnected with the North
Pacific (Collins et al. 2001).

We propose that the spurious numerical mixing that is commonplace in z-coordinate
ocean models (Griffies et al. 2000) may artificially limit predictive skill in climate mod-
els that feature such an ocean component. Hybrid ocean models such as HYCOM
(Bleck 2002) have the potential to overcome some of the weaknesses in conventional

z-coordinate models. For example it is expected that the better preservation of interior
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water masses in hybrid ocean models might have an influence on the decadal variability
and predictability of climate models, since enhanced effective diapycnal diffusion typical
of z-coordinate models will tend to erode interior gradients of temperature and salinity,

including those corresponding to anomalies.

2.1.4.3 CHIME versus HadCM3

Megann et al. (2010) have shown the critical importance of changing just one component
of the climate system, by comparing CHIME and HadCM3 control simulations. Their
main findings are summarized here. They found that both models possess realistic and
marked similarities in ocean heat transports and overturning circulation, with a maxi-
mum overturning in the North Atlantic of 18-20 Sv in both models and global northward
heat transport consistent with observational estimates. They both have similar spatial
distributions of wind stress and heat/freshwater fluxes, as well as warm sea surface bi-
ases at the eastern coasts (ascribed to errors in the cloud scheme of HadAM3). They
also both show similar errors in the position of the Gulf Stream separation. However
substantial differences between CHIME and HadCM3 are also evident. Although both
models have large-scale surface temperature errors across most of the North Atlantic, the
errors are warm in CHIME while they are cool in HadCM3. In addition, CHIME does
not have the cold sea surface errors present in the North Pacific in HadCM3. However,
it shows warm and salty errors in the North Atlantic, where HadCM3 has a smaller cold
error associated with a southward deviation of the NAC and a fresh surface error over
the whole North Atlantic. Moreover, both models show clear differences in separation
position of the Kuroshio Current, which separates further south in HadCM3 and further
north in CHIME than in observations. Both models also show similar differences in the
position of the Gulf Stream separation, and the volume transport of the Gulf Stream at
65°W is smaller in CHIME (~15 Sv) than in HadCM3 (~23 Sv). Besides, some features
of the climate system are more realistically represented in CHIME than in HadCMa3.
For instance, CHIME has significantly less mixing in the upper, intermediate and deep
ocean than does HadCM3 resulting in the better representation and maintenance of key
water masses. Namely, a better preservation of the signatures of AAIW and SAMW,
more realistic structure of the southward-flowing NADW | a sharper and more realistic
thermocline in the subtropical gyres, and reduced mixing of the dense overflow waters
in the North Atlantic. These results were expected by the authors as the formulation
of HYCOM is specifically designed to eliminate the spurious numerical diapycnal mix-
ing present in z-coordinate models and therefore to better represent and preserve water
properties over long time and length scales. Moreover, this more rigorously controlled di-
apycnal mixing is also apparent in other ocean features; whereas a global warming trend
is evident in HadCM3 just below the surface to 800-1000 m depth, a similar warming

trend in CHIME is more pronounced but shallower. However, CHIME also shows some
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unrealistic patterns which are absent in HadCM3. For instance, the substantial warm-
ing and increasing salinity in the North Atlantic subpolar gyre in CHIME are clearly
not realistic and not yet fully understood. In addition, CHIME has a less realistic gyre
circulation in the North Atlantic than does HadCM3, which is quite surprising as it has
been previously demonstrated that in ocean-only simulations the path of the NAC is
more realistic in ocean-only isopycnic models forced by realistic surface fluxes than in
comparable z-coordinate models (Roberts et al. 1996). Megann et al. (2010) attributed
this unexpected result to the difference in wind stress between the two models in this
region. Although the mixing in the Nordic Sea is realistic in HadCM3, the convection
is too deep in CHIME (up to 4000 m) and extends not only across most of the Nordic
Sea but through Fram Strait and as far as the Canadian Basin. This excessive mixing
is consistent with the anomalously high surface salinity, and the resulting decrease in
stratification, that develops in CHIME in the North Atlantic subtropical gyre and the
Arctic.

Overall, while both HadCM3 and CHIME are considered “good” models from the point
of view of their heat transports being within observational estimates, and possessing
remarkably similar overturning circulations (despite their difference in temperature and
salinity anomalies in the upper ocean in the North Atlantic), Megann et al. (2010) noted
clear and marked differences between both climate models in their representation of the
mean climate in control simulations which seem to be mainly caused by differences in
interior mixing. The model differences associated with the more controlled diapycnal
mixing in CHIME, are expected to be critical in long-timescale climate predictions, since
the evolution of the ocean state is known to play a crucial role in climate dynamics of
a decade and longer (Gordon et al. 2000). By reducing the extent of spurious mixing,
CHIME may be characterized by possibly more realistic mechanisms and timescales of
AMOC variability than those in HadCM3, and may have higher or at least substantially
different predictive skills. CHIME thereby provides an invaluable check on the simula-
tions made by e.g. Collins and Sinha (2003), Hawkins and Sutton (2007) from HadCM3,

and therefore the robustness of its predictability skills on decadal timescales.

As already mentioned in Sect. 1.5.2, predictability experiments using CHIME could
not be run until mid-2011. Predictability experiments with the well-established TPSL
climate model have been carried out before then, which allowed us to develop an efficient
experimental design prior to a similar such study with CHIME. The latest version of
the IPSL model (IPSL-CM5A) and its various components are therefore now briefly

presented.
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2.2 The Institut Pierre Simon Laplace model (IPSL-CM5A)

The IPSL-CM5A model (Dufresne et al. 2012) has been recently developed at the In-
stitut Pierre-Simon Laplace (IPSL) as part of the 5! Phase of the Coupled Model
Intercomparison Project (CMIP5). It is a full earth system model which, in addition to
the physical atmosphere-land-ocean-sea ice model, also includes a representation of the
carbon cycle, and stratospheric and tropospheric chemistry with aerosols. In the frame-
work of this thesis, the low resolution version of the model is used (IPSL-CM5A-LR)
to study the potential predictability of both the AMOC and North Atlantic Climate at

decadal timescales. The model configuration is summarized below.

2.2.1 Brief model description

The model components are the atmospheric general circulation model LMDZ5A (Hour-
din et al. 2012) associated with the ORCHIDEE land-surface model (Krinner et al. 2005)
coupled with the ocean module NEMOv3.2 (Madec 2008), which includes the sea ice
model LIM-2 (Fichefet and Maqueda 1997), and the oceanic bio-geochemistry model
PISCES (Aumont and Bopp 2006). The coupling between oceanic and atmospheric
models is achieved using OASIS3 (Valcke 2006). A general overview of these various

components is now briefly given.

2.2.1.1 Atmospheric component: LMDZ5A

LMDZ5 is an atmospheric general circulation model developed at the Laboratoire de
Météorologie Dynamique (Sadourny and Laval 1984). The dynamical part of the code
is based on a finite-difference formulation of the primitive equations for the atmosphere.
In the vertical, the model uses hybrid coordinates comprising 39 levels, with 15 levels
above 20 km. It has a regular horizontal grid with 96 x 96 points corresponding to a
resolution of 1.9° x 3.75°. In the LMDZ5A version (Hourdin et al. 2012), the physical
parametrization is very close to that of the previous LMDZ4 version used for CMIP3
(Hourdin et al. 2006).

2.2.1.2 Land-surface component: ORCHIDEE

ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) simulates
the energy and water cycles of soil and vegetation, the terrestrial carbon cycle, and
the vegetation composition and distribution (Krinner et al. 2005). It is based on three
different modules: (i) SECHIBA (Ducoudré et al. 1993; de Rosnay and Polcher 1998)
which describes the exchanges of energy and water between the atmosphere and the
biosphere, and the soil water budget, (ii) STOMATE (Saclay Toulouse Orsay Model
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for the Analysis of Terrestrial Ecosytems, Krinner et al. 2005) which represents the
phenology and carbon dynamics of the terrestrial biosphere, (iii) the global LPJ (Lund-

Potsdam-Jena, Sitch et al. 2003) vegetation model that simulates vegetation dynamics.

2.2.1.3 Oceanic component: NEMOv3.2

NEMO (Nucleus for European Modelling of the Ocean) is a primitive equation model.
The IPSL-CM5A model includes the NEMOv3.2 version, which uses a partial step for-
mulation (Barnier et al. 2006) ensuring a better representation of bottom bathymetry
and thus stream flow and friction at the ocean bottom than the previous IPSL-CM4
model. The configuration of the model is ORCA2 (Madec and Imbard 1996). In the
horizontal direction, the model uses a curvilinear orthogonal grid: (i) south of 40°N,
the grid is of isotropic Mercator type with a nominal resolution of 2°, (ii) a latitudinal
grid refinement of 1/2° is used in the tropics, (iii) north of 40°N, the grid is non geo-
graphic and quasi-isotropic. The North Pole singularity is replaced by a line between
points in Canada and Siberia. In the vertical direction, the model uses a full or partial
step z-coordinate, or o-coordinate, or a mixture of both. There are 31 vertical levels
with the highest resolution for the upper 150 m. The distribution of variables is on a
three-dimensional Arakawa C-type grid. Advection of temperature and salinity is done
using a total variance dissipation scheme (Lévy et al. 2001; Cravatte et al. 2007). In the
momentum equation, an energy and enstrophy conserving scheme is used (Arakawa and
Lamb 1981; Le Sommer et al. 2009). The mixed layer dynamics are parameterized using
the Turbulent Kinetic Energy (TKE) closure scheme of Blanke and Delecluse (1993)
improved by Madec (2008). The horizontal eddy viscosity coefficient value is 4.10* m?

s~! and the lateral eddy diffusivity coefficient value is 10 m? s=1.

2.2.1.4 Sea ice component: LIM-2

LIM-2 (Louvain-la-neuve sea Ice Model, version 2) is a two-level thermodynamic-dynamic
sea ice model (Fichefet and Maqueda 1997, 1999). A three-layer model determines sensi-
ble heat storage and vertical heat conduction within snow and ice. The surface albedo is
parameterized as a function of the surface temperature and the snow and ice thicknesses.
For the momentum balance, sea ice is considered as a two-dimensional continuum in dy-
namical interaction with atmosphere and ocean. The sea ice and ocean models have the

same horizontal grid.
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2.2.1.5 Oceanic bio-geochemistry component: PISCES

PISCES (Pelagic Interaction Scheme for Carbon and Ecosystem Studies, Aumont and
Bopp 2006) simulates the cycling of carbon, oxygen and of the major nutrients determin-
ing phytoplankton growth. The carbon chemistry of the model is based on the Ocean
Carbon Model Intercomparison Project (OCMIP2) protocol (Najjar et al. 2007) and the
parameterization proposed by Wanninkhof (1992) is used to compute air-sea exchange
of COy and Os.

2.2.1.6 Atmosphere-Ocean-Sea ice component: OASIS

The Atmosphere-Ocean-Sea ice coupling in IPSL-CM5A-LR is very close, with some
improvements, to the coupling used in IPSL-CM4 (presented in detail in Marti et al.
2010). The OASIS v3.0 coupler (Valcke 2006) is used to interpolate and exchange the

variables and to synchronise the models.

2.2.2 Initial conditions and control run

The core of the predictability study with IPSL-CM5A is a 1000-year control integration.
The initial state was taken at the end of a 400-year run in coupled mode, itself started
after several hundreds of years of simulations of land and ocean carbon component sepa-
rately to equilibrate the carbon pools (see Dufresne et al. 2012 for further details). The
simulation uses constant pre-industrial boundary conditions of tropospheric greenhouse
gases and aerosol concentrations, and constitutes the pre-industrial control simulation
of the IPSL-CM5A-LR model used for the CMIP5 exercises. Figure 2.19 illustrates how
well equilibrated the model is. There is almost no drift in surface temperature, surface
salinity and heat budget, and no discernible difference between the flux at both the Top
Of Atmoshere (TOA) and the surface. There is also no drift of the carbon flux over land

and only a small one over the Ocean (see Dufresne et al. 2012 for further details).

2.2.3 How faithful is IPSL-CM5A-LR to the real climate system?

The global and North Atlantic climatology of TPSL-CM5A-LR have been described in
several papers such as Dufresne et al. (2012), Hourdin et al. (2012), and Escudier et al.
(2012). It has been shown that the 1000-year long simulation captures the main features
of the observed climate, in spite of a few notable biases. Here is a summary of the main
findings of the above-cited studies for the key oceanic and atmospheric fields, mainly in

the Atlantic region (of interest here).
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Figure 2.19: The time evolution of the global mean heat budget at surface
and at the TOA (W m~2), the global mean air surface temperature (°C), the
sea-ice volume in the northern (black) and southern (red) hemisphere (103 m3,
the global mean surface salinity (psu), and carbon flux (GtC yr~!) over ocean
(black) and over land (red), for the 1000-year control integration of the IPSL-
CM5A-LR model. (From Dufresne et al. 2012).

The Atlantic SST in IPSL-CM5A-LR captures the main features of the observed SST,
but is clearly colder than observations over the whole North Atlantic (Figure 2.20, left-
panel). Escudier et al. (2012) related the very large cold bias east of the Grand Banks
to too weak and too zonal gradients in the vicinity of the Gulf Stream, partly due
to a southward shift of the western boundary currents as in many other models (e.g.
Danabasoglu 2008), and to the erroneous departure of the atmospheric jet stream from
the coast and a poleward shift of the atmospheric jet (Guemas and Salas-Mélia 2011).
Other biases include slightly too-cold SST in the tropics, and a strong cold bias in the

Nordic Seas.
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Figure 2.20: Bias of SST (left panel) and SSS (right-panel) in the Northern
Atlantic averaged over the whole 1000 years of the IPSL-CM5A-LR model com-
pared to observations. The mean of winter sea-cover in summer (left-panel)
and winter (right-panel) is indicated as black continuous line for the model and
dash-lined in observations. Observed SST are from Reynolds (1994), observed
SSS are from Conkright et al. (2002) and observed sea-ice cover from Rayner
et al. (2003). (From Escudier et al. 2012).

As shown by Escudier et al. (2012), the main features of the SSS fields are reproduced
in IPSL-CM5-LR. Note, however, that the North Atlantic maxima are slightly shifted
eastward as compared to the observations, and the subtropical maxima are slightly too
strong (Figure 2.20, right-panel). A major fresh bias is also present in the northwestern
Atlantic, probably due to an excess of freshwater forcing over the Labrador Sea as seen
in the previous version of the model (Swingedouw et al. 2007). These fresher conditions,
together with the cold bias identified earlier in the high-latitude North Atlantic, are
associated with an overestimation of the winter sea-ice cover in the northern Atlantic
and specifically in the Labrador and the Nordic Seas (Figure 2.20). This prevents a
correct representation of deep convection in these areas, and could explain the lower
range of its AMOC mean value (10.3 Sv, Escudier et al. 2012) compared to observational
estimates (e.g. Ganachaud and Wunsch 2000; Cunningham et al. 2007).

In addition, the model has been shown to be globally too cold in term of SAT, with a
pronounced bias in the mid-latitudes (Figure 2.21, Dufresne et al. 2012). These colder
conditions clearly include most of the Atlantic region. Some warm biases are, neverthe-

less, worth pointing out over Siberia, Alaska and the Southern Ocean.

As with the previous version (IPSL-CM4), one important deficiency of IPSL-CM5A-LR
is also the presence of a second zone of convergence south of the equator, both in the
Pacific and Atlantic Oceans (Figure 2.22, Hourdin et al. 2012). Note that this double
ITCZ is a classical bias of coupled models (see e.g. Dai 2006).
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Figure 2.21: Bias in the climatology (period 1961-1990 in the IPSL-CM5A-LR
model) of SAT compared to CRU estimate (Jones et al. 1999). (From Dufresne

et al. 2012).
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Figure 2.22: Annual mean rainfall (mm day~!) in the prescribed SST simulation
LMDZ5A-LR and in the “historical simulation” for the end of the 20*" century

with IPSL-CM5A-LR. (From Hourdin et al. 2012).

Despite its general cold bias and its too fresh northern Atlantic, the IPSL-CM5A-LR

model has overall a realistic climate and can therefore be considered as a credible model

for the study of climate predictability.

2.3 Summary of main characteristics of models used

Table 2.3 gives a summary of the main features of both models used in the framework

of this thesis.
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Table 2.3: Summary of main characteristics of both CHIME and ISPL-CM5A-

LR models.

CHIME

IPSL-CM5A-LR

Purpose in this
thesis

Study of variability and predictabil-
ity of AMOC and climate.

Study of predictability of AMOC
and climate.

Reference Megann et al. (2010) Dufresne et al. (2012)
Atmosphere HadAM3 (Gordon et al. 2000) LMDZ5A (Hourdin et al. 2012)
model

Ocean model

HYCOM v2.1.34 and v2.2.18 (¢D
and E3, respectively) (Bleck 2002)

NEMO v3.2 (Barnier et al. 2006)

Sea-ice model

From HadCM3 (Cattle and Crossley
1995)

LIM-2 (Fichefet and Maqueda 1997,
1999)

Land-surface
component

MOSES (Cox et al. 1999)

ORCHIDEE (Krinner et al. 2005)

Atmosphere-
ocean coupling

OASIS v2.4 and v3.0 (¢D and E3,
respectively) (Valcke et al. 2000;
Valcke 2006)

OASIS v3.0 (Valcke 2006)

Oceanic bio- | none PISCES (Aumont and Bopp 2006)
geochemistry

component

Atmos. hori- | 2.5° x 3.75° 1.9° x 3.75°

zontal resolu-

tion

Ocean. hori- | Spherical bipolar grid (Sun and | ORCA2 grid (Madec and Imbard
zontal resolu- | Bleck 2001): (i) 55°N-78°S = 1.25° | 1996): (i) south of 40°N = isotropic
tion x 1.25°, (ii) north of 55°N = bipolar | Mercator (resolution 2°), (ii) trop-

grid.

ics = grid refinement of 1/2°, (iii)
north of 40°N = non-geographic and
quasi-isotropic grid.

Atmos. vertical

Hybrid (19 levels)

Hybrid (39 levels)

coordinate

Ocean. vertical | Hybrid (25 levels) z-coordinate or o-coordinate or
coordinate both (31 levels)

Mixing scheme | KPP (Large et al. 1994) TKE (Blanke and Delecluse 1993)
Length of | ¢D (variability)=120; FE3 (pre- | 1000

data analysed | dictability) = 201

(years) in con-

trol run

Main biases in
the Atlantic

(i) Substantial warming and increas-
ing salinity in the North Atlantic
subpolar gyre, (ii) Excessive mix-
ing in the northern Atlantic high-
latitudes.

(i) Significant cold and fresh biases
in the northern Atlantic, (ii) Lack of
deep convection in the Labrador and
Nordic Seas.
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Despite identified biases, both the CHIME and IPSL-CM5A models have overall a re-
alistic climate and can therefore be considered as useful and credible tool for the study
of climate variability and predictability. It is important to bear in mind that none of
the existing models is able to accurately reproduce all aspects of past and current cli-
mate, and that no single model will ever be able to realistically reproduce climate as
we experience it. By their very nature, models cannot capture all the factors involved
in a natural system, and those that they do capture are often incompletely understood.
This makes climate models impossible to truly verify or validate (Oreskes et al. 1994).
Some may argue that long-term forecasts are useless because they cannot be properly
evaluated and little can be learnt from a prediction without verification. Nevertheless,
the models ability to reproduce many large-scale aspects of present-day climate, the fact
that they are built on well-known physical processes (such as conservation of energy,
mass and angular momentum), and the fact we can understand and interpret many of
the results from known processes provide support for the models credibility, at least for
large scales and certain variables. George Box is credited with the quote “All models
are wrong, but some are useful” (Box 1979). Indeed, all climate models are known to be
imperfect to some degree, but they can still help us to understand the things we observe
or simulate and to test hypotheses. In the absence of better alternatives, it is likely to
be better to use an “imperfect” model than, say, random guessing. Models represent
the best tool we have available for explaining the current behaviour of our climate and

predicting likely changes to the planet’s future climate.

The next chapter will now discuss the different statistical tools and methods used here

in both variability and predictability studies.






Chapter 3

Methodologies

This chapter gives a description of the methodologies used for studying the decadal
variability and predictability of AMOC fluctuations and climate in the Atlantic sector.
Data and statistical methods used for studying variability are first presented, prior to

the methods and experimental design of the predictability experiments.

3.1 Climate variability study with CHIME: data and sta-

tistical methods

3.1.1 Data description

Monthly output data from c¢D are used. Analysed data comprise oceanic and atmo-
spheric variables known to be directly or indirectly linked to climate variability. Ocean
fields include salinity, temperature, surface potential density oo with respect to the 2000
dbar surface (a measure of static stability), MLD, surface heat and freshwater fluxes.
They also include the annual-mean meridional mass transport streamfunction of the
Atlantic, and an AMOC index defined as its maximum at 30°N. Atmospheric fields
comprise SAT, sea level pressure (SLP), and net precipitation. Note, that because of
the spherical-tripolar grid used in the ocean component of CHIME, ocean fields have
been re-gridded onto a regular 1.25°x1.25° grid north of 55°N.

We either use annual means, winter means (January-March) or September values for the
different fields, and anomalies are calculated from the year 80-200 mean. Winter means
are used to characterize activities in the high-latitude regions (as deep water is formed
by convection in these regions mainly during the cold winter seasons) while September
means rather characterize processes specific to the tropical regions (coincident with
heaviest precipitation in the central Atlantic, at around the time of the northernmost

position of the ITCZ). Note that the use of winter or September means does not give

o7
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qualitatively different results to the use of annual means but rather strengthens statistical
robustness in some cases. When focusing on low-frequency variability, we apply 5-year

or 10-year moving average filters to the data.

3.1.2 Statistical methods

In this study, the main statistical methods used include correlation, regression, spectral,
composite, and Empirical Orthogonal Function (EOF) analyses. These methods are

briefly described below.

Correlation coefficients

Correlation analysis gives a measure of the linear relationship between a set of variables.

The Pearson’s correlation coefficient, commonly simply referred to as the correlation

coefficient, is a scaled version of the covariance (defined as the cross-product of the

anomalies from the mean), where the covariance is divided by the standard deviation of

the fields. The formula for the correlation of two n-length time series  and y is:
VIS 2 — (S w B S o — (S wi)?

The Least Squares Regression line

Simple regression analysis helps to determine the relationship between a dependent
variable and an independent one. Most commonly, regression coefficients give the average
value of the dependent variable when the independent variable is held fixed. Suppose
that y is a dependent variable, and x is an independent variable, the equation of the

least squares regression line of y on x is:
y = By + Biz (3.2)

where Bj is the slope (also called the regression coefficient), and By is the intercept:

_ ny g iy — Q01 ) oty vi)
ny g ap — (300 )2

By — Y Yi — B0 i)
O p—

n

By

(3.3)

(3.4)

Power spectrum

The power spectra analysis uses, here, the Welch method of spectral estimation (Welch
1967) allowing us to measure the power of a signal at different frequencies. Note that
no smoothing is applied to the data prior to the calculation of the spectrum. The Welch
method is based on the concept of using periodigram spectrum estimates, which are the

result of converting a signal from the time domain to the frequency domain. The power
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of a red noise spectrum with the same AR(1) coefficient fitted from the detrended given
time series is also evaluated to test the statistical significance of its corresponding power

spectrum.

Composite analysis
Composite analysis consists of averaging patterns with similar features (e.g. Figure 6
in Vellinga and Wu 2004), and can therefore help to better understand the possible

influence of these particular features.

Empirical Orthogonal Function analysis

The method of EOF analysis (e.g. Von Storch and Zwiers 1999) is a decomposition of
a data set in terms of orthogonal basis functions which are determined from the data.
The basis functions are typically found by computing the eigenvectors of the covariance
matrix of the data set. It is the same as performing a principal component analysis on
the data, except that the EOF method finds both time series and spatial patterns. EOF
analysis is therefore a useful way of determining the main modes of spatial and temporal
patterns associated with the variability of a particular variable. When calculating EOF's,

here, time series are normalized by the local variance and data are detrended.

Statistical significance

In this study, statistical significance of anomalies is tested using a z-test at the 90%
confidence level. Significance of correlation and regressions coefficients is tested using
Students t-test at either the 90% or 95% confidence level. Note that Quenouille (1952)’s
method is used to account for the reduction of the effective numbers of degrees of freedom
due to the autocorrelation in the datasets and the use of moving average. Degrees of

freedom for moving averaged time series is determined as follows:

n

ne = -
14207 rir

(3.5)

where r; and 7, are autocorrelation of two time series with lag i years, and n is the

number of data considered.

3.1.3 Domain of study

The domain of study for the present analysis is the Atlantic sector between 20°S-80°N
and 90°W-30°E. We further consider regions where deep convection occurs in the model.
The maximum MLD in March defines the deep convection sites as shown in Figure 3.1.
Three deep convection sites are evident: (i) the GIN Seas, (ii) the Labrador Sea and
(iii) a small region south of Iceland (extending down to about 57°N). Deep convection
in the latter is significantly less than in the Labrador and GIN Seas. Furthermore,
the Labrador and GIN Seas are both regions where MLD and AMOC fluctuations are

most sensitively related (> 200 m Sv™!). We therefore focus analysis on these two
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main regions, for which the Labrador and GIN Seas domains have been respectively
defined as 55°N-65°N/45°W-65°W and 65°N-80°N/15°W-15°E (see boxes, Figure 3.1).
Corresponding convective indices have been calculated from the annual winter-mean

MLD averaged over each domain.

[m]

80°N

80°W 60°W 40°W 20°W 0° 20°E

Figure 3.1: March MLD (m) averaged from year 80 to 200 (as colour-shaded)
superimposed with its regression coefficients onto PC1 of the AMOC stream-
function (m Sv~!, shown as contours). The Labrador (GIN) Sea(s) box is
defined as 55°N-65°N/45°W-65°W (65°N-80°N/15°W-15°E).

3.2 Climate predictability study with IPSL-CM5A-LR and
CHIME: methods and experimental setup

3.2.1 Methods for measuring predictive skills

In the present study, two common methods are used to estimate potential predictability:
(i) the diagnostic potential predictability (DPP) approach which only relies on a long
control simulation, and (ii) the prognostic potential predictability (PPP) approach which

requires re-running climate simulations with slightly perturbed initial conditions.

3.2.1.1 Diagnostic Potential Predictability (DPP) approach

The DPP approach uses the method of analysis of variance (Madden 1976; Rowell
1998) to examine the low-frequency variability (considered to be at least potentially
predictable) of a given variable. As an estimate of DPP, we use the non-biased estima-
tion of potential predictability variance fraction (ppvf) from Boer (2004) that attempts
to separate the long-term variability from internal variability (considered as chaotic
noise). The long-term variability that rises above this noise is deemed to arise from
processes operating in the physical system that are assumed to be, at least potentially,
predictable. The non-biased estimation of ppvf (see Boer 2004 for further details) is
defined as:
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g ~O0
ppof = ——5— (3.6)

where 012\, represents the variance of N-year means, and o represents the full variance
of a given variable. The ppvf varies between 0 and 1; a ppvf close to 0 implies no
long-term variability and thus no potential predictability. Conversely, ppvf close to 1
implies large predictability. Statistical significance of ppvf is judged using a F-test at
the 90% or 95% confidence level. A threshold for “useful” potential predictability is

however hard to define, as it is likely to be purpose and situation dependent.

Note that this approach is also of limited interest when applied to a single time series,
that is when studying the temporal predictability of a given variable such as the AMOC
index. In this study, we therefore restrict the use of this approach to the study of the
spatio-temporal predictability of climate-related fields. Although the power of the DPP
approach lies in the fact that it only relies on a long control simulation, it remains an
easy and cheap statistical way to estimate the average predictive skill in a model, which

differs from the prognostic approach described below.

3.2.1.2 Prognostic Potential Predictability (PPP) approach

In the PPP approach, the predictability is estimated prognostically by re-running a
climate simulation (from the control integration) with slightly perturbed initial condi-
tions supposed to represent atmospheric chaotic noise or uncertainty in the estimation
of the climate state (e.g. Griffies and Bryan 1997a; Collins and Sinha 2003; Collins
et al. 2006a; Msadek et al. 2010). This approach does not compare to observations di-
rectly, and only assesses the ability of the modeled climate to reproduce itself given a
certain atmospheric noise. These experiments are thus often called “perfect ensemble”
experiments. The PPP approach therefore represents an estimate of the upper limit of
predictability based on having a perfect model and near perfect knowledge of the current
state of the climate system (principally the state of the ocean). Although this situation
is never likely to be achieved in practice, this approach is useful in identifying explicitly

the climate predictability over a specific climate trajectory.

Practically, both the spread and the correlation of the members of each ensemble are
useful and important tools to quantify the reproducibility and thus predictability of the
simulated fields. In this study, we thus consider two deterministic measures (following
the Assessment of Intraseasonal to Interannual Climate Prediction and Predictability
report, National Research Council, NRC, 2010): the Ensemble Spread (ES) and
Ensemble Correlation (EC). Both these metrics have to be computed with respect
to a target, a state that we wish to predict. At least two definitions of this target have
been proposed in the literature: (i) the ensemble mean (e.g. as in Msadek et al. 2010,

hereinafter M10) or (ii) each individual member successively (e.g. as in Collins and
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Sinha 2003, hereinafter CS03). As illustrated below, ES computed with each definition
only differs by a factor of proportionality. Both definitions are thus equivalent for this
metric. In contrast, no such relationship of proportionality could be found for EC. Here,
we will therefore consider these two definitions to evaluate possible differences in their
respective scores of PPP. Both EC and ES metrics are now described considering the

different definitions of target.

Ensemble Correlation (EC)

In the forecast framework, correlation addresses the question: “to what extent are the
forecasts varying coherently with the observed variability?”. In the M10 approach, pre-
dictability skill is evaluated by correlating each member of the ensemble to the ensemble
mean whereas in the CS03 approach each member is correlated to each other. If M is
the number of members, we therefore obtain M (resp. M (M — 1)/2) individual corre-
lations for M10 (resp. CS03). Independently of the approach used, the formula for the

individual correlation of any pairs p is:

. TET A — [ AT Bl 5

VITSET 42— (SET 402 x [T YT B2 — (NT By)?)

where T is the number of years over which we want the correlation for, and A and B are
the time series (or members) forming the pair p. Once the individual correlations of all
pairs have been calculated (M pairs for M10, M (M — 1)/2 pairs for CS03), EC of the
ensemble is computed as the mean of all individual correlations through a Fisher Trans-
formation (Fisher 1921). The transformation is applied to each individual correlation

rp, and is defined by:

1 1
sziln( +rp

T rp) = arctanh(rp) (3.8)

Then by calculating the mean z of all individual z,, EC of a given ensemble is estimated

by its inverse transformation:

exp (2z) — 1

po =8P 7 2
¢ exp (2z) + 1

(3.9)

We will consider the two definitions of target (M10 and CS03) to evaluate possible differ-
ences in their respective score of predictive skills. Statistical significance of the resulting
EC is judged using a one-tailed Students ¢-distribution test at the 90% confidence level
with degrees of freedom corresponding to the average degrees of freedom of all individual
correlations. The degrees of freedom of the latter takes into account the persistence in

the two time series following Bretherton et al. (1999).
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Ensemble Spread (ES)

ES or Root Mean Squared Error RMSE or again the Mean Squared Skill Score MSSS
(as defined by the US CLIVAR working group on Decadal Predictability, http://clivar-
dpwg.iri.columbia.edu) addresses the question: “how large are the typical errors in the
forecast (among members) relative to those implied by baseline?”. Consistently with
EC, we consider the two definitions of the targets which arise from the literature: for a

given lead-time LT, ES of an ensemble of individual members i is defined respectively

: M
ESyno(IT) = | 17 S IXi(LT) ~ X(LT)? (3.10)
=1
9 M M
EScs03(LT) = MOL=1) >0 IX(LT) - X;(LT))? (3.11)

i=1 j=i+1

where we define: X(LT) = 47 SM Xi(LT)

We demonstrate below that there actually exists a relationship of proportionality be-
tween Equation 3.10 and Equation 3.11. Let consider the two following definitions of

Mean Squared Error:

M
1 —

Eyno = 47 > (Xi—X)? (3.12)

=1

M
2

Ecsos =~ > (Xi - X;)? 3.13
CS03 M(M - 1) ;jzz+l( ]) ( )

By expanding (X; — X)? in Equation 3.12 and after a few rearrangements we show that:

2

Eyio=X2-X (3.14)
Then, if we introduce:
9 M
FE=—— (X; — X;)? (3.15)
w7 2
We show by a recurrence reasoning that:
E =2FEcs03 (3.16)

By expanding (X; — X j)2 in Equation 3.15 and after a few rearrangements, we show
that:

(X2 -X") (3.17)



64 Chapter 3 Methodologies

By combining Equation 3.14, Equation 3.16 and Equation 3.17, we obtain the following

relationship:
2M
E = E 3.18
Cs03 = M0 ( )
Therefore,
2M
EScso3(LT) = U 1ESM10(LT) (3.19)
And there exists a factor of proportionality ]3[—]\_41 between the ensemble spread of both

CS03 and M10 definitions.

Generally, the trajectories of individual members diverge with time and thus ES increases
with LT. When ES saturates at the control RMSE, we consider that there is no more
potential predictability: the spread of the forecast is of similar magnitude as the natural
spread of the modeled climate, and no predictability can be inferred. In CS03 (M10)
the control RMSE is defined as 0v/2 (o %), where o is the standard deviation of the
control integration. Statistical significance of ES as compared to the respective threshold
(or control RMSE) is judged using a F-test at the 95% confidence level. The maximum
LT at which a variable is said to be potentially predictable is the last significant LT
before ES persistently exceeds the threshold.

As demonstrated above, ES computed with each definition (M10 and CS03) only differs
by a factor of proportionality. Both definitions are thus equivalent for this metric. In
contrast, no such relationship of proportionality could be found for EC. Here, we will
therefore consider these two definitions of target to evaluate possible differences in their

respective score of PPP.

Potential predictability criterion

With the objective of developing a common skill evaluation to enable us to compare
decadal prediction systems across different modeling centers (Meehl et al. 2012), we
propose here an approach of measuring predictive skills based on both ES and EC
metrics. Indeed, note that EC alone does not indicate whether the forecast values are
of the right magnitude (contrary to ES). In the same way, ES alone does not indicate
the direction of the deviations (contrary to EC). We therefore explore the information
given by both metrics, and consider that a variable is potentially predictable if it
has a (low) statistically significant ES (below the saturation level defined as the
control RMSE) associated with a (high) statistically significant EC (Figure 3.2,
right panel). By combining these two metrics, we are in good agreement with Hawkins
et al. (2011) who claim that prediction skills should be measured using more than one
metric. However, it has to be kept in mind that, as will be illustrated later (in chapters
5 and 6), combining these two metrics might be too restrictive in some situations, and

that information given by ES or EC alone should not be neglected.
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P
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High EC + High ES = no PPP skills, Low EC + Low ES = no PPP skills High EC + Low ES = PPP skills
- -
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Figure 3.2: Schematic representation of two scenarios with no PPP skills (both
left and middle panels) and one scenario with PPP skills (right panel) as defined
here.

Note that deterministic measures of skills (such as ppv f, EC, ES) do not give information
about the prediction probabilities; such information can complement the results already
obtained from both the DPP and PPP approaches, and can be of particular importance
for society-relevant variables such as surface temperature. This probabilistic information
can be obtained through the calculation of the Probability Density Functions (PDFs) of

a specific variable for each ensemble experiment.

Probability Density Functions
For a given variable x, the PDF fitted by a Gaussian distribution can be calculated by
computing the mean p and standard deviation o of the M members of the ensemble

experiment:

1 —(z — p)?
PDF(x) = ex 3.20
(@) = = exp — (320)
Potential predictability may arise if the ensemble mean of the ensemble experiment is
significantly shifted with respect to climatology resulting in biases in the probability
of e.g. warmer temperatures. A variable x is therefore predictable if the forecast PDF
distribution of z differs sufficiently from the climatological PDF distribution to influence

relevant decision-makers (as illustrated in Figure 3.3).

climatological probability distribution

------ forecast probability distribution

probability of occurrence

X

Figure 3.3: The solid line is a schematic illustration of the climatological prob-
ability of some climatic variable, such as decadal-mean surface temperature.
The dashed line is a schematic illustration of a decadal forecast probability
distribution showing clear predictability.
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3.2.2 Model simulations with IPSL-CM5A-LR
3.2.2.1 Control integration for DPP

The DPP approach only relies on the IPSL-CM5A-LR control integration described
earlier in Sect. 2.2.2. It is a 1000-year control simulation started from a suite of adjust-
ment simulations lasting more than 1000 years. Using constant pre-industrial boundary
conditions of tropospheric greenhouse gases and aerosol concentrations, this is the pre-

industrial control simulation used for the CMIP5 exercises.

3.2.2.2 “Perfect ensemble” experiments for PPP

The core of the PPP approach is a series of 5 ensemble experiments using the same code
as the control integration described above. Each ensemble starts from a different date
of the control simulation and includes 10 members, started from slightly different initial
conditions and integrated for 20 years. Initial conditions of the different members are
obtained here by perturbing the SST from the control simulation with an anomaly chosen
randomly for each grid point in the interval [-0.05°C, 0.05°C] with an equiprobable
distribution for each value over this interval. This perturbation mimics a non-Gaussian
white noise perturbation. No perturbation has been applied for the grid points under sea-
ice cover. Figure 3.4 shows the five different starting dates of each ensemble experiment
together with the time series of the AMOC index from years 1870 to 2200 in the control
integration. One experiment starts from a year corresponding to relatively weak AMOC
conditions (hereinafter W, year 1901), one from intermediate conditions (hereinafter I,
year 2171), and one from strong conditions (hereinafter S, year 2071). We have also
chosen to start some experiments respectively 5 and 15 years before the large AMOC
maximum in 2071 to investigate how far ahead this extreme value can be captured (15P
and 5P, starting dates 2056 and 2066, respectively). Note that other choices could have
been made and because of the limited number of starting dates, this experimental set up
was not designed to draw robust conclusions about a possible predictability-dependence

on the AMOC initial state. It could nevertheless give useful indications about it.

3.2.3 Model simulations with CHIME
3.2.3.1 Control integration for DPP

The core of the DPP approach with CHIME is the 201-year control integration of E3
(from year 105 to 305) as described earlier in Sect. 2.1.2.2. It has been run in fully
coupled mode for 445 years from rest, using constant pre-industrial boundary conditions
of tropospheric greenhouse gases and aerosol concentrations. There is evidence that this

pre-industrial control simulation is not as reliable as ¢D (e.g. climate drift, missing
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Figure 3.4: Time series of AMOC index in the IPSL control integration from
year 1870 to 2200, with starting points of perfect ensemble experiments shown
as coloured points. The 1000-year mean is shown as the horizontal line and the
corresponding standard deviations are shown as the dashed lines.

data), and this has to be kept in mind through the rest of the study. Predictability
experiments carried out with E3 nevertheless give useful indication about the potential
predictive skills of this new model. Results from these experiments could be used as
benchmark for future experiments once a more reliable and longer control integration of
CHIME (or similar model) will have been obtained.

3.2.3.2 “Perfect ensemble” experiments for PPP

The core of the PPP approach with CHIME is a series of 5 ensemble experiments run
from the control integration E3. Each ensemble of 5 members was started from slightly
different initial conditions and integrated for 20 years. To test the eventual sensitivity of
predictive skills to the number of members considered, one of these experiments has been
generated with 5 additional slightly different initial conditions, therefore accounting for
10 members in total (excluding the control integration). Because the new configuration
of CHIME did not allow us to apply the same perturbation scheme than the one used in
IPSL-CM5A, perturbations to the initial conditions in CHIME were obtained as follows:
each of the ensembles were restarted from the same atmospheric state of the control
integration, but the ocean of each one of the members was initialized from an ocean
advanced by a day relative to the preceding member. Figure 3.5 shows the five different
starting dates of each “perfect ensemble” experiment together with the time series of
the AMOC index from year 105 to 305 in the control integration E3. To facilitate



68 Chapter 3 Methodologies

the comparison of our results with those from IPSL-CM5A, we chose starting dates
corresponding as close as possible to the AMOC initial states in the IPSL experiments.
Therefore, one experiment starts from a year corresponding to strong AMOC conditions
(hereafter S, year 260), two experiments start respectively 15 and 5 years before this
strong event (hereafter 15P and 5P, year 245 and 255), and one experiment starts from
intermediate conditions (hereafter I, year 105). Note that because of missing restart
files, the experiment corresponding to relatively weak AMOC conditions (hereafter W)
does not start from an extreme value (as in IPSL) but starts about 3 years prior it (year
280). We will still refer this experiment as starting from weak AMOC conditions. These
experiments with CHIME could strengthen conclusions drawn from the IPSL-CM5A
model about eventual predictability-dependency on the AMOC initial states.
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Figure 3.5: Time series of AMOC index in the CHIME control integration E3
from year 105 to 305, with starting points of perfect ensemble experiments
shown as coloured points. The 201-year mean is shown as the horizontal line
and the corresponding standard deviations are shown as the dashed lines.

The next chapter will now address the first objective of this thesis by analyzing the
natural decadal variability of the AMOC (and associated key variables) as seen in the
CHIME model.



Chapter 4

Decadal-timescale changes of the
AMOC and climate in CHIME

Results from this chapter have been accepted for publication in Climate Dynamics as:
Persechino A, Marsh R, Sinha B, Megann A, Blaker A, New A (2012) Decadal-timescale
changes of the Atlantic meridional overturning circulation and climate in a coupled

climate model with a hybrid-coordinate ocean component. Clim Dyn, 39(3):1021-1042.

4.1 Aim of study

Mechanisms responsible for decadal variability of the AMOC are still under debate.
Improving our understanding of such variability is prerequisite in the perspective of
developing operational decadal predictions schemes. Focussing on the shorter decadal
timescale (i.e. 15-30 years), this chapter therefore describes the natural variability of the
AMOC and associated key variables as seen in CHIME, in order to better understand
the key processes implicated in such variability. Sect. 4.2 describes the structure and
variability of the AMOC. Co-variability of ocean properties and surface climate are
discussed in Sect. 4.8. Underlying physical mechanisms are considered in Sect. 4.4. A

summary and discussion follow in Sect. 4.5, with concluding remarks in Sect. 4.6.

4.2 Internal AMOC variability in CHIME

4.2.1 Spin-up, trend and variability of the AMOC

The AMOC index time series is shown for the entire ¢D run in Figure 4.1a (black line).
Despite the relatively short time series available, decadal-to-multidecadal timescale vari-

ability can still be easily distinguished from the spinup transient from year 80. The
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amplitude of variability is about 2 Sv (ranging from 17.5 to 22 Sv). The average decadal
mean (about 19.8+£1.4 Sv) compares well with observational estimates (18+£2-3 Sv) of
Talley (2003), but is a little smaller than the mean of 22.841.6 Sv in the corresponding
period of HadCM3 (Megann et al. 2010). The principal component associated with the
main mode of variability of the AMOC streamfunction (PC1, further discussed in Sect.
4.2.2) is superimposed on the AMOC index (Figure 4.1a, grey line). The two time
series are highly correlated, with correlation coefficient of 0.86 (Table 4.1). Although its
corresponding power spectrum shows most energy (relative to a fitted first order autore-
gressive AR1 model, Chatfield 1975) at a period of about 30 years, this is well below the
80% confidence limit about the fitted red noise spectrum (Figure 4.1b). Although not
significant, periods in the range 15-30 years almost reach this 80% confidence limit, so
it appears that the PC1 of the AMOC in CHIME reveals an enhanced power compared

to a fitted red noise spectrum for periods in this range.
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Figure 4.1: (a) Time series of the AMOC index from ¢D for the whole 200-year
simulation (black line) superimposed with the PC1 time series of the AMOC
streamfunction from year 80 (grey line), (b) Power Spectrum of the detrended
PC1 (grey line) using the Welch method of spectra estimation. The smooth red
solid line is the power of a red noise spectrum with the same AR(1) coefficient
fitted from the detrended PC1 time series, and red (orange) dashed lines, which
are the 95% (80%) confidence limits.

The mean AMOC streamfunction (Figure 4.2) has broadly similar features to the mean
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Table 4.1: Maximum correlation coefficients between 10-year moving averages
of the PC1 of AMOC and several different variables. Bold correlations are
statistically significant at the 90% confidence limits.

Variable Max. Correlation Lag (years)
Coefficient

AMOC index 0.86 Instantaneous

September northern tropical 0.79 Near-instantaneous

subtropical SST gradient

Convective index 0.90 PC1 lags by ~ 2

(Labrador)

Convective index -0.70 PC1 lags by ~ 1

(GIN)

Winter surface potential 0.86 PC1 lags by ~ 2

density (Labrador)

Winter surface potential -0.83 PC1 lags by ~ 1

density (GIN)

Tropical Activity (TA) 0.75 PC1 lags by ~8 —9

AMOC inferred from observations (Ganachaud and Wunsch 2000); the circulation asso-
ciated with the NADW has a maximum transport of about 18 Sv at a depth of 800-1200
m occurring at about 30°N. NADW lies at a maximum depth of about 4000 m, which is
considerably deeper than the observed depth at which NADW enters the DWBC (about
2000-2500 m, Reid 1989). This bias could be the result of either the weakened AABW
cell found in CHIME (Megann et al. 2010) or an unrealistic degree of preservation of
the density outflows from the Nordic Seas as a consequence of the isopycnic coordinate
system (Roberts et al. 1996) that will result in a too-dense NADW cell. The 18 Sv of
warm northward flow is found in the upper ocean (mainly in the Gulf Stream and NAC)
with the strongest sinking occurring in a broad region between about 55°N and 65°N.
There is also evidence for deep water formation in the Nordic Seas as far as 70°N. The
inflow of AABW (the reverse cell below 4000 m) reaches barely 2 Sv; Megann et al.
(2010) suggest that this is due to excessive wintertime ice cover in the Antarctic and

hence insufficient heat loss to form realistic volumes of bottom water.

4.2.2 EOF analysis of AMOC variability

To analyze the spatial patterns associated with variability of the AMOC in CHIME, we
have calculated EOFs (e.g. Von Storch and Zwiers 1999) based on 121 years of annual-
mean AMOC streamfunction calculated from year 80 onwards (Figure 4.3). Prior to the

calculations, time series are normalized by the variance, and detrended.

EOF1 explains 33.6% of the total variance (Figure 4.3a), and has a basin-wide structure

similar to that of the streamfunction itself (Figure 4.2). It has a maximum value of
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Figure 4.2: Annual mean streamfunction of zonally integrated volume transport
(Sv) from 30°S to 80°N, averaged from years 80 to 200 in CHIME. Positive values
mean clockwise circulation.
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Figure 4.3: Detrended AMOC streamfunction (from year 80 to 200) in the North
Atlantic (20°N to 75°N): (a) EOF1; (b) PC1 (black line) and 10-year moving
average winter MLD in Labrabor Sea (red line) and GIN Seas (blue line); (c)
EOF2 and (d) PC2.
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about 1.6 Sv (for a fluctuation of one standard deviation of PC1) with the strongest
sinking taking place primarily at about 55-60°N. As already mentioned in Sect. 4.2.1,
PC1 (Figure 4.3b, black line) shows an enhanced power for periods in the range 15-30
years and is significantly correlated with the AMOC index; we shall therefore use PCl1
of the AMOC as a reference time series in the following analyses. It would therefore
seem that EOF1 thus describes AMOC changes associated with variability in the period
range 15-30 years, most likely related to Labrador Sea Water (LSW) variability; the
strongest sinking indeed occurs at about 55-60°N and PC1 shows a close link with con-
vective activity (MLD) in the Labrador Sea (Figure 4.3b, red line). However, convective
activity in the GIN Seas also seems to be closely linked to PC1 of the AMOC as seen by
their apparent anti-phase relationship (Figure 4.3b, blue line). These close relationships
between the AMOC and convective activities are further investigated in Sect. 4.4. It is
clear, therefore, that EOF1, which shows the principal changes happening in the AMOC
on decadal timescales, appears to capture not only the mechanism associated with LSW
variability but also mechanisms associated with variability in the GIN Seas.

One further interesting feature of EOF1 is the anti-phase relationship between latitude
ranges corresponding to the Labrador Sea and to the Nordic Seas (Figure 4.3a), which is
confirmed by the clear anti-correlation between convective activities in these two regions
(Figure 4.3b). In observational studies, convection in the Labrador Sea has indeed gen-
erally been found to vary out of phase with convection in the Greenland Sea (Dickson
et al. 1996; Hurrell and Dickson 2004). However, this is not the case for all climate
models, for example HadCM3 (e.g. Dong and Sutton 2005; Bingham et al. 2007) has
generally weak convection in the Labrador Sea (possibly related to the substantial sur-
face freshening that occurs in the subpolar gyre of that model). Mechanisms behind this
anti-phase pattern in CHIME will be further investigated in Sect. 4.4.

EOF2, which accounts for about 12% of the total variance, shows a dipole pattern with
mainly positive values from 40°N to 75°N below 2500 m, and negative values in the
upper ocean south of 40°N (Figure 4.3c). The strongest variability in the sinking here
takes place primarily at about 55-65°N and 65-70°N. The positive cell of EOF2 may
arise through deeper sinking and return flow in the upper cell of the AMOC; this could
be related to changes in surface winds and/or surface fluxes in the GIN Seas, leading to
an increase in the density of the overflow waters. The strong amplitude of this second
mode of AMOC variability close to the ocean bottom in the subpolar region and north of
the sills suggests a role for both the denser LSW and Greenland Sea Water (GSW), and
that these latter vary on interannual rather than decadal timescales (see Figure 4.3d).
Indeed, the associated power spectrum (not shown) reveals an enhanced variability for
statistically significant periods in the ranges 2-3 and 5-6 years at the 80% confidence
limit. Although not significant, there is a peak at about 60 years suggesting also some

multi-decadal variability; a longer simulation would, however, be needed to confirm this.

From this EOF analysis, we develop the following picture of the AMOC streamfunction
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and its evolution in time: a primary mode of variability is associated with a decadal
cycle related to convective activity in the Labrador and (inversely) the GIN Seas, while a
secondary mode is rather associated with interannual variability of convective activity in
these two regions. Note that, as shown by the standard deviation of the streamfunction
in Figure 4.4, the strongest AMOC fluctuations occur within the NADW cell at the
latitude range of the Labrador Sea (50-60°N) and to a lesser extent in the GIN Seas at
about 70-75°N.

[sv]
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30 3 40 45 50 55 60 65 70 75
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Figure 4.4: Standard deviation of the annual mean streamfunction (Sv) shown
in Figure 4.2.

4.2.3 Evolution of the AMOC on a decadal timescale

To further examine the decadal variability of the AMOC, lead-lag regressions of the
AMOC streamfunction on PC1 of the AMOC have been calculated and are shown in
Figure 4.5. Because of the short control experiment length, most of the coefficients are
not statistically significant (grey shading). Nevertheless, this figure still gives useful
indications about the dynamical evolution of the decadal AMOC oscillation in CHIME.
At lag -15 years, we found evidence for the NADW cell to be in its weak phase with an
anti-clockwise anomalous circulation. Gradually, significant positive anomalies of merid-
ional circulation develop in the tropics and extend northwards. At lag 0, the AMOC
reaches a maximum with enhanced northward warm surface flow, stronger southward
deep return flow, and enhanced downwelling at about 55-60°N. Thereafter, positive
anomalies of meridional circulation gradually weaken and negative anomalies begin to
appear in the tropics. Note that both EOF1 and EOF2 patterns of the AMOC are
clearly identifiable here (e.g. at lag 0 and +6, respectively), underlining the contribu-
tion of these two modes to decadal variability of the AMOC. On a decadal timescale,
streamfunction anomalies responsible for the reversal phase of the AMOC oscillation in
CHIME seem to originate in low latitudes. The possibility that they may even originate
in the South Atlantic through compensation in the flow of NADW across the Equator
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(Schmitz and Richardson 1991) is not excluded. We note a link between the develop-
ment of streamfunction anomalies in the low latitudes, and the associated northward

transport of salinity anomalies (see Sect. 4.4.5.1).

[Sv/unit of variance]
25 2 15 1 05 0 -05 1

Depth (m)

Depth (m)

Depth (m)

0 H
30 20 10 0 10 20 30 40 50 60 70 -30 -20 -10 O 10 20 30 40 50 60 70 -30 -20 -10 O 10 20 30 40 50 60 70
Latitude (N) Latitude (N) Latitude (N)

Figure 4.5: Lead-Lag regression coefficient maps of the AMOC streamfunction
(Figure 4.2) at various lags to PC1 of the AMOC (Figure 4.3) (Sv unit of
variance™1). The grey shading indicates 90% confidence level for zero correla-
tion.

4.3 Associated signals and impacts

The associated signals and impacts of AMOC variability in CHIME are considered in

the ocean and the atmosphere respectively.

4.3.1 Ocean

A composite of winter SST anomaly patterns (relative to the year 80-200 winter mean)
induced by AMOC fluctuations was obtained by averaging anomalies over years when
the AMOC is strongest (i.e. when exceeding the AMOC standard deviation, Figure 4.6).
Significance of anomalies at each grid point was assessed by testing the null hypothesis
that they were taken from a distribution that has the same mean as all the years (using
a z-test at the 90% confidence level). When the AMOC is in its strong state, most of

the upper ocean, from the subtropics to the mid-latitudes (mainly over the Gulf Stream
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path) and the Nordic Seas becomes warmer, whereas the northern tropics becomes
significantly cooler. This cooling could be explained by the stronger heat transport
associated with stronger AMOC conditions that takes away heat from the low latitudes
towards the higher latitudes but also by associated changes in atmospheric forcing such
as the NAO. The role of the atmosphere in this cooling is supported by the fact that the
SST pattern has similarities with the structure of observed SST correlated with the NAO
(e.g. Visbeck et al. 2001), and that at about 300-800 m depth this temperature pattern
looks significantly different from the surface pattern (Figure 4.7). In CHIME, a northern
tropical-subtropical SST dipole is identified, in contrast to HadCM3 where the SST
dipole is cross-equatorial (Vellinga and Wu 2004). The difference in the dipoles probably
results from differences in the SST patterns between the two models as identified by
Megann et al. (2010). A strong AMOC state in CHIME will therefore tend to warm the
subtropics to the mid-latitudes and the Nordic Seas, and to cool the northern tropical
SST, causing a northern tropical-subtropical SST gradient (a link strengthened by the
strong and significant near-instantaneous correlation found between this gradient and
the PC1 of AMOC, Table 4.1).

Figure 4.6: Composite of winter anomaly patterns of SST induced by AMOC
fluctuations, obtained by averaging anomalies over years when the AMOC (de-
fined as the PC1 of the MOC) is strongest. Colours indicate where the null
hypothesis of equal means is rejected at the 10% level.

Figure 4.7: Same as Figure 4.6 for (a) SST and (b) sea temperature at 300-800
m depth (layer 13) with no statistical significance test applied.
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The leading mode of multi-decadal SST variability in the North Atlantic is known as
the Atlantic Multi-decadal Oscillation or AMO (e.g. Kerr 2000), for which an index
is traditionally defined as the basin-averaged (90°W-30°E, 0-70°N) SST anomaly (e.g
Knight et al. 2005), although the definition of AMO index might alternatively be defined
in terms of the timescale of variability (Frankcombe et al. 2010). While the North
Atlantic SST anomaly pattern in Figure 4.6 is characterized as a sub-basin scale tropical-
subtropical SST dipole, positive anomalies are predominant and the strongest in the
Northern Hemisphere, suggesting an AMO-type response as seen in the observations (e.g.
Sutton and Hodson 2005). This pattern is also somewhat reminiscent of SST anomaly
patterns identified in previous studies as characteristic of multi-decadal variability on
20-30 year timescales (e.g. Figure 8 in Frankcombe et al. 2010). Figure 4.8a shows the
AMO index (traditionally defined), after linear detrending (green line), alongside our
index for the leading (decadal) mode of AMOC variability (blue line). On inspection,
SST variability appears to lag AMOC variability. This is confirmed by lagged cross-
correlations between the two time series, shown in Figure 4.8b. The strongest and
statistically most significant correlation is obtained when a 10-year moving average is
applied to both time series; a maximum correlation of about 0.64 is for the PC1 of the
AMOC leading the AMO by about 4 years (Figure 4.8b, dashed line).
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Figure 4.8: Measures and relationships between AMO and AMOC indices: (a)
time series of the area-averaged (90°W-30°E, 0-70°N) annual SST anomaly after
linear detrending (green line), shown alongside the PC1 of AMOC (blue line);
(b) lagged cross-correlations plot between the two time series (solid line) and
their 10-year moving averaged time series (dashed line); horizontal lines corre-
spond to their corresponding 95% confidence limit for zero correlation. Positive
lags are for PC1 leading the AMO.
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We further investigate the extent to which decadal variability in CHIME is associated
with sub-surface thermal anomalies, as recently linked to observed multi-decadal vari-
ability (Frankcombe et al. 2008, 2010). Figure 4.9 shows sub-surface temperature anoma-
lies (colour-shaded) as a function of longitude and time, averaged over CHIME layers
10-12 (spanning an approximate depth range 150-400 m in the subtropics) and the lat-
itude range 10-30°N (best representative of westward propagation by layer anomalies).
The time series at each longitude is detrended and smoothed with a 5-year moving aver-
age. There is an overall impression of westward translation of sub-surface anomalies on
a timescale of 7-10 years, similar in magnitude (£0.4°C) to observations (Frankcombe
et al. 2008).

Years in run

Figure 4.9: Sub-surface anomalies as a function of longitude and time, aver-
aged over CHIME layers 10-12 and the latitude range 10-30°N, detrended and
smoothed with a 5-year moving average. Temperature anomalies are colour-
coded. Thickness anomalies are contoured, with a contour interval of 2.5 m
(the zero contour is bold; positive anomalies are indicated by thin black con-
tours; negative anomalies are indicated by thin white contours).

In CHIME, layer temperature anomalies are accompanied by salinity anomalies (not
shown) that have the opposite effect on density, as layer densities below the mixed
layer are prescribed. As a consequence, there is no associated density perturbation
and these temperature and salinity anomalies are advected as passive tracers of water
mass variability. A degree of westward propagation (in temperature and salinity) is
associated with perturbations in layer thickness, although this is only clear over years

80-120. Anomalies in cumulative thickness of layers 10-12 (corresponding to the depth
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range of about 150-400 m), in the range +10 m, are indicated in Figure 4.9 by the
over-plotted contours. These thickness anomalies are indicative of density anomalies,

and are likely implicated in AMOC variability.

When and where layer interfaces are displaced anomalously upwards or downwards,
the associated temperature and salinity anomalies may be substantial (reaching +2.0°C
and +0.5 psu), but inspecting animations of temperature and salinity anomalies at
selected latitudes, these anomalies do not clearly propagate westwards for much of the
period (consistent with the layer thickness anomalies in Figure 4.9). In conclusion,
the majority of sub-surface temperature variability seen to translate westwards does not
cause AMOC variability but passively advects with the evolving velocity field. Averaged
over the subtropics, temperature anomalies also spread downwards from a surface origin,
on decadal timescales, accompanied by salinity anomalies that ensure constant layer

density (not shown).

Previous studies have established that multi-decadal (20-30 year) variability may be
understood as the thermal wind response to a surface thermal anomaly in the north-
central part of the Atlantic basin, inducing westward Rossby wave propagation across
the basin on near-decadal timescales (Colin de Verdiere and Huck 1999), and subsequent
adjustment of meridional temperature (hence density) gradients that lead to a dynamical
response of the AMOC (te Raa and Dijkstra 2002). While westward translation of sub-
surface temperature anomalies in the subtropics of CHIME appear on first inspection to
be consistent with this mechanism, the accompanying salinity anomalies (in isopycnal
layers) preclude any density perturbation. In contrast, thickness anomalies of 10 m are
a signature of interior density anomalies, but the associated temperature and salinity
anomalies do not clearly propagate. We proceed in later sections to attribute the source
of AMOC variability in CHIME to the advection of mixed layer salinity anomalies from
low to sub-polar latitudes, while mixed layer temperature anomalies are strongly and
quickly damped through surface heat fluxes. Regarding the latter process, there is how-
ever evidence for local correlation of anomalies in SST and surface heat flux associated
with the NAO, as outlined in Sect. 4.4.3.2.

4.3.2 Atmosphere

Figure 4.10 shows composite atmospheric anomaly patterns when the AMOC is strongest,
for winter anomalies of SAT, SLP, and September anomalies of net precipitation. Only
significant values (at the 90% level) are coloured. When the AMOC is strongest, SAT
along the western coast of North America (i.e. over the Gulf stream path) and in the
Nordic Seas becomes significantly warmer in contrast to both the northern tropics and
the Labrador Sea areas where it becomes significantly cooler (Figure 4.10a). This is
consistent with the anti-phase relationship previously identified between the Labrador
and GIN Seas (see Sect. 4.2.2). This SAT pattern somewhat resembles that of the SST
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in Figure 4.6, and the anomalies vary from about 0.1°C in the tropics and subtropics, to
over 1°C in the Nordic Seas. Over land, the strongest AMOC conditions are associated
with a significant warming of northern Europe (in good agreement with e.g. Pohlmann

et al. 2006) and the central eastern seaboard of North America.

Figure 4.10: Same as Figure 4.6 but for (a) winter SAT (°C), (b) winter SLP (Pa)
and (c) September net precipitation (mm s~!) also indicating ITCZ position
averaged over all years (grey line) and over years corresponding to strong AMOC
conditions (red line). Colours indicate where the null hypothesis of equal means
is rejected at the 10% level.
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Under the same strong AMOC conditions, lower SLP appears near the Icelandic Low,
while higher SLP appears over the Azores (Figure 4.10b). This pattern resembles the
NAO in a positive phase, possibly reflecting some oceanic influence on this leading
atmospheric mode. In CHIME, strong AMOC conditions therefore seem to be associated
with a positive phase of the NAO. This NAO-like pattern is consistent with the NAO-
like response to the AMOC intensification identified by Mignot and Frankignoul (2010)
in the IPSL-CM4 model, although the sensitivity of SLP to changes in the AMOC in
CHIME is about three times higher.

While few significant precipitation anomalies appear under strong AMOC conditions,
some notable changes develop over the western tropics of the North Atlantic, with pos-
itive anomalies of up to 20 cm yr—!, suggesting a northward shift of the ITCZ (Fig-
ure 4.10c), probably as a consequence of the tropical-subtropical SST gradient that
accompanies strong AMOC conditions (Figure 4.6). For a given year, the ITCZ position
has been defined as the latitudinal position at which September precipitation reaches its
maximum in the central Atlantic (i.e. at about 30°W, similar to Biasutti et al. 2006).
We can see that the ITCZ position is indeed about 2.2° further north (red line) than the
average position (grey line), which corresponds to a northward shift of about 230 km.
With stronger precipitation expected north of the Equator, freshwater anomalies are
expected to develop locally. A similar relationship between displacement of the ITCZ
and lower frequency (centennial) variability of the AMOC has also been identified in
HadCM3 by Vellinga and Wu (2004); however, in that study the northward shift of the
ITCZ is caused by a cross-equatorial SST gradient, whereas in our case it seems to be

associated with a northern tropical-subtropical SST gradient (see Figure 4.6).

4.4 Physical mechanisms

4.4.1 Relation of AMOC to convective activity and density anomalies

If we examine how convective indices (as defined in Sect. 3.1.3) evolve over time in both
the Labrador and GIN Seas (Figure 4.3b, red and blue lines, respectively), an anti-phase
relationship is clear, as already mentioned in Sect. 4.2.2. The maximum correlation
coefficient of -0.7 is obtained for a slight lead, by 1 year, of convection in the Labrador
Sea over that in the GIN Seas (Figure 4.11). Correlation of these two convective indices
with the PC1 of AMOC shows strong statistically significant relationships (Table 4.1);
the Labrador (GIN) Sea(s) has a maximum (minimum) correlation coefficient of about
0.9 (-0.7) with the AMOC, when the latter lags by about 2 years (1 year). Note that
the correlation is negative in the GIN Seas where it is positive in the Labrador Sea; an
increase in MLD in the Labrador (GIN) Sea(s) is therefore associated with an increase
(decrease) of the AMOC, 2 years (1 year) later.
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Figure 4.11: Lagged cross-correlations between the 10-year moving average win-
ter MLD in the Labrador and GIN Seas (positive lags for the GIN Seas leading
the Labrador Sea); horizontal black lines correspond to the 95% confidence limit
for zero correlation.

In addition, if we examine how winter surface potential density (hence static stability) is
spatially correlated (instantaneously) to AMOC fluctuations, the strongest correlations
occur in both the Labrador and GIN Seas (Figure 4.12). Correlations between winter
surface density averaged over these two regions and AMOC fluctuations are very similar
to those with the convective indices; surface density in the Labrador (GIN) Sea(s) is
indeed strongly correlated (anti-correlated) with the AMOC intensity, with an average
correlation coefficient of 0.86 (-0.83) (Table 4.1). There is therefore evidence that in
CHIME, AMOC fluctuations are principally related to surface density in the Labrador
Sea, reinforcing the suggestion that the first mode of AMOC variability (EOF1) is di-
rectly influenced by the convective activity in the Labrador Sea. Note that the significant
correlations with the northern tropics (although weakest than in the high-latitudes) sug-
gest that this region also plays an important role in controlling AMOC fluctuations (as

confirmed later).
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Figure 4.12: Instantaneous correlation map of 10-year moving average of winter
surface density and PC1 of AMOC. Blank areas are not statistically significant
at the 95% confidence level.
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In summary, we have shown that surface density in the Labrador (GIN) Sea(s) is strongly
correlated (anti-correlated) with AMOC fluctuations and explains about 64% of the
AMOC variance. Convective activity in the Labrador and GIN Seas in CHIME there-
fore varies in anti-phase; an increase in surface density in the Labrador (GIN) Sea(s)
is associated with an increase (decrease) in the AMOC strength. This result is consis-
tent with the opposite signs of EOF1 of the AMOC streamfunction, at the latitudes
of Labrador and GIN Seas, seen in Figure 4.3a. In the following section, we therefore

investigate factors influencing surface density in the two convective regions.

4.4.2 Relative roles of temperature and salinity variability in driving
density fluctuation

Figure 4.13 shows the influence of winter SSS and SST on winter surface density fluc-
tuations in both convective regions. In the GIN Seas, surface density is strongly anti-
correlated with SST with a maximum instantaneous correlation of -0.93 (grey dashed
line). A decrease in SST in the GIN Seas will therefore increase surface density in this
region, while the role of SSS is negligible (grey solid line). In the Labrador Sea, by
contrast, surface density is significantly correlated with SSS, with a maximum correla-
tion of 0.8 when this latter leads by 3 years (black solid line). A decrease in SSS in
the Labrador Sea will therefore most effectively decrease surface density in this region
3 years later, while in the meantime the role of SST is largely negligible (dashed black

line).
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Figure 4.13: Lagged cross-correlations of 10-year moving average between winter
SSS (solid lines) / SST (dashed lines) and winter surface density in the Labrador
Sea (black lines) / GIN Seas (grey lines). Horizontal lines correspond to their
respective 95% confidence limit for zero correlation.

Figure 4.14 shows the extent to which properties in these two convective regions are
connected. Although both SST and SSS do not seem to be individually connected

(see both dashed and solid grey lines), densities are significantly anti-correlated with a
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maximum coefficient of about -0.70 (black solid line) at no lag. This anti-correlation
is again consistent with results from Sect. 4.4.1. This significant relationship between
densities in these two convective regions exists despite the different mechanisms that
seem to control them. Therefore we can expect that the process that controls the SSS

in the Labrador Sea is anti-correlated to what causes changes in the SST in GIN Seas.

In summary, surface density changes in the Labrador Sea are salinity-dominated, while
they are temperature-dominated in the GIN Seas. Different mechanisms are therefore
likely to control surface density variability (with implications for the AMOC) in the two

convective regions, although those mechanisms appear to be anti-correlated.
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Figure 4.14: Lagged cross-correlations of 10-year moving average between winter
SSS (grey solid line), winter SST (grey dashed line), and winter surface density
(black solid line) between the two convection regions (i.e. both the Labrador
and GIN Seas). Horizontal lines correspond to their respective 95% confidence
limit for zero correlation.

4.4.3 Origins of anomalies in convective regions

In this section, we investigate the origins of SST and SSS anomalies in both the convec-

tive regions and the underlying oceanic and atmospheric processes.

4.4.3.1 Long-range preservation of salinity anomalies

Figure 4.15 shows maps of pentadal salinity anomalies from years 170 to 189 on three
model layers in the upper branch of the AMOC, representative of the surface, and
depth ranges around 90-150 m and 200-650 m. These maps reveal how a positive salin-
ity anomaly present in the tropics during the pentad 170-174 develops on a 15-year
timescale. At the surface, the anomaly spreads northward along the Guyana Current
and through the Caribbean, into the western subtropical gyre, and eventually into the in-

terior of the subpolar gyre (Figure 4.15a). This spreading is also evident at depth, where
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the anomaly reaches the deep convection regions after about 15 years (Figure 4.15b,c).
This is evidence for long-range preservation of salinity anomalies, en route from the

tropics to the high latitudes, on a timescale of about 15 years.

170-174

175-179

180-184

185-189

025 -02 -015 -01 -005 0 005 01 015 02 0.25
[psul

Figure 4.15: Pentadal anomalous salinity maps from year 170 to 189 on three
model layers: (a) layer 1 (surface, constant-depth layer everywhere), (b) layer
9 (02=34.10 kg m~3, varying between about 90-150 m depth, non-isopycnic
beyond 25°N), and (c) layer 14 (02=36.05 kg m~3, varying between about 200-
650 m depth, non-isopycnic beyond 50°N).
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The mechanism linking tropical and convective regions likely plays a role in the reversal
phase of the AMOC oscillation. It is noteworthy that the AMOC appears to strengthen
from low latitudes (see Figure 4.5), suggesting an element of feedback as the salinity
anomalies are also more rapidly advected northwards in the strengthening phase. As
the AMOC dynamically evolves, transports start declining to the south, reducing the
import of high salinity waters. Note that, this finding contrasts with several studies using
the HadCM3 model where the reversal of the oscillation on multi-decadal timescales has
been mainly attributed to anomalies originating from the high latitudes (e.g. Dong
and Sutton 2005; Hawkins and Sutton 2007). Our finding is, however, consistent to
some extent with Vellinga and Wu (2004), who showed that in HadCM3 the reversal
oscillation is caused by anomalous advection of salinity anomalies from the tropics. But
in their study, this happens on a centennial timescale rather than on a decadal timescale

as identified in CHIME.

As previously shown in Sect. 4.4.2, salinity will predominantly affect surface density
(with implications for the AMOC) in the Labrador Sea, while it does not directly affect
density in the GIN Seas. Therefore, to obtain a better idea of how surface density in
the Labrador Sea is correlated to salinity in the North Atlantic, linear lagged-correlation
maps between salinity contributions to winter surface density in the Labrador Sea are
analyzed (Figure 4.16). The earliest correlations with SSS anomalies appear in the
tropical western Atlantic (originating either from there or from the South Atlantic)
about 15 years before a positive density anomaly in the Labrador Sea. With an AMOC
cycle in the period range of 15-30 years (Sect. 4.2.1), this 15-year lead time corresponds
to half of the maximum identified period of the longer decadal mode. At this stage, most
of the northern North Atlantic is fresher than normal, consistent with the AMOC being
in a weak phase. These fresh conditions gradually diminish and give way to more saline
conditions over subsequent years, and the implication is that it takes about 15 years for
the tropical positive anomalies to advect to the subpolar sinking region. These maps
clearly reinforce the notion of northward transport of salinity anomalies, as previously

shown.

In summary, SSS in the high-latitude regions seems to be strongly correlated to tropical
SSS anomalies about 15 years earlier. These tropical anomalies will therefore also affect
surface density in the Labrador Sea 15 years later while it will not be the case in the
GIN Seas, where surface density is SST-dominated. There is therefore evidence for a
30-year cycle related to convective activity in the Labrador Sea in the primary mode of
AMOC variability (EOF1) to be associated with the northward transport of northern

tropical SSS anomalies.
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Figure 4.16: Cross-correlations maps between annual SSS contributions and
winter surface density in the Labrador Sea when SSS leads. Blank areas are not
statistically significant at the 95% confidence level.

4.4.3.2 Relative role of the NAO

As seen in Figure 4.10b, strong AMOC conditions in CHIME are associated with a posi-
tive NAO-like pattern. In both the Labrador and GIN Seas, winter surface density has a
statistically significant relationship with the NAO index (as defined in Chapter 2), with
a maximum positive correlation of 0.74 and negative correlation of -0.70, respectively,
when the NAO leads by about 1-2 years (Table 4.2). The anti-phase behavior between
the two convective regions in the model is once again underlined by these correlations of
opposite sign. This result is consistent with observational studies, as convection in the
Labrador Sea generally varies in phase with the NAO-index, while in the GIN Seas it
varies out of phase (e.g. Hurrell and Dickson 2004). The above results therefore suggest
that surface density in both the Labrador and GIN Seas is influenced by NAO fluc-
tuations. This influence on AMOC variability has been extensively investigated. The
balance of evidence from previous modelling (e.g. Delworth and Greatbatch 2000; Eden
and Willebrand 2001; Bentsen et al. 2004; Guemas and Salas-Mélia 2008) and observa-
tional studies (e.g. Dickson et al. 1996; Curry et al. 1998) suggests that both heat flux
changes and wind-stress variations are important means by which the NAO influences

the AMOC, across a wide range of frequencies.
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In CHIME, the influence of the NAO on surface density in both convective regions seems
to act through different processes. Indeed, although the NAO fluctuation explains about
50% of SST variability in the GIN Seas (r ~ 0.70), no significant relationship with SST
has been found in the Labrador Sea (Table 4.2). There is also no significant correlation
between the NAO and SSS in the latter region, although SSS has been found to be the
dominant factor influencing surface potential density there (see Sect. 4.4.2). Although
we found evidence for the NAO to influence surface density through its impact on local
SST in the GIN Seas, other processes seem to be involved in the Labrador Sea. Below,

we consider regional NAO influences in more detail.

Table 4.2: Maximum correlation coefficients between 10-year moving averages of
the NAO index and several different variables. Bold correlations are statistically
significant at the 90% confidence limits.

Variable Max. Correlation Lag (years)
Coeflicient

Winter surface potential 0.74 NAO leads by ~ 1 —2

density (Labrador)

Winter surface potential -0.70 NAO leads by ~1—2

density (GIN)

Winter SST (GIN) 0.70 NAO leads by ~ 2

Winter SST (Labrador) 0.46 NAO lags by ~ 10

Winter SSS (Labrador) 0.46 NAO leads by ~ 4

Winter heat fluxes -0.15 NAO leads by ~ 5

(GIN)

Winter heat fluxes -0.60 Instantaneous

(Labrador)

Winter freshwater fluxes -0.45 NAO lags by ~ 7

(GIN)

Winter freshwater fluxes -0.65 NAO leads by ~4—5

(Labrador)

PC1 of AMOC 0.82 NAO leads by ~ 1

PC2 of AMOC -0.60 Instantaneous

Tropical Activity (TA) 0.56 NAO lags by ~8—9

First let us consider the influence of the NAO on surface density in the Labrador Sea.
We have shown the NAO to have statistically significant relationships with buoyancy
fluxes in the Labrador Sea; an increase in the NAO index leads to a decrease in local
surface heat fluxes (stronger ocean cooling) near-instantaneously (r ~ -0.60, Table 4.2)
and to a decrease in freshwater fluxes (ocean freshwater loss) about 4-5 years later (r ~
-0.65, Table 4.2). Because the NAO affects surface density earlier (after ~1-2 years) than
freshwater fluxes (after ~ 4-5 years), the NAO-induced freshwater flux anomalies cannot
be regarded as directly influencing SSS (and therefore surface density) to an important
extent in the Labrador Sea. However, with its near-instantaneous correlation with heat

fluxes, the possibility of the NAO to influence local SSS through ocean mixing processes
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is not ruled out. In this scenario, the convective mixing associated with stronger surface
heat loss will more extensively mix fresh surface waters with saline deep waters. In
addition, the strong and significant anti-correlation found between SSS and heat fluxes
in the Labrador Sea (r ~ -0.72 when heat fluxes lead by ~ 1 year, not shown) supports

this mechanism.

In contrast to the case of the Labrador Sea, the NAO index does not correlate with
surface heat and freshwater fluxes in the GIN Seas (Table 4.2). Therefore, the way
by which the NAO affects local SST does not seem to be through its local impact on
simultaneous heat fluxes. This can be further investigated by examining the covariance
between anomalous SST and anomalous net surface heat flux (77Q’ , noting that @
includes both radiative and turbulent heat fluxes) as shown in Figure 4.17. If covariances
are examined for the winter season of all years of the analysis period, significant values
are observed in four main regions of the North Atlantic. Negative values occur over the
Labrador Sea/western subpolar gyre and over the Greenland Sea, whilst positive values
occur over the Florida Current/Gulf Stream region and over the upwelling region off
West Africa. This implies that, over the oceanic deep convection regions, surface heat
flux tends to damp SST variability (reducing temperature variance: in other words,
positive SST anomalies result in increased oceanic heat loss). Further south, at the
eastern and western boundaries of the subtropical gyre, the opposite is true and heat

fluxes tend to amplify SST variability.
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Figure 4.17: SST-Heat Flux covariance (7'Q’) in K Wm™2 calculated for winter
mean anomalies over years 81-192 of the model experiment.

However, the simultaneous correlation contains contributions both from the atmospheric
response to the SST (i.e. damping in this case) and also from the SST response to the
atmosphere (Schneider and Fan 2007). We have calculated lag correlations between
winter SST and heat flux during the previous summer (Figure 4.18). There are positive
values over the Greenland Sea, so we speculate that this may be a partial mechanism for
the correlation between the NAO and SST in the GIN Seas, although other processes
such as advection and mixing may also be involved. Such a link between the NAO

and SST may be more fully explored using a method such as the Interactive Ensemble
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Coupled Global Climate Model (Fan and Schneider 2012), but this lies beyond the scope
of the present study.
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Figure 4.18: SST-Heat Flux covariance (7'Q’) in K Wm™2 calculated for winter
mean SST anomalies and heat flux anomalies during the previous summer.

In CHIME, we therefore find evidence that the NAO strongly influences surface density
in both the Labrador and GIN Seas (with implications for the AMOC) on interannual
timescale but through different mechanisms. In summary, an increasing NAO index
will lead to an increase in surface density in the Labrador Sea about 1-2 years later
through a local (indirect) influence on SSS. By driving anomalous heat fluxes, the NAO
forces variation of Labrador SSS through ocean mixing processes, and subsequently
variations of the AMOC (as SSS is the dominant factor controlling surface density in this
region). Meanwhile, an increasing NAO index will lead to a decrease in surface density
in the GIN Seas about 1-2 years later through a local influence on SST. Processes
other than the direct impact of the NAO on heat fluxes, seem to control these local
SST anomalies; the lagged response of surface heat fluxes (as discussed earlier) or the
mechanical action of the NAO-induced wind (e.g. Pickart et al. 2003; Mignot and
Frankignoul 2010) are regarded as plausible candidates. Note that a majority of previous
modelling studies (e.g. Delworth and Greatbatch 2000; Bentsen et al. 2004) showed that
the link between the NAO and AMOC is via the restricted area of the Labrador Sea. This
differs from our study, where a link between the atmosphere and the AMOC includes a
statistically-significant relationship between the NAO index and surface density in the
GIN Seas. This result however supports the finding of some observational studies, such
as Dickson et al. (1996), Belkin et al. (1998), and Alekseev et al. (2001), that emphasize
the importance of the GIN Seas in explaining the influence of the NAO on AMOC

fluctuations.

The second mode of AMOC variability in CHIME, that we attribute to the interannual
anti-phase variability related to convective activity in the Labrador Sea and the GIN
Seas (see Sect. 4.2.2), thus seems to be associated with a local influence of the NAO
on surface density in these two regions. The statistically significant correlation of -0.60
found between the NAO index and PC2 of the AMOC supports the above statement
(Table 4.2). The implication is that a large part of the variability of the AMOC, being
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driven by the NAOQ, is a passive response to intrinsic internal atmospheric variability,
rather than being part of a coupled ocean-atmosphere mode, and that this passive re-
sponse to the atmosphere is associated mainly with the Labrador Sea. This is consistent
with similarity of the AMOC PC1 power spectrum to that of red noise. However there
is enhanced power in 15-30 year periods and we argue that this is due to advection of
salinity anomalies from the tropics (earlier Sect. 4.4.3.1) and links between the position
of the ITCZ and the NAO (next Sect. 4.4.3.3).

4.4.3.3 A link between tropical activity and NAO

In addition to the NAO-related mechanism affecting surface density in the GIN Seas,
the close link between the convective activity in this latter region and the PC1 of the
AMOC (see Sect. 4.2.2) also suggests the existence of a decadal-timescale mechanism
affecting GSW variability. With evidence from previous studies that the North Atlantic
climate variability is affected by tropical Atlantic ocean-atmosphere interaction (e.g.
Rajagopalan et al. 1998; Okumura et al. 2001; Terray and Cassou 2002), we propose

that the NAO and tropical activity are connected on a decadal timescale in our model.

We characterize the tropical activity (TA) in the Atlantic as the averaged September
SSS over the northern tropical Atlantic (reflecting the northward shift of the ITCZ
under strong AMOC conditions, leading to the development of freshwater anomalies in
the northern tropics). In support of the above hypothesis (for an existing link between
the tropics and the high latitudes in the model), TA is indeed statistically correlated
with NAO variability with a maximum correlation coefficient of about 0.56 when TA
leads by 8-9 years (Table 4.2). Although the mechanisms behind such a link still require
clarification, this significant relationship suggests that the anomalous shift of the ITCZ
affects the high latitude atmosphere (more specifically the NAO) about 8-9 years later,
coincident with a decrease in surface density in the Labrador Sea and a decrease in SST
(and hence increase in surface density) in the GIN Seas. This teleconnection between

TA and NAO is consistent with previous studies (cited earlier).

In addition to the long-range preservation of SSS anomalies originating from the tropics
and affecting LSW wvariability, the decadal cycle related to both LSW and GSW vari-
ability identified in the primary mode of AMOC variability (EOF1) therefore seems to
be associated with mechanisms, still not clearly identified, that connect tropical activity
to the NAO. The strong significant correlations found between the PC1 of the AMOC
and both TA (r=0.75, Table 4.1) and the NAO (r=0.82, Table 4.2) support the above
statement. With a lead-time of about 8-9 years, we note that this connection between
the tropics and the high latitudes corresponds to just over half of the identified minimum

period of the primary decadal mode of the AMOC (in the range 15-30 years).
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4.5 Summary and discussion

This first study of natural variability in CHIME follows an initial study of the spinup
and the equilibrium state in comparison with HadCM3 (Megann et al. 2010). The
following summary and discussion covers two aspects of the study: (i) the characteristics
of a strong AMOC state (prerequisite for understanding mechanisms behind decadal
AMOC fluctuations); (ii) the processes and lead/lag timescales implicated in the decadal
variability of the AMOC.

4.5.1 Fingerprints of a strong AMOC state

Strong AMOC conditions are associated with warmer SST over most of the North At-
lantic from the subtropics to the high-latitudes, and cooler SST over the northern trop-
ics. Despite being further north than other studies, this SST pattern (i.e. a northern
tropical-subtropical gradient) reflects an AMO-type response in good agreement with
previous studies (e.g. Sutton and Hodson 2005; Frankcombe et al. 2010). In sub-surface
layers, temperature anomalies translate westwards and downwards in the subtropics, on
decadal timescales. While this behaviour is also characteristic of the AMO (Frankcombe
et al. 2008, 2010), we find that our index of mode-1 AMOC variability leads the AMO
index by 2-3 years, suggesting that, in CHIME at least, sub-surface temperature variabil-
ity is a response to AMOC variability rather than a cause. Accompanying sub-surface
salinity anomalies exactly compensate for the temperature anomalies in isopycnic layers,
and the small perturbations in horizontal density gradients (in the subtropics) that are

associated with layer thickness anomalies do not appear to lead AMOC anomalies.

Strong AMOC conditions tend to coincide with warm SAT from the subtropics to the
high latitudes, except in the Labrador Sea where SAT becomes cooler. Over land, parts
of northern Europe and central North America also become warmer. Coincident with the
strong AMOC are also a positive-state NAO and maximum northward shift of the ITCZ.
Associated with the positive NAO are positive surface heat flux anomalies (reduced ocean
heat loss) which reinforce higher SST in the GIN Seas, helping to suppress convection
(see Sect. 4.5.2). With northward displacement of the ITCZ and associated net surface
freshwater influx (P-E > 0), a negative anomaly develops in surface salinity across the

tropics.

4.5.2 Key processes implicated in decadal AMOC fluctuations

Power spectral analysis reveals an enhanced power at a decadal timescale in CHIME, for
periods in the range 15-30 years. Overall, the main modes of variability are described

by changes associated with primarily a decadal cycle and secondarily an interannual
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cycle related to convective activity in the Labrador and (inversely) the GIN Seas. Ac-
companying decadal AMOC variability are anomalies in basin-scale hydrography and
air-sea heat fluxes at key locations. Associated variability in the atmosphere includes
the NAO (varying in phase with the AMOC) and the ITCZ (migrating north/south with
a strengthening/weakening AMOC).

An out-of-phase relationship in MLD between sinking regions indicates that strong sink-
ing in the Labrador Sea is coincident with weak sinking in the GIN Seas, associated with
positive and negative surface density anomalies respectively. Positive density anomalies
in the Labrador Sea are associated with anomalously high surface salinity, while nega-
tive density anomalies in the GIN Seas are associated with anomalous surface warmth.
Therefore, SSS (SST) anomalies in the GIN (Labrador) Seas are negligible compared
to SST (SSS) in affecting surface density, and hence AMOC fluctuations. The linkage
of the Labrador Sea and the GIN Seas with the AMOC differ substantially between
models, but is in good agreement with Medhaug et al. (2011) using the isopycnic-ocean
Bergen Climate Model.

Surface salinity in the Labrador Sea (and hence surface density) appears to be associated
with the northward spreading of anomalies originating from the tropical Atlantic around
15 years earlier. Tropical SSS anomalies may have formed locally through air-sea inter-
action as a consequence of the ITCZ shift, leading to anomalous surface freshwater gain
in the northern tropical Atlantic under strong AMOC conditions. Although a significant
shift of the ITCZ has been identified in the model, other processes responsible for the
development of SSS anomalies are not to be excluded such as changes in the Amazon
River outflow, or inter-basin exchange (Biastoch et al. 2008, 2009). In addition, there
is evidence for the anomalous shift of the ITCZ affecting the high-latitude atmosphere,
more specifically the NAO about 8-9 years later. Such a decadal teleconnection between
the tropical Atlantic and the NAO has already been identified in the observations. A
strong tropical-extratropical link was indeed suggested by Rajagopalan et al. (1998) who
emphasizes a strong broadband coherence in the 8- to 20-year period between the NAO
and the tropical Atlantic cross-ITCZ SST difference. Although mechanisms behind such
a link remain largely unclear, Tourre et al. (1999) emphasizes a timescale defined by the
ability of upper ocean anomalies to persist, even after the atmospheric anomalies decay,
and during which ocean-atmophere interaction is maintained on the Atlantic basin-scale.
The 8-9 year timescale found in CHIME suggests a preference for a teleconnection via
the ocean rather than the atmosphere, but a mixture of both oceanic and atmospheric
teleconnections cannot be ruled out. Indeed both teleconnections have already been
identified in modulating, for example, the tropical Pacific decadal variability (Liu et al.
2002). The decadal teleconnection between the tropical Atlantic and the NAO identified
in CHIME needs to be clarified by further studies. As a consequence of this telecon-

nection, changes in NAO forcing will first near-instantaneously affect heat fluxes in the
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Labrador Sea, which in turn will affect (increase) local SSS (and hence surface den-
sity) through ocean mixing processes. In the meantime, NAO will near-instantaneously
impact SST in the GIN Seas, although the precise mechanism for this is still unclear.
Air-sea fluxes, related to opposite phases of the NAO, are therefore contributing to the
convection in the Labrador Sea and in the GIN Seas, in good agreement with Medhaug
et al. (2011). To summarise, in a positive (negative) NAO state, coincident with strong
(weak) AMOC conditions, orientation of the Atlantic storm track will favour warmer

(colder) conditions in the GIN Sea and saltier (fresher) conditions in the Labrador Sea.

In CHIME, we therefore find evidence for surface density in both the Labrador Sea
and the GIN Seas to be influenced by the tropical activity about a decade earlier but
through different mechanisms. The fact that one unit change of surface density in
the GIN Seas has stronger impact on AMOC fluctuations than one unit change in the
Labrador Sea (about 14 Sv kg=! m? and 7 Sv kg=! m3, respectively) and that the
Labrador Sea has in contrast a dominant influence on AMOC strength (as shown by
their positive correlations) suggests that variability in the latter region is higher than
in the GIN Seas. To summarize, a teleconnection (still to be clarified) may link ITCZ
changes to the NAQ, affecting the surface density in the GIN Seas, while both tropical-
extratropical teleconnection (hence the NAO) and slower ocean advection (of tropical
SSS anomalies) affect surface density in the Labrador Sea. Which of these processes is
more important in controlling decadal AMOC variability? Our results show that the
first principal component of the AMOC has a slightly stronger correlation with the NAO
index (r=0.82, Table 4.2) than the northern tropical-subtropical SST gradient (resulting
in a shift of the ITCZ) (r=0.79, Table 4.1), suggesting that the NAO-related mechanism
is slightly dominant and that the latter leads the AMOC by about 1 year. We also
emphasize that, although the processes described above contribute to AMOC variability
on decadal timescales, a large part of the variability of the AMOC is therefore likely to
be a passive response to intrinsic internal atmospheric variability (in common with most
climate models, e.g. Delworth et al. 1993; Dong and Sutton 2005), rather than being
part of a coupled ocean-atmosphere mode (e.g. Timmerman et al. 1998). We argue that
the enhanced power in 15-30 year periods is due to advection of salinity anomalies from

the tropics and links between the tropical Atlantic and the high-latitude atmosphere.

4.6 Conclusions

The sequence of events based on the range of statistical evidence presented in previous
sections allows us to schematically summarize the main processes implied in about one
half of a decadal-timescale AMOC primarily driven by the Labrador Sea cycle in CHIME,
as shown in Figure 4.19. Strong AMOC conditions are accompanied by the development
of freshwater anomalies in the northern tropics (as a consequence of the northward

shift of the ITCZ). Accompanying this variation of tropical SSS, concurrent changes
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in the tropical atmosphere lead to a decrease in the NAO about 8-9 years later, via
a teleconnection that still needs to be clarified. This weaker NAO decreases surface
density (and hence SSS) in the Labrador Sea, through reduction in surface heat loss
and the convective mixing of fresh surface and saline deep waters. Simultaneously,
surface density will increase in the GIN Seas, due to decreased SST, possibly through the
mechanical action of the NAO-induced wind (Pickart et al. 2003; Mignot and Frankignoul
2010) or a lagged response to increases in surface heat loss. Meanwhile, northward
transport of freshwater anomalies from the tropics to the high-latitudes, via the Gulf
Stream, further decreases SSS in the Labrador Sea and hence surface density in this
region. Associated with increased (decreased) surface density in the GIN (Labrador)
Seas, the AMOC is now in a weak state.

Northward propagation of SSS anomalies
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Figure 4.19: Simplified schematic of mechanism responsible for one half of
the decadal AMOC cycle primarily driven by the Labrador Sea variability in
CHIME. Double lines are used when the timescale of the interaction is near-
instantaneous (< 3 years).

The long-range links between the tropical Atlantic activity and subsequent convective
activity in both the Labrador and GIN Seas regions in CHIME suggest that European
climate is potentially predictable on substantially longer timescales than the 5-10 years
typically asserted from experiments with climate models that feature an orthodox z-level
coordinate ocean component (e.g. Latif et al. 2006). The evaluation of the predictive
skills of this hybrid-coordinate ocean component model will therefore be the subject of
Chapter 6. As already mentioned in the previous chapters, predictability experiments
with the well-established IPSL climate model have been carried out prior to similar such

study with CHIME. The results of these experiments are the subject of the next chapter.






Chapter 5

Decadal predictability of the
AMOC and climate in
IPSL-CM5A-LR

Results from this chapter have been accepted for publication in Climate Dynamics (SI:
IPSL & CNRM climate models for CMIP5) as: Persechino A, Mignot J, Swingedouw
D, Labetoulle S, Guilyardi E (2012) Decadal Predictability of the Atlantic Meridional
Overturning Circulation and Climate in the IPSL-CM5A-LR model. Clim Dyn, doi:
10.1007/s00382-012-1466-1.

5.1 Aim of study

Although a considerable number of studies have addressed decadal predictability of the
climate system in the last few years due to the impetus of the “near-term” CMIP5
protocol (Taylor et al. 2009), the assessment of decadal climate predictability remains
unclear as the level of predictability differs from one study to another (e.g. Meehl
et al. 2009). This may be subject to model differences and uncertainties, as well as
differences in the experimental protocol and metrics used. It is therefore important to
carefully define predictability and to use several metrics to better understand the limit

and extent of predictable fields.

In this chapter, we explore the decadal predictability of the AMOC and associated
oceanic and atmospheric fields as they are represented in the IPSL-CM5A-LR model
(Dufresne et al. 2012) under pre-industrial control conditions, using both diagnostic po-
tential predictability (DPP) and prognostic potential predictability (PPP) approaches.
In the DPP approach, the predictability is analysed by decomposing the variance of a cli-

mate variable into a long timescale component considered as potentially predictable, and
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an unpredictable noise component (see Sect. 3.2.1.1). The core of this approach relies
on the 1000-year-long control integration of the IPSL-CM5A-LR model (see Sect. 2.2.2).
In the PPP approach, the predictability is estimated prognostically, by re-running a cli-
mate simulation with slightly perturbed initial conditions (see Sect. 3.2.1.2). The core
of this approach is a series of five “perfect ensemble” experiments using the same code
as the IPSL-CMbJA-LR control integration used in the DPP approach; each ensemble
includes 10 members, started from slightly different initial conditions and integrated for
20 years (see Sect. 3.2.2.2). The spread and the correlation of the members of each
ensemble are then evaluated to quantify the reproducibility and thus predictability of
the simulated fields. We thus consider two deterministic measures: the Ensemble Spread
(ES) and Ensemble Correlation (EC), previously described in Chapter 3. We explore the
information given by both metrics, and consider that a variable is potentially predictable
if it has a (low) statistically significant ES associated with a (high) statistically signifi-
cant EC. As illustrated below, combining these two metrics might be too restrictive in

some situations, and information given by ES or EC alone should not be neglected.

The aim of this study is to address the following questions: (i) Where do climate-related
fields exhibit the strongest sensitivity to decadal AMOC fluctuations in the model? (ii)
Are specific changes in the AMOC potentially predictable and which observations of
the ocean state are likely to be of greatest value to constrain predictions? (iii) What is
the predictability of the Atlantic climate and how is it related to low-frequency AMOC
variability?

The control integration is analysed in Sect. 5.2 to investigate the impact of decadal
AMOC fluctuations on the Atlantic climate. In Sect. 5.3, the potential predictability of
the AMOC is investigated using “perfect ensemble” experiments. Sect. 5.4 addresses
the potential predictability of climate and its link with decadal AMOC variability. A

summary and discussion follow in Sect. 5.5, with concluding remarks in Sect. 5.6.

5.2 Fingerprints of AMOC variability

In the IPSL-CM5A-LR model, AMOC variability has been associated with a 20-year
cycle described as an ocean-atmosphere coupled mode driven by the subpolar region,
and involving deep convection in the Nordic Seas, at the southern tip of Greenland, and
south of Iceland (Escudier et al. 2012). Prior to the study of potential predictability in
the AMOC, the regional impacts of AMOC variability are investigated in the control
integration. To do so, we use regressions of 5-year moving averaged surface temperature
and precipitation onto the 5-year moving averaged AMOC index when this latter leads
by 10 years (lags at which regression coefficients are the strongest, Figure 5.1). Despite

some significant signals in the tropical Pacific, the main significant impacts are restricted
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to the North Atlantic surrounding regions. We therefore concentrate on this basin in

the following.

Figure 5.1: Lagged regression of the 5-year moving average (a) surface air (sea)
temperature at ground (sea) level (°C Sv~!), and (b) precipitation (mm day !
Sv~!) onto the 5-year moving average AMOC index at the lag where regression
coefficients are the strongest (i.e. when the AMOC leads by 10 years). Sta-
tistical significance of regression values has been tested using Students t-test,
and Quenouille (1952)’s method was used to calculate the effective degrees of
freedom. The grey contour indicates 90% confidence level for zero correlation.

5.2.1 Impacts on surface temperature

Figure 5.1a shows that the AMOC impact on temperature at the decadal timescale
is dominant over the ocean, and in particular north of the NAC. Anomalously strong
AMOC conditions are associated with significantly warm SST anomalies in the subpolar
gyre, in both the eastern and southern branch of the subtropical gyre, and cold SST
anomalies along the eastern coast of Greenland, south of the Denmark Strait and in
the Norwegian Sea, with a typical amplitude of about 0.5°C Sv—!. SST anomalies from
the tropics to the subpolar regions in the Northern Hemisphere remain predominantly
positive in contrast to the Southern Hemisphere where there are some hints of negative
anomalies. Consistent with this result, Figure 5.2 that shows the time series of surface
temperature averaged over the mid- to subpolar Atlantic sector, also shows clear evidence
for extreme warm temperatures over this region about 6 years after the extreme AMOC
event of 2071 (identified in Figure 3.4). Under anomalously strong AMOC conditions,
an inter-hemispheric SST dipole pattern (although weak) therefore seems to emerge, as
also identified in HadCM3 (Vellinga and Wu 2004). This pattern is also consistent with
the AMO pattern in IPSL-CM5A-LR (Gastineau et al. 2012) as well as in an earlier
version of the IPSL model (IPSL-CM4, Msadek and Frankignoul 2009). This suggests
that as in other models (Kushnir 1994; Kerr 2000; Delworth and Mann 2000) an AMO-
type response is associated with decadal AMOC fluctuations in IPSL-CM5A-LR. The
SST pattern, identified in the latter, also resembles the observed AMO (e.g. Sutton
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and Hodson 2005), except for the localised significant negative anomalies in the high-
latitudes of the North Atlantic. This result is consistent with previous modelling studies
that found decadal AMOC fluctuations to be associated with an SST pattern resembling
the observed AMO (Kushnir 1994; Kerr 2000; Delworth and Mann 2000).

As indicated above, decadal AMOC fluctuations have a much weaker impact over land.
Anomalously strong AMOC conditions tend to be followed by significantly warmer con-
ditions in Central America, subtropical Africa, and a few marine-influenced regions of
Western Europe (with amplitude of anomalies up to +0.1°C Sv—!). Such links over land

are consistent with previous studies (e.g. Pohlmann et al. 2004).

'2071 extreme| AMOC event

o
)

o
IS

o
o

Surface Temperature [degree C]
=
T

©
©
T

9.4+

I I I I I I I I I | | | |
1850 1875 1900 1925 1950 1975 2000 2025 2050 2075 2100 2125 2150 2175 2200
Years

Figure 5.2: Time series of surface temperature averaged over the mid- to sub-
polar Atlantic sector (30°N-60°N/70°W-0°) from 1850 to 2200. The 1000-year
mean is shown as the horizontal line and the corresponding standard deviations
are shown as the dashed lines

5.2.2 Impacts on precipitation

In terms of precipitation, the tropical Atlantic Ocean clearly shows strong sensitivity to
decadal AMOC fluctuations (Figure 5.1b): stronger AMOC conditions are associated
with significantly drier (wetter) southern (northern) tropics. This suggests a northward
shift of the ITCZ over the tropical Atlantic, as also identified in other climate models
(e.g. Vellinga and Wu 2004; Swingedouw et al. 2009; Persechino et al. 2012a). The
ITCZ shift is also seen to extend to the Pacific Ocean, consistent with Xie et al. (2008)
and Swingedouw et al. (2009). The strong sensitivity of tropical precipitation to AMOC
fluctuations probably happens through the influence of SST anomalies identified earlier
(Figure 5.1a), consistent with the well-established strong coupling between the ocean and
the atmosphere in this region (e.g. Chiang et al. 2008 and references therein). Significant
precipitation anomalies are also found from the subtropics to the high-latitudes, largely

resembling the corresponding SST anomalies.



Chapter 5 Decadal predictability of the AMOC and climate in IPSL-CM5A-LR 101

The oceanic precipitation signal is again seen to leak over the adjacent continental
areas, as for temperature. At mid-latitudes, strong AMOC conditions are in particular
associated with significantly wetter conditions over the British Isles (Figure 5.1b). The
signal identified over the tropical Atlantic also extends over the adjacent continents with
significantly drier (wetter) conditions in the southern (northern) tropical regions of both
America and Africa when the AMOC is increasing. This is consistent with several studies
that already investigated the link between decadal modulation of Sahelian rainfall, ITCZ
shift and the AMO (Folland et al. 1986; Rowell et al. 1995; Zhang and Delworth 2006;
Knight et al. 2006; Ting et al. 2009).

In view of these major climatic impacts of the AMOC, an important question remains
whether AMOC fluctuations are potentially predictable. The ability to predict such

fluctuations is now investigated using the PPP approach as described in Sect. 3.2.1.2.

5.3 Potential predictability of AMOC fluctuations

Figure 5.3 shows the AMOC trajectories of each individual member, for each start date,
together with the ensemble mean. At first sight, all ensemble means follow the initial
control run relatively well, although with less variability due to the averaging effect. In
particular, the extreme AMOC event at year 2071 is relatively well-captured (although
underestimated in terms of amplitude) by both experiments starting 15 and 5 years

before this peak.
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Figure 5.3: “Plumes” of maximum-annual mean AMOC between 20°N and 50°N
from ensembles of the IPSL-CM5A-LR in which the initial conditions have been
perturbed. Five ensembles are shown starting from different dates in the control
simulation. The individual ensemble members are shown as coloured lines, the
ensemble mean as the red thick line, and the control run as the thick black
line. The middle horizontal black line is the mean AMOC, and both upper and
lower horizontal black lines show standard deviations highlighting the range of
variability of the MOC.
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5.3.1 Are changes in the AMOC potentially predictable?

5.3.1.1 Comparing the level of predictive skills to different definitions of

metrics

Figure 5.4 shows ES of the AMOC index as a function of lead-time up to 2 decades for
each experiment and both M10 (in grey) and CS03 (in black) definitions (further details
in Sect. 8.2.1.2). This figure confirms the relation of proportionality derived earlier
between both definitions, with a factor of \/% (M being the number of members).
The last statistically significant lead-time before ES persistently exceeds the threshold
is independent of the definition used, and represents the maximum lead-time of pre-
dictability as inferred from ES alone. Figure 5.5 shows EC computed between lead-time
1 year and varying lead-times, ranging 5 to 20 years (5 years corresponding to the min-
imum lead-time of predictability found from ES, Figure 5.4). EC has generally higher
scores for M10 than for CS03. Indeed, the ensemble mean (used in M10) is smoother
and holds some information from each member, allowing higher correlations than one to
one correlations among members (as used in CS03). However, in most cases, when EC is
statistically significant (or not), it is generally also the case for the other definition. Note
two exceptions (experiments W and I). However, from a predictability point of view, the
statistical significance of EC at the lead-time at which ES saturates (information given
in Figure 5.4) is the same whichever the definition used. The main disadvantage of using
ECes03 is that too much weight could be given to an individual member that heavily
diverges from the others, while ECj;1¢ tends to average out extremes by the use of the
ensemble mean. On the other hand, the latter can be seen as too lax as it involves a

smoother baseline.

We showed that, overall, both definitions of EC and ES deliver similar messages, al-
though ECp g3 seems to be slightly more severe than ECys19. We therefore prefer to

opt for the most cautious/severe definition, and will use the CS03 definition hereafter.

5.3.1.2 How far ahead is the AMOC potentially predictable?

Figure 5.6 shows a summary of results combining both EScgos (Figure 5.4, black line)
and ECcgo3 (Figure 5.5, black line) for the AMOC index. The predictive skill of each
experiment is determined by the maximum lead-time at which ES saturates and its
corresponding EC. Experiment S shows overall the highest PPP skill as its ES satu-
rates at the longest lead-time and is associated with a high statistically significant EC
(lower-right plot, Figure 5.6); this experiment suggests a limit of predictive skill for
the AMOC index of about 13 years. This result is consistent with a simple stochastic
assumption for example (e.g. Frankignoul and Hasselmann 1977; Frankignoul 1985),

which would predict that when starting from an extreme AMOC value, we expect most
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Figure 5.4: ES of AMOC index for each of the five ensemble experiments for
M10 (grey line) and CS03 (black line) definitions for lead-time up to 20 years.
The threshold at which ES saturates (implying no potential predictability) is
shown as the black (grey) horizontal dashed line for CS03 (M10). Dots indicate
that ES is statistically smaller than the corresponding threshold at the 95%
level based on a F-test.
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Figure 5.5: EC of AMOC index (as calculated by the Fisher transformation)
for each of the five ensemble experiments for M10 (grey line) and CS03 (black
line) definitions for lead-time from 5 to 20 years. Dots indicate that EC is
statistically significant at the 90% confidence level using a one-tailed t¢-test.

of the members to take the same direction towards a neutral state, thereby yielding
high predictability. Nevertheless, the predictability timescale found here is longer than
the persistence time estimated from the AMOC index autocorrelation function in a red

noise framework (e.g. Frankignoul et al. 2002) which amounts to 4-5 years (not shown).
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This indicates that a simple autoregressive model provides low predictability for AMOC
index behavior. Once back towards neutral (close to the mean) conditions (after about
13 years), experiments S indeed loses its predictive skills with a continually growing
(decreasing) ES (EC) with lead-time. Similarly to S, experiment W is expected to have
a similar predictive skill since it starts from an extreme state (more than one standard
deviation o away from the mean, Figure 5.3). Although the EC associated with the
maximum lead-time is statistically significant and high (0.74), ES however saturates
twice as rapidly as in experiment S (at about 7 years, Figure 5.6). This lower PPP skill
could be explained by its starting date not being in such an extreme state as S; indeed,
the starting value is superior (inferior) to 20 in S (W). Alternatively, it might come from
the dynamics itself, suggesting that the AMOC has more PPP skills when it starts from
an anomalously strong overturning than from a weak one or a value close to its mean.
The fact that the initial state corresponding to an anomalously strong AMOC is more
predictable than those corresponding to a weak AMOC is in good agreement with several
previous studies (e.g. Collins and Sinha 2003; Collins et al. 2006a). Consistent with the
idea that extreme states are associated with better predictive skills, both experiments
I and 15P that start from neutral mean states have no predictive skills (as defined in
Sect. 3.2.1.2); indeed EC is not significant for lead-times of 5 to about 15 years (Fig-
ure 5.6). However, ES saturates after 5 and 7 years respectively. Based on ES only, this
could still indicate a weak predictability. The above results suggest that predictability
depends on the AMOC initial state, although the limited number of experiments limits

the robustness of this claim.
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Figure 5.6: Plots of results from CS03 definition showing ES (blue line) and EC
(red line) against lead-times for each of the five ensemble experiments. Dots
indicate statistical significance at the 95% (90%) confidence level for ES (EC).
The summary plot shows the maximum lead-time at which ES saturates with
its corresponding EC (as indicated by the oval circles) for each experiment
(statistically significant ECs at the 90% are marked with an asterisk).
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Given the AMOC impact on climate (Figure 5.1), the ability of the model to predict
an extremum such as the one of the year 2071 (Figure 5.3) could be of great interest.
Such an ability is identified in experiment 5P, which shows the second highest predictive
skills (after S) with a limit of predictive skill of about 8 years (that is after the peak
has been captured, Figure 5.6). In contrast, strictly speaking, experiment 15P has no
predictive skills (as defined in Sect. 8.2.1.2). Nevertheless, this experiment still succeeds
in capturing the peak of the year 2071 as seen in the plumes in Figure 5.3, where most
of the members exhibit a positive AMOC anomaly at 15 years lead-time. This feature
is somewhat reflected in the statistically significant EC calculated for a lead-time longer
than 15 years (i.e. when the peak is included). Although Figure 5.3 shows that the
amplitude of the peak is not well reproduced, there is some evidence for the ability of
the model to capture an extreme AMOC event up to 15 years in advance. Note here that,
despite the fact that ES saturates very rapidly and is not associated with a significant
EC, EC alone still gives useful information about this ability to capture a peak. This
underlines the importance of considering each metric (ES and EC) separately in addition
to their combined information, in order to identify interesting features such as extreme

events.

By averaging the maximum lead-time at which ES saturates for the five ensemble ex-
periments, we found an average saturation level reached after 8 years. Note, however,
that at this lead-time, the average EC amounts to 0.51 which is not significant at the
90% level when considering the average number of degrees of freedom over each starting
date. Indeed, Figure 5.5 and Figure 5.6 show that EC strongly depends on the start-
ing date. For such a limited number of starting dates, it is thus of limited use for an
estimation of the average predictive skill. It seems therefore reasonable to claim that,
based on ES alone, the average predictive skills of the AMOC is of about 8 years in the
IPSL-CM5A-LR model. Again, this lead-time is more than the persistence time of the
AMOC index, confirming an important role of oceanic dynamics on the predictability
of the AMOC.

Figure 5.6 also brings out some other interesting features worth pointing out. There
is some evidence for both ES and EC not to be independent metrics; a decreasing
(increasing) ES is generally associated with increasing (decreasing) EC. This claim is
further supported in Appendiz A. There is also some apparent return of predictive skills
for both experiments 15P and 5P. There is, indeed, some evidence for ES returning below
the saturation level and recovering statistical significant a few years after saturation, with
corresponding EC which also recovers significance. Note that this increasing of EC is
relatively small in 5P (<0.1), compared to 15P (>0.5); the reason for the significant
increase in this latter is certainly due to its ability to capture the extreme AMOC event
present in the second decade (at least in terms of its presence and its sign). Although
this apparent “return” of skill has already been pointed out by several studies, its origin

still remains unclear. For example, Newman et al. (2003) suggest that this reflects
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variations of the actual noise rather than a true skill, while Hermanson and Sutton
(2009) rather suggest that this might be a consequence of the use of a simple univariate
measure to quantify predictability. Here, it is not to be excluded that this “return” of
skill in the second decade could be related to the peak of energy at 20 years (as found
in the control simulation, Escudier et al. 2012), which might increase correlation and
then predictability for larger timescale. The origin of this phenomenon definitely merits

further attention and should be the main focus of further studies.

5.3.2 An early warning system to predict extreme AMOC events?

Even though such events are rare and may be viewed as “surprises”, providing an early
warning system is extremely desirable considering their possible major climatic impacts.
Results above showed clear evidence for the ability of the model to capture extreme
AMOC events. More specifically experiment 15P gives hope for predicting such events
earlier than the 8-year average predictive skills identified by the PPP approach. Given
the lack of AMOC observations, we investigate here whether there exist monitorable
precursors to such extreme events and whether they are themselves predictable. Note

that these are likely to be strongly model-dependent.

As briefly mentioned in Sect. 5.2, Escudier et al. (2012) identified a 20-year cycle
associated with the AMOC variability in the IPSL-CMb5A-LR control integration. Fig-
ure 5.7 shows a simplified schematic of the mechanism responsible for one half of this
cycle. They have shown that, for example, a deceleration of the East Greenland Current
(EGC) brings less cold and fresh water into the Labrador Sea giving rise to positive
temperature and salinity anomalies in the upper 200 m around 3 years after the decel-
eration. These anomalies then propagate along the subpolar gyre and reach the Nordic
Seas in about 7 years. As they pass over the convection sites, the salinity anomalies
favour deep convection, thereby inducing an AMOC intensification after 9 years. In
the Nordic Seas, the positive temperature anomalies also induce an anomalous decrease
of sea-ice cover which in turn triggers a positive anomalous atmospheric temperature.
The direct atmospheric response to this temperature anomaly is a local below-normal
SLP anomaly and a localised cyclonic atmospheric circulation, associated to anomalous
southward wind stress along the eastern coast of Greenland. This leads to an intensi-
fication of the EGC which turn creates negative temperature and salinity anomalies in
the Labrador Sea. This process lasts 10 years, and the second phase of the cycle begins.
A more detailed mechanism of the cycle can be found in Escudier et al. (2012). Even
though the AMOC is not taking an active part in this variability mechanism, it is still
influenced by the cycle through deep convection anomalies. Escudier et al. (2012) found
therefore evidence for the EGC intensity and water properties in the Labrador Sea to
be precursors of changes in the model’s AMOC, with a lead-time of about 14 years for
the EGC and 11 years for the Labrador Sea salinity.



Chapter 5 Decadal predictability of the AMOC and climate in IPSL-CM5A-LR 107

ks — e
L 5
80°N
==
e

70°N - \>\\
i \E’éeq&z’ v A

feedbac &

60°N ' T S >4 i
l P oyrs / h !%3
50°N = T ! i

40°N

72%W 54°W 36"W 18°W o°

Figure 5.7: Schematic view of mechanisms responsible for one half of the decadal
AMOC cycle in IPSL-CM5A-LR. Ttems in red are actively involved in the 20-
year cycle. T’ stands for upper ocean temperature anomaly, S’ for upper ocean
salinity anomaly. EGC is the East Greenland Current and SLP the sea level
pressure. Starting from a positive temperature and salinity anomaly, the signs in
the red boxes indicate the sign of the correlation among items, and the number
in the square black boxes the time lag in years. Items in green are periodically
perturbed by the 10-year cycle but not actively taking part in its generation.
The signs and the number of years denote correlation and time lags as above.
(Adapted from Escudier et al. 2012).

Using this apparent predictability in a practical way requires that a large change in the
main identified precursors always lead to a corresponding change in the AMOC index.
Figure 5.8 shows time series of the AMOC index, SSS in the Labrador Sea and the EGC
index (defined as the southward meridional transport across the Denmark Strait of wa-
ters with a salinity lower than 34 psu) in the control integration for each ensemble with
the corresponding plumes superimposed. It is found that of the 6 identified “events”
(represented as letters in Figure 5.8), for which within 5 years at least one of the precur-
sors changes by more than 20 and the other one by at least 1.50, 5 are followed by an
AMOC change of the correct predicted sign, of which 4 show a change larger than 1.50.
This large change in AMOC occurs about 15 (13) years after a large change in EGC
(SSS in the Labrador Sea). This result is consistent with the lead-times summarized in
Figure 5.7, and therefore illustrates the potential predictive role of these two variables.
Large magnitude of change in precursors (around 0.9-1.2 Sv and 0.5-0.7 psu) therefore
suggests the potential predictability of extreme AMOC events through observations of

properties in the Labrador Sea and Denmark Strait. This also suggests that in the case
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of extreme AMOC events, there is the possibility for longer lead-time of predictability
(13 or 15 years, depending on the predictor) than the average 8 years found above (see
Sect. 5.3.1). Note that this longer lead-time has previously been discussed for the ex-
periment 15P alone. Its ability to capture the peak 15 years later is indeed linked to the
state of its EGC precursor, which is extreme at the beginning of the experiment (point
C, Figure 5.8).
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Figure 5.8: Time series of AMOC index (top panel), SSS in Labrador Sea
(middle panel), and EGC index (bottom panel). Thick black line is the control
integration, dashed lines are the standard deviation, red line is the mean, and
envelope of each experiment is shown as coloured shading. Letters (A-B-C-D-
E-F) correspond to identified “events” (see text for further details).

Finally, hope for predictability of an extreme AMOC to go even beyond this suggested
decadal lead-time could arise if these two precursors exhibit in turn some potential
predictability skills. Indeed, both the EGC and SSS in the Labrador Sea have been
found to have some robust predictability for lead-times up to 9 and 7 years, respectively
(not shown). The possibility of predicting an extreme EGC event at least 9 years in
advance gives hope for the predictability of an extreme AMOC event beyond 2 decades
ahead, although this has not been tested prognostically.

We therefore found convincing evidence that extreme changes in the AMOC as seen
in the IPSL-CM5A-LR model might be potentially predictable up to 2 decades ahead
from the monitoring of its high-latitude Atlantic precursors. Hawkins and Sutton (2008)
already found such a relationship with the HadCM3 model. If a comparable mechanism
to the one identified in the IPSL-CM5A-LR model (Escudier et al. 2012) occurs in the
real ocean, which remains to be demonstrated (encouraging elements can be found in
Swingedouw et al. 2012), then the ability to predict AMOC fluctuations is promising for

potential predictability of climate at multi-decadal timescales.
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5.4 Spatio-temporal predictability of Atlantic climate

Potential predictability of both surface temperature and precipitation is now evaluated
using and comparing both the DPP and PPP approaches. As mentioned in Sect. 3.2.1.1,
a threshold for “useful” potential predictability is often hard to define in the DPP
approach, as it only relies on a long control integration. On the other hand, it remains a
cheap (in terms of computation time) and easy way to evaluate average predictive skills
from long time series. This differs from the PPP approach which is much more expensive,
but better evaluates the growth of perturbations in initial conditions and therefore the
effective predictability within models. Given a choice of starting dates, this approach
can also illuminate the link between temperature and precipitation predictability and
the AMOC.

5.4.1 Potential predictability of surface temperature

Figure 5.9 shows predictability maps of Atlantic surface temperature up to 1 and 2
decades as identified by both the DPP and PPP approaches in the IPSL-CM5A-LR
model. For the former approach, the maps show the ppv f for 10 and 20-year means and
are shown in Figure 5.9a. For the PPP approach, regions combining surface temperature
with both statistically significant EC and ES statistically smaller than the saturation
level at the considered lead-time (i.e. regions potentially predictable as defined in Sect.
3.2.1.2) are shown in Figure 5.9b as a function of the number of experiments for which

these conditions are met.

Over the ocean, the regions of highest (more than half of the experiments) predictive
skills at both 1 and 2 decades identified by the PPP approach coincide to some extent
with those of highest ppv f scores (for which 10 to 40% of the variance is in the considered
decadal band, Figure 5.9a). These regions mainly include the convection sites (as iden-
tified by Escudier et al. 2012) together with the NAC path, and are in good agreement
with results from the diagnostic multi-model predictability studies of Boer (2004) and
Boer and Lambert (2008). The PPP approach also brought some hints of potential pre-
dictability (less than half of the experiments) for the two timescales in regions including
the southeastern branch of the subtropical gyre and the tropics (more specifically the
western deep tropics up to 1 decade extending to the northern western tropics up to 2
decades). These two regions are also identified by the DPP approach, although some
discrepancies are present in the tropics; up to 2 decades, strongest signals are identified
in the southern tropics rather than in the northern tropics. Interestingly, these regions
of weak signals (i.e. the southeastern branch of the subtropical gyre and the tropics) are
each identified in experiments including the extreme AMOC event of 2071, namely in
experiment 15P and S mainly over 2 decades (see Appendiz B, Figure B.1). Although

it remains difficult to draw robust conclusions from the limited number of experiments,
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Figure 5.9: Potential predictability of surface temperature in the Atlantic sector
identified by: (a) the DPP approach showing maps of the internally generated
decadal ppvf for 10-year (left panel) and 20-year (right panel) means in the
unforced control climate of IPSL-CM5A-LR (the colored areas are significant
at the 95% level according to a F-test); (b) the PPP approach showing maps
of the number of starting dates (out of 5) where grid points are potentially
predictable (i.e. where it combines both statistically significant EC at the 90%
confidence level according to a Student’s ¢-test and normalized ES smaller than
saturation level at the 95% level according to a F-test) up to one (left panel)
and two (right panel) decades.

this suggests that an extreme AMOC event might favour the potential predictability
of these regions. However, the reason for the weak scores in these regions in the 5P

experiment remains to be clarified.

In general, in both approaches, potential predictability over land is less significant than
over the ocean. It is found over the coastal areas bordering some of the potentially pre-
dictable oceanic regions (that mainly include the maritime-influenced regions of western
Africa, the western coast of the Iberian peninsula, and the northern coasts of the British
Isles and South America), and it seems to be favored by extreme AMOC events (see
Appendiz B, Figure B.1). The DPP approach identifies additional land areas located
further away from the coast (i.e. in Europe, in both the African and South American
continents). Note, however, that these additional land areas are regions of low ppuvf

values (<0.1, Figure 5.9a).

Finally, the evidence of a relationship between the potential predictability of surface
temperature and the AMOC is due to the fact that the major regions identified as
potentially predictable by both approaches, are also remarkably similar to the regions

significantly sensitive to decadal AMOC fluctuations (as shown in Figure 5.1a).
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5.4.2 Potential predictability of precipitation

Potential predictability of precipitation (Figure 5.10) is considerably smaller than for
surface temperature, in good agreement with the multi-model approach of Boer and
Lambert (2008). Similar to the latter study, the Nordic Seas are the most prominent
regions where precipitation seems to be predictable at both timescales. There are also
some patches of predictability over the subpolar gyre in both approaches. Note that the
DPP approach identifies additional regions (both oceanic and continental) mainly over
the tropics (Figure 5.10a). As for surface temperature, these additional regions have low
ppv f values. Furthermore, as for regions of weak signals for surface temperature, regions
identified by both approaches appear in experiments including the extreme AMOC state
of the year 2071 (experiments 15P and S, see Appendiz B, Figure B.2).

a)
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Figure 5.10: Potential predictability of precipitation in the Atlantic sector as
defined in Figure 5.9.

As with surface temperature, the evidence for a link between an extreme AMOC event
and predictability of precipitation in the above identified regions is due to the fact that
they are also regions sensitive to decadal AMOC fluctuations (as shown in Figure 5.1b).
The possibility for a link between precipitation at high latitude and the AMOC would
not be surprising since by controlling a significant part of freshwater fluxes there, pre-
cipitation control the AMOC precursors identified in the model. These results suggest
the mechanisms responsible for climate predictability to be strongly linked to the mech-
anisms behind decadal AMOC variability. Note, nevertheless, that this link between
regions potentially predictable and those sensitive to decadal AMOC fluctuations is less
clear for precipitation than for temperature, and this could also explain the weaker PPP
skills in precipitation in the tropical and subtropical regions, given our experimental

set-up for the prognostic approach largely focused on specific AMOC events.
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5.5 Summary and discussion

5.5.1 Potential predictability of the AMOC

The predictive skills of the AMOC index have been quantified by the prognostic (PPP)
approach for five experiments starting from different AMOC initial states, using both
the ensemble spread (ES) and the ensemble correlation (EC). In most cases, ES (EC)
increases (decreases) with lead-time, and hence predictability is lost after a certain lead-
time. In some cases, an apparent “return” of skill is detected a few years after satura-
tion. This has to be interpreted carefully as it could simply reflect noise rather than
predictability (e.g. Newman et al. 2003). Our experiments showed that it could nev-
ertheless also be related to the large variability of the AMOC at the 20-year timescale
found in the control simulation (Escudier et al. 2012). EC was found particularly useful

to detect such features in the simulations.

It is difficult to determine average predictability skills in the “perfect model” experi-
ments as it implies averaging skills over several starting dates which themselves have
very different predictability skills. Nevertheless, it seems reasonable to claim that the
modeled AMOC has an average predictive skill of 8 years in the IPSL-CM5A-LR model,
when considering the average lead-time at which ES saturates. The corresponding EC
averaged over all starting dates is not significant. Note that the AMOC index has also
been found to have a persistence time (estimated from the AMOC index autocorrelation
function in a red noise framework) of about 4-5 years, which is less than the average
predictive skills found here. This suggests a role of the oceanic dynamics in this pre-
dictability. The average lead-time of predictability of the AMOC index found in the
IPSL-CM5A-LR model is somewhat shorter than those identified in most similar pub-
lished studies, for which the predictability lead-time could reach 2 decades ahead (e.g.
Collins and Sinha 2003; Msadek et al. 2010; Pohlmann et al. 2004; Collins et al. 2006a).
It is, however, somewhat in agreement with Teng et al. (2011) who found the AMOC to
be predictable for only one decade in the CCSM3 model. Hermanson and Sutton (2009)
identified a shorter lead-time in the HadCM3 model, with an average predictive skill
of about 5 years. The IPSL-CM5A-LR model belongs to the middle-range of timescale
of AMOC predictive skills identified so far in the literature. Such a comparison with
existing studies should, however, be considered carefully because of the many differences

in the experimental protocol used among predictability studies.

When considering the predictive skills of each ensemble experiment separately, there is
evidence for predictive skills to depend on the AMOC initial state. Indeed, the highest
skills have been found (in descending order) in the experiments starting (i) from a
strong AMOC initial state (up to 13 years), (ii) 5 years before a maximum peak (up
to 8 years) and (iii) from a weak AMOC initial state (up to 7 years). In contrast, no

predictive skills (as defined in Sect. 3.2.1.2) have been found for experiments starting
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from an intermediate AMOC initial state and 15 years before a maximum peak. This is
essentially because the ensemble correlation rapidly becomes insignificant. Based on ES
alone, these starting dates could be considered as being predictable 7 and 5 years ahead
respectively. Nevertheless, generally, predictive skills have therefore been identified for
experiments starting or nearly-starting from an extreme AMOC state. The above results
also suggest better predictive skills for an initial state corresponding to an anomalously
strong AMOC than those corresponding to a weak AMOC, in good agreement with the
perfect model studies of Collins and Sinha (2003) and Collins et al. (2006a). However,
the number of members (10) for each experiment is somewhat low to fully assess the
robustness of such an impact of the AMOC initial state on its predictability. Note
furthermore that, although no predictive skills (as defined from both EC and ES) have
been identified in the experiment starting 15 years before a peak, this specific experiment
still showed the ability of the model to capture relatively well an extreme AMOC event
on a longer lead-time than the average one identified by the PPP approach.

In view of the major climatic impact induced by such extreme events, the development
of an early warming system would be of great value. The present study shows that this
is made possible through the monitoring of the high-latitude precursors of the AMOC
in this model (which are the EGC and the upper-ocean properties in the Labrador
Sea), which leads to an increase in predictive skills of extreme AMOC events up to 2
decades ahead. The perspective of an early warning system of such events thus motivates
the monitoring of the EGC strength and water properties in the Labrador Sea. In
this perspective, observation programs across e.g. the WOCE-AR7/A1 section for the
Labrador Sea (http://cchdo.ucsd.edu/atlantic.html) and the East Greenland shelf and
slope of south of Denmark Strait (Brearley et al. 2012), as well as the maintenance
of mooring arrays in these areas, are likely to be of greatest added value to constrain
prediction of the AMOC. Similar observational targets have also been pointed out by
Hawkins and Sutton (2008) using the HadCM3 model.

5.5.2 Potential predictability of the North Atlantic climate

Changes in the AMOC have been found to have significant and widespread climate
impacts. The prospect for predictability of decadal AMOC fluctuations is therefore
promising for potential predictability of climate. This latter has been investigated using
both diagnostic (DPP) and PPP approaches. They give overall very similar results,
and strongly agree on the regions that exhibit the highest predictive skills. Some dis-
crepancies, nevertheless, arise for regions where only some hints of predictability have
been identified. Indeed, these regions are often larger in the DPP approach than in
the PPP approach. In other words, the DPP estimation seems less discriminate. To
strengthen the robustness of our results, note that the regions claimed to have some hints
of predictability below are regions identified by both the DPP and PPP approaches.
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The far North Atlantic (that includes the convection sites of the model and the NAC
path) has been identified as the region exhibiting the highest predictive skills. Sur-
face temperature is potentially predictable up to 2 decades in advance there, in good
agreement with previous studies (e.g. Collins 2002; Boer 2004; Pohlmann et al. 2004;
Hawkins et al. 2011; Branstator et al. 2012). Note that this ability to predict the North
Atlantic subpolar gyre also gives hope for potential multi-year forecasts of tropical storm
and hurricane frequency (Smith et al. 2010). Some hints of potential predictability are
also identified at this timescale in the subtropics (mainly over the southern part of the
eastern branch of the subtropical gyre) and the tropics (mainly over the north western
tropics). The predictability found in the latter region is clearly different from results
of Pohlmann et al. (2004) in the ECHAM5-MPI/OM climate model, and also contrasts
with Collins (2002), who found signals only up to the interannual timescales in the trop-
ics in HadCM3. To some extent our result, however, agrees with Hawkins et al. (2011)
who also found decadal predictability in the tropics in the HadCM3 model, but only up
to 1 decade ahead and restricted to the southern tropics. Land areas display little poten-
tial predictability compared to oceans. Potential predictability at decadal timescales is
generally restricted to the coastal areas bordering some of the oceanic regions identified
above; they mainly include the coast of western Africa, the western coast of the Iberian
Peninsula, both the northern coast of the British Isles and South America. Signals over
maritime Europe as identified by Boer and Lambert (2008) and Pohlmann et al. (2004)
are not brought out as clearly in our study. Although potential predictability is largely
absent for precipitation (as noted by Pohlmann et al. 2004; Boer and Lambert 2008;
Boer 2011 in particular), there are some hints of potential predictability up to 2 decades

over the convection sites of the Nordic Seas and the subpolar gyre.

Similarly to the AMOC, regions with weak but significant predictability (i.e the tropics
and subtropics for temperature, the Nordic Seas and subpolar gyre for precipitation)
seem to depend at least partly on the AMOC state. Results suggests that extreme
AMOC events might favour the potential predictability of regions of weak signals, as
the latter are in most cases identified when the predicted time-period includes such
events. Although the origin of a possible link between climate predictability and ex-
treme AMOC still needs to be clarified, the likelihood for such a link is strengthened
by the fact that regions identified as potentially predictable (for both surface tempera-
ture and precipitation) are also all strongly influenced by decadal AMOC fluctuations.
This suggests that the mechanisms responsible for climate predictability are to some
extent linked to the decadal AMOC variability. More research to understand the spe-
cific mechanisms that lead to predictability is, however, still needed. The present study
nevertheless underlines that the potential predictability of the AMOC could therefore
lead to significant decadal predictability of climate (where the AMOC has a sufficiently
strong impact), and may therefore be of economic and societal importance (e.g. Meehl
et al. 2009).
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5.5.3 Evaluation of different methods for quantifying predictive skills

Different definitions of predictability, different experimental protocols and metrics have
often been used among the previous studies to evaluate predictive skills. It therefore
remains difficult to estimate the weight of the metrics on the level of predictability found
here in the IPSL-CM5A-LR model by comparing this level to those found in previous
studies. Nevertheless, from a methodological point of view, our study still puts forward

some interesting results regarding the evaluation of predictive skills.

Regarding the PPP approach, we showed that combining ES and EC should be pre-
ferred in principle but it is sometimes difficult to apply in practice. For the evaluation
of average predictive skills, EC was found insignificant. In the case of 15P, it reduced
the quantification of predictability skill for weak lead-times but greatly helped to high-
light the ability of the model to capture the late peak. We thus still claim that both
metrics should be considered in parallel. Our results also suggest that considering either
the ensemble mean of an experiment or each individual member as a baseline in the

calculation of both metrics does not affect the overall results.

As already mentioned, both DPP and PPP approaches generally brought out the same
main features concerning both temperature and precipitation predictability. Marginal
discrepancies concerned the regions of weak signals. Because of the difficulty to define a
“useful” threshold of potential predictability in the DPP approach, the PPP approach
allows more detailed analysis. It however relies on the subjective choice of starting dates,

number of members and experiments.

Despite the limited number of experiments starting with similar AMOC states, another
aspect brought out by the PPP approach is that both the AMOC and some regions
might have higher predictive skills under specific initial states, often when the predicted
time period includes an extreme AMOC. This result needs to be confirmed by further
work. Although reliable estimates of skill conditional on specific initial states are diffi-
cult to determine (due to the small sample for verification), more systematic experiments
starting with similar initial states (i.e. weak, intermediate, strong, just before a peak)
should therefore be undertaken. It could even be extended to further scenarios such as
starting just after a peak. Note that, this dependence on initial states already exists with
seasonal-to-interannual climate forecasts dependent on the phase of El-Nino Southern
Oscillation (e.g. Chen et al. 2004), and it is expected to be the case with decadal pre-
dictions (Griffies and Bryan 1997a). The present study suggests that forecasts starting
from an extreme phase of natural internal variability can be more skillful than those
starting from average conditions. In that sense, studying skill from case studies may
prove more useful to understand predictability mechanisms than computing average skill

from numerous start dates as done in most previous studies.
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5.6 Conclusions

In conclusion, the decadal predictability of the AMOC and associated oceanic/atmo-

spheric variables in IPSL-CM5A-LR can be summarized in the following key points:
e The AMOC has an average prognostic predictability of about 8 years.

e In about 80% of the cases, an extreme AMOC event can be predicted up to 2 decades in
advance from the monitoring of its high-latitude precursors (which are the East Green-

land Current and water properties in the Labrador Sea).

e The far North Atlantic (that includes the convection sites, the NAC path, and the
subpolar gyre region) exhibits the highest predictive skills for surface temperature up
to 2 decades in advance. Some hints of predictability are also identified up to 2 decades
in the subtropics (over the southern part of the eastern branch of the subtropical gyre)

and the tropics (over the northern western tropics).

e There is little potential predictability for surface temperature over land, which is

restricted to the coastal areas bordering some of the predictable oceanic regions.

e Potential predictability is largely absent for precipitation, despite some hints of pre-

dictability up to 2 decades in the Nordic Seas.

e Predictive skills of AMOC, surface temperature and precipitation seem to be favoured

by extreme AMOC events in maximum states.

e All regions identified as potentially predictable are strongly influenced by decadal
AMOC fluctuations, suggesting that the mechanisms responsible for climate predictabil-
ity are to some extent linked to the decadal AMOC variability.

It is also important to bear in mind that here we have assessed the upper limit of
both the AMOC and climate predictability as both perfect model and near perfect
knowledge of the current state of the climate system are assumed. Indeed, climate
models still have significant biases compared to observations, and their possible impacts
on the level of predictability skill of a model cannot be ignored. As an illustration,
Branstator et al. (2012) found that, using six state-of-the-art AOGCMs, the average
lead-time of predictability for subsurface temperature (especially in the North Atlantic)
varied considerably between the models highlighting how poorly the North Atlantic
predictability must be represented in some, or perhaps all, of the six models. Therefore,
bearing in mind the possible impact of the limitations of the IPSL-CM5A-LR model,
its lack of deep convection in the Labrador Sea (Swingedouw et al. 2007) might well
affect the effective level of predictability skill. This problem should be addressed in
future work. The 20-year variability cycle in the subpolar North Atlantic in the model
also greatly influences the present results and its occurrence in the real world further

needs to be assessed. The possibility that lower predictability limits would arise in a
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real predictive system with this model cannot be ruled out (see Swingedouw et al. 2012).
However, to the extent that both diagnostic and prognostic approaches are appropriate
measures of skill, the present results give some indications as to where and to what

extent skillful decadal forecasts might be possible.

Results from Chapter 4 suggested that hybrid-coordinate ocean component model such
as CHIME might have better predictive skills than climate models that feature an or-
thodox z-coordinate level coordinate ocean component such as IPSL-CM5A-LR. To
strengthen or weaken this claim (as well as the robustness of the results found here),
similar analyses have therefore been repeated with the CHIME model by following an
experimental design as similar as possible to the one used here with the IPSL-CM5A-LR
model. This is the subject of the next chapter.






Chapter 6

Decadal predictability of the
AMOC and climate in CHIME

6.1 Aim of study

In this chapter, we explore the decadal predictability of the AMOC and associated
oceanic and atmospheric fields as they are represented in the CHIME model (Megann
et al. 2010) under control conditions, using both the diagnostic (DPP) and prognostic
(PPP) approaches. Results from this study will complement those from IPSL-CM5A-LR

(Chapter 5) by strengthening or questioning some of the claims previously drawn.

In the DPP approach, we analyze the 201-year-long control integration £3 of CHIME
(see Sect. 2.1.2.2), and use the non-biased estimation of ppv f (from Boer 2004) as an es-
timate of predictive skills. In the PPP approach, five “perfect ensemble” experiments are
performed from the same control integration. Each experiment consists of five ensemble
members (excluding the control run) starting from slightly different initial conditions
and integrated for 20 years. As with IPSL-CM5A-LR (Chapter 5) and following the
CS03 definition of target, both Ensemble Spread (ES) and Ensemble Correlation (EC)
are evaluated in CHIME to quantify the reproducibility and thus predictability of the
simulated fields, and we consider that a variable is potentially predictable if it has a

(low) statistically significant ES associated with a (high) statistically significant EC.

Note that because different control integrations are used in the variability and pre-
dictability study with CHIME (¢D and E3, respectively), we have to be aware of the
eventual differences in their AMOC characteristics (both spatially and temporally). In-
deed, all these discrepancies have to be kept in mind as analogies are drawn between

the mechanisms of AMOC variability and predictability.

First, both spatial and temporal variability associated with the AMOC are therefore
compared in both ¢D and E3 in Sect. 6.2. The control integration E3 is then analyzed

119
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in Sect. 6.3 to investigate the impact of strong AMOC fluctuations on both oceanic and
atmospheric fields in the Atlantic sector. In Sect. 6.4, the potential predictability of
the AMOC, as identified by the PPP approach, is investigated using “perfect ensemble”
experiments. Using both DPP and PPP approaches, Sect. 6.5 addresses the poten-
tial predictability of both associated oceanic and atmospheric fields as well as its link
with decadal AMOC variability. A summary and discussion follow in Sect. 6.6, with

concluding remarks in Sect. 6.7.

6.2 Internal AMOC variability: discrepancies between E3
and cD

6.2.1 Spin-up, trend and variability of AMOC

The AMOC index time series are shown for both control integrations in Figure 6.1. As
already mentioned in Sect. 2.1.2.2, the AMOC index in E3 has the most stabilized state
between year 105 and 305. During this period it has an oscillation amplitude of about
3 Sv (ranging from 16 to 22 Sv) against an amplitude of about 2 Sv (ranging from 17.5
to 22 Sv) in ¢D during its corresponding near-stabilized period (from year 80 to 200).
The average decadal mean is slightly weaker by about 1 Sv in E3 (18.7 £ 1.9 Sv against
19.8 + 1.4 Sv in ¢D), which is still well within the observational estimates (18 £+ 2-3 Sv)
of Talley (2003).
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Figure 6.1: Time series of AMOC index of ¢D (in red) and E3 (in blue). Red
(blue) shading corresponds to the time period analyzed in ¢D (E3) and the grey
shading corresponds to their common time period.
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Figure 6.2 shows the mean AMOC streamfunction for both runs averaged over their
corresponding periods of analysis, along with their spatial differences. At first sight,
they both have a similar spatial structure. There are however some differences worth
pointing out. In both runs, the circulation associated with the NADW is maximum at
a depth of about 800-1200 m, spreading from 30°N to 60°N. The maximum transport
is, however, slightly stronger in E3 (~ 20 Sv, Figure 6.2a, right panel) than in ¢D (~ 18
Sv, Figure 6.2a, left panel). The NADW cell also lies at a slightly shallower depth in E3
(extending to ~ 3500 m against 4000 m in ¢D) resulting in a weaker transport (up to 4
Sv) between about 1500 m and 4000 m depth (Figure 6.2b). This shallower NADW cell
in £3 may be a consequence of its stronger AABW cell (about - 4 Sv against - 2 Sv in
¢D). The deep sinking regions seem similar in both runs, although in the Labrador Sea,
the sinking is slightly stronger in E3 (Figure 6.2b) consistent with the higher maximum
transport of the NADW cell in the latter. Despite these few discrepancies, it seems
reasonable to claim that the structure of the AMOC streamfunction in both runs is

similar.
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Figure 6.2: (a) Annual mean streamfunction of zonally integrated volume trans-
port (Sv) from 30°S to 80°N, averaged from years 80-199 (105-305) for c¢D (E3).
(b) Differences in annual mean streamfunction (Sv) between E3 and ¢D; posi-
tive (negative) values correspond to stronger (weaker) transport in E'3.

6.2.2 EOF analysis of AMOC variability

The first two EOF's of the AMOC streamfunction in E3 (based on 201 years of annual-
mean calculated from year 105 to 305) are shown in Figure 6.3. Prior to the calculations,
time series are normalized by the variance, and detrended. If we compare the spatial
structures of these two EOFs with those of ¢D (see Figure 4.3), they look to some extent

similar at first sight.

The first EOF mode (EOF1) in both E3 and ¢D explains a similar amount of variance
( 32% and 33%, respectively). In Sect. 4.2.2, the primary mode of AMOC variability in
¢D has been associated with a decadal cycle (ranging from a 15-30 years period) related
to convective activity in the Labrador and (inversely) the GIN Seas. With a similar

spatial structure to cD, EOF1 in E3 suggests that its main mode of variability might
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Figure 6.3: Detrended AMOC streamfunction (from year 105 to 305) in the
North Atlantic(20°N to 75°N): (a)EOF1; (b)PC1; (¢) EOF2 and (d) PC2.

also be related to the same convective activity. The statistically significant correlation
between the 10-year moving average of PC1 and the detrended convective index in the
Labrador Sea (defined as the averaged March MLD in the region 55°N-65°N/45°W-
65°W, Figure 6.4, red line) supports the link between EOF1 and LSW variability. They
are correlated at the 95% confidence level with a coefficient of 0.42 (not shown), when
PC1 leads by about 3 years (similar lag found in ¢D, see Table 4.1). However, in contrast
to ¢D, no such correlation has been found with the convective index in the GIN Seas
(defined as the averaged March MLD in the region 65°N-80°N/15°W-15°E, Figure 6.4,
blue line). Nevertheless, convective activity in both the Labrador and GIN Seas seems to
have an anti-phase relationship as supported by their statistical significant correlation of
about -0.30 when the Labrador Sea leads by 1 year (not shown), consistent with c¢D (see
Figure 4.11). Although the correlation coefficient is weaker in E3, this result suggests
that a link between these two convective regions exists, and that despite no evidence for
a statistical relationship between PC1 and convective index in the GIN Seas, EOF1 in
E3 might still be associated with this latter region through its link with the Labrador
Sea. The main mode of variability in FE3 also seems to be associated with a decadal
cycle. Indeed, the power spectrum of PC1 shows the strongest energy (relative to a fitted
first order autoregressive AR1 model, Chatfield 1975) at a statistical significant peak (at
the 95% confidence limit) of about 15 years (Figure 6.5). Although well below the 80%
confidence limit, there is also a second large peak at about 25-30 years period above
the fitted red noise spectrum. These two peaks are well within the 15-30 years range

period found in ¢D see Figure 4.1b). Note also the strong instantaneous correlation
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coefficient of about 0.82 between PC1 of the AMOC streamfunction and the AMOC
index (Figure 6.6), as for ¢D (see Table 4.1).

200

150

100

50

0

MLD (m)

-50

100

-150

Labrador Sea (55N-65N/45W-65W)

-200
GIN Seas (65N-80N/15E-15W)
L

-250

L L L L L ! L L L
120 140 160 180 200 220 240 260 280 300
Years in run

Figure 6.4: Time series of detrended 10-year moving average March MLD in
the Labrador (in red) and GIN (in blue) Seas in E3.

pora ear
Figure 6.5: Power Spectrum of the detrended PC1 time series of the AMOC
streamfunction (grey line) in E'3 using the Welch method of spectra estimation.
The smooth red solid line is the power of a red noise spectrum with the same
AR(1) coefficients fitted from the detrended PC1 time series, and red (orange)
dashed lines, which are the 95% (80%) confidence limits.
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Figure 6.6: Lagged cross-correlations plot between PC1 of the AMOC stream-
function and the AMOC index in E3; horizontal dashed lines correspond to the
95% confidence limit for zero correlation.
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The second EOF mode (EOF2) in both E3 (Figure 6.3c) and cD (see Figure 4.3c)
explains a similar amount of variance (about 9% and 12%, respectively). The secondary
mode of AMOC variability in ¢D has been associated with interannual variability related
convective activity in both the Labrador and GIN Seas (see Sect. 4.2.2). Although EOF2
has overall a similar spatial structure in both runs, there are significant differences in the
high latitude regions. Indeed, in contrast to cD, the strongest variability in E'3 occurs
in the Labrador Sea and is less in the GIN Seas. However, in both cases, PC2 seem to

vary on interannual rather than decadal timescales.

In comparison with ¢D, the two first modes of AMOC variability in £3 seem to mainly
be related to convective activity in the Labrador Sea with a lesser role for the GIN Seas.
The reduced variability in this latter (compared to ¢D) may be partly caused by the
closure of the Bering Strait in E3 therefore affecting the highest latitude regions that
include the GIN Seas. Nevertheless, these two runs agree in that the leading mode of
AMOC variability is driven by convective activity in the Labrador Sea. It therefore seems
reasonable to assume that the mechanisms controlling the decadal AMOC fluctuations
are similar in both runs, keeping in mind that further analyses would be necessary to

confirm this.

6.3 Fingerprints of AMOC variability

Prior to the study of the AMOC potential predictability skills in CHIME, the regional
impacts of the AMOC are investigated in E3. To do so, we carried out composite anal-
yses of several oceanic/atmospheric variables thought to be sensitive to decadal AMOC
fluctuations. Note that winter or September means were used when the statistical sig-
nificance of results was more robust than with the use of annual mean; this however

does not give qualitatively different results.

6.3.1 Impacts on sea surface temperature

A composite of annual SST anomaly pattern (relative to the 105-305 annual mean)
induced by AMOC fluctuations was obtained by averaging anomalies over years when the
AMOOC is strongest (i.e. when exceeding one standard deviation, Figure 6.7). Although
the relatively short control integration length limits the statistical significance of the
results, the SST pattern looks somewhat similar to that identified in ¢D (see Figure
4.7a). When the AMOC is in its strong state, most of the upper ocean, from the
subtropics to the mid-latitudes (mainly over both the Gulf Stream and NAC paths) and
the Nordic Seas becomes warmer, whereas SST south of about 25°N tends to become
cooler. This pattern somewhat reflects an AMO-type response in good agreement with
previous studies (e.g. Sutton and Hodson 2005; Frankcombe et al. 2010); this AMOC-
AMO connection in CHIME has been discussed in detail in Sect. 4.3.1.
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Figure 6.7: Composite of annual anomaly patterns of SST (°C) induced by
AMOC fluctuations, obtained by averaging anomalies over years when PC1 of
the AMOC streamfunction is strongest. Grey contours indicate where the null
hypothesis of equal means is rejected at the 10% level.

6.3.2 Impacts on surface air temperature

A composite of winter SAT anomaly pattern (relative to the 105-305 winter mean)
induced by strong AMOC conditions is shown in Figure 6.8. Note that, as in the case of
SST, the relatively short control experiment length limits the statistical significance of
the results. Nonetheless, it seems reasonable to claim that stronger AMOC conditions
mainly affect SAT in the North Atlantic region from the subtropics to the high latitude,
and that pattern somewhat resembles that of the SST described earlier. When the
AMOC is strongest, SAT in the Nordic Seas, the eastern branch of the subtropical gyre
and along the NAC path tends to become warmer in contrast to both the Labrador Sea
and to a lesser extent the tropical Atlantic where it tends to become cooler. As found
in c¢D, this pattern is consistent with the anti-phase relationship previously identified
between the Labrador and GIN Seas (see Sect. 6.2.2). Strong AMOC conditions also
have impacts over land. Strongest conditions are mainly associated with a warming
of both Europe and North America, which is consistent with similar previous studies
(e.g. Pohlmann et al. 2004). In contrast, most of Greenland and land in the Southern
Hemisphere tend to cool. This SAT pattern does agree in many ways with the one
identified in ¢D (see Figure 4.10a), mainly in terms of warming of the Nordic Seas, North
America and Europe, and cooling of the Labrador Sea. Although cooler conditions are
identified in both runs in the tropics, those identified in the northern tropics in cD are
not as clearly identified in £3. To summarise, this composite analysis reveals that most
of the Northern (Southern) Hemisphere Atlantic sector tends to become warmer (cooler)

under strong AMOC conditions.



126 Chapter 6 Decadal predictability of the AMOC and climate in CHIME
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Figure 6.8: Composite of winter anomaly patterns of SAT (°C) induced by
AMOC fluctuations, obtained by averaging anomalies over years when PC1 of
the AMOC streamfunction is strongest. Grey contours indicate where the null
hypothesis of equal means is rejected at the 10% level.

6.3.3 Impacts on precipitation

Figure 6.9 shows a composite of September precipitation anomaly pattern induced by
strong AMOC conditions. Similarly to ¢D (see Figure 4.10c), few significant anomalies
appear. There are still some notable changes over the western tropics of the North

Atlantic with positive anomalies up to 20 cm yr—!

, suggesting a northward shift of the
ITCZ. Although the tropical-subtropical SST gradient is less pronounced in F3 than in
e¢D (Sect. 6.3.1), it seems reasonable to assume that the northward shift of the ITCZ
is probably a consequence of this SST gradient. Under strong AMOC conditions, the
Northwestern tropical Atlantic is expected to become wetter, and freshwater anomalies
are therefore expected to develop locally as already mentioned for ¢D. The strong
oceanic precipitation signal in this region also seems to leak over the adjacent continental

areas.

50 25°W

Figure 6.9: Composite of September anomaly patterns of precipitation (mm
day~!) induced by AMOC fluctuations, obtained by averaging anomalies over
years when PC1 of the AMOC streamfunction is strongest. Grey contours
indicate where the null hypothesis of equal means is rejected at the 10% level.
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6.3.4 Impacts on sea level pressure

Figure 6.10 shows a composite of winter SLP anomaly pattern induced by strong AMOC
conditions. Lower SLP tends to appear in most of the Northern Hemisphere except for
the Labrador Sea and Greenland where SLP becomes higher. This pattern looks signif-
icantly different from the one identified in ¢D (see Figure 4.10b), where strong AMOC
conditions were associated with a positive NAO-like pattern, this latter having been
found to play a predominant role in explaining decadal AMOC fluctuations. Although
the SLP pattern identified here could put into question the role of the NAO in explaining
such fluctuations in E3, the missing January data for atmospheric fields in E3 (see Sect.
2.1.2.2) could well be the reason of the absence of the NAO-like pattern.

©
50w 25°W

Figure 6.10: Composite of winter anomaly patterns of sea level pressure (Pa)
induced by AMOC fluctuations, obtained by averaging anomalies over years
when PC1 of the AMOC streamfunction is strongest. Grey contours indicate
where the null hypothesis of equal means is rejected at the 10% level.

As in the case of ¢D, a clear link between AMOC strength and both surface temperature
and precipitation has been identified in E3 (mainly over oceanic regions), reinforcing
the existence of such a link in CHIME. In view of these major climatic impacts, the
important question remains of whether AMOC fluctuations are potentially predictable

in this model.

6.4 Potential Predictability of AMOC fluctuations

6.4.1 How far ahead is the AMOC potentially predictable?

The potential predictability of the AMOC is investigated using the PPP approach, for
which five “perfect ensemble” experiments are performed starting from different AMOC
initial states (strong, intermediate, weak, 5 and 15 years before a peak). Each experiment

consists of six members (including the control integration) for 20-year long simulation.
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Figure 6.11 shows the trajectories of each individual member, for each start date, to-
gether with the ensemble mean. At first sight and without taking into account the lowest
variability due to the averaging effect, few ensemble means appear to closely follow the
control run. Note that the extreme AMOC event at year 260 is relatively well captured
when starting 5 years prior this peak (experiment 5P) while this is not really the case

when starting 15 years before (experiment 15P).
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Figure 6.11: “Plumes” of maximum-annual mean AMOC at 30°N from ensem-
bles of the CHIME model in which the initial conditions have been perturbed.
Five ensembles are shown starting from different dates in the control integra-
tion 3. The individual ensemble members are shown as coloured lines, the
ensemble mean as the red thick line, and the control run as the black thick
line. The black horizontal dashed line is the mean AMOC, and both upper and
lower horizontal solid lines show standard deviations highlighting the range of
variability of the AMOC.

Figure 6.12 shows ES as a function of lead-time up to 2 decades for each experiment.
The last statistically significant lead-time before ES persistently exceeds the threshold
represents the maximum lead-time of predictability as inferred from ES alone. The
longest lead-time of predictability is obtained for experiment 15P with a saturation level
reached after about 10 years. In contrast, experiment S saturates the most quickly, after
only 2 years. This latter result is quite surprising in view of previous similar studies
(e.g. Collins et al. 2006a; Collins and Sinha 2003) and our experiments with IPSL
(see Sect. 5.3.1) for which experiments starting from strong initial AMOC states are
usually associated with an ES saturating at the longest lead-time. As for experiments
5P, W, and I, they all have an ES saturating after about 5-6 years. Figure 6.13 shows
EC computed between lead-time 1 year and varying lead-times, ranging 5 to 20 years.
Experiment W shows the highest scores with statistically significant EC superior to 0.7
for all lead-times from 5 to 20 years. Such EC (although slightly weaker) are found
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for e

xperiment I, but only up to 11 years. Experiment 5P shows weakest scores with

statistically significant EC between about 6-9 years and 12-16 years. As for experiments

S and 15P, no statistically significant ECs have been found.
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Figure 6.12: ES of AMOC index for each of the five experiments for lead-time
up to 20 years. The threshold at which ES saturates (implying no potential
predictability) is shown as the black horizontal dashed line. Dots indicate that
ES is statistically smaller than the threshold at the 95% level based on a F-test.
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Figure 6.13: EC of AMOC index (as calculated by the Fisher transformation)
for each of the five ensemble experiments for lead-time from 5 to 20 years. Dots

indicate that EC is statistically significant at the 90% confidence level using a
one-tailed Student t-test.
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To have a better idea of the predictive skill of each experiment, information given by
both ES and EC are summarized in Figure 6.14. As with the IPSL predictability study,
the predictive skill of each experiment is determined by the maximum lead-time at which

ES saturates and its corresponding EC.
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Figure 6.14: Plots showing ES (blue line) and EC (red line) against lead-times
for each of the five ensemble experiments. Dots indicate statistical significance
at the 95% (90%) confidence level for ES (EC). The summary plot shows the
maximum lead-time at which ES saturates with its corresponding EC (as indi-
cated by the oval circles) for each experiment (statistically significant ECs at
the 90% are marked with an asterisk).

Experiment 5P shows overall the highest PPP skills as it corresponds to the experiment
with the longest saturation lead-time (obtained from ES) and a corresponding EC sta-
tistically significant and superior to 0.8 (lower-right plot, Figure 6.14); this experiment
therefore suggests a limit of predictive skills of the AMOC index of about 6 years. Exper-
iment 5P is closely followed by experiments I and W, which both have high statistically
significant EC but ES that saturates slightly more quickly (after about 5 years).

In contrast, strictly speaking, both experiments 15P and S have no predictive skills (as
previously defined in Sect. 3.2.1.2). Indeed, while ES of experiment 15P saturates at
the longest lead-time (10 years), its corresponding EC is remarkably low (-0.04). As
illustrated earlier in the IPSL predictability study, information given by ES or EC alone
should not be neglected as they can still give useful information about for specific feature
such as the ability to capture an extreme event. So based on ES of experiment 15P only,
this could still indicate a strong predictability (up to 10 years), but it is nevertheless
not strong enough to predict the peak of year 260. In addition, the fact that the longest
lead-time at which ES saturates is obtained for the experiment showing the lowest EC
somewhat contrasts with results obtained with the IPSL-CM5A model. Indeed in the
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latter, it seems that the more the lead-time (at which ES saturates) increases, the more
EC increases (see lower-right plot, Figure 5.5). This is clearly not the case with CHIME
(lower-right plot, Figure 6.14). To some extent, experiment 15P weakens the claim
drawn from the IPSL predictability study that ES and EC are dependent metrics (see
Sect. 5.3.1). Surprisingly, there is also no predictive skill (as defined in Sect. 3.2.1.2) for
the experiment starting from strong initial AMOC state (i.e. experiment S). Based on
ES only, this could still indicate very weak predictability only up to 2 years. This result
clearly contrasts with those from the IPSL predictability study (see Sect. 5.3.1) and
previous similar studies (e.g. Collins and Sinha 2003; Collins et al. 2006a) that showed
that experiments starting from anomalously strong AMOC are usually associated with
the best predictive skills. Because, here, the experiments have fewer members than
these previous studies, we question whether this influence the PPP skills and whether
this could be the reason of the lowest skills of experiments S in CHIME. We therefore
test the eventual sensitivity of PPP skills to the number of members by generating five
additional members for experiments S. Figure 6.15 shows the plumes, ES and EC of
the AMOC index when considering these additional members (now accounting for 11
members in total). Results show that the lead-time at which ES saturates still remains
the shortest of the five ensemble experiments (from 2 years with 6 members to 3 years
with 11 members) and that no statistically significant EC is obtained for any lead-times.
One of the plausible explanations for this surprising short predictability lead-time is
that strong AMOC conditions might be associated with an excessive convective mixing
in CHIME that reduces its predictive skills. This result also suggests that increasing
the number of members does not significantly affect the PPP skills of the AMOC, and

strengthens the robustness of results found for experiment S in CHIME.
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Figure 6.15: (a) “Plumes” of maximum-annual mean AMOC at 30°N, and (b)
plot of ES (blue line) and EC (red line) against lead-times (dots indicate statisti-
cal significance at the 95% confidence level), for experiment S when considering
11 members.

Although the highest predictive skill in CHIME has not been found when starting from a
maximum AMOC extreme state as with IPSL (see Chapter 5) or HadCM3 (e.g. Collins
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and Sinha 2003), there is nevertheless some evidence in CHIME for the AMOC predictive
skills to be favoured by its extreme states. Indeed the highest potential predictability
has been found for experiment 5P that is only 5 years prior a maximum extremum, and
closely followed by experiment W that starts from a minimum AMOC extreme state.
The latter result somewhat contrasts with previous studies which generally found that
experiments starting from a minimum AMOC extreme have significantly lower predictive
skills than experiments starting from a maximum AMOC extreme. The results obtained
with CHIME therefore question the stronger influence of a maximum AMOC extreme

on predictive skills.

By averaging the maximum lead-time at which ES saturates for the five ensemble ex-
periments, we found an average saturation level reached after about 6 years. However,
at this lead-time, the average EC amounts to 0.66 which is not statistically significant
at the 90% level when considering the average number of degrees of freedom over each
starting date. As already pointed out in the IPSL predictability study, EC (which can
strongly depends on the starting dates) is of limited use for an estimation of the average
predictive skill. It seems therefore reasonable to claim that, based on ES alone, the av-
erage predictive skills of the AMOC is of about 6 years in the CHIME model. Note that
this lead-time is somewhat shorter than the one found in the previous chapter with the
IPSL-CM5A model (8 years, see Sect. 5.53.1). However, this result is in good agreement
with Hermanson and Sutton (2009) who found an average predictive skill of the AMOC
of about 5 years with the HadCM3 model.

6.4.2 Probability Density Functions of AMOC

Although deterministic measures of predictive skills (such as EC, ES) are a good way of
evaluating the effective predictability within models, such metrics do not give informa-
tion about the prediction probabilities. As stated in Sect. 3.2.1.2, a shift in the mean of
the ensemble can be complementary and useful for prediction. For each experiment, we
therefore examine the Probability Density Functions (PDFs) of the AMOC index (Fig-
ure 6.16), fitted by assuming a Gaussian distribution (to be consistent with the central
limit theorem for a process arising from numerous independent disturbances, Wunsch
and Heimbach 2012) and computing the mean and standard deviation of the 6 members
(including the control integration). If the ensemble mean of the ensemble experiment is
significantly shifted with respect to climatology, it will result in biases in the probability
of e.g. stronger AMOC conditions; information of considerable interest in view of its

possible climatic impacts.

At first sight, shifts with respect to climatology are most significant when calculating
over the first decade (Figure 6.16a) than over the two decades (Figure 6.16b), consistent
with a decrease in predictive skills beyond one decade for the AMOC index in CHIME

(as identified earlier). For the first decade, all experiments (including those with no
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Figure 6.16: Left panels - Fitted PDF's of decadal mean of the AMOC index in
the (a) first and (b) two decade(s). Black solid line represents the climatologi-
cal PDF computed from the 201-year control integration E'3 with the stronger
tercile shown as grey shading; Colored lines represent the PDF of each exper-
iment S (red), W (blue), I (green), 15P (brown), 5P (orange). Right panels -
Probability of decadal-mean AMOC being in the strong tercile (the upper third
of the climatological PDF) for each experiment; the climatological probability
of this event is 33% (shown as the horizontal red line).

PPP skills as defined here, see previous section) have significant shifts with respect to
climatology, and are therefore useful in that sense. Experiments 5P, I, and S (15P and
W) show a significant increase in the probability of stronger (weaker) conditions over
the first decade. For example, the probability of decadal-mean AMOC strength being
in the strong tercile (the upper third of the climatological PDF) for experiment 5P (W)
is more than 99% (less than 1%), that is higher (lower) than the 33% expected from
chance. A reliable forecast that says that “the decadal-mean of AMOC strength has
more than 99% (or less than 1%) chance of being significantly stronger than normal in
the coming decade” could be of considerable value. The above results show evidence for
useful prediction probability skills in regard to the AMOC index of CHIME.

6.4.3 An early warning system to predict extreme AMOC events?

Results from Sect. 6.4.1 also showed the ability of the model to capture a maximum
extreme AMOC (e.g. year 260) about 5 years in advance (experiment 5P, Figure 6.11),
similarly to the IPSL-CM5A model. However it does not seem to be able to capture such
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a peak 15 years in advance (experiment 15P, Figure 6.11), in contrast to IPSL. From
experiment W, we can also see the ability of the model to capture well the minimum
extreme AMOC of year 283 about 3 years in advance. However, in contrast to 5P,
experiment W starts when the AMOC is already in its decreasing trend; it is therefore
difficult to draw robust conclusions about the ability of the model to capture such a
minimum peak only based on this experiment. There is nevertheless some evidence
for the ability of the CHIME model to capture extremum states. Similarly to the
IPSL model, we can investigate whether some of the AMOC precursors can increase
the predictive average lead-time found with the PPP approach (i.e. the 6-year lead-
time). According to the mechanisms identified in Chapter 4, northern tropical Atlantic
SSS can be considered as a precursor of AMOC changes in CHIME, with a lead-time of
about 15 years (see Figure 4.19). As already mentioned in Chapter 5, for this apparent
predictability to be useful requires that a large change in the main identified precursor
always leads to a corresponding change in the AMOC index. It is important to bear in

mind that these mechanisms and the location of the precursor site are model-dependent.

Figure 6.17 shows time series of the AMOC index (upper panel) and the northern tropical
Atlantic SSS averaged from 0-15°N (lower panel) in the control integration E3. It is
found that of the 11 identified “events”, for which the precursor changes by more than
1.50, 6 are followed by an AMOC change of the correct predicted sign around 15 years
later, of which 5 show a change larger than 1.5¢. In CHIME, there is therefore evidence
for large changes in the precursor to lead to large changes in the AMOC (after ~ 15

years) in about 50% of the cases.
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Figure 6.17: Time series of detrended AMOC index and northern tropical At-
lantic SSS (averaged from 0-15°N/0-80°W). Alphabetical letters correspond to
identified events (see text for further details).
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Note that in the IPSL-CM5A model, large changes in the AMOC precursors (located in
the northern North Atlantic) lead to large changes in the models AMOC in about 80% of
the cases (see Sect. 5.3.2). It is, however, important to note that this apparent difference
in the ability to predict extreme AMOC events might not be significant since fewer
initial events (for which the precursors are in an extreme state) have been identified in
IPSL-CM5A than in CHIME (6 “events” against 11, respectively). Nevertheless, several
factors could still explain the plausible difference in the ability of these two models to
predict extreme AMOC events from their corresponding precursors. For example, this
could be due to the difference in the localization of their AMOC precursors; while the
one in CHIME is situated in the tropics, both precursors in IPSL-CM5A are in the
high latitude regions (Escudier et al. 2012) that are closer to the deep convection sites.
In CHIME, the precursor may be relatively too remote, and might therefore lose its
predictive skill over longer distances, compared to IPSL-CM5A. Large changes in the
IPSL-CM5A precursors might therefore lead to more systematic large changes in the
AMOC. We also have to keep in mind that the AMOC precursor considered here for
E3 with CHIME has been identified from a different CHIME control integration (¢D,
see Chapter 4). Although there is some evidence that both E3 and ¢D have similar
mechanisms controlling the decadal AMOC fluctuations (see Sect. 6.2), the northern

tropical Atlantic SSS anomalies might not be the most appropriate precursor in F3.

Despite all these above qualifications, it seems reasonable to say that an early warning
system of extreme AMOC events can still be possible with CHIME (while less reliable
than with IPSL-CM5A). In about 50% of the cases, the monitoring of large changes
in the northern tropical SSS could lead to the prediction of an extreme AMOC event
about 15 years later, therefore increasing the average lead-time of predictability found
from the PPP approach when directly applied to the AMOC index (6 years, see Sect.
6.4.1). Note that, as already mentioned in the IPSL predictability study, hope for the
predictability of an extreme AMOC event to go even beyond this suggested decadal
lead-time of predictability could arise if its precursor itself is predictable. However, in
contrast to the AMOC precursors in IPSL-CM5A, the PPP approach reveals no potential
predictability of the AMOC precursor in CHIME. Indeed, the northern tropical Atlantic
SSS has been found to have an average predictive skill that saturates after only 2 years

associated with a very low and non-significant EC (<0.15, not shown).

In summary, we found convincing evidence that extreme changes in the AMOC as seen
in the CHIME model might be potentially predictable up to 15 years ahead from the
monitoring of tropical precursors. If a comparable mechanism to the one identified in
the CHIME model (Chapter 4) occurs in the real ocean (which remains to be demon-
strated), then the ability to predict decadal AMOC fluctuations is promising for potential

predictability of climate at multi-decadal timescales.
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6.5 Spatio-temporal predictability of Atlantic climate

Potential predictability of climate-related fields such as SST, SAT and precipitation is
now evaluated in CHIME using and comparing both the DPP and PPP approaches.

6.5.1 Potential predictability of sea surface temperature

Figure 6.18 shows predictability maps of Atlantic SST up to 1 and 2 decades as identified
by both the DPP and PPP approaches in the CHIME model. For the former approach,
the maps show the ppv f for 10 and 20-years means and are shown in Figure 6.18a. For
the PPP approach, regions combining SST with both ES statistically smaller than the
saturation level at the considered lead-time and statistically significant EC (i.e. regions
potentially predictable as defined in Sect. 3.2.1.2) are shown in Figure 6.18b as a

function of the number of experiments for which these conditions are met.
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Figure 6.18: Potential predictability of SST in the Atlantic sector identified
by: (a) the DPP approach showing maps of the internally generated decadal
ppvf for 10-year (left panel) and 20-year (right panel) means in the unforced
control climate of CHIME (the colored areas are significant at the 95% level
according to a F-test); (b) the PPP approach showing maps of the number
of starting date (out of 5) where grid points are potentially predictable (i.e.
where it combined both statistically significant EC at the 90% confidence level
according to a Student t-test and normalized ES smaller than saturation level
at the 95% level according to a F-test) up to one (left panel) and two (right
panel) decades.
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Note that there are less marked differences between the two timescales in CHIME than
in IPSL-CM5A (see Figure 5.8), mainly for the DPP approach. ppvf values are largely
statistically significant over the Atlantic Ocean (Figure 6.18a). We recognize the “reverse
C shape” pattern in CHIME for mid-latitude SST as already identified in IPSL-CM5A
(see Figure 5.9). This particular pattern has also been identified by Delworth et al.
(2007) in the EOF analysis of observed annual mean SST data for the period 1870-
2005 (Figure 6.19), suggesting that predictability might be associated with variance.
The highest scores are mainly found in the northern North Atlantic, specifically in
Baffin Bay, the subpolar gyre region and the Greenland Sea, where 50 to 75% of the
variance exists in the decadal bands (Figure 6.18a). These two latter regions are the
only ones identified as potentially predictable by the PPP approach. Note that their
signals are however weak as these regions are identified in a maximum of only 2 ensemble
experiments (i.e. for less than 50% of the experiments). The PPP approach does not
seem to identify regions with less than 50% of variance in the decadal bands, as it does
not even identify the eastern branch of the subtropical gyre and the southern tropics
that still have significant fractions of variance (0.25< ppvf <0.50, Figure 6.18a). As
already mentioned in the IPSL predictability study (see Chapter 5), this discrepancy
between the two approaches might arise both from the difficulty of the DPP approach
to define a threshold for “useful” potential predictability and from the limited number
of starting dates in the PPP approach. Nevertheless, the latter approach still clearly
brings out most of the regions exhibiting the highest fraction of variance in the decadal
band as identified by the DPP approach, strengthening the likelihood of these regions to
be potentially predictable. As mentioned earlier, they include the subpolar gyre region

and the Greenland Sea.
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Figure 6.19: Output from and EOF analysis of observed annual mean SST
over the period 1870-2005 obtained from the HADISST data set, Rayner et al.
(2003). The values plotted are the linear regression of the original SST time
series on the standard deviation of the PC1 time series, and then multiplied
by 2 (yielding a map corresponding to SST anomalies associated with a two
standard deviation fluctuation of this EOF). Units are K. Contour intervals are
0.1 between -0.4 and 0.4, and 0.2 otherwise. (From Delworth et al. 2007).
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The influence of strong AMOC states alone on the predictive skills of regions of weak
predictability signals claimed in the IPSL predictability study (see Sect. 5.4) does not
really apply to the CHIME experiments. Although the predictability of SST in the
subpolar gyre region and the Greenland Sea seems to indeed arise from experiments
including or starting from a strong AMOC state (i.e. experiments 15P and S, especially
up to 2 decades), most of the SST predictability in CHIME comes from experiment W,
that is when starting from a weak AMOC state (see Appendiz C, Figure C.1). Although
the experimental set up was not designed to draw robust conclusions about a possible
predictability-dependence on the AMOC initial states, there is still some evidence in
CHIME that SST predictability is favoured by extreme AMOC events in a maximum
state (like in IPSL-CM5A) but also in a minimum state.

6.5.2 Potential predictability of surface air temperature

Figure 6.20 shows predictability maps of Atlantic SAT up to 1 and 2 decades as identified
by both the DPP and PPP approaches. As in the case of SST, the SAT pattern is barely
modified between the two timescales considered here (especially for the DPP approach),
in contrast to results found with IPSL-CM5A (see Figure 5.8). The only noticeable
exception is for the Nordic Seas in the DPP approach (Figure 6.20a) where the predictive

skills slightly extend to the surrounding areas when the timescale is decreasing.

Figure 6.20: Potential predictability of SAT in the Atlantic sector as defined in
Figure 6.18.
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As expected, the ppuv f pattern of SAT over the ocean somewhat resembles that of the SST
(Figure 6.18). Note, however, the exception of the Greenland Sea where SST is identified
as potentially predictable but not SAT. The reason for this discrepancy between the two
variables remains unclear. Statistically significant DPP skills for which more than 25% of
the variance is in the decadal bands mainly include most of the northern North Atlantic
(Figure 6.20a), in good agreement with the diagnostic multi-model approach of Boer
(2004) and Boer and Lambert (2008). Some hints of predictability are also visible in the
eastern branch of the subtropical gyre and the tropics up to 2 decades ahead, where 10
to 25% of the variance exists in the decadal band (Figure 6.20a). Overall, the highest
scores over the ocean are found, as with SST, in Baffin Bay and the subpolar gyre region
for which 50% to 75% of the variance exists in the decadal bands. The latter region is
the only one identified as potentially predictable by the PPP approach. Note that, as
with SST, regions identified as predictable by the PPP approach are characterized by a
high fraction of SAT variance in the decadal bands (above 25%).

Over land, potential predictability is generally less than over the ocean. There are
however some areas for which 10 to 50% of the variance exists in the two decadal bands
(Figure 6.20a). These regions include Central America, Northeast and Tropical Africa,
Iceland, Fastern Canada and the Western part of the British Isles. The PPP approach
only identified the latter region and Central Canada (rather than Eastern) as potentially
predictable up to 1 decade ahead. As with the ocean, predictability over land is identified
in less than 50% of all the ensemble experiments in the PPP approach. In contrast to
the western part of the British Isles, there is no evidence for Central Canada to be
potentially predictable in the DPP approach (with less than 10% of the variance in the
decadal band). This discrepancy may arise from the January missing months in the

control integration F3, on which the DPP approach relies.

Despite some discrepancies between the two approaches, we can be strongly confident
in the robustness of our results concerning the potential predictability of SAT over the
ocean in the subpolar gyre region, and over land in the western part of the British Isles,

as these regions are identified by both approaches.

As with SST, the regions of weak signals identified by the PPP approach here in CHIME
(i.e. the subpolar gyre region, Canada and the western part of the British Isles) seem to
be favoured when the predicted time period includes or starts from a maximum AMOC
extreme state; they are indeed identified for experiments 15P and S only (see Appendiz
C, Figure C.1). “Plumes” of SAT averaged over both the North Atlantic subpolar
region and the Western UK confirm this finding (Figure 6.21). These plumes, indeed,
show clear evidence for the subpolar gyre region (Western UK) to have better predictive
skills for experiment 15P (S); this is the experiment in which most of the members
seems to follow each other the most closely, and in which the spread of the prediction
plume seems to be the smallest, mainly over the first decade. Note that averaging

SAT over a quite large region might hide predictive skills of some local areas which
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could be of primary importance to decision makers in sectors such as, e.g. agriculture,
fisheries. When studying predictability of climate-related fields, it therefore seems more
judicious to examine maps of predictive skills rather than “plumes” averaged over a
specific region. As in IPSL-CMB5A, predictive skills are not identified in experiment 5P
although it includes the extreme AMOC peak of year 260. The reason for the weak
scores in these regions in 5P also remains to be clarified. Note that, in contrast to SST,

the predictive skills of SAT are low for experiment W.
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Figure 6.21: “Plumes” of detrended SAT averaged over (a) the North Atlantic
Subpolar region [45°N-60°N/50°W-15°W] and (b) the Western UK, from ensem-
bles of the CHIME model in which the initial conditions have been perturbed.
The individual ensemble members are shown as coloured lines, the ensemble
mean as the red thick line, and the control run as the black thick line. Both
upper and lower horizontal black lines show standard deviations highlighting
the range of variability of the SAT.
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6.5.3 Potential predictability of precipitation

The potential predictability of precipitation (Figure 6.22) is considerably smaller than
for SST and SAT, in good agreement with the multi-model approach of Boer and Lam-
bert (2008). As with surface temperature, the ppvf pattern for precipitation does not
significantly differ between the 10-year and the 20-year timescales. Although weak, a few
patches of predictability (for which 10 to 50% of the variance exist at the two decadal
bands) are found in the subpolar gyre region, the southern tropical Atlantic and over
Central America (Figure 6.22a). Although these two latter regions are not identified in
Boer and Lambert (2008), the subpolar gyre region is identified with a significant frac-
tion of variability (comprised between 5% and 30%) up to 2 decades ahead. However,
none of the above regions have been identified by the PPP approach in CHIME (Fig-
ure 6.22b). As already mentioned earlier, the discrepancy between these two approaches
might come from the difficulty in defining a “useful” threshold of predictability in the

DPP approach. It seems therefore cautious to claim that predictability of precipitation

is absent in CHIME.
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Figure 6.22: Potential predictability of precipitation in the Atlantic sector as
defined in Figure 6.18.

Although not as obvious as in the IPSL-CM5A model, the above results suggest some
dependence of predictability skills on the AMOC initial state, at least for SST and
SAT, in CHIME. Indeed, they seem to be favoured by extreme AMOC states although
the role of minimum versus maximum extreme states still needs to be clarified. The

likelihood for a link between extreme AMOC events and predictability of temperature
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is strengthened by the fact that regions identified as potentially predictable by both
approaches here are also the regions most sensitive to strong AMOC conditions (as seen
in Figure 6.7, Figure 6.8). In contrast to IPSL-CMB5A, this link has however not been
found for precipitation in CHIME. Nevertheless these above results still suggest that,
in CHIME, the mechanism responsible for temperature predictability could be linked to
the one behind decadal AMOC variability as found in IPSL-CM5A.

6.6 Summary and discussion

In this study, we have focused on the prognostic predictability of the AMOC as repre-
sented in the CHIME model, along with the diagnostic (DPP) and prognostic (PPP)
predictability of associated oceanic and atmospheric fields. In the DPP approach, we an-
alyzed the 201 years of the control integration E3, while “perfect ensemble” experiments

using the same control integration are performed in the PPP approach.

6.6.1 Potential predictability of the AMOC

The predictive skills of the AMOC index have been quantified by the PPP approach for
five experiments starting from different AMOC initial states, using both the ensemble
spread (ES) and the ensemble correlation (EC). As for the IPSL predictability study,
ES (EC) generally increases (decreases) with lead-time, and hence predictability is lost
after a certain lead-time. Note, however that, this relationship between ES and EC does
not clearly exist for experiment 15P, therefore weakening the claim drawn in Chapter 5
that ES and EC are dependent metrics.

Although it remains difficult to determine an average predictability skill in the “perfect
ensemble” experiments (as it implies averaging skills over several starting dates which
themselves have very different predictability skills), it seems reasonable to claim that the
modeled AMOC has an average predictive skill of about 6 years in the CHIME model
(when considering the average lead-time at which ES saturates). This average lead-
time of predictability is somewhat shorter than the one found with the IPSL-CM5A-LR
model (8 years, see Chapter 5). This is, however, in good agreement with Hermanson
and Sutton (2009) who found an average predictive skill of the AMOC of about 5 years
with the HadCM3 model. Given the more coherent internal structure of the anomalies
in CHIME compared to non-isopycnic coordinate ocean component models (such as
HadCM3 and IPSL), CHIME would be expected to have significantly better predictive

skills than non-isopycnic models. This does not actually seem to be the case here.

When considering the predictive skills of each ensemble experiment separately, there is
evidence for predictive skills to depend on the AMOC initial state. Although the highest
predictive skill in CHIME has not been found when starting from a maximum AMOC
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extreme state as was the case with IPSL-CM5A (see Chapter 5) or HadCM3 (e.g. Collins
and Sinha 2003), there is nevertheless some evidence in CHIME for the AMOC predictive
skills to be favoured by its extreme states. Indeed the highest potential predictability has
been found for the experiment starting 5 years prior to maximum extrema (experiment
5P), and closely followed by the experiment starting from a minimum AMOC extreme
state (experiment W). Reliable probability forecasts have also been found for these two
experiments; experiment 5P (W) suggests that the decadal-mean AMOC strength has
more than 99% (less than 1%) chance of being significantly stronger than normal in the
next decade. As briefly mentioned above, these results with CHIME somewhat differ
from those with IPSL-CMb5A (see Chapter 5) and HadCM3 (e.g. Collins and Sinha
2003) as the highest predictive skill has not been found when starting from a maximum
AMOC peak (i.e. for experiment S). Even after having added additional members to
experiment S (in order to test the robustness of its result), the AMOC predictive skills
have been found to be one of the lowest in CHIME. In contrast to this latter finding, the
predictive skills associated with experiments starting from a minimum AMOC extreme
in both TPSL-CM5A and HadCM3 were significantly lower than when starting from a
maximum AMOC. The results obtained with CHIME therefore question the stronger

influence of a maximum AMOC extreme on its predictive skills.

Although they occur rarely, the ability to predict extreme events is of considerable value
in view of its major climatic impacts. The model has shown its ability to capture rela-
tively well the timing of an extreme AMOC event about 5 years in advance (experiment
5P). It has also been shown that by monitoring its precursor, the AMOC predictive skills
of such events can go beyond this 5 years lead-time and beyond the average lead-time of
predictability (of about 6 years). Indeed, an extreme AMOC event can be predicted up
to 15 years in advance from the monitoring of its tropical precursor in 50% of the cases,
which is the northern tropical Atlantic SSS in CHIME. Note that despite some evidence
that the mechanism controlling decadal AMOC fluctuations in ¢D is very similar to the
one in 3, it has to be kept in mind that this tropical precursor might not be the most
appropriate one in E3. Nevertheless, our finding tends to suggest the need for intense
observation in the tropical Atlantic Ocean to constrain prediction of the AMOC. In
such perspective, the maintenance of, e.g. mooring arrays in this area, is likely to be of

greatest value provided the real world has a similar mechanism of variability.

6.6.2 Potential predictability of the North Atlantic climate

Changes in the AMOC have also been found to have significant and widespread cli-
mate impacts; the potential predictability of these climate impacts have been evaluated
here using both DPP and PPP approaches. First, note that independently of the ap-
proach used, there is not much difference in the spatial distribution of their potentially

predictable regions between the 10-year and 20-year timescales. As was the case with
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IPSL-CM5A, the DPP estimation seems less discriminant and regions found to be po-
tentially predictable by the PPP approach correspond to the regions showing the highest
fraction of variance in the decadal band in the DPP approach. However, in contrast to
IPSL-CM5A, these regions identified by the PPP approach only reveal some hints of
predictability (i.e. they are identified in less than 50% of the “perfect ensemble” experi-
ments). But the fact that they are also identified in the DPP approach strengthens our
confidence in the predictability skills of these regions. To therefore strengthen the ro-
bustness of our results, note that the regions claimed to have some hints of predictability

below are regions identified by both approaches.

The North Atlantic subpolar gyre has been identified as a region where SST and SAT
are potentially predictable up to 2 decades ahead, in good agreement with the IPSL
predictability study (see Chapter 5) and previous similar studies (e.g., Collins 2002;
Boer 2004; Pohlmann et al. 2004; Hawkins et al. 2011; Branstator et al. 2012). As
previously mentioned in Chapter 5, the ability to predict this region is promising for
the potential multi-year forecast of tropical storm and hurricane frequency (Smith et al.
2010). There are also some hints of SST predictability in the Nordic Seas (and more
specifically in the Greenland Sea), which are clearly absent for SAT. This region has
also been identified in most of the above-cited studies, for which the predictability of
SAT over the ocean is generally similar to that of SST (e.g. Pohlmann et al. 2004).
While this discrepancy between SST and SAT in the Nordic Seas in CHIME could be a
consequence of the January missing months in the atmospheric data of E3, the fact that
this discrepancy is also evident from the PPP approach refutes this hypothesis. Because
of the strong link between sea ice and SAT in these high-latitude regions (e.g. Bengtsson
et al. 2004; Wu et al. 2004) we can speculate that sea-ice affects predictive skills and
therefore plays an important role. This difference between the predictability of SST
and SAT in the Nordic Seas therefore requires further investigation. Land areas display
little potential predictability compared to oceans. We can, however, be confident about
the potential predictability of SAT over the British Isles (mainly the western part) up
to at least 1 decade. Nonetheless signals over maritime Europe as identified by Boer
and Lambert (2008) and Pohlmann et al. (2004) are not brought out as clearly in our
study with CHIME. Potential predictability is absent for precipitation in CHIME. This
result contrasts with those from the IPSL predictability study (see Chapter 5) and
e.g. Hawkins et al. (2011) study (with the HadCM3 and HadGEM1 models), for which
precipitation in some part of the tropics has been identified as potentially predictable.
The lack of signal in the tropics in CHIME might be a consequence of the absence of
an ENSO cycle in the control integration E3. The latter is indeed thought to affect the
tropical Atlantic activity (e.g. Saravanan and Chang 2000), and might therefore affect
some of the AMOC precursors as identified in CHIME. The absence of ENSO might
bias the lead-time of AMOC predictability found in CHIME.

Although, the experimental set up was not designed to draw robust conclusions about
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any predictability-dependence on the AMOC initial states, this study nevertheless gave
some useful indications about it. The weak signals of SST predictability identified by
the PPP approach (in the subpolar gyre region and Nordic Seas) seem to be favoured
by extreme AMOC events, both in maximum and minimum states. This trend towards
better predictive skills when the AMOC is at near extremum has already been brought
out for the predictability of the AMOC index in IPSL-CM5A. Although SAT also shows
some dependence on extreme AMOC events, it differs from SST and AMOC index
insofar as there is no evidence for its predictive skills to be favoured by a minimum
AMOC state (in good agreement with results from the IPSL predictability study, see
Chapter 5). Finally, the likelihood for a link between SST and SAT predictability and
the AMOC is strengthened by the fact that regions where both SST and SAT have been
found to be potentially predictable are also regions strongly sensitive to strong AMOC
conditions. This suggests that the mechanisms responsible for climate predictability are
to some extent linked to the mechanisms responsible for decadal AMOC variability. As
previously underlined in Chapter 5, more research to understand the specific mechanisms

that lead to predictability is, however, still needed.

6.6.3 Evaluation of different methods for quantifying predictive skills

From a methodological point of view, this study also put forward some interesting re-
sults regarding the experimental protocol of predictability study and the evaluation of

predictive skills.

Overall, the DPP approach identifies more widespread predictable areas than the PPP
approach does. Although only marginal discrepancies have been identified between
the DPP and PPP approaches in the IPSL-CM5A model, these discrepancies are more
marked in CHIME. Indeed, in the latter model, it seems that the PPP approach is only
able to identify regions with a fraction of variance in the decadal band superior to 50%.
Note, however, that regions with such fraction of variance are not necessarily identified in
the PPP approach. Nevertheless, as with IPSL-CM5A, both approaches agree in CHIME
insofar as regions identified by the PPP approach correspond to the regions exhibiting
the highest fraction of variance in the DPP approach. Discrepancies between the two
approaches usually concern the regions of weak predictability signals, which have low
fractions of variance in DPP and are not identified in PPP. The most striking example
is for precipitation, for which some regions with (weak) significant fraction of variance
at the decadal timescale have been identified by the DPP approach (e.g. in the subpolar
gyre region, the southern tropics), and none of them have been identified by the PPP
approach. As with IPSL-CM5A, these discrepancies could arise, for example, from the
difficulty to define a “useful” threshold of potential predictability in the DPP approach,
or from the subjective choice of starting dates, number of members and experiments
in the PPP approach. Note that, in contrast to IPSL-CMB5A, there is one exception in
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CHIME for which some predictability signals (although weak) are identified in the PPP
approach and not in the DPP approach (concerning e.g., SAT in central Canada). Here,
we rather attribute this discrepancy to the January missing months in the atmospheric

data of E3, probably affecting results from the DPP approach.

Regarding the PPP approach, we showed that combining ES and EC should be pre-
ferred in principle but it is sometimes difficult to apply in practice such in the case
of evaluating average predictive skills. Both metrics should therefore be considered in
parallel. Results from this study also suggest that the predictability of AMOC, SST,
and SAT might be favoured by extreme AMOC events; however, the role of minimum
versus maximum extreme states still needs to be clarified. More systematic experiments
starting with similar initial states should therefore be encouraged. If the role of weak
states is confirmed in CHIME, this finding will contrast with those found in the IPSL
predictability study (see Chapter 5) and previous similar studies (e.g. Collins and Sinha
2003; Collins et al. 2006a) for which weak states are generally associated with lower pre-
dictive skills than strong states. The present study with CHIME therefore suggests that
a forecast starting from an extreme phase of natural internal variability can be more
skillful than one starting from average conditions. As already mentioned in Chapter
5, in that sense, studying skill from case studies may prove more useful to understand
predictability mechanisms than computing average skills from numerous start dates, as
done in most previous studies. This study also pointed out that increasing the number
of members from 6 to 11 in experiment S did not affect its predictive skills. Although
only based on one ensemble experiment, this study suggests that experimental protocol
for predictability studies should privilege the number of ensemble experiments over the

number of ensemble members, in good agreement with Meehl et al. (2012).

6.7 Conclusions

In conclusion, the decadal predictability of the AMOC and associated oceanic/atmo-
spheric variables in CHIME can be summarized in the following key points:

e The AMOC has an average prognostic predictability of about 6 years.

e In about 50% of the cases, an extreme AMOC event can be predicted up to 15 years

in advance from the monitoring of the northern tropical Atlantic SSS.

e Over the ocean, the North Atlantic subpolar gyre region (Nordic Seas) is potentially
predictable for both SST and SAT (SST only) on decadal timescales.

e Over land, there is little evidence of decadal predictability of SAT except for the

limited area of the western part of the British Isles.

e Decadal predictability is absent for precipitation.
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e Predictive skills of AMOC, SST and SAT seem to be favoured by extreme AMOC
events; however, the role of minimum versus maximum extreme states still needs to be

clarified.

e All regions identified as potentially predictable are strongly influenced by decadal
AMOC fluctuations, suggesting that the mechanisms responsible for climate predictabil-

ity are to some extent linked to the mechanisms responsible for decadal AMOC variabil-
ity.

As with the IPSL predictability study, it is important to bear in mind that here we have
assessed the upper limit of both the AMOC and climate predictability as both a perfect
model and near perfect knowledge of the current state of the climate are assumed. For
example, the substantial warming and increasing salinity in the North Atlantic subpolar
gyre and the excessive mixing in the Northern high-latitudes in CHIME (Megann et al.
2010) might well affect its effective level of predictability skill. In addition, the limita-
tions of this study with CHIME include the absence of the ENSO cycle in the control
integration, as well as the problems linked to the January missing months for the at-
mospheric data. Nevertheless, we still believe that the result of this study give some
indications as to where and to what extent skillful decadal forecasts might be possible.
They also complement results from the IPSL predictability study (in Chapter 5) by
strengthening or questioning some of the claims drawn in that study. To some extent,
the effect of the vertical representation of the ocean component on the predictability
skills of the model can also be addressed. These above aspects will be briefly discussed

in the following and final chapter of this thesis.






Chapter 7

Discussion and Conclusions

This thesis has addressed the decadal variability and predictability of the AMOC and
associated key variables in two different climate models. We first analyzed the decadal
variability of the AMOC in the new coupled climate model CHIME (Megann et al.
2010), and then explored the AMOC’s potential predictability on decadal time scales
using both the IPSL-CM5A (Dufresne et al. 2012) and CHIME models.

The fact that CHIME shares its atmosphere and ice components with the widely used
IPCC-class model HadCM3 (Gordon et al. 2000) means that comparison between the two
models makes possible an assessment of the extent to which the structural biases inherent
in the vertical representation of the ocean affect the decadal variability and predictability
of the AMOC. Comparing our results from the variability study carried out with CHIME
here with those obtained from existing similar studies with HadCM3 (e.g. Vellinga and
Wu 2004; Dong and Sutton 2005) should give us a reasonable idea of the influence of
the ocean component on the decadal variability associated with the AMOC. However, to
evaluate the impact of the vertical representation of the ocean on predictive skills, such
comparisons with existing studies is more difficult, first, because of the limited number of
studies with HadCM3, and second because of the many differences in the experimental
protocols for predictability studies. Since a near-identical experimental protocol has
been used for CHIME and IPSL-CM5A, a comparison of the results between these two
models here can still be useful considering that this latter model belongs to the new
generation of z-coordinate models (and can therefore be seen as a more up to date z-
coordinate model than HadCM3). However, it has to be kept in mind that these two
models differ in more than just the representation of the ocean vertical coordinates, so
the comparison between these two models has to be carefully interpreted. It is also
important to remind that conclusions based on CHIME are only preliminary since, in
the framework of this study, the model was only in its early stage of development. Some
issues were not completely resolved at the time of simulations, and their impacts on our

present results are difficult to assess.

149
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In this concluding chapter, a comparison of results regarding the decadal variability
(predictability) of the AMOC and key variables in CHIME and HadCM3 (IPSL-CM5A)
is made. The outcomes and limitations of this study are then discussed and also placed

into a “bigger-picture” context. Suggestions for future work are also discussed.

7.1 Comparing climate models with different vertical rep-

resentation of the ocean

7.1.1 Decadal variability: CHIME versus HadCM3

Note that in CHIME, run E3 used for predictability study exhibits similar AMOC
characteristics as run c¢D, as shown in Figure 7.1. Run ¢D of CHIME is used below for

comparisons with HadCMa3.

cD E3

a)

Figure 7.1: Main AMOC characteristics in CHIME (¢D - left panels; E3 - right
panels): (a) Power Spectrum of the detrended PC1 of AMOC - the smooth red
solid line is the power of a red noise spectrum with the same AR(1) coefficient
fitted from the detrended PC1 time series, and red (orange) dashed lines, which
are the 95% (80%) confidence limits; (b) Annual mean streamfunction of zonally
integrated volume transport - positive values mean clockwise circulation; (c)
EOF1 of AMOC streamfunction.

It has generally been shown that AMOC oscillations are mostly irregular and their pe-
riods change considerably among models; while ECHAMS5/Max Planck Institute Ocean
Model (MPI-OM, Jungclaus et al. 2005) has one of the longest periods with 70-80 years,
HadCM3 (Dong and Sutton 2005, Figure 7.2a) and Parallel Climate Model (PCM, Dai
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et al. 2005) show the shortest periods with about 25 years. While it has been difficult to
estimate the period of AMOC variability in CHIME due to limited integration length,
its power spectra nevertheless revealed an enhanced power for periods in the range 15-30
years (Figure 7.1a). CHIME therefore shows a low-range period of AMOC variability
that includes the 25-year period found in HadCM3. Although longer CHIME integra-
tions are needed to better establish this range of periodicity, our evidence suggests that
CHIME and HadCM3 share similar decadal timescale AMOC oscillations.

0 20 40 60 80 100 120

Figure 7.2: Main AMOC characteristics in HadCM3: (a) Power Spectrum of
the detrended AMOC index - the smooth solid line is the power of a red noise
spectrum with the same AR(1) coefficient as the data and dashed lines, which
are 90% confidence limits (from Dong and Sutton 2005); (b) Annual mean
streamfunction of the zonally integrated volume transport (from Megann et al.
2010); (c) Streamfunction of EOF1 contoured (interval 0.2 Sv) and colours
representing the percentage of the total low frequency period accounted for by
the mode - solid (dashed) lines indicate positive (negative) values (from Bingham
et al. 2007).

In both CHIME and HadCM3, the circulation associated with the NADW has a maxi-
mum transport of about 18 Sv (Figure 7.1b - left panel, and Figure 7.2b, respectively),
well within the CMIP3 range (10 to 30 Sv, Gregory et al. 2005). There are, however,
some structural differences in the respective meridional overturning streamfunctions. In
CHIME, for example, the strongest sinking occurs in a broader region (between about
55-65°N) than in HadCM3 (primarily occurring at 65°N). Megann et al. (2010) explained
that this difference could be partly due to the deeper mixing in the subpolar gyre in
CHIME and to the reduced mixing in the Labrador Sea in HadCM3. Note, however,

that compared to observations, CHIME overestimates winter mixed layer depth in the
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Labrador Sea while HadCM3 underestimates it. The AMOC also comprises NADW
outflow of about 16 Sv at the Equator in CHIME against 14 Sv in HadCM3 (Dong and
Sutton 2005), and the outflow extends deeper in CHIME (to about 4000 m, against
3600 m in HadCM3, Megann et al. 2010). The dominant mode of AMOC variability
(EOF1) in CHIME (Figure 7.1c - left panel) has a spatial structure very similar to that
in HadCM3 (Figure 7.2c), and the amount of total variance explained is similar in both
models (about 34%). There are nevertheless significant differences; for example, the
maximum value for a fluctuation of one standard deviation of PC1 is more than double
in CHIME (about 1.6 Sv) compared to HadCM3 (about 0.7 Sv). Another significant dif-
ference is that the phases of EOF1 in the Labrador Sea and Nordic Seas are of opposite
sign in CHIME while they remain similar in HadCM3, with the caveat that Labrador
Sea convection is much weaker in HadCM3 than in CHIME. In that sense, CHIME
seems more realistic; in observational studies, it has been established that convection in
the Labrador Sea is generally out of phase with convection in the Greenland Sea (e.g.
Hurrell and Dickson 2004). Therefore, different mechanisms appear to control AMOC
variability on decadal timescales in CHIME and HadCMa3.

Regarding these mechanisms, it has been shown that phase reversal of the AMOC os-
cillation in CHIME seems linked to the northward shift of the ITCZ, and hence to the
development of salinity anomalies in the tropics. This finding contrasts with several
studies using HadCM3 where the reversal phase of the oscillation has been mainly at-
tributed to anomalies originating from high latitudes (Hawkins and Sutton 2007) but is
to some extent in agreement with Vellinga and Wu (2004) who attributed this reversal
oscillation to advection of salinity anomalies from the tropics. However, this advection
happens on a centennial timescale rather than on the decadal timescale identified in
CHIME. A plausible explanation of the faster advection of anomalies in CHIME could
come from the better preservation of water masses, compared to HadCM3 (as discussed
by Megann et al. 2012); so an anomalous water mass maintains its structure better in
CHIME, and can be more effectively advected “intact” to high latitudes. Note, however,
that centennial mechanisms (as identified by Vellinga and Wu 2004) may also be active
in CHIME but these cannot be investigated using the short integration available to us.
The cause of the northward shift of the ITCZ in CHIME also differs from HadCM3 in the
sense that this shift is associated with a northern tropical-subtropical SST gradient and
not a cross-equatorial gradient as identified in HadCM3 (Vellinga and Wu 2004 ) and
observations (e.g. Chiang et al. 2002). This more northward SST gradient in CHIME
may be a consequence of the strong warm surface bias in the North Atlantic (Megann
et al. 2010). Despite these differences, CHIME is similar to HadCM3 in that a significant
part of the AMOC variability is likely to be a passive response to the internally gener-
ated atmospheric variability linked to NAO (e.g. Dong and Sutton 2005), rather than
being part of a coupled ocean-atmosphere mode (e.g. Vellinga and Wu 2004). The main
characteristics of decadal AMOC fluctuations in CHIME and HadCM3 are summarized
in Table 7.1.
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Table 7.1: Summary of main characteristics of decadal AMOC fluctuations in
CHIME (run ¢D) and HadCM3 (from previous existing studies).

CHIME HadCM3

AMOC cycle || 15-30 years 25 years (Dong and Sutton
2005)

Main Max. transport = 18 Sv; Out- | Max transport = 18 Sv;

NADW flow at equator = 16 Sv; Max. | NADW outflow at equator =

characteris- outflow depth = 4000 m 14 Sv; Max. outflow depth

tics = 3600 m (Dong and Sutton
2005)

Region of || 55-65°N 65°N (Dong and Sutton 2005)

strongest

sinking

Winter MLD || Overestimated compared to | Underestimated compared to

observations observations (Dong and Sut-

ton 2005)

Relationship | Out-of-phase relationship as | In-phase relationship (Dong

between in observations (Hurrell and | and Sutton 2005; Bingham

convection Dickson 2004) et al. 2007)

in Labrador

and Nordic

Seas

Trigger of re-
versal phase

of AMOC
oscillation

Development  of  salinity
anomalies in the tropics
(caused by northward shift
of ITCZ), then propagat-
ing northward on decadal
timescale

(i) Development of salin-
ity anomalies in the high
latitudes caused by trans-
port variation of freshwater
and sea-ice from the Arctic
(Hawkins and Sutton 2007);
(ii) Development of salin-
ity anomalies in the tropics
(caused by northward shift
of ITCZ), then propagat-
ing northward on centennial
timescale (Vellinga and Wu
2004)

Causes of

ITZC shift

Northern tropical-subtropical
SST gradient

Cross-equatorial SST gradient
(Vellinga and Wu 2004)

Mechanisms

Internal ocean-only mode ex-
cited by atmosphere noise
(NAO) for a significant part of
AMOC variability

(i) Internal ocean-only mode
excited by atmosphere noise
(NAO) (Dong and Sutton
2005); (ii) Coupled ocean-
atmosphere mode (Vellinga
and Wu 2004)




154 Chapter 7 Discussion and Conclusions

7.1.2 Decadal predictability: CHIME versus IPSL-CM5A

By comparing results from predictability studies that use experimental protocols as
similar as possible, the comparison of both the CHIME and IPSL results contributes to
the coordinated effort of determining a common skill evaluation framework to evaluate
decadal predictions. Indeed, as pointed out by Meehl et al. (2012), this is highly desirable
to allow a comparison of decadal prediction systems across different modeling centres.
In addition, with some evidence for better preservation of water masses and for a more
coherent internal structure to the anomalies than in non-isopycnic coordinate ocean
component models (such as HadCM3 and IPSL-CM5A), CHIME might be expected
to have significantly better predictive skills than non-isopycnic models. With no clear
indications of such better predictive skills in the present study, this expectation is not

borne out here, as summarized below.
Decadal predictability of the AMOC

First, the 6-year average lead-time of predictability found in CHIME is slightly shorter
than the one found with the IPSL-CM5A model (8 years, Table 7.2). Note that CHIME
also has a similar average predictability to the one found in HadCM3 for the AMOC in-
dex with a lead-time of about 5 years (Hermanson and Sutton 2009). It seems therefore
reasonable to claim that the AMOC index in CHIME has an average lead-time of pre-
dictability similar to those of the two non-isopycnic models, IPSL-CM5A and HadCM3.
When considering the predictive skills of each ensemble separately, the longest lead-time
at which ES saturates is about 10 years in CHIME (Table 7.2, experiment 15P), against
13 years in IPSL-CMb5A (Table 7.2, experiment S), and 20 years in HadCM3 (Collins and
Sinha 2003). The above results are somewhat surprising since, for the reasons mentioned
earlier, CHIME is expected to have, overall, significantly better predictive skills than
non-isopycnic models. We can question whether the shorter predictability timescale in
CHIME compared to IPSL-CMbA is a consequence of: (i) excessive convective mix-
ing that takes place in the northern latitude regions in CHIME (Megann et al. 2010),
hence reducing its predictive skills; (ii) faster-growing modes in CHIME (although the
more controlled diapycnal mixing in isopycnic models is expected to have slower growing
modes than non-isopycnic models); (iii) the absence of ENSO cycle that could bias the
lead-time for predictability in CHIME given the influence of this cycle on the tropical
Atlantic region (Saravanan and Chang 2000) which is key in driving decadal AMOC
fluctuations in the model; (iv) the different perturbation scheme used to generate the
ensemble members in both models (predictability experiments perturbing only the up-
per ocean state - like in IPSL-CMBbA - may overestimate the predictability time, Zanna
et al. 2012).

Experiments starting from weak AMOC state (W), and starting 15 and 5 years before
a maximum AMOC extreme (15P and 5P, respectively), have similar predictive skills in
both CHIME and IPSL-CM5A (Figure 7.3, Table 7.2). On the other hand, both models
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Table 7.2: Summary of predictive skills in CHIME and IPSL-CM5A showing
the maximum lead-time at which ES saturates with its corresponding EC. (*)
are significant EC at the 90% level.

CHIME: CHIME: IPSL-CM5A: | IPSL-CM5A:
Max. ES Correspond- Max. ES Correspond-
ing EC ing EC

I 5 0.95%* 7 0.48

15P 10 -0.04 5 -0.05

5P 6 0.86* 8 0.75%

S 2 none 13 0.78%

w 5 0.89* 7 0.74%*

Average| 6 0.66 8 0.74

differ in their predictive skills for experiments starting from strong (S) and intermediate
(I) AMOC initial states (Figure 7.3, Table 7.2).
been identified for S (I) in IPSL-CM5A (CHIME), they have not been identified in
CHIME (IPSL-CM5A). The fact that predictive skills have identified for experiment I
in CHIME and not IPSL-CM5A, might be explained by the fact that the starting date
in CHIME is not in such an intermediate state as in IPSL-CM5A but rather closer to a

strong state (Figure 7.3). The most striking difference between the two models concerns

Indeed, although some skills have

experiment S. Although the highest predictive skills have been found for this experiment
in IPSL-CM5A, this is actually the experiment in which the predictive skills are the
weakest in CHIME. The fact that skills are higher for W than S in CHIME is quite
unexpected, considering that the contrary has generally been found in most previous
studies (e.g. Collins and Sinha 2003). One of the plausible explanations is that strong
AMOC conditions might be associated with an excessive convective mixing in CHIME
that reduces its predictive skill. The better predictive skill of W over S in CHIME,
therefore questions the well-established better skill of experiments starting from strong
AMOC conditions over those starting from weak AMOC conditions. Another intriguing
result is that experiments 15P in both CHIME and IPSL-CM5A have remarkably low

ensemble correlation compared to the other experiments (Figure 7.3, Table 7.2).

It has also been shown that by monitoring the AMOC precursors, the ability to predict
extreme AMOC events, in both CHIME and IPSL-CM5A, can go beyond the average
lead-time of predictability (up to about 2 decades).
AMOC precursors lead to large changes in the model’s AMOC in about 80% of the
cases in IPSL-CM5A, against only 50% in CHIME. It is, however, important to note
that this apparent difference in the ability to predict extreme AMOC events might not be

However, large changes in the

significant since fewer initial “events” (for which the precursors are in an extreme state)
have been identified in IPSL-CM5A than in CHIME (6 “events” against 11, respectively).

Nevertheless, several factors could still explain the plausible difference in the ability of
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IPSL-CM5A Predictive Skills
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Figure 7.3: “Plumes” of AMOC index in CHIME (left-column) and IPSL-CM5A
(middle-column) for each experiment. The members are shown as coloured lines,
the ensemble mean (control run) as the red (black) thick lines. The middle hori-
zontal black line is the mean AMOC, and both upper and lower horizontal black
lines show standard deviation. Summary of predictive skills (right-column) in
CHIME (dashed lines) and IPSL-CM5A (solid lines) showing ES (in blue) and
EC (in red) against lead-times. Dots indicate statistical significance at the 95%
(90%) confidence level for ES (EC).
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these two models to predict extreme AMOC events from their corresponding precursors.
It is important to bear in mind that the AMOC precursor considered here with CHIME
has been identified from a different control integration, and might therefore not be the
most appropriate one (hence explaining its weaker ability in predicting extreme events).
On the other hand, if the same precursor does really apply, then the difference in the
ability to predict extreme AMOC events in the two models might be explained by the
difference in the localization of their precursors; while the one in CHIME is situated in
the tropics, both precursors in IPSL-CM5A are in the high latitude regions (Escudier
et al. 2012). In CHIME, the precursor may be relatively remote from the deep convection
sites compared to IPSL-CM5A precursors, and CHIME might therefore lose predictive

skill correspondingly.
Decadal predictability of the North Atlantic climate

In terms of decadal predictability, an interesting feature worth pointing out concerns
the differences between CHIME and IPSL in the DPP approach: indeed, CHIME has
generally higher ppvf values than IPSL-CMb5A (reaching up to 0.75 and 0.40, respec-
tively, Figure 7.4 and Figure 7.5). Strictly speaking, these higher values in CHIME
mean that its low-frequency variability is more easily distinguishable from the internal
variability than in IPSL-CM5A, hence suggesting the potentially better predictive skills
of climate in CHIME. In contrast, the comparisons of the evaluation skills by the PPP
approach suggest better predictive skills in IPSL-CM5A than in CHIME. Indeed, pre-
dictability signals in CHIME are rarely identified in more than 50% of the experiments,
while in IPSL-CMb5A some signals can be identified in all experiments (Figure 7.4 and
Figure 7.5). The evidence for slightly weaker predictive skills of the AMOC index in
CHIME compared to IPSL-CM5A suggests that the DPP approach might actually over-
estimate the predictive skills of climate in CHIME. We speculate whether that is due
to the significantly shorter control integration length used in CHIME (201-year) than
in IPSL-CM5A (1000-year). This shorter control integration length might also explain
why the spatial distribution of the ppvf values in CHIME barely differs between the
10-year and 20-year timescales, in contrast to IPSL-CM5A.

Over the ocean, both models exhibit the highest predictive skills for surface tempera-
ture in the far North Atlantic (roughly in the subpolar gyre region and the Nordic Seas)
out to about 2 decades (Figure 7.4). They, however, differ in the sense that the IPSL-
CMbA model also identifies some hints of decadal predictability in both the subtropics
and the tropics, which are clearly absent in CHIME. This absence of signals might be
a consequence of the absence of an ENSO cycle in run £3 of CHIME; indeed, ENSO
is known to affect the tropical Atlantic activity (e.g. Saravanan and Chang 2000), and
therefore the predictability in this region. Over land, both models agree on the signif-
icantly smaller predictability of surface temperature compared to the ocean. However
there are more hints of predictability signals in IPSL-CM5A (which are restricted to the

coastal areas bordering some of the oceanic predictable regions) than in CHIME (which
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CHIME (SST) CHIME (SAT) IPSL-CM5A (T@ground)

DPP (10-yr)

PPP (10-vr)

DPP (20-yr)

PPP (20-vr)

Figure 7.4: Potential predictability of SST (left-column) and SAT (middle-
column) in CHIME, and surface temperature (at ground level) in IPSL-CM5A
(right-column). The DPP maps show ppuvf for 10-year and 20-year means (the
colored areas are significant at the 95% level according to a F-test); The PPP
maps show the number of starting dates (out of 5) where grid points are poten-
tially predictable (i.e. where it combines a normalized ES smaller than satura-
tion level at the 95% level according to a F-test, and a statistically significant
EC at the 90% confidence level according to a Students ¢-test) up to 10 and 20
years.

are only found over the western part of the British Isles). Predictability of precipita-
tion on decadal timescales is largely absent in both models (Figure 7.5). The weaker
predictability of precipitation compared to temperature is in agreement with Boer and
Lambert (2008) and Goddard et al. (2012); in general, precipitation is a more localized
variable in both space and time, and thus subject to larger noise-like variability that
is not predictable. Although weak, there are still a few signals in ISPL-CM5A (some
patches over the Nordic Seas and the subpolar gyre region) whereas no signals have been
identified in CHIME.



Chapter 7 Discussion and Conclusions 159

CHIME (precipitation) IPSL-CM5A (precipitation)

DPP (10-yr)

PPP (10-yr)

DPP (20-yr)

PPP (20-yr)

Figure 7.5: Same as Figure 7.4 but for precipitation.

In addition, climate predictability seems to have some dependence on the AMOC initial
state in both models. Indeed, there is some evidence for better predictive skills of surface
temperature (at ground level) in IPSL-CM5A and SAT in CHIME, when the AMOC is
near extremum in a maximum state. However, predictability of SST in CHIME differs
compared to IPSL insofar as predictive skills seem to also be favoured when the AMOC
is near extremum in a minimum state. A plausible explanation of this difference between
the two models could be the use of SST data in CHIME instead of surface temperature at
ground level as in IPSL-CM5A (although both SST and surface temperature at ground
level patterns in IPSL-CM5A have been found to be similar). Nevertheless, the fact
that predictability of the AMOC itself shows better predictive skills when starting from
a minimum AMOC state than a strong state, suggests that the minimum state has
a significant influence in CHIME. Results with CHIME therefore challenge the better

predictive skills of strong AMOC initial states over the weak states, found in other

models.
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Finally, the fact that, for both models, regions identified as potentially predictable are
also strongly sensitive to decadal AMOC fluctuations strengthens the likelihood for a
link between climate predictability and the AMOC. This suggests that the mechanisms
behind climate predictability are to a large extent linked to the ones responsible for
decadal AMOC variability.

Evaluation of different methods for quantifying predictive skills

In both models, the DPP approach identifies more widespread predictable regions than
the PPP approach (Figure 7.4 and Figure 7.5). As already mentioned in Chapters 5 and
6, these discrepancies might arise, first, from the difficulty to define a “useful” threshold
of potential predictability in the DPP approach, and second, from the subjective choice
of starting dates, number of members and experiments in the PPP approach. However
it seems reasonable to conclude that, both approaches agree insofar as, in both models,
regions identified as potentially predictable by the PPP approach correspond to those
with the highest decadal fractions of variance in the DPP approach. The two approaches

are complementary, thus strengthening the robustness of the results.

In addition, in the PPP approach, there is evidence supported by both models that the
two metrics used here to evaluate predictive skills (EC and ES) are not independent.
Indeed, a decreasing (increasing) ES has been generally associated with increasing (de-
creasing) EC (Figure 7.3, right-column). Besides, this hypothesis has been supported
analytically for centred and normalized data (see Appendiz A). However, there is one
exception in CHIME that weakens the robustness of this claim, with an increasing ES
associated with an increasing EC over time (Figure 7.3, experiment 15P, dashed-lines).

This draws into question the robustness of such a simple relationship in the real world.

Although the experimental set up was not designed to draw robust conclusions about
any predictability-dependence on the AMOC initial states, both CHIME and IPSL-
CMBbBA have still given some useful indications. In both models, predictability of both
the AMOC and climate seems to be sensitive to the initial AMOC conditions with
transitions around extreme states appearing as the most predictable events (in good
agreement with e.g. Griffies and Bryan 1997b; Collins and Sinha 2003; Collins et al.
2006a). However, the role of minimum versus maximum extreme states still needs to be
clarified. This result nevertheless suggests that skill from case studies may prove more
useful for understanding predictability mechanisms than computing average skills from

numerous start dates, as in most previous studies.

The main results of the decadal predictability studies carried out with CHIME and
IPSL-CM5A are summarized in Table 7.3.
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Table 7.3: Summary of main findings about decadal predictability in CHIME

and IPSL-CMb5A.

\ CHIME IPSL-CM5A
Average pre- | 6 years 8 years
dictive skills of
AMOC
Experiments 5P > W =1 S>5P>W
for which
AMOC is
predictable
% of cases | 50% 80%
where extreme
AMOC event
predictable
from its pre-
cursor(s)
DPP scores Up to 0.75 Up to 0.40
PPP scores Predictability signals in up to | Predictability signals in up to
40% of experiments 100% of experiments
Surface tem- | Up to 2 decades in far North | Up to 2 decades: (i) far North
perature pre- | Atlantic Atlantic (highest skills), (ii)

dictability over
the ocean

Subtropics (hints), (iii) Trop-
ics (hints)

Surface tem-
perature pre-
dictability over
land

Up to 1 decade in Western
part of British Isles (hints)

Up to 2 decades in coastal
areas bordering oceanic pre-
dictable regions (hints)

Precipitation Absent Up to 2 decades: (i) Nordic
predictability Seas (hints), (ii) North At-
lantic subpolar gyre (hints)

Climate pre- | Evidence for links with mech- | Evidence for links with mech-
dictability anisms responsible for decadal | anisms responsible for decadal
mechanisms AMOC fluctuations AMOC fluctuations

DPP versus | Regions identified in PPP cor- | Regions identified in PPP cor-
PPP responds to regions with the | responds to regions with the

highest decadal fraction of
variance

highest decadal fraction of
variance

EC and ES re-
lationship

Dependent metrics, except for
experiment 15P

Dependent metrics

Predictability-
dependence on
AMOC initial
states

(i) AMOC and SST: favoured
by extreme states (maximum
and minimum), (ii) SAT:
favoured by extreme states
(maximum)

(i) AMOC: favoured by ex-
treme states (maximum and
minimum), (ii) SAT, SST and
precipitation: favoured by ex-
treme states (maximum)
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7.2 Decadal variability of AMOC and climate in CHIME

7.2.1 Limitations and future work

Outcomes rarely come without limitations. Here are some issues from this study on

decadal variability with CHIME and some suggestions for future work.

The first limitation of our study arises from the short control integration length avail-
able (120 years). A longer integration (~ 1000 years) would be needed to clarify the
periodicity of decadal AMOC fluctuations in CHIME, and to check whether or not it is
significantly different from a simple red noise model. All the analyses should be repeated

with this longer run to validate the findings of this study.

If the mechanism of decadal AMOC fluctuations is confirmed, then further investigation
might be needed to better understand the processes behind some (tele)connections.
For example, the way in which the NAO affects SST in the GIN Seas still remains
unclear since processes other than the direct impact on heat fluxes seems to control
these local SST anomalies. As already mentioned in Chapter 4, such a link could be
more fully explored using a method such as the Interactive Ensemble Coupled Global
Climate Model (Fan and Schneider 2012). Further analysis focused on the mechanical
action of the wind on local SST could also be useful. Another example is the decadal
teleconnection between the tropical Atlantic ocean-atmosphere and the high latitude
stormtrack (i.e. the NAO); although such a teleconnection has already been identified
in the observations (Rajagopalan et al. 1998), the processes behind it still remain unclear

and therefore need to be carefully considered.

In addition, to further establish the extent to which the salinity preservation and the
speed of the northward advection are particular to CHIME, it would be necessary to
undertake a more in-depth intercomparison with a climate model typical of the major-
ity that feature a more orthodox z-coordinate ocean component. In comparison with
HadCM3, the early evidence is that CHIME does indeed better preserve the proper-
ties of intermediate waters such as AAIW, over long distances (Megann et al. 2010).
However, HadCM3 may not be the most appropriate model for such comparison, due
to the limited role that Labrador Sea convection plays in driving AMOC variability in
this model. It also has to be kept in mind that any model inter-comparison has to take
into account a possible dependency of each model on a considerable number of model
choices (e.g. topography, boundary conditions, mixing parameterizations) that can have

significant impact on the behavior of the basin-scale circulation.

Last but not least, it remains to be demonstrated that the mechanism of decadal AMOC
fluctuation identified in CHIME (namely the development and poleward advection of
tropical salinity anomalies) occurs in the real world. Undertaking comparison with

multi-decadal observations would therefore be necessary. However, such observations are
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at present inadequate for this purpose, due to under-sampling of much of the Atlantic
sector prior to the Argo era. This study therefore underlines the necessity of a sustained
observation network particularly in the tropical Atlantic. The continuity of observational
programs such as the Tropical Atlantic Climate Experiment (TACE, Schott et al. 2004),
and observational networks such as the Pilot Research Moored Array in the Tropical
Atlantic (PIRATA, Servain et al. 1998) are thus of primary importance to obtain decade-
long timeseries of observations. Then, if a comparable mechanism to the one identified
in the CHIME model occurs in the real world, the long-range links between the tropical
Atlantic activity and subsequent convective activity in both the Labrador and GIN Seas

promise potential predictability of the AMOC and climate.

7.2.2 What have we learnt?

The key messages from the present study are summarised below, and placed into a
“bigger-picture” context. First, in common with most previous modelling studies, a
large part of the variability of the AMOC on decadal timescales is likely to be a pas-
sive response to intrinsic internal atmospheric variability (e.g. Jungclaus et al. 2005;
Danabasoglu 2008; Delworth and Greatbatch 2000), rather than being part of a coupled
ocean-atmosphere mode (e.g. Timmerman et al. 1998). Second, our study underlines
the key role that the tropical Atlantic region is playing in controlling decadal AMOC
fluctuations. Although this finding is supported by some studies (e.g. Vellinga and
Wu 2004; Mignot and Frankignoul 2005), most of them support the dominant role of
high-latitude processes (e.g. Delworth et al. 1997; Jungclaus et al. 2005; Hawkins and
Sutton 2007; Escudier et al. 2012). These discrepancies amongst the different existing
climate models underline the current poor understanding of the mechanisms controlling
the variability of the AMOC on decadal timescales. As underlined by Liu (2012), it is
generally difficult in a climate model to clarify the role of ocean-atmosphere feedback
and to distinguish a coupled mode from a damped oceanic mode unambiguously, based
on the diagnosis of a control simulation alone. Indeed, model complexity limits the
extent to which model processes, interactions and uncertainties can be understood and
evaluated. te Raa et al. (2004) noted that, although quantitative aspects of the vari-
ability like period and spatial pattern are changing, the physical mechanisms of decadal
variability in the more complex simulations can be attributed to the same processes as
in the simplest model configuration. This suggests that simple (or idealized) models
might actually be more appropriate to identify the nature of decadal variability. The
use of complex climate models is, nevertheless, essential to explore the role of non-linear

dynamics in generating this variability.

The present study also underlines, that although quantitative aspects of the variability

like periods and spatial pattern can be somewhat similar, different vertical coordinate
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choice of the ocean component significantly affects the processes behind decadal vari-
ability. It is quite worrying to see how the choice of vertical coordinate alone gives rise
to such discrepancies. With some evidence for better preservation of water masses and a
more coherent internal structure to the anomalies than non-isopycnic coordinate ocean
component models (Megann et al. 2010), isopycnic models are expected to be more real-
istic. However, better observations, in particular long-term records of observed changes,
are essential to support (or not) this assumption, and hence to help to understand pro-
cesses critical to improving model performance. Recently, Johns et al. (2011) supported
the idea that monitoring the AMOC is of primary importance since they found observa-
tional evidence for the direct influence of the AMOC on the climate system. Significant
resources have been and are continuing to be devoted to field programs intended to
provide direct measures of AMOC strength (e.g. Send et al. 2011; Rayner et al. 2011).
However, variations in the AMOC are not easily interpreted as diagnostic of the ocean
circulation or its climate impacts, and to progress we need to pick apart the different
components of the flows and come to understand how and why they vary (Wunsch and
Heimbach 2012). The requirements on future observational systems are far greater that

what is now available.

7.3 Decadal predictability of AMOC and climate in CHIME

7.3.1 Limitations and future work

Although “perfect ensemble” experiments show considerable promise for predicting in-
ternal variability, particularly in the North Atlantic (e.g. Collins et al. 2006a; Hurrell
et al. 2009), there are critical obstacles that must be overcome if such potential pre-
dictability is to be achieved in reality. For example, there are limitations linked to
the restricted number of experiments that can be run. This limitation has to be kept
in mind here, especially when drawing conclusions about any possible predictability-
dependence on the AMOC initial states. Although the present study permitted some
useful indications about this, more systematic experiments starting with similar initial
states should be undertaken to confirm the results of this study. This should also help
to clarify the role of minimum versus maximum AMOC extreme states on predictive
skills, and other interesting features such as the remarkably low ensemble correlation of
experiments 15P (compared to the other experiments) found in both CHIME and IPSL-
CMS5A. The problem of model error is also a technical obstacle that needs to be overcome
in the idealized model experiment framework. It has, indeed, to be kept in mind that
here we have assessed the upper limit of predictability as both perfect model and near
perfect knowledge of the current state of the climate system are assumed. However,
climate models still have significant biases compared to observation, and their possible

impacts on the level of predictability skill of a model cannot be ignored. For example, as
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already mentioned in Chapter 6, the substantial warming and increasing salinity in the
North Atlantic subpolar gyre and the excessive mixing in the northern high-latitudes in
CHIME (Megann et al. 2010) might well affect the effective level of predictability skill.
An essential component of evaluating decadal prediction will therefore be to determine
the effect of model systematic errors on the predictions, both in the simulation of mean
climate and coupled processes that contribute to decadal time scale variability; this is an
important aspect of the research activities involved with decadal prediction in CMIP5
(Taylor et al. 2009). In addition, different definitions of predictability, different experi-
mental protocols and different metrics are often used in idealized model experiments to
evaluate predictive skills, making the comparisons among existing studies difficult. The
development of a common skill evaluation framework to evaluate decadal predictions
should therefore be encouraged to allow a comparison of decadal prediction systems
across different modeling centres (Meehl et al. 2012). For example, the impact of dif-
ferent perturbation schemes (used to generate the ensembles) on the level of predictive
skills should be seriously considered in forthcoming studies; there is indeed some recent
evidence for predictability experiments in which only the atmospheric state is perturbed
(equivalent to perturb the upper ocean only), that may strongly overestimate the ocean
predictability time (Zanna et al. 2012). Whether SST alone is sufficient to constrain the
AMOC is indeed unclear (Dunstone and Smith 2010).

In addition, one important limitation of our predictability study with CHIME is its rel-
atively short control integration length (compared to IPSL-CM5A), therefore affecting
the statistical significance of the results. These results also rely on a control integration
for which the reliability is questionable, notably because of the absence of the ENSO
cycle known to significantly influence the tropical Atlantic Ocean (e.g. Saravanan and
Chang 2000; Giannini et al. 2001; Huang et al. 2002); a key region in the processes
driving decadal AMOC fluctuations in CHIME. To validate the CHIME predictability
results, this study should be repeated using a longer and more reliable control inte-
gration. Confidence in decadal forecasts also requires an understanding of the physical
mechanisms giving rise to any predicted changes in climate. The next step would there-
fore be to undertake a more in-depth investigation of the specific mechanisms that lead
to predictability, consisting of further study of e.g. links between water properties and

pressure gradient, the large scale mixing of anomalous properties.

Furthermore, the fact that CHIME has similar (or even shorter) level of predictive skills
than do non-isopycnic models (such as IPSL-CM5A, HadCM3) is surprising given that
isopycnic models are expected to have better predictive skills because of their supposed
better preservation of water masses and more coherent internal structure of the anoma-
lies. The origin of this unexpected result merits further attention and investigation.
In addition, experiments starting from strong AMOC states have often been associated

with the better predictive skills, as found in most previous studies (e.g. Collins and



166 Chapter 7 Discussion and Conclusions

Sinha 2003; Collins et al. 2006a) and in our IPSL study. Yet, in CHIME this experi-
ment is actually associated with the lowest skills. The possibility that strong AMOC
conditions in CHIME might be associated with an excessive convective mixing (reduc-
ing its predictive skill) is not excluded. This surprising result therefore needs further

clarification.

Finally, which of the two models shows the most “realistic” predictive skills of decadal
AMOC fluctuations remains difficult to say since sufficiently long observational time
series are at present unavailable. However, the current RAPID-WATCH program (Cun-
ningham 2008), which aims at delivering a decade long (2004-2014) time series of obser-
vations of the AMOC is of considerable value in such perspective. With some evidence
that extreme AMOC events can be predictable beyond a decade, the continuity of such
observational programs should be encouraged. Obtaining decade-long time series of
observations is of primary importance for verification purposes, but also for accurate
initialization of the ocean state in coupled climate models. Indeed, initializing models
with the observed state of the climate is thought to improve decadal forecast skills (e.g.
Keenlyside et al. 2008; Smith et al. 2010) and is at the heart of the decadal predictability
problem (e.g. Meehl et al. 2012; Hurrell et al. 2012). Because of the under-sampling
of much of the Atlantic sector prior to the Argo era, a comprehensive global climate
observing system, with a particular emphasis on the ocean (e.g. Trenberth 2008) should
be maintained. Sustained observation should particularly be encouraged in the tropical
Atlantic (e.g. TACE, Schott et al. 2004) since our findings suggest the need for intense

observation in this key region to constrain prediction of the AMOC.

7.3.2 What have we learnt?

Contrary to expectations, the choice of vertical coordinate of the ocean component
does not significantly affect the level of predictive skills of a model. The present study
shows evidence for the strength of the AMOC to have an average predictive skill of
about 7 years, and that, on decadal timescales, surface temperature has the highest
predictive skills in the high latitude regions and potential predictability for precipitation
is largely absent. Because the level of predictability differs from one study to another and
that different experimental protocol are used among the existing predictability studies,
it remains difficult to evaluate the realism of decadal predictability. A common skill
evaluation framework should therefore be encouraged. The decadal prediction evaluation
framework described in the present study should be taken as a methodological set-up,
since we do not claim it is mature enough to propose any reliable prediction to be
used for societal application. For example, uncertainties in the forecast is something to
absolutely consider for a prediction system to be reliable, and these are not taken into

consideration in the prediction evaluation framework described here. But our approach
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still gives some indications as to where and to what extent skillful decadal forecasts

might be possible.

In addition, the assumptions, conditions, uncertainties and underlying framework of
models would ideally need to be communicated to the decision-makers, for them to be
able to evaluate the relevance of the information provided by the models, and to make
informed decisions. This turns out to be too complex and time consuming, so it is the
scientist’s duty to provide guidance on the interpretations of the model results. The
question of whether we should believe anything that our models predict about future
climate is related to how well we can quantify the uncertainty in model projections.
Stainforth et al. (2007) showed that it is not clear that weighted combinations of results
from today’s complex climate models based on their ability to reproduce a set of obser-
vations can provide decision-relevant probabilities. As long as all of our current models
are far from being empirically adequate, they consider this to be futile as all models
have effectively zero weight relative to the real world. Stainforth et al. (2007) have thus
described several methods for presenting the results of large ensembles without assum-
ing realism for any individual model in order to increase our ability to communicate the
appropriate degree of confidence in said results. They suggested, for example, that con-
fidence may come from physical understanding of processes involved or from the failure

to simulate the variables of interest under present-day climate.

The present study also shows evidence that decadal predictability of the AMOC and
associated impacts on climate may be sensitive to the initial oceanic conditions with
transitions around extreme states appearing as the most predictable events, in good
agreement with several existing studies (e.g. Collins and Sinha 2003; Collins et al.
2006a). This suggests the need for accurate knowledge of the current state of the ocean.
As already mentioned earlier, significant resources are being devoted to provide direct
measure of AMOC strength, but variations in the latter are not easily interpreted as
diagnostic of the ocean circulation or its climate impacts (Wunsch and Heimbach 2012).
The global three-dimensional ocean circulation should therefore be described with all of
its space and time structure. For instance, Zanna et al. (2012) pointed out the strong
sensitivity of the AMOC to deep perturbation in the high latitude regions and that errors
there could limit the predictability of the AMOC. These requirements on observational

system are far greater than what is available at present.

7.4 Concluding remarks

This project provides a contribution to better understanding of the mechanisms driving
decadal AMOC fluctuations while underlining the complexity of such mechanisms and
the major disagreements amongst the existing modeling studies. Although additional

efforts are still needed to bridge some of the gaps linked to the mechanisms of decadal



168 Chapter 7 Discussion and Conclusions

variability, this project also contributes to better understanding of the predictability
limits for decadal AMOC variations and associated key variables, by giving some indi-
cations as to where and to what extent skillful decadal forecasts might be possible. This
project also contributes to the development of a common skill evaluation framework to
evaluate decadal predictions, which is highly desirable to allow a comparison of decadal
systems across different modeling centres. The decadal prediction system described here
should, however, be taken as a methodological set-up, since we do not claim it is mature

enough to propose any reliable prediction to be used for societal application.

It is worth noting that at present, only a handful of people think about how to make the
best use of the huge amounts of data generated by climate models, how to synthesize data
for the non-expert, how to effectively communicate the results and how to characterize
uncertainty. The realistic communication of scientific uncertainty and the relevance of
today’s “best available information” may prove critical for maintaining credibility in the

future as model-based information improves.

It is also important to bear in mind that none of the existing models is able to accurately
reproduce all aspects of past and current climate, and that no single model will ever
be able to realistically reproduce climate as we experience it. By their very nature,
models cannot capture all the factors involved in a natural system, and those that
they do capture are often incompletely understood. Nevertheless, the models ability to
reproduce many large-scale aspects of present-day climate, the fact that they are built
on well-known physical processes (such as conservation of energy, mass and angular
momentum), and the fact we can understand and interpret many of the results from
known processes provide support for the models credibility, at least for large scales and
certain variables. In the absence of better alternatives, it is likely to be better to use an
“imperfect” model than, say, random guessing. They are the best tool we have available
for explaining the current behaviour of our climate and predicting likely changes to the

planet’s future climate.

Ultimately, not just the quality but also the value of decadal forecasts should be quan-
tified in terms of the societal or economic value of the predicted information to climate-
related decisions or impacts studies. As the science of decadal prediction is developed,
the skill of such predictions in relation to their usefulness and application must also be

evaluated.



Appendix A

Relationship between ES and EC

We consider here centred and normalized (by the standard deviation) data in time t.
We consider the CS03 definition of ES and EC:

2 2 - - 2
ES? = NG ;J;l (1)) (A1)
9 M M
EC = NMGET) g :Z corr(Xi(t), X;(1))) (A.2)

where the discrete time correlation using centred and normalized data is:

T
corr(X;(t), Xj(t) = 7 gy Xi(t) X;(t)
We consider the average of ES over the period of time T: < ES? >p= Zthl ES%(t)

By expanding (X;(t) — X;(t))? in Equation A.1 and after a few rearrangements, we can
show that:

M M
< ES? >p= Z VoY Z D (XP() + XF(t) — 2X(6) X (t)) (A.3)

z:l Jj=i+1

M M M M

< ES? T ST > ZXQ (t)+X2(t)— M(]\;—l)z > %ZXi(t)Xj(t)

i=1 j= z+1 t=1 i=1 j=i+1 = t=1

Since the variables are centred and normalized: 7 ST X2(t) + X]2 (t) =

Hence, we obtain the following result: < ES? >7= 2(1 — EC)
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For the real case, where the data are not normalized and centred, which is more ap-
propriate for ES estimation, no such simple relationship can be found analytically, but
we hypothesize that ES and EC remain related. A few illustrations of such link are

evidenced in Sect. 5.3.1.2 and provide support in favour of this hypothesis.



Appendix B

Predictability maps of climate in
IPSL-CM5A-LR

We present the individual predictability maps for temperature and precipitation for each
starting date in the PPP protocol. These individual results are aggregated in Figure
5.8b and Figure 5.9b.

171



172 Appendix B Predictability maps of climate in IPSL-CM5A-LR

[w]

[5P]

[s]

U

-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure B.1: Surface Temperature - Colours represent EC computed as in
CS03 for each starting date and years 1-10 (left panels), 1-20 (right panels)
of each ensemble experiment. Areas where the correlation is not statistically
significant at the 90% level are shown in white. Dots represent grid point where
the ES is statistically significantly smaller than the control RMSE at the 95%

level.
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Figure B.2: Precipitation - Colours represent EC computed as in CS03 for
each starting date and years 1-10 (left panels), 1-20 (right panels) of each en-
semble experiment. Areas where the correlation is not statistically significant
at the 90% level are shown in white. Dots represent grid point where the ES is
statistically significantly smaller than the control RMSE at the 95% level.






Appendix C

Predictability maps of climate in
CHIME

We present the individual correlation maps for SST and SAT for each starting date in
the PPP protocol. These individual results are aggregated in Figure 6.18b and Figure
6.19b.

175



176 Appendix C Predictability maps of climate in CHIME

[15P]

[5P]

90w oW W o B 50w sow X o s0°E

[S]

]

oW oW 0w o S0°E 20w oW 0w @ S0°E

-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure C.1: Sea Surface Temperature - Colours represent EC computed as
in CS03 for each starting date and years 1-10 (left panels), 1-20 (right panels)
of each ensemble experiment. Areas where the correlation is not statistically
significant at the 90% level are shown in white. Dots represent grid point where
the ES is statistically significantly smaller than the control RMSE at the 95%
level.
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Figure C.2: Surface Air Temperature - Colours represent EC computed as
in CS03 for each starting date and years 1-10 (left panels), 1-20 (right panels)
of each ensemble experiment. Areas where the correlation is not statistically
significant at the 90% level are shown in white. Dots represent grid point where
the ES is statistically significantly smaller than the control RMSE at the 95%
level.
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