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A MODEL STUDY OF DECADAL CLIMATE VARIABILITY AND

PREDICTABILITY ASSOCIATED WITH THE ATLANTIC MERIDIONAL

OVERTURNING CIRCULATION

by Aurélie S.A. Persechino

This study addresses the decadal variability and predictability of the Atlantic Meridional

Overturning Circulation (AMOC), and associated key variables, in two IPCC-class cli-

mate models. The AMOC variability is analyzed in a new climate model CHIME, which

features a novel (largely isopycnic) ocean component. Power Spectral analysis reveals en-

hanced variability for periods in the range 15-30 years. The primary mode of variability is

associated with decadal changes in the Labrador and the Greenland-Iceland-Norwegian

(GIN) seas, in both cases linked to the tropical activity about 15 years earlier. These

decadal changes are controlled by the low-frequency North Atlantic Oscillation (NAO),

associated with a tropical-extratropical teleconnection. Poleward advection of salinity

anomalies in the mixed layer also leads to AMOC changes that are linked to convective

processes in the Labrador Sea. A secondary mode of variability is associated with inter-

annual changes in the Labrador and GIN Seas, through the impact of the NAO on local

surface density. The decadal potential predictability of the AMOC and climate as repre-

sented in the non-isopycnic IPSL-CM5A model and CHIME is explored using prognostic

and diagnostic approaches. The modelled AMOC has an average predictive skill of 8

and 6 years, respectively. Over the ocean, surface temperature has the highest skill up

to 2 decades in the far north of the North Atlantic, in both models. Additional oceanic

areas of predictability are identified in IPSL-CM5A in the tropics and subtropics. The

spatio-temporal predictability of both surface temperature over land and precipitation

differs somewhat between the two models, but is of limited extent compared to that of

ocean variables. Predictability of climate arises from the mechanisms controlling the

decadal AMOC fluctuations. Predictive skills of AMOC and climate are favoured by

extreme AMOC events but the role of minimum versus maximum states remains to be

clarified. The expected better predictive skills of CHIME over non-isopycnic models

(due to its better preservation of water masses and more coherent internal structure to

the anomalies) are not borne out.
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Chapter 1

Introduction

1.1 The Ocean as a component of the climate system

In recent years, both natural and anthropogenic climate change have become a topic

of growing interest and concern for scientists, as shown by the increasing number of

international conferences held on the subject (e.g. United Nations Climate Change

Conferences in Copenhagen 2009, Cancun 2010, Durban 2011, Bonn 2012). The roles

of the atmosphere and greenhouse gases as well as the role of deforestation have been

widely acknowledged in the media. However, although the ocean covers 70% of the

global surface of our planet (hence the “blue planet”), the ocean’s importance for cli-

mate is somewhat neglected. Yet, like the atmosphere, the ocean redistributes the solar

heating from the equatorial regions (where there is a surplus of incoming over outgo-

ing radiations) toward the icy poles (where there is a deficit of incoming over outgoing

radiations), and therefore significantly contributes to the heat budget of the Earth.

One of the primary reasons for the strong influence of the ocean on the climate is due to

its great heat capacity. Indeed, the ocean stores more heat in the uppermost 3 m than the

entire atmosphere. It absorbs much of the solar energy that reaches earth, and thanks to

the high heat capacity of water, the ocean slowly releases heat over months or years. The

ocean’s vital role in the climate system results also from its great transport capability.

The ocean can transport heat, freshwater and other material properties, mainly achieved

by boundary currents, large gyres and by the large-scale ocean circulation known as the

thermohaline circulation. By both its storage and transport capacities, the ocean can

therefore be seen as a great reservoir, which continuously exchanges heat, moisture and

carbon with the atmosphere, driving our weather patterns and influencing the slow,

subtle changes in our climate.

In the context of climate change, the ocean also plays a major role. First, because of

its great heat capacity, it delays the warming of the atmosphere. Second, the ocean also

1
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represents a major sink for anthropogenic carbon dioxide (e.g. Le Quéré et al. 2009).

Third, its associated regional pattern of heat transport and absorption lead to significant

changes in regional rainfall and temperature distribution (e.g. causing droughts such as

in West Africa in the 1970’s, Conway et al. 2009). Fourth, the ocean heat absorption

leads to sea level rise through thermal expansion leading to coastal erosion and flooding

(e.g. Nicholls and Cazenave 2010). Fifth, changes in formation of deep-water masses at

high latitudes could lead to abrupt changes in the global ocean thermohaline circulation

that could result in a major rearrangement of global climate in the space of a few decades

(e.g. Clark et al. 2002; Rahmstorf 2002).

This latter point constitutes the basis of the present study. This large-scale thermohaline

circulation is considered as the “Achilles heel of the climate system” (Broecker 1997). It

is primarily (but not exclusively) meridional, and is often characterised as the Meridional

Overturning Circulation (MOC). Because the Atlantic MOC (AMOC) is thought to

play an important role in maintaining the European and North Atlantic climate by

transporting heat from low to high latitudes (e.g. Hall and Bryden 1982; Trenberth and

Caron 2001; Gordon et al. 1992; Winton 2003; Knight et al. 2005; Sutton and Hodson

2005; Pohlmann et al. 2006; Sinha et al. 2012), the AMOC has been a major research

focus for many years.

1.2 The importance of decadal AMOC prediction to un-

derstand future climates

Because anthropogenic climate impacts are likely to be expressed on decadal timescales

(IPCC 1996), understanding processes behind naturally occurring decadal variability in

the climate system, is of primary importance. At multiyear to decadal timescales, the

memory (and hence the potential for predictability of the climate system) are thought

to reside in the ocean. The ocean indeed has a larger thermal inertia than land areas,

and observations suggest that it has enhanced variability at the decadal time scales (e.g.

Deser and Blackmon 2010; Czaja and Marshall 2001; Frankcombe et al. 2010). Most

studies thus point to oceanic mechanisms as central to climate memory, particularly

those related to reservoirs of ocean heat or slowly evolving circulation and their inter-

action with the atmosphere. For instance, sea surface temperatures in mid-latitudes are

well described by the stochastic climate model paradigm (Frankignoul and Hasselmann

1977), where random atmospheric surface forcing with “white noise” is integrated by

the ocean mixed layer to produce a “red noise” spectrum, in which power is ampli-

fied at lower frequencies (Deser et al. 1993). In addition, a number of ocean processes

(e.g. overturning and gyre circulations, the triggering of Rossby waves) are potential

candidates that may provide additional predictability by influencing atmospheric and

thus terrestrial variability. A potentially large source of predictability of natural climate
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variability on decadal timescales is thought to come from fluctuations in the AMOC

(e.g. Delworth and Mann 2000; Dijkstra et al. 2006; Zhang and Delworth 2006).

Due to a lack of AMOC observations, the impact of AMOC changes have been studied

using climate models. The most direct impact of changes in the AMOC is on the

ocean heat transport, with decreases in the AMOC leading to decreases in northward

heat transport (e.g. Stouffer et al. 2006; Vellinga and Wood 2008). If the AMOC

transports less heat northward this will impact sea surface temperatures and near-surface

air temperatures. Several modelling studies have indeed linked the leading pattern of

SST variability over the North Atlantic (known as the Atlantic Multidecadal Oscillation

or AMO, Schlesinger and Ramankutty 1994) to changes in the AMOC (e.g. Delworth

and Mann 2000; Knight et al. 2005), though models differ considerably in the timescale

of the AMO they reproduce (Knight 2009). Sutton and Hodson (2005) showed evidence

from observations that the AMO modulates the North American and European boreal

summer climate on multidecadal timescales. The presence of feedbacks linking AMOC,

SST, and the atmospheric circulation therefore open opportunities for predictability of

decadal climate variability over land associated with predictability of AMOC variations

(Knight et al. 2006). Because the AMOC influences many aspects of climate, it can be

considered as an important potential carrier of climate predictability.

Wunsch and Heimbach (2012) showed some observational evidence for the AMOC to ex-

hibit a stationary Gaussian red noise behaviour which is not particularly surprising since

the system is subject to continuous stochastic disturbances by external processes (winds,

precipitations, etc.), and to internal instabilities of a wide assortment. The Gaussian

behaviour is consistent with the central limit theorem for a process arising from numer-

ous independent disturbances (Wunsch and Heimbach 2012). However, it is somewhat

surprising that the frequency spectrum is not more “red” given the long-time scales of

ocean memory. This underlines the dominance of the known white noise behaviour of

the wind field, which is only slightly reddened by the longer oceanic timescales. A simple

model for red noise is the univariate AR(1) process. In the mathematical formulation

of the slow processes, atmospheric variability (weather) is treated as “noise”, which is

integrated by the ocean resulting in low-frequency variability (Hasselmann 1976). The

differential equation describing this AR(1) process for the oceanic mixed layer temper-

ature is given by:
∂T

∂t
= −γT + � (1.1)

where γ is the damping coefficient and � is a random variable with Gaussian character-

istics. The latter term refers to the fact that as the correlation increases the equation

approximates more and more closely persistence with some added noise; it represents a

stochastic process with some memory. The mixed layer temperature is forced by white

(weather) noise � and is damped about its equilibrium temperature by feedback pro-

cesses represented by a damping time scale 1
γ . If the long time scale variability of the

coupled system is a consequence of the damping of the weather noise forcing in the
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manner discussed by Hasselmann (1976) and Frankignoul and Hasselmann (1977), then

skilful forecasting is limited by the damping timescale.

Although there is several evidence for the power spectrum of modelled AMOC indexes

to show power resembling a theoretical red noise spectrum, the acquisition of long time

series with climate models (up to thousand years) also allowed identification of energy

peaks that are significantly above the red noise (e.g. Delworth et al. 1993; Jungclaus et al.

2005; Medhaug et al. 2011) with periods ranging from 10 to 100 years. Modelling studies

therefore show evidence that AMOC prediction is promising for potential predictability

of climate at multi-decadal timescales.

1.3 Potential for abrupt changes in the AMOC

Because of its long timescale, the AMOC is thought to provide a stabilizing effect on cli-

mate, but is also suspected (from paleoclimatic and modeling evidence) to cause abrupt

climatic change in the space of a few decades if it is disturbed in certain ways. Before

reviewing some of its past shifts and its possible future behaviour, a general description

of the AMOC is first given.

1.3.1 Overview of the AMOC

The AMOC is described as the zonally averaged meridional flow forced by winds and

buoyancy fluxes, transporting ∼15 Sv of water and 1 PW of heat poleward (estimation at

40◦N, Ganachaud and Wunsch 2000). It is usually defined as the basin-wide circulation

in the latitude-depth plane, as typically quantified by a meridional transport stream-

function. Thus, at any given latitude, the maximum value of this streamfunction, and

the depth at which it occurs specified the total amount of water moving meridionally

above this depth (and below it, in the reverse direction).

A schematic representation of the global MOC (which can be seen as the mean large-

scale circulation in the ocean) is shown in Figure 1.1. Essentially, cold, dense water

is formed in the Nordic Seas, Labrador Sea, and Weddell Sea through vertical mixing,

which sinks and flows out into the oceans. The North Atlantic Deep Water (NADW)

flows southward along Deep Western Boundary Currents (DWBCs) to the Southern

Ocean. The deep water joins the Antarctic Circumpolar Current (ACC), which mixes

and redistributes it to all ocean basins. Deep water is upwelled around Antarctica, along

the equator and along eastern coastlines (Gordon 1986). This cool water is warmed in

the tropics, and most of it is transported poleward along Western Boundary Currents

(WBCs), completing the circulation loop.

More specifically, in the North Atlantic (Figure 1.2), the warm and saline waters of

the Gulf Stream (originating from the Gulf of Mexico) are transported northward by
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Figure 1.1: Schematic representation of the global Meridional Overturning Cir-
culation. Surface currents are shown in red, deep waters in light blue and
bottom waters in dark blue. The main deep-water formation sites are shown in
yellow. (From Rahmstorf 2002).

the North Atlantic Current (NAC). On its way to the Nordic and Labrador Seas, the

warm saline surface water loses heat to the cold atmosphere (warming it) whereas its

salt content remains relatively constant (as salt cannot be exchanged in more than trace

quantities at the air-sea interface). The increase in density resulting from the strong

heat loss renders the surface water unstable and it overturns, sinking in quite specific

areas to reach a depth where waters have the same density: NADW is ultimately formed.

Note that open ocean deep convection is more frequently observed in the Labrador Sea

than in the Greenland Sea (Marshall and Schott 1999). The newly formed NADW flows

southward as a deep western boundary current along the continental slope of America

to about 35◦S (Stommel and Arons 1960), to counter-balance the northward export of

surface water (in accordance with mass conservation). In summary, the underpinning

concept for the Atlantic MOC (hereinafter AMOC) consists of four main components:

(i) upwelling mixing processes that transport volume from depth to near the ocean

surface, (ii) surface currents that transport relatively light water toward high latitudes,

(iii) deep-water regions where water become denser and sinks, (iv) deep currents closing

the loop.

1.3.2 Past AMOC shifts

Analysis of sediment cores and corals provides a wealth of information on past ocean

circulation and show that it has undergone major changes during the past 120,000 years

(Rahmstorf 2002). For example, time slice compilations suggest that at different times,

latitude shift of convection sites (between the Nordic Seas and the regions south of

Iceland) have occurred (e.g. Alley and Clark 1999), and that at certain times NADW

formation was even interrupted (Keigwin et al. 1994). Clark et al. (2002) and Rahmstorf
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Figure 1.2: Simplified representation of the present-day Atlantic Meridional
Overturning Circulation. Warm surface currents are shown in red, North At-
lantic Deep Water is shown in blue. (From Rahmstorf 1997).

(2002) also suggested that past reorganizations of the AMOC were involved in climatic

temperature changes of several degrees in a few decades.

The most dramatic abrupt climate changes are the Dansgaard-Oeschger warm events

(observed quasi-periodically during the last glacial period), with a warming that can ex-

ceed 10◦C within a decade (Severinghaus et al. 2003). Another type of abrupt change is

the Heinrich events (also observed during the last glacial period); sediment data indicate

a large discharge of icebergs into the northern Atlantic (Heinrich 1988), decreasing the

density of surface water in the North Atlantic to such an extent that the NADW circu-

lation essentially shuts down in the course of a few decades, cooling the North Atlantic

dramatically (Keigwin et al. 1994). At the end of the last glacial period, rapid warming

occurred, as the AMOC restarted. As the climate warmed and ice sheets melted, the

ocean circulation went through a number of oscillations that may be explained by melt-

water input as the great northern ice sheets further disintegrated. The effect may have

been rapid cooling of up to 10◦C in a matter of decades (causing the Younger Dryas

and 8.2 kyr cold events). The variability of the AMOC during the Holocene after the

8.2 kyr event is discussed by Keigwin and Boyle (2000). Variations are clearly much

smaller than during glacial times, but the evidence for them is still controversial and

not very strong. In the last decade or so, Bryden et al. (2005) reported that the AMOC

seems to have weakened by about 30% from 1957 to 2004. This work was followed

by an intense debate suggesting that the five snapshots used in this study might have

subsampled intense high-frequency variability. Indeed, there are at present no observa-

tions indicating a sustained weakening of the AMOC during the last few decades (e.g.

Knight et al. 2005; Cunningham et al. 2007; Cunningham and Marsh 2010). On the con-

trary, high-resolution modelling (Biastoch et al. 2008), and combined satellite altimetry

and in situ observations (Willis 2010) even hint at a weak upward trend in the AMOC

during the last decades. Evidence from both observational and modelling studies of a

weakening/strengthening of the AMOC during the last decades is still controversial.
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For the present-day climate system, the AMOC has been associated with a large north-

ward heat flux which transports about 1.2 PW of heat poleward of 25◦N, or 20-30% of

the total heat flux carried by the atmosphere-ocean system at this latitude (Hall and

Bryden 1982; Trenberth and Caron 2001). Consequently, changes in the AMOC have the

potential to change the climate in this region (e.g. Manabe and Stouffer 1994; Vellinga

and Wood 2002), and to lead to a major rearrangement of global climate (e.g. Manabe

and Stouffer 1999) as already seen in the geological past. Abrupt changes in the AMOC

are considered as one of the major challenges in climate change (Broecker 1997; O’Neill

and Oppenheimer 2002).

1.3.3 Future behaviour of AMOC in a changing climate

In the future, there is a risk that substantial changes in the AMOC could occur as a

result of global warming from increasing levels of atmospheric greenhouse gases (Man-

abe and Stouffer 1994; Rahmstorf and Ganapolski 1999; Zickfeld et al. 2007). However,

there is still much uncertainty as to how it will respond. Indeed, even when forced by the

same scenario, climate models show a wide range of AMOC responses to global warm-

ing (IPCC 2001, Figure 1.3). Nevertheless, although some projections of greenhouse

gases-induced climate change show little or no weakening of the AMOC, the majority

of the state-of-the-art climate models show a weakening in the AMOC throughout the

21st century (e.g. Gregory et al. 2005; IPCC 2007; Medhaug and Furevik 2011). Most of

them assessed “very likely” that the AMOC would weaken (with an average predicted

slowdown of 25%, IPCC 2007) by 2100, in response to increase freshening and warming

in the subpolar seas (Rahmstorf 1999; Rahmstorf and Ganapolski 1999; Delworth and

Dixon 2000). Since the overflow and descent of cold, dense waters across the Greenland-

Scotland Ridge (i.e. NADW) is a principal mean by which the deep ocean is ventilated

and renewed, the suggestion is that a reduction in upper-ocean density at high northern

latitudes will weaken the AMOC. If this were to occur, northern Europe and the north-

eastern American continent would correspondingly cool. The climatic impacts would

not be restricted to the Atlantic regions but extend globally through atmospheric tele-

connections (e.g. Dong and Sutton 2002; Zhang and Delworth 2005) and through global

oceanic wave mediated adjustment (Goodman 2001; Johnson and Marshal 2004; Blaker

et al. 2006). Note that, although a transient weakening is the most common response

of the AMOC to greenhouse forcing, to date there is no published climate scenario run

that simulates a collapse of the AMOC before the year 2100 (Gregory et al. 2005).

For the Atlantic sector, the fate of the AMOC will be important in shaping both regional

and global climate change. However the fact that the climate exhibits strong internal

decadal to multidecadal variability in this sector (e.g. Latif et al. 2006) makes the

prediction of the AMOC challenging because of its likelihood to mask the anthropogenic

climate signal during the next few decades (e.g. Knight et al. 2005; Sutton 2003). This



8 Chapter 1 Introduction

Figure 1.3: Evolution of the AMOC in greenhouse warming simulations with
different coupled ocean-atmosphere global climate models. All models were
driven with a “Business as Usual” scenario. (From IPCC 2001).

is clearly illustrated in Figure 1.4, which shows four different greenhouse gas simulations

(with a CO2 increase of 1% per year) initialized from different states of a control run

(Sutton 2003). Although the global mean temperature exhibits a rather monotonic

increase (left panel), the AMOC evolution closely follows of the control run for some

decades (right panel).

Figure 1.4: Global mean surface air temperature (left panel) and meridional
overturning index (right panel) from the control run (black) and four greenhouse
gas experiments (colored lines) with the ECHAM5/MPI-OM climate model.
(From Sutton 2003).

Because of the economic and socio-economic consequences (e.g. for fisheries, agriculture,

infrastructure), the ability to predict anthropogenic climate change therefore demands a

good understanding of the natural decadal variability associated with the AMOC, as it is

precisely on this timescale that anthropogenic impacts are likely to be expressed (IPCC

1996). Although a large body of literature exists on the processes that potentially give

rise to decadal climate variability, the subject is still under debate.
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1.4 Characteristics and mechanisms of decadal climate vari-

ability associated with the AMOC

In search of the origin of decadal variability in the climate system, the AMOC has long

been regarded as one of the best candidates. Indeed, both observational and modelling

studies support the idea that the decadal climate variability in the North Atlantic has

been closely related to the AMOC (e.g. Gordon et al. 1992; Winton 2003; Herweijer

et al. 2005; Latif et al. 2004). The question of how changes in the AMOC develop

and whether there are general modes describing the global overturning circulation have

been addressed by a large variety of numerical experiments and with models of varying

complexity. However, the nature and mechanism of the decadal variability of the AMOC

is still controversial.

In the existing literature, there are two leading mechanisms for the decadal AMOC

variability. The first idea is that it is part of a coupled ocean-atmosphere mode (e.g.

Timmerman et al. 1998; Vellinga and Wu 2004; Danabasoglu 2008), and the second

argument is that it is simply an oceanic response to low-frequency atmospheric forcing

(e.g. Delworth et al. 1993; Delworth and Greatbatch 2000; Dong and Sutton 2005; Born

and Mignot 2011).

Timmerman et al. (1998) illustrate the first idea by showing evidence for a coupled air-

sea mode with a 35-year period, in a multi-century integration of the ECHAM3/LSG

climate model. The mechanism for this mode is as follows. When the AMOC is anoma-

lously weak, the North Atlantic Ocean is dominated by negative sea surface temperature

(SST) anomalies. The atmospheric response to these SST anomalies involves a weak-

ened North Atlantic Oscillation (NAO, Hurrell 1995a), which then induces positive sea

surface salinity (SSS) anomalies in the convection site through anomalous freshwater

fluxes and Ekman transport. This in turn, enhanced deep convection and leads to an

intensified AMOC and an increased northward heat transport. As a result the North

Atlantic Ocean is dominated by positive SST anomalies, which completes the phase re-

versal of the oscillation. An active air-sea coupling is also found by Danabasoglu (2008)

in the CCSM3 model where a strong 21-year oscillation is seen in the AMOC time se-

ries. This study suggests a prominent role of the NAO, in particular, in modulating the

subpolar gyre strength and contributing to the formation of temperature and salinity

anomalies that lead to positive/negative density anomalies at the deep-water formation

site. Vellinga and Wu (2004) also agree with the idea of a coupled ocean-atmosphere

mode. Using the HadCM3 climate model, they presented a mechanism to explain the

multi-decadal AMOC variations through slow advection of salinity anomalies from the

tropical Atlantic to the high latitudes. They argued that the salinity anomalies are gen-

erated by AMOC induced shifts in the location of the InterTropical Convergence Zone

(ITCZ) and that, in the North Atlantic, these anomalies act to reverse the phase of the

oscillation by changing the upper ocean density.
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In contrast, Delworth et al. (1993) support the second idea by showing evidence for a

pure damped oceanic mode excited by atmospheric forcing in the GFDL model. They

associated this mode with a 50-year period, which relates to changes of the subpolar

gyre strength. The mechanism is summarised as follows. A weak overturning reduces

the northward heat transport, which leads to a cooling of the North Atlantic Ocean and

an acceleration of the subpolar gyre (caused by the increase in density gradient). The

strengthening of the subpolar gyre increases the advection of salty water into the sinking

regions, enhancing deep-water formation, which intensifies the AMOC (phase reversal

of the oscillation). This is turn, enhances the northward heat transport, leading to the

transport of warmer, less dense water into the sinking area. As a result, the AMOC

weakens again, accompanied with reduced heat transport. This variability is interpreted

as a damped ocean-only mode excited by low-frequency atmospheric noise. Dong and

Sutton (2005) reached the same conclusions in the HadCM3 climate model. Although

the timescale is shorter in HadCM3 (∼ 25 years), the mechanisms that they identified

are very similar to those of Delworth et al. (1993), which are related to changes in the

strength of the subpolar gyre that therefore modulate the transport of saline water into

the Nordic Seas. In good agreement with these two studies, Delworth and Greatbatch

(2000) found no conclusive evidence, in their analysis of a series of coupled and uncoupled

global climate model integrations, that the AMOC variability is part of a dynamically

coupled atmosphere-ocean mode. Recent results from Born and Mignot (2011) with

the IPSL-CM4 model, and Kwon and Frankignoul (2011) with the CCSM3 model, also

support the interpretation of the AMOC oscillating in response to stochastic forcing of

the atmosphere proposed by Delworth et al. (1993), and later confirmed by Delworth

and Greatbatch (2000) and Dong and Sutton (2005).

The conflict between these two viewpoints (truly coupled mode or not) arises mainly be-

cause of the uncertainties in the atmospheric response to the mid-latitude SST anomalies.

Indeed, the extent to which North Atlantic SST contributes to the variation in the main

mode of atmospheric circulation (and climate variability) in the North Atlantic/Euro-

pean sector, that is the NAO, is still questionable. Although several studies indicate

a strong impact of the leading pattern of SST variability over the North Atlantic (or

AMO) on the NAO (e.g. Rodwell et al. 1999; Sutton et al. 2001; Peng et al. 2003),

others suggest that this latter is rather impacted by tropical Pacific or Indo-Pacific SST

anomalies (e.g. Fraedrich and Müller 1992; Hoerling et al. 2001; Merkel and Latif 2002;

Bader and Latif 2003). There are also several lines of evidence for the AMO to be a

direct response of the AMOC to the anomalous air-sea fluxes associated with the NAO

(e.g. Delworth et al. 1993; Curry et al. 1998; Marshall et al. 2001; Knight et al. 2005;

Collins et al. 2006a). Although these relationships between the NAO, AMOC and AMO

on decadal to multidecadal timescales are widely accepted, it is not clear to what extent

the NAO-induced multidecadal changes in the AMOC and AMO will feed back onto the

NAO itself.

In the existing literature, there are also two different viewpoints about the relative role
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of freshwater export from the Arctic (e.g. Delworth et al. 1997; Jungclaus et al. 2005;

Hawkins and Sutton 2007) and tropical processes (e.g. Vellinga and Wu 2004; Mignot

and Frankignoul 2005) in the decadal AMOC fluctuations.

For example, Hawkins and Sutton (2007) support the idea of a link with the Arctic.

They characterized low frequency AMOC variability (70-80 year period) as an internal

mode, dominated by changes in convection in the Nordic Seas, which lead the changes

in the AMOC after a few years. In this study, variations in salinity transports from the

Arctic and from the North Atlantic are the main feedbacks which control the oscillation.

A similar low-frequency ocean mode to Hawkins and Sutton (2007), also excited by the

atmosphere, was found in the ECHAM5/MPI-OM model (Jungclaus et al. 2005). In

this model, which has a relatively high resolution at high latitudes, they found that

variations in the Atlantic salt and heat transport drive circulation changes in the Nordic

Seas. These circulation changes modulate the storage and release of freshwater from

the Arctic. In agreement with the idea of a link with the Arctic, Delworth et al. (1997)

described a 40 to 80-year oscillation of the AMOC in the GFDL model which is found

to be associated with fluctuations in the Arctic, Greenland Sea and in the intensity of

the East Greenland Current (EGC); a similar mechanism has been found in the recent

study of Escudier et al. (2012) in the IPSL-CM5 model.

These above studies suggest a link with the Arctic different from the mechanism sug-

gested by Vellinga and Wu (2004). Indeed, as mentioned earlier, they presented a

mechanism to explain multidecadal AMOC variations through slow advection of salinity

anomalies from the tropical Atlantic to the high latitudes, in which there was no role

for the Arctic. Mignot and Frankignoul (2005) also identified a similar link with the

tropics in the Bergen Climate Model. They claimed that part of the salinity anomaly

in the tropical Atlantic (induced by El-Niño events) is advected in the ocean interior

along the NAC, reaching the Irminger and Labrador Seas after about 35 years, where it

destabilizes the water column and favors deep convection.

In summary, the mechanisms responsible for the AMOC variability in the models have

been partially understood, but there appear to be significant differences of details be-

tween the different models (see Table 1.1). Although some modelling studies found that

mechanisms responsible for decadal variability of the AMOC are associated with a pure

damped oceanic mode excited by atmospheric forcing (which is e.g. related to changes

in the strength of the subpolar gyre, Delworth et al. 1993; Dong and Sutton 2005), oth-

ers found clear evidence of an active coupling between the ocean and the atmosphere

(either NAO or ITCZ-related, Timmerman et al. 1998; Danabasoglu 2008; Vellinga and

Wu 2004). In addition, while some studies suggest that the reversal of these AMOC

oscillations is triggered by an anomalous advection of salinity from the tropics (e.g. Vel-

linga and Wu 2004; Mignot and Frankignoul 2005), others argue that the main salinity

feedback comes from the Arctic (e.g. Jungclaus et al. 2005; Hawkins and Sutton 2007).

The driving mechanism(s) of the decadal AMOC fluctuations, known to strongly influ-

ence climate in the North Atlantic (e.g. Latif et al. 2004), remain largely unresolved,
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Table 1.1: Summary of some proposed mechanisms for decadal to multidecadal
AMOC variability from modelling studies (non-exhaustive list).

Reference Model AMOC Mechanism(s) Process(es)
cycle involved

Delworth et al.
(1993)

GFDL R15 40-80
years

Internal ocean-
only model
excited by at-
mosphere noise
(NAO)

A weak AMOC state is associated with
a reduced northward heat transport, cool-
ing the dense pool in central North At-
lantic. Temperature anomaly generates cy-
clonic anomaly in subpolar gyre circulation,
which transports salt into convection site,
strengthening the AMOC.

Delworth et al.
(1997)

GFDL R15 40-80
years

Internal ocean-
only model
excited by at-
mosphere noise.
Link with the
Arctic

Enhanced transport of freshwater and sea
ice from the Arctic via the East Greenland
Current and Denmark Strait. These anoma-
lies propagate around the subpolar gyre into
the Labrador Sea, capping the convection.
Greenland Sea oscillations are implicated,
but how they are generated is unknown.

Timmerman
et al. (1998)

ECHAM3/
LSG

35 years Coupled ocean-
atmosphere
mode

An anomalous strong AMOC state tends to
warm the North Atlantic. The atmospheric
response involves a strengthened NAO, lead-
ing to weak evaporation and Ekman trans-
port off Newfoundland and in the Greenland
Sea. This decreases SSS, weakening deep
convection in sinking regions, weakening the
AMOC.

Delworth and
Greatbatch
(2000)

GFDL R15 70-100
years

Damped ocean-
only mode,
excited by
low-frequency
atmospheric
forcing (NAO)

Same as Delworth et al. (1993).

Vellinga and
Wu (2004)

HadCM3 70-200
years

Coupled ocean-
atmosphere
mode. Link with
Tropics

A strong AMOC state is associated with
an enhanced northward heat transport, gen-
erating cross-equatorial SST gradient. As
a consequence, ITCZ is shifted northward,
increasing precipitation (hence decreasing
SSS) in northern tropical Atlantic. North-
ward advection of SSS into sinking regions,
weakening the AMOC.

Dai et al.
(2005)

PCM 25 years Internal ocean-
only model
excited by at-
mosphere noise
(NAO)

Same as Delworth et al. (1993). It however
suggests stronger ties to the NAO.

Dong and Sut-
ton (2005)

HadCM3 25 years Internal ocean-
only model
excited by at-
mosphere noise
(NAO)

Same as Delworth et al. (1993). It however
suggests stronger ties to the NAO.

Mignot and
Frankignoul
(2005)

BCM <50
years

Coupled ocean-
atmosphere
mode. Link with
Tropics

Part of the salinity anomaly in the tropical
Atlantic (induced by El-Niño events) is ad-
vected in the ocean interior along the NAC,
reaching the Irminger and Labrador Sea af-
ter about 35 years, where they destabilize
the water column and favour deep convec-
tion.

Jungclaus et al.
(2005)

ECHAM5/
MPI-OM

70-80
years

Damped ocean-
mode excited
by atmosphere
noise. Link with
the Arctic

Storage and release of freshwater from the
central Arctic to the Labrador Sea convec-
tion site along with circulation changes in
the Nordic Seas due to Atlantic heat and
salt transports.

Hawkins and
Sutton (2007)

HadCM3 centen-
nial

Damped ocean
mode excited
by atmosphere
noise. Link with
the Arctic

Changes in the Nordic Seas convection lead
to AMOC changes. Variations in salinity
transports from the Arctic and from the
North Atlantic are the main controlling feed-
backs. Similar to Delworth et al. (1997) and
Jungclaus et al. (2005), but convection re-
gions are different.
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Danabasoglu
(2008)

CCSM3 21 years Coupled ocean-
atmosphere
mode

Prominent role of the NAO in modulating
the subpolar gyre strength and contributing
to the formation of temperature and salin-
ity anomalies that lead to positive/negative
density anomalies at the deep-water forma-
tion site.

Msadek and
Frankignoul
(2009)

IPSL-CM4 ∼100
years

Coupled ocean-
atmosphere
mode

Convection is primarily influenced by the
anomalous advection of salinity due to
changes in the East Atlantic Pattern.

Medhaug et al.
(2011)

BCM 40-70
years

Coupled ocean-
atmosphere
mode

The variability in the Labrador Sea and
the Nordic Seas convection is driven by
decadal scale air-sea fluxes in the convec-
tive region that can be related to oppo-
site phases of the NAO. The Labrador Sea
convection is directly linked to the vari-
ability in AMOC. Linkages between convec-
tion and water mass transformation in the
Nordic Seas are more indirect; the Scandi-
navian Pattern drives the ocean’s poleward
heat transport (PHT) affecting sea ice cov-
erage there. Increased PHT is both associ-
ated with an increased water mass exchange
across the Greenland-Scotland Ridge, and a
stronger AMOC.

Kwon and
Frankignoul
(2011)

CCSM3 20 years Internal ocean-
only model
excited by at-
mosphere noise
(NAO)

The NAO plays a major role in AMOC
variability through setting the surface flux
anomalies in the Labrador Sea and affecting
the subpolar gyre circulation strength.

Escudier et al.
(2012)

IPSL-CM5 20 years Coupled ocean-
atmosphere
mode. Link with
Arctic

Positive temperature and salinity anoma-
lies in the Labrador Sea are advected east-
ward (along the subpolar gyre), favouring
deep convection south of Greenland and Ice-
land, and strengthening the AMOC. These
anomalies eventually reach the Nordic Seas
inducing sea ice melting and anomalous cy-
clonic circulation there. This strengthens
the East Greenland Current, creating neg-
ative temperature and salinity anomalies in
the Labrador Sea.

showing differences among various climate models (Latif et al. 2006). As a consequence,

the inherent decadal predictability of the climate system is also not well established.

From the perspective of developing operational decadal prediction schemes, improving

our understanding of such variability is therefore pre-requisite.

1.5 Prospects for decadal climate prediction in the North

Atlantic sector

1.5.1 Why is climate predictable?

In the 1960’s Edward Lorenz made an “accidental” discovery in trying to model the

weather: the chaotic phenomenon known as the “butterfly effect”. This concept implies

that small deviations in the initial conditions affect the weather for regions thousands of

miles away some days later. Thus, for both the atmosphere and ocean being chaotic sys-

tems, detail of their state at a given time is strongly dependent on their previous state.
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Because of this “butterfly effect”, detailed day-to-day weather forecasting is effectively

impossible more than a couple of weeks ahead, and knowledge of initial conditions (or

states) is fundamental. But how could climate predictions be possible when weather

forecasts are limited to a couple of weeks in advance? The answer is actually in the

question: because climate and weather are fundamentally different. Weather forecasting

aims to predict how the weather will evolve over a few days, while climate prediction aims

to predict the weather we expect to have on average at both a given year and place. In a

narrow sense, climate is usually defined as the statistical description of weather elements

over a period of time, and describes the “macroscopic” weather characteristics like the

mean or the variance, not the “microscopic” single weather phenomenon. Thus for cli-

mate prediction, accurate knowledge of initial conditions is not as crucial as for weather

forecasting. In contrast, knowledge of average modifications (e.g. variation in atmo-

spheric greenhouse gas concentrations), although weak, is more important because the

associated signals, undetectable at a couple of weeks, accumulate with time. Therefore,

in certain circumstances “macroscopic” weather characteristics (climate) are predictable

although the forecast of “microscopic” characteristics (weather) are not. However, the

system being chaotic in both cases, it is important to make several ensemble experiments

to ensure the statistical robustness of the prediction.

1.5.2 Why is decadal climate prediction challenging?

Reliable predictions of the future climate mainly depend on sustained observations of

changes in the ocean. The lack of subsurface ocean observations (Cunningham et al.

2007) has been a limiting factor for realizing the full skill potential of such predictions

(Smith et al. 2007). Although the Atlantic Ocean has historically been the best ob-

served of the world’s oceans, the lack of sufficient subsurface data remains a limitation

for the initialization of hindcasts used to develop and test coupled prediction systems.

In addition, many observational gaps remain and the supply of data for the tropical

Atlantic is limited relative to, for instance, the tropical Pacific. There is also a need

for more atmospheric observations. Observations and the assimilation of salinity, which

plays a more important role in Atlantic than in Pacific climate, also remains a par-

ticular challenge. For modelers, the climate timescale presents different challenges as

compared to weather forecasting. Models tend to accumulate errors as computational

time is extended, and errors of no consequence for weather timescales can dominate the

calculation of the climate state. However, while ocean models are still not reproducing

many observed ocean signals well, these models have reached a level of realism sufficient

for serious experiment design and optimization studies to be usefully undertaken.
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1.5.3 Evidence for decadal climate predictability in the North Atlantic

Decadal climate prediction is a relatively new field in climate science with a number

of modelling groups performing near-term experiments for CMIP5 (Taylor et al. 2009)

to be assessed as part of the IPCC Fifth Assessment Report. The prospect of pro-

viding climate change information regarding the next several decades highlights the

strong need for assessing the potential predictability of climate on decadal timescales.

Three methods, which heavily rely on models, are commonly used to estimate potential

predictability. First, in the“Diagnostic Potential Predictability” (DPP) approach, the

predictability is analysed by decomposing the variance of a climate variable into a long

timescale component considered as potentially predictable, and an unpredictable noise

component. Previous studies using such an approach for both real and modelled systems

include those of Rowell (1998), Boer (2001, 2004, 2011), Boer and Lambert (2008), and

Hawkins et al. (2011). Second, in the“Prognostic Potential Predictability” (PPP) ap-

proach, the predictability is estimated prognostically, by re-running a climate simulation

with slightly perturbed initial conditions. This approach does not compare to observa-

tions directly, and only assesses the ability of the modelled climate to reproduce itself

given a certain uncertainty on initial conditions, representing for example the atmo-

spheric noise. These experiments are thus often called “perfect ensemble” experiments.

Predictability studies using such an approach began with Griffies and Bryan (1997a,b),

and have been followed by e.g. Grötzner et al. (1999), Boer (2000), Collins and Sinha

(2003), Pohlmann et al. (2004), Collins et al. (2006a), Hermanson and Sutton (2009),

Hurrell et al. (2009), Msadek et al. (2010). Third, in the ocean dynamics approach, the

predictability is quantified by comparing the variability simulated with and without the

inclusion of active ocean dynamics; it is likely that the regions in which ocean dynamics

are important in generating the variability, are also those of high potential predictability

(Pavan and Doblas-Reyes 2000).

All three methods (the DPP, PPP, and ocean dynamics approaches) indicate four regions

where predictability may exist at decadal timescales: the North Atlantic, the Southern

Ocean, the North Pacific, and the tropical Pacific. These regions are shown to be largely

model independent by Boer (2001), where the potential predictability of decadal means

of surface air temperature (SAT) from an ensemble of eleven state-of-art coupled climate

models was calculated (Figure 1.5). The most prominent regions are the North Atlantic

and the Southern Ocean, where more than 50% of the variance exists in the decadal

band. Because eddies are of primary importance in controlling the momentum and

buoyancy budget in the Southern Ocean (e.g. Hallberg and Gnanadesikan 2006), we can

however question the reliability of results from climate models for the Southern Ocean

since eddies are parametrized. Note that the oceans are a priori assumed to be among

the most predictable component of the climate system on the decadal timescale as they

provide long-term climatic memory due to their large thermal inertia.
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Figure 1.5: Potential predictability for decadal mean surface air temperatures
from a model ensemble of 11 coupled models. (From Boer 2001).

For the North Atlantic and the Southern Ocean, the results of the Collins and Sinha

(2003) and Pohlmann et al. (2004) PPP studies (with the HadCM3 and ECHAM5/MPI-

OM models, respectively) are in good agreement with Boer (2001)’s study, showing

that these regions are predictable out to 10 years or longer. The North Atlantic has

received the largest amount of attention since it shows the largest potential for decadal

predictability and because of its potential influence on Western Europe and the Eastern

United States. Decadal variations of SST in the North Atlantic region (referred to as the

AMO) are thought to influence important climatic features, including rainfall over the

African Sahel, India and Brazil, Atlantic hurricanes and summer climate over Europe

and America (e.g. Pohlmann et al. 2004; Sutton and Hodson 2005; Zhang and Delworth

2006; Knight et al. 2006; Dunstone et al. 2011). Because of the evidence that the AMO

is linked to the AMOC (Knight et al. 2005), the latter has been considered as an ideal

candidate for the study of decadal potential predictability (e.g. Delworth and Mann

2000; Curry et al. 2003; Latif et al. 2004; Collins et al. 2006a).

There have been several studies investigating the predictability of the AMOC in coupled

models using the “perfect model” experiment approach (e.g. Griffies and Bryan 1997a,b;

Sutton 2003; Collins and Sinha 2003; Collins et al. 2006a; Hermanson and Sutton 2009;

Msadek et al. 2010). Most of them indicate that the AMOC variations are predictable

out to a decade or more (see Table 1.2). For instance, in the PREDICATE project (Sut-

ton 2003), a systematic comparison of the predictability of five state-of-the-art climate

models (HadCM3, ECHAM/MMPI-OM, ARPEGE3/ORCA, BCM, ECHAM4/ORCA)

is made. The results indicate that in general the strength of the AMOC is potentially

predictable at least a decade in advance and, in some situations, multidecadal predictions

of the AMOCmay be possible. Consistent with earlier model comparisons of AMOC pre-

dictability made by Collins et al. (2006a), Msadek et al. (2010) recently found the leading

mode of AMOC variability to have predictability for nearly two decades in the GFDL
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model. There are even some hints of potential predictability for more than 50 years into

the future in the HadCM3 model according to Collins and Sinha (2003). Although all

the above predictability studies agree to some extent on the level of predictability of

the AMOC, there are some disagreements on the level and extent of predictability of

AMOC-related variation in North Atlantic SST. Results from Griffies and Bryan (1997b)

with the GFDL model suggest the variations in North Atlantic SST to be predictable

up to one to two decades, in good agreement with results from Pohlmann et al. (2004)

with the ECHAM5/MPI-OM model. In contrast, Grötzner et al. (1999) found the North

Atlantic SST to be predictable only about one year in advance, although they found a

potential predictability of the AMOC up to one decade.

Table 1.2: Summary of AMOC predictive skills from modelling studies (non-
exhaustive list).

Reference Model(s) Experimental set-up
[ensemble(s), members,
integration-length]

AMOC predictability skills

Griffies and Bryan
(1997a)

GFDL [2, 8, 30] ∼ 20 years

Griffies and Bryan
(1997b)

GFDL [1, 12, 30] 20 years

Collins and Sinha
(2003)

HadCM3 [3, 9, 20] ([1, 3, 70]) ∼ 15-20 (50) years; Bet-
ter predictive skills when
anomalously stronger over-
turning

Collins et al.
(2006a)

(i) ARPEGE3-
ORCALIM;
(ii) BCM; (iii)
ECHAM5/MPI-
OM; (iv)
HadCM3; (v)
INVG

(i) [2, 6, 25]; (ii) [2, 3,
20]; (iii) [3 ,6 , 20]; (iv)
[3, 8, 20]; (v) [2, 2, 20]

∼ 10-20 years; Better pre-
dictive skills when anoma-
lously stronger overturning

Hermanson and
Sutton (2009)

HadCM3 [4, 10, 10] From 3 to 8 years or 5 years
on average

Msadek et al.
(2010)

GFDL CM2.1 [6, 10, 20] ∼ 10-20 years; Evidence for
sensitivity to AMOC initial
states

Predictions of AMOC variability and related oceanic fields may be of interest to sci-

entists, but they would be of little relevance to society unless they are accompanied

by predictions of surface climate variables. However, as for the North Atlantic SST,

there are major disagreements on the level and extent of predictability of atmospheric

quantities such as SAT and precipitation (mainly over land). Although previous studies

(Griffies and Bryan 1997b; Grötzner et al. 1999) found little predictability of societally

relevant surface quantities associated with AMOC variations, more up-to-date stud-

ies found evidence for potentially predictable variation in SATs on decadal timescales.

Collins et al. (2006a) indeed found that the North Atlantic Ocean is a region in all

the models in which there is significant relationship between decadal variations in SAT

(and underlying SST) and the AMOC. In their study, the potential predictable surface

climate variations associated with variations in the AMOC appear consistent. However

potential predictive skill in surface climate variations appears to be less than those seen
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for AMOC variations. In addition, following Boer (2001) and using nine models par-

ticipating in the first Coupled Model Intercomparison Project (CMIP1), Boer (2004)

predominantly found potential predictability of SAT over the high latitude oceans, with

appreciable values on multidecadal timescales, especially in the North Atlantic. On

shorter timescales, he also found some hints of potential predictability in the tropical

Atlantic. Boer (2011) extended this study to simulations taking into account differ-

ent climate change scenarios and trying to distinguish between internal and externally

forced potential predictability. Using two different coupled climate models (HadCM3

and HadGEM1), Hawkins et al. (2011) identified the far North Atlantic in general, and

the NAC region in particular, as regions with high potential predictability. For climate

variables over land the evidence is much less clear. Grötzner et al. (1999) found that

predictability for land-surface variables was less than a year. Boer (2000, 2004) and

Collins (2002) also found no consistent evidence for predictability of surface tempera-

tures beyond seasonal timescales. Boer and Lambert (2008) showed evidence of some

predictability beyond seasonal timescales for surface temperature over land. In contrast,

Collins and Sinha (2003), Sutton and Hodson (2005) and Pohlmann et al. (2006) have

shown that the multidecadal AMOC predictability in HadCM3 and ECHAM3/MPI-

OM models can lead to some predictability of European climate on decadal timescales.

Pohlmann et al. (2004), Boer and Lambert (2008), and Boer (2011) all find that potential

predictability is largely absent for precipitation.

Many studies in decadal climate predictability have considered only average levels of

predictability. However, there is also evidence that decadal predictability of the AMOC

and associated impacts on climate may be sensitive to the initial oceanic conditions with

transitions around extreme states appearing as the most predictable events (e.g. Griffies

and Bryan 1997b; Collins and Sinha 2003; Collins et al. 2006a). For instance, the latter

study suggested that experiments initiated from stronger than normal AMOC states

show more potential predictability than those initiated from weaker than average states.

The possibility of predictability-dependence on initial oceanic state should be no surprise

in view of the considerable evidence that the skill of weather forecasts is state dependent,

and that the skill of seasonal forecasts varies with season and decade (Balmaseda et al.

1995; Pavan and Doblas-Reyes 2000). In the decadal case, however, there has been much

less research to explore and understand the degree to which predictability, for different

variables of interest, is sensitive to the initial oceanic state. Yet this is a very important

matter in view of the increasing attention that is being paid to initialised decadal climate

predictions.

In summary, there is a growing body of evidence from a variety of modelling studies that,

in general, the strength of the AMOC could be predicted at least a decade in advance

(e.g. Griffies and Bryan 1997b; Collins and Sinha 2003; Pohlmann et al. 2004; Sutton

and Hodson 2005; Collins et al. 2006a). However there are major disagreements on the

level and extent to which these AMOC variations lead to useful predictability of SST and
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any atmospheric quantities (such as SAT and precipitation). Most of the recent studies

would, nevertheless, tend to indicate that variations of SAT in the North Atlantic and

over Europe exhibits useful decadal predictability (e.g. Collins and Sinha 2003; Sutton

and Hodson 2005; Pohlmann et al. 2006), albeit with potential skill levels that are less

than those seen for AMOC variations. Although there has been an increasing number of

studies on decadal predictability of the climate system in the last few years due to the

impetus of the “near term” CMIP5 protocol (Taylor et al. 2009), the realism of decadal

climate predictability studies remains unclear as the level of predictability differs from

one study to another (e.g. Meehl et al. 2009). This may be subject to model differences

and uncertainties, as well as differences in the experimental protocol and metrics used.

Considerable technical and scientific issues remain unresolved.

1.6 Aim of the study

1.6.1 Overall presentation of the project

With all the current focus on rapid changes in the AMOC due to global warming, it

is important to understand its natural variability on decadal timescales, as this is pre-

cisely on this timescale that anthropogenic impacts in climate are likely to be expressed

(IPCC 1996). However, as mentioned earlier, the mechanisms behind this variability

have only been partially understood so far. As understanding the variability is an in-

tegral part of understanding the predictability, the inherent decadal predictability of

the climate system is, by consequence, also not well established. Improving our under-

standing of this variability is therefore pre-requisite for an accurate prediction of future

(anthropogenic) climate changes. The overall objective of the project is therefore to as-

sess the predictability of decadal fluctuations in the AMOC (and associated

climate impacts) by investigating processes that drive its decadal variability.

Given the lack of AMOC observations, numerical models need to be used to help with

the understanding of such processes. There are, indeed, indications that the current

generation of climate models can simulate aspects of decadal to multidecadal climate

variability, as seen in the instrumental record (Knight et al. 2005) and proxy data (Del-

worth and Mann 2000). However, the projections of such models for climate-related

variables (such as the AMOC strength, SAT) are widely different (IPCC 2001, 2007),

as are the mechanisms involved. Spread in climate projections may be associated with

differences in model resolution, parameter choice, the representation of physical and

dynamic processes, and in the representation of the vertical coordinate of the ocean

components. Hawkins and Sutton (2009) underline the importance of model uncer-

tainty in decadal climate projections (Figure 1.6). By comparing models with different

vertical representation of the ocean component, the present project also addresses, to
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some extent, the dependence of simulated AMOC variability and predictability

on ocean model type.

Figure 1.6: The fraction of total variance in global, decadal mean SAT pre-
dictions explained by three components of total uncertainty is shown. Green
regions represent scenario uncertainty, blue regions represent model uncertainty
and orange regions represent the internal variability component. (From Hawkins
and Sutton 2009).

1.6.2 Specific objectives

More specifically, the present study aims at:

(1) Improving our understanding of the potential mechanisms responsible

for the natural decadal variability of the AMOC.

The following questions mainly guide our investigation: (i) What is the spatial and

temporal variability of the AMOC? (ii) What are the oceanic and atmospheric impacts

of such variability? (iii) What are the mechanisms and key variables governing that

variability? For this purpose, a new coupled climate model CHIME (Coupled Hadley-

Isopycnic Model Experiment, Megann et al. 2010) developed at the National Oceanog-

raphy Centre in Southampton (UK) is used. CHIME is as similar as possible to the

widely used IPCC-class model HadCM3 (Gordon et al. 2000), with the important ex-

ception that the hybrid-coordinate ocean model HYCOM (Bleck 2002) has replaced the

ocean component of this latter. The pre-industrial control simulation has been used to

isolate the internal variability of the model under constant external forcing.

(2) Determining the extent to which decadal climate fluctuations associated

with the AMOC are predictable and the processes involved.

The following questions mainly guide our investigation: (i) Where do climate-related

fields exhibit the strongest sensitivity to decadal AMOC fluctuations? (ii) Are changes

in the AMOC potentially predictable and which observations of the ocean state are

likely to be of greatest value to constrain predictions? (iii) What is the spatio-temporal

predictability of the Atlantic climate and how does this link to low-frequency AMOC

variability? Because the CHIMEmodel was made available late during my PhD allocated
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time, this objective has first been addressed using the latest version of the Institut Pierre-

Simon Laplace model (IPSL-CM5A, Dufresne et al. 2012), developed as part of the 5th

phase of the Coupled Model Intercomparison Project (CMIP5, Taylor et al. 2009).This

model allowed us to develop an efficient experimental design prior to a similar such

study with the CHIME model. Pre-industrial control simulations of both the IPSL-

CM5A and CHIME models have been used to quantify their inherent predictive skills

of internal fluctuations under constant external forcing. Both diagnostic and prognostic

predictability approaches have been employed for this purpose.

(3) Better understanding of how the vertical representation of the ocean

component can affect mechanisms governing AMOC variability and the pre-

dictability skills of the model.

By comparing experiments with models featuring ocean components with two different

types of vertical coordinates, the dependence of simulated AMOC variability on ocean

model type has also been provisionally addressed in this study. Indeed, as CHIME and

HadCM3 differ only by their ocean components (hybrid and z -coordinates, respectively),

an assessment of the extent to which the structural biases inherent in the vertical repre-

sentation of the ocean model affect the decadal variability could be made. To do so, the

natural decadal variability in CHIME will be evaluated alongside corresponding vari-

ability found in previous studies with the HadCM3 model (e.g. Vellinga and Wu 2004;

Dong and Sutton 2005). However such a comparison with existing studies to evaluate

the impact of the vertical representation on predictive skills is more difficult, first be-

cause of the limited number of such studies with HadCM3 and second because of the

many differences in the experimental protocol for predictability studies. Since, here,

a near-identical experimental protocol has been used for CHIME and IPSL-CM5A, a

comparison of the results between these two models can still be useful considering that

this latter model belongs to the new generation of z -coordinate models, and could there-

fore be seen as a more up to date z -coordinate model than HadCM3. Nevertheless, it

has to be kept in mind that CHIME and IPSL-CM5A differ in more than the vertical

representation of their ocean components.

1.6.3 Anticipated achievements of the project

By improving our understanding of the mechanisms driving the decadal AMOC fluctu-

ations and associated impacts on the North Atlantic climate, this project contributes to

the improvement of our ability to predict climate on decadal timescales. Such decadal

climate forecasts may provide important information to decision makers since they have

application to strategic planning in many areas (e.g. energy, fisheries, financial services

and infrastructure). Decision makers in these sectors and European Union policy mak-

ers, will increasingly have to face up to the challenge of adaptation to anthropogenic

climate change and will therefore require access to the best possible decadal climate
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forecasts. In addition, by investigating the possible impact of using a different ocean

component on the mechanisms, frequencies and predictability of decadal variability in

climate models, this project contributes, to some extent, to a better understanding of the

sources of uncertainty in climate models, which is of primary importance in decadal cli-

mate projections (Hawkins and Sutton 2009). Finally by comparing different approaches

to quantify predictability and testing different measures of skill, this project also con-

tributes to the coordinated effort of determining a common skill evaluation framework

to evaluate decadal predictions; this is highly desirable to allow a comparison of decadal

prediction systems across different modelling centres (Meehl et al. 2012).

The structure of this thesis is as follows. An overview of the main characteristics of both

the CHIME and IPSL-CM5A models is presented inChapter 2, followed inChapter 3,

by a description of the data and methods used here in both variability and predictability

studies. Chapter 4 addresses objective (1), by analysing the natural variability of the

AMOC (along with the variability of associated oceanic and atmospheric fields) on the

shorter decadal timescale (i.e. 15-30 years) as seen in CHIME. Both Chapter 5 and

Chapter 6 address objective (2) by analysing the decadal potential predictability of the

North Atlantic climate associated with AMOC fluctuations as represented in both the

IPSL-CM5A and CHIME models. Chapter 7 briefly addresses objective (3) along with

a discussion and summary of the main results of the thesis.
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Description of Models

In this chapter, we present the two models used in the framework of this thesis. Firstly,

a full description of the new coupled climate model CHIME is given. This model is

used here to investigate both the mechanisms and predictability of decadal AMOC

fluctuations and climate in the Atlantic sector. Secondly, the IPSL-CM5A model is

briefly described. The use of this model here is restricted to the study of the potential

predictability of decadal AMOC fluctuations and climate; it allowed us to develop an

efficient experimental design prior to a similar study with CHIME.

2.1 Coupled Hadley-Isopycnic Model Experiment (CHIME)

2.1.1 Model description

CHIME (Megann et al. 2010) is a new coupled climate model that features an innovative

hybrid coordinate in the ocean, but is otherwise identical to the widely used IPCC-class

model HadCM3 (Gordon et al. 2000). This has therefore the same atmosphere and ice

models as HadCM3 (with the same ocean resolution over most of the globe), but uses

the hybrid-coordinate ocean model HYCOM (Bleck 2002) instead of the conventional

constant-depth vertical coordinate system used in HadCM3.

2.1.1.1 The ocean model (HYCOM) in CHIME

The oceanic component of CHIME is version 2.1.34 of HYCOM, which has been fully

described by Bleck (2002). HYCOM is a primitive equation ocean general circulation

model that evolved from MICOM, the Miami Isopycnic-Coordinate Ocean Model (Bleck

et al. 1992). Although this latter has been validated (Chassignet et al. 1996; Roberts

et al. 1996) and used in numerous ocean climate studies (New et al. 1995; Halliwell 1998;

23
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Paiva et al. 2000), MICOM has a major weakness in the inadequate vertical resolution of

weakly stratified regions. The HYCOM’s hybrid coordinate algorithm was developed to

ameliorate this limitation of MICOM by assigning different vertical coordinates types in

those regions where they are quasi-optimum. HYCOM has become one of the primary

ocean models in use today (e.g. Chassignet et al. 2003; Halliwell 2004; Kara et al. 2008),

and has been adopted by the United States Navy as its main operational model. De-

velopment of the data assimilative system as well as ocean prediction through HYCOM

have also been discussed by Chassignet et al. (2006, 2007). In this section, the salient

features of the oceanic component of CHIME are described.

Governing Equations

Like MICOM, HYCOM contains five prognostic equations, comprising two horizontal

velocity component equations (Equation 2.1); a mass continuity equation (Equation 2.2)

and two other conservation equations (Equation 2.3) for a pair of thermodynamic vari-

ables (chosen from density, salinity and temperature). Following Bleck et al. (2002), the

model equations are listed below:

Momentum:

∂�v

∂ts
+∇s

�v
2

2
+(ξ+f)�k×�v+(ṡ

∂p

∂s
)
∂�v
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)−1∇s·(υ
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Continuity:
∂(∂p∂s )

∂ts
+∇s · (�v

∂p

∂s
) +

∂(ṡ∂p∂s )

∂s
= 0 (2.2)

Tracers:
∂(∂p∂sθ)

∂ts
+∇s · (�v

∂p

∂s
θ) +

∂(ṡ∂p∂sθ)

∂s
= ∇s · (ν

∂p

∂s
∇sθ) +Hθ (2.3)

where s is the vertical coordinate of HYCOM, ṡ is the time derivative of s, �v = (u, v)

is the horizontal velocity vector, p is the pressure, θ represents any one of the model’s

thermodynamic variables, α = ρ
−1
pot is the potential specific volume, ξ = ∂v

∂xs
− ∂u

∂ys
is the

relative vorticity, M = gz+pα is the Montgomery potential, gz = Φ is the geopotential,

f is the Coriolis parameter, �k is the vertical unit vector, υ is the eddy viscosity, ν is the

diffusivity coefficient, and τ is the wind and bottom drag induced shear stress vector.

Hθ represents the sum of diabatic source terms, including diapycnal mixing, acting on

θ. Subscripts indicate which variable is held constant during partial differentiation. The

above prognostic equations are complemented by three diagnostic equations, including

the hydrostatic equation (∂M∂α = p); the equation of state and an equation prescribing

the vertical mas flux ṡ
∂p
∂s through a s surface. The last equation controls both spacing

and movement of layer interfaces and this comprises the essence of hybrid modelling.

Transport and mixing processes

All prognostic equations are time-integrated using the split-explicit treatment of barotropic
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and baroclinic modes developed by Bleck and Smith (1990). The horizontal mass fluxes

are computed using the Flux Corrected Transport (FCT) scheme (Zalesak 1979) while

horizontal tracer transport is treated in flux form and handled by a variant of the

MP-DATA scheme (Drange and Bleck 1997). The K-profile parameterization (KPP)

diapycnal mixing scheme (Large et al. 1994) is used in CHIME, which was found by

Halliwell (2004) to afford superior performance to the Kraus-Turner bulk mixed layer

scheme when used with HYCOM. This is significantly different from the bulk mixed

layer scheme and the Pacanowski and Philander internal mixing parameterization used

in HadCM3, and we note that this introduces an additional difference between the two

models besides the vertical coordinate. The HYCOM parameter values used for this

scheme in CHIME are background internal wave viscosity difmiw = 1 × 10−4
m

2
s
−1,

background internal wave diffusivity difsiw = 1 × 10−5
m

2
s
−1, and the critical bulk

Richardson number ricr = 0.45.

Vertical coordinate system

The oceanic component HYCOM uses 25 vertical layers combining potential density

layers in the ocean interior with constant depth layers near the surface. In the inte-

rior, which in the present model configuration constitutes more than 93% of the ocean

domain by volume, the vertical coordinate is close to isopycnic over the whole annual cy-

cle. However, layers smoothly transition to z-coordinates in the weakly stratified upper-

ocean mixed layer. Therefore HYCOM allows coordinate surfaces to locally deviate

from isopycnals wherever the latter may fold, outcrop, or generally provide inadequate

vertical resolution in portions of the model domain. The freedom to adjust the vertical

spacing of the coordinate surfaces in HYCOM simplifies the numerical implementation

of several physical processes (e.g. mixed layer detrainment, convective adjustment, etc.)

without robbing the model of the basic and numerically efficient resolution of the verti-

cal structure that is characteristic of isopycnic models throughout most of the ocean’s

volume. In the near-surface waters (or wherever layer density is not used), the layers

that would be unused in a purely isopycnic model are constrained to have a minimum

thickness and their density is allow to vary. In the present implementation, the surface

layer thickness is 5 m, and the minimum thickness of subsurface layers increases to a

maximum of 15 m by layer 15. The vertical coordinate is potential density referred to

a pressure of 2000 dbar, and the thermobaric correction to the pressure gradient of Sun

et al. (1999) is applied. If the density in a given grid cell changes as a result of mixing,

HYCOM adjusts the depth of the upper or lower interface of each layer to return the

density toward the reference density of that layer; this regridding process is carried out

using a piecewise linear mapping algorithm. In the mixed layer, grid points are placed

vertically so that a smooth transition of each layer interface from an isopycnic to a

constant-depth surface occurs where the interface outcrops into the mixed layer. The

reference densities for the 25 layers (Table 2.1) were chosen to resolve the major water

masses of the global ocean, with enhanced resolution at low densities to improve the

accuracy of the mixing scheme in the mixed layer. HYCOM therefore behaves like a
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z-level coordinate model in the mixed layer or other unstratified regions, and like an

isopycnic-coordinate model in stratified regions. In doing so, the model is thought to

combine the advantages of the different types of coordinates.

Table 2.1: Layer target density, density resolution and minimum thickness in
CHIME (From Megann et al. 2010).

k σk �σk (m) �z
0
k (m)

1 29.60 0.6 5.0
2 30.20 0.6 7.0
3 30.80 0.6 9.8
4 31.40 0.6 13.7
5 32.00 0.6 15.0
6 32.60 0.6 15.0
7 33.20 0.6 15.0
8 33.80 0.6 15.0
9 34.40 0.6 15.0
10 35.00 0.3 15.0
11 35.30 0.3 15.0
12 35.60 0.25 15.0
13 35.85 0.2 15.0
14 36.05 0.2 15.0
15 36.25 0.2 15.0
16 36.45 0.15 15.0
17 36.60 0.15 15.0
18 36.75 0.11 15.0
19 36.86 0.10 15.0
20 36.96 0.08 15.0
21 37.04 0.08 15.0
22 37.12 0.08 15.0
23 37.20 0.12 15.0
24 37.32 0.12 15.0
25 37.44 0.12 15.0

Spherical grid

The east-west filtering procedure used in HadCM3 to prevent violations of the Courant-

Friedrich-Lewy (CFL) stability criterion (Courant et al. 1967) at latitudes poleward of

75◦N is inappropriate in a layer model such as HYCOM, where layer thickness is required

to be positive definite, so the spherical grid used throughout HadCM3 is not useable in

the Arctic in CHIME. The ocean model therefore uses a spherical-bipolar grid similar to

that described by Sun and Bleck (2001), which is composed of two regions: (i) from 55◦N

to 78◦S it has a constant angular resolution of 1.25◦ × 1.25◦ (where the mass points are

exactly coincident with those of the HadCM3 ocean model grid), and (ii) north of 55◦N

the spherical grid is matched smoothly to a bipolar grid (avoiding problems caused by

the convergence of the meridians toward the North Pole). The poles of the bipolar grid

are situated at (55◦N, 110◦W) and (55◦N, 70◦E), with resolution at ocean points (north
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of 55◦N) between 40 and 140 km. All HYCOM variables are stored on an Arakawa

C-grid.

2.1.1.2 The atmosphere model (HadAM3) in CHIME

The atmospheric component is described in detail in Gordon et al. (2000). The basic

features are as follows. HadAM3 is a version of the UK Met Office Unified climate

model run with a horizontal grid spacing of 3.75◦ east-west and 2.5◦ north-south, and

19 vertical levels using a hybrid vertical coordinate. The timestep is 30 min, and it

uses an Arakawa B-grid. HadAM3 uses a prognostic cloud scheme, described by Smith

(1990) and modified by Gregory and Morris (1996), which diagnoses cloud ice, cloud

water and cloud amount from the primary model variables (total moisture) and liquid

water potential temperature. It also uses the precipitation scheme described by Senior

and Mitchell (1993). Moist and dry convection are modelled using the mass-flux scheme

of Gregory and Rowntree (1990) with the addition of convective downdrafts (Gregory

and Allen 1991). The parameterization of sub-grid scale orographic gravity-wave drag is

that of Gregory et al. (1998). The model uses the boundary layer scheme developed by

Smith (1990, 1993). It also uses the radiation scheme developed by Edwards and Slingo

(1996) and modified by Cusack et al. (1999). This has six shortwave bands and eight

longwave bands. As well as including the effects of CO2, H2O, and O3 it also includes

the effects of O2, N2O, CH4, CFC11 and CFC12. The model uses trace gas values

appropriate for the AMIP I period, i.e. 1979-1988. It also includes the developments

made by Cusack et al. (1998) to include the effects of background aerosols. The direct

impact of convection on momentum is included in HadAM3 using the scheme developed

by Gregory et al. (1997). HadAM3 includes MOSES, the land surface scheme developed

by Cox et al. (1999). It includes a representation of the freezing and melting of soil

moisture, and a formulation of evaporation which includes the dependence of stomatal

resistance on temperature, vapour pressure deficit and CO2. In the model, the critical

relative humidity is setup to 0.7 above level 3 (Pope et al. 2000). This value was chosen

to maintain a global mean radiation balance close to zero at the top of the atmosphere

in pre-industrial simulations. The coefficient known as Cw, which controls the rate at

which cloud liquid water is converted to large-scale precipitation, takes different values

over land (Cw = 2.0× 10−4) to those over the sea (Cw = 0.5× 10−4) in an attempt to

take account of the differences in cloud condensation nuclei.

2.1.1.3 The ice model in CHIME

A key feature of high-latitude climate is its snow and ice cover, which therefore has to be

well represented. The sea ice model (Cattle and Crossley 1995) is taken from HadCM3.

It is a simple thermodynamic model, plus ice drift with the ocean surface current, and

with partial ice coverage to allow representation of leads. The three scalar prognostic
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fields of the sea ice model are ice thickness, fractional ice cover, and snow depth. A simple

ice thickness advection scheme is used following Bryan et al. (1975). The formulation of

fractional ice cover is based on that of Hibler (1979), which assumes the ice-covered area

to have a uniform thickness distribution of mean thickness. The sea ice thermodynamics

formulation used in the model follows the zero-layer model of Semtner (1986) in which

the ice-snow layer is treated as single slab. For surface temperatures below -10◦C, the

snow/ice surface albedo is taken to have constant value of 0.8. Above this temperature,

ice albedo decreases linearly to a value of 0.5 at the melting point (0◦C) to allow for

the lowering of albedo caused by the presence of melt ponds on the ice surface. The

albedo of leads is assumed to be a constant 0.06. Any heat flux entering (or leaving)

the leads is partitioned between ice melt (or ice formation) and warming (or cooling) of

the upper layer of the ocean. The partitioning between ice melt/formation and ocean

warming/cooling is chosen to be directly proportional to the ice area. The advection

and diffusion scheme in the sea ice model are recoded for consistency with the Arakawa

C-grid used for the CHIME ocean model, the HadCM3 ocean being defined on a B-grid.

2.1.1.4 Bathymetry and coastlines

The bathymetry and coastlines used in CHIME are shown in Figure 2.1. The bathymetry

is derived from Sandwell and Smith (1997), interpolated onto the HYCOM mass grid

points. A minimum depth of 100 m is then imposed everywhere to prevent numerical

barotropic instabilities in shallow water (HadCM3, by comparison, has a minimum depth

of 139 m). Use of the bipolar grid in the Arctic means that the locations of grid points

(and hence of the coastlines) in this region cannot be identical to those in HadCM3,

so in CHIME the coastlines are defined everywhere at the ocean resolution, where in

HadCM3 coastlines are at the coarser resolution. The coastlines are at first defined to

be the zero-depth contour after interpolation, and are then adjusted to ensure critical

straits remain open to a realistic depth. The bathymetry was excavated in the North

Atlantic so that the sills between Greenland and Scotland have a minimum depth of 800

m, resulting in comparable sill depths to those in HadCM3. The Bering and Gibraltar

straits are both open in CHIME, and are represented by channels a single grid cell wide.

The continuity of the computational grid across Bering Strait is ensured by explicitly

copying all prognostic fields into “shadow zones” on each side of the strait. This is in

contrast to HadCM3, in which the numerical B grid of the ocean model prohibits flow

through single-grid point channels. Because the coastlines in CHIME do not correspond

exactly to the atmospheric grid north of 55◦N, a coastal tiling and interpolation scheme

identical to that used by Sun and Bleck (2001) is employed to conserve fluxes passed

between the atmosphere and ocean.
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Figure 2.1: CHIME bathymetry and coastlines: gray shading denotes depths >
3000 m; dark gray denotes depths > 5000 m. (From Megann et al. 2010).

2.1.1.5 Atmosphere-ocean coupling

The ocean and ice fields are coupled daily to the atmosphere using the OASIS v2.4

coupler (Valcke et al. 2000). To avoid spurious maxima in the wind stress curl, the

wind stress passed from the atmosphere to the ocean is linearly interpolated between

the centres of each atmospheric cell. As is the case in HadCM3, no flux adjustment is

applied to the air-sea coupling.

2.1.2 Initial conditions and control runs

Both variability and predictability studies carried out with CHIME have been done using

two different control integrations, arbitrarily named as cD and E3.

2.1.2.1 Control integration for climate variability study: cD

The core of the variability study with CHIME is cD, its first 200-year control integration

(obtained prior to its port to a new operating system) which has been fully described and

analysed in Megann et al. (2010). cD was obtained by initializing the model from the full-

depth Levitus et al. (1998) autumn climatology, projected onto the model density layers.

Atmospheric forcing was with pre-industrial levels of greenhouse gases and aerosols,

therefore enabling us to isolate the internal variability of the model under constant

external forcing. The atmospheric initial state was identical to that in the HadCM3

control run described in Gordon et al. (2000). Initial sea ice cover was taken from

estimates of Gloersen et al. (1993), and the initial thickness of sea ice in all ice-covered

grid cells was set to 2 m. CHIME is run in fully coupled mode for 200 years from rest, and
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output is stored at monthly-mean time resolution. A spin-up time is clearly identified up

to year 80 as seen in the time series of the AMOC index (defined as the maximum of the

annual mean Atlantic meridional mass transport streamfunction at 30◦N, Figure 2.2),

further described in Sect. 4.2.1. After year 80, the AMOC has nearly stabilized; we will

therefore restrict our variability analyses starting from this year (despite a decreasing

trend of about 1.5 Sv century−1 thereafter).

0 20 40 60 80 100 120 140 160 180 200
12

14

16

18

20

22

24

Years in run

M
O

C
 s

tr
e

n
g

th
 [
S

v]

Spin−up Near-stabilized AMOC (-1.5 Sv/century) 

Figure 2.2: Time series of annual AMOC index for the whole 200-year simulation
cD. Yellow shading corresponds to the time-period (80-200) analysed in the
variability study with CHIME.

2.1.2.2 Control integration for climate predictability study: E3

The core of the predictability study with CHIME is E3, a 445-year control integration

that is part of a set of trial runs obtained once CHIME has been ported to the new

operating system. For E3, the model has been initialized similarly to cD. Note, however,

that E3 uses a slightly different version of HYCOM (v2.2.18, against v2.1.34 in cD),

and a higher-order vertical regridding scheme. For technical reasons, the Bering Strait

is also closed in E3 in contrast to cD. It is run in fully coupled mode for 445 years

from rest, and output is stored at monthly mean time resolution. As seen in Figure 2.3,

the AMOC index in E3 has the most stabilized state between year 105 and 305 (with

a slight decreasing trend of about 0.24 Sv century−1); prior to this period, a spin-

up time is clearly identified, after which a continuous decreasing trend is apparent.

This subsequent weakening of the AMOC is probably a consequence of the continuous

warming (freshening) of global mean SST (SSS) during the near-stabilized time-period

of the AMOC index (Figure 2.4), leading to an increase in the global SAT. In contrast

to E3, the decreasing trend also observed in cD during the near-stabilized time-period

of the AMOC was not accompanied by such continuous increasing (decreasing) trends

of temperature (salinity) fields. Although the worldwide warming (freshening) of SST

(SSS) appears to be problematic in E3, we could not wait for a more acceptable control
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integration to be run because of time constraints. In order to limit the impact of such

trends on our predictability study, we will therefore restrict our analyses to years 105-

305, that is when the AMOC has not been yet affected by the global warming and

freshening trends. Note also, that for all atmospheric output, the January months have

been accidentally lost. To settle this problem, we interpolated the values of December

and February to obtain the missing data. Such problems (i.e. climate drift and missing

data) have to be borne in mind when interpreting results obtained from E3.
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Figure 2.3: Time series of annual AMOC index for the whole 445-year simulation
E3. Yellow shading corresponds to the time-period (105-305) in the variability
study with CHIME.
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Figure 2.4: Time series of global mean SST, SSS, and SAT in E3 during the
analysed time-period (105-305).

2.1.3 How faithful is CHIME to the real climate system?

2.1.3.1 Control integration cD

Megann et al. (2010) analyzed cD, and showed that it has a generally realistic climate.

However some discrepancies with the real climate system have been identified, which are
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worth pointing out. Here is a summary of the main findings of Megann et al. (2010) on

model realism.

Surface temperature errors

Figure 2.5 shows SST anomalies with respect to the annual NOCS (1999) climatology

in CHIME. There are warm errors off the western coasts of South America and South

Africa most likely resulting from the unrealistically low cloud cover, as in HadCM3

(Gordon et al. 2000). In the Pacific, there is a significant cold bias of up to 1.5◦C in the

equatorial band. In the North Pacific, there is also a moderate cold error of 0-1◦C south

of 30◦N and a warm error of similar magnitude in the subpolar gyre. The North Atlantic

is generally too warm in CHIME. The whole subpolar gyre is significantly warmer than

climatology, with an error of 6◦C centered at (50◦N,45◦W). CHIME is also too warm

throughout the Southern Ocean, with errors of up to 3◦C. This is at least partially due

to the use of the KPP mixing scheme in this model, which has been shown to produce

unrealistically shallow summer mixed layers in the Southern Ocean in HadCM3, leading

to warm errors (Gordon et al. 2000). Excluding the Southern Ocean and the region

affected by shortcomings in the cloud scheme, the overall impression, however, is that

the CHIME has a surface warm bias. As for the global mean SAT in CHIME, it is about

1◦C warmer than that in the NOCS climatology.

Figure 2.5: CHIME ocean surface temperature anomalies (◦C) with respect to
the annual NOCS (1999) climatology, averaged over years 80-119 of cD. (After
Megann et al. 2010).

Sea surface salinity errors

Figure 2.6 shows SSS anomalies from the annual Levitus et al. (1998) climatology. In

the Pacific, there is a tripolar error pattern; the surface is too fresh north of 30◦N, too

salty between the equator and 30◦N and in the Western Warm Pool on the equator west

of 180◦, and too fresh in the Southern Hemisphere. CHIME is too fresh in the South

Atlantic, and too salty in both the subtropical and the subpolar North Atlantic. The

surface salinity is also too high over the whole Arctic, with an error of over 1 psu nearly

everywhere.
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Figure 2.6: CHIME ocean surface salinity anomalies (psu) with respect to the
annual Levitus et al. (1998) climatology, averaged over years 80-119 of cD.
(After Megann et al. 2010).

Precipitation/Inter-Tropical Convergence Zone (ITCZ)

Figure 2.7 shows the global annual mean precipitation in CHIME and the Global Pre-

cipitation Climatology Project climatology (GPCP, Huffman et al. 2001). CHIME gen-

erally simulates the main precipitation patterns as seen in the observations, except for

the double-ITCZ pattern in the Pacific sector similar to that produced by most of the

current state-of-the-art CGCMs (Lin 2007). This double-ITCZ problem has been a long-

standing tropical bias which is characterized by excessive precipitation off the equator

but insufficient precipitation on the equator. Schneider (2002) showed that the problem

is mainly caused by the atmosphere models rather than the ocean models; the fact that

HadCM3 also has this double-ITCZ structure (Harvey 2003) is in good agreement with

this statement given that CHIME and HadCM3 only differ from their ocean compo-

nents. In addition, although the CHIME model has generally slightly stronger (weaker)

precipitation in the tropical Pacific (tropical Atlantic) than in the observations, it at

least reasonably well simulates the correct placement of the precipitation maxima.
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Figure 2.7: Global annual mean precipitation in (a) CHIME and (b) GPCP
climatology (Huffman et al. 2001).
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Oceanic heat transport

The global northward oceanic heat transport in CHIME is in good agreement with the

observational estimates at 32◦S, 19◦S, and 48◦N, but carries less heat at 24◦N than that

estimates by Ganachaud and Wunsch (2000) and more heat north of 40◦N (Figure 2.8).

In the North Atlantic (not shown), CHIME heat transport lies within observational

bounds at 48◦N and does not at 24◦N, whereas in the North Pacific (not shown) it lies

within observational estimates at 24◦N and does not at 48◦N. Overall, however, the

global heat transport in CHIME is generally within the error bars of the observational

estimates.
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Figure 2.8: Global mean ocean heat transport in PW in CHIME (solid curve)
and HadCM3 (dashed curve). The stars show the estimates of Ganachaud and
Wunsch (2000). The dotted lines are from the reanalysis of Trenberth and Caron
(2001): the darker grey shading denotes the confidence limits of estimates based
on NCEP fluxes, while the light gray shading corresponds to estimates based
on ECMWF fluxes. (After Megann et al. 2010).

March Mixed layer depth

Figure 2.9 shows the average March Mixed Layer Depth (MLD) in both CHIME and

observations. Shallow biases are obvious in the Southern Hemisphere summer in CHIME;

the MLD is nowhere deeper than 50 m across the whole Southern Ocean, where in the

climatology there is a band of mixing to around 100 m between 40◦S and 60◦S spanning

the whole circumpolar region. This overly shallow MLD in the austral summer is the

principal reason for the SST being too warm in CHIME in this region. In the Northern

Hemisphere, the overall pattern of winter mixing in CHIME is similar to that in the

Levitus climatology. In the North Pacific, the tongue of mixing to 300-400 m in the

Kuroshio separation region, and the 100-200 m depth of the wintertime MLD north

of 20◦N are well represented. In the North Atlantic, the mode-water formation region

extending northeastward from the Sargasso Sea to 30◦W is also well represented by

CHIME, with realistic MLDs of 300-450 m. However the convection is too deep from

the Labrador Sea in the west to northwest of Scotland in the east. In the Nordic Seas,

the convection is also too deep (up to 4000 m) and extends not only across most of the

Nordic Seas but through Fram Strait and as far as the Canadian Basin. This excessive
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mixing is consistent with the anomalously high surface salinity that develops in CHIME

in the North Atlantic subtropical gyre and the Arctic. Overall, CHIME has mixed layer

depths that are too shallow in the summer but too deep in the winter; this is attributed

to the use of the KPP mixing scheme in this model (Megann et al. 2010).

Figure 2.9: The mean mixed layer depth (m) in CHIME in March averaged over
years 80-119 (left panel) and the March mixed layer depth diagnosed from the
Levitus et al. (1998) climatology (right panel). (After Megann et al. 2010).

Ice cover

The annual range of ice cover in both hemispheres is rather larger than those in obser-

vations (Figure 2.10). The maximum Arctic (Antarctic) winter ice cover is over 40%

(50%) higher in CHIME than observed; this is likely to reduce the amount of winter

heat loss, and hence potentially the production of dense bottom water. CHIME tends,

however, to have rather less ice in the summer than in observations.

Northern Hemisphere Southern Hemisphere

Figure 2.10: Mean annual cycle of total ice area in the Northern Hemisphere and
the Southern Hemisphere. The ice cover in CHIME (the observations from Spe-
cial Sensor Microwave Imager) is shown by the solid line (dotted line). (Adapted
from Megann et al. 2010).

Wind stress

The large-scale structure of the wind stress field in CHIME is generally in good agreement

with observations (not shown). The mean wind stress is substantially weaker in the

North Atlantic than in the NOCS climatology (Josey et al. 1998), with a maximum

eastward stress at 40◦W of around 0.06 Nm−2, as compared with 0.10 Nm−2 in the
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climatology, and this is more likely to influence the strength and path of the ocean

circulation than the variability itself. Differences in the zero wind stress curl line (ZWCL)

off the eastern seaboard of the United States are clearly visible at about 37◦N at 70◦W,

while the position of the observed ZWCL (estimated from the NOCS climatology) at

this longitude is at 33◦N.

North Atlantic Oscillation (NAO)

Figure 2.11 shows the NAO index time series (defined as the normalized pressure dif-

ference between Iceland and the Azores during the winter season) in CHIME and the

observations (Hurrell 1995b), together with their corresponding power spectrum. The

NAO oscillation in CHIME seems to have a weaker amplitude than in the observa-

tions, with a standard deviation of 1.6 and 1.9, respectively. The power spectrum of

the observed NAO shows most energy at a period of about 70 years (above the 95%

confidence limit) and then at about 8-9 years and 1-3 years (above the 80% confidence

limit). Because of the short time series available, CHIME does not capture the 70-year

peak. However, both peaks at 8-9 years and 1-3 years are well captured by the model

(although periods in the range 1-3 years are slightly below the 80% confidence limit).

Although the NAO in CHIME is slightly too weak than in the observations in term of

amplitude, it is reasonably well represented in term of variability.
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Figure 2.11: Time series of the NAO index in (a) CHIME and (b) the obser-
vations (Hurrell 1995b); the standard deviations are shown as the dashed lines.
Corresponding power spectrum in (c) CHIME and (d) the observations. The
smooth red line is the power of a red noise spectrum with the same AR(1)
coefficient fitted from the NAO time series.
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Ocean surface circulation

In CHIME, the Gulf Stream separates at about 39◦N, while observations suggest it

separates at Cape Hatteras at about 36◦N. The more northerly separation of the Gulf

Stream in CHIME is therefore broadly consistent with the northerly position of the

ZWCL. At 65◦W, the Gulf Stream transport at 15 Sv is considerably less than the 80 Sv

or so observed at this longitude (e.g. Johns et al. 1995). As in the North Atlantic, both

the ZWCL and separation of the western boundary current in the northwest subtropical

Pacific are farther north in CHIME than in observations. In the real ocean, the Kuroshio

separates from the coast of Japan at around 35◦N (e.g. Qu et al. 2001), whereas in

CHIME it separates at 37-40◦N. The separation in CHIME is therefore 3-4◦ too far to

the north. The observed transport in the Drake Passage is around 135 Sv (Cunningham

et al. 2003). The Drake Passage transport in CHIME has a realistic value of 140 Sv

in the first decade, but spins down to 60 Sv by year 200. Because Subantarctic Mode

Water (SAMW) and Antarctic Intermediate Water (AAIW) are well preserved (see

next paragraph), we suspect that the AMOC is relatively unaffected by this transport

drop in the Drake Passage. The flow through the Bering Strait into the Arctic, rather

variable, lies between 0 and +1 Sv, and compared reasonably well with an observed

barotropic flow of around 0.83 ± 0.66 Sv (Roach et al. 1995). The flow through the

Canadian Archipelago has a transport of about 2 Sv through Davis Strait, which is in

good agreement with observations (e.g. Cuny et al. 2005). The southward export of

dense water through the Denmark Strait into the North Atlantic is about 3 Sv, with an

additional southward flow of about 3 Sv of dense water over the Iceland-Scotland ridge

system; this is in broad agreement with observations (e.g. Cuny et al. 2005).

Interior water mass preservation and structure

AAIW is formed through surface mixing around the Southern Ocean between 45◦S and

55◦S, and is characterized by a surface salinity minimum. Overall, the fresh signature

of AAIW is well maintained in CHIME. The ability of HYCOM to preserve water mass

characteristics is similarly evident in the North Pacific, where the fresh tongue of North

Pacific Intermediate Water is mainained with little variation over the 200-year run of

CHIME. SAMW is formed along the northern side of the ACC. In the real ocean it has

a clear minimum in stratification and hence potential vorticity, which is traceable for

thousand of kilometers. After 80 years, the low stratification of SAMW in the formation

region is well preserved, as is the subduction route. While the Antarctic Bottom Water

(AABW) cell (below 4000 m) is weaker than that observed, the region between 1500

m and 4000 m with low vertical shear associated with the North Atlantic Deep Water

(NADW) is well simulated.

Although the substantial warming and increasing salinity in the North Atlantic subpolar

gyre in cD are clearly not realistic, CHIME has overall a realistic climate and is therefore

considered as a useful tool for the study of climate variability in the real climate system.
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2.1.3.2 How is E3 different from cD?

Because cD is examined for investigating variability while E3 is used for investigating

predictability, the main differences between these two runs are highlighted, as these have

to be kept in mind as analogies are drawn between the mechanisms of AMOC variability

and predictability.

Sea surface temperature differences

Figure 2.12 shows differences in SST between E3 and cD. In E3, the Southern Ocean

is, overall, colder (up to 4◦C) and the tropical regions warmer (up to 6◦C). The colder

(and more realistic, see Sect. 2.1.3.1 ) Southern Ocean is possibly due to the use of

a higher-order regridding scheme in E3, consistent with a more stable Drake Passage

transport. The reason for warmer tropical regions still remains unclear. Note that the

strongest temperature differences are in the deep tropical Pacific, suggesting that E3

does not represent the main features of the typical El-Niño event. More specifically,

in the Atlantic Ocean (region of interest here), the strongest difference appears in the

tropics where E3 is warmer by about 1-2◦C.
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Figure 2.12: Difference of annual SST mean averaged over the period of analysis
between E3 and cD. Positive values are for SSTE3 > SSTcD.

Sea surface salinity differences

Figure 2.13 shows differences in SSS between E3 and cD. Overall, E3 is fresher than cD.

The main differences in SSS are localized in the tropical regions, especially in the Pacific

Ocean where E3 is fresher by up to 3 psu. This suggests again, some problems related to

the representation of the El-Niño phenomenon in E3. Concerning the Atlantic Ocean,

there are few differences compared to the other ocean basins although some significant

differences are identified in the southern tropics. The western Coast of Africa is generally

saltier (up to 3 psu), and the South Atlantic subtropical gyre fresher (up to 1.5 psu).

Higher salinity off the western coast of Southern Africa and lower salinity in the western

Indian Ocean suggest a difference in interbasin salt exchange between the two runs,

probably linked to the Agulhas leakage.
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Figure 2.13: Difference of annual SSS mean averaged over the period of analysis
between E3 and cD. Positive values are for SSSE3 > SSScD.

Surface air temperature differences

Figure 2.14 shows differences in SAT between E3 and cD. The SAT pattern is very

similar to the SST pattern (Figure 2.12) with generally colder temperatures over the

polar regions and most of the Eurasian continent, and warmer temperatures over the

tropics. We suspect that the difference over land is at least partly due to a bug in

cD, which removed all of the snow cover everyday making the land in cD warmer than

it should be. Once again, the strongest differences are situated in the tropical Pacific

where SAT is warmer by up to 5◦C. Although the colder (and more realistic) Southern

Ocean has been associated with the use of a higher-order regridding scheme in E3, the

cooler (and less realistic, see Sect. 2.1.3.1 ) Arctic Ocean may be partly a consequence

of the Bering Strait being closed in that run. Similar to SST, the main differences in

the Atlantic Ocean are in the tropics where SAT is warmer by about 1-2◦C in E3.
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Figure 2.14: Difference of annual SAT mean averaged over the period of analysis
between E3 and cD. Positive values are for SATE3 > SATcD.

Oceanic heat transport difference

Figure 2.15 shows differences in the Atlantic mean ocean heat transport between E3

and cD. Although the ocean heat transport is slightly larger in E3 (up to 0.15 PW in

the northern tropics), they are overall very similar. This slight difference is probably

the consequence of the larger equator-to-pole SST difference in E3.
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Figure 2.15: Upper-panel: Atlantic mean ocean heat transport in PW in cD

(grey curve) and E3 (black curve) averaged over the common period from years
105 to 199. Lower-panel: difference in Atlantic heat transport; positive (nega-
tive) values are for E3 stronger (weaker) than cD.

March Mixed Layer Depth differences

Figure 2.16 shows differences in March MLD between E3 and cD. The convection site

in the Labrador Sea is shallower in E3 by about 400-600 m. There are also significant

differences in the Greenland Sea where west of the Mid-Atlantic ridge, MLD is shallower

up to ∼1000 m while it is ∼600-800 m deeper east of the ridge. Note that although E3

and cD sometimes differ in their MLD depths in the high-latitude North Atlantic, similar

convection sites have been identified there in both runs. Because the Bering Strait

appears to exert some influence on the formation of deep water masses (by affecting

the freshwater budget of the Greenland and Norwegian Seas, Reason and Power 1994;

Goose et al. 1997), and a closed Bering Strait has been associated with a reduction of

the intensity of the Atlantic deep circulation of about 17% (Hasumi 2002), we suspect

the shallower MLD in the Northern high-latitude regions in E3 to be partly caused by

the closure of the Bering Strait. Note that there are no notable differences in MLD in

the Southern Ocean.
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Figure 2.16: Difference of March MLD mean averaged over the period of analysis
between E3 and cD. Positive values are for MLDE3 > MLDcD.

In summary, E3 is generally warmer and fresher in the tropical regions and colder in

the polar regions than cD. These discrepancies have to be kept in mind when analogies
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are sought between the mechanisms behind the AMOC variability and predictability.

Predictability results from E3 can be used as benchmark for future experiments once a

more reliable and control integration of CHIME will be available.

2.1.4 CHIME: an improved version of HadCM3?

The fact that CHIME shares its atmosphere and ice components with HadCM3 means

that comparison between the two models should allow a clear assessment to be made

of the extent to which structural biases inherent in the vertical representation of the

ocean model affect the mean state of the simulated climate system. But why has the

ocean component of HadCM3 been replaced by the hybrid-coordinate ocean model HY-

COM? The main advantages and disadvantages of the different vertical coordinates of

ocean models are first summarized here. The well-known systematic errors inherent to

HadCM3 are then briefly described before summarizing the main findings of Megann

et al. (2010) concerning comparison of the CHIME and HadCM3 control simulations.

2.1.4.1 Advantages/disadvantages of the different coordinates for ocean

models

As with any model, important decisions are made early in the development stage regard-

ing the coordinate system that determines how the model will be implemented and how

it will perform. Figure 2.17 shows traditional vertical coordinate choices (z-coordinates,

σ-coordinates, ρ-coordinates), which are not by themselves optimal everywhere in the

ocean, as pointed out by model comparison exercises performed in Europe (DYnam-

ics of North Atlantic MOdels - DYNAMO, Willebrand et al. 2001) and in the United

States (Data Assimilation and Model Evaluation Experiment - DAMEE, Chassignet

et al. 2000). These and earlier comparison studies (Chassignet et al. 1996; Roberts

et al. 1996; Marsh et al. 1996) have shown that different models are able to simulate

the large-scale characteristics of the oceanic circulation reasonably well, but that the

interior water mass distribution and associated thermohaline circulation are strongly in-

fluenced by localized processes that are not represented equally by each model’s vertical

discretization.

z-coordinates σ-coordinates ρ-coordinates

Figure 2.17: The three main vertical coordinate systems of ocean models:
z-coordinates (left panel), terrain-following (middle panel), isopycnic (right
panel).
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Ideally, an ocean general circulation model should (i) retain its water mass characteristics

for centuries (a characteristic of ρ-coordinates), (ii) have adequate vertical resolution in

the surface mixed layer for proper representation of thermodynamic and biogeochemical

processes (a characteristic of z-coordinates), (iii) maintain sufficient vertical resolution

in unstratified or weakly-stratified regions of the ocean, and (iv) have high vertical reso-

lution in coastal regions (a characteristic of σ-coordinates). z-coordinates are therefore

best used to provide high vertical resolution near the surface within the mixed layer,

isopycnal layers are best in the deep stratified ocean, and σ-levels are often the best

choice in shallow coastal regions. Hence, many developers have been motivated to pur-

sue research into hybrid approaches, and the hybrid-coordinate models in which interior

isopycnal layers transition to z-levels in near-surface waters, should in principle combine

the advantages of both model types without the weakness of either. A brief descrip-

tion of the two main vertical coordinates inherent to the hybrid coordinate system (i.e.

z-coordinates and ρ-coordinates) in CHIME is given below.

The z-coordinate system (Figure 2.17, left-panel) is the simplest and best established,

primarily because it was adopted in the first models and valuable experience has been

built up over the years with this type of model. Examples of z-coordinate models are

CNRM-CM3 (Deque et al. 1994), MOM (Pacanowski 1995), HadCM3 (Gordon et al.

2000), and CCSM3 (Collins et al. 2006b). The fields at each water column are defined

at a set of constant depth levels, and the ocean is thus split into a 3-D array of points.

The levels are unevenly spaced in the vertical, to allow for more detail near the upper

(and sometimes lower) boundaries. This allows the ocean to have high resolution near

the surface, but generally leads to excessive diapycnal mixing (Sun and Bleck 2006). In

response to this and other problems with the z-coordinate formulation, models using

the isopycnal coordinate system have been developed.

Models with ρ-coordinates (Figure 2.17, right-panel) have the equations of motion formu-

lated on constant potential density surfaces. Examples of isopycnal models are MICOM

(Bleck et al. 1992), OPYC (Oberhuber 1993), HIM (Hallberg 1995, 1997), and NLOM

(Wallcraft et al. 2003). In the real ocean, mixing processes are believed to be pre-

dominantly along constant density surfaces. The isopycnal coordinate system therefore

mimics, as much as possible, real structures within the ocean. It has the advantage

of formulating the model in a manner that rigorously preserves the structure of water

masses faithfully over long time and length scales (Marsh et al. 1996). On the other

hand, problems arise when thickness of isopycnal layers drops to near zero or when they

intersect with the surface. Hybrid coordinate systems and model schemes have been

developed to overcome some of these problems.

The theoretical foundation for implementing hybrid coordinate systems was set forth by

Bleck and Boudra (1981) and Bleck and Benjamin (1993). The term “hybrid vertical co-

ordinate” can mean different things to different people: it can be a linear combination of

two or more conventional coordinates (Song and Haidvogel 1994; Ezer and Mellor 2004;
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Barron et al. 2006) or it can be truly generalized, i.e., aiming to mimic different types

of coordinates in different regions of a model domain(Bleck 2002; Burchard and Beckers

2004; Adcroft and Hallberg 2006; Song and Hou 2006). The hybrid models that have

much in common with isopycnal models are POSEIDON (Schopf and Loughe 1995) and

HYCOM (Bleck 2002). Other generalized vertical coordinate models include HYPOP

(Dukowicz 2005) and GOLD (Adcroft et al. 2008; Hallberg and Adcroft 2009). The

CHIME model (Megann et al. 2010) uses the hybrid-coordinate ocean model HYCOM,

in which interior isopycnal layers transition to constant-depth levels in near-surface wa-

ters (Figure 2.18), should in principle combine the advantages of both model types

without the weaknesses of either. The ocean interior is represented by layers of constant

potential density, but light layers that would outcrop and disappear in a pure isopycnic

model are reused as constant-depth near-surface coordinate levels with specified mini-

mum thicknesses. It is therefore largely an isopycnic ocean model, which reduces the

main deficiency of the latter, namely the loss of resolution in weakly stratified regions.

However, the advantages offered by a hybrid vertical coordinate do not come without

a price, and concerns associated with complexities introduced by variable-depth layer

models arise. One of the main concerns is the potential in hybrid-coordinate models

for excessive vertical diffusion caused by the dispersive character of vertical advection

schemes. If left uncontrolled, this diffusion can exceed that found in z-coordinate mod-

els, as the interlayer mass exchange can be much larger than the vertical transport rate

seen in fixed-grid models. Hybrid-coordinate models also have only approximate rep-

resentation of the pressure gradient (Sun et al. 1999). However, due to the vast range

of spatial scales that cannot explicitly be incorporated into global ocean models, it is

unlikely that we will ever find a model satisfactory to all users. Models built around

a hybrid vertical coordinate still provide flexibility not found in the classical z-level

and isopycnic coordinate models, in suppressing certain types of truncation errors while

resolving weakly stratified layers.
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Figure 2.18: Schematic of hybrid vertical coordinate system.

In summary, the majority of climate models developed to date use a z-coordinate ocean
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Table 2.2: Summary of main advantages and disadvantages of coordinate sys-
tems used in ocean models.

Vertical Coord. Main Advantages Main Disadvantages
z-coordinate
(the model fields
at each water
column are de-
fined at a set of
constant depth,
e.g. HadCM3)

(i) Good vertical resolution in the
upper ocean (Sun and Bleck 2006);
(ii) Upper ocean mixed layer well
parametrized; (iii) Horizontal pres-
sure gradient can be easily repre-
sented in an accurate manner; (iv)
Equation of state for ocean water
can be accurately represented in a
straigthforward manner (McDougall
et al. 2003).

(i) Too much diffusion as flow
crosses coordinate surfaces (Sun and
Bleck 2006); (ii) Excessive mixing
at sill overflows which may have ad-
verse consequence in long-term cli-
mate simulations (Sun and Bleck
2006); (iii) Excessive diapycnal mix-
ing (Sun and Bleck 2006); (iv) Rep-
resentation and parameterization of
bottom boundary layer processes
and flow are inaccurate; (v) Repre-
sentation of tracer transport within
the quasi-adiabatic interior is com-
plicated.

ρ-coordinate
(discretization
of the vertical
into potential
density classes,
e.g. MICOM)

(i) Better representations of near-
adiabatic flows along sloping isopy-
cnals; and (ii) Absence of spurious
numerical mixing of dense waters at
sill overflows (Roberts et al. 1996);
(iii) Preservation of water proper-
ties over long time and length scales
(Marsh et al. 1996); (iv) Tracer
transports in the ocean interior are
well represented (due to the natu-
ral ability to maintain water mass
properties); (v) Bottom topography
is represented in a piecewise linear
fashion (avoiding need to distinguish
bottom from side as done with z-
coordinate models); (vi) Horizontal
pressure gradient can be easily rep-
resented.

(i) Poor vertical resolution in weakly
stratified regions (i.e. at high lat-
itudes); (ii) Imprecise detrainment
from the mixed layer; (iii) Repre-
senting the effects of a realistic (non-
linear) equation of state is compli-
cated.

hybrid-
coordinate
(interior isopycnal
layers transition
to constant-depth
levels in near-
surface waters,
e.g. HYCOM)

(i) Same as Isopycnic-coordinate
model (MICOM) plus better reso-
lution in weakly stratified regions
(Bleck (2005)); (ii) Well controlled
diffusion in ocean interior - T and
S are preserved over long timescales
(like MICOM); (iii) Good verti-
cal resolution in upper ocean (bet-
ter than MICOM); (iv) Reduction
of numerically induced diapycnal
fluxes (Bleck 2005); (v) Smooth lat-
eral transition between deep-ocean
and coastal-shelf domains (Bleck
2005); (vi) Simple modelling of
abyssal dense overflow (Bleck 2005);
(vii) Flexibility to accommodate
massless layers on the sea floor
(Bleck 2005).

(i) Excessive vertical diffusion
(Bleck 2005); (ii) Approximate
representation of pressure gradient
(Sun et al. 1999); (iii) Need to
cast transport equations in flux
form and to use relatively complex
lateral transport operators that
maintain the physical integrity of
mass field tracers when there are
strong changes in layer thickness.
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component which allows the ocean to have high resolution near the surface, but generally

leads to excessive diapycnal mixing that may have adverse consequences in long-term

climate simulations. Isopycnic models, which use potential density as their vertical coor-

dinate, preserve the structure of water masses faithfully over long periods and distance

but have poor vertical resolution in weakly stratified regions. Hybrid-coordinate mod-

els in which interior isopycnal layers transition to constant-depth levels in near-surface

waters, should in principle combine the advantages of both model types without the

weakness of either. Table 2.2 summarizes the main advantages and disadvantages of

z-levels, isopycnic and hybrid coordinates.

2.1.4.2 Brief summary of systematic errors in HadCM3

HadCM3 is one of the models included in the climate change experiments described

in the IPCC Third and Fourth Assessment Reports (IPCC 2001, 2007), and has been

shown to have a remarkably stable climate when forced with preindustrial greenhouse

gas concentrations. However, like most numerical models, HadCM3 has systematic

errors which are not yet fully understood, and these may bias both the variability and

predictability of the AMOC. As described by Gordon et al. (2000), the mean SST field

in the model reproduces most of the characteristics of the observations in the World

Ocean Atlas (Levitus et al. 1995) to within 1◦C over much of the ocean. However,

large discrepancies of over 3◦C (and up to 6◦C) occur in regions of large SST gradients,

including the NAC region where the model is too cool. HadCM3 is also known to

overestimate the land temperature variability (Collins et al. 2001). The mean SSS field

is reproduced to within 1 psu in most regions (Pardaens et al. 2003). However, the model

is too salty in the Gulf Stream region of the North Atlantic (∼2 psu), and too fresh in the

Beaufort Gyre region of the Arctic Ocean (∼2 psu). In the upper ocean, the Labrador

Sea and Arctic Ocean are relatively cool and fresh, while lower latitudes are warmer

and saltier (Hawkins and Sutton 2007). Gamiz-Fortis and Sutton (2007) also showed

that the temperature and salinity contrast between the Labrador Sea/Arctic Ocean and

the North Atlantic is somewhat too large in HadCM3 (∼3 K, 1.5 psu) as compared

to observations (∼0.5-1 K, 1.0 psu). Below the surface in the Atlantic, the model is

generally too warm (∼2◦C) and too salty (∼0.5 psu). Finally, HadCM3 simulates a

NAO in Northern Hemisphere winter which has a spatial pattern consistent with the

observations in the Atlantic region, but is too strongly teleconnected with the North

Pacific (Collins et al. 2001).

We propose that the spurious numerical mixing that is commonplace in z-coordinate

ocean models (Griffies et al. 2000) may artificially limit predictive skill in climate mod-

els that feature such an ocean component. Hybrid ocean models such as HYCOM

(Bleck 2002) have the potential to overcome some of the weaknesses in conventional

z-coordinate models. For example it is expected that the better preservation of interior
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water masses in hybrid ocean models might have an influence on the decadal variability

and predictability of climate models, since enhanced effective diapycnal diffusion typical

of z-coordinate models will tend to erode interior gradients of temperature and salinity,

including those corresponding to anomalies.

2.1.4.3 CHIME versus HadCM3

Megann et al. (2010) have shown the critical importance of changing just one component

of the climate system, by comparing CHIME and HadCM3 control simulations. Their

main findings are summarized here. They found that both models possess realistic and

marked similarities in ocean heat transports and overturning circulation, with a maxi-

mum overturning in the North Atlantic of 18-20 Sv in both models and global northward

heat transport consistent with observational estimates. They both have similar spatial

distributions of wind stress and heat/freshwater fluxes, as well as warm sea surface bi-

ases at the eastern coasts (ascribed to errors in the cloud scheme of HadAM3). They

also both show similar errors in the position of the Gulf Stream separation. However

substantial differences between CHIME and HadCM3 are also evident. Although both

models have large-scale surface temperature errors across most of the North Atlantic, the

errors are warm in CHIME while they are cool in HadCM3. In addition, CHIME does

not have the cold sea surface errors present in the North Pacific in HadCM3. However,

it shows warm and salty errors in the North Atlantic, where HadCM3 has a smaller cold

error associated with a southward deviation of the NAC and a fresh surface error over

the whole North Atlantic. Moreover, both models show clear differences in separation

position of the Kuroshio Current, which separates further south in HadCM3 and further

north in CHIME than in observations. Both models also show similar differences in the

position of the Gulf Stream separation, and the volume transport of the Gulf Stream at

65◦W is smaller in CHIME (∼15 Sv) than in HadCM3 (∼23 Sv). Besides, some features

of the climate system are more realistically represented in CHIME than in HadCM3.

For instance, CHIME has significantly less mixing in the upper, intermediate and deep

ocean than does HadCM3 resulting in the better representation and maintenance of key

water masses. Namely, a better preservation of the signatures of AAIW and SAMW,

more realistic structure of the southward-flowing NADW, a sharper and more realistic

thermocline in the subtropical gyres, and reduced mixing of the dense overflow waters

in the North Atlantic. These results were expected by the authors as the formulation

of HYCOM is specifically designed to eliminate the spurious numerical diapycnal mix-

ing present in z-coordinate models and therefore to better represent and preserve water

properties over long time and length scales. Moreover, this more rigorously controlled di-

apycnal mixing is also apparent in other ocean features; whereas a global warming trend

is evident in HadCM3 just below the surface to 800-1000 m depth, a similar warming

trend in CHIME is more pronounced but shallower. However, CHIME also shows some
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unrealistic patterns which are absent in HadCM3. For instance, the substantial warm-

ing and increasing salinity in the North Atlantic subpolar gyre in CHIME are clearly

not realistic and not yet fully understood. In addition, CHIME has a less realistic gyre

circulation in the North Atlantic than does HadCM3, which is quite surprising as it has

been previously demonstrated that in ocean-only simulations the path of the NAC is

more realistic in ocean-only isopycnic models forced by realistic surface fluxes than in

comparable z-coordinate models (Roberts et al. 1996). Megann et al. (2010) attributed

this unexpected result to the difference in wind stress between the two models in this

region. Although the mixing in the Nordic Sea is realistic in HadCM3, the convection

is too deep in CHIME (up to 4000 m) and extends not only across most of the Nordic

Sea but through Fram Strait and as far as the Canadian Basin. This excessive mixing

is consistent with the anomalously high surface salinity, and the resulting decrease in

stratification, that develops in CHIME in the North Atlantic subtropical gyre and the

Arctic.

Overall, while both HadCM3 and CHIME are considered “good” models from the point

of view of their heat transports being within observational estimates, and possessing

remarkably similar overturning circulations (despite their difference in temperature and

salinity anomalies in the upper ocean in the North Atlantic), Megann et al. (2010) noted

clear and marked differences between both climate models in their representation of the

mean climate in control simulations which seem to be mainly caused by differences in

interior mixing. The model differences associated with the more controlled diapycnal

mixing in CHIME, are expected to be critical in long-timescale climate predictions, since

the evolution of the ocean state is known to play a crucial role in climate dynamics of

a decade and longer (Gordon et al. 2000). By reducing the extent of spurious mixing,

CHIME may be characterized by possibly more realistic mechanisms and timescales of

AMOC variability than those in HadCM3, and may have higher or at least substantially

different predictive skills. CHIME thereby provides an invaluable check on the simula-

tions made by e.g. Collins and Sinha (2003), Hawkins and Sutton (2007) from HadCM3,

and therefore the robustness of its predictability skills on decadal timescales.

As already mentioned in Sect. 1.5.2, predictability experiments using CHIME could

not be run until mid-2011. Predictability experiments with the well-established IPSL

climate model have been carried out before then, which allowed us to develop an efficient

experimental design prior to a similar such study with CHIME. The latest version of

the IPSL model (IPSL-CM5A) and its various components are therefore now briefly

presented.
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2.2 The Institut Pierre Simon Laplace model (IPSL-CM5A)

The IPSL-CM5A model (Dufresne et al. 2012) has been recently developed at the In-

stitut Pierre-Simon Laplace (IPSL) as part of the 5th Phase of the Coupled Model

Intercomparison Project (CMIP5). It is a full earth system model which, in addition to

the physical atmosphere-land-ocean-sea ice model, also includes a representation of the

carbon cycle, and stratospheric and tropospheric chemistry with aerosols. In the frame-

work of this thesis, the low resolution version of the model is used (IPSL-CM5A-LR)

to study the potential predictability of both the AMOC and North Atlantic Climate at

decadal timescales. The model configuration is summarized below.

2.2.1 Brief model description

The model components are the atmospheric general circulation model LMDZ5A (Hour-

din et al. 2012) associated with the ORCHIDEE land-surface model (Krinner et al. 2005)

coupled with the ocean module NEMOv3.2 (Madec 2008), which includes the sea ice

model LIM-2 (Fichefet and Maqueda 1997), and the oceanic bio-geochemistry model

PISCES (Aumont and Bopp 2006). The coupling between oceanic and atmospheric

models is achieved using OASIS3 (Valcke 2006). A general overview of these various

components is now briefly given.

2.2.1.1 Atmospheric component: LMDZ5A

LMDZ5 is an atmospheric general circulation model developed at the Laboratoire de

Météorologie Dynamique (Sadourny and Laval 1984). The dynamical part of the code

is based on a finite-difference formulation of the primitive equations for the atmosphere.

In the vertical, the model uses hybrid coordinates comprising 39 levels, with 15 levels

above 20 km. It has a regular horizontal grid with 96 × 96 points corresponding to a

resolution of 1.9◦ × 3.75◦. In the LMDZ5A version (Hourdin et al. 2012), the physical

parametrization is very close to that of the previous LMDZ4 version used for CMIP3

(Hourdin et al. 2006).

2.2.1.2 Land-surface component: ORCHIDEE

ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) simulates

the energy and water cycles of soil and vegetation, the terrestrial carbon cycle, and

the vegetation composition and distribution (Krinner et al. 2005). It is based on three

different modules: (i) SECHIBA (Ducoudré et al. 1993; de Rosnay and Polcher 1998)

which describes the exchanges of energy and water between the atmosphere and the

biosphere, and the soil water budget, (ii) STOMATE (Saclay Toulouse Orsay Model
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for the Analysis of Terrestrial Ecosytems, Krinner et al. 2005) which represents the

phenology and carbon dynamics of the terrestrial biosphere, (iii) the global LPJ (Lund-

Potsdam-Jena, Sitch et al. 2003) vegetation model that simulates vegetation dynamics.

2.2.1.3 Oceanic component: NEMOv3.2

NEMO (Nucleus for European Modelling of the Ocean) is a primitive equation model.

The IPSL-CM5A model includes the NEMOv3.2 version, which uses a partial step for-

mulation (Barnier et al. 2006) ensuring a better representation of bottom bathymetry

and thus stream flow and friction at the ocean bottom than the previous IPSL-CM4

model. The configuration of the model is ORCA2 (Madec and Imbard 1996). In the

horizontal direction, the model uses a curvilinear orthogonal grid: (i) south of 40◦N,

the grid is of isotropic Mercator type with a nominal resolution of 2◦, (ii) a latitudinal

grid refinement of 1/2◦ is used in the tropics, (iii) north of 40◦N, the grid is non geo-

graphic and quasi-isotropic. The North Pole singularity is replaced by a line between

points in Canada and Siberia. In the vertical direction, the model uses a full or partial

step z-coordinate, or σ-coordinate, or a mixture of both. There are 31 vertical levels

with the highest resolution for the upper 150 m. The distribution of variables is on a

three-dimensional Arakawa C-type grid. Advection of temperature and salinity is done

using a total variance dissipation scheme (Lévy et al. 2001; Cravatte et al. 2007). In the

momentum equation, an energy and enstrophy conserving scheme is used (Arakawa and

Lamb 1981; Le Sommer et al. 2009). The mixed layer dynamics are parameterized using

the Turbulent Kinetic Energy (TKE) closure scheme of Blanke and Delecluse (1993)

improved by Madec (2008). The horizontal eddy viscosity coefficient value is 4.104 m2

s−1 and the lateral eddy diffusivity coefficient value is 103 m2 s−1.

2.2.1.4 Sea ice component: LIM-2

LIM-2 (Louvain-la-neuve sea Ice Model, version 2) is a two-level thermodynamic-dynamic

sea ice model (Fichefet and Maqueda 1997, 1999). A three-layer model determines sensi-

ble heat storage and vertical heat conduction within snow and ice. The surface albedo is

parameterized as a function of the surface temperature and the snow and ice thicknesses.

For the momentum balance, sea ice is considered as a two-dimensional continuum in dy-

namical interaction with atmosphere and ocean. The sea ice and ocean models have the

same horizontal grid.
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2.2.1.5 Oceanic bio-geochemistry component: PISCES

PISCES (Pelagic Interaction Scheme for Carbon and Ecosystem Studies, Aumont and

Bopp 2006) simulates the cycling of carbon, oxygen and of the major nutrients determin-

ing phytoplankton growth. The carbon chemistry of the model is based on the Ocean

Carbon Model Intercomparison Project (OCMIP2) protocol (Najjar et al. 2007) and the

parameterization proposed by Wanninkhof (1992) is used to compute air-sea exchange

of CO2 and O2.

2.2.1.6 Atmosphere-Ocean-Sea ice component: OASIS

The Atmosphere-Ocean-Sea ice coupling in IPSL-CM5A-LR is very close, with some

improvements, to the coupling used in IPSL-CM4 (presented in detail in Marti et al.

2010). The OASIS v3.0 coupler (Valcke 2006) is used to interpolate and exchange the

variables and to synchronise the models.

2.2.2 Initial conditions and control run

The core of the predictability study with IPSL-CM5A is a 1000-year control integration.

The initial state was taken at the end of a 400-year run in coupled mode, itself started

after several hundreds of years of simulations of land and ocean carbon component sepa-

rately to equilibrate the carbon pools (see Dufresne et al. 2012 for further details). The

simulation uses constant pre-industrial boundary conditions of tropospheric greenhouse

gases and aerosol concentrations, and constitutes the pre-industrial control simulation

of the IPSL-CM5A-LR model used for the CMIP5 exercises. Figure 2.19 illustrates how

well equilibrated the model is. There is almost no drift in surface temperature, surface

salinity and heat budget, and no discernible difference between the flux at both the Top

Of Atmoshere (TOA) and the surface. There is also no drift of the carbon flux over land

and only a small one over the Ocean (see Dufresne et al. 2012 for further details).

2.2.3 How faithful is IPSL-CM5A-LR to the real climate system?

The global and North Atlantic climatology of IPSL-CM5A-LR have been described in

several papers such as Dufresne et al. (2012), Hourdin et al. (2012), and Escudier et al.

(2012). It has been shown that the 1000-year long simulation captures the main features

of the observed climate, in spite of a few notable biases. Here is a summary of the main

findings of the above-cited studies for the key oceanic and atmospheric fields, mainly in

the Atlantic region (of interest here).
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Figure 2.19: The time evolution of the global mean heat budget at surface
and at the TOA (W m−2), the global mean air surface temperature (◦C), the
sea-ice volume in the northern (black) and southern (red) hemisphere (103 m3,
the global mean surface salinity (psu), and carbon flux (GtC yr−1) over ocean
(black) and over land (red), for the 1000-year control integration of the IPSL-
CM5A-LR model. (From Dufresne et al. 2012).

The Atlantic SST in IPSL-CM5A-LR captures the main features of the observed SST,

but is clearly colder than observations over the whole North Atlantic (Figure 2.20, left-

panel). Escudier et al. (2012) related the very large cold bias east of the Grand Banks

to too weak and too zonal gradients in the vicinity of the Gulf Stream, partly due

to a southward shift of the western boundary currents as in many other models (e.g.

Danabasoglu 2008), and to the erroneous departure of the atmospheric jet stream from

the coast and a poleward shift of the atmospheric jet (Guemas and Salas-Mélia 2011).

Other biases include slightly too-cold SST in the tropics, and a strong cold bias in the

Nordic Seas.
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Figure 2.20: Bias of SST (left panel) and SSS (right-panel) in the Northern
Atlantic averaged over the whole 1000 years of the IPSL-CM5A-LR model com-
pared to observations. The mean of winter sea-cover in summer (left-panel)
and winter (right-panel) is indicated as black continuous line for the model and
dash-lined in observations. Observed SST are from Reynolds (1994), observed
SSS are from Conkright et al. (2002) and observed sea-ice cover from Rayner
et al. (2003). (From Escudier et al. 2012).

As shown by Escudier et al. (2012), the main features of the SSS fields are reproduced

in IPSL-CM5-LR. Note, however, that the North Atlantic maxima are slightly shifted

eastward as compared to the observations, and the subtropical maxima are slightly too

strong (Figure 2.20, right-panel). A major fresh bias is also present in the northwestern

Atlantic, probably due to an excess of freshwater forcing over the Labrador Sea as seen

in the previous version of the model (Swingedouw et al. 2007). These fresher conditions,

together with the cold bias identified earlier in the high-latitude North Atlantic, are

associated with an overestimation of the winter sea-ice cover in the northern Atlantic

and specifically in the Labrador and the Nordic Seas (Figure 2.20). This prevents a

correct representation of deep convection in these areas, and could explain the lower

range of its AMOC mean value (10.3 Sv, Escudier et al. 2012) compared to observational

estimates (e.g. Ganachaud and Wunsch 2000; Cunningham et al. 2007).

In addition, the model has been shown to be globally too cold in term of SAT, with a

pronounced bias in the mid-latitudes (Figure 2.21, Dufresne et al. 2012). These colder

conditions clearly include most of the Atlantic region. Some warm biases are, neverthe-

less, worth pointing out over Siberia, Alaska and the Southern Ocean.

As with the previous version (IPSL-CM4), one important deficiency of IPSL-CM5A-LR

is also the presence of a second zone of convergence south of the equator, both in the

Pacific and Atlantic Oceans (Figure 2.22, Hourdin et al. 2012). Note that this double

ITCZ is a classical bias of coupled models (see e.g. Dai 2006).
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Figure 2.21: Bias in the climatology (period 1961-1990 in the IPSL-CM5A-LR
model) of SAT compared to CRU estimate (Jones et al. 1999). (From Dufresne
et al. 2012).

Figure 2.22: Annual mean rainfall (mm day−1) in the prescribed SST simulation
LMDZ5A-LR and in the “historical simulation” for the end of the 20th century
with IPSL-CM5A-LR. (From Hourdin et al. 2012).

Despite its general cold bias and its too fresh northern Atlantic, the IPSL-CM5A-LR

model has overall a realistic climate and can therefore be considered as a credible model

for the study of climate predictability.

2.3 Summary of main characteristics of models used

Table 2.3 gives a summary of the main features of both models used in the framework

of this thesis.
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Table 2.3: Summary of main characteristics of both CHIME and ISPL-CM5A-
LR models.

CHIME IPSL-CM5A-LR
Purpose in this
thesis

Study of variability and predictabil-
ity of AMOC and climate.

Study of predictability of AMOC
and climate.

Reference Megann et al. (2010) Dufresne et al. (2012)
Atmosphere
model

HadAM3 (Gordon et al. 2000) LMDZ5A (Hourdin et al. 2012)

Ocean model HYCOM v2.1.34 and v2.2.18 (cD
and E3, respectively) (Bleck 2002)

NEMO v3.2 (Barnier et al. 2006)

Sea-ice model From HadCM3 (Cattle and Crossley
1995)

LIM-2 (Fichefet and Maqueda 1997,
1999)

Land-surface
component

MOSES (Cox et al. 1999) ORCHIDEE (Krinner et al. 2005)

Atmosphere-
ocean coupling

OASIS v2.4 and v3.0 (cD and E3,
respectively) (Valcke et al. 2000;
Valcke 2006)

OASIS v3.0 (Valcke 2006)

Oceanic bio-
geochemistry
component

none PISCES (Aumont and Bopp 2006)

Atmos. hori-
zontal resolu-
tion

2.5◦ × 3.75◦ 1.9◦ × 3.75◦

Ocean. hori-
zontal resolu-
tion

Spherical bipolar grid (Sun and
Bleck 2001): (i) 55◦N-78◦S = 1.25◦

× 1.25◦, (ii) north of 55◦N = bipolar
grid.

ORCA2 grid (Madec and Imbard
1996): (i) south of 40◦N = isotropic
Mercator (resolution 2◦), (ii) trop-
ics = grid refinement of 1/2◦, (iii)
north of 40◦N = non-geographic and
quasi-isotropic grid.

Atmos. vertical
coordinate

Hybrid (19 levels) Hybrid (39 levels)

Ocean. vertical
coordinate

Hybrid (25 levels) z-coordinate or σ-coordinate or
both (31 levels)

Mixing scheme KPP (Large et al. 1994) TKE (Blanke and Delecluse 1993)
Length of
data analysed
(years) in con-
trol run

cD (variability)=120; E3 (pre-
dictability) = 201

1000

Main biases in
the Atlantic

(i) Substantial warming and increas-
ing salinity in the North Atlantic
subpolar gyre, (ii) Excessive mix-
ing in the northern Atlantic high-
latitudes.

(i) Significant cold and fresh biases
in the northern Atlantic, (ii) Lack of
deep convection in the Labrador and
Nordic Seas.
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Despite identified biases, both the CHIME and IPSL-CM5A models have overall a re-

alistic climate and can therefore be considered as useful and credible tool for the study

of climate variability and predictability. It is important to bear in mind that none of

the existing models is able to accurately reproduce all aspects of past and current cli-

mate, and that no single model will ever be able to realistically reproduce climate as

we experience it. By their very nature, models cannot capture all the factors involved

in a natural system, and those that they do capture are often incompletely understood.

This makes climate models impossible to truly verify or validate (Oreskes et al. 1994).

Some may argue that long-term forecasts are useless because they cannot be properly

evaluated and little can be learnt from a prediction without verification. Nevertheless,

the models ability to reproduce many large-scale aspects of present-day climate, the fact

that they are built on well-known physical processes (such as conservation of energy,

mass and angular momentum), and the fact we can understand and interpret many of

the results from known processes provide support for the models credibility, at least for

large scales and certain variables. George Box is credited with the quote “All models

are wrong, but some are useful” (Box 1979). Indeed, all climate models are known to be

imperfect to some degree, but they can still help us to understand the things we observe

or simulate and to test hypotheses. In the absence of better alternatives, it is likely to

be better to use an “imperfect” model than, say, random guessing. Models represent

the best tool we have available for explaining the current behaviour of our climate and

predicting likely changes to the planet’s future climate.

The next chapter will now discuss the different statistical tools and methods used here

in both variability and predictability studies.
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Methodologies

This chapter gives a description of the methodologies used for studying the decadal

variability and predictability of AMOC fluctuations and climate in the Atlantic sector.

Data and statistical methods used for studying variability are first presented, prior to

the methods and experimental design of the predictability experiments.

3.1 Climate variability study with CHIME: data and sta-

tistical methods

3.1.1 Data description

Monthly output data from cD are used. Analysed data comprise oceanic and atmo-

spheric variables known to be directly or indirectly linked to climate variability. Ocean

fields include salinity, temperature, surface potential density σ2 with respect to the 2000

dbar surface (a measure of static stability), MLD, surface heat and freshwater fluxes.

They also include the annual-mean meridional mass transport streamfunction of the

Atlantic, and an AMOC index defined as its maximum at 30◦N. Atmospheric fields

comprise SAT, sea level pressure (SLP), and net precipitation. Note, that because of

the spherical-tripolar grid used in the ocean component of CHIME, ocean fields have

been re-gridded onto a regular 1.25◦x1.25◦ grid north of 55◦N.

We either use annual means, winter means (January-March) or September values for the

different fields, and anomalies are calculated from the year 80-200 mean. Winter means

are used to characterize activities in the high-latitude regions (as deep water is formed

by convection in these regions mainly during the cold winter seasons) while September

means rather characterize processes specific to the tropical regions (coincident with

heaviest precipitation in the central Atlantic, at around the time of the northernmost

position of the ITCZ). Note that the use of winter or September means does not give

57
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qualitatively different results to the use of annual means but rather strengthens statistical

robustness in some cases. When focusing on low-frequency variability, we apply 5-year

or 10-year moving average filters to the data.

3.1.2 Statistical methods

In this study, the main statistical methods used include correlation, regression, spectral,

composite, and Empirical Orthogonal Function (EOF) analyses. These methods are

briefly described below.

Correlation coefficients

Correlation analysis gives a measure of the linear relationship between a set of variables.

The Pearson’s correlation coefficient, commonly simply referred to as the correlation

coefficient, is a scaled version of the covariance (defined as the cross-product of the

anomalies from the mean), where the covariance is divided by the standard deviation of

the fields. The formula for the correlation of two n-length time series x and y is:
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The Least Squares Regression line

Simple regression analysis helps to determine the relationship between a dependent

variable and an independent one. Most commonly, regression coefficients give the average

value of the dependent variable when the independent variable is held fixed. Suppose

that y is a dependent variable, and x is an independent variable, the equation of the

least squares regression line of y on x is:

y = B0 +B1x (3.2)

where B1 is the slope (also called the regression coefficient), and B0 is the intercept:
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Power spectrum

The power spectra analysis uses, here, the Welch method of spectral estimation (Welch

1967) allowing us to measure the power of a signal at different frequencies. Note that

no smoothing is applied to the data prior to the calculation of the spectrum. The Welch

method is based on the concept of using periodigram spectrum estimates, which are the

result of converting a signal from the time domain to the frequency domain. The power
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of a red noise spectrum with the same AR(1) coefficient fitted from the detrended given

time series is also evaluated to test the statistical significance of its corresponding power

spectrum.

Composite analysis

Composite analysis consists of averaging patterns with similar features (e.g. Figure 6

in Vellinga and Wu 2004), and can therefore help to better understand the possible

influence of these particular features.

Empirical Orthogonal Function analysis

The method of EOF analysis (e.g. Von Storch and Zwiers 1999) is a decomposition of

a data set in terms of orthogonal basis functions which are determined from the data.

The basis functions are typically found by computing the eigenvectors of the covariance

matrix of the data set. It is the same as performing a principal component analysis on

the data, except that the EOF method finds both time series and spatial patterns. EOF

analysis is therefore a useful way of determining the main modes of spatial and temporal

patterns associated with the variability of a particular variable. When calculating EOFs,

here, time series are normalized by the local variance and data are detrended.

Statistical significance

In this study, statistical significance of anomalies is tested using a z-test at the 90%

confidence level. Significance of correlation and regressions coefficients is tested using

Students t-test at either the 90% or 95% confidence level. Note that Quenouille (1952)’s

method is used to account for the reduction of the effective numbers of degrees of freedom

due to the autocorrelation in the datasets and the use of moving average. Degrees of

freedom for moving averaged time series is determined as follows:

ne =
n

1 + 2
�n−1

i=1 rir
�
i

(3.5)

where ri and r
�
i are autocorrelation of two time series with lag i years, and n is the

number of data considered.

3.1.3 Domain of study

The domain of study for the present analysis is the Atlantic sector between 20◦S-80◦N

and 90◦W-30◦E. We further consider regions where deep convection occurs in the model.

The maximum MLD in March defines the deep convection sites as shown in Figure 3.1.

Three deep convection sites are evident: (i) the GIN Seas, (ii) the Labrador Sea and

(iii) a small region south of Iceland (extending down to about 57◦N). Deep convection

in the latter is significantly less than in the Labrador and GIN Seas. Furthermore,

the Labrador and GIN Seas are both regions where MLD and AMOC fluctuations are

most sensitively related (> 200 m Sv−1). We therefore focus analysis on these two
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main regions, for which the Labrador and GIN Seas domains have been respectively

defined as 55◦N-65◦N/45◦W-65◦W and 65◦N-80◦N/15◦W-15◦E (see boxes, Figure 3.1).

Corresponding convective indices have been calculated from the annual winter-mean

MLD averaged over each domain.
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Figure 3.1: March MLD (m) averaged from year 80 to 200 (as colour-shaded)
superimposed with its regression coefficients onto PC1 of the AMOC stream-
function (m Sv−1, shown as contours). The Labrador (GIN) Sea(s) box is
defined as 55◦N-65◦N/45◦W-65◦W (65◦N-80◦N/15◦W-15◦E).

3.2 Climate predictability study with IPSL-CM5A-LR and

CHIME: methods and experimental setup

3.2.1 Methods for measuring predictive skills

In the present study, two common methods are used to estimate potential predictability:

(i) the diagnostic potential predictability (DPP) approach which only relies on a long

control simulation, and (ii) the prognostic potential predictability (PPP) approach which

requires re-running climate simulations with slightly perturbed initial conditions.

3.2.1.1 Diagnostic Potential Predictability (DPP) approach

The DPP approach uses the method of analysis of variance (Madden 1976; Rowell

1998) to examine the low-frequency variability (considered to be at least potentially

predictable) of a given variable. As an estimate of DPP, we use the non-biased estima-

tion of potential predictability variance fraction (ppvf) from Boer (2004) that attempts

to separate the long-term variability from internal variability (considered as chaotic

noise). The long-term variability that rises above this noise is deemed to arise from

processes operating in the physical system that are assumed to be, at least potentially,

predictable. The non-biased estimation of ppvf (see Boer 2004 for further details) is

defined as:
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ppvf =
σ
2
N − 1

N σ
2

σ2
(3.6)

where σ
2
N represents the variance of N -year means, and σ

2 represents the full variance

of a given variable. The ppvf varies between 0 and 1; a ppvf close to 0 implies no

long-term variability and thus no potential predictability. Conversely, ppvf close to 1

implies large predictability. Statistical significance of ppvf is judged using a F -test at

the 90% or 95% confidence level. A threshold for “useful” potential predictability is

however hard to define, as it is likely to be purpose and situation dependent.

Note that this approach is also of limited interest when applied to a single time series,

that is when studying the temporal predictability of a given variable such as the AMOC

index. In this study, we therefore restrict the use of this approach to the study of the

spatio-temporal predictability of climate-related fields. Although the power of the DPP

approach lies in the fact that it only relies on a long control simulation, it remains an

easy and cheap statistical way to estimate the average predictive skill in a model, which

differs from the prognostic approach described below.

3.2.1.2 Prognostic Potential Predictability (PPP) approach

In the PPP approach, the predictability is estimated prognostically by re-running a

climate simulation (from the control integration) with slightly perturbed initial condi-

tions supposed to represent atmospheric chaotic noise or uncertainty in the estimation

of the climate state (e.g. Griffies and Bryan 1997a; Collins and Sinha 2003; Collins

et al. 2006a; Msadek et al. 2010). This approach does not compare to observations di-

rectly, and only assesses the ability of the modeled climate to reproduce itself given a

certain atmospheric noise. These experiments are thus often called “perfect ensemble”

experiments. The PPP approach therefore represents an estimate of the upper limit of

predictability based on having a perfect model and near perfect knowledge of the current

state of the climate system (principally the state of the ocean). Although this situation

is never likely to be achieved in practice, this approach is useful in identifying explicitly

the climate predictability over a specific climate trajectory.

Practically, both the spread and the correlation of the members of each ensemble are

useful and important tools to quantify the reproducibility and thus predictability of the

simulated fields. In this study, we thus consider two deterministic measures (following

the Assessment of Intraseasonal to Interannual Climate Prediction and Predictability

report, National Research Council, NRC, 2010): the Ensemble Spread (ES) and

Ensemble Correlation (EC). Both these metrics have to be computed with respect

to a target, a state that we wish to predict. At least two definitions of this target have

been proposed in the literature: (i) the ensemble mean (e.g. as in Msadek et al. 2010,

hereinafter M10) or (ii) each individual member successively (e.g. as in Collins and
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Sinha 2003, hereinafter CS03). As illustrated below, ES computed with each definition

only differs by a factor of proportionality. Both definitions are thus equivalent for this

metric. In contrast, no such relationship of proportionality could be found for EC. Here,

we will therefore consider these two definitions to evaluate possible differences in their

respective scores of PPP. Both EC and ES metrics are now described considering the

different definitions of target.

Ensemble Correlation (EC)

In the forecast framework, correlation addresses the question: “to what extent are the

forecasts varying coherently with the observed variability?”. In the M10 approach, pre-

dictability skill is evaluated by correlating each member of the ensemble to the ensemble

mean whereas in the CS03 approach each member is correlated to each other. If M is

the number of members, we therefore obtain M (resp. M(M − 1)/2) individual corre-

lations for M10 (resp. CS03). Independently of the approach used, the formula for the

individual correlation of any pairs p is:

rp =
[T

�t=T
t=1 AtBt]− [

�t=T
t=1 At

�t=T
t=1 Bt]�

[T
�t=T

t=1 A
2
t − (

�t=T
t=1 At)2]× [T

�t=T
t=1 B

2
t − (

�t=T
t=1 Bt)2]

(3.7)

where T is the number of years over which we want the correlation for, and A and B are

the time series (or members) forming the pair p. Once the individual correlations of all

pairs have been calculated (M pairs for M10, M(M − 1)/2 pairs for CS03), EC of the

ensemble is computed as the mean of all individual correlations through a Fisher Trans-

formation (Fisher 1921). The transformation is applied to each individual correlation

rp, and is defined by:

zp =
1

2
ln (

1 + rp

1− rp
) = arctanh(rp) (3.8)

Then by calculating the mean z of all individual zp, EC of a given ensemble is estimated

by its inverse transformation:

EC =
exp (2z)− 1

exp (2z) + 1
(3.9)

We will consider the two definitions of target (M10 and CS03) to evaluate possible differ-

ences in their respective score of predictive skills. Statistical significance of the resulting

EC is judged using a one-tailed Students t-distribution test at the 90% confidence level

with degrees of freedom corresponding to the average degrees of freedom of all individual

correlations. The degrees of freedom of the latter takes into account the persistence in

the two time series following Bretherton et al. (1999).
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Ensemble Spread (ES)

ES or Root Mean Squared Error RMSE or again the Mean Squared Skill Score MSSS

(as defined by the US CLIVAR working group on Decadal Predictability, http://clivar-

dpwg.iri.columbia.edu) addresses the question: “how large are the typical errors in the

forecast (among members) relative to those implied by baseline?”. Consistently with

EC, we consider the two definitions of the targets which arise from the literature: for a

given lead-time LT , ES of an ensemble of individual members i is defined respectively

as:

ESM10(LT ) =

���� 1

M

M�

i=1

[Xi(LT )−X(LT )]2 (3.10)

ESCS03(LT ) =

���� 2

M(M − 1)

M�

i=1

M�

j=i+1

[Xi(LT )−Xj(LT )]2 (3.11)

where we define: X(LT ) = 1
M

�M
i=1Xi(LT )

We demonstrate below that there actually exists a relationship of proportionality be-

tween Equation 3.10 and Equation 3.11. Let consider the two following definitions of

Mean Squared Error:

EM10 =
1

M

M�

i=1

(Xi −X)2 (3.12)

ECS03 =
2

M(M − 1)

M�

i=1

M�

j=i+1

(Xi −Xj)
2 (3.13)

By expanding (Xi−X)2 in Equation 3.12 and after a few rearrangements we show that:

EM10 = X2 −X
2

(3.14)

Then, if we introduce:

E =
2

M(M − 1)

M�

i=1

M�

j=1

(Xi −Xj)
2 (3.15)

We show by a recurrence reasoning that:

E = 2ECS03 (3.16)

By expanding (Xi − Xj)2 in Equation 3.15 and after a few rearrangements, we show

that:

E =
4

M − 1
(X2 −X

2
) (3.17)
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By combining Equation 3.14, Equation 3.16 and Equation 3.17, we obtain the following

relationship:

ECS03 =
2M

M − 1
EM10 (3.18)

Therefore,

ESCS03(LT ) =

�
2M

M − 1
ESM10(LT ) (3.19)

And there exists a factor of proportionality
�

2M
M−1 between the ensemble spread of both

CS03 and M10 definitions.

Generally, the trajectories of individual members diverge with time and thus ES increases

with LT . When ES saturates at the control RMSE, we consider that there is no more

potential predictability: the spread of the forecast is of similar magnitude as the natural

spread of the modeled climate, and no predictability can be inferred. In CS03 (M10)

the control RMSE is defined as σ
√
2 (σ

�
M−1
M ), where σ is the standard deviation of the

control integration. Statistical significance of ES as compared to the respective threshold

(or control RMSE) is judged using a F -test at the 95% confidence level. The maximum

LT at which a variable is said to be potentially predictable is the last significant LT

before ES persistently exceeds the threshold.

As demonstrated above, ES computed with each definition (M10 and CS03) only differs

by a factor of proportionality. Both definitions are thus equivalent for this metric. In

contrast, no such relationship of proportionality could be found for EC. Here, we will

therefore consider these two definitions of target to evaluate possible differences in their

respective score of PPP.

Potential predictability criterion

With the objective of developing a common skill evaluation to enable us to compare

decadal prediction systems across different modeling centers (Meehl et al. 2012), we

propose here an approach of measuring predictive skills based on both ES and EC

metrics. Indeed, note that EC alone does not indicate whether the forecast values are

of the right magnitude (contrary to ES). In the same way, ES alone does not indicate

the direction of the deviations (contrary to EC). We therefore explore the information

given by both metrics, and consider that a variable is potentially predictable if it

has a (low) statistically significant ES (below the saturation level defined as the

control RMSE) associated with a (high) statistically significant EC (Figure 3.2,

right panel). By combining these two metrics, we are in good agreement with Hawkins

et al. (2011) who claim that prediction skills should be measured using more than one

metric. However, it has to be kept in mind that, as will be illustrated later (in chapters

5 and 6 ), combining these two metrics might be too restrictive in some situations, and

that information given by ES or EC alone should not be neglected.
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High EC + High ES = no PPP skills Low EC + Low ES = no PPP skills High EC + Low ES = PPP skills

Figure 3.2: Schematic representation of two scenarios with no PPP skills (both
left and middle panels) and one scenario with PPP skills (right panel) as defined
here.

Note that deterministic measures of skills (such as ppvf , EC, ES) do not give information

about the prediction probabilities; such information can complement the results already

obtained from both the DPP and PPP approaches, and can be of particular importance

for society-relevant variables such as surface temperature. This probabilistic information

can be obtained through the calculation of the Probability Density Functions (PDFs) of

a specific variable for each ensemble experiment.

Probability Density Functions

For a given variable x, the PDF fitted by a Gaussian distribution can be calculated by

computing the mean µ and standard deviation σ of the M members of the ensemble

experiment:

PDF (x) =
1

σ
√
2π

exp
−(x− µ)2

σ
(3.20)

Potential predictability may arise if the ensemble mean of the ensemble experiment is

significantly shifted with respect to climatology resulting in biases in the probability

of e.g. warmer temperatures. A variable x is therefore predictable if the forecast PDF

distribution of x differs sufficiently from the climatological PDF distribution to influence

relevant decision-makers (as illustrated in Figure 3.3).

Figure 3.3: The solid line is a schematic illustration of the climatological prob-
ability of some climatic variable, such as decadal-mean surface temperature.
The dashed line is a schematic illustration of a decadal forecast probability
distribution showing clear predictability.
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3.2.2 Model simulations with IPSL-CM5A-LR

3.2.2.1 Control integration for DPP

The DPP approach only relies on the IPSL-CM5A-LR control integration described

earlier in Sect. 2.2.2. It is a 1000-year control simulation started from a suite of adjust-

ment simulations lasting more than 1000 years. Using constant pre-industrial boundary

conditions of tropospheric greenhouse gases and aerosol concentrations, this is the pre-

industrial control simulation used for the CMIP5 exercises.

3.2.2.2 “Perfect ensemble” experiments for PPP

The core of the PPP approach is a series of 5 ensemble experiments using the same code

as the control integration described above. Each ensemble starts from a different date

of the control simulation and includes 10 members, started from slightly different initial

conditions and integrated for 20 years. Initial conditions of the different members are

obtained here by perturbing the SST from the control simulation with an anomaly chosen

randomly for each grid point in the interval [-0.05◦C, 0.05◦C] with an equiprobable

distribution for each value over this interval. This perturbation mimics a non-Gaussian

white noise perturbation. No perturbation has been applied for the grid points under sea-

ice cover. Figure 3.4 shows the five different starting dates of each ensemble experiment

together with the time series of the AMOC index from years 1870 to 2200 in the control

integration. One experiment starts from a year corresponding to relatively weak AMOC

conditions (hereinafter W, year 1901), one from intermediate conditions (hereinafter I,

year 2171), and one from strong conditions (hereinafter S, year 2071). We have also

chosen to start some experiments respectively 5 and 15 years before the large AMOC

maximum in 2071 to investigate how far ahead this extreme value can be captured (15P

and 5P, starting dates 2056 and 2066, respectively). Note that other choices could have

been made and because of the limited number of starting dates, this experimental set up

was not designed to draw robust conclusions about a possible predictability-dependence

on the AMOC initial state. It could nevertheless give useful indications about it.

3.2.3 Model simulations with CHIME

3.2.3.1 Control integration for DPP

The core of the DPP approach with CHIME is the 201-year control integration of E3

(from year 105 to 305) as described earlier in Sect. 2.1.2.2. It has been run in fully

coupled mode for 445 years from rest, using constant pre-industrial boundary conditions

of tropospheric greenhouse gases and aerosol concentrations. There is evidence that this

pre-industrial control simulation is not as reliable as cD (e.g. climate drift, missing
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Figure 3.4: Time series of AMOC index in the IPSL control integration from
year 1870 to 2200, with starting points of perfect ensemble experiments shown
as coloured points. The 1000-year mean is shown as the horizontal line and the
corresponding standard deviations are shown as the dashed lines.

data), and this has to be kept in mind through the rest of the study. Predictability

experiments carried out with E3 nevertheless give useful indication about the potential

predictive skills of this new model. Results from these experiments could be used as

benchmark for future experiments once a more reliable and longer control integration of

CHIME (or similar model) will have been obtained.

3.2.3.2 “Perfect ensemble” experiments for PPP

The core of the PPP approach with CHIME is a series of 5 ensemble experiments run

from the control integration E3. Each ensemble of 5 members was started from slightly

different initial conditions and integrated for 20 years. To test the eventual sensitivity of

predictive skills to the number of members considered, one of these experiments has been

generated with 5 additional slightly different initial conditions, therefore accounting for

10 members in total (excluding the control integration). Because the new configuration

of CHIME did not allow us to apply the same perturbation scheme than the one used in

IPSL-CM5A, perturbations to the initial conditions in CHIME were obtained as follows:

each of the ensembles were restarted from the same atmospheric state of the control

integration, but the ocean of each one of the members was initialized from an ocean

advanced by a day relative to the preceding member. Figure 3.5 shows the five different

starting dates of each “perfect ensemble” experiment together with the time series of

the AMOC index from year 105 to 305 in the control integration E3. To facilitate
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the comparison of our results with those from IPSL-CM5A, we chose starting dates

corresponding as close as possible to the AMOC initial states in the IPSL experiments.

Therefore, one experiment starts from a year corresponding to strong AMOC conditions

(hereafter S, year 260), two experiments start respectively 15 and 5 years before this

strong event (hereafter 15P and 5P, year 245 and 255), and one experiment starts from

intermediate conditions (hereafter I, year 105). Note that because of missing restart

files, the experiment corresponding to relatively weak AMOC conditions (hereafter W)

does not start from an extreme value (as in IPSL) but starts about 3 years prior it (year

280). We will still refer this experiment as starting from weak AMOC conditions. These

experiments with CHIME could strengthen conclusions drawn from the IPSL-CM5A

model about eventual predictability-dependency on the AMOC initial states.
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Figure 3.5: Time series of AMOC index in the CHIME control integration E3
from year 105 to 305, with starting points of perfect ensemble experiments
shown as coloured points. The 201-year mean is shown as the horizontal line
and the corresponding standard deviations are shown as the dashed lines.

The next chapter will now address the first objective of this thesis by analyzing the

natural decadal variability of the AMOC (and associated key variables) as seen in the

CHIME model.



Chapter 4

Decadal-timescale changes of the

AMOC and climate in CHIME

Results from this chapter have been accepted for publication in Climate Dynamics as:

Persechino A, Marsh R, Sinha B, Megann A, Blaker A, New A (2012) Decadal-timescale

changes of the Atlantic meridional overturning circulation and climate in a coupled

climate model with a hybrid-coordinate ocean component. Clim Dyn, 39(3):1021-1042.

4.1 Aim of study

Mechanisms responsible for decadal variability of the AMOC are still under debate.

Improving our understanding of such variability is prerequisite in the perspective of

developing operational decadal predictions schemes. Focussing on the shorter decadal

timescale (i.e. 15-30 years), this chapter therefore describes the natural variability of the

AMOC and associated key variables as seen in CHIME, in order to better understand

the key processes implicated in such variability. Sect. 4.2 describes the structure and

variability of the AMOC. Co-variability of ocean properties and surface climate are

discussed in Sect. 4.3. Underlying physical mechanisms are considered in Sect. 4.4. A

summary and discussion follow in Sect. 4.5, with concluding remarks in Sect. 4.6.

4.2 Internal AMOC variability in CHIME

4.2.1 Spin-up, trend and variability of the AMOC

The AMOC index time series is shown for the entire cD run in Figure 4.1a (black line).

Despite the relatively short time series available, decadal-to-multidecadal timescale vari-

ability can still be easily distinguished from the spinup transient from year 80. The

69
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amplitude of variability is about 2 Sv (ranging from 17.5 to 22 Sv). The average decadal

mean (about 19.8±1.4 Sv) compares well with observational estimates (18±2-3 Sv) of

Talley (2003), but is a little smaller than the mean of 22.8±1.6 Sv in the corresponding

period of HadCM3 (Megann et al. 2010). The principal component associated with the

main mode of variability of the AMOC streamfunction (PC1, further discussed in Sect.

4.2.2 ) is superimposed on the AMOC index (Figure 4.1a, grey line). The two time

series are highly correlated, with correlation coefficient of 0.86 (Table 4.1). Although its

corresponding power spectrum shows most energy (relative to a fitted first order autore-

gressive AR1 model, Chatfield 1975) at a period of about 30 years, this is well below the

80% confidence limit about the fitted red noise spectrum (Figure 4.1b). Although not

significant, periods in the range 15-30 years almost reach this 80% confidence limit, so

it appears that the PC1 of the AMOC in CHIME reveals an enhanced power compared

to a fitted red noise spectrum for periods in this range.
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Figure 4.1: (a) Time series of the AMOC index from cD for the whole 200-year
simulation (black line) superimposed with the PC1 time series of the AMOC
streamfunction from year 80 (grey line), (b) Power Spectrum of the detrended
PC1 (grey line) using the Welch method of spectra estimation. The smooth red
solid line is the power of a red noise spectrum with the same AR(1) coefficient
fitted from the detrended PC1 time series, and red (orange) dashed lines, which
are the 95% (80%) confidence limits.

The mean AMOC streamfunction (Figure 4.2) has broadly similar features to the mean
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Table 4.1: Maximum correlation coefficients between 10-year moving averages
of the PC1 of AMOC and several different variables. Bold correlations are
statistically significant at the 90% confidence limits.

Variable Max. Correlation Lag (years)
Coefficient

AMOC index 0.86 Instantaneous
September northern tropical 0.79 Near-instantaneous
subtropical SST gradient
Convective index 0.90 PC1 lags by ∼ 2
(Labrador)
Convective index -0.70 PC1 lags by ∼ 1
(GIN)
Winter surface potential 0.86 PC1 lags by ∼ 2
density (Labrador)
Winter surface potential -0.83 PC1 lags by ∼ 1
density (GIN)
Tropical Activity (TA) 0.75 PC1 lags by ∼ 8− 9

AMOC inferred from observations (Ganachaud and Wunsch 2000); the circulation asso-

ciated with the NADW has a maximum transport of about 18 Sv at a depth of 800-1200

m occurring at about 30◦N. NADW lies at a maximum depth of about 4000 m, which is

considerably deeper than the observed depth at which NADW enters the DWBC (about

2000-2500 m, Reid 1989). This bias could be the result of either the weakened AABW

cell found in CHIME (Megann et al. 2010) or an unrealistic degree of preservation of

the density outflows from the Nordic Seas as a consequence of the isopycnic coordinate

system (Roberts et al. 1996) that will result in a too-dense NADW cell. The 18 Sv of

warm northward flow is found in the upper ocean (mainly in the Gulf Stream and NAC)

with the strongest sinking occurring in a broad region between about 55◦N and 65◦N.

There is also evidence for deep water formation in the Nordic Seas as far as 70◦N. The

inflow of AABW (the reverse cell below 4000 m) reaches barely 2 Sv; Megann et al.

(2010) suggest that this is due to excessive wintertime ice cover in the Antarctic and

hence insufficient heat loss to form realistic volumes of bottom water.

4.2.2 EOF analysis of AMOC variability

To analyze the spatial patterns associated with variability of the AMOC in CHIME, we

have calculated EOFs (e.g. Von Storch and Zwiers 1999) based on 121 years of annual-

mean AMOC streamfunction calculated from year 80 onwards (Figure 4.3). Prior to the

calculations, time series are normalized by the variance, and detrended.

EOF1 explains 33.6% of the total variance (Figure 4.3a), and has a basin-wide structure

similar to that of the streamfunction itself (Figure 4.2). It has a maximum value of
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Figure 4.2: Annual mean streamfunction of zonally integrated volume transport
(Sv) from 30◦S to 80◦N, averaged from years 80 to 200 in CHIME. Positive values
mean clockwise circulation.
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Figure 4.3: Detrended AMOC streamfunction (from year 80 to 200) in the North
Atlantic (20◦N to 75◦N): (a) EOF1; (b) PC1 (black line) and 10-year moving
average winter MLD in Labrabor Sea (red line) and GIN Seas (blue line); (c)
EOF2 and (d) PC2.
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about 1.6 Sv (for a fluctuation of one standard deviation of PC1) with the strongest

sinking taking place primarily at about 55-60◦N. As already mentioned in Sect. 4.2.1,

PC1 (Figure 4.3b, black line) shows an enhanced power for periods in the range 15-30

years and is significantly correlated with the AMOC index; we shall therefore use PC1

of the AMOC as a reference time series in the following analyses. It would therefore

seem that EOF1 thus describes AMOC changes associated with variability in the period

range 15-30 years, most likely related to Labrador Sea Water (LSW) variability; the

strongest sinking indeed occurs at about 55-60◦N and PC1 shows a close link with con-

vective activity (MLD) in the Labrador Sea (Figure 4.3b, red line). However, convective

activity in the GIN Seas also seems to be closely linked to PC1 of the AMOC as seen by

their apparent anti-phase relationship (Figure 4.3b, blue line). These close relationships

between the AMOC and convective activities are further investigated in Sect. 4.4. It is

clear, therefore, that EOF1, which shows the principal changes happening in the AMOC

on decadal timescales, appears to capture not only the mechanism associated with LSW

variability but also mechanisms associated with variability in the GIN Seas.

One further interesting feature of EOF1 is the anti-phase relationship between latitude

ranges corresponding to the Labrador Sea and to the Nordic Seas (Figure 4.3a), which is

confirmed by the clear anti-correlation between convective activities in these two regions

(Figure 4.3b). In observational studies, convection in the Labrador Sea has indeed gen-

erally been found to vary out of phase with convection in the Greenland Sea (Dickson

et al. 1996; Hurrell and Dickson 2004). However, this is not the case for all climate

models, for example HadCM3 (e.g. Dong and Sutton 2005; Bingham et al. 2007) has

generally weak convection in the Labrador Sea (possibly related to the substantial sur-

face freshening that occurs in the subpolar gyre of that model). Mechanisms behind this

anti-phase pattern in CHIME will be further investigated in Sect. 4.4.

EOF2, which accounts for about 12% of the total variance, shows a dipole pattern with

mainly positive values from 40◦N to 75◦N below 2500 m, and negative values in the

upper ocean south of 40◦N (Figure 4.3c). The strongest variability in the sinking here

takes place primarily at about 55-65◦N and 65-70◦N. The positive cell of EOF2 may

arise through deeper sinking and return flow in the upper cell of the AMOC; this could

be related to changes in surface winds and/or surface fluxes in the GIN Seas, leading to

an increase in the density of the overflow waters. The strong amplitude of this second

mode of AMOC variability close to the ocean bottom in the subpolar region and north of

the sills suggests a role for both the denser LSW and Greenland Sea Water (GSW), and

that these latter vary on interannual rather than decadal timescales (see Figure 4.3d).

Indeed, the associated power spectrum (not shown) reveals an enhanced variability for

statistically significant periods in the ranges 2-3 and 5-6 years at the 80% confidence

limit. Although not significant, there is a peak at about 60 years suggesting also some

multi-decadal variability; a longer simulation would, however, be needed to confirm this.

From this EOF analysis, we develop the following picture of the AMOC streamfunction
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and its evolution in time: a primary mode of variability is associated with a decadal

cycle related to convective activity in the Labrador and (inversely) the GIN Seas, while a

secondary mode is rather associated with interannual variability of convective activity in

these two regions. Note that, as shown by the standard deviation of the streamfunction

in Figure 4.4, the strongest AMOC fluctuations occur within the NADW cell at the

latitude range of the Labrador Sea (50-60◦N) and to a lesser extent in the GIN Seas at

about 70-75◦N.
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Figure 4.4: Standard deviation of the annual mean streamfunction (Sv) shown
in Figure 4.2.

4.2.3 Evolution of the AMOC on a decadal timescale

To further examine the decadal variability of the AMOC, lead-lag regressions of the

AMOC streamfunction on PC1 of the AMOC have been calculated and are shown in

Figure 4.5. Because of the short control experiment length, most of the coefficients are

not statistically significant (grey shading). Nevertheless, this figure still gives useful

indications about the dynamical evolution of the decadal AMOC oscillation in CHIME.

At lag -15 years, we found evidence for the NADW cell to be in its weak phase with an

anti-clockwise anomalous circulation. Gradually, significant positive anomalies of merid-

ional circulation develop in the tropics and extend northwards. At lag 0, the AMOC

reaches a maximum with enhanced northward warm surface flow, stronger southward

deep return flow, and enhanced downwelling at about 55-60◦N. Thereafter, positive

anomalies of meridional circulation gradually weaken and negative anomalies begin to

appear in the tropics. Note that both EOF1 and EOF2 patterns of the AMOC are

clearly identifiable here (e.g. at lag 0 and +6, respectively), underlining the contribu-

tion of these two modes to decadal variability of the AMOC. On a decadal timescale,

streamfunction anomalies responsible for the reversal phase of the AMOC oscillation in

CHIME seem to originate in low latitudes. The possibility that they may even originate

in the South Atlantic through compensation in the flow of NADW across the Equator
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(Schmitz and Richardson 1991) is not excluded. We note a link between the develop-

ment of streamfunction anomalies in the low latitudes, and the associated northward

transport of salinity anomalies (see Sect. 4.4.3.1 ).
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variance−1). The grey shading indicates 90% confidence level for zero correla-
tion.

4.3 Associated signals and impacts

The associated signals and impacts of AMOC variability in CHIME are considered in

the ocean and the atmosphere respectively.

4.3.1 Ocean

A composite of winter SST anomaly patterns (relative to the year 80-200 winter mean)

induced by AMOC fluctuations was obtained by averaging anomalies over years when

the AMOC is strongest (i.e. when exceeding the AMOC standard deviation, Figure 4.6).

Significance of anomalies at each grid point was assessed by testing the null hypothesis

that they were taken from a distribution that has the same mean as all the years (using

a z-test at the 90% confidence level). When the AMOC is in its strong state, most of

the upper ocean, from the subtropics to the mid-latitudes (mainly over the Gulf Stream
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path) and the Nordic Seas becomes warmer, whereas the northern tropics becomes

significantly cooler. This cooling could be explained by the stronger heat transport

associated with stronger AMOC conditions that takes away heat from the low latitudes

towards the higher latitudes but also by associated changes in atmospheric forcing such

as the NAO. The role of the atmosphere in this cooling is supported by the fact that the

SST pattern has similarities with the structure of observed SST correlated with the NAO

(e.g. Visbeck et al. 2001), and that at about 300-800 m depth this temperature pattern

looks significantly different from the surface pattern (Figure 4.7). In CHIME, a northern

tropical-subtropical SST dipole is identified, in contrast to HadCM3 where the SST

dipole is cross-equatorial (Vellinga and Wu 2004). The difference in the dipoles probably

results from differences in the SST patterns between the two models as identified by

Megann et al. (2010). A strong AMOC state in CHIME will therefore tend to warm the

subtropics to the mid-latitudes and the Nordic Seas, and to cool the northern tropical

SST, causing a northern tropical-subtropical SST gradient (a link strengthened by the

strong and significant near-instantaneous correlation found between this gradient and

the PC1 of AMOC, Table 4.1).
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Figure 4.6: Composite of winter anomaly patterns of SST induced by AMOC
fluctuations, obtained by averaging anomalies over years when the AMOC (de-
fined as the PC1 of the MOC) is strongest. Colours indicate where the null
hypothesis of equal means is rejected at the 10% level.
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Figure 4.7: Same as Figure 4.6 for (a) SST and (b) sea temperature at 300-800
m depth (layer 13) with no statistical significance test applied.
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The leading mode of multi-decadal SST variability in the North Atlantic is known as

the Atlantic Multi-decadal Oscillation or AMO (e.g. Kerr 2000), for which an index

is traditionally defined as the basin-averaged (90◦W-30◦E, 0-70◦N) SST anomaly (e.g

Knight et al. 2005), although the definition of AMO index might alternatively be defined

in terms of the timescale of variability (Frankcombe et al. 2010). While the North

Atlantic SST anomaly pattern in Figure 4.6 is characterized as a sub-basin scale tropical-

subtropical SST dipole, positive anomalies are predominant and the strongest in the

Northern Hemisphere, suggesting an AMO-type response as seen in the observations (e.g.

Sutton and Hodson 2005). This pattern is also somewhat reminiscent of SST anomaly

patterns identified in previous studies as characteristic of multi-decadal variability on

20-30 year timescales (e.g. Figure 8 in Frankcombe et al. 2010). Figure 4.8a shows the

AMO index (traditionally defined), after linear detrending (green line), alongside our

index for the leading (decadal) mode of AMOC variability (blue line). On inspection,

SST variability appears to lag AMOC variability. This is confirmed by lagged cross-

correlations between the two time series, shown in Figure 4.8b. The strongest and

statistically most significant correlation is obtained when a 10-year moving average is

applied to both time series; a maximum correlation of about 0.64 is for the PC1 of the

AMOC leading the AMO by about 4 years (Figure 4.8b, dashed line).
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Figure 4.8: Measures and relationships between AMO and AMOC indices: (a)
time series of the area-averaged (90◦W-30◦E, 0-70◦N) annual SST anomaly after
linear detrending (green line), shown alongside the PC1 of AMOC (blue line);
(b) lagged cross-correlations plot between the two time series (solid line) and
their 10-year moving averaged time series (dashed line); horizontal lines corre-
spond to their corresponding 95% confidence limit for zero correlation. Positive
lags are for PC1 leading the AMO.
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We further investigate the extent to which decadal variability in CHIME is associated

with sub-surface thermal anomalies, as recently linked to observed multi-decadal vari-

ability (Frankcombe et al. 2008, 2010). Figure 4.9 shows sub-surface temperature anoma-

lies (colour-shaded) as a function of longitude and time, averaged over CHIME layers

10-12 (spanning an approximate depth range 150-400 m in the subtropics) and the lat-

itude range 10-30◦N (best representative of westward propagation by layer anomalies).

The time series at each longitude is detrended and smoothed with a 5-year moving aver-

age. There is an overall impression of westward translation of sub-surface anomalies on

a timescale of 7-10 years, similar in magnitude (±0.4◦C) to observations (Frankcombe

et al. 2008).
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Figure 4.9: Sub-surface anomalies as a function of longitude and time, aver-
aged over CHIME layers 10-12 and the latitude range 10-30◦N, detrended and
smoothed with a 5-year moving average. Temperature anomalies are colour-
coded. Thickness anomalies are contoured, with a contour interval of 2.5 m
(the zero contour is bold; positive anomalies are indicated by thin black con-
tours; negative anomalies are indicated by thin white contours).

In CHIME, layer temperature anomalies are accompanied by salinity anomalies (not

shown) that have the opposite effect on density, as layer densities below the mixed

layer are prescribed. As a consequence, there is no associated density perturbation

and these temperature and salinity anomalies are advected as passive tracers of water

mass variability. A degree of westward propagation (in temperature and salinity) is

associated with perturbations in layer thickness, although this is only clear over years

80-120. Anomalies in cumulative thickness of layers 10-12 (corresponding to the depth
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range of about 150-400 m), in the range ±10 m, are indicated in Figure 4.9 by the

over-plotted contours. These thickness anomalies are indicative of density anomalies,

and are likely implicated in AMOC variability.

When and where layer interfaces are displaced anomalously upwards or downwards,

the associated temperature and salinity anomalies may be substantial (reaching ±2.0◦C

and ±0.5 psu), but inspecting animations of temperature and salinity anomalies at

selected latitudes, these anomalies do not clearly propagate westwards for much of the

period (consistent with the layer thickness anomalies in Figure 4.9). In conclusion,

the majority of sub-surface temperature variability seen to translate westwards does not

cause AMOC variability but passively advects with the evolving velocity field. Averaged

over the subtropics, temperature anomalies also spread downwards from a surface origin,

on decadal timescales, accompanied by salinity anomalies that ensure constant layer

density (not shown).

Previous studies have established that multi-decadal (20-30 year) variability may be

understood as the thermal wind response to a surface thermal anomaly in the north-

central part of the Atlantic basin, inducing westward Rossby wave propagation across

the basin on near-decadal timescales (Colin de Verdière and Huck 1999), and subsequent

adjustment of meridional temperature (hence density) gradients that lead to a dynamical

response of the AMOC (te Raa and Dijkstra 2002). While westward translation of sub-

surface temperature anomalies in the subtropics of CHIME appear on first inspection to

be consistent with this mechanism, the accompanying salinity anomalies (in isopycnal

layers) preclude any density perturbation. In contrast, thickness anomalies of ±10 m are

a signature of interior density anomalies, but the associated temperature and salinity

anomalies do not clearly propagate. We proceed in later sections to attribute the source

of AMOC variability in CHIME to the advection of mixed layer salinity anomalies from

low to sub-polar latitudes, while mixed layer temperature anomalies are strongly and

quickly damped through surface heat fluxes. Regarding the latter process, there is how-

ever evidence for local correlation of anomalies in SST and surface heat flux associated

with the NAO, as outlined in Sect. 4.4.3.2.

4.3.2 Atmosphere

Figure 4.10 shows composite atmospheric anomaly patterns when the AMOC is strongest,

for winter anomalies of SAT, SLP, and September anomalies of net precipitation. Only

significant values (at the 90% level) are coloured. When the AMOC is strongest, SAT

along the western coast of North America (i.e. over the Gulf stream path) and in the

Nordic Seas becomes significantly warmer in contrast to both the northern tropics and

the Labrador Sea areas where it becomes significantly cooler (Figure 4.10a). This is

consistent with the anti-phase relationship previously identified between the Labrador

and GIN Seas (see Sect. 4.2.2 ). This SAT pattern somewhat resembles that of the SST



80 Chapter 4 Decadal-timescale changes of the AMOC and climate in CHIME

in Figure 4.6, and the anomalies vary from about 0.1◦C in the tropics and subtropics, to

over 1◦C in the Nordic Seas. Over land, the strongest AMOC conditions are associated

with a significant warming of northern Europe (in good agreement with e.g. Pohlmann

et al. 2006) and the central eastern seaboard of North America.
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Figure 4.10: Same as Figure 4.6 but for (a) winter SAT (◦C), (b) winter SLP (Pa)
and (c) September net precipitation (mm s−1) also indicating ITCZ position
averaged over all years (grey line) and over years corresponding to strong AMOC
conditions (red line). Colours indicate where the null hypothesis of equal means
is rejected at the 10% level.
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Under the same strong AMOC conditions, lower SLP appears near the Icelandic Low,

while higher SLP appears over the Azores (Figure 4.10b). This pattern resembles the

NAO in a positive phase, possibly reflecting some oceanic influence on this leading

atmospheric mode. In CHIME, strong AMOC conditions therefore seem to be associated

with a positive phase of the NAO. This NAO-like pattern is consistent with the NAO-

like response to the AMOC intensification identified by Mignot and Frankignoul (2010)

in the IPSL-CM4 model, although the sensitivity of SLP to changes in the AMOC in

CHIME is about three times higher.

While few significant precipitation anomalies appear under strong AMOC conditions,

some notable changes develop over the western tropics of the North Atlantic, with pos-

itive anomalies of up to 20 cm yr−1, suggesting a northward shift of the ITCZ (Fig-

ure 4.10c), probably as a consequence of the tropical-subtropical SST gradient that

accompanies strong AMOC conditions (Figure 4.6). For a given year, the ITCZ position

has been defined as the latitudinal position at which September precipitation reaches its

maximum in the central Atlantic (i.e. at about 30◦W, similar to Biasutti et al. 2006).

We can see that the ITCZ position is indeed about 2.2◦ further north (red line) than the

average position (grey line), which corresponds to a northward shift of about 230 km.

With stronger precipitation expected north of the Equator, freshwater anomalies are

expected to develop locally. A similar relationship between displacement of the ITCZ

and lower frequency (centennial) variability of the AMOC has also been identified in

HadCM3 by Vellinga and Wu (2004); however, in that study the northward shift of the

ITCZ is caused by a cross-equatorial SST gradient, whereas in our case it seems to be

associated with a northern tropical-subtropical SST gradient (see Figure 4.6).

4.4 Physical mechanisms

4.4.1 Relation of AMOC to convective activity and density anomalies

If we examine how convective indices (as defined in Sect. 3.1.3 ) evolve over time in both

the Labrador and GIN Seas (Figure 4.3b, red and blue lines, respectively), an anti-phase

relationship is clear, as already mentioned in Sect. 4.2.2. The maximum correlation

coefficient of -0.7 is obtained for a slight lead, by 1 year, of convection in the Labrador

Sea over that in the GIN Seas (Figure 4.11). Correlation of these two convective indices

with the PC1 of AMOC shows strong statistically significant relationships (Table 4.1);

the Labrador (GIN) Sea(s) has a maximum (minimum) correlation coefficient of about

0.9 (-0.7) with the AMOC, when the latter lags by about 2 years (1 year). Note that

the correlation is negative in the GIN Seas where it is positive in the Labrador Sea; an

increase in MLD in the Labrador (GIN) Sea(s) is therefore associated with an increase

(decrease) of the AMOC, 2 years (1 year) later.
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Figure 4.11: Lagged cross-correlations between the 10-year moving average win-
ter MLD in the Labrador and GIN Seas (positive lags for the GIN Seas leading
the Labrador Sea); horizontal black lines correspond to the 95% confidence limit
for zero correlation.

In addition, if we examine how winter surface potential density (hence static stability) is

spatially correlated (instantaneously) to AMOC fluctuations, the strongest correlations

occur in both the Labrador and GIN Seas (Figure 4.12). Correlations between winter

surface density averaged over these two regions and AMOC fluctuations are very similar

to those with the convective indices; surface density in the Labrador (GIN) Sea(s) is

indeed strongly correlated (anti-correlated) with the AMOC intensity, with an average

correlation coefficient of 0.86 (-0.83) (Table 4.1). There is therefore evidence that in

CHIME, AMOC fluctuations are principally related to surface density in the Labrador

Sea, reinforcing the suggestion that the first mode of AMOC variability (EOF1) is di-

rectly influenced by the convective activity in the Labrador Sea. Note that the significant

correlations with the northern tropics (although weakest than in the high-latitudes) sug-

gest that this region also plays an important role in controlling AMOC fluctuations (as

confirmed later).
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Figure 4.12: Instantaneous correlation map of 10-year moving average of winter
surface density and PC1 of AMOC. Blank areas are not statistically significant
at the 95% confidence level.
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In summary, we have shown that surface density in the Labrador (GIN) Sea(s) is strongly

correlated (anti-correlated) with AMOC fluctuations and explains about 64% of the

AMOC variance. Convective activity in the Labrador and GIN Seas in CHIME there-

fore varies in anti-phase; an increase in surface density in the Labrador (GIN) Sea(s)

is associated with an increase (decrease) in the AMOC strength. This result is consis-

tent with the opposite signs of EOF1 of the AMOC streamfunction, at the latitudes

of Labrador and GIN Seas, seen in Figure 4.3a. In the following section, we therefore

investigate factors influencing surface density in the two convective regions.

4.4.2 Relative roles of temperature and salinity variability in driving

density fluctuation

Figure 4.13 shows the influence of winter SSS and SST on winter surface density fluc-

tuations in both convective regions. In the GIN Seas, surface density is strongly anti-

correlated with SST with a maximum instantaneous correlation of -0.93 (grey dashed

line). A decrease in SST in the GIN Seas will therefore increase surface density in this

region, while the role of SSS is negligible (grey solid line). In the Labrador Sea, by

contrast, surface density is significantly correlated with SSS, with a maximum correla-

tion of 0.8 when this latter leads by 3 years (black solid line). A decrease in SSS in

the Labrador Sea will therefore most effectively decrease surface density in this region

3 years later, while in the meantime the role of SST is largely negligible (dashed black

line).
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Figure 4.13: Lagged cross-correlations of 10-year moving average between winter
SSS (solid lines) / SST (dashed lines) and winter surface density in the Labrador
Sea (black lines) / GIN Seas (grey lines). Horizontal lines correspond to their
respective 95% confidence limit for zero correlation.

Figure 4.14 shows the extent to which properties in these two convective regions are

connected. Although both SST and SSS do not seem to be individually connected

(see both dashed and solid grey lines), densities are significantly anti-correlated with a
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maximum coefficient of about -0.70 (black solid line) at no lag. This anti-correlation

is again consistent with results from Sect. 4.4.1. This significant relationship between

densities in these two convective regions exists despite the different mechanisms that

seem to control them. Therefore we can expect that the process that controls the SSS

in the Labrador Sea is anti-correlated to what causes changes in the SST in GIN Seas.

In summary, surface density changes in the Labrador Sea are salinity-dominated, while

they are temperature-dominated in the GIN Seas. Different mechanisms are therefore

likely to control surface density variability (with implications for the AMOC) in the two

convective regions, although those mechanisms appear to be anti-correlated.
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Figure 4.14: Lagged cross-correlations of 10-year moving average between winter
SSS (grey solid line), winter SST (grey dashed line), and winter surface density
(black solid line) between the two convection regions (i.e. both the Labrador
and GIN Seas). Horizontal lines correspond to their respective 95% confidence
limit for zero correlation.

4.4.3 Origins of anomalies in convective regions

In this section, we investigate the origins of SST and SSS anomalies in both the convec-

tive regions and the underlying oceanic and atmospheric processes.

4.4.3.1 Long-range preservation of salinity anomalies

Figure 4.15 shows maps of pentadal salinity anomalies from years 170 to 189 on three

model layers in the upper branch of the AMOC, representative of the surface, and

depth ranges around 90-150 m and 200-650 m. These maps reveal how a positive salin-

ity anomaly present in the tropics during the pentad 170-174 develops on a 15-year

timescale. At the surface, the anomaly spreads northward along the Guyana Current

and through the Caribbean, into the western subtropical gyre, and eventually into the in-

terior of the subpolar gyre (Figure 4.15a). This spreading is also evident at depth, where
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the anomaly reaches the deep convection regions after about 15 years (Figure 4.15b,c).

This is evidence for long-range preservation of salinity anomalies, en route from the

tropics to the high latitudes, on a timescale of about 15 years.
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Figure 4.15: Pentadal anomalous salinity maps from year 170 to 189 on three
model layers: (a) layer 1 (surface, constant-depth layer everywhere), (b) layer
9 (σ2=34.10 kg m−3, varying between about 90-150 m depth, non-isopycnic
beyond 25◦N), and (c) layer 14 (σ2=36.05 kg m−3, varying between about 200-
650 m depth, non-isopycnic beyond 50◦N).



86 Chapter 4 Decadal-timescale changes of the AMOC and climate in CHIME

The mechanism linking tropical and convective regions likely plays a role in the reversal

phase of the AMOC oscillation. It is noteworthy that the AMOC appears to strengthen

from low latitudes (see Figure 4.5), suggesting an element of feedback as the salinity

anomalies are also more rapidly advected northwards in the strengthening phase. As

the AMOC dynamically evolves, transports start declining to the south, reducing the

import of high salinity waters. Note that, this finding contrasts with several studies using

the HadCM3 model where the reversal of the oscillation on multi-decadal timescales has

been mainly attributed to anomalies originating from the high latitudes (e.g. Dong

and Sutton 2005; Hawkins and Sutton 2007). Our finding is, however, consistent to

some extent with Vellinga and Wu (2004), who showed that in HadCM3 the reversal

oscillation is caused by anomalous advection of salinity anomalies from the tropics. But

in their study, this happens on a centennial timescale rather than on a decadal timescale

as identified in CHIME.

As previously shown in Sect. 4.4.2, salinity will predominantly affect surface density

(with implications for the AMOC) in the Labrador Sea, while it does not directly affect

density in the GIN Seas. Therefore, to obtain a better idea of how surface density in

the Labrador Sea is correlated to salinity in the North Atlantic, linear lagged-correlation

maps between salinity contributions to winter surface density in the Labrador Sea are

analyzed (Figure 4.16). The earliest correlations with SSS anomalies appear in the

tropical western Atlantic (originating either from there or from the South Atlantic)

about 15 years before a positive density anomaly in the Labrador Sea. With an AMOC

cycle in the period range of 15-30 years (Sect. 4.2.1 ), this 15-year lead time corresponds

to half of the maximum identified period of the longer decadal mode. At this stage, most

of the northern North Atlantic is fresher than normal, consistent with the AMOC being

in a weak phase. These fresh conditions gradually diminish and give way to more saline

conditions over subsequent years, and the implication is that it takes about 15 years for

the tropical positive anomalies to advect to the subpolar sinking region. These maps

clearly reinforce the notion of northward transport of salinity anomalies, as previously

shown.

In summary, SSS in the high-latitude regions seems to be strongly correlated to tropical

SSS anomalies about 15 years earlier. These tropical anomalies will therefore also affect

surface density in the Labrador Sea 15 years later while it will not be the case in the

GIN Seas, where surface density is SST-dominated. There is therefore evidence for a

30-year cycle related to convective activity in the Labrador Sea in the primary mode of

AMOC variability (EOF1) to be associated with the northward transport of northern

tropical SSS anomalies.



Chapter 4 Decadal-timescale changes of the AMOC and climate in CHIME 87

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Instantaneous

  75 o
W 

  50o
W 

  25
o
W 

   0
o   

  2
5
o E 

  20 o
S 

   0 o
  

  20 o
N 

  40 o
N 

  60 o
N 

  80 o
N 

 

 

Leads by 5-yr

  75 o
W 

  50o
W   25

o
W 

   0
o   

  2
5
o

  20 o
S 

   0 o
  

  20 o
N 

  40 o
N 

  60 o
N 

  80 o
N 

 

 

Leads by 10-yr

  75 o
W 

  50o
W   25

o
W 

   0
o   

  2
5
o

  20 o
S 

   0 o
  

  20 o
N 

  40 o
N 

  60 o
N 

  80 o
N 

 

 
 

Leads by 15-yr

  75 o
W 

  50o
W 

  25
o
W 

   0
o   

  2
5
o E 

  20 o
S 

   0 o
  

  20 o
N 

  40 o
N 

  60 o
N 

  80 o
N 

 

 

Figure 4.16: Cross-correlations maps between annual SSS contributions and
winter surface density in the Labrador Sea when SSS leads. Blank areas are not
statistically significant at the 95% confidence level.

4.4.3.2 Relative role of the NAO

As seen in Figure 4.10b, strong AMOC conditions in CHIME are associated with a posi-

tive NAO-like pattern. In both the Labrador and GIN Seas, winter surface density has a

statistically significant relationship with the NAO index (as defined in Chapter 2 ), with

a maximum positive correlation of 0.74 and negative correlation of -0.70, respectively,

when the NAO leads by about 1-2 years (Table 4.2). The anti-phase behavior between

the two convective regions in the model is once again underlined by these correlations of

opposite sign. This result is consistent with observational studies, as convection in the

Labrador Sea generally varies in phase with the NAO-index, while in the GIN Seas it

varies out of phase (e.g. Hurrell and Dickson 2004). The above results therefore suggest

that surface density in both the Labrador and GIN Seas is influenced by NAO fluc-

tuations. This influence on AMOC variability has been extensively investigated. The

balance of evidence from previous modelling (e.g. Delworth and Greatbatch 2000; Eden

and Willebrand 2001; Bentsen et al. 2004; Guemas and Salas-Mélia 2008) and observa-

tional studies (e.g. Dickson et al. 1996; Curry et al. 1998) suggests that both heat flux

changes and wind-stress variations are important means by which the NAO influences

the AMOC, across a wide range of frequencies.
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In CHIME, the influence of the NAO on surface density in both convective regions seems

to act through different processes. Indeed, although the NAO fluctuation explains about

50% of SST variability in the GIN Seas (r ≈ 0.70), no significant relationship with SST

has been found in the Labrador Sea (Table 4.2). There is also no significant correlation

between the NAO and SSS in the latter region, although SSS has been found to be the

dominant factor influencing surface potential density there (see Sect. 4.4.2 ). Although

we found evidence for the NAO to influence surface density through its impact on local

SST in the GIN Seas, other processes seem to be involved in the Labrador Sea. Below,

we consider regional NAO influences in more detail.

Table 4.2: Maximum correlation coefficients between 10-year moving averages of
the NAO index and several different variables. Bold correlations are statistically
significant at the 90% confidence limits.

Variable Max. Correlation Lag (years)
Coefficient

Winter surface potential 0.74 NAO leads by ∼ 1− 2
density (Labrador)
Winter surface potential -0.70 NAO leads by ∼ 1− 2
density (GIN)
Winter SST (GIN) 0.70 NAO leads by ∼ 2
Winter SST (Labrador) 0.46 NAO lags by ∼ 10
Winter SSS (Labrador) 0.46 NAO leads by ∼ 4
Winter heat fluxes -0.15 NAO leads by ∼ 5
(GIN)
Winter heat fluxes -0.60 Instantaneous
(Labrador)
Winter freshwater fluxes -0.45 NAO lags by ∼ 7
(GIN)
Winter freshwater fluxes -0.65 NAO leads by ∼ 4− 5
(Labrador)
PC1 of AMOC 0.82 NAO leads by ∼ 1
PC2 of AMOC -0.60 Instantaneous
Tropical Activity (TA) 0.56 NAO lags by ∼ 8− 9

First let us consider the influence of the NAO on surface density in the Labrador Sea.

We have shown the NAO to have statistically significant relationships with buoyancy

fluxes in the Labrador Sea; an increase in the NAO index leads to a decrease in local

surface heat fluxes (stronger ocean cooling) near-instantaneously (r ≈ -0.60, Table 4.2)

and to a decrease in freshwater fluxes (ocean freshwater loss) about 4-5 years later (r ≈
-0.65, Table 4.2). Because the NAO affects surface density earlier (after ∼1-2 years) than

freshwater fluxes (after ∼ 4-5 years), the NAO-induced freshwater flux anomalies cannot

be regarded as directly influencing SSS (and therefore surface density) to an important

extent in the Labrador Sea. However, with its near-instantaneous correlation with heat

fluxes, the possibility of the NAO to influence local SSS through ocean mixing processes
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is not ruled out. In this scenario, the convective mixing associated with stronger surface

heat loss will more extensively mix fresh surface waters with saline deep waters. In

addition, the strong and significant anti-correlation found between SSS and heat fluxes

in the Labrador Sea (r ≈ -0.72 when heat fluxes lead by ∼ 1 year, not shown) supports

this mechanism.

In contrast to the case of the Labrador Sea, the NAO index does not correlate with

surface heat and freshwater fluxes in the GIN Seas (Table 4.2). Therefore, the way

by which the NAO affects local SST does not seem to be through its local impact on

simultaneous heat fluxes. This can be further investigated by examining the covariance

between anomalous SST and anomalous net surface heat flux (T �Q� , noting that Q

includes both radiative and turbulent heat fluxes) as shown in Figure 4.17. If covariances

are examined for the winter season of all years of the analysis period, significant values

are observed in four main regions of the North Atlantic. Negative values occur over the

Labrador Sea/western subpolar gyre and over the Greenland Sea, whilst positive values

occur over the Florida Current/Gulf Stream region and over the upwelling region off

West Africa. This implies that, over the oceanic deep convection regions, surface heat

flux tends to damp SST variability (reducing temperature variance: in other words,

positive SST anomalies result in increased oceanic heat loss). Further south, at the

eastern and western boundaries of the subtropical gyre, the opposite is true and heat

fluxes tend to amplify SST variability.

[K  Wm-2]

Figure 4.17: SST-Heat Flux covariance (T �Q�) in K Wm−2 calculated for winter
mean anomalies over years 81-192 of the model experiment.

However, the simultaneous correlation contains contributions both from the atmospheric

response to the SST (i.e. damping in this case) and also from the SST response to the

atmosphere (Schneider and Fan 2007). We have calculated lag correlations between

winter SST and heat flux during the previous summer (Figure 4.18). There are positive

values over the Greenland Sea, so we speculate that this may be a partial mechanism for

the correlation between the NAO and SST in the GIN Seas, although other processes

such as advection and mixing may also be involved. Such a link between the NAO

and SST may be more fully explored using a method such as the Interactive Ensemble
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Coupled Global Climate Model (Fan and Schneider 2012), but this lies beyond the scope

of the present study.

[K  Wm-2]

Figure 4.18: SST-Heat Flux covariance (T �Q�) in K Wm−2 calculated for winter
mean SST anomalies and heat flux anomalies during the previous summer.

In CHIME, we therefore find evidence that the NAO strongly influences surface density

in both the Labrador and GIN Seas (with implications for the AMOC) on interannual

timescale but through different mechanisms. In summary, an increasing NAO index

will lead to an increase in surface density in the Labrador Sea about 1-2 years later

through a local (indirect) influence on SSS. By driving anomalous heat fluxes, the NAO

forces variation of Labrador SSS through ocean mixing processes, and subsequently

variations of the AMOC (as SSS is the dominant factor controlling surface density in this

region). Meanwhile, an increasing NAO index will lead to a decrease in surface density

in the GIN Seas about 1-2 years later through a local influence on SST. Processes

other than the direct impact of the NAO on heat fluxes, seem to control these local

SST anomalies; the lagged response of surface heat fluxes (as discussed earlier) or the

mechanical action of the NAO-induced wind (e.g. Pickart et al. 2003; Mignot and

Frankignoul 2010) are regarded as plausible candidates. Note that a majority of previous

modelling studies (e.g. Delworth and Greatbatch 2000; Bentsen et al. 2004) showed that

the link between the NAO and AMOC is via the restricted area of the Labrador Sea. This

differs from our study, where a link between the atmosphere and the AMOC includes a

statistically-significant relationship between the NAO index and surface density in the

GIN Seas. This result however supports the finding of some observational studies, such

as Dickson et al. (1996), Belkin et al. (1998), and Alekseev et al. (2001), that emphasize

the importance of the GIN Seas in explaining the influence of the NAO on AMOC

fluctuations.

The second mode of AMOC variability in CHIME, that we attribute to the interannual

anti-phase variability related to convective activity in the Labrador Sea and the GIN

Seas (see Sect. 4.2.2 ), thus seems to be associated with a local influence of the NAO

on surface density in these two regions. The statistically significant correlation of -0.60

found between the NAO index and PC2 of the AMOC supports the above statement

(Table 4.2). The implication is that a large part of the variability of the AMOC, being
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driven by the NAO, is a passive response to intrinsic internal atmospheric variability,

rather than being part of a coupled ocean-atmosphere mode, and that this passive re-

sponse to the atmosphere is associated mainly with the Labrador Sea. This is consistent

with similarity of the AMOC PC1 power spectrum to that of red noise. However there

is enhanced power in 15-30 year periods and we argue that this is due to advection of

salinity anomalies from the tropics (earlier Sect. 4.4.3.1 ) and links between the position

of the ITCZ and the NAO (next Sect. 4.4.3.3 ).

4.4.3.3 A link between tropical activity and NAO

In addition to the NAO-related mechanism affecting surface density in the GIN Seas,

the close link between the convective activity in this latter region and the PC1 of the

AMOC (see Sect. 4.2.2 ) also suggests the existence of a decadal-timescale mechanism

affecting GSW variability. With evidence from previous studies that the North Atlantic

climate variability is affected by tropical Atlantic ocean-atmosphere interaction (e.g.

Rajagopalan et al. 1998; Okumura et al. 2001; Terray and Cassou 2002), we propose

that the NAO and tropical activity are connected on a decadal timescale in our model.

We characterize the tropical activity (TA) in the Atlantic as the averaged September

SSS over the northern tropical Atlantic (reflecting the northward shift of the ITCZ

under strong AMOC conditions, leading to the development of freshwater anomalies in

the northern tropics). In support of the above hypothesis (for an existing link between

the tropics and the high latitudes in the model), TA is indeed statistically correlated

with NAO variability with a maximum correlation coefficient of about 0.56 when TA

leads by 8-9 years (Table 4.2). Although the mechanisms behind such a link still require

clarification, this significant relationship suggests that the anomalous shift of the ITCZ

affects the high latitude atmosphere (more specifically the NAO) about 8-9 years later,

coincident with a decrease in surface density in the Labrador Sea and a decrease in SST

(and hence increase in surface density) in the GIN Seas. This teleconnection between

TA and NAO is consistent with previous studies (cited earlier).

In addition to the long-range preservation of SSS anomalies originating from the tropics

and affecting LSW variability, the decadal cycle related to both LSW and GSW vari-

ability identified in the primary mode of AMOC variability (EOF1) therefore seems to

be associated with mechanisms, still not clearly identified, that connect tropical activity

to the NAO. The strong significant correlations found between the PC1 of the AMOC

and both TA (r=0.75, Table 4.1) and the NAO (r=0.82, Table 4.2) support the above

statement. With a lead-time of about 8-9 years, we note that this connection between

the tropics and the high latitudes corresponds to just over half of the identified minimum

period of the primary decadal mode of the AMOC (in the range 15-30 years).
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4.5 Summary and discussion

This first study of natural variability in CHIME follows an initial study of the spinup

and the equilibrium state in comparison with HadCM3 (Megann et al. 2010). The

following summary and discussion covers two aspects of the study: (i) the characteristics

of a strong AMOC state (prerequisite for understanding mechanisms behind decadal

AMOC fluctuations); (ii) the processes and lead/lag timescales implicated in the decadal

variability of the AMOC.

4.5.1 Fingerprints of a strong AMOC state

Strong AMOC conditions are associated with warmer SST over most of the North At-

lantic from the subtropics to the high-latitudes, and cooler SST over the northern trop-

ics. Despite being further north than other studies, this SST pattern (i.e. a northern

tropical-subtropical gradient) reflects an AMO-type response in good agreement with

previous studies (e.g. Sutton and Hodson 2005; Frankcombe et al. 2010). In sub-surface

layers, temperature anomalies translate westwards and downwards in the subtropics, on

decadal timescales. While this behaviour is also characteristic of the AMO (Frankcombe

et al. 2008, 2010), we find that our index of mode-1 AMOC variability leads the AMO

index by 2-3 years, suggesting that, in CHIME at least, sub-surface temperature variabil-

ity is a response to AMOC variability rather than a cause. Accompanying sub-surface

salinity anomalies exactly compensate for the temperature anomalies in isopycnic layers,

and the small perturbations in horizontal density gradients (in the subtropics) that are

associated with layer thickness anomalies do not appear to lead AMOC anomalies.

Strong AMOC conditions tend to coincide with warm SAT from the subtropics to the

high latitudes, except in the Labrador Sea where SAT becomes cooler. Over land, parts

of northern Europe and central North America also become warmer. Coincident with the

strong AMOC are also a positive-state NAO and maximum northward shift of the ITCZ.

Associated with the positive NAO are positive surface heat flux anomalies (reduced ocean

heat loss) which reinforce higher SST in the GIN Seas, helping to suppress convection

(see Sect. 4.5.2 ). With northward displacement of the ITCZ and associated net surface

freshwater influx (P-E > 0), a negative anomaly develops in surface salinity across the

tropics.

4.5.2 Key processes implicated in decadal AMOC fluctuations

Power spectral analysis reveals an enhanced power at a decadal timescale in CHIME, for

periods in the range 15-30 years. Overall, the main modes of variability are described

by changes associated with primarily a decadal cycle and secondarily an interannual
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cycle related to convective activity in the Labrador and (inversely) the GIN Seas. Ac-

companying decadal AMOC variability are anomalies in basin-scale hydrography and

air-sea heat fluxes at key locations. Associated variability in the atmosphere includes

the NAO (varying in phase with the AMOC) and the ITCZ (migrating north/south with

a strengthening/weakening AMOC).

An out-of-phase relationship in MLD between sinking regions indicates that strong sink-

ing in the Labrador Sea is coincident with weak sinking in the GIN Seas, associated with

positive and negative surface density anomalies respectively. Positive density anomalies

in the Labrador Sea are associated with anomalously high surface salinity, while nega-

tive density anomalies in the GIN Seas are associated with anomalous surface warmth.

Therefore, SSS (SST) anomalies in the GIN (Labrador) Seas are negligible compared

to SST (SSS) in affecting surface density, and hence AMOC fluctuations. The linkage

of the Labrador Sea and the GIN Seas with the AMOC differ substantially between

models, but is in good agreement with Medhaug et al. (2011) using the isopycnic-ocean

Bergen Climate Model.

Surface salinity in the Labrador Sea (and hence surface density) appears to be associated

with the northward spreading of anomalies originating from the tropical Atlantic around

15 years earlier. Tropical SSS anomalies may have formed locally through air-sea inter-

action as a consequence of the ITCZ shift, leading to anomalous surface freshwater gain

in the northern tropical Atlantic under strong AMOC conditions. Although a significant

shift of the ITCZ has been identified in the model, other processes responsible for the

development of SSS anomalies are not to be excluded such as changes in the Amazon

River outflow, or inter-basin exchange (Biastoch et al. 2008, 2009). In addition, there

is evidence for the anomalous shift of the ITCZ affecting the high-latitude atmosphere,

more specifically the NAO about 8-9 years later. Such a decadal teleconnection between

the tropical Atlantic and the NAO has already been identified in the observations. A

strong tropical-extratropical link was indeed suggested by Rajagopalan et al. (1998) who

emphasizes a strong broadband coherence in the 8- to 20-year period between the NAO

and the tropical Atlantic cross-ITCZ SST difference. Although mechanisms behind such

a link remain largely unclear, Tourre et al. (1999) emphasizes a timescale defined by the

ability of upper ocean anomalies to persist, even after the atmospheric anomalies decay,

and during which ocean-atmophere interaction is maintained on the Atlantic basin-scale.

The 8-9 year timescale found in CHIME suggests a preference for a teleconnection via

the ocean rather than the atmosphere, but a mixture of both oceanic and atmospheric

teleconnections cannot be ruled out. Indeed both teleconnections have already been

identified in modulating, for example, the tropical Pacific decadal variability (Liu et al.

2002). The decadal teleconnection between the tropical Atlantic and the NAO identified

in CHIME needs to be clarified by further studies. As a consequence of this telecon-

nection, changes in NAO forcing will first near-instantaneously affect heat fluxes in the
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Labrador Sea, which in turn will affect (increase) local SSS (and hence surface den-

sity) through ocean mixing processes. In the meantime, NAO will near-instantaneously

impact SST in the GIN Seas, although the precise mechanism for this is still unclear.

Air-sea fluxes, related to opposite phases of the NAO, are therefore contributing to the

convection in the Labrador Sea and in the GIN Seas, in good agreement with Medhaug

et al. (2011). To summarise, in a positive (negative) NAO state, coincident with strong

(weak) AMOC conditions, orientation of the Atlantic storm track will favour warmer

(colder) conditions in the GIN Sea and saltier (fresher) conditions in the Labrador Sea.

In CHIME, we therefore find evidence for surface density in both the Labrador Sea

and the GIN Seas to be influenced by the tropical activity about a decade earlier but

through different mechanisms. The fact that one unit change of surface density in

the GIN Seas has stronger impact on AMOC fluctuations than one unit change in the

Labrador Sea (about 14 Sv kg−1 m3 and 7 Sv kg−1 m3, respectively) and that the

Labrador Sea has in contrast a dominant influence on AMOC strength (as shown by

their positive correlations) suggests that variability in the latter region is higher than

in the GIN Seas. To summarize, a teleconnection (still to be clarified) may link ITCZ

changes to the NAO, affecting the surface density in the GIN Seas, while both tropical-

extratropical teleconnection (hence the NAO) and slower ocean advection (of tropical

SSS anomalies) affect surface density in the Labrador Sea. Which of these processes is

more important in controlling decadal AMOC variability? Our results show that the

first principal component of the AMOC has a slightly stronger correlation with the NAO

index (r=0.82, Table 4.2) than the northern tropical-subtropical SST gradient (resulting

in a shift of the ITCZ) (r=0.79, Table 4.1), suggesting that the NAO-related mechanism

is slightly dominant and that the latter leads the AMOC by about 1 year. We also

emphasize that, although the processes described above contribute to AMOC variability

on decadal timescales, a large part of the variability of the AMOC is therefore likely to

be a passive response to intrinsic internal atmospheric variability (in common with most

climate models, e.g. Delworth et al. 1993; Dong and Sutton 2005), rather than being

part of a coupled ocean-atmosphere mode (e.g. Timmerman et al. 1998). We argue that

the enhanced power in 15-30 year periods is due to advection of salinity anomalies from

the tropics and links between the tropical Atlantic and the high-latitude atmosphere.

4.6 Conclusions

The sequence of events based on the range of statistical evidence presented in previous

sections allows us to schematically summarize the main processes implied in about one

half of a decadal-timescale AMOC primarily driven by the Labrador Sea cycle in CHIME,

as shown in Figure 4.19. Strong AMOC conditions are accompanied by the development

of freshwater anomalies in the northern tropics (as a consequence of the northward

shift of the ITCZ). Accompanying this variation of tropical SSS, concurrent changes
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in the tropical atmosphere lead to a decrease in the NAO about 8-9 years later, via

a teleconnection that still needs to be clarified. This weaker NAO decreases surface

density (and hence SSS) in the Labrador Sea, through reduction in surface heat loss

and the convective mixing of fresh surface and saline deep waters. Simultaneously,

surface density will increase in the GIN Seas, due to decreased SST, possibly through the

mechanical action of the NAO-induced wind (Pickart et al. 2003; Mignot and Frankignoul

2010) or a lagged response to increases in surface heat loss. Meanwhile, northward

transport of freshwater anomalies from the tropics to the high-latitudes, via the Gulf

Stream, further decreases SSS in the Labrador Sea and hence surface density in this

region. Associated with increased (decreased) surface density in the GIN (Labrador)

Seas, the AMOC is now in a weak state.
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Figure 4.19: Simplified schematic of mechanism responsible for one half of
the decadal AMOC cycle primarily driven by the Labrador Sea variability in
CHIME. Double lines are used when the timescale of the interaction is near-
instantaneous (< 3 years).

The long-range links between the tropical Atlantic activity and subsequent convective

activity in both the Labrador and GIN Seas regions in CHIME suggest that European

climate is potentially predictable on substantially longer timescales than the 5-10 years

typically asserted from experiments with climate models that feature an orthodox z-level

coordinate ocean component (e.g. Latif et al. 2006). The evaluation of the predictive

skills of this hybrid-coordinate ocean component model will therefore be the subject of

Chapter 6. As already mentioned in the previous chapters, predictability experiments

with the well-established IPSL climate model have been carried out prior to similar such

study with CHIME. The results of these experiments are the subject of the next chapter.





Chapter 5

Decadal predictability of the

AMOC and climate in

IPSL-CM5A-LR

Results from this chapter have been accepted for publication in Climate Dynamics (SI:

IPSL & CNRM climate models for CMIP5) as: Persechino A, Mignot J, Swingedouw

D, Labetoulle S, Guilyardi E (2012) Decadal Predictability of the Atlantic Meridional

Overturning Circulation and Climate in the IPSL-CM5A-LR model. Clim Dyn, doi:

10.1007/s00382-012-1466-1.

5.1 Aim of study

Although a considerable number of studies have addressed decadal predictability of the

climate system in the last few years due to the impetus of the “near-term” CMIP5

protocol (Taylor et al. 2009), the assessment of decadal climate predictability remains

unclear as the level of predictability differs from one study to another (e.g. Meehl

et al. 2009). This may be subject to model differences and uncertainties, as well as

differences in the experimental protocol and metrics used. It is therefore important to

carefully define predictability and to use several metrics to better understand the limit

and extent of predictable fields.

In this chapter, we explore the decadal predictability of the AMOC and associated

oceanic and atmospheric fields as they are represented in the IPSL-CM5A-LR model

(Dufresne et al. 2012) under pre-industrial control conditions, using both diagnostic po-

tential predictability (DPP) and prognostic potential predictability (PPP) approaches.

In the DPP approach, the predictability is analysed by decomposing the variance of a cli-

mate variable into a long timescale component considered as potentially predictable, and

97
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an unpredictable noise component (see Sect. 3.2.1.1 ). The core of this approach relies

on the 1000-year-long control integration of the IPSL-CM5A-LR model (see Sect. 2.2.2 ).

In the PPP approach, the predictability is estimated prognostically, by re-running a cli-

mate simulation with slightly perturbed initial conditions (see Sect. 3.2.1.2 ). The core

of this approach is a series of five “perfect ensemble” experiments using the same code

as the IPSL-CM5A-LR control integration used in the DPP approach; each ensemble

includes 10 members, started from slightly different initial conditions and integrated for

20 years (see Sect. 3.2.2.2 ). The spread and the correlation of the members of each

ensemble are then evaluated to quantify the reproducibility and thus predictability of

the simulated fields. We thus consider two deterministic measures: the Ensemble Spread

(ES) and Ensemble Correlation (EC), previously described in Chapter 3. We explore the

information given by both metrics, and consider that a variable is potentially predictable

if it has a (low) statistically significant ES associated with a (high) statistically signifi-

cant EC. As illustrated below, combining these two metrics might be too restrictive in

some situations, and information given by ES or EC alone should not be neglected.

The aim of this study is to address the following questions: (i) Where do climate-related

fields exhibit the strongest sensitivity to decadal AMOC fluctuations in the model? (ii)

Are specific changes in the AMOC potentially predictable and which observations of

the ocean state are likely to be of greatest value to constrain predictions? (iii) What is

the predictability of the Atlantic climate and how is it related to low-frequency AMOC

variability?

The control integration is analysed in Sect. 5.2 to investigate the impact of decadal

AMOC fluctuations on the Atlantic climate. In Sect. 5.3, the potential predictability of

the AMOC is investigated using “perfect ensemble” experiments. Sect. 5.4 addresses

the potential predictability of climate and its link with decadal AMOC variability. A

summary and discussion follow in Sect. 5.5, with concluding remarks in Sect. 5.6.

5.2 Fingerprints of AMOC variability

In the IPSL-CM5A-LR model, AMOC variability has been associated with a 20-year

cycle described as an ocean-atmosphere coupled mode driven by the subpolar region,

and involving deep convection in the Nordic Seas, at the southern tip of Greenland, and

south of Iceland (Escudier et al. 2012). Prior to the study of potential predictability in

the AMOC, the regional impacts of AMOC variability are investigated in the control

integration. To do so, we use regressions of 5-year moving averaged surface temperature

and precipitation onto the 5-year moving averaged AMOC index when this latter leads

by 10 years (lags at which regression coefficients are the strongest, Figure 5.1). Despite

some significant signals in the tropical Pacific, the main significant impacts are restricted



Chapter 5 Decadal predictability of the AMOC and climate in IPSL-CM5A-LR 99

to the North Atlantic surrounding regions. We therefore concentrate on this basin in

the following.
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Figure 5.1: Lagged regression of the 5-year moving average (a) surface air (sea)
temperature at ground (sea) level (◦C Sv−1), and (b) precipitation (mm day−1

Sv−1) onto the 5-year moving average AMOC index at the lag where regression
coefficients are the strongest (i.e. when the AMOC leads by 10 years). Sta-
tistical significance of regression values has been tested using Students t-test,
and Quenouille (1952)’s method was used to calculate the effective degrees of
freedom. The grey contour indicates 90% confidence level for zero correlation.

5.2.1 Impacts on surface temperature

Figure 5.1a shows that the AMOC impact on temperature at the decadal timescale

is dominant over the ocean, and in particular north of the NAC. Anomalously strong

AMOC conditions are associated with significantly warm SST anomalies in the subpolar

gyre, in both the eastern and southern branch of the subtropical gyre, and cold SST

anomalies along the eastern coast of Greenland, south of the Denmark Strait and in

the Norwegian Sea, with a typical amplitude of about 0.5◦C Sv−1. SST anomalies from

the tropics to the subpolar regions in the Northern Hemisphere remain predominantly

positive in contrast to the Southern Hemisphere where there are some hints of negative

anomalies. Consistent with this result, Figure 5.2 that shows the time series of surface

temperature averaged over the mid- to subpolar Atlantic sector, also shows clear evidence

for extreme warm temperatures over this region about 6 years after the extreme AMOC

event of 2071 (identified in Figure 3.4). Under anomalously strong AMOC conditions,

an inter-hemispheric SST dipole pattern (although weak) therefore seems to emerge, as

also identified in HadCM3 (Vellinga and Wu 2004). This pattern is also consistent with

the AMO pattern in IPSL-CM5A-LR (Gastineau et al. 2012) as well as in an earlier

version of the IPSL model (IPSL-CM4, Msadek and Frankignoul 2009). This suggests

that as in other models (Kushnir 1994; Kerr 2000; Delworth and Mann 2000) an AMO-

type response is associated with decadal AMOC fluctuations in IPSL-CM5A-LR. The

SST pattern, identified in the latter, also resembles the observed AMO (e.g. Sutton
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and Hodson 2005), except for the localised significant negative anomalies in the high-

latitudes of the North Atlantic. This result is consistent with previous modelling studies

that found decadal AMOC fluctuations to be associated with an SST pattern resembling

the observed AMO (Kushnir 1994; Kerr 2000; Delworth and Mann 2000).

As indicated above, decadal AMOC fluctuations have a much weaker impact over land.

Anomalously strong AMOC conditions tend to be followed by significantly warmer con-

ditions in Central America, subtropical Africa, and a few marine-influenced regions of

Western Europe (with amplitude of anomalies up to +0.1◦C Sv−1). Such links over land

are consistent with previous studies (e.g. Pohlmann et al. 2004).
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Figure 5.2: Time series of surface temperature averaged over the mid- to sub-
polar Atlantic sector (30◦N-60◦N/70◦W-0◦) from 1850 to 2200. The 1000-year
mean is shown as the horizontal line and the corresponding standard deviations
are shown as the dashed lines

5.2.2 Impacts on precipitation

In terms of precipitation, the tropical Atlantic Ocean clearly shows strong sensitivity to

decadal AMOC fluctuations (Figure 5.1b): stronger AMOC conditions are associated

with significantly drier (wetter) southern (northern) tropics. This suggests a northward

shift of the ITCZ over the tropical Atlantic, as also identified in other climate models

(e.g. Vellinga and Wu 2004; Swingedouw et al. 2009; Persechino et al. 2012a). The

ITCZ shift is also seen to extend to the Pacific Ocean, consistent with Xie et al. (2008)

and Swingedouw et al. (2009). The strong sensitivity of tropical precipitation to AMOC

fluctuations probably happens through the influence of SST anomalies identified earlier

(Figure 5.1a), consistent with the well-established strong coupling between the ocean and

the atmosphere in this region (e.g. Chiang et al. 2008 and references therein). Significant

precipitation anomalies are also found from the subtropics to the high-latitudes, largely

resembling the corresponding SST anomalies.
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The oceanic precipitation signal is again seen to leak over the adjacent continental

areas, as for temperature. At mid-latitudes, strong AMOC conditions are in particular

associated with significantly wetter conditions over the British Isles (Figure 5.1b). The

signal identified over the tropical Atlantic also extends over the adjacent continents with

significantly drier (wetter) conditions in the southern (northern) tropical regions of both

America and Africa when the AMOC is increasing. This is consistent with several studies

that already investigated the link between decadal modulation of Sahelian rainfall, ITCZ

shift and the AMO (Folland et al. 1986; Rowell et al. 1995; Zhang and Delworth 2006;

Knight et al. 2006; Ting et al. 2009).

In view of these major climatic impacts of the AMOC, an important question remains

whether AMOC fluctuations are potentially predictable. The ability to predict such

fluctuations is now investigated using the PPP approach as described in Sect. 3.2.1.2.

5.3 Potential predictability of AMOC fluctuations

Figure 5.3 shows the AMOC trajectories of each individual member, for each start date,

together with the ensemble mean. At first sight, all ensemble means follow the initial

control run relatively well, although with less variability due to the averaging effect. In

particular, the extreme AMOC event at year 2071 is relatively well-captured (although

underestimated in terms of amplitude) by both experiments starting 15 and 5 years

before this peak.
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Figure 5.3: “Plumes” of maximum-annual mean AMOC between 20◦N and 50◦N
from ensembles of the IPSL-CM5A-LR in which the initial conditions have been
perturbed. Five ensembles are shown starting from different dates in the control
simulation. The individual ensemble members are shown as coloured lines, the
ensemble mean as the red thick line, and the control run as the thick black
line. The middle horizontal black line is the mean AMOC, and both upper and
lower horizontal black lines show standard deviations highlighting the range of
variability of the MOC.
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5.3.1 Are changes in the AMOC potentially predictable?

5.3.1.1 Comparing the level of predictive skills to different definitions of

metrics

Figure 5.4 shows ES of the AMOC index as a function of lead-time up to 2 decades for

each experiment and both M10 (in grey) and CS03 (in black) definitions (further details

in Sect. 3.2.1.2 ). This figure confirms the relation of proportionality derived earlier

between both definitions, with a factor of
�

2M
M−1 (M being the number of members).

The last statistically significant lead-time before ES persistently exceeds the threshold

is independent of the definition used, and represents the maximum lead-time of pre-

dictability as inferred from ES alone. Figure 5.5 shows EC computed between lead-time

1 year and varying lead-times, ranging 5 to 20 years (5 years corresponding to the min-

imum lead-time of predictability found from ES, Figure 5.4). EC has generally higher

scores for M10 than for CS03. Indeed, the ensemble mean (used in M10) is smoother

and holds some information from each member, allowing higher correlations than one to

one correlations among members (as used in CS03). However, in most cases, when EC is

statistically significant (or not), it is generally also the case for the other definition. Note

two exceptions (experiments W and I). However, from a predictability point of view, the

statistical significance of EC at the lead-time at which ES saturates (information given

in Figure 5.4) is the same whichever the definition used. The main disadvantage of using

ECCS03 is that too much weight could be given to an individual member that heavily

diverges from the others, while ECM10 tends to average out extremes by the use of the

ensemble mean. On the other hand, the latter can be seen as too lax as it involves a

smoother baseline.

We showed that, overall, both definitions of EC and ES deliver similar messages, al-

though ECCS03 seems to be slightly more severe than ECM10. We therefore prefer to

opt for the most cautious/severe definition, and will use the CS03 definition hereafter.

5.3.1.2 How far ahead is the AMOC potentially predictable?

Figure 5.6 shows a summary of results combining both ESCS03 (Figure 5.4, black line)

and ECCS03 (Figure 5.5, black line) for the AMOC index. The predictive skill of each

experiment is determined by the maximum lead-time at which ES saturates and its

corresponding EC. Experiment S shows overall the highest PPP skill as its ES satu-

rates at the longest lead-time and is associated with a high statistically significant EC

(lower-right plot, Figure 5.6); this experiment suggests a limit of predictive skill for

the AMOC index of about 13 years. This result is consistent with a simple stochastic

assumption for example (e.g. Frankignoul and Hasselmann 1977; Frankignoul 1985),

which would predict that when starting from an extreme AMOC value, we expect most
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Figure 5.4: ES of AMOC index for each of the five ensemble experiments for
M10 (grey line) and CS03 (black line) definitions for lead-time up to 20 years.
The threshold at which ES saturates (implying no potential predictability) is
shown as the black (grey) horizontal dashed line for CS03 (M10). Dots indicate
that ES is statistically smaller than the corresponding threshold at the 95%
level based on a F -test.

Fig.5 EC of AMOC index (as calculated by the Fisher transformation) for each of the !ve ensemble experiments for M10 (grey line) and CS03 (black line) 
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Figure 5.5: EC of AMOC index (as calculated by the Fisher transformation)
for each of the five ensemble experiments for M10 (grey line) and CS03 (black
line) definitions for lead-time from 5 to 20 years. Dots indicate that EC is
statistically significant at the 90% confidence level using a one-tailed t-test.

of the members to take the same direction towards a neutral state, thereby yielding

high predictability. Nevertheless, the predictability timescale found here is longer than

the persistence time estimated from the AMOC index autocorrelation function in a red

noise framework (e.g. Frankignoul et al. 2002) which amounts to 4-5 years (not shown).
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This indicates that a simple autoregressive model provides low predictability for AMOC

index behavior. Once back towards neutral (close to the mean) conditions (after about

13 years), experiments S indeed loses its predictive skills with a continually growing

(decreasing) ES (EC) with lead-time. Similarly to S, experiment W is expected to have

a similar predictive skill since it starts from an extreme state (more than one standard

deviation σ away from the mean, Figure 5.3). Although the EC associated with the

maximum lead-time is statistically significant and high (0.74), ES however saturates

twice as rapidly as in experiment S (at about 7 years, Figure 5.6). This lower PPP skill

could be explained by its starting date not being in such an extreme state as S; indeed,

the starting value is superior (inferior) to 2σ in S (W). Alternatively, it might come from

the dynamics itself, suggesting that the AMOC has more PPP skills when it starts from

an anomalously strong overturning than from a weak one or a value close to its mean.

The fact that the initial state corresponding to an anomalously strong AMOC is more

predictable than those corresponding to a weak AMOC is in good agreement with several

previous studies (e.g. Collins and Sinha 2003; Collins et al. 2006a). Consistent with the

idea that extreme states are associated with better predictive skills, both experiments

I and 15P that start from neutral mean states have no predictive skills (as defined in

Sect. 3.2.1.2 ); indeed EC is not significant for lead-times of 5 to about 15 years (Fig-

ure 5.6). However, ES saturates after 5 and 7 years respectively. Based on ES only, this

could still indicate a weak predictability. The above results suggest that predictability

depends on the AMOC initial state, although the limited number of experiments limits

the robustness of this claim.

Fig.6  Plots of results from CS03 de!nition showing ES (blue line) and EC (red line) against lead-times for each of the !ve ensemble experiments. Dots indi-
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Figure 5.6: Plots of results from CS03 definition showing ES (blue line) and EC
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The summary plot shows the maximum lead-time at which ES saturates with
its corresponding EC (as indicated by the oval circles) for each experiment
(statistically significant ECs at the 90% are marked with an asterisk).
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Given the AMOC impact on climate (Figure 5.1), the ability of the model to predict

an extremum such as the one of the year 2071 (Figure 5.3) could be of great interest.

Such an ability is identified in experiment 5P, which shows the second highest predictive

skills (after S) with a limit of predictive skill of about 8 years (that is after the peak

has been captured, Figure 5.6). In contrast, strictly speaking, experiment 15P has no

predictive skills (as defined in Sect. 3.2.1.2 ). Nevertheless, this experiment still succeeds

in capturing the peak of the year 2071 as seen in the plumes in Figure 5.3, where most

of the members exhibit a positive AMOC anomaly at 15 years lead-time. This feature

is somewhat reflected in the statistically significant EC calculated for a lead-time longer

than 15 years (i.e. when the peak is included). Although Figure 5.3 shows that the

amplitude of the peak is not well reproduced, there is some evidence for the ability of

the model to capture an extreme AMOC event up to 15 years in advance. Note here that,

despite the fact that ES saturates very rapidly and is not associated with a significant

EC, EC alone still gives useful information about this ability to capture a peak. This

underlines the importance of considering each metric (ES and EC) separately in addition

to their combined information, in order to identify interesting features such as extreme

events.

By averaging the maximum lead-time at which ES saturates for the five ensemble ex-

periments, we found an average saturation level reached after 8 years. Note, however,

that at this lead-time, the average EC amounts to 0.51 which is not significant at the

90% level when considering the average number of degrees of freedom over each starting

date. Indeed, Figure 5.5 and Figure 5.6 show that EC strongly depends on the start-

ing date. For such a limited number of starting dates, it is thus of limited use for an

estimation of the average predictive skill. It seems therefore reasonable to claim that,

based on ES alone, the average predictive skills of the AMOC is of about 8 years in the

IPSL-CM5A-LR model. Again, this lead-time is more than the persistence time of the

AMOC index, confirming an important role of oceanic dynamics on the predictability

of the AMOC.

Figure 5.6 also brings out some other interesting features worth pointing out. There

is some evidence for both ES and EC not to be independent metrics; a decreasing

(increasing) ES is generally associated with increasing (decreasing) EC. This claim is

further supported in Appendix A. There is also some apparent return of predictive skills

for both experiments 15P and 5P. There is, indeed, some evidence for ES returning below

the saturation level and recovering statistical significant a few years after saturation, with

corresponding EC which also recovers significance. Note that this increasing of EC is

relatively small in 5P (<0.1), compared to 15P (>0.5); the reason for the significant

increase in this latter is certainly due to its ability to capture the extreme AMOC event

present in the second decade (at least in terms of its presence and its sign). Although

this apparent “return” of skill has already been pointed out by several studies, its origin

still remains unclear. For example, Newman et al. (2003) suggest that this reflects
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variations of the actual noise rather than a true skill, while Hermanson and Sutton

(2009) rather suggest that this might be a consequence of the use of a simple univariate

measure to quantify predictability. Here, it is not to be excluded that this “return” of

skill in the second decade could be related to the peak of energy at 20 years (as found

in the control simulation, Escudier et al. 2012), which might increase correlation and

then predictability for larger timescale. The origin of this phenomenon definitely merits

further attention and should be the main focus of further studies.

5.3.2 An early warning system to predict extreme AMOC events?

Even though such events are rare and may be viewed as “surprises”, providing an early

warning system is extremely desirable considering their possible major climatic impacts.

Results above showed clear evidence for the ability of the model to capture extreme

AMOC events. More specifically experiment 15P gives hope for predicting such events

earlier than the 8-year average predictive skills identified by the PPP approach. Given

the lack of AMOC observations, we investigate here whether there exist monitorable

precursors to such extreme events and whether they are themselves predictable. Note

that these are likely to be strongly model-dependent.

As briefly mentioned in Sect. 5.2, Escudier et al. (2012) identified a 20-year cycle

associated with the AMOC variability in the IPSL-CM5A-LR control integration. Fig-

ure 5.7 shows a simplified schematic of the mechanism responsible for one half of this

cycle. They have shown that, for example, a deceleration of the East Greenland Current

(EGC) brings less cold and fresh water into the Labrador Sea giving rise to positive

temperature and salinity anomalies in the upper 200 m around 3 years after the decel-

eration. These anomalies then propagate along the subpolar gyre and reach the Nordic

Seas in about 7 years. As they pass over the convection sites, the salinity anomalies

favour deep convection, thereby inducing an AMOC intensification after 9 years. In

the Nordic Seas, the positive temperature anomalies also induce an anomalous decrease

of sea-ice cover which in turn triggers a positive anomalous atmospheric temperature.

The direct atmospheric response to this temperature anomaly is a local below-normal

SLP anomaly and a localised cyclonic atmospheric circulation, associated to anomalous

southward wind stress along the eastern coast of Greenland. This leads to an intensi-

fication of the EGC which turn creates negative temperature and salinity anomalies in

the Labrador Sea. This process lasts 10 years, and the second phase of the cycle begins.

A more detailed mechanism of the cycle can be found in Escudier et al. (2012). Even

though the AMOC is not taking an active part in this variability mechanism, it is still

influenced by the cycle through deep convection anomalies. Escudier et al. (2012) found

therefore evidence for the EGC intensity and water properties in the Labrador Sea to

be precursors of changes in the model’s AMOC, with a lead-time of about 14 years for

the EGC and 11 years for the Labrador Sea salinity.
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Figure 5.7: Schematic view of mechanisms responsible for one half of the decadal
AMOC cycle in IPSL-CM5A-LR. Items in red are actively involved in the 20-
year cycle. T’ stands for upper ocean temperature anomaly, S’ for upper ocean
salinity anomaly. EGC is the East Greenland Current and SLP the sea level
pressure. Starting from a positive temperature and salinity anomaly, the signs in
the red boxes indicate the sign of the correlation among items, and the number
in the square black boxes the time lag in years. Items in green are periodically
perturbed by the 10-year cycle but not actively taking part in its generation.
The signs and the number of years denote correlation and time lags as above.
(Adapted from Escudier et al. 2012).

Using this apparent predictability in a practical way requires that a large change in the

main identified precursors always lead to a corresponding change in the AMOC index.

Figure 5.8 shows time series of the AMOC index, SSS in the Labrador Sea and the EGC

index (defined as the southward meridional transport across the Denmark Strait of wa-

ters with a salinity lower than 34 psu) in the control integration for each ensemble with

the corresponding plumes superimposed. It is found that of the 6 identified “events”

(represented as letters in Figure 5.8), for which within 5 years at least one of the precur-

sors changes by more than 2σ and the other one by at least 1.5σ, 5 are followed by an

AMOC change of the correct predicted sign, of which 4 show a change larger than 1.5σ.

This large change in AMOC occurs about 15 (13) years after a large change in EGC

(SSS in the Labrador Sea). This result is consistent with the lead-times summarized in

Figure 5.7, and therefore illustrates the potential predictive role of these two variables.

Large magnitude of change in precursors (around 0.9-1.2 Sv and 0.5-0.7 psu) therefore

suggests the potential predictability of extreme AMOC events through observations of

properties in the Labrador Sea and Denmark Strait. This also suggests that in the case
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of extreme AMOC events, there is the possibility for longer lead-time of predictability

(13 or 15 years, depending on the predictor) than the average 8 years found above (see

Sect. 5.3.1 ). Note that this longer lead-time has previously been discussed for the ex-

periment 15P alone. Its ability to capture the peak 15 years later is indeed linked to the

state of its EGC precursor, which is extreme at the beginning of the experiment (point

C, Figure 5.8).
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Figure 5.8: Time series of AMOC index (top panel), SSS in Labrador Sea
(middle panel), and EGC index (bottom panel). Thick black line is the control
integration, dashed lines are the standard deviation, red line is the mean, and
envelope of each experiment is shown as coloured shading. Letters (A-B-C-D-
E-F) correspond to identified “events” (see text for further details).

Finally, hope for predictability of an extreme AMOC to go even beyond this suggested

decadal lead-time could arise if these two precursors exhibit in turn some potential

predictability skills. Indeed, both the EGC and SSS in the Labrador Sea have been

found to have some robust predictability for lead-times up to 9 and 7 years, respectively

(not shown). The possibility of predicting an extreme EGC event at least 9 years in

advance gives hope for the predictability of an extreme AMOC event beyond 2 decades

ahead, although this has not been tested prognostically.

We therefore found convincing evidence that extreme changes in the AMOC as seen

in the IPSL-CM5A-LR model might be potentially predictable up to 2 decades ahead

from the monitoring of its high-latitude Atlantic precursors. Hawkins and Sutton (2008)

already found such a relationship with the HadCM3 model. If a comparable mechanism

to the one identified in the IPSL-CM5A-LR model (Escudier et al. 2012) occurs in the

real ocean, which remains to be demonstrated (encouraging elements can be found in

Swingedouw et al. 2012), then the ability to predict AMOC fluctuations is promising for

potential predictability of climate at multi-decadal timescales.
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5.4 Spatio-temporal predictability of Atlantic climate

Potential predictability of both surface temperature and precipitation is now evaluated

using and comparing both the DPP and PPP approaches. As mentioned in Sect. 3.2.1.1,

a threshold for “useful” potential predictability is often hard to define in the DPP

approach, as it only relies on a long control integration. On the other hand, it remains a

cheap (in terms of computation time) and easy way to evaluate average predictive skills

from long time series. This differs from the PPP approach which is much more expensive,

but better evaluates the growth of perturbations in initial conditions and therefore the

effective predictability within models. Given a choice of starting dates, this approach

can also illuminate the link between temperature and precipitation predictability and

the AMOC.

5.4.1 Potential predictability of surface temperature

Figure 5.9 shows predictability maps of Atlantic surface temperature up to 1 and 2

decades as identified by both the DPP and PPP approaches in the IPSL-CM5A-LR

model. For the former approach, the maps show the ppvf for 10 and 20-year means and

are shown in Figure 5.9a. For the PPP approach, regions combining surface temperature

with both statistically significant EC and ES statistically smaller than the saturation

level at the considered lead-time (i.e. regions potentially predictable as defined in Sect.

3.2.1.2 ) are shown in Figure 5.9b as a function of the number of experiments for which

these conditions are met.

Over the ocean, the regions of highest (more than half of the experiments) predictive

skills at both 1 and 2 decades identified by the PPP approach coincide to some extent

with those of highest ppvf scores (for which 10 to 40% of the variance is in the considered

decadal band, Figure 5.9a). These regions mainly include the convection sites (as iden-

tified by Escudier et al. 2012) together with the NAC path, and are in good agreement

with results from the diagnostic multi-model predictability studies of Boer (2004) and

Boer and Lambert (2008). The PPP approach also brought some hints of potential pre-

dictability (less than half of the experiments) for the two timescales in regions including

the southeastern branch of the subtropical gyre and the tropics (more specifically the

western deep tropics up to 1 decade extending to the northern western tropics up to 2

decades). These two regions are also identified by the DPP approach, although some

discrepancies are present in the tropics; up to 2 decades, strongest signals are identified

in the southern tropics rather than in the northern tropics. Interestingly, these regions

of weak signals (i.e. the southeastern branch of the subtropical gyre and the tropics) are

each identified in experiments including the extreme AMOC event of 2071, namely in

experiment 15P and S mainly over 2 decades (see Appendix B, Figure B.1). Although

it remains difficult to draw robust conclusions from the limited number of experiments,
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Figure 5.9: Potential predictability of surface temperature in the Atlantic sector
identified by: (a) the DPP approach showing maps of the internally generated
decadal ppvf for 10-year (left panel) and 20-year (right panel) means in the
unforced control climate of IPSL-CM5A-LR (the colored areas are significant
at the 95% level according to a F -test); (b) the PPP approach showing maps
of the number of starting dates (out of 5) where grid points are potentially
predictable (i.e. where it combines both statistically significant EC at the 90%
confidence level according to a Student’s t-test and normalized ES smaller than
saturation level at the 95% level according to a F -test) up to one (left panel)
and two (right panel) decades.

this suggests that an extreme AMOC event might favour the potential predictability

of these regions. However, the reason for the weak scores in these regions in the 5P

experiment remains to be clarified.

In general, in both approaches, potential predictability over land is less significant than

over the ocean. It is found over the coastal areas bordering some of the potentially pre-

dictable oceanic regions (that mainly include the maritime-influenced regions of western

Africa, the western coast of the Iberian peninsula, and the northern coasts of the British

Isles and South America), and it seems to be favored by extreme AMOC events (see

Appendix B, Figure B.1). The DPP approach identifies additional land areas located

further away from the coast (i.e. in Europe, in both the African and South American

continents). Note, however, that these additional land areas are regions of low ppvf

values (<0.1, Figure 5.9a).

Finally, the evidence of a relationship between the potential predictability of surface

temperature and the AMOC is due to the fact that the major regions identified as

potentially predictable by both approaches, are also remarkably similar to the regions

significantly sensitive to decadal AMOC fluctuations (as shown in Figure 5.1a).
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5.4.2 Potential predictability of precipitation

Potential predictability of precipitation (Figure 5.10) is considerably smaller than for

surface temperature, in good agreement with the multi-model approach of Boer and

Lambert (2008). Similar to the latter study, the Nordic Seas are the most prominent

regions where precipitation seems to be predictable at both timescales. There are also

some patches of predictability over the subpolar gyre in both approaches. Note that the

DPP approach identifies additional regions (both oceanic and continental) mainly over

the tropics (Figure 5.10a). As for surface temperature, these additional regions have low

ppvf values. Furthermore, as for regions of weak signals for surface temperature, regions

identified by both approaches appear in experiments including the extreme AMOC state

of the year 2071 (experiments 15P and S, see Appendix B, Figure B.2).
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Figure 5.10: Potential predictability of precipitation in the Atlantic sector as
defined in Figure 5.9.

As with surface temperature, the evidence for a link between an extreme AMOC event

and predictability of precipitation in the above identified regions is due to the fact that

they are also regions sensitive to decadal AMOC fluctuations (as shown in Figure 5.1b).

The possibility for a link between precipitation at high latitude and the AMOC would

not be surprising since by controlling a significant part of freshwater fluxes there, pre-

cipitation control the AMOC precursors identified in the model. These results suggest

the mechanisms responsible for climate predictability to be strongly linked to the mech-

anisms behind decadal AMOC variability. Note, nevertheless, that this link between

regions potentially predictable and those sensitive to decadal AMOC fluctuations is less

clear for precipitation than for temperature, and this could also explain the weaker PPP

skills in precipitation in the tropical and subtropical regions, given our experimental

set-up for the prognostic approach largely focused on specific AMOC events.
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5.5 Summary and discussion

5.5.1 Potential predictability of the AMOC

The predictive skills of the AMOC index have been quantified by the prognostic (PPP)

approach for five experiments starting from different AMOC initial states, using both

the ensemble spread (ES) and the ensemble correlation (EC). In most cases, ES (EC)

increases (decreases) with lead-time, and hence predictability is lost after a certain lead-

time. In some cases, an apparent “return” of skill is detected a few years after satura-

tion. This has to be interpreted carefully as it could simply reflect noise rather than

predictability (e.g. Newman et al. 2003). Our experiments showed that it could nev-

ertheless also be related to the large variability of the AMOC at the 20-year timescale

found in the control simulation (Escudier et al. 2012). EC was found particularly useful

to detect such features in the simulations.

It is difficult to determine average predictability skills in the “perfect model” experi-

ments as it implies averaging skills over several starting dates which themselves have

very different predictability skills. Nevertheless, it seems reasonable to claim that the

modeled AMOC has an average predictive skill of 8 years in the IPSL-CM5A-LR model,

when considering the average lead-time at which ES saturates. The corresponding EC

averaged over all starting dates is not significant. Note that the AMOC index has also

been found to have a persistence time (estimated from the AMOC index autocorrelation

function in a red noise framework) of about 4-5 years, which is less than the average

predictive skills found here. This suggests a role of the oceanic dynamics in this pre-

dictability. The average lead-time of predictability of the AMOC index found in the

IPSL-CM5A-LR model is somewhat shorter than those identified in most similar pub-

lished studies, for which the predictability lead-time could reach 2 decades ahead (e.g.

Collins and Sinha 2003; Msadek et al. 2010; Pohlmann et al. 2004; Collins et al. 2006a).

It is, however, somewhat in agreement with Teng et al. (2011) who found the AMOC to

be predictable for only one decade in the CCSM3 model. Hermanson and Sutton (2009)

identified a shorter lead-time in the HadCM3 model, with an average predictive skill

of about 5 years. The IPSL-CM5A-LR model belongs to the middle-range of timescale

of AMOC predictive skills identified so far in the literature. Such a comparison with

existing studies should, however, be considered carefully because of the many differences

in the experimental protocol used among predictability studies.

When considering the predictive skills of each ensemble experiment separately, there is

evidence for predictive skills to depend on the AMOC initial state. Indeed, the highest

skills have been found (in descending order) in the experiments starting (i) from a

strong AMOC initial state (up to 13 years), (ii) 5 years before a maximum peak (up

to 8 years) and (iii) from a weak AMOC initial state (up to 7 years). In contrast, no

predictive skills (as defined in Sect. 3.2.1.2 ) have been found for experiments starting
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from an intermediate AMOC initial state and 15 years before a maximum peak. This is

essentially because the ensemble correlation rapidly becomes insignificant. Based on ES

alone, these starting dates could be considered as being predictable 7 and 5 years ahead

respectively. Nevertheless, generally, predictive skills have therefore been identified for

experiments starting or nearly-starting from an extreme AMOC state. The above results

also suggest better predictive skills for an initial state corresponding to an anomalously

strong AMOC than those corresponding to a weak AMOC, in good agreement with the

perfect model studies of Collins and Sinha (2003) and Collins et al. (2006a). However,

the number of members (10) for each experiment is somewhat low to fully assess the

robustness of such an impact of the AMOC initial state on its predictability. Note

furthermore that, although no predictive skills (as defined from both EC and ES) have

been identified in the experiment starting 15 years before a peak, this specific experiment

still showed the ability of the model to capture relatively well an extreme AMOC event

on a longer lead-time than the average one identified by the PPP approach.

In view of the major climatic impact induced by such extreme events, the development

of an early warming system would be of great value. The present study shows that this

is made possible through the monitoring of the high-latitude precursors of the AMOC

in this model (which are the EGC and the upper-ocean properties in the Labrador

Sea), which leads to an increase in predictive skills of extreme AMOC events up to 2

decades ahead. The perspective of an early warning system of such events thus motivates

the monitoring of the EGC strength and water properties in the Labrador Sea. In

this perspective, observation programs across e.g. the WOCE-AR7/A1 section for the

Labrador Sea (http://cchdo.ucsd.edu/atlantic.html) and the East Greenland shelf and

slope of south of Denmark Strait (Brearley et al. 2012), as well as the maintenance

of mooring arrays in these areas, are likely to be of greatest added value to constrain

prediction of the AMOC. Similar observational targets have also been pointed out by

Hawkins and Sutton (2008) using the HadCM3 model.

5.5.2 Potential predictability of the North Atlantic climate

Changes in the AMOC have been found to have significant and widespread climate

impacts. The prospect for predictability of decadal AMOC fluctuations is therefore

promising for potential predictability of climate. This latter has been investigated using

both diagnostic (DPP) and PPP approaches. They give overall very similar results,

and strongly agree on the regions that exhibit the highest predictive skills. Some dis-

crepancies, nevertheless, arise for regions where only some hints of predictability have

been identified. Indeed, these regions are often larger in the DPP approach than in

the PPP approach. In other words, the DPP estimation seems less discriminate. To

strengthen the robustness of our results, note that the regions claimed to have some hints

of predictability below are regions identified by both the DPP and PPP approaches.
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The far North Atlantic (that includes the convection sites of the model and the NAC

path) has been identified as the region exhibiting the highest predictive skills. Sur-

face temperature is potentially predictable up to 2 decades in advance there, in good

agreement with previous studies (e.g. Collins 2002; Boer 2004; Pohlmann et al. 2004;

Hawkins et al. 2011; Branstator et al. 2012). Note that this ability to predict the North

Atlantic subpolar gyre also gives hope for potential multi-year forecasts of tropical storm

and hurricane frequency (Smith et al. 2010). Some hints of potential predictability are

also identified at this timescale in the subtropics (mainly over the southern part of the

eastern branch of the subtropical gyre) and the tropics (mainly over the north western

tropics). The predictability found in the latter region is clearly different from results

of Pohlmann et al. (2004) in the ECHAM5-MPI/OM climate model, and also contrasts

with Collins (2002), who found signals only up to the interannual timescales in the trop-

ics in HadCM3. To some extent our result, however, agrees with Hawkins et al. (2011)

who also found decadal predictability in the tropics in the HadCM3 model, but only up

to 1 decade ahead and restricted to the southern tropics. Land areas display little poten-

tial predictability compared to oceans. Potential predictability at decadal timescales is

generally restricted to the coastal areas bordering some of the oceanic regions identified

above; they mainly include the coast of western Africa, the western coast of the Iberian

Peninsula, both the northern coast of the British Isles and South America. Signals over

maritime Europe as identified by Boer and Lambert (2008) and Pohlmann et al. (2004)

are not brought out as clearly in our study. Although potential predictability is largely

absent for precipitation (as noted by Pohlmann et al. 2004; Boer and Lambert 2008;

Boer 2011 in particular), there are some hints of potential predictability up to 2 decades

over the convection sites of the Nordic Seas and the subpolar gyre.

Similarly to the AMOC, regions with weak but significant predictability (i.e the tropics

and subtropics for temperature, the Nordic Seas and subpolar gyre for precipitation)

seem to depend at least partly on the AMOC state. Results suggests that extreme

AMOC events might favour the potential predictability of regions of weak signals, as

the latter are in most cases identified when the predicted time-period includes such

events. Although the origin of a possible link between climate predictability and ex-

treme AMOC still needs to be clarified, the likelihood for such a link is strengthened

by the fact that regions identified as potentially predictable (for both surface tempera-

ture and precipitation) are also all strongly influenced by decadal AMOC fluctuations.

This suggests that the mechanisms responsible for climate predictability are to some

extent linked to the decadal AMOC variability. More research to understand the spe-

cific mechanisms that lead to predictability is, however, still needed. The present study

nevertheless underlines that the potential predictability of the AMOC could therefore

lead to significant decadal predictability of climate (where the AMOC has a sufficiently

strong impact), and may therefore be of economic and societal importance (e.g. Meehl

et al. 2009).
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5.5.3 Evaluation of different methods for quantifying predictive skills

Different definitions of predictability, different experimental protocols and metrics have

often been used among the previous studies to evaluate predictive skills. It therefore

remains difficult to estimate the weight of the metrics on the level of predictability found

here in the IPSL-CM5A-LR model by comparing this level to those found in previous

studies. Nevertheless, from a methodological point of view, our study still puts forward

some interesting results regarding the evaluation of predictive skills.

Regarding the PPP approach, we showed that combining ES and EC should be pre-

ferred in principle but it is sometimes difficult to apply in practice. For the evaluation

of average predictive skills, EC was found insignificant. In the case of 15P, it reduced

the quantification of predictability skill for weak lead-times but greatly helped to high-

light the ability of the model to capture the late peak. We thus still claim that both

metrics should be considered in parallel. Our results also suggest that considering either

the ensemble mean of an experiment or each individual member as a baseline in the

calculation of both metrics does not affect the overall results.

As already mentioned, both DPP and PPP approaches generally brought out the same

main features concerning both temperature and precipitation predictability. Marginal

discrepancies concerned the regions of weak signals. Because of the difficulty to define a

“useful” threshold of potential predictability in the DPP approach, the PPP approach

allows more detailed analysis. It however relies on the subjective choice of starting dates,

number of members and experiments.

Despite the limited number of experiments starting with similar AMOC states, another

aspect brought out by the PPP approach is that both the AMOC and some regions

might have higher predictive skills under specific initial states, often when the predicted

time period includes an extreme AMOC. This result needs to be confirmed by further

work. Although reliable estimates of skill conditional on specific initial states are diffi-

cult to determine (due to the small sample for verification), more systematic experiments

starting with similar initial states (i.e. weak, intermediate, strong, just before a peak)

should therefore be undertaken. It could even be extended to further scenarios such as

starting just after a peak. Note that, this dependence on initial states already exists with

seasonal-to-interannual climate forecasts dependent on the phase of El-Niño Southern

Oscillation (e.g. Chen et al. 2004), and it is expected to be the case with decadal pre-

dictions (Griffies and Bryan 1997a). The present study suggests that forecasts starting

from an extreme phase of natural internal variability can be more skillful than those

starting from average conditions. In that sense, studying skill from case studies may

prove more useful to understand predictability mechanisms than computing average skill

from numerous start dates as done in most previous studies.
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5.6 Conclusions

In conclusion, the decadal predictability of the AMOC and associated oceanic/atmo-

spheric variables in IPSL-CM5A-LR can be summarized in the following key points:

• The AMOC has an average prognostic predictability of about 8 years.

• In about 80% of the cases, an extreme AMOC event can be predicted up to 2 decades in

advance from the monitoring of its high-latitude precursors (which are the East Green-

land Current and water properties in the Labrador Sea).

• The far North Atlantic (that includes the convection sites, the NAC path, and the

subpolar gyre region) exhibits the highest predictive skills for surface temperature up

to 2 decades in advance. Some hints of predictability are also identified up to 2 decades

in the subtropics (over the southern part of the eastern branch of the subtropical gyre)

and the tropics (over the northern western tropics).

• There is little potential predictability for surface temperature over land, which is

restricted to the coastal areas bordering some of the predictable oceanic regions.

• Potential predictability is largely absent for precipitation, despite some hints of pre-

dictability up to 2 decades in the Nordic Seas.

• Predictive skills of AMOC, surface temperature and precipitation seem to be favoured

by extreme AMOC events in maximum states.

• All regions identified as potentially predictable are strongly influenced by decadal

AMOC fluctuations, suggesting that the mechanisms responsible for climate predictabil-

ity are to some extent linked to the decadal AMOC variability.

It is also important to bear in mind that here we have assessed the upper limit of

both the AMOC and climate predictability as both perfect model and near perfect

knowledge of the current state of the climate system are assumed. Indeed, climate

models still have significant biases compared to observations, and their possible impacts

on the level of predictability skill of a model cannot be ignored. As an illustration,

Branstator et al. (2012) found that, using six state-of-the-art AOGCMs, the average

lead-time of predictability for subsurface temperature (especially in the North Atlantic)

varied considerably between the models highlighting how poorly the North Atlantic

predictability must be represented in some, or perhaps all, of the six models. Therefore,

bearing in mind the possible impact of the limitations of the IPSL-CM5A-LR model,

its lack of deep convection in the Labrador Sea (Swingedouw et al. 2007) might well

affect the effective level of predictability skill. This problem should be addressed in

future work. The 20-year variability cycle in the subpolar North Atlantic in the model

also greatly influences the present results and its occurrence in the real world further

needs to be assessed. The possibility that lower predictability limits would arise in a
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real predictive system with this model cannot be ruled out (see Swingedouw et al. 2012).

However, to the extent that both diagnostic and prognostic approaches are appropriate

measures of skill, the present results give some indications as to where and to what

extent skillful decadal forecasts might be possible.

Results from Chapter 4 suggested that hybrid-coordinate ocean component model such

as CHIME might have better predictive skills than climate models that feature an or-

thodox z-coordinate level coordinate ocean component such as IPSL-CM5A-LR. To

strengthen or weaken this claim (as well as the robustness of the results found here),

similar analyses have therefore been repeated with the CHIME model by following an

experimental design as similar as possible to the one used here with the IPSL-CM5A-LR

model. This is the subject of the next chapter.





Chapter 6

Decadal predictability of the

AMOC and climate in CHIME

6.1 Aim of study

In this chapter, we explore the decadal predictability of the AMOC and associated

oceanic and atmospheric fields as they are represented in the CHIME model (Megann

et al. 2010) under control conditions, using both the diagnostic (DPP) and prognostic

(PPP) approaches. Results from this study will complement those from IPSL-CM5A-LR

(Chapter 5 ) by strengthening or questioning some of the claims previously drawn.

In the DPP approach, we analyze the 201-year-long control integration E3 of CHIME

(see Sect. 2.1.2.2 ), and use the non-biased estimation of ppvf (from Boer 2004) as an es-

timate of predictive skills. In the PPP approach, five “perfect ensemble” experiments are

performed from the same control integration. Each experiment consists of five ensemble

members (excluding the control run) starting from slightly different initial conditions

and integrated for 20 years. As with IPSL-CM5A-LR (Chapter 5 ) and following the

CS03 definition of target, both Ensemble Spread (ES) and Ensemble Correlation (EC)

are evaluated in CHIME to quantify the reproducibility and thus predictability of the

simulated fields, and we consider that a variable is potentially predictable if it has a

(low) statistically significant ES associated with a (high) statistically significant EC.

Note that because different control integrations are used in the variability and pre-

dictability study with CHIME (cD and E3, respectively), we have to be aware of the

eventual differences in their AMOC characteristics (both spatially and temporally). In-

deed, all these discrepancies have to be kept in mind as analogies are drawn between

the mechanisms of AMOC variability and predictability.

First, both spatial and temporal variability associated with the AMOC are therefore

compared in both cD and E3 in Sect. 6.2. The control integration E3 is then analyzed

119
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in Sect. 6.3 to investigate the impact of strong AMOC fluctuations on both oceanic and

atmospheric fields in the Atlantic sector. In Sect. 6.4, the potential predictability of

the AMOC, as identified by the PPP approach, is investigated using “perfect ensemble”

experiments. Using both DPP and PPP approaches, Sect. 6.5 addresses the poten-

tial predictability of both associated oceanic and atmospheric fields as well as its link

with decadal AMOC variability. A summary and discussion follow in Sect. 6.6, with

concluding remarks in Sect. 6.7.

6.2 Internal AMOC variability: discrepancies between E3

and cD

6.2.1 Spin-up, trend and variability of AMOC

The AMOC index time series are shown for both control integrations in Figure 6.1. As

already mentioned in Sect. 2.1.2.2, the AMOC index in E3 has the most stabilized state

between year 105 and 305. During this period it has an oscillation amplitude of about

3 Sv (ranging from 16 to 22 Sv) against an amplitude of about 2 Sv (ranging from 17.5

to 22 Sv) in cD during its corresponding near-stabilized period (from year 80 to 200).

The average decadal mean is slightly weaker by about 1 Sv in E3 (18.7 ± 1.9 Sv against

19.8 ± 1.4 Sv in cD), which is still well within the observational estimates (18 ± 2-3 Sv)

of Talley (2003).
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Figure 6.1: Time series of AMOC index of cD (in red) and E3 (in blue). Red
(blue) shading corresponds to the time period analyzed in cD (E3) and the grey
shading corresponds to their common time period.
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Figure 6.2 shows the mean AMOC streamfunction for both runs averaged over their

corresponding periods of analysis, along with their spatial differences. At first sight,

they both have a similar spatial structure. There are however some differences worth

pointing out. In both runs, the circulation associated with the NADW is maximum at

a depth of about 800-1200 m, spreading from 30◦N to 60◦N. The maximum transport

is, however, slightly stronger in E3 (∼ 20 Sv, Figure 6.2a, right panel) than in cD (∼ 18

Sv, Figure 6.2a, left panel). The NADW cell also lies at a slightly shallower depth in E3

(extending to ∼ 3500 m against 4000 m in cD) resulting in a weaker transport (up to 4

Sv) between about 1500 m and 4000 m depth (Figure 6.2b). This shallower NADW cell

in E3 may be a consequence of its stronger AABW cell (about - 4 Sv against - 2 Sv in

cD). The deep sinking regions seem similar in both runs, although in the Labrador Sea,

the sinking is slightly stronger in E3 (Figure 6.2b) consistent with the higher maximum

transport of the NADW cell in the latter. Despite these few discrepancies, it seems

reasonable to claim that the structure of the AMOC streamfunction in both runs is

similar.
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Figure 6.2: (a) Annual mean streamfunction of zonally integrated volume trans-
port (Sv) from 30◦S to 80◦N, averaged from years 80-199 (105-305) for cD (E3).
(b) Differences in annual mean streamfunction (Sv) between E3 and cD; posi-
tive (negative) values correspond to stronger (weaker) transport in E3.

6.2.2 EOF analysis of AMOC variability

The first two EOFs of the AMOC streamfunction in E3 (based on 201 years of annual-

mean calculated from year 105 to 305) are shown in Figure 6.3. Prior to the calculations,

time series are normalized by the variance, and detrended. If we compare the spatial

structures of these two EOFs with those of cD (see Figure 4.3), they look to some extent

similar at first sight.

The first EOF mode (EOF1) in both E3 and cD explains a similar amount of variance

( 32% and 33%, respectively). In Sect. 4.2.2, the primary mode of AMOC variability in

cD has been associated with a decadal cycle (ranging from a 15-30 years period) related

to convective activity in the Labrador and (inversely) the GIN Seas. With a similar

spatial structure to cD, EOF1 in E3 suggests that its main mode of variability might
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Figure 6.3: Detrended AMOC streamfunction (from year 105 to 305) in the
North Atlantic(20◦N to 75◦N): (a)EOF1; (b)PC1; (c) EOF2 and (d) PC2.

also be related to the same convective activity. The statistically significant correlation

between the 10-year moving average of PC1 and the detrended convective index in the

Labrador Sea (defined as the averaged March MLD in the region 55◦N-65◦N/45◦W-

65◦W, Figure 6.4, red line) supports the link between EOF1 and LSW variability. They

are correlated at the 95% confidence level with a coefficient of 0.42 (not shown), when

PC1 leads by about 3 years (similar lag found in cD, see Table 4.1). However, in contrast

to cD, no such correlation has been found with the convective index in the GIN Seas

(defined as the averaged March MLD in the region 65◦N-80◦N/15◦W-15◦E, Figure 6.4,

blue line). Nevertheless, convective activity in both the Labrador and GIN Seas seems to

have an anti-phase relationship as supported by their statistical significant correlation of

about -0.30 when the Labrador Sea leads by 1 year (not shown), consistent with cD (see

Figure 4.11). Although the correlation coefficient is weaker in E3, this result suggests

that a link between these two convective regions exists, and that despite no evidence for

a statistical relationship between PC1 and convective index in the GIN Seas, EOF1 in

E3 might still be associated with this latter region through its link with the Labrador

Sea. The main mode of variability in E3 also seems to be associated with a decadal

cycle. Indeed, the power spectrum of PC1 shows the strongest energy (relative to a fitted

first order autoregressive AR1 model, Chatfield 1975) at a statistical significant peak (at

the 95% confidence limit) of about 15 years (Figure 6.5). Although well below the 80%

confidence limit, there is also a second large peak at about 25-30 years period above

the fitted red noise spectrum. These two peaks are well within the 15-30 years range

period found in cD see Figure 4.1b). Note also the strong instantaneous correlation
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coefficient of about 0.82 between PC1 of the AMOC streamfunction and the AMOC

index (Figure 6.6), as for cD (see Table 4.1).
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Figure 6.4: Time series of detrended 10-year moving average March MLD in
the Labrador (in red) and GIN (in blue) Seas in E3.
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The second EOF mode (EOF2) in both E3 (Figure 6.3c) and cD (see Figure 4.3c)

explains a similar amount of variance (about 9% and 12%, respectively). The secondary

mode of AMOC variability in cD has been associated with interannual variability related

convective activity in both the Labrador and GIN Seas (see Sect. 4.2.2 ). Although EOF2

has overall a similar spatial structure in both runs, there are significant differences in the

high latitude regions. Indeed, in contrast to cD, the strongest variability in E3 occurs

in the Labrador Sea and is less in the GIN Seas. However, in both cases, PC2 seem to

vary on interannual rather than decadal timescales.

In comparison with cD, the two first modes of AMOC variability in E3 seem to mainly

be related to convective activity in the Labrador Sea with a lesser role for the GIN Seas.

The reduced variability in this latter (compared to cD) may be partly caused by the

closure of the Bering Strait in E3 therefore affecting the highest latitude regions that

include the GIN Seas. Nevertheless, these two runs agree in that the leading mode of

AMOC variability is driven by convective activity in the Labrador Sea. It therefore seems

reasonable to assume that the mechanisms controlling the decadal AMOC fluctuations

are similar in both runs, keeping in mind that further analyses would be necessary to

confirm this.

6.3 Fingerprints of AMOC variability

Prior to the study of the AMOC potential predictability skills in CHIME, the regional

impacts of the AMOC are investigated in E3. To do so, we carried out composite anal-

yses of several oceanic/atmospheric variables thought to be sensitive to decadal AMOC

fluctuations. Note that winter or September means were used when the statistical sig-

nificance of results was more robust than with the use of annual mean; this however

does not give qualitatively different results.

6.3.1 Impacts on sea surface temperature

A composite of annual SST anomaly pattern (relative to the 105-305 annual mean)

induced by AMOC fluctuations was obtained by averaging anomalies over years when the

AMOC is strongest (i.e. when exceeding one standard deviation, Figure 6.7). Although

the relatively short control integration length limits the statistical significance of the

results, the SST pattern looks somewhat similar to that identified in cD (see Figure

4.7a). When the AMOC is in its strong state, most of the upper ocean, from the

subtropics to the mid-latitudes (mainly over both the Gulf Stream and NAC paths) and

the Nordic Seas becomes warmer, whereas SST south of about 25◦N tends to become

cooler. This pattern somewhat reflects an AMO-type response in good agreement with

previous studies (e.g. Sutton and Hodson 2005; Frankcombe et al. 2010); this AMOC-

AMO connection in CHIME has been discussed in detail in Sect. 4.3.1.
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Figure 6.7: Composite of annual anomaly patterns of SST (◦C) induced by
AMOC fluctuations, obtained by averaging anomalies over years when PC1 of
the AMOC streamfunction is strongest. Grey contours indicate where the null
hypothesis of equal means is rejected at the 10% level.

6.3.2 Impacts on surface air temperature

A composite of winter SAT anomaly pattern (relative to the 105-305 winter mean)

induced by strong AMOC conditions is shown in Figure 6.8. Note that, as in the case of

SST, the relatively short control experiment length limits the statistical significance of

the results. Nonetheless, it seems reasonable to claim that stronger AMOC conditions

mainly affect SAT in the North Atlantic region from the subtropics to the high latitude,

and that pattern somewhat resembles that of the SST described earlier. When the

AMOC is strongest, SAT in the Nordic Seas, the eastern branch of the subtropical gyre

and along the NAC path tends to become warmer in contrast to both the Labrador Sea

and to a lesser extent the tropical Atlantic where it tends to become cooler. As found

in cD, this pattern is consistent with the anti-phase relationship previously identified

between the Labrador and GIN Seas (see Sect. 6.2.2 ). Strong AMOC conditions also

have impacts over land. Strongest conditions are mainly associated with a warming

of both Europe and North America, which is consistent with similar previous studies

(e.g. Pohlmann et al. 2004). In contrast, most of Greenland and land in the Southern

Hemisphere tend to cool. This SAT pattern does agree in many ways with the one

identified in cD (see Figure 4.10a), mainly in terms of warming of the Nordic Seas, North

America and Europe, and cooling of the Labrador Sea. Although cooler conditions are

identified in both runs in the tropics, those identified in the northern tropics in cD are

not as clearly identified in E3. To summarise, this composite analysis reveals that most

of the Northern (Southern) Hemisphere Atlantic sector tends to become warmer (cooler)

under strong AMOC conditions.
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Figure 6.8: Composite of winter anomaly patterns of SAT (◦C) induced by
AMOC fluctuations, obtained by averaging anomalies over years when PC1 of
the AMOC streamfunction is strongest. Grey contours indicate where the null
hypothesis of equal means is rejected at the 10% level.

6.3.3 Impacts on precipitation

Figure 6.9 shows a composite of September precipitation anomaly pattern induced by

strong AMOC conditions. Similarly to cD (see Figure 4.10c), few significant anomalies

appear. There are still some notable changes over the western tropics of the North

Atlantic with positive anomalies up to 20 cm yr−1, suggesting a northward shift of the

ITCZ. Although the tropical-subtropical SST gradient is less pronounced in E3 than in

cD (Sect. 6.3.1 ), it seems reasonable to assume that the northward shift of the ITCZ

is probably a consequence of this SST gradient. Under strong AMOC conditions, the

Northwestern tropical Atlantic is expected to become wetter, and freshwater anomalies

are therefore expected to develop locally as already mentioned for cD. The strong

oceanic precipitation signal in this region also seems to leak over the adjacent continental

areas.
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Figure 6.9: Composite of September anomaly patterns of precipitation (mm
day−1) induced by AMOC fluctuations, obtained by averaging anomalies over
years when PC1 of the AMOC streamfunction is strongest. Grey contours
indicate where the null hypothesis of equal means is rejected at the 10% level.
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6.3.4 Impacts on sea level pressure

Figure 6.10 shows a composite of winter SLP anomaly pattern induced by strong AMOC

conditions. Lower SLP tends to appear in most of the Northern Hemisphere except for

the Labrador Sea and Greenland where SLP becomes higher. This pattern looks signif-

icantly different from the one identified in cD (see Figure 4.10b), where strong AMOC

conditions were associated with a positive NAO-like pattern, this latter having been

found to play a predominant role in explaining decadal AMOC fluctuations. Although

the SLP pattern identified here could put into question the role of the NAO in explaining

such fluctuations in E3, the missing January data for atmospheric fields in E3 (see Sect.

2.1.2.2 ) could well be the reason of the absence of the NAO-like pattern.
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Figure 6.10: Composite of winter anomaly patterns of sea level pressure (Pa)
induced by AMOC fluctuations, obtained by averaging anomalies over years
when PC1 of the AMOC streamfunction is strongest. Grey contours indicate
where the null hypothesis of equal means is rejected at the 10% level.

As in the case of cD, a clear link between AMOC strength and both surface temperature

and precipitation has been identified in E3 (mainly over oceanic regions), reinforcing

the existence of such a link in CHIME. In view of these major climatic impacts, the

important question remains of whether AMOC fluctuations are potentially predictable

in this model.

6.4 Potential Predictability of AMOC fluctuations

6.4.1 How far ahead is the AMOC potentially predictable?

The potential predictability of the AMOC is investigated using the PPP approach, for

which five “perfect ensemble” experiments are performed starting from different AMOC

initial states (strong, intermediate, weak, 5 and 15 years before a peak). Each experiment

consists of six members (including the control integration) for 20-year long simulation.
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Figure 6.11 shows the trajectories of each individual member, for each start date, to-

gether with the ensemble mean. At first sight and without taking into account the lowest

variability due to the averaging effect, few ensemble means appear to closely follow the

control run. Note that the extreme AMOC event at year 260 is relatively well captured

when starting 5 years prior this peak (experiment 5P) while this is not really the case

when starting 15 years before (experiment 15P).
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Figure 6.12 shows ES as a function of lead-time up to 2 decades for each experiment.

The last statistically significant lead-time before ES persistently exceeds the threshold

represents the maximum lead-time of predictability as inferred from ES alone. The

longest lead-time of predictability is obtained for experiment 15P with a saturation level

reached after about 10 years. In contrast, experiment S saturates the most quickly, after

only 2 years. This latter result is quite surprising in view of previous similar studies

(e.g. Collins et al. 2006a; Collins and Sinha 2003) and our experiments with IPSL

(see Sect. 5.3.1 ) for which experiments starting from strong initial AMOC states are

usually associated with an ES saturating at the longest lead-time. As for experiments

5P, W, and I, they all have an ES saturating after about 5-6 years. Figure 6.13 shows

EC computed between lead-time 1 year and varying lead-times, ranging 5 to 20 years.

Experiment W shows the highest scores with statistically significant EC superior to 0.7

for all lead-times from 5 to 20 years. Such EC (although slightly weaker) are found
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for experiment I, but only up to 11 years. Experiment 5P shows weakest scores with

statistically significant EC between about 6-9 years and 12-16 years. As for experiments

S and 15P, no statistically significant ECs have been found.
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To have a better idea of the predictive skill of each experiment, information given by

both ES and EC are summarized in Figure 6.14. As with the IPSL predictability study,

the predictive skill of each experiment is determined by the maximum lead-time at which

ES saturates and its corresponding EC.
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Experiment 5P shows overall the highest PPP skills as it corresponds to the experiment

with the longest saturation lead-time (obtained from ES) and a corresponding EC sta-

tistically significant and superior to 0.8 (lower-right plot, Figure 6.14); this experiment

therefore suggests a limit of predictive skills of the AMOC index of about 6 years. Exper-

iment 5P is closely followed by experiments I and W, which both have high statistically

significant EC but ES that saturates slightly more quickly (after about 5 years).

In contrast, strictly speaking, both experiments 15P and S have no predictive skills (as

previously defined in Sect. 3.2.1.2 ). Indeed, while ES of experiment 15P saturates at

the longest lead-time (10 years), its corresponding EC is remarkably low (-0.04). As

illustrated earlier in the IPSL predictability study, information given by ES or EC alone

should not be neglected as they can still give useful information about for specific feature

such as the ability to capture an extreme event. So based on ES of experiment 15P only,

this could still indicate a strong predictability (up to 10 years), but it is nevertheless

not strong enough to predict the peak of year 260. In addition, the fact that the longest

lead-time at which ES saturates is obtained for the experiment showing the lowest EC

somewhat contrasts with results obtained with the IPSL-CM5A model. Indeed in the
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latter, it seems that the more the lead-time (at which ES saturates) increases, the more

EC increases (see lower-right plot, Figure 5.5). This is clearly not the case with CHIME

(lower-right plot, Figure 6.14). To some extent, experiment 15P weakens the claim

drawn from the IPSL predictability study that ES and EC are dependent metrics (see

Sect. 5.3.1 ). Surprisingly, there is also no predictive skill (as defined in Sect. 3.2.1.2 ) for

the experiment starting from strong initial AMOC state (i.e. experiment S). Based on

ES only, this could still indicate very weak predictability only up to 2 years. This result

clearly contrasts with those from the IPSL predictability study (see Sect. 5.3.1 ) and

previous similar studies (e.g. Collins and Sinha 2003; Collins et al. 2006a) that showed

that experiments starting from anomalously strong AMOC are usually associated with

the best predictive skills. Because, here, the experiments have fewer members than

these previous studies, we question whether this influence the PPP skills and whether

this could be the reason of the lowest skills of experiments S in CHIME. We therefore

test the eventual sensitivity of PPP skills to the number of members by generating five

additional members for experiments S. Figure 6.15 shows the plumes, ES and EC of

the AMOC index when considering these additional members (now accounting for 11

members in total). Results show that the lead-time at which ES saturates still remains

the shortest of the five ensemble experiments (from 2 years with 6 members to 3 years

with 11 members) and that no statistically significant EC is obtained for any lead-times.

One of the plausible explanations for this surprising short predictability lead-time is

that strong AMOC conditions might be associated with an excessive convective mixing

in CHIME that reduces its predictive skills. This result also suggests that increasing

the number of members does not significantly affect the PPP skills of the AMOC, and

strengthens the robustness of results found for experiment S in CHIME.

250 255 260 265 270 275 280 285 290

16

17

18

19

20

21

22

23

M
O

C
 s

tr
e

n
g

th
 [
S

v
]

0 2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Lead−time [year]

E
S

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) (b)

Figure 6.15: (a) “Plumes” of maximum-annual mean AMOC at 30◦N, and (b)
plot of ES (blue line) and EC (red line) against lead-times (dots indicate statisti-
cal significance at the 95% confidence level), for experiment S when considering
11 members.

Although the highest predictive skill in CHIME has not been found when starting from a

maximum AMOC extreme state as with IPSL (see Chapter 5 ) or HadCM3 (e.g. Collins
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and Sinha 2003), there is nevertheless some evidence in CHIME for the AMOC predictive

skills to be favoured by its extreme states. Indeed the highest potential predictability

has been found for experiment 5P that is only 5 years prior a maximum extremum, and

closely followed by experiment W that starts from a minimum AMOC extreme state.

The latter result somewhat contrasts with previous studies which generally found that

experiments starting from a minimum AMOC extreme have significantly lower predictive

skills than experiments starting from a maximum AMOC extreme. The results obtained

with CHIME therefore question the stronger influence of a maximum AMOC extreme

on predictive skills.

By averaging the maximum lead-time at which ES saturates for the five ensemble ex-

periments, we found an average saturation level reached after about 6 years. However,

at this lead-time, the average EC amounts to 0.66 which is not statistically significant

at the 90% level when considering the average number of degrees of freedom over each

starting date. As already pointed out in the IPSL predictability study, EC (which can

strongly depends on the starting dates) is of limited use for an estimation of the average

predictive skill. It seems therefore reasonable to claim that, based on ES alone, the av-

erage predictive skills of the AMOC is of about 6 years in the CHIME model. Note that

this lead-time is somewhat shorter than the one found in the previous chapter with the

IPSL-CM5A model (8 years, see Sect. 5.3.1 ). However, this result is in good agreement

with Hermanson and Sutton (2009) who found an average predictive skill of the AMOC

of about 5 years with the HadCM3 model.

6.4.2 Probability Density Functions of AMOC

Although deterministic measures of predictive skills (such as EC, ES) are a good way of

evaluating the effective predictability within models, such metrics do not give informa-

tion about the prediction probabilities. As stated in Sect. 3.2.1.2, a shift in the mean of

the ensemble can be complementary and useful for prediction. For each experiment, we

therefore examine the Probability Density Functions (PDFs) of the AMOC index (Fig-

ure 6.16), fitted by assuming a Gaussian distribution (to be consistent with the central

limit theorem for a process arising from numerous independent disturbances, Wunsch

and Heimbach 2012) and computing the mean and standard deviation of the 6 members

(including the control integration). If the ensemble mean of the ensemble experiment is

significantly shifted with respect to climatology, it will result in biases in the probability

of e.g. stronger AMOC conditions; information of considerable interest in view of its

possible climatic impacts.

At first sight, shifts with respect to climatology are most significant when calculating

over the first decade (Figure 6.16a) than over the two decades (Figure 6.16b), consistent

with a decrease in predictive skills beyond one decade for the AMOC index in CHIME

(as identified earlier). For the first decade, all experiments (including those with no
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Figure 6.16: Left panels - Fitted PDFs of decadal mean of the AMOC index in
the (a) first and (b) two decade(s). Black solid line represents the climatologi-
cal PDF computed from the 201-year control integration E3 with the stronger
tercile shown as grey shading; Colored lines represent the PDF of each exper-
iment S (red), W (blue), I (green), 15P (brown), 5P (orange). Right panels -
Probability of decadal-mean AMOC being in the strong tercile (the upper third
of the climatological PDF) for each experiment; the climatological probability
of this event is 33% (shown as the horizontal red line).

PPP skills as defined here, see previous section) have significant shifts with respect to

climatology, and are therefore useful in that sense. Experiments 5P, I, and S (15P and

W) show a significant increase in the probability of stronger (weaker) conditions over

the first decade. For example, the probability of decadal-mean AMOC strength being

in the strong tercile (the upper third of the climatological PDF) for experiment 5P (W)

is more than 99% (less than 1%), that is higher (lower) than the 33% expected from

chance. A reliable forecast that says that “the decadal-mean of AMOC strength has

more than 99% (or less than 1%) chance of being significantly stronger than normal in

the coming decade” could be of considerable value. The above results show evidence for

useful prediction probability skills in regard to the AMOC index of CHIME.

6.4.3 An early warning system to predict extreme AMOC events?

Results from Sect. 6.4.1 also showed the ability of the model to capture a maximum

extreme AMOC (e.g. year 260) about 5 years in advance (experiment 5P, Figure 6.11),

similarly to the IPSL-CM5A model. However it does not seem to be able to capture such
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a peak 15 years in advance (experiment 15P, Figure 6.11), in contrast to IPSL. From

experiment W, we can also see the ability of the model to capture well the minimum

extreme AMOC of year 283 about 3 years in advance. However, in contrast to 5P,

experiment W starts when the AMOC is already in its decreasing trend; it is therefore

difficult to draw robust conclusions about the ability of the model to capture such a

minimum peak only based on this experiment. There is nevertheless some evidence

for the ability of the CHIME model to capture extremum states. Similarly to the

IPSL model, we can investigate whether some of the AMOC precursors can increase

the predictive average lead-time found with the PPP approach (i.e. the 6-year lead-

time). According to the mechanisms identified in Chapter 4, northern tropical Atlantic

SSS can be considered as a precursor of AMOC changes in CHIME, with a lead-time of

about 15 years (see Figure 4.19). As already mentioned in Chapter 5, for this apparent

predictability to be useful requires that a large change in the main identified precursor

always leads to a corresponding change in the AMOC index. It is important to bear in

mind that these mechanisms and the location of the precursor site are model-dependent.

Figure 6.17 shows time series of the AMOC index (upper panel) and the northern tropical

Atlantic SSS averaged from 0-15◦N (lower panel) in the control integration E3. It is

found that of the 11 identified “events”, for which the precursor changes by more than

1.5σ, 6 are followed by an AMOC change of the correct predicted sign around 15 years

later, of which 5 show a change larger than 1.5σ. In CHIME, there is therefore evidence

for large changes in the precursor to lead to large changes in the AMOC (after ∼ 15

years) in about 50% of the cases.
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Note that in the IPSL-CM5A model, large changes in the AMOC precursors (located in

the northern North Atlantic) lead to large changes in the models AMOC in about 80% of

the cases (see Sect. 5.3.2 ). It is, however, important to note that this apparent difference

in the ability to predict extreme AMOC events might not be significant since fewer

initial events (for which the precursors are in an extreme state) have been identified in

IPSL-CM5A than in CHIME (6 “events” against 11, respectively). Nevertheless, several

factors could still explain the plausible difference in the ability of these two models to

predict extreme AMOC events from their corresponding precursors. For example, this

could be due to the difference in the localization of their AMOC precursors; while the

one in CHIME is situated in the tropics, both precursors in IPSL-CM5A are in the

high latitude regions (Escudier et al. 2012) that are closer to the deep convection sites.

In CHIME, the precursor may be relatively too remote, and might therefore lose its

predictive skill over longer distances, compared to IPSL-CM5A. Large changes in the

IPSL-CM5A precursors might therefore lead to more systematic large changes in the

AMOC. We also have to keep in mind that the AMOC precursor considered here for

E3 with CHIME has been identified from a different CHIME control integration (cD,

see Chapter 4 ). Although there is some evidence that both E3 and cD have similar

mechanisms controlling the decadal AMOC fluctuations (see Sect. 6.2 ), the northern

tropical Atlantic SSS anomalies might not be the most appropriate precursor in E3.

Despite all these above qualifications, it seems reasonable to say that an early warning

system of extreme AMOC events can still be possible with CHIME (while less reliable

than with IPSL-CM5A). In about 50% of the cases, the monitoring of large changes

in the northern tropical SSS could lead to the prediction of an extreme AMOC event

about 15 years later, therefore increasing the average lead-time of predictability found

from the PPP approach when directly applied to the AMOC index (6 years, see Sect.

6.4.1 ). Note that, as already mentioned in the IPSL predictability study, hope for the

predictability of an extreme AMOC event to go even beyond this suggested decadal

lead-time of predictability could arise if its precursor itself is predictable. However, in

contrast to the AMOC precursors in IPSL-CM5A, the PPP approach reveals no potential

predictability of the AMOC precursor in CHIME. Indeed, the northern tropical Atlantic

SSS has been found to have an average predictive skill that saturates after only 2 years

associated with a very low and non-significant EC (<0.15, not shown).

In summary, we found convincing evidence that extreme changes in the AMOC as seen

in the CHIME model might be potentially predictable up to 15 years ahead from the

monitoring of tropical precursors. If a comparable mechanism to the one identified in

the CHIME model (Chapter 4 ) occurs in the real ocean (which remains to be demon-

strated), then the ability to predict decadal AMOC fluctuations is promising for potential

predictability of climate at multi-decadal timescales.
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6.5 Spatio-temporal predictability of Atlantic climate

Potential predictability of climate-related fields such as SST, SAT and precipitation is

now evaluated in CHIME using and comparing both the DPP and PPP approaches.

6.5.1 Potential predictability of sea surface temperature

Figure 6.18 shows predictability maps of Atlantic SST up to 1 and 2 decades as identified

by both the DPP and PPP approaches in the CHIME model. For the former approach,

the maps show the ppvf for 10 and 20-years means and are shown in Figure 6.18a. For

the PPP approach, regions combining SST with both ES statistically smaller than the

saturation level at the considered lead-time and statistically significant EC (i.e. regions

potentially predictable as defined in Sect. 3.2.1.2 ) are shown in Figure 6.18b as a

function of the number of experiments for which these conditions are met.
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Figure 6.18: Potential predictability of SST in the Atlantic sector identified
by: (a) the DPP approach showing maps of the internally generated decadal
ppvf for 10-year (left panel) and 20-year (right panel) means in the unforced
control climate of CHIME (the colored areas are significant at the 95% level
according to a F -test); (b) the PPP approach showing maps of the number
of starting date (out of 5) where grid points are potentially predictable (i.e.
where it combined both statistically significant EC at the 90% confidence level
according to a Student t-test and normalized ES smaller than saturation level
at the 95% level according to a F -test) up to one (left panel) and two (right
panel) decades.
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Note that there are less marked differences between the two timescales in CHIME than

in IPSL-CM5A (see Figure 5.8), mainly for the DPP approach. ppvf values are largely

statistically significant over the Atlantic Ocean (Figure 6.18a). We recognize the “reverse

C shape” pattern in CHIME for mid-latitude SST as already identified in IPSL-CM5A

(see Figure 5.9). This particular pattern has also been identified by Delworth et al.

(2007) in the EOF analysis of observed annual mean SST data for the period 1870-

2005 (Figure 6.19), suggesting that predictability might be associated with variance.

The highest scores are mainly found in the northern North Atlantic, specifically in

Baffin Bay, the subpolar gyre region and the Greenland Sea, where 50 to 75% of the

variance exists in the decadal bands (Figure 6.18a). These two latter regions are the

only ones identified as potentially predictable by the PPP approach. Note that their

signals are however weak as these regions are identified in a maximum of only 2 ensemble

experiments (i.e. for less than 50% of the experiments). The PPP approach does not

seem to identify regions with less than 50% of variance in the decadal bands, as it does

not even identify the eastern branch of the subtropical gyre and the southern tropics

that still have significant fractions of variance (0.25< ppvf <0.50, Figure 6.18a). As

already mentioned in the IPSL predictability study (see Chapter 5 ), this discrepancy

between the two approaches might arise both from the difficulty of the DPP approach

to define a threshold for “useful” potential predictability and from the limited number

of starting dates in the PPP approach. Nevertheless, the latter approach still clearly

brings out most of the regions exhibiting the highest fraction of variance in the decadal

band as identified by the DPP approach, strengthening the likelihood of these regions to

be potentially predictable. As mentioned earlier, they include the subpolar gyre region

and the Greenland Sea.

Figure 6.19: Output from and EOF analysis of observed annual mean SST
over the period 1870-2005 obtained from the HADISST data set, Rayner et al.
(2003). The values plotted are the linear regression of the original SST time
series on the standard deviation of the PC1 time series, and then multiplied
by 2 (yielding a map corresponding to SST anomalies associated with a two
standard deviation fluctuation of this EOF). Units are K. Contour intervals are
0.1 between -0.4 and 0.4, and 0.2 otherwise. (From Delworth et al. 2007).
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The influence of strong AMOC states alone on the predictive skills of regions of weak

predictability signals claimed in the IPSL predictability study (see Sect. 5.4 ) does not

really apply to the CHIME experiments. Although the predictability of SST in the

subpolar gyre region and the Greenland Sea seems to indeed arise from experiments

including or starting from a strong AMOC state (i.e. experiments 15P and S, especially

up to 2 decades), most of the SST predictability in CHIME comes from experiment W,

that is when starting from a weak AMOC state (see Appendix C, Figure C.1). Although

the experimental set up was not designed to draw robust conclusions about a possible

predictability-dependence on the AMOC initial states, there is still some evidence in

CHIME that SST predictability is favoured by extreme AMOC events in a maximum

state (like in IPSL-CM5A) but also in a minimum state.

6.5.2 Potential predictability of surface air temperature

Figure 6.20 shows predictability maps of Atlantic SAT up to 1 and 2 decades as identified

by both the DPP and PPP approaches. As in the case of SST, the SAT pattern is barely

modified between the two timescales considered here (especially for the DPP approach),

in contrast to results found with IPSL-CM5A (see Figure 5.8). The only noticeable

exception is for the Nordic Seas in the DPP approach (Figure 6.20a) where the predictive

skills slightly extend to the surrounding areas when the timescale is decreasing.
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Figure 6.20: Potential predictability of SAT in the Atlantic sector as defined in
Figure 6.18.
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As expected, the ppvf pattern of SAT over the ocean somewhat resembles that of the SST

(Figure 6.18). Note, however, the exception of the Greenland Sea where SST is identified

as potentially predictable but not SAT. The reason for this discrepancy between the two

variables remains unclear. Statistically significant DPP skills for which more than 25% of

the variance is in the decadal bands mainly include most of the northern North Atlantic

(Figure 6.20a), in good agreement with the diagnostic multi-model approach of Boer

(2004) and Boer and Lambert (2008). Some hints of predictability are also visible in the

eastern branch of the subtropical gyre and the tropics up to 2 decades ahead, where 10

to 25% of the variance exists in the decadal band (Figure 6.20a). Overall, the highest

scores over the ocean are found, as with SST, in Baffin Bay and the subpolar gyre region

for which 50% to 75% of the variance exists in the decadal bands. The latter region is

the only one identified as potentially predictable by the PPP approach. Note that, as

with SST, regions identified as predictable by the PPP approach are characterized by a

high fraction of SAT variance in the decadal bands (above 25%).

Over land, potential predictability is generally less than over the ocean. There are

however some areas for which 10 to 50% of the variance exists in the two decadal bands

(Figure 6.20a). These regions include Central America, Northeast and Tropical Africa,

Iceland, Eastern Canada and the Western part of the British Isles. The PPP approach

only identified the latter region and Central Canada (rather than Eastern) as potentially

predictable up to 1 decade ahead. As with the ocean, predictability over land is identified

in less than 50% of all the ensemble experiments in the PPP approach. In contrast to

the western part of the British Isles, there is no evidence for Central Canada to be

potentially predictable in the DPP approach (with less than 10% of the variance in the

decadal band). This discrepancy may arise from the January missing months in the

control integration E3, on which the DPP approach relies.

Despite some discrepancies between the two approaches, we can be strongly confident

in the robustness of our results concerning the potential predictability of SAT over the

ocean in the subpolar gyre region, and over land in the western part of the British Isles,

as these regions are identified by both approaches.

As with SST, the regions of weak signals identified by the PPP approach here in CHIME

(i.e. the subpolar gyre region, Canada and the western part of the British Isles) seem to

be favoured when the predicted time period includes or starts from a maximum AMOC

extreme state; they are indeed identified for experiments 15P and S only (see Appendix

C, Figure C.1). “Plumes” of SAT averaged over both the North Atlantic subpolar

region and the Western UK confirm this finding (Figure 6.21). These plumes, indeed,

show clear evidence for the subpolar gyre region (Western UK) to have better predictive

skills for experiment 15P (S); this is the experiment in which most of the members

seems to follow each other the most closely, and in which the spread of the prediction

plume seems to be the smallest, mainly over the first decade. Note that averaging

SAT over a quite large region might hide predictive skills of some local areas which
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could be of primary importance to decision makers in sectors such as, e.g. agriculture,

fisheries. When studying predictability of climate-related fields, it therefore seems more

judicious to examine maps of predictive skills rather than “plumes” averaged over a

specific region. As in IPSL-CM5A, predictive skills are not identified in experiment 5P

although it includes the extreme AMOC peak of year 260. The reason for the weak

scores in these regions in 5P also remains to be clarified. Note that, in contrast to SST,

the predictive skills of SAT are low for experiment W.
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Figure 6.21: “Plumes” of detrended SAT averaged over (a) the North Atlantic
Subpolar region [45◦N-60◦N/50◦W-15◦W] and (b) the Western UK, from ensem-
bles of the CHIME model in which the initial conditions have been perturbed.
The individual ensemble members are shown as coloured lines, the ensemble
mean as the red thick line, and the control run as the black thick line. Both
upper and lower horizontal black lines show standard deviations highlighting
the range of variability of the SAT.
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6.5.3 Potential predictability of precipitation

The potential predictability of precipitation (Figure 6.22) is considerably smaller than

for SST and SAT, in good agreement with the multi-model approach of Boer and Lam-

bert (2008). As with surface temperature, the ppvf pattern for precipitation does not

significantly differ between the 10-year and the 20-year timescales. Although weak, a few

patches of predictability (for which 10 to 50% of the variance exist at the two decadal

bands) are found in the subpolar gyre region, the southern tropical Atlantic and over

Central America (Figure 6.22a). Although these two latter regions are not identified in

Boer and Lambert (2008), the subpolar gyre region is identified with a significant frac-

tion of variability (comprised between 5% and 30%) up to 2 decades ahead. However,

none of the above regions have been identified by the PPP approach in CHIME (Fig-

ure 6.22b). As already mentioned earlier, the discrepancy between these two approaches

might come from the difficulty in defining a “useful” threshold of predictability in the

DPP approach. It seems therefore cautious to claim that predictability of precipitation

is absent in CHIME.
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Figure 6.22: Potential predictability of precipitation in the Atlantic sector as
defined in Figure 6.18.

Although not as obvious as in the IPSL-CM5A model, the above results suggest some

dependence of predictability skills on the AMOC initial state, at least for SST and

SAT, in CHIME. Indeed, they seem to be favoured by extreme AMOC states although

the role of minimum versus maximum extreme states still needs to be clarified. The

likelihood for a link between extreme AMOC events and predictability of temperature
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is strengthened by the fact that regions identified as potentially predictable by both

approaches here are also the regions most sensitive to strong AMOC conditions (as seen

in Figure 6.7, Figure 6.8). In contrast to IPSL-CM5A, this link has however not been

found for precipitation in CHIME. Nevertheless these above results still suggest that,

in CHIME, the mechanism responsible for temperature predictability could be linked to

the one behind decadal AMOC variability as found in IPSL-CM5A.

6.6 Summary and discussion

In this study, we have focused on the prognostic predictability of the AMOC as repre-

sented in the CHIME model, along with the diagnostic (DPP) and prognostic (PPP)

predictability of associated oceanic and atmospheric fields. In the DPP approach, we an-

alyzed the 201 years of the control integration E3, while “perfect ensemble” experiments

using the same control integration are performed in the PPP approach.

6.6.1 Potential predictability of the AMOC

The predictive skills of the AMOC index have been quantified by the PPP approach for

five experiments starting from different AMOC initial states, using both the ensemble

spread (ES) and the ensemble correlation (EC). As for the IPSL predictability study,

ES (EC) generally increases (decreases) with lead-time, and hence predictability is lost

after a certain lead-time. Note, however that, this relationship between ES and EC does

not clearly exist for experiment 15P, therefore weakening the claim drawn in Chapter 5

that ES and EC are dependent metrics.

Although it remains difficult to determine an average predictability skill in the “perfect

ensemble” experiments (as it implies averaging skills over several starting dates which

themselves have very different predictability skills), it seems reasonable to claim that the

modeled AMOC has an average predictive skill of about 6 years in the CHIME model

(when considering the average lead-time at which ES saturates). This average lead-

time of predictability is somewhat shorter than the one found with the IPSL-CM5A-LR

model (8 years, see Chapter 5 ). This is, however, in good agreement with Hermanson

and Sutton (2009) who found an average predictive skill of the AMOC of about 5 years

with the HadCM3 model. Given the more coherent internal structure of the anomalies

in CHIME compared to non-isopycnic coordinate ocean component models (such as

HadCM3 and IPSL), CHIME would be expected to have significantly better predictive

skills than non-isopycnic models. This does not actually seem to be the case here.

When considering the predictive skills of each ensemble experiment separately, there is

evidence for predictive skills to depend on the AMOC initial state. Although the highest

predictive skill in CHIME has not been found when starting from a maximum AMOC
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extreme state as was the case with IPSL-CM5A (see Chapter 5 ) or HadCM3 (e.g. Collins

and Sinha 2003), there is nevertheless some evidence in CHIME for the AMOC predictive

skills to be favoured by its extreme states. Indeed the highest potential predictability has

been found for the experiment starting 5 years prior to maximum extrema (experiment

5P), and closely followed by the experiment starting from a minimum AMOC extreme

state (experiment W). Reliable probability forecasts have also been found for these two

experiments; experiment 5P (W) suggests that the decadal-mean AMOC strength has

more than 99% (less than 1%) chance of being significantly stronger than normal in the

next decade. As briefly mentioned above, these results with CHIME somewhat differ

from those with IPSL-CM5A (see Chapter 5 ) and HadCM3 (e.g. Collins and Sinha

2003) as the highest predictive skill has not been found when starting from a maximum

AMOC peak (i.e. for experiment S). Even after having added additional members to

experiment S (in order to test the robustness of its result), the AMOC predictive skills

have been found to be one of the lowest in CHIME. In contrast to this latter finding, the

predictive skills associated with experiments starting from a minimum AMOC extreme

in both IPSL-CM5A and HadCM3 were significantly lower than when starting from a

maximum AMOC. The results obtained with CHIME therefore question the stronger

influence of a maximum AMOC extreme on its predictive skills.

Although they occur rarely, the ability to predict extreme events is of considerable value

in view of its major climatic impacts. The model has shown its ability to capture rela-

tively well the timing of an extreme AMOC event about 5 years in advance (experiment

5P). It has also been shown that by monitoring its precursor, the AMOC predictive skills

of such events can go beyond this 5 years lead-time and beyond the average lead-time of

predictability (of about 6 years). Indeed, an extreme AMOC event can be predicted up

to 15 years in advance from the monitoring of its tropical precursor in 50% of the cases,

which is the northern tropical Atlantic SSS in CHIME. Note that despite some evidence

that the mechanism controlling decadal AMOC fluctuations in cD is very similar to the

one in E3, it has to be kept in mind that this tropical precursor might not be the most

appropriate one in E3. Nevertheless, our finding tends to suggest the need for intense

observation in the tropical Atlantic Ocean to constrain prediction of the AMOC. In

such perspective, the maintenance of, e.g. mooring arrays in this area, is likely to be of

greatest value provided the real world has a similar mechanism of variability.

6.6.2 Potential predictability of the North Atlantic climate

Changes in the AMOC have also been found to have significant and widespread cli-

mate impacts; the potential predictability of these climate impacts have been evaluated

here using both DPP and PPP approaches. First, note that independently of the ap-

proach used, there is not much difference in the spatial distribution of their potentially

predictable regions between the 10-year and 20-year timescales. As was the case with
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IPSL-CM5A, the DPP estimation seems less discriminant and regions found to be po-

tentially predictable by the PPP approach correspond to the regions showing the highest

fraction of variance in the decadal band in the DPP approach. However, in contrast to

IPSL-CM5A, these regions identified by the PPP approach only reveal some hints of

predictability (i.e. they are identified in less than 50% of the “perfect ensemble” experi-

ments). But the fact that they are also identified in the DPP approach strengthens our

confidence in the predictability skills of these regions. To therefore strengthen the ro-

bustness of our results, note that the regions claimed to have some hints of predictability

below are regions identified by both approaches.

The North Atlantic subpolar gyre has been identified as a region where SST and SAT

are potentially predictable up to 2 decades ahead, in good agreement with the IPSL

predictability study (see Chapter 5 ) and previous similar studies (e.g., Collins 2002;

Boer 2004; Pohlmann et al. 2004; Hawkins et al. 2011; Branstator et al. 2012). As

previously mentioned in Chapter 5, the ability to predict this region is promising for

the potential multi-year forecast of tropical storm and hurricane frequency (Smith et al.

2010). There are also some hints of SST predictability in the Nordic Seas (and more

specifically in the Greenland Sea), which are clearly absent for SAT. This region has

also been identified in most of the above-cited studies, for which the predictability of

SAT over the ocean is generally similar to that of SST (e.g. Pohlmann et al. 2004).

While this discrepancy between SST and SAT in the Nordic Seas in CHIME could be a

consequence of the January missing months in the atmospheric data of E3, the fact that

this discrepancy is also evident from the PPP approach refutes this hypothesis. Because

of the strong link between sea ice and SAT in these high-latitude regions (e.g. Bengtsson

et al. 2004; Wu et al. 2004) we can speculate that sea-ice affects predictive skills and

therefore plays an important role. This difference between the predictability of SST

and SAT in the Nordic Seas therefore requires further investigation. Land areas display

little potential predictability compared to oceans. We can, however, be confident about

the potential predictability of SAT over the British Isles (mainly the western part) up

to at least 1 decade. Nonetheless signals over maritime Europe as identified by Boer

and Lambert (2008) and Pohlmann et al. (2004) are not brought out as clearly in our

study with CHIME. Potential predictability is absent for precipitation in CHIME. This

result contrasts with those from the IPSL predictability study (see Chapter 5 ) and

e.g. Hawkins et al. (2011) study (with the HadCM3 and HadGEM1 models), for which

precipitation in some part of the tropics has been identified as potentially predictable.

The lack of signal in the tropics in CHIME might be a consequence of the absence of

an ENSO cycle in the control integration E3. The latter is indeed thought to affect the

tropical Atlantic activity (e.g. Saravanan and Chang 2000), and might therefore affect

some of the AMOC precursors as identified in CHIME. The absence of ENSO might

bias the lead-time of AMOC predictability found in CHIME.

Although, the experimental set up was not designed to draw robust conclusions about



Chapter 6 Decadal predictability of the AMOC and climate in CHIME 145

any predictability-dependence on the AMOC initial states, this study nevertheless gave

some useful indications about it. The weak signals of SST predictability identified by

the PPP approach (in the subpolar gyre region and Nordic Seas) seem to be favoured

by extreme AMOC events, both in maximum and minimum states. This trend towards

better predictive skills when the AMOC is at near extremum has already been brought

out for the predictability of the AMOC index in IPSL-CM5A. Although SAT also shows

some dependence on extreme AMOC events, it differs from SST and AMOC index

insofar as there is no evidence for its predictive skills to be favoured by a minimum

AMOC state (in good agreement with results from the IPSL predictability study, see

Chapter 5 ). Finally, the likelihood for a link between SST and SAT predictability and

the AMOC is strengthened by the fact that regions where both SST and SAT have been

found to be potentially predictable are also regions strongly sensitive to strong AMOC

conditions. This suggests that the mechanisms responsible for climate predictability are

to some extent linked to the mechanisms responsible for decadal AMOC variability. As

previously underlined in Chapter 5, more research to understand the specific mechanisms

that lead to predictability is, however, still needed.

6.6.3 Evaluation of different methods for quantifying predictive skills

From a methodological point of view, this study also put forward some interesting re-

sults regarding the experimental protocol of predictability study and the evaluation of

predictive skills.

Overall, the DPP approach identifies more widespread predictable areas than the PPP

approach does. Although only marginal discrepancies have been identified between

the DPP and PPP approaches in the IPSL-CM5A model, these discrepancies are more

marked in CHIME. Indeed, in the latter model, it seems that the PPP approach is only

able to identify regions with a fraction of variance in the decadal band superior to 50%.

Note, however, that regions with such fraction of variance are not necessarily identified in

the PPP approach. Nevertheless, as with IPSL-CM5A, both approaches agree in CHIME

insofar as regions identified by the PPP approach correspond to the regions exhibiting

the highest fraction of variance in the DPP approach. Discrepancies between the two

approaches usually concern the regions of weak predictability signals, which have low

fractions of variance in DPP and are not identified in PPP. The most striking example

is for precipitation, for which some regions with (weak) significant fraction of variance

at the decadal timescale have been identified by the DPP approach (e.g. in the subpolar

gyre region, the southern tropics), and none of them have been identified by the PPP

approach. As with IPSL-CM5A, these discrepancies could arise, for example, from the

difficulty to define a “useful” threshold of potential predictability in the DPP approach,

or from the subjective choice of starting dates, number of members and experiments

in the PPP approach. Note that, in contrast to IPSL-CM5A, there is one exception in
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CHIME for which some predictability signals (although weak) are identified in the PPP

approach and not in the DPP approach (concerning e.g., SAT in central Canada). Here,

we rather attribute this discrepancy to the January missing months in the atmospheric

data of E3, probably affecting results from the DPP approach.

Regarding the PPP approach, we showed that combining ES and EC should be pre-

ferred in principle but it is sometimes difficult to apply in practice such in the case

of evaluating average predictive skills. Both metrics should therefore be considered in

parallel. Results from this study also suggest that the predictability of AMOC, SST,

and SAT might be favoured by extreme AMOC events; however, the role of minimum

versus maximum extreme states still needs to be clarified. More systematic experiments

starting with similar initial states should therefore be encouraged. If the role of weak

states is confirmed in CHIME, this finding will contrast with those found in the IPSL

predictability study (see Chapter 5 ) and previous similar studies (e.g. Collins and Sinha

2003; Collins et al. 2006a) for which weak states are generally associated with lower pre-

dictive skills than strong states. The present study with CHIME therefore suggests that

a forecast starting from an extreme phase of natural internal variability can be more

skillful than one starting from average conditions. As already mentioned in Chapter

5, in that sense, studying skill from case studies may prove more useful to understand

predictability mechanisms than computing average skills from numerous start dates, as

done in most previous studies. This study also pointed out that increasing the number

of members from 6 to 11 in experiment S did not affect its predictive skills. Although

only based on one ensemble experiment, this study suggests that experimental protocol

for predictability studies should privilege the number of ensemble experiments over the

number of ensemble members, in good agreement with Meehl et al. (2012).

6.7 Conclusions

In conclusion, the decadal predictability of the AMOC and associated oceanic/atmo-

spheric variables in CHIME can be summarized in the following key points:

• The AMOC has an average prognostic predictability of about 6 years.

• In about 50% of the cases, an extreme AMOC event can be predicted up to 15 years

in advance from the monitoring of the northern tropical Atlantic SSS.

• Over the ocean, the North Atlantic subpolar gyre region (Nordic Seas) is potentially

predictable for both SST and SAT (SST only) on decadal timescales.

• Over land, there is little evidence of decadal predictability of SAT except for the

limited area of the western part of the British Isles.

• Decadal predictability is absent for precipitation.
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• Predictive skills of AMOC, SST and SAT seem to be favoured by extreme AMOC

events; however, the role of minimum versus maximum extreme states still needs to be

clarified.

• All regions identified as potentially predictable are strongly influenced by decadal

AMOC fluctuations, suggesting that the mechanisms responsible for climate predictabil-

ity are to some extent linked to the mechanisms responsible for decadal AMOC variabil-

ity.

As with the IPSL predictability study, it is important to bear in mind that here we have

assessed the upper limit of both the AMOC and climate predictability as both a perfect

model and near perfect knowledge of the current state of the climate are assumed. For

example, the substantial warming and increasing salinity in the North Atlantic subpolar

gyre and the excessive mixing in the Northern high-latitudes in CHIME (Megann et al.

2010) might well affect its effective level of predictability skill. In addition, the limita-

tions of this study with CHIME include the absence of the ENSO cycle in the control

integration, as well as the problems linked to the January missing months for the at-

mospheric data. Nevertheless, we still believe that the result of this study give some

indications as to where and to what extent skillful decadal forecasts might be possible.

They also complement results from the IPSL predictability study (in Chapter 5 ) by

strengthening or questioning some of the claims drawn in that study. To some extent,

the effect of the vertical representation of the ocean component on the predictability

skills of the model can also be addressed. These above aspects will be briefly discussed

in the following and final chapter of this thesis.





Chapter 7

Discussion and Conclusions

This thesis has addressed the decadal variability and predictability of the AMOC and

associated key variables in two different climate models. We first analyzed the decadal

variability of the AMOC in the new coupled climate model CHIME (Megann et al.

2010), and then explored the AMOC’s potential predictability on decadal time scales

using both the IPSL-CM5A (Dufresne et al. 2012) and CHIME models.

The fact that CHIME shares its atmosphere and ice components with the widely used

IPCC-class model HadCM3 (Gordon et al. 2000) means that comparison between the two

models makes possible an assessment of the extent to which the structural biases inherent

in the vertical representation of the ocean affect the decadal variability and predictability

of the AMOC. Comparing our results from the variability study carried out with CHIME

here with those obtained from existing similar studies with HadCM3 (e.g. Vellinga and

Wu 2004; Dong and Sutton 2005) should give us a reasonable idea of the influence of

the ocean component on the decadal variability associated with the AMOC. However, to

evaluate the impact of the vertical representation of the ocean on predictive skills, such

comparisons with existing studies is more difficult, first, because of the limited number of

studies with HadCM3, and second because of the many differences in the experimental

protocols for predictability studies. Since a near-identical experimental protocol has

been used for CHIME and IPSL-CM5A, a comparison of the results between these two

models here can still be useful considering that this latter model belongs to the new

generation of z-coordinate models (and can therefore be seen as a more up to date z-

coordinate model than HadCM3). However, it has to be kept in mind that these two

models differ in more than just the representation of the ocean vertical coordinates, so

the comparison between these two models has to be carefully interpreted. It is also

important to remind that conclusions based on CHIME are only preliminary since, in

the framework of this study, the model was only in its early stage of development. Some

issues were not completely resolved at the time of simulations, and their impacts on our

present results are difficult to assess.
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In this concluding chapter, a comparison of results regarding the decadal variability

(predictability) of the AMOC and key variables in CHIME and HadCM3 (IPSL-CM5A)

is made. The outcomes and limitations of this study are then discussed and also placed

into a “bigger-picture” context. Suggestions for future work are also discussed.

7.1 Comparing climate models with different vertical rep-

resentation of the ocean

7.1.1 Decadal variability: CHIME versus HadCM3

Note that in CHIME, run E3 used for predictability study exhibits similar AMOC

characteristics as run cD, as shown in Figure 7.1. Run cD of CHIME is used below for

comparisons with HadCM3.
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Figure 7.1: Main AMOC characteristics in CHIME (cD - left panels; E3 - right
panels): (a) Power Spectrum of the detrended PC1 of AMOC - the smooth red
solid line is the power of a red noise spectrum with the same AR(1) coefficient
fitted from the detrended PC1 time series, and red (orange) dashed lines, which
are the 95% (80%) confidence limits; (b) Annual mean streamfunction of zonally
integrated volume transport - positive values mean clockwise circulation; (c)
EOF1 of AMOC streamfunction.

It has generally been shown that AMOC oscillations are mostly irregular and their pe-

riods change considerably among models; while ECHAM5/Max Planck Institute Ocean

Model (MPI-OM, Jungclaus et al. 2005) has one of the longest periods with 70-80 years,

HadCM3 (Dong and Sutton 2005, Figure 7.2a) and Parallel Climate Model (PCM, Dai
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et al. 2005) show the shortest periods with about 25 years. While it has been difficult to

estimate the period of AMOC variability in CHIME due to limited integration length,

its power spectra nevertheless revealed an enhanced power for periods in the range 15-30

years (Figure 7.1a). CHIME therefore shows a low-range period of AMOC variability

that includes the 25-year period found in HadCM3. Although longer CHIME integra-

tions are needed to better establish this range of periodicity, our evidence suggests that

CHIME and HadCM3 share similar decadal timescale AMOC oscillations.
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Figure 7.2: Main AMOC characteristics in HadCM3: (a) Power Spectrum of
the detrended AMOC index - the smooth solid line is the power of a red noise
spectrum with the same AR(1) coefficient as the data and dashed lines, which
are 90% confidence limits (from Dong and Sutton 2005); (b) Annual mean
streamfunction of the zonally integrated volume transport (from Megann et al.
2010); (c) Streamfunction of EOF1 contoured (interval 0.2 Sv) and colours
representing the percentage of the total low frequency period accounted for by
the mode - solid (dashed) lines indicate positive (negative) values (from Bingham
et al. 2007).

In both CHIME and HadCM3, the circulation associated with the NADW has a maxi-

mum transport of about 18 Sv (Figure 7.1b - left panel, and Figure 7.2b, respectively),

well within the CMIP3 range (10 to 30 Sv, Gregory et al. 2005). There are, however,

some structural differences in the respective meridional overturning streamfunctions. In

CHIME, for example, the strongest sinking occurs in a broader region (between about

55-65◦N) than in HadCM3 (primarily occurring at 65◦N). Megann et al. (2010) explained

that this difference could be partly due to the deeper mixing in the subpolar gyre in

CHIME and to the reduced mixing in the Labrador Sea in HadCM3. Note, however,

that compared to observations, CHIME overestimates winter mixed layer depth in the
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Labrador Sea while HadCM3 underestimates it. The AMOC also comprises NADW

outflow of about 16 Sv at the Equator in CHIME against 14 Sv in HadCM3 (Dong and

Sutton 2005), and the outflow extends deeper in CHIME (to about 4000 m, against

3600 m in HadCM3, Megann et al. 2010). The dominant mode of AMOC variability

(EOF1) in CHIME (Figure 7.1c - left panel) has a spatial structure very similar to that

in HadCM3 (Figure 7.2c), and the amount of total variance explained is similar in both

models (about 34%). There are nevertheless significant differences; for example, the

maximum value for a fluctuation of one standard deviation of PC1 is more than double

in CHIME (about 1.6 Sv) compared to HadCM3 (about 0.7 Sv). Another significant dif-

ference is that the phases of EOF1 in the Labrador Sea and Nordic Seas are of opposite

sign in CHIME while they remain similar in HadCM3, with the caveat that Labrador

Sea convection is much weaker in HadCM3 than in CHIME. In that sense, CHIME

seems more realistic; in observational studies, it has been established that convection in

the Labrador Sea is generally out of phase with convection in the Greenland Sea (e.g.

Hurrell and Dickson 2004). Therefore, different mechanisms appear to control AMOC

variability on decadal timescales in CHIME and HadCM3.

Regarding these mechanisms, it has been shown that phase reversal of the AMOC os-

cillation in CHIME seems linked to the northward shift of the ITCZ, and hence to the

development of salinity anomalies in the tropics. This finding contrasts with several

studies using HadCM3 where the reversal phase of the oscillation has been mainly at-

tributed to anomalies originating from high latitudes (Hawkins and Sutton 2007) but is

to some extent in agreement with Vellinga and Wu (2004) who attributed this reversal

oscillation to advection of salinity anomalies from the tropics. However, this advection

happens on a centennial timescale rather than on the decadal timescale identified in

CHIME. A plausible explanation of the faster advection of anomalies in CHIME could

come from the better preservation of water masses, compared to HadCM3 (as discussed

by Megann et al. 2012); so an anomalous water mass maintains its structure better in

CHIME, and can be more effectively advected “intact” to high latitudes. Note, however,

that centennial mechanisms (as identified by Vellinga and Wu 2004) may also be active

in CHIME but these cannot be investigated using the short integration available to us.

The cause of the northward shift of the ITCZ in CHIME also differs from HadCM3 in the

sense that this shift is associated with a northern tropical-subtropical SST gradient and

not a cross-equatorial gradient as identified in HadCM3 (Vellinga and Wu 2004 ) and

observations (e.g. Chiang et al. 2002). This more northward SST gradient in CHIME

may be a consequence of the strong warm surface bias in the North Atlantic (Megann

et al. 2010). Despite these differences, CHIME is similar to HadCM3 in that a significant

part of the AMOC variability is likely to be a passive response to the internally gener-

ated atmospheric variability linked to NAO (e.g. Dong and Sutton 2005), rather than

being part of a coupled ocean-atmosphere mode (e.g. Vellinga and Wu 2004). The main

characteristics of decadal AMOC fluctuations in CHIME and HadCM3 are summarized

in Table 7.1.
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Table 7.1: Summary of main characteristics of decadal AMOC fluctuations in
CHIME (run cD) and HadCM3 (from previous existing studies).

CHIME HadCM3
AMOC cycle 15-30 years 25 years (Dong and Sutton

2005)
Main
NADW
characteris-
tics

Max. transport = 18 Sv; Out-
flow at equator = 16 Sv; Max.
outflow depth = 4000 m

Max transport = 18 Sv;
NADW outflow at equator =
14 Sv; Max. outflow depth
= 3600 m (Dong and Sutton
2005)

Region of
strongest
sinking

55-65◦N 65◦N (Dong and Sutton 2005)

Winter MLD Overestimated compared to
observations

Underestimated compared to
observations (Dong and Sut-
ton 2005)

Relationship
between
convection
in Labrador
and Nordic
Seas

Out-of-phase relationship as
in observations (Hurrell and
Dickson 2004)

In-phase relationship (Dong
and Sutton 2005; Bingham
et al. 2007)

Trigger of re-
versal phase
of AMOC
oscillation

Development of salinity
anomalies in the tropics
(caused by northward shift
of ITCZ), then propagat-
ing northward on decadal
timescale

(i) Development of salin-
ity anomalies in the high
latitudes caused by trans-
port variation of freshwater
and sea-ice from the Arctic
(Hawkins and Sutton 2007);
(ii) Development of salin-
ity anomalies in the tropics
(caused by northward shift
of ITCZ), then propagat-
ing northward on centennial
timescale (Vellinga and Wu
2004)

Causes of
ITZC shift

Northern tropical-subtropical
SST gradient

Cross-equatorial SST gradient
(Vellinga and Wu 2004)

Mechanisms Internal ocean-only mode ex-
cited by atmosphere noise
(NAO) for a significant part of
AMOC variability

(i) Internal ocean-only mode
excited by atmosphere noise
(NAO) (Dong and Sutton
2005); (ii) Coupled ocean-
atmosphere mode (Vellinga
and Wu 2004)
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7.1.2 Decadal predictability: CHIME versus IPSL-CM5A

By comparing results from predictability studies that use experimental protocols as

similar as possible, the comparison of both the CHIME and IPSL results contributes to

the coordinated effort of determining a common skill evaluation framework to evaluate

decadal predictions. Indeed, as pointed out by Meehl et al. (2012), this is highly desirable

to allow a comparison of decadal prediction systems across different modeling centres.

In addition, with some evidence for better preservation of water masses and for a more

coherent internal structure to the anomalies than in non-isopycnic coordinate ocean

component models (such as HadCM3 and IPSL-CM5A), CHIME might be expected

to have significantly better predictive skills than non-isopycnic models. With no clear

indications of such better predictive skills in the present study, this expectation is not

borne out here, as summarized below.

Decadal predictability of the AMOC

First, the 6-year average lead-time of predictability found in CHIME is slightly shorter

than the one found with the IPSL-CM5A model (8 years, Table 7.2). Note that CHIME

also has a similar average predictability to the one found in HadCM3 for the AMOC in-

dex with a lead-time of about 5 years (Hermanson and Sutton 2009). It seems therefore

reasonable to claim that the AMOC index in CHIME has an average lead-time of pre-

dictability similar to those of the two non-isopycnic models, IPSL-CM5A and HadCM3.

When considering the predictive skills of each ensemble separately, the longest lead-time

at which ES saturates is about 10 years in CHIME (Table 7.2, experiment 15P), against

13 years in IPSL-CM5A (Table 7.2, experiment S), and 20 years in HadCM3 (Collins and

Sinha 2003). The above results are somewhat surprising since, for the reasons mentioned

earlier, CHIME is expected to have, overall, significantly better predictive skills than

non-isopycnic models. We can question whether the shorter predictability timescale in

CHIME compared to IPSL-CM5A is a consequence of: (i) excessive convective mix-

ing that takes place in the northern latitude regions in CHIME (Megann et al. 2010),

hence reducing its predictive skills; (ii) faster-growing modes in CHIME (although the

more controlled diapycnal mixing in isopycnic models is expected to have slower growing

modes than non-isopycnic models); (iii) the absence of ENSO cycle that could bias the

lead-time for predictability in CHIME given the influence of this cycle on the tropical

Atlantic region (Saravanan and Chang 2000) which is key in driving decadal AMOC

fluctuations in the model; (iv) the different perturbation scheme used to generate the

ensemble members in both models (predictability experiments perturbing only the up-

per ocean state - like in IPSL-CM5A - may overestimate the predictability time, Zanna

et al. 2012).

Experiments starting from weak AMOC state (W), and starting 15 and 5 years before

a maximum AMOC extreme (15P and 5P, respectively), have similar predictive skills in

both CHIME and IPSL-CM5A (Figure 7.3, Table 7.2). On the other hand, both models
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Table 7.2: Summary of predictive skills in CHIME and IPSL-CM5A showing
the maximum lead-time at which ES saturates with its corresponding EC. (*)
are significant EC at the 90% level.

CHIME:
Max. ES

CHIME:
Correspond-
ing EC

IPSL-CM5A:
Max. ES

IPSL-CM5A:
Correspond-
ing EC

I 5 0.95* 7 0.48
15P 10 -0.04 5 -0.05
5P 6 0.86* 8 0.75*
S 2 none 13 0.78*
W 5 0.89* 7 0.74*
Average 6 0.66 8 0.74

differ in their predictive skills for experiments starting from strong (S) and intermediate

(I) AMOC initial states (Figure 7.3, Table 7.2). Indeed, although some skills have

been identified for S (I) in IPSL-CM5A (CHIME), they have not been identified in

CHIME (IPSL-CM5A). The fact that predictive skills have identified for experiment I

in CHIME and not IPSL-CM5A, might be explained by the fact that the starting date

in CHIME is not in such an intermediate state as in IPSL-CM5A but rather closer to a

strong state (Figure 7.3). The most striking difference between the two models concerns

experiment S. Although the highest predictive skills have been found for this experiment

in IPSL-CM5A, this is actually the experiment in which the predictive skills are the

weakest in CHIME. The fact that skills are higher for W than S in CHIME is quite

unexpected, considering that the contrary has generally been found in most previous

studies (e.g. Collins and Sinha 2003). One of the plausible explanations is that strong

AMOC conditions might be associated with an excessive convective mixing in CHIME

that reduces its predictive skill. The better predictive skill of W over S in CHIME,

therefore questions the well-established better skill of experiments starting from strong

AMOC conditions over those starting from weak AMOC conditions. Another intriguing

result is that experiments 15P in both CHIME and IPSL-CM5A have remarkably low

ensemble correlation compared to the other experiments (Figure 7.3, Table 7.2).

It has also been shown that by monitoring the AMOC precursors, the ability to predict

extreme AMOC events, in both CHIME and IPSL-CM5A, can go beyond the average

lead-time of predictability (up to about 2 decades). However, large changes in the

AMOC precursors lead to large changes in the model’s AMOC in about 80% of the

cases in IPSL-CM5A, against only 50% in CHIME. It is, however, important to note

that this apparent difference in the ability to predict extreme AMOC events might not be

significant since fewer initial “events” (for which the precursors are in an extreme state)

have been identified in IPSL-CM5A than in CHIME (6 “events” against 11, respectively).

Nevertheless, several factors could still explain the plausible difference in the ability of
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Figure 7.3: “Plumes” of AMOC index in CHIME (left-column) and IPSL-CM5A
(middle-column) for each experiment. The members are shown as coloured lines,
the ensemble mean (control run) as the red (black) thick lines. The middle hori-
zontal black line is the mean AMOC, and both upper and lower horizontal black
lines show standard deviation. Summary of predictive skills (right-column) in
CHIME (dashed lines) and IPSL-CM5A (solid lines) showing ES (in blue) and
EC (in red) against lead-times. Dots indicate statistical significance at the 95%
(90%) confidence level for ES (EC).
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these two models to predict extreme AMOC events from their corresponding precursors.

It is important to bear in mind that the AMOC precursor considered here with CHIME

has been identified from a different control integration, and might therefore not be the

most appropriate one (hence explaining its weaker ability in predicting extreme events).

On the other hand, if the same precursor does really apply, then the difference in the

ability to predict extreme AMOC events in the two models might be explained by the

difference in the localization of their precursors; while the one in CHIME is situated in

the tropics, both precursors in IPSL-CM5A are in the high latitude regions (Escudier

et al. 2012). In CHIME, the precursor may be relatively remote from the deep convection

sites compared to IPSL-CM5A precursors, and CHIME might therefore lose predictive

skill correspondingly.

Decadal predictability of the North Atlantic climate

In terms of decadal predictability, an interesting feature worth pointing out concerns

the differences between CHIME and IPSL in the DPP approach: indeed, CHIME has

generally higher ppvf values than IPSL-CM5A (reaching up to 0.75 and 0.40, respec-

tively, Figure 7.4 and Figure 7.5). Strictly speaking, these higher values in CHIME

mean that its low-frequency variability is more easily distinguishable from the internal

variability than in IPSL-CM5A, hence suggesting the potentially better predictive skills

of climate in CHIME. In contrast, the comparisons of the evaluation skills by the PPP

approach suggest better predictive skills in IPSL-CM5A than in CHIME. Indeed, pre-

dictability signals in CHIME are rarely identified in more than 50% of the experiments,

while in IPSL-CM5A some signals can be identified in all experiments (Figure 7.4 and

Figure 7.5). The evidence for slightly weaker predictive skills of the AMOC index in

CHIME compared to IPSL-CM5A suggests that the DPP approach might actually over-

estimate the predictive skills of climate in CHIME. We speculate whether that is due

to the significantly shorter control integration length used in CHIME (201-year) than

in IPSL-CM5A (1000-year). This shorter control integration length might also explain

why the spatial distribution of the ppvf values in CHIME barely differs between the

10-year and 20-year timescales, in contrast to IPSL-CM5A.

Over the ocean, both models exhibit the highest predictive skills for surface tempera-

ture in the far North Atlantic (roughly in the subpolar gyre region and the Nordic Seas)

out to about 2 decades (Figure 7.4). They, however, differ in the sense that the IPSL-

CM5A model also identifies some hints of decadal predictability in both the subtropics

and the tropics, which are clearly absent in CHIME. This absence of signals might be

a consequence of the absence of an ENSO cycle in run E3 of CHIME; indeed, ENSO

is known to affect the tropical Atlantic activity (e.g. Saravanan and Chang 2000), and

therefore the predictability in this region. Over land, both models agree on the signif-

icantly smaller predictability of surface temperature compared to the ocean. However

there are more hints of predictability signals in IPSL-CM5A (which are restricted to the

coastal areas bordering some of the oceanic predictable regions) than in CHIME (which
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Figure 7.4: Potential predictability of SST (left-column) and SAT (middle-
column) in CHIME, and surface temperature (at ground level) in IPSL-CM5A
(right-column). The DPP maps show ppvf for 10-year and 20-year means (the
colored areas are significant at the 95% level according to a F -test); The PPP
maps show the number of starting dates (out of 5) where grid points are poten-
tially predictable (i.e. where it combines a normalized ES smaller than satura-
tion level at the 95% level according to a F -test, and a statistically significant
EC at the 90% confidence level according to a Students t-test) up to 10 and 20
years.

are only found over the western part of the British Isles). Predictability of precipita-

tion on decadal timescales is largely absent in both models (Figure 7.5). The weaker

predictability of precipitation compared to temperature is in agreement with Boer and

Lambert (2008) and Goddard et al. (2012); in general, precipitation is a more localized

variable in both space and time, and thus subject to larger noise-like variability that

is not predictable. Although weak, there are still a few signals in ISPL-CM5A (some

patches over the Nordic Seas and the subpolar gyre region) whereas no signals have been

identified in CHIME.
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Figure 7.5: Same as Figure 7.4 but for precipitation.

In addition, climate predictability seems to have some dependence on the AMOC initial

state in both models. Indeed, there is some evidence for better predictive skills of surface

temperature (at ground level) in IPSL-CM5A and SAT in CHIME, when the AMOC is

near extremum in a maximum state. However, predictability of SST in CHIME differs

compared to IPSL insofar as predictive skills seem to also be favoured when the AMOC

is near extremum in a minimum state. A plausible explanation of this difference between

the two models could be the use of SST data in CHIME instead of surface temperature at

ground level as in IPSL-CM5A (although both SST and surface temperature at ground

level patterns in IPSL-CM5A have been found to be similar). Nevertheless, the fact

that predictability of the AMOC itself shows better predictive skills when starting from

a minimum AMOC state than a strong state, suggests that the minimum state has

a significant influence in CHIME. Results with CHIME therefore challenge the better

predictive skills of strong AMOC initial states over the weak states, found in other

models.
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Finally, the fact that, for both models, regions identified as potentially predictable are

also strongly sensitive to decadal AMOC fluctuations strengthens the likelihood for a

link between climate predictability and the AMOC. This suggests that the mechanisms

behind climate predictability are to a large extent linked to the ones responsible for

decadal AMOC variability.

Evaluation of different methods for quantifying predictive skills

In both models, the DPP approach identifies more widespread predictable regions than

the PPP approach (Figure 7.4 and Figure 7.5). As already mentioned in Chapters 5 and

6, these discrepancies might arise, first, from the difficulty to define a “useful” threshold

of potential predictability in the DPP approach, and second, from the subjective choice

of starting dates, number of members and experiments in the PPP approach. However

it seems reasonable to conclude that, both approaches agree insofar as, in both models,

regions identified as potentially predictable by the PPP approach correspond to those

with the highest decadal fractions of variance in the DPP approach. The two approaches

are complementary, thus strengthening the robustness of the results.

In addition, in the PPP approach, there is evidence supported by both models that the

two metrics used here to evaluate predictive skills (EC and ES) are not independent.

Indeed, a decreasing (increasing) ES has been generally associated with increasing (de-

creasing) EC (Figure 7.3, right-column). Besides, this hypothesis has been supported

analytically for centred and normalized data (see Appendix A). However, there is one

exception in CHIME that weakens the robustness of this claim, with an increasing ES

associated with an increasing EC over time (Figure 7.3, experiment 15P, dashed-lines).

This draws into question the robustness of such a simple relationship in the real world.

Although the experimental set up was not designed to draw robust conclusions about

any predictability-dependence on the AMOC initial states, both CHIME and IPSL-

CM5A have still given some useful indications. In both models, predictability of both

the AMOC and climate seems to be sensitive to the initial AMOC conditions with

transitions around extreme states appearing as the most predictable events (in good

agreement with e.g. Griffies and Bryan 1997b; Collins and Sinha 2003; Collins et al.

2006a). However, the role of minimum versus maximum extreme states still needs to be

clarified. This result nevertheless suggests that skill from case studies may prove more

useful for understanding predictability mechanisms than computing average skills from

numerous start dates, as in most previous studies.

The main results of the decadal predictability studies carried out with CHIME and

IPSL-CM5A are summarized in Table 7.3.
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Table 7.3: Summary of main findings about decadal predictability in CHIME
and IPSL-CM5A.

CHIME IPSL-CM5A

Average pre-
dictive skills of
AMOC

6 years 8 years

Experiments
for which
AMOC is
predictable

5P > W = I S > 5P > W

% of cases
where extreme
AMOC event
predictable
from its pre-
cursor(s)

50% 80%

DPP scores Up to 0.75 Up to 0.40
PPP scores Predictability signals in up to

40% of experiments
Predictability signals in up to
100% of experiments

Surface tem-
perature pre-
dictability over
the ocean

Up to 2 decades in far North
Atlantic

Up to 2 decades: (i) far North
Atlantic (highest skills), (ii)
Subtropics (hints), (iii) Trop-
ics (hints)

Surface tem-
perature pre-
dictability over
land

Up to 1 decade in Western
part of British Isles (hints)

Up to 2 decades in coastal
areas bordering oceanic pre-
dictable regions (hints)

Precipitation
predictability

Absent Up to 2 decades: (i) Nordic
Seas (hints), (ii) North At-
lantic subpolar gyre (hints)

Climate pre-
dictability
mechanisms

Evidence for links with mech-
anisms responsible for decadal
AMOC fluctuations

Evidence for links with mech-
anisms responsible for decadal
AMOC fluctuations

DPP versus
PPP

Regions identified in PPP cor-
responds to regions with the
highest decadal fraction of
variance

Regions identified in PPP cor-
responds to regions with the
highest decadal fraction of
variance

EC and ES re-
lationship

Dependent metrics, except for
experiment 15P

Dependent metrics

Predictability-
dependence on
AMOC initial
states

(i) AMOC and SST: favoured
by extreme states (maximum
and minimum), (ii) SAT:
favoured by extreme states
(maximum)

(i) AMOC: favoured by ex-
treme states (maximum and
minimum), (ii) SAT, SST and
precipitation: favoured by ex-
treme states (maximum)
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7.2 Decadal variability of AMOC and climate in CHIME

7.2.1 Limitations and future work

Outcomes rarely come without limitations. Here are some issues from this study on

decadal variability with CHIME and some suggestions for future work.

The first limitation of our study arises from the short control integration length avail-

able (120 years). A longer integration (∼ 1000 years) would be needed to clarify the

periodicity of decadal AMOC fluctuations in CHIME, and to check whether or not it is

significantly different from a simple red noise model. All the analyses should be repeated

with this longer run to validate the findings of this study.

If the mechanism of decadal AMOC fluctuations is confirmed, then further investigation

might be needed to better understand the processes behind some (tele)connections.

For example, the way in which the NAO affects SST in the GIN Seas still remains

unclear since processes other than the direct impact on heat fluxes seems to control

these local SST anomalies. As already mentioned in Chapter 4, such a link could be

more fully explored using a method such as the Interactive Ensemble Coupled Global

Climate Model (Fan and Schneider 2012). Further analysis focused on the mechanical

action of the wind on local SST could also be useful. Another example is the decadal

teleconnection between the tropical Atlantic ocean-atmosphere and the high latitude

stormtrack (i.e. the NAO); although such a teleconnection has already been identified

in the observations (Rajagopalan et al. 1998), the processes behind it still remain unclear

and therefore need to be carefully considered.

In addition, to further establish the extent to which the salinity preservation and the

speed of the northward advection are particular to CHIME, it would be necessary to

undertake a more in-depth intercomparison with a climate model typical of the major-

ity that feature a more orthodox z-coordinate ocean component. In comparison with

HadCM3, the early evidence is that CHIME does indeed better preserve the proper-

ties of intermediate waters such as AAIW, over long distances (Megann et al. 2010).

However, HadCM3 may not be the most appropriate model for such comparison, due

to the limited role that Labrador Sea convection plays in driving AMOC variability in

this model. It also has to be kept in mind that any model inter-comparison has to take

into account a possible dependency of each model on a considerable number of model

choices (e.g. topography, boundary conditions, mixing parameterizations) that can have

significant impact on the behavior of the basin-scale circulation.

Last but not least, it remains to be demonstrated that the mechanism of decadal AMOC

fluctuation identified in CHIME (namely the development and poleward advection of

tropical salinity anomalies) occurs in the real world. Undertaking comparison with

multi-decadal observations would therefore be necessary. However, such observations are
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at present inadequate for this purpose, due to under-sampling of much of the Atlantic

sector prior to the Argo era. This study therefore underlines the necessity of a sustained

observation network particularly in the tropical Atlantic. The continuity of observational

programs such as the Tropical Atlantic Climate Experiment (TACE, Schott et al. 2004),

and observational networks such as the Pilot Research Moored Array in the Tropical

Atlantic (PIRATA, Servain et al. 1998) are thus of primary importance to obtain decade-

long timeseries of observations. Then, if a comparable mechanism to the one identified

in the CHIME model occurs in the real world, the long-range links between the tropical

Atlantic activity and subsequent convective activity in both the Labrador and GIN Seas

promise potential predictability of the AMOC and climate.

7.2.2 What have we learnt?

The key messages from the present study are summarised below, and placed into a

“bigger-picture” context. First, in common with most previous modelling studies, a

large part of the variability of the AMOC on decadal timescales is likely to be a pas-

sive response to intrinsic internal atmospheric variability (e.g. Jungclaus et al. 2005;

Danabasoglu 2008; Delworth and Greatbatch 2000), rather than being part of a coupled

ocean-atmosphere mode (e.g. Timmerman et al. 1998). Second, our study underlines

the key role that the tropical Atlantic region is playing in controlling decadal AMOC

fluctuations. Although this finding is supported by some studies (e.g. Vellinga and

Wu 2004; Mignot and Frankignoul 2005), most of them support the dominant role of

high-latitude processes (e.g. Delworth et al. 1997; Jungclaus et al. 2005; Hawkins and

Sutton 2007; Escudier et al. 2012). These discrepancies amongst the different existing

climate models underline the current poor understanding of the mechanisms controlling

the variability of the AMOC on decadal timescales. As underlined by Liu (2012), it is

generally difficult in a climate model to clarify the role of ocean-atmosphere feedback

and to distinguish a coupled mode from a damped oceanic mode unambiguously, based

on the diagnosis of a control simulation alone. Indeed, model complexity limits the

extent to which model processes, interactions and uncertainties can be understood and

evaluated. te Raa et al. (2004) noted that, although quantitative aspects of the vari-

ability like period and spatial pattern are changing, the physical mechanisms of decadal

variability in the more complex simulations can be attributed to the same processes as

in the simplest model configuration. This suggests that simple (or idealized) models

might actually be more appropriate to identify the nature of decadal variability. The

use of complex climate models is, nevertheless, essential to explore the role of non-linear

dynamics in generating this variability.

The present study also underlines, that although quantitative aspects of the variability

like periods and spatial pattern can be somewhat similar, different vertical coordinate
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choice of the ocean component significantly affects the processes behind decadal vari-

ability. It is quite worrying to see how the choice of vertical coordinate alone gives rise

to such discrepancies. With some evidence for better preservation of water masses and a

more coherent internal structure to the anomalies than non-isopycnic coordinate ocean

component models (Megann et al. 2010), isopycnic models are expected to be more real-

istic. However, better observations, in particular long-term records of observed changes,

are essential to support (or not) this assumption, and hence to help to understand pro-

cesses critical to improving model performance. Recently, Johns et al. (2011) supported

the idea that monitoring the AMOC is of primary importance since they found observa-

tional evidence for the direct influence of the AMOC on the climate system. Significant

resources have been and are continuing to be devoted to field programs intended to

provide direct measures of AMOC strength (e.g. Send et al. 2011; Rayner et al. 2011).

However, variations in the AMOC are not easily interpreted as diagnostic of the ocean

circulation or its climate impacts, and to progress we need to pick apart the different

components of the flows and come to understand how and why they vary (Wunsch and

Heimbach 2012). The requirements on future observational systems are far greater that

what is now available.

7.3 Decadal predictability of AMOC and climate in CHIME

7.3.1 Limitations and future work

Although “perfect ensemble” experiments show considerable promise for predicting in-

ternal variability, particularly in the North Atlantic (e.g. Collins et al. 2006a; Hurrell

et al. 2009), there are critical obstacles that must be overcome if such potential pre-

dictability is to be achieved in reality. For example, there are limitations linked to

the restricted number of experiments that can be run. This limitation has to be kept

in mind here, especially when drawing conclusions about any possible predictability-

dependence on the AMOC initial states. Although the present study permitted some

useful indications about this, more systematic experiments starting with similar initial

states should be undertaken to confirm the results of this study. This should also help

to clarify the role of minimum versus maximum AMOC extreme states on predictive

skills, and other interesting features such as the remarkably low ensemble correlation of

experiments 15P (compared to the other experiments) found in both CHIME and IPSL-

CM5A. The problem of model error is also a technical obstacle that needs to be overcome

in the idealized model experiment framework. It has, indeed, to be kept in mind that

here we have assessed the upper limit of predictability as both perfect model and near

perfect knowledge of the current state of the climate system are assumed. However,

climate models still have significant biases compared to observation, and their possible

impacts on the level of predictability skill of a model cannot be ignored. For example, as
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already mentioned in Chapter 6, the substantial warming and increasing salinity in the

North Atlantic subpolar gyre and the excessive mixing in the northern high-latitudes in

CHIME (Megann et al. 2010) might well affect the effective level of predictability skill.

An essential component of evaluating decadal prediction will therefore be to determine

the effect of model systematic errors on the predictions, both in the simulation of mean

climate and coupled processes that contribute to decadal time scale variability; this is an

important aspect of the research activities involved with decadal prediction in CMIP5

(Taylor et al. 2009). In addition, different definitions of predictability, different experi-

mental protocols and different metrics are often used in idealized model experiments to

evaluate predictive skills, making the comparisons among existing studies difficult. The

development of a common skill evaluation framework to evaluate decadal predictions

should therefore be encouraged to allow a comparison of decadal prediction systems

across different modeling centres (Meehl et al. 2012). For example, the impact of dif-

ferent perturbation schemes (used to generate the ensembles) on the level of predictive

skills should be seriously considered in forthcoming studies; there is indeed some recent

evidence for predictability experiments in which only the atmospheric state is perturbed

(equivalent to perturb the upper ocean only), that may strongly overestimate the ocean

predictability time (Zanna et al. 2012). Whether SST alone is sufficient to constrain the

AMOC is indeed unclear (Dunstone and Smith 2010).

In addition, one important limitation of our predictability study with CHIME is its rel-

atively short control integration length (compared to IPSL-CM5A), therefore affecting

the statistical significance of the results. These results also rely on a control integration

for which the reliability is questionable, notably because of the absence of the ENSO

cycle known to significantly influence the tropical Atlantic Ocean (e.g. Saravanan and

Chang 2000; Giannini et al. 2001; Huang et al. 2002); a key region in the processes

driving decadal AMOC fluctuations in CHIME. To validate the CHIME predictability

results, this study should be repeated using a longer and more reliable control inte-

gration. Confidence in decadal forecasts also requires an understanding of the physical

mechanisms giving rise to any predicted changes in climate. The next step would there-

fore be to undertake a more in-depth investigation of the specific mechanisms that lead

to predictability, consisting of further study of e.g. links between water properties and

pressure gradient, the large scale mixing of anomalous properties.

Furthermore, the fact that CHIME has similar (or even shorter) level of predictive skills

than do non-isopycnic models (such as IPSL-CM5A, HadCM3) is surprising given that

isopycnic models are expected to have better predictive skills because of their supposed

better preservation of water masses and more coherent internal structure of the anoma-

lies. The origin of this unexpected result merits further attention and investigation.

In addition, experiments starting from strong AMOC states have often been associated

with the better predictive skills, as found in most previous studies (e.g. Collins and
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Sinha 2003; Collins et al. 2006a) and in our IPSL study. Yet, in CHIME this experi-

ment is actually associated with the lowest skills. The possibility that strong AMOC

conditions in CHIME might be associated with an excessive convective mixing (reduc-

ing its predictive skill) is not excluded. This surprising result therefore needs further

clarification.

Finally, which of the two models shows the most “realistic” predictive skills of decadal

AMOC fluctuations remains difficult to say since sufficiently long observational time

series are at present unavailable. However, the current RAPID-WATCH program (Cun-

ningham 2008), which aims at delivering a decade long (2004-2014) time series of obser-

vations of the AMOC is of considerable value in such perspective. With some evidence

that extreme AMOC events can be predictable beyond a decade, the continuity of such

observational programs should be encouraged. Obtaining decade-long time series of

observations is of primary importance for verification purposes, but also for accurate

initialization of the ocean state in coupled climate models. Indeed, initializing models

with the observed state of the climate is thought to improve decadal forecast skills (e.g.

Keenlyside et al. 2008; Smith et al. 2010) and is at the heart of the decadal predictability

problem (e.g. Meehl et al. 2012; Hurrell et al. 2012). Because of the under-sampling

of much of the Atlantic sector prior to the Argo era, a comprehensive global climate

observing system, with a particular emphasis on the ocean (e.g. Trenberth 2008) should

be maintained. Sustained observation should particularly be encouraged in the tropical

Atlantic (e.g. TACE, Schott et al. 2004) since our findings suggest the need for intense

observation in this key region to constrain prediction of the AMOC.

7.3.2 What have we learnt?

Contrary to expectations, the choice of vertical coordinate of the ocean component

does not significantly affect the level of predictive skills of a model. The present study

shows evidence for the strength of the AMOC to have an average predictive skill of

about 7 years, and that, on decadal timescales, surface temperature has the highest

predictive skills in the high latitude regions and potential predictability for precipitation

is largely absent. Because the level of predictability differs from one study to another and

that different experimental protocol are used among the existing predictability studies,

it remains difficult to evaluate the realism of decadal predictability. A common skill

evaluation framework should therefore be encouraged. The decadal prediction evaluation

framework described in the present study should be taken as a methodological set-up,

since we do not claim it is mature enough to propose any reliable prediction to be

used for societal application. For example, uncertainties in the forecast is something to

absolutely consider for a prediction system to be reliable, and these are not taken into

consideration in the prediction evaluation framework described here. But our approach
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still gives some indications as to where and to what extent skillful decadal forecasts

might be possible.

In addition, the assumptions, conditions, uncertainties and underlying framework of

models would ideally need to be communicated to the decision-makers, for them to be

able to evaluate the relevance of the information provided by the models, and to make

informed decisions. This turns out to be too complex and time consuming, so it is the

scientist’s duty to provide guidance on the interpretations of the model results. The

question of whether we should believe anything that our models predict about future

climate is related to how well we can quantify the uncertainty in model projections.

Stainforth et al. (2007) showed that it is not clear that weighted combinations of results

from today’s complex climate models based on their ability to reproduce a set of obser-

vations can provide decision-relevant probabilities. As long as all of our current models

are far from being empirically adequate, they consider this to be futile as all models

have effectively zero weight relative to the real world. Stainforth et al. (2007) have thus

described several methods for presenting the results of large ensembles without assum-

ing realism for any individual model in order to increase our ability to communicate the

appropriate degree of confidence in said results. They suggested, for example, that con-

fidence may come from physical understanding of processes involved or from the failure

to simulate the variables of interest under present-day climate.

The present study also shows evidence that decadal predictability of the AMOC and

associated impacts on climate may be sensitive to the initial oceanic conditions with

transitions around extreme states appearing as the most predictable events, in good

agreement with several existing studies (e.g. Collins and Sinha 2003; Collins et al.

2006a). This suggests the need for accurate knowledge of the current state of the ocean.

As already mentioned earlier, significant resources are being devoted to provide direct

measure of AMOC strength, but variations in the latter are not easily interpreted as

diagnostic of the ocean circulation or its climate impacts (Wunsch and Heimbach 2012).

The global three-dimensional ocean circulation should therefore be described with all of

its space and time structure. For instance, Zanna et al. (2012) pointed out the strong

sensitivity of the AMOC to deep perturbation in the high latitude regions and that errors

there could limit the predictability of the AMOC. These requirements on observational

system are far greater than what is available at present.

7.4 Concluding remarks

This project provides a contribution to better understanding of the mechanisms driving

decadal AMOC fluctuations while underlining the complexity of such mechanisms and

the major disagreements amongst the existing modeling studies. Although additional

efforts are still needed to bridge some of the gaps linked to the mechanisms of decadal
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variability, this project also contributes to better understanding of the predictability

limits for decadal AMOC variations and associated key variables, by giving some indi-

cations as to where and to what extent skillful decadal forecasts might be possible. This

project also contributes to the development of a common skill evaluation framework to

evaluate decadal predictions, which is highly desirable to allow a comparison of decadal

systems across different modeling centres. The decadal prediction system described here

should, however, be taken as a methodological set-up, since we do not claim it is mature

enough to propose any reliable prediction to be used for societal application.

It is worth noting that at present, only a handful of people think about how to make the

best use of the huge amounts of data generated by climate models, how to synthesize data

for the non-expert, how to effectively communicate the results and how to characterize

uncertainty. The realistic communication of scientific uncertainty and the relevance of

today’s “best available information” may prove critical for maintaining credibility in the

future as model-based information improves.

It is also important to bear in mind that none of the existing models is able to accurately

reproduce all aspects of past and current climate, and that no single model will ever

be able to realistically reproduce climate as we experience it. By their very nature,

models cannot capture all the factors involved in a natural system, and those that

they do capture are often incompletely understood. Nevertheless, the models ability to

reproduce many large-scale aspects of present-day climate, the fact that they are built

on well-known physical processes (such as conservation of energy, mass and angular

momentum), and the fact we can understand and interpret many of the results from

known processes provide support for the models credibility, at least for large scales and

certain variables. In the absence of better alternatives, it is likely to be better to use an

“imperfect” model than, say, random guessing. They are the best tool we have available

for explaining the current behaviour of our climate and predicting likely changes to the

planet’s future climate.

Ultimately, not just the quality but also the value of decadal forecasts should be quan-

tified in terms of the societal or economic value of the predicted information to climate-

related decisions or impacts studies. As the science of decadal prediction is developed,

the skill of such predictions in relation to their usefulness and application must also be

evaluated.



Appendix A

Relationship between ES and EC

We consider here centred and normalized (by the standard deviation) data in time t.

We consider the CS03 definition of ES and EC:

ES
2 =

2

M(M − 1)
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(Xi(t)−Xj(t))
2 (A.1)
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where the discrete time correlation using centred and normalized data is:

corr(Xi(t), Xj(t)) =
1
T

�T
t=1Xi(t)Xj(t)

We consider the average of ES over the period of time T : < ES
2
>T=

1
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By expanding (Xi(t)−Xj(t))2 in Equation A.1 and after a few rearrangements, we can

show that:
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Since the variables are centred and normalized: 1
T

�T
t=1X

2
i (t) +X

2
j (t) = 2

Hence, we obtain the following result: < ES2 >T= 2(1 − EC)
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For the real case, where the data are not normalized and centred, which is more ap-

propriate for ES estimation, no such simple relationship can be found analytically, but

we hypothesize that ES and EC remain related. A few illustrations of such link are

evidenced in Sect. 5.3.1.2 and provide support in favour of this hypothesis.



Appendix B

Predictability maps of climate in

IPSL-CM5A-LR

We present the individual predictability maps for temperature and precipitation for each

starting date in the PPP protocol. These individual results are aggregated in Figure

5.8b and Figure 5.9b.
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Figure B.1: Surface Temperature - Colours represent EC computed as in
CS03 for each starting date and years 1-10 (left panels), 1-20 (right panels)
of each ensemble experiment. Areas where the correlation is not statistically
significant at the 90% level are shown in white. Dots represent grid point where
the ES is statistically significantly smaller than the control RMSE at the 95%
level.
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Figure B.2: Precipitation - Colours represent EC computed as in CS03 for
each starting date and years 1-10 (left panels), 1-20 (right panels) of each en-
semble experiment. Areas where the correlation is not statistically significant
at the 90% level are shown in white. Dots represent grid point where the ES is
statistically significantly smaller than the control RMSE at the 95% level.





Appendix C

Predictability maps of climate in

CHIME

We present the individual correlation maps for SST and SAT for each starting date in

the PPP protocol. These individual results are aggregated in Figure 6.18b and Figure

6.19b.
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Figure C.1: Sea Surface Temperature - Colours represent EC computed as
in CS03 for each starting date and years 1-10 (left panels), 1-20 (right panels)
of each ensemble experiment. Areas where the correlation is not statistically
significant at the 90% level are shown in white. Dots represent grid point where
the ES is statistically significantly smaller than the control RMSE at the 95%
level.



Appendix C Predictability maps of climate in CHIME 177

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

[W]

[15P]

[5P]

[S]

[I]

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

0
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

  90
o
W   60

o
W   30

o
W    0

o
    30

o
E 

  20
o
S 

   0
o
  

  20
o
N 

  40
o
N 

  60
o
N 

  80
o
N 

 

 

Figure C.2: Surface Air Temperature - Colours represent EC computed as
in CS03 for each starting date and years 1-10 (left panels), 1-20 (right panels)
of each ensemble experiment. Areas where the correlation is not statistically
significant at the 90% level are shown in white. Dots represent grid point where
the ES is statistically significantly smaller than the control RMSE at the 95%
level.
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C. Le Quéré, M.R. Raupach, J.G. Canadell, and G. Marland et al. Trends in the sources

and sinks of carbon dioxide. Nat. Geosci., 2:831–836, 2009.

J. Le Sommer, T. Penduff, S. Theetten, G. Madec, and B. Barnier. How momentum

advection schemes influence current-topography interactions at eddy permitting res-

olution. Ocean Model., 29(1):1–14, 2009. doi: 10.1016/j.ocemod.2008.11.007.

S. Levitus, J. Antonov, Z. Zhou, H. Dooley, V. Tereschenkov, K. Selemenov, and A.F.

Michaels. Natural Climate Variability on Decade-to-Century Time Scales. Decadal-

scale variability of the North Atlantic Ocean. pages 318–324. Natl. Acad. Sci. Press,

Washingthon DC, USA, 1995.

S. Levitus, T.P. Boyer, M.E. Conkright, T. O’Brien, J. Antonov, C. Stephens, L. Statho-

plos, D. Johnson, and R. Gelfeld. World Ocean Database 1998. Introduction. volume 1.

NOAA Atlas NESDIS 18, U.S. Gov. Printing Office, Washington, D.C, 1998. 346 pp.



194 REFERENCES
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