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Software maintenance is a major part of the development cycle. The traditional method-

ology for rolling out an update to existing programs is to shut down the system, modify

the binary, and restart the program. Downtime has significant disadvantages. In re-

sponse to such concerns, researchers and practitioners have investigated how to perform

update on running programs whilst maintaining various desired properties. In a multi-

threaded setting this is further complicated by the interleaving of different threads’

actions. In this thesis we investigate how to prove that safety and liveness are preserved

when updating a program. We present two possible approaches; the main intuition be-

hind each of these is to find quiescent points where updates are safe. The first approach

requires global synchronisation, and is more generally applicable, but can delay updates

indefinitely. The second restricts the class of programs that can be updated, but per-

mits update without global synchronisation, and guarantees application of update. We

provide full proofs of all relevant properties.
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Chapter 1

Introduction

Software maintenance is a major part of the development cycle; at one point it was

estimated that “60 percent of all business expenditures on computing are for main-

tenance of software written in Cobol” (Freeman, 1986; Banker et al., 1993). Another

study estimated that 67% of life-cycle costs are in the operations and maintenance phase

(Arthur, 1988). The traditional methodology for rolling out an update to existing pro-

grams is to shut down the system, modify the binary, and restart the program. Halting

a program to apply updates is, however, problematic. Downtime can have significant

financial costs, often running into the millions of dollars (Scott, 1998). In addition, in

some real-time and critical systems, downtime would break key safety properties, and

would prevent updates from occurring at all. As a result, dynamic update of running

code is the third most requested enhancement for Java (Sun-Microsystems, 2006). In

response to such concerns, researchers and practitioners have investigated performing

update on programs while they are still running.

Performing arbitrary updates to programs, at unspecified points during their execution,

can lead to arbitrary program behaviour; this negates our attempt to maintain the

program’s service and availability while performing an update. In order to maintain

well formed programs it is therefore essential to place some restrictions on what updates

can occur, and when they can occur. Dynamic Software Update (DSU) comprises a

series of approaches that update running programs, while providing a degree of safety,

flexibility, and efficiency (Subramanian et al., 2009).

Ensuring good behaviour of concurrent (multi-threaded) programs is notoriously dif-

ficult (Lea, 1999). When multiple threads can interleave in each other’s execution, a

variety of interesting errors can occur. Data races consist of several processes accessing

some shared state in such a way that each can see, and interfere with, intermediary val-

ues in each others’ state. Communication errors occur when values are sent over message

queues and are subsequently used under incorrect typing assumptions, for example using

an integer as an object reference. In addition, interleaving introduces a new potential
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problem for concurrent programs: liveness. Deadlock occurs when a program can never

proceed, and livelock occurs when part of a program continually executes, performing no

useful computation. Concurrent programs often include programming constructs which

can either reduce or block, depending on some accompanying state, such as those for

locking mutexes or receiving data. In many cases this blocking behaviour is used to elim-

inate data races or communication errors. There is often a tension between providing

safety guarantees and providing guarantees of deadlock absence (Lea, 1999), especially

for mutual exclusion; in a program with more blocking it is easier to prove safety, but

harder to prove liveness, and vice versa.

The majority of existing work on Dynamic Software Update concerns single-threaded

programs (Gupta et al., 1996; Bierman et al., 2003; Boyapati et al., 2003; Stoyle et al.,

2005; Neamtiu et al., 2008; Bierman et al., 2008; Kaashoek and Arnold, 2009). These

have focused primarily on preserving type safety, both with respect to changing function

signatures (Bierman et al., 2003; Stoyle et al., 2005) and changing class signatures (Boy-

apati et al., 2003). Whilst type safety is important in updates for concurrent programs,

and indeed has been thoroughly considered (Neamtiu and Hicks, 2009; Subramanian

et al., 2009), the concern of many concurrent program designers is focused elsewhere on

behavioural properties such as liveness. In addition, the techniques developed for up-

dating single-threaded programs rely on finding “safe” points during the execution, and

applying the update at this point. The extension of this methodology to multi-threaded

programs requires waiting until all threads happen to be at a safe point at the same time,

or forcing threads to block when they reach a safe point, until all threads are globally

synchronised. The result of this approach is delay during synchronisation, at best, and

deadlock at worst, and can delay the application of updates indefinitely (Subramanian

et al., 2009).

In this thesis we investigate how to prove that safety and liveness are preserved when

updating a program. To this end we first consider how to prove these properties for

programs in the absence of update (Chapter 3). We focus on programs that use message

passing for shared state and synchronisation. We then consider how to update such

programs while preserving safety and liveness (Chapter 4). We consider two specific

approaches for update. The first is more straightforward and simpler to reason about,

but requires global synchronisation. The second performs update using a less restrictive

form of synchronisation, with which we can update threads separately; unfortunately

this approach is significantly more complex to reason about, and is applicable to fewer

programs than the first approach. Finally, we discuss our intuition on how to show that

an update will not be delayed indefinitely.

2



1.1 Safety and Liveness of Concurrent Programs

Safety and liveness are two key issues for concurrent programs (Lea, 1999). Safety

denotes that nothing bad ever happens. Liveness denotes that something good eventually

happens. Safety is important for both single-threaded and multi-threaded programs, as

many of the same errors can occur. The addition of concurrency, however, introduces a

wide variety of issues for safety, and the issue of liveness.

Message passing is an idiom for concurrent programs, where processes use messages to

communicate and synchronise. This obviates the need for direct shared state synchro-

nisation. Session Typing is a formalism used to structure interaction between message

passing processes, ranging from low level message passing programs to web orchestra-

tion and high level distributed web systems. By abstracting the details of such systems

away to the core communication behaviour it is possible to prove a wide variety of

properties. These properties include deadlock freedom and absence of communication

errors (Honda, 1993; Honda et al., 1998; Bettini et al., 2008), safe re-orderings of com-

munication actions (Gay and Hole, 2005; Mostrous et al., 2009; Deniélou and Yoshida,

2010), and bounds on channel buffer sizes (Deniélou and Yoshida, 2010; Gay and Vas-

concelos, 2010).

The proofs of properties for message passing programs rely heavily on the synchroni-

sation semantics of the communication actions; a program that does not block when it

attempts to receive from an empty message queue has fewer places where it can dead-

lock, but the increased flexibility and decreased synchronisation makes communication

safety more difficult to prove. Existing session typing work focuses on both synchronous

and asynchronous communication, with blocking receives and non-blocking sends. The

dependencies in the proofs on the communication semantics is often unclear and left

implicit. This makes it difficult to re-factor results to message passing languages with

even minor differences in communication semantics.

We consider how to prove communication safety and liveness in a general functional lan-

guage with accompanying state. The general methodology amounts to model checking,

and as such is computationally expensive. We then proceed to consider stronger prop-

erties that imply general safety, as these stronger properties are often less expensive to

prove. We re-prove existing results of safety and liveness for message passing programs

that use blocking receive semantics, using a novel and intuitive induction. We then

prove safety and liveness for message passing programs that use a non-blocking receive

semantics, using a similar induction. We argue that the methodology of a general prop-

erty, and proving stronger inductive properties that imply it, aids the comprehension of

the proofs, and aids the process of writing new proofs when small changes occur to the

message passing semantics.
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1.2 Dynamic Software Update

Safety and liveness are two key issues for concurrent programs. Hence when we update

concurrent programs we should consider whether an update violates safety or liveness

properties. We present a framework for updating programs written in a functional

language with accompanying state based on that presented in Chapter 3. We show

how to extend the general safety and liveness properties to accommodate updates. We

then show how to prove safety for particular approaches of updates to message passing

programs.

Update Framework: Updates can be introduced into a running program at any time.

This reflects the fact that updates are written and rolled out at some arbitrary point

after a program has begun execution. Updates are not necessarily applied as soon as they

are introduced - in order to prove safety and liveness we must restrict when updates can

occur. An update is only applied after some property of the code and the state becomes

true, for example reaching a particular point in the code. An update replaces annotated

regions of the code with new bodies of code.

Global Typability Approach: This approach consists of a form of global synchro-

nisation. We assume that a program is following an iterative protocol, performing the

same communication actions in a loop. We show that if all the threads are in the same

iteration of the protocol, it is safe to perform the update. This approach, while requir-

ing global synchronisation, is straightforward to understand and prove safe. We can

consider the protocol being used and show how, in certain cases, the window when all

threads are updatable occurs infinitely often, and hence an update will not be delayed

indefinitely.

Local Update Approach: This approach is significantly more complex than the

Global approach. We again assume that a program is following an iterative protocol,

performing the same communication actions in a loop. The intuition of this approach

is as follows. The thread that is at the largest iteration number is updated first. The

remaining threads are updated when they reach the iteration number when the lead

thread(s) updated. This approach ensures that all messages used under the old protocol

are used up. Interestingly, we can perform this approach without actually keeping track

of the iteration numbers of the individual threads; this information can be inferred from

the code and the state. Using this approach we can update threads separately, without

need for global synchronisation or reference execution point of other threads.
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Chapter 2

Background Material and Related

Work

In this chapter we present an overview of background material relevant to this thesis, and

its context in the literature. In Section 2.1 we explore Type and Effect Systems: these

are static analyses that can be used to abstract the side effecting (impure) behaviour of

a program such as network or file accesses. In Section 2.2 we describe Session Typing

analyses: these place constraints on the impure behaviour of message passing programs

that are sufficient to prove various useful properties of concurrent programs such as

liveness. In Section 2.3 we explore Dynamic Software Update. We describe common

design decisions, with a particular emphasis on how these decisions influence interesting

properties such as type safety.

2.1 Type and Effect Systems

An example type and effect analysis is one that determines the reference variables that

are used in a program, and how they are used (Figure 2.3), as in (Nielson and Nielson,

1999). This information could be useful for static deallocation or for security to guar-

antee that a program only performs read actions on certain variables. We consider a

simple call by value lambda calculus with reference variables, along the lines of ML (Fig-

ure 2.1). The language consists of values, functions, function applications, and reference

variable constructs. The construct newπ x := t1 in t2 creates a new reference variable

x with an annotation π; it evaluates t1 to a value and binds it as x within t2. The

t ::= v | λx.t | t t | newπ x := t in t | !x | x := t v ::= n | b

Figure 2.1: Lambda Calculus
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T ::= Int | Bool | T refπ | T ϕ−→ T ϕ ::= {!π} | {π :=} | {newπ} | ϕ ∪ ϕ | ∅

Figure 2.2: Types and Effects

∅ o Γ ` n : Int ∅ o Γ ` b : Bool ∅ o Γ ` x : Γ(x)

ϕ o Γ, x : T1 ` t : T2

∅ o Γ ` λx.t : T1
ϕ−→ T2

ϕ1 o Γ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ ` t2 : T2

ϕ1 ∪ ϕ2 ∪ ϕ3 o Γ ` t1 t2 : T1

Γ(x) = T refπ

{!π} o Γ `!x : T

ϕ o Γ ` t : T Γ(x) = T refπ

ϕ ∪ {π :=} o Γ ` x := t : T

ϕ1 o Γ ` t1 : T1 ϕ2 o Γ, x : T1 refπ ` t2 : T2

ϕ1 ∪ ϕ2 ∪ {newπ} o Γ ` newπ x := t1 in t2 : T2

Figure 2.3: Side Effect Analysis

annotation π is unique, and is used to differentiate accesses to this reference variable

from accesses to other reference variables. The construct !x dereferences the variable x,

and x := t assigns to x the value obtained by reducing t to a value. This language has a

conventional call by value semantics, and makes use of standard syntactic sugaring such

as t1; t2 for (λx.t2) t1 where x is not free in t2

In order to describe the side effects of programs we make use of types and effects (Fig-

ure 2.2). The effect {!π1} denotes the dereference of the variable that has annotation π1.

The effect {π2 :=} denotes assignment to the variable that has annotation π1. The effect

{newπ3} denotes the creation of a new variable that has a new unique annotation π3.

The primitive types are straightforward. The reference variable type T refπ denotes a

reference variable that contains a value of type T and has annotation π. The function

type includes an effect annotation ϕ on its arrow, referred to as the latent effect ; this

denotes the side effect that will occur by when the function is applied to an argument.

The effect of the function does not appear in the effect of a program until the function

is applied, because the body of the function (from which the effect ϕ comes) is not

evaluated until that point.

We make use of the judgement ϕ o Γ ` t : T which denotes that, under type variable

assumptions Γ, the program t will reduce to a value of type T , and its side effect is

described by the effect ϕ. The effect ϕ is generally only a conservative approximation

of the effect of a program due to undecidability of determining the actual effect (for

example, we do not know which path will be taken at a conditional without running the

program, which itself is undecidable). We specify the side effect analysis in Figure 2.3.

Values and variables have no side effects. Functions, taken alone, also have no effects:
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the effect of the function body is annotated on the type of the function. When a function

is applied, the effect of the application construct is the effect ϕ1 of reducing the left hand

side to a function, the effect ϕ2 of reducing the right hand side to a value, and the effect

ϕ3 of reducing the function body, where ϕ3 is the latent effect annotated on the type of

the function. The dereference of a variable x has the effect {!π} where π is the annotation

associated with x. Assignment of t to a variable x has the effect ϕ ∪ {π :=}, where π is

the annotation associated with the variable, and ϕ is the side effect of reducing t to the

value which will be assigned to the variable. The creation a new reference variable has

the effect ϕ1∪ϕ2∪{newπ}, where ϕ1 is the effect of reducing t1 to the value assigned to

x, t2 is the effect of the body in which x is bound, and {newπ} is the effect of creating

a reference variable with annotation π.

An example program that we can analyse is the following:

(λy.!y) (newπ x := 1 inx) (2.1)

This program creates a new reference variable annotated by π, assigns the value 1 to

it, and passes it to a function which dereferences it. We can use the typing rules in

Figure 2.3 to generate the possible side effect behaviour of the program:

(y : Int refπ)(y) = Int refπ

{!π} o y : Int refπ `!y : Int

∅ o ∅ ` λy.!y : Int refπ
{!π}−−→ Int

∅ o ∅ ` 1: Int

(x : Int refπ)(x) = Int refπ

∅ o x : Int refπ ` x : Int refπ

{newπ} o Γ ` newπ x := 1 inx : Int refπ

{newπ, !π} o ∅ ` (λy.!y) (newπ x := 1 inx) : T
(2.2)

The above program has the side effects of creating a reference variable with the anno-

tation π, and dereferencing of a reference variable with the same annotation, leading to

an overall effect of {newπ, !π}.

This analysis exemplifies the key aspects of type and effect systems. Certain primi-

tives and constructs within the language are annotated with labels, and the remaining

primitives have no effect. The effects of non-annotated constructs are constructed by

combining the effects of the sub-components. Functions have their effect annotated on

their type, and this effect is ignored until the function is applied to an argument.

In this thesis we use type and effect systems to abstract from a source language to an

effect representation which is similar to a process calculus. The effect representation

denotes both the communication actions that occur, and their temporal ordering. We

do not make any contributions to the type and effect literature; we use it as a tool.
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t ::= Terms
| e Simple expressions
| snd(c, e).t Send
| rcv(c)(x : T ).t Receive
| if e then t else t Conditional
| sel(c, l).t Selection
| case c of { Branching

l̃ 7→ t}
| µX.t Recursion
| X Recursion variable
| error Error
| 0 End

e ::= e+ e, e ∧ e, . . . Simple expressions

P ::= Processes
| t Single process
| P ‖ P Parallel processes

v ::= Values
| n Integers
| b Booleans
| () Unit

σ ::= Named channel
queues

| c 7→ q Map from channel
name to queue

| σ, σ Set of named
channel queues

| ∅ Empty set of queues

q ::= Queues
| v Value
| l Label
| q, q Queue composition
| ∅ Empty queue

Figure 2.4: Message Passing Language and Resource Syntaxes

Type and effect systems are first proposed in (Gifford and Lucassen, 1986) in order to

statically track the allocation, access, and deallocation of dynamically allocated memory.

This work is expanded and simplified in (Nielson and Nielson, 1999) which shows how

type and effect systems can also be used for information control in security, procedure

call site analysis, side effect analysis, and simple message passing analysis. Type and

effect systems are used many settings, including enforcing locking disciplines in Java

(Flanagan and Freund, 2000), in policy-based access control (Bartoletti et al., 2007),

and Dynamic Software Update (Neamtiu et al., 2008). A more detailed overview can be

seen in (Marino and Millstein, 2008).

2.2 Session Typing

Session Typing analyses consist of a type and effect analysis, which obtains the com-

munications behaviour of a program, and various constraints placed on what effects are

accepted by the analysis. A key notion in Session Typing is duality, where certain ef-

fects fit together if the types of the values and labels which are sent and received are

consistent. Systems with certain duality or complementarity properties can be shown

to have certain safety and liveness properties, including communication safety, session

fidelity, and deadlock freedom.
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〚e〛 = v σ′ = σ[c 7→ q, v]

[σ[c 7→ q]] snd(c, e).t −→ [σ′] t

v : T σ′ = σ[c 7→ q]

[σ[c 7→ v, q]] rcv(c)(x : T ).t −→ [σ′] t[v/x]

v : T ′ 6= T σ′ = σ[c 7→ q]

[σ[c 7→ v, q]] rcv(c)(x : T ).t −→ [σ′] error

e : T T 6= Bool

[σ] if e then t1 else t2 −→ [σ] error

e ↓ true

[σ] if e then t1 else t2 −→ [σ] t2

e ↓ true

[σ] if e then t1 else t2 −→ [σ] t3

[σ[c 7→ q]] sel(c, l).t −→ [σ[c 7→ q, l]] t
li ∈ l̃ σ′ = σ[c 7→ q]

[σ[c 7→ li, q]] case c of {l̃ 7→ t} −→ [σ′] ti

l /∈ l̃

[σ[c 7→ l, q]] case c of {l̃ 7→ t} −→ [σ[c 7→ l, q]] error

[σ] µX.t −→ [σ] t[µX.t/X] [σ] f(t) −→ [σ] t

[σ] P1 −→ [σ′] P ′1

[σ] P1 ||P2 −→ [σ′] P ′1 ||P2

[σ] P2 −→ [σ′] P ′2

[σ] P1 ||P2 −→ [σ′] P1 ||P ′2

Figure 2.5: Message Passing Semantics

ϕ ::= c!〈T 〉; ϕ | c?(T ); ϕ | ϕ⊕ ϕ | c&{l̃ 7→ ϕ} | µX.ϕ | X | 0

Φ ::= ϕ | Φ ‖ Φ T ::= Int | Bool | Unit

Figure 2.6: Types and Effects for Message Passing Language

In order to discuss Session Typing we present a simple message passing system. We

define the language in Figure 2.4. The transmission of values is performed by snd(c, e).t,

which reduces e to a value, adds that value onto the end of the queue for channel c,

and continues with t. The reception of values is performed by rcv(c)(x : T ).t, which

takes the value off the front of the message queue for c, and substitutes it for x in t.

Conditional statements if e then t else t reduce the pure (non side-effecting) guard, and

then branches depending on the value. Selection statements sel(c, l).t is used to signal a

choice in protocol direction, in particular, which option a branch (that exists in another

term with which the selecting term is interacting) should take. These put the relevant

label on the end of the message queue for c. Branching statements case c of {l̃ 7→ t}
provides a series of options between which another term can choose. These take the value

off the front of the message queue for c, and branch over the value received. Recursion,

errors, and blocked terms are standard. We specify the semantics formally in Figure 2.5.
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Choice primitives can be used to specify more complex communication patterns, such

as the following ATM example (Carbone et al., 2007):

c1!〈deposit〉.c1!〈amount〉.c1!〈300〉.c2!〈balance 7→ c2?(x).()〉. ‖
c1&{deposit 7→ (c1&{amount 7→ c1?(x).c2!〈balance〉.c2!〈(50 + x)〉.()}),

withdraw 7→ c1&{amount 7→ c1?(y).if (x ≤ 50) then c2!〈dispense〉.()
else c2!〈overdraft〉.()

}
}

(2.3)

This example consists of two participants, a user (the first thread) and the ATM (the

second thread). The ATM presents two services to the user: depositing money into

the account, which returns the balance after the deposit, and withdrawing money using

the ATM, both assume there is ₤50 in the account before any action. In this example

the user chooses to deposit ₤300 into the account. The offering of different services,

and the use of services to annotate the semantic meaning of values being sent back and

forth, demonstrates the complexity of communications behaviour which can be repre-

sented using Session Types. Many Session Typing systems also include the delegation

communication primitive; this permits channels (and the responsibilities entailed by the

Session Typing analysis, below) to be sent over channels. For simplicity we do not

consider delegation.

We represent the communication behaviour of a program by effects (which are referred to

as Local Session Types) (Honda, 1993; Mostrous et al., 2009; Bettini et al., 2008; Yoshida

and Vasconcelos, 2006; Honda et al., 2008; Gay et al., 2003; Gay and Vasconcelos, 2007).

These are defined formally in Figure 2.6. The structure follows that of the message

passing terms. Send and receive actions describe the transmission and reception of a

value of type T on channel c, followed by the continuation ϕ. Non-deterministic choice

between possible effects ϕ1 and ϕ2 is written as ϕ1 ⊕ ϕ2. External choice, based on

another participant’s choice, is written as c&{l̃ 7→ t}. Recursion, errors, and blocked

terms are standard. We define a simple type and effect analysis for message passing

systems in Figure 2.7 to abstract a program’s communication behaviour.

Communication Errors occur when a thread receives and uses a value which is of a type

that it doesn’t expect. An example reduction sequence with an error is:

1 [c 7→ ∅] snd(c, true).0 ‖ rcv(c)(x : Int).x+ 4

2 → [c 7→ true] 0 ‖ rcv(c)(x : Int).x+ 4

3 → [c 7→ ∅] 0 ‖ true + 4

4 → [c 7→ ∅] 0 ‖ error

(2.4)
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0 o Γ ` n : Int 0 o Γ ` b : Bool 0 o Γ ` () : Unit 0 o Γ ` x : Γ(x)

0 o Γ ` e : T1 ϕ o Γ ` t : T

c!〈T1〉;ϕ o Γ ` snd(c, e).t : T

ϕ o Γ, x : T1 ` t : T

c?(T1);ϕ o Γ ` rcv(c)(x : T ).t : T

ϕi o Γ ` ti : T

ϕ1 ⊕ ϕ2 o Γ ` if e then t1 else t2 : T

ϕi o Γ ` ti : T

c!〈l〉;ϕ ` sel(c, l).t : T

ϕi o Γ ` ti : T

c&{l̃ 7→ ϕ} o Γ ` c&{l̃ 7→ t} : T

ϕ o Γ ` t : T

µX.ϕ o Γ ` µX.t : T

X o Γ ` X : T

ϕ o ∅ ` t : T

` t : ϕ

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

Figure 2.7: Type and Effect Analysis for Message Passing Language

Session Typing analyses can be used to rule out this type of error. These analyses can

be simplified if they only need consider the effect of a program, rather than the entire

program itself. Hence Session Typing analyses require that the behaviour of a program

is completely encompassed in that program’s effect. In other words, whenever a program

can perform a specific communication action, the effect of that program, as generated

by the type and effect system, can perform an abstract version of the action. This

property known as fidelity (Honda et al., 2008; Dezani-Ciancaglini and Liguoro, 2010).

For example, an action c!〈e〉. is abstracted by c!〈T 〉. where e : T .

The program in Example 2.4 can be represented using the effect:

c!〈Bool〉; 0 || c?(Bool); 0 (2.5)

This denotes that the program consists of two threads, one which will send a boolean

value on a channel, and one which will receive a value from the same channel that it

expects to be an integer.

The two threads’ behaviour will obviously interact to cause an error, as the type being

sent and the type expected to be received do not match up. We can formalise our

intuition as to when a set of threads’ behaviour fits together; when they do so their

behaviour is called complementary. We formally define complementarity in Figure 2.8,

where channels are assumed to be used in a uni-directional manner by two participants.

The Communication Safety property denotes that a thread will never receive a value

which is of a different type to that which it is expecting. When a message passing

system conforms to the above assumptions, and when all pairs of effects (from the

two participants) on channels are complementary, it is possible to prove communication

safety (Honda, 1993; Honda et al., 1998; Gay et al., 2003; Gay and Vasconcelos, 2007). A
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compl(c!〈T1〉;ϕ1, c?(T1);ϕ2)
def
= T1 = T2 ∧ compl(ϕ1, ϕ2)

compl(
⊕

I c!〈T1〉;ϕi, c&{ ˜lj 7→ φ′j}J)
def
= ∀i ∈ I ∃j ∈ J.li = lj ∧ compl(ϕi, ϕ

′
j)

compl(0, 0) = true

Figure 2.8: Complementary Relation

basic Session Typing analysis can hence be seen as a type and effect analysis along with

some restrictions on the permitted communication effects of message passing programs.

The concept of complementarity only fulfils our intuition for interactions which consist

of two participants. Global Session Types generalise the notion of complementarity

to describe how the interactions of an arbitrary number participants relate to each

other (Honda et al., 2008). We define a simplified version of Global Session Types in

Figure 2.9. The type d1 −→ d2 : c〈T 〉; G denotes that participant d1 sends a value of type

T over channel c to participant d2, and then continues with the behaviour specified in

G. This describes the duality of sends and receives expressed in complementarity. The

type d1 −→ d2 : c〈T̃ 7→ G〉; G denotes that participant d1 can make a choice (invoke a

service) that is offered by participant d2. This describes the duality of offering a service

and service selection. The continuation for each construct may contain behaviour of

participants other than d1 and d2, and hence we can represent temporal information

about the global communications behaviour. Consider the following Global Session

Type:

d1 −→ d2 : c〈Int〉;
d2 −→ d3 : c〈Bool〉;
0

(2.6)

This denotes that participant d2 will receive an integer from d1, and then proceed to

send a boolean to d3. Using the global description of the communications behaviour it

is possible to obtain a thread local description of the communications behaviour (Honda

et al., 2008). We define the projection function G � d, which generates the thread local

behaviour described by a global protocol, in Figure 2.10. Global Session Types can be

used to prove communication safety in systems with an arbitrary number of participants.

The earliest work on Session Typing focusses on two-party, synchronous communication

(Honda, 1993). Honda considers how to rule out communication errors, how to rule out

deadlock, and how to define bisimulation for Session Typing systems. Honda, Kubo,

and Vasconcelos extend Honda’s earlier work and describe how to represent method

invocation, unbounded interaction patterns, and delegation using Session Typing (Honda

et al., 1998). Some errors in (Honda, 1993; Honda et al., 1998) have been discovered

and corrected (Gay and Hole, 2005; Yoshida and Vasconcelos, 2006).
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G ::= d1 −→ d2 : r〈T 〉; G | d1 −→ d2 : r〈T̃ 7→ G〉 | µX.G | X | 0

Figure 2.9: Global Session Types

d1 −→ d2 : c〈T 〉; G′ � d1
def
= c!〈T 〉.G′ � d1

d1 −→ d2 : c〈T 〉; G′ � d2
def
= c?(T ).G′ � d2

d1 −→ d2 : c〈l̃ 7→ G〉I � d1
def
=

⊕
I c!〈T1〉;ϕi

d1 −→ d2 : c〈l̃ 7→ G〉I � d2
def
= c&{ ˜l 7→ (G � d2)}I

(µX.G) � d
def
= µX.(G � d)

X � d
def
= X

0 � d
def
= 0

Figure 2.10: Global Session Type Projection Function

Whilst most work on Session Typing has made use of π calculus style calculi (Honda,

1993; Mostrous et al., 2009; Bettini et al., 2008; Yoshida and Vasconcelos, 2006; Honda

et al., 2008), in some a λ calculus formulation is used (Gay et al., 2003; Gay and Vascon-

celos, 2007, 2010). In (Gay et al., 2003) Gay, Vasconcelos, and Ravara provide subtyping

for Session Types. In (Gay and Vasconcelos, 2007) Gay and Vasconcelos include a linear

type system. Additionally, they crucially introduce Session Typing for asynchronous

systems.

Honda, Yoshida and Carbone generalise Session Typing to sessions that can include more

than two parties (multi-party Session Typing) in a π calculus setting (Honda et al., 2008).

They introduce the concept of a Global Session Type, which represents communications

protocols between more than two participants. The global view can be projected down

to the local view of each role and how it should communicate with the other roles. The

communications mechanisms are also expanded to include multicast sending. They ex-

tend work on delegation, where an entity can pass responsibility for performing certain

actions within a session on to another entity. The formulation of delegation, however, is

such that the delegation is not completely transparent; it exposes implementation details

of the delegator to the delegate which could be either technically or commercially unde-

sirable. Bettini, Coppo, Luca, and Dezani-Ciancaglini solve the above limitations and

provide the first robust, multi-party, Session Typing system (Bettini et al., 2008). They

also guarantee global progress, the property that well typed programs will not deadlock,

and specifically that different global sessions will not interfere with and deadlock each

other.

Subtyping for Session Types is introduced in (Gay and Hole, 2005) which permits Session

Type specifications to be refined into a richer behaviour. The subtyping is extended in

(Mostrous et al., 2009) to thread local asynchronous subtyping, which permits the send
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and receive actions performed by a thread to be re-ordered in certain circumstances. A

simple example of this reordering is to permit moving sends in front of receives, which

increases the asynchrony of the the interleaved behaviour whilst maintaining the safety

and liveness properties. In (Deniélou and Yoshida, 2010; Gay and Vasconcelos, 2010),

it is shown how buffers with unbounded size can be identified, and how buffer bounds

can be extracted for bounded buffers, from the Global Session Type representation. It

is also shown how to perform thread local asynchronous subtyping without changing

buffer bounds.

A more detailed review of Session Typing literature can be found in (Dezani-Ciancaglini

and Liguoro, 2010).

2.3 Dynamic Software Update

The principle aim of Dynamic Software Update is to reduce the disruption that normally

occurs when programs need to be updated. When a program needs to be updated, the

traditional approach is to schedule some down time for the service, to take down the

program, update it, and restart it. Downtime can have financial costs (Scott, 1998) and

also presents concerns in safety critical systems.

If a program or service is stateless, such as an http server, a service on redundant

hardware can be used to handle requests whilst the primary service is updated (Stoyle,

2006). If state or interaction behaviour (such as a communications protocol) needs to

be preserved over the update, however, using redundant hardware to maintain a service

preserves the problem of new programs interacting with old state or protocols (Stoyle,

2006). Hence the primary concern of Dynamic Software Update is how to co-ordinate

the old and new code interacting with the old and new data.

In this section we describe the key design decisions surrounding Dynamic Software Up-

date, and consider the implications of said choices, with a particular emphasis on how

they influence safety properties. We begin by detailing the design decisions concerning

the semantics of a system that can be dynamically updated (Section 2.3.1). We then con-

sider safety for DSU, and how the prior design decision influence what safety properties

can be demonstrated (Section 2.3.2). We conclude with other important considerations,

including ease of use, efficiency, and case studies (Section 2.3.3).

2.3.1 Update Design Decisions

The semantics of Dynamic Software Update can be described in several key areas. Up-

dating code and data are intimately interlinked. Update linking is important to im-

plement code and data updating. Finally, update timing considers when an update is
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applied, and how the structure of code can influence when it is practical to perform an

update.

2.3.1.1 Updating Code

The most straightforward approach to updating code is to unload the entire binary of

the old program and to load the entire binary of the new program. In order to structure

and reason about updates code update is, for the most part, performed at a finer level

of granularity, that of the function or method.

There are two principal approaches that can be taken when replacing a function (re-

spectively method). The most common approach is to permit an update to replace the

body of the function, but preserve (or refine/sub-type) the signature of the function

(the types of the parameters, and the type of the return value) (Gilmore et al., 1998;

Hjálmtÿsson and Gray, 1998; Orso et al., 2002; Bierman et al., 2008; Kaashoek and

Arnold, 2009). Whilst this approach might seem restrictive, it is sufficient to cover the

majority of modifications (Neamtiu et al., 2005; Subramanian, 2010). In particular it

covers many security related updates (Kaashoek and Arnold, 2009); as delays to security

updates until scheduled downtime leaves a large window of vulnerability, the ability to

perform security updates without downtime is significant. The alternative is that an

update can replace a function, and change the signature of the function, or even delete

the function in its entirety. This approach is obviously more flexible, and is required for

a significant minority of updates (Neamtiu et al., 2005; Subramanian, 2010).

In order to update functions, we need a way to access and manipulate them. This is

primarily achieved using indirection (Subramanian et al., 2009; Hayden et al., 2011d,

2009; Neamtiu and Hicks, 2009; Boyapati et al., 2003; Sewell, 2001; Cook and Lee,

1983; Appel, 1994; Kaashoek and Arnold, 2009; Neamtiu et al., 2006; Baumann et al.,

2007). Managed languages perform indirection as a matter of course, performing a

table lookup on a function call to find the most relevant, or most recently compiled,

version of a function. This functionality can be leveraged by rewriting the lookup table

to point to the updated function body (Boyapati et al., 2003; Bierman et al., 2008;

Subramanian et al., 2009). In non-managed languages such as C/C++, this indirection is

often implemented on top of the program (Neamtiu et al., 2006), adding overhead during

normal execution. An alternate approach is, when updating a function, to overwrite the

first few assembly instructions of the function with a jump to the new definition; this

approach has been implemented for the Linux kernel, and operates with almost no

overhead (Kaashoek and Arnold, 2009).

It is also possible to update existing programs by directly manipulating functions that

are on the stack (Makris and Bazzi, 2009). This approach uses annotation and special
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compilation to create threads that can be interrupted and updated at runtime. This ap-

proach relies on specialist knowledge from the programmer, who has to write a program

that transforms the existing stack frame.

The code of a program need not be updated all at once. Indeed, most Dynamic Software

Update approaches that use indirection modify the function definition, and next time

that function is called the new version is used, but does not modify any instances of

the function that are on the stack. This approach can result in old code and new code

existing in the same program.

An alternative to replacing individual functions is to load an entirely new binary into

memory, and to start at some predefined point in that program’s execution (Hayden

et al., 2011b,d). The ability to resume execution at points other than the start of the new

program permits designers to, for example, skip initialising variables, which would erase

existing data which we want to keep. Hayden et al. argue that the approach of updating

individual functions requires complex tool support, is challenging to reason about, and

can add overhead due to the indirection discussed above. Whether the complexity and

overhead required in more complex analyses is justified is an open research topic.

2.3.1.2 Updating Data

Unless application data or interactions with other programs needs to be preserved over

the update application, it is easier to update a service using redundant hardware. Hence

programs where the old and new code interacts with the old and new data, and the

co-ordination thereof, are the key concerns and research areas for Dynamic Software

Update.

An updated program may use data with a different format to that of the previous version,

for example a record could be changed from {FirstName : String, LastName : String}
to {Name : String, Age : Integer} (Gurtner, 2011). In order for the new code to interact

with the old data, it must be transformed into the new format before the new code

accesses it. In addition we do not want the transformation to throw away the old data;

a transformation that initialises all data to a default value is comparable to stopping

the program and restarting, without performing DSU (Subramanian et al., 2009). One

possible transformation function would take a record in the old format, create a record

in the new format, concatenate the FirstName and LastName fields, put the in the Name

field, place a default value in the Age field, and return the new record. In systems where

the old and new code co-exist, and the data can be accessed by both, we similarly need a

transformation function from the new to the old format, to be applied before the old code

uses a new data value (Gurtner, 2011; Wernli et al., 2011). The state transformers can be

automatically generated using initialisation of default values or copying (Subramanian

et al., 2009), or written by the programmer when more complex transformations are
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required (Bierman et al., 2003; Stoyle et al., 2005; Soules et al., 2003; Hayden et al.,

2011d).

2.3.1.3 Update Linking

Linking code to data at runtime is known as dynamic linking (Cardelli, 1997; Drossopoulou

and Eisenbach, 2002). While the technology for linking identifiers to code and data

exists, managing those identifiers, and co-ordinating when they can be updated, is not

straightforward. Consider the following examples (Stoyle, 2006), where π1(x, x′) denotes

choosing the first item in a pair and π2(x, x′) denotes choosing the second.

letx = (4, 5) inπ1(π1(x, x))x (2.7)

Using a call by value reduction semantics this term could reduce as follows:

letx = (4, 5) inπ1(π1(x), x) −→ π1(π1(4, 5), (4, 5)) (2.8)

After this reduction it is no longer meaningful to discuss updating x. In order to main-

tain updatable identifiers as long as possible Stoyle shows how to delay substitution

but maintain contextual equivalence (Stoyle, 2006). These techniques can be used to

administrate re-linking at runtime and to increase the scope of where updates can be

applied.

2.3.1.4 Update Timing

Updatable programs typically make use of specialised API calls to apply updates, pos-

sibly performing some dynamic checks beforehand to ensure the update is safe (Hay-

den et al., 2011d, 2009; Neamtiu and Hicks, 2009; Boyapati et al., 2003; Sewell, 2001;

Kaashoek and Arnold, 2009; Neamtiu et al., 2006; Appel, 1994). Explicit language calls

to an update API requires the programmer to have a working knowledge of update and

requires them to reason about when would be a good time to perform updates, a signif-

icant addition in complexity when writing a program. In some cases the API calls can

be automatically inserted (Stoyle et al., 2005).

One other option is to provide some external update manager that introduces the update

without any knowledge of the original program (Baumann et al., 2007; Subramanian

et al., 2009). The manager monitors the program to be updated, waiting for a suitable

update points. One way to do this is to insert breaks (return barriers) at potential

update points that return control to the monitor. Potential points include function

entry and exit points, and loop back-edges (Subramanian et al., 2009).
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When code is replaced using indirection, old code in existing stack frames is usually

left unchanged. In such cases, irrespective of the point when the function bodies are

replaced, the update doesn’t really occur until the old code has returned.

In order for old code to continue to execute safely it must either not use any new data,

or any new data must be transformed into an old format before use. The reverse is

true for new code and old data. In order to simplify updates many systems employ

Representation Consistency (Stoyle et al., 2005). This denotes that, after an update

data is only in the new format. The conversion from old to new data can either be

performed eagerly (Stoyle et al., 2005; Sewell, 2001; Subramanian et al., 2009) or lazily

(Appel, 1994; Boyapati et al., 2003; Neamtiu et al., 2006; Gurtner, 2011). When updates

are performed lazily, the cost of performing the update may be amortised over program

execution. The disadvantage of laziness is that it requires monitoring the format of data,

which adds steady-state overhead. Eager updates can be implemented without steady

state overhead. The disadvantage eagerness is that in order to update all the existing

data a stop-the-world must be employed.

Programs that benefit most from dynamic updating are typically structured as long-

running event processing loops (Subramanian, 2010). In order to make use of the func-

tion body replacement paradigm, long running loops can be extracted into recursive

functions, so that a main loop can run to completion using the old code, and that the

next time the loop starts (the next call of the loop function) the new code will be used.

This can be done automatically (Neamtiu et al., 2006).

Multi-threaded programs provide a particular challenge for existing DSU systems. If

updates are performed when the program reaches update point (either explicit or anno-

tated by some monitor) as each thread can reduce independently there is no guarantee

that all the threads will reach safe points at the same time. It is possible to block

one thread when it reaches a safe point in the hope that the other threads will reach

safe points. Other threads could, however, be reliant on the blocked thread to make

progress. In some approaches the blocked thread is released after a certain amount of

time (Neamtiu and Hicks, 2009). This technique can introduce overhead and delay of

an update in the best case, and deadlock to an otherwise live program in the worst case.

It is possible to require that no locks are held at update points, in order to try to avoid

deadlock (Hayden et al., 2011b). In initial experiments this has not introduced deadlock,

but this property has not been proved formally. In addition, stack transformation, if

properly designed, can be immediately applied to multi-threaded programs without risk

of introducing update-related deadlock (Makris and Bazzi, 2009).
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2.3.2 Safety

While it is possible to naively modify any running program in arbitrary ways, the chal-

lenge is to do so in a way that leaves a valid updated program, for some definition

of valid. The primary definition considered in existing research is type safety (Stoyle,

2006; Bierman et al., 2008; Hjálmtÿsson and Gray, 1998; Makris and Bazzi, 2009; Gurt-

ner, 2011; Subramanian, 2010; Neamtiu and Hicks, 2009; Boyapati et al., 2003; Appel,

1994; Neamtiu et al., 2006; Stoyle et al., 2005). Other safety issues include transaction

safety (Neamtiu et al., 2008; Neamtiu and Hicks, 2009), update validity (Gupta et al.,

1996), assurance safety by testing (Hayden et al., 2009), and verification of specifications

(Hayden et al., 2011a).

2.3.2.1 Type Safety

Type safety is concerned with the prevention of applications from performing illegal

operations (those that are disallowed in normal execution). Simple examples of these

include performing integer arithmetic on boolean values, or attempting to call a function

that doesn’t exist. In order to prevent type errors we must co-ordinate how new and

old code interact with each other, and with the data. This problem can be simplified

by making use of representation consistency, the requirement that data or objects only

ever be in one format.

One method of simply showing type safety is to require that any function that is to be

updated is not on the call stack when the update is applied. This approach, known as

activeness safety, neatly partitions old from new code, ensuring that at any one time code

and data from only one version are being executed. Activeness safety is one of the most

common approaches in DSU (Baumann et al., 2007; Soules et al., 2003; Baumann et al.,

2005; Subramanian, 2010; Altekar et al., 2005; Kaashoek and Arnold, 2009) and can be

implemented with a simple dynamic check. The requirement that no function that is

to be updated is on the stack can lead to an update being delayed for an unbounded

time (Subramanian, 2010).

If we permit active functions to be updated, and do not perform stack transformation

on the code of these active functions, then the old code could access data that has been

transformed into a new format. One solution (known as con-freeness safety) is to ensure

that the remaining old code (that to be executed before a new function body is called)

does not make use of the format of the data (referred to as using it concretely). Consider

the following example:

letx = (4, 5) inπ1(x, x) (2.9)
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If x were updated to an integer value (here 9) rather than a pair the above code would

still be safe, as it does not directly use the fact that x is a pair:

letx = 9 inπ1(x, x) −→ π1(9, 9) −→ 9 (2.10)

If the code made direct use of the structure, however, changing to an integer value would

lead to an error:

letx = 9 inπ1(π1(x), x) −→ π1(π1(9), 9) −→ π1(9) −→ error (2.11)

The original work states that “if code simply passes data around without relying on its

representation, then updating that data poses no problem” (Stoyle et al., 2005). We

can see that, in Equations 2.9 and 2.10, that the variable x is never used in a way that

makes use of its tuple structure (it is only used to construct a new data structure), and

hence the usage there is not concrete. In Equation 2.11, however, the tuple structure is

used (by the splitting action φ1(x)), and hence the usage there is concrete. When some

code does not use a data type T concretely it is referred to as T -concreteness free, or

T -con free. It is possible to automatically detect regions of code that are T -con free for

all types that are modified by an update (Stoyle et al., 2005). Any update that occurs

in one of these regions will be safe. It is possible to leverage these regions in a multi-

threaded setting, waiting until all threads happen to be in a safe region, then pausing

and updating (Neamtiu and Hicks, 2009). Preliminary experimental results show that

deadlock or update delay does occur, but only rarely.

Some approaches do not require representation consistency, and permit code to interact

with old and new versions of data (Hjálmtÿsson and Gray, 1998; Duggan, 2005; Ajmani

et al., 2006; Gurtner, 2011). One approach to ensure type-safe data usage is bi-directional

transformation functions (Duggan, 2005). These functions transform the data from old

to new formats and vice versa. A monitor can then be used to insert transformations

when old code uses new data and vice-versa. A similar technique for object-oriented

programs is proxy interfaces (Hjálmtÿsson and Gray, 1998; Ajmani et al., 2006; Gurtner,

2011). When an update is introduced, proxies are created for each object, so that

any calls to an old class interface are translated into calls to the new interface. The

additional indirection required is the primary reason why most designs avoid the use of

these techniques.

2.3.2.2 Transaction Safety

In addition to type safety there are other properties that we may wish to preserve,

particularly over the update itself. Consider a program that adds a log entry once per
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iteration of the main loop:

1 main

2 f()

3 . . .

4 g()

5 h()

6 main()

(2.12)

where f() and g() are function calls. In the old code the log entry is performed by

function g. Consider an update that changes the bodies of f and g but not the main

function itself, and where in the updated program the log entry is performed by f′ and

not in g′. Consider also a reduction where the update is applied on line 4. The remaining

code in this iteration is:
4 g′()

5 h()

6 main′()

(2.13)

So in this iteration of the main loop the log entry will not be performed by g, and

f has already executed under the old definition. Hence the log entry will be skipped

in this iteration. Transaction aids programmer reasoning about update by ensuring

that annotated transactional regions appear to behave entirely with old code or entirely

with new code (Neamtiu et al., 2008; Neamtiu and Hicks, 2009). They cannot, as is

demonstrated here, behave with an old version of one function, and a new version of a

different function. Note that when a given update does not update some function, such

as h, then this function can be disregarded for the purposes of considering when the

update should occur, as it is the same before and after such an update.

2.3.2.3 Update Validity

Gupta et al. introduce the notion of update validity (Gupta et al., 1996). Consider

a program point with code P and its state σ. An update consists of some new code

P ′, and a state transformation function s. After an update the program point will be:

[s(σ)] P ′. An update is said to be valid if the update program can reduce to some other

point [σ′′] P ′′ that is also reachable by reducing the new code with initial state, in effect

that an update [s(σ)] P ′ is valid if [s(σ)] P ′ → [σ′′] P ′′ and if [σinit] P
′ → [σ′′] P ′′.

Gupta et al. show that proving this is, in general, undecidable. They present restrictions

to which programs and updates are admissible, that enables proof of update validity.

The restrictions are rather severe, and Gupta et al. do not consider type safety issues.
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2.3.2.4 Assurance Safety By Testing and Verification

Many developers, rather than building formal models and ensuring that their program

adheres to that model, use regression testing as the standard against which the program

is measured. This consists of a suite of tests that are run any time a program is changed.

The semantics of update itself can introduce unexpected bugs. Performing regression

testing on all possible update points, particularly when programs contain concurrency, is

prohibitively computationally expensive. In (Hayden et al., 2009), Hayden et. al. show

how to reduce this state space into equivalence classes, so that only a representative

member need be tested.

This approach is extendible to verification (Hayden et al., 2011a). Hayden et al. define

a transformation that merges the old and new versions of a program to create a single

program for verification. They describe properties that should be preserved across up-

dates, such as the presence of key-value pairs in a table, even if the internal table format

is changed. They prove their merging transformation correct, and show how the DSU

specific properties can be checked using off-the-shelf tools that have no understanding

of DSU. The is approach incurs an average slow down factor of only four, but can only

handle single-threaded programs.

2.3.2.5 No Safety

Some systems do not make any provisions for guaranteeing safety. Edit and continue

development for integrated development environments provide some basic functional-

ity to permit the programmer to change code and state during debugging, but makes

no guarantees that the changes will be safe (Dmitriev, 2001; Eaddy and Feiner, 2005;

Thomas et al., 2010). JRebel is another debugging tool, for Java web applications under

development; it intercepts all method invocations and calls the most recent version, but

does no state transformation, and hence is not type safe (ZeroTurnaround, 2011). In

(Stewart and Chakravarty, 2005), which implements DSU for Haskell, any data migra-

tion is done by serialisation, transformation, and re-injection; these are outside the type

system and hence not type safe.

One approach where the lack of safety guarantees is intentional is in Erlang (Wikstrom

and Williams, 1993). The programming paradigm in Erlang is to assume that various

parts of a program (threads, databases, etc.) will fail at some point, and to program

defensively. The methodology for update in Erlang is to change the function body and

perform any state transformations immediately, and if the remaining old code happens

to touch the new data to simply handle the runtime exception that will then be thrown

(Erlang, 2010).
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2.3.3 Other Considerations

As the aim of DSU is to accommodate unforeseen changes, at unspecified points in

execution, it can be difficult to conceptualise how and when updates will occur, and

what they will do. Hence ease of use, for programmers, is a key issue in any production

DSU approach. Tool support for automatically generating the updates themselves, using

the difference between two versions of a program, is included in most DSU approaches

aimed at developers (Neamtiu et al., 2006; Gregersen and Jorgensen, 2009; Subrama-

nian, 2010; Thomas et al., 2010; Hayden et al., 2011d). In many systems, however, some

programmer intervention is required, particularly in writing non-trivial state transform-

ers (Neamtiu et al., 2006; Hayden et al., 2011d). Some authors argue that reasoning

about the behaviour of an update program, particularly when modules or functions are

replaced rather than the entire program, is the most difficult cognitive burden for users

of DSU (Neamtiu et al., 2008; Hayden et al., 2011d). Others argue that transparency,

the ability to use DSU without understanding the semantics or changing coding prac-

tices, for example by learning to write state transformation functions, is key to enabling

access to DSU in production systems (Gregersen and Jorgensen, 2009). Further research

into the practices of software engineers are clearly required.

There are several case studies relevant to DSU in general. The type of changes that

occur in practice is the focus of the majority of studies. The incidence of updates that

change function or method signatures is surprisingly high, and such changes are included

in 10-60% of updates (Neamtiu et al., 2005; Baumann et al., 2007). In addition, the

size of updates does not appear to strongly affect the proportion of updates that change

signatures (Tempero et al., 2008). The majority of complexity of analyses for DSU,

and inefficiencies in implementations, comes from supporting such changes. We consider

that, given the proportion of updates that perform changes to signatures, some overhead

and cognitive complexity is justified in order to provide update support.

The other case studies focus on dynamic behaviours that can occur when performing

DSU. The presence of errors caused by update, and the capability of activeness and

con-freeness properties to detect and prevent such errors, is explored in (Hayden et al.,

2011c). The majority of errors that were not detected by these properties occurred

in updates performed during the initialisation phase of a program. As the majority

of updates are assumed to occur during long running main loops, this is not a serious

problem. In addition, these properties permitted most updates to safely occur during

the main loops, showing that the algorithm was not conservatively preventing updates in

the key sections. In (Gregersen and Jorgensen, 2011), interesting, but non-erroneous (at

least in terms of type or signature errors) behaviour that occurs when performing DSU

in an object oriented system is documented. Transient inconsistency occurs when an

updated application is temporally in an unreachable runtime state. An oblivious update

is the absence of an expected runtime effect that would have occurred if the system was
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started from scratch. Phantom objects appear when classes are removed by a dynamic

update, but live objects that belong to that class remain. Gregersen et al. suggest

various design patterns that can be used to make programs more amenable to updates

and to avoid the described phenomena. They particularly emphasise loosely coupled

designs, application logic being based on a dynamic interpretation of a program and its

current state and not on static assumptions, and the use of declarative registrations of

listener objects.

Systems that support DSU introduce overhead above static programs. The majority

of the overhead concerns permitting changes to function or object signatures. In non-

managed languages, such as those based on C and C++, the indirection necessary to

update functions or modules introduces an overhead during steady state (non-updating)

execution. Depending on the implementation details this overhead is often between 2-

10% in most cases (Neamtiu and Hicks, 2009; Boyapati et al., 2003). In situations where

the overhead was higher (10-50%) the overhead appeared only in certain circumstances,

and was reduced when a different compiler was used or the program was used in a

distributed rather than single-computer setting (Makris and Bazzi, 2009; Neamtiu et al.,

2006). The interplay between network semantics, compiler semantics, and DSU would be

an interesting path for future research. In managed languages such as Java, much of the

indirection for function and method definitions is included by default in the program. It

is possible to leverage these facilities to provide DSU with no steady-state overhead verses

the static managed language (Subramanian, 2010). When whole program transformation

is employed, rather than replacing functions or classes, the function indirection is not

required, and DSU can be provide for non-managed languages without any steady-state

overhead (Hayden et al., 2011d,b)
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Chapter 3

Safety and Liveness Of

Concurrent Programs

In this chapter we consider how to represent safety and liveness properties for systems

with a variety of side effecting semantics. We explore the communication safety and

deadlock freedom properties for asynchronous message passing programs with blocking

receives, and provide examples of erroneous programs and their reductions (Section 3.1).

We provide a multi-threaded lambda calculus with operators used to access shared state,

where the shared state can have an arbitrary semantics (Section 3.2). We show how to

use a type and effect system to abstract the impure behaviour of a program, in the

vein of Session Types (Section 3.3). We provide a general, inductive description of the

communication safety and Deadlock Freedom properties, under the arbitrary shared

state semantics (Section 3.4). We show how to re-formulate existing work on Global

Session Types, and prove safety and liveness for blocking message passing programs, in

an intuitive inductive manner (Section 3.5.1). We also show how to formulate Global

Session Types, and prove safety and liveness, for non-blocking message passing, using

a similar methodology to that used for blocking message passing (Section 3.5.2). We

present our conclusions and describe on our novel contributions in Section 3.6.

rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖ snd(c1, 2).rcv(c3)(x2 : Int).
snd(c2, x2).0 ‖ rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

Figure 3.1: Message Passing Example
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3.1 Motivation: Message Passing Programs

In this section we explore communication safety and liveness for asynchronous message

passing programs with blocking receives, and provide examples of erroneous programs

and their reductions.

3.1.1 Communication Errors

We introduce the concept of Communication Errors in Section 2.2. Intuitively, these

occur when a thread receives a value which is not of the type that it expects. The

simplest example of this is when the type of a value being sent does not match up with

the expected receive type:

1 [c 7→ ∅] snd(c, true).0 ‖ rcv(c)(x : Int).x+ 4

2 → [c 7→ true] 0 ‖ rcv(c)(x : Int).x+ 4

3 → [c 7→ ∅] 0 ‖ true + 4

(3.1)

The program on line 3 is not typable. The effect of the program on line 1 can be

expressed as c!〈Bool〉 ‖ c?(Int). When written in this form the inconsistency is clear.

The complementarity of the effect of a program is not, however, a sufficient condition

to show an absence of Communication Errors; it only is so when there are no messages

in the message queues. Existing messages can cause errors even for complementary

programs:

1 [c 7→ true] snd(c, 3).0 ‖ rcv(c)(x : Int).x+ 4

2 → [c 7→ true, 3] 0 ‖ rcv(c)(x : Int).x+ 4

3 → [c 7→ 3] 0 ‖ true + 4

(3.2)

The program on line 3 is also not typable. The effect of the program on line 1 is

c!〈Bool〉 ‖ c?(Bool); this effect is complementary, according to the standard defini-

tion (Honda, 1993). However, since there are messages in the queue, in order to rule

out communication errors and deadlock we cannot consider solely the effect of the code.

We must also consider the state of the message queues. We do this by ensuring that

the messages in the queue are complementary to the effect of the code, and that after

that point the effects are complementary (Bettini et al., 2008). We can show a similar

program is safe:

1 [c 7→ 3] 0 ‖ rcv(c)(x : Int).x+ 4

2 [c 7→ ∅] 0 ‖ 3 + 4

3 [c 7→ ∅] 0 ‖ 7

(3.3)
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1 [σ∅] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖
snd(c1, 2).rcv(c3)(x2 : Int).snd(c2, x2).0 ‖
rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

2 [c1 7→ 2] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖
rcv(c3)(x2 : Int).snd(c2, x2).0 ‖ rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

3 [σ∅] snd(c2, true).snd(c3, 2 + 1).0 ‖ rcv(c3)(x2 : Int).snd(c2, x2).0 ‖
rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

4 [c2 7→ true] snd(c3, 2 + 1).0 ‖ rcv(c3)(x2 : Int).snd(c2, x2).0 ‖
rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

5 [σ∅] snd(c3, 2 + 1).0 ‖ rcv(c3)(x2 : Int).snd(c2, x2).0 ‖ rcv(c2)(x3 : Int).0

6 [c3 7→ 3] 0 ‖ rcv(c3)(x2 : Int).snd(c2, x2).0 ‖ rcv(c2)(x3 : Int).0

7 [σ∅] 0 ‖ snd(c2, 3).0 ‖ rcv(c2)(x3 : Int).0

8 [c2 7→ 3] 0 ‖ 0 ‖ rcv(c2)(x3 : Int).0

9 [σ∅] 0 ‖ 0 ‖ 0

Figure 3.2: Safe Blocking Semantics Reduction

The effect of this program is 0 ‖ c?(Int). Here, the c?(Int) is complementary to the

Int value in the message queue.

The influence of the semantics of the shared state on Communication Safety can be illus-

trated using the program in Figure 3.1. Under a semantics with blocking receives there

is no reduction sequence that contains Communication Errors; one such safe reduction

is shown in Figure 3.2.

One alternate semantics for message passing has non-blocking receives; when a receive

action is performed on an empty queue the action does not block. Normally, when

performing a receive action on an empty queue, some specific error value would be

returned, and the control flow would then handle the fact that a value of the expected

type has not been returned. For the sake of the next example, however, we assume

such a receive returns a default value of the expected type. Under such a semantics we

can obtain a Communication Error, as in Figure 3.3. As the second thread does not

synchronise by receiving the value from the first thread, it can bypass its receive and

perform its send to the third thread (snd(c2, x2). . . .) before the first thread performs

its send to the third thread (snd(c2, true). . . .). This leads to the third thread receiving

an Int when it is expecting a Bool. This exemplifies how synchronisation behaviour is

key to proving safety in many circumstances.
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1 [σ∅] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖
snd(c1, 2).rcv(c3)(x2 : Int).snd(c2, x2).0 ‖
rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

2 [c1 7→ 2] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖
rcv(c3)(x2 : Int).snd(c2, x2).0 ‖ rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

3 [c1 7→ 2] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖ snd(c2, 0).0 ‖
rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

4 [c1 7→ 2, c2 7→ 0] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖ 0 ‖
rcv(c2)(x3 : Bool).rcv(c2)(x3 : Int).0

5 [c1 7→ 2] rcv(c1)(x1 : Int).snd(c2, true).snd(c3, x1 + 1).0 ‖ 0 ‖ error

Figure 3.3: Non Blocking Semantics Gives Rise to Communication Error

3.1.2 Deadlock

Deadlock, due to message passing, occurs when a communication action is blocked in-

definitely. If no communication actions can block then we can trivially show an absence

of deadlock. As we show in Example 3.3, however, intuition about which programs are

safe can be incorrect when programs perform less synchronisation than we expect; in

the above examples, synchronisation occurs when individual threads block temporarily

at receives until messages become available. We therefore consider it important to work

in systems which have some form of synchronisation, and which hence can deadlock.

The simplest example of deadlock is a program where one process expects a value to be

sent and the others do not:

1 [c 7→ ∅] 0 ‖ rcv(c)(x : Int).x+ 4

2 6−→
(3.4)

Here the two processes do not have complementary behaviour, and will obviously dead-

lock. Similarly to Example 3.2, complementary behaviour is not a sufficient condition

to rule out deadlock when there are existing messages in the queue:

1 [c1 7→ l2] case c1 of {l1 7→ snd(c2, 3).0, l2 7→ 0} ‖ sel(c1, l1).rcv(c2)(x : Int).0

2 [c1 7→ l2, l1] case c1 of {l1 7→ snd(c2, 3).0, l2 7→ 0} ‖ rcv(c2)(x : Int).0

3 [c1 7→ l1] 0 ‖ rcv(c2)(x : Int).0

4 6−→
(3.5)

In this case existing messages influence the control flow of the program, leading to the

second process expecting the l1 service whilst the first process provides the l2 service.
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t ::= Terms
| v Values
| X Recursion Variables
| t t Application
| (α(ṽ), T ) State Access
| if t then t else t Conditional

| caseα(ṽ) in {T̃ 7→ t} Case Split
| error Error

v ::= Values
| n Integers
| b Booleans
| () Unit
| r Resources
| x Variables
| l Service Labels
| recX(x : T ).t Recursive Functions

P ::= Process Threads
| t Single Term Thread
| P ‖ P Parallel Compostition

Figure 3.4: Language

We conclude that the safety and liveness of a program depends on: 1) the communication

actions of the program, 2) the messages in the message queues, and 3) the semantics of

the communication actions.

3.2 Language Definitions

We define our language in Figure 3.4 and our operational semantics in Figure 3.5. Values

consist of integers, booleans, the unit value, variables, resources, and recursive functions.

Resources are handles into the runtime state, such as a channel name c in previous exam-

ples. Labels are used to provide unique service labels. Recursive functions recX(x : T ).t

consist of a recursion variable X, a formal parameter x, the expected type T of the vari-

able (we define types in Section 3.3), and the body of the function t. Function application

is denoted as t1 t2. The term (recX(x : T ).t) v reduces to t[v/x][recX(x : T ).t2/X],

assuming v : T , and error otherwise. We make use of an eager reduction strategy, and

hence use t1; t2 as syntactic sugar for (recX(x : T ).t2) t1, where x and X are not free

in t2. We also make use of the syntactic sugar λx : T.t for recX(x : T ).t when X is not

free in t.

Accesses to the shared state are denoted using (α(ṽ), T ). This denotes that action

α is performed using parameters ṽ, and this access should return a value of type T .
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[σ] t1
γ−→ [σ′] t′1

[σ] t1 t2
γ−→ [σ′] t′1 t2

[σ] t2
γ−→ [σ′] t′2

[σ] v t′2
γ−→ [σ′] v t′2

[σ] recX(x : T ).t v
τ−→ [σ] t[recX(x : T ).t/X][v/x]

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] σ(α(ṽ))

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ 6= T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] error

[σ] if true then t2 else t3
τ−→ [σ] t2 [σ] if false then t2 else t3

τ−→ [σ] t3

[σ] t1
γ−→ [σ′] t′1

[σ] if t1 then t2 else t3
γ−→ [σ′] if t′1 then t2 else t3

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : Ti Ti ∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] ti

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ T ′ /∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] error

[σ] P1
γ−→ [σ′] P ′1

[σ] P1 ||P2
γ−→ [σ′] P ′1 ||P2

[σ] P2
γ−→ [σ′] P ′2

[σ] P1 ||P2
γ−→ [σ′] P1 ||P ′2

Figure 3.5: Operational Semantics

State accesses are not permitted to return values containing resources. Were we to

permit resources to be passed around, then channels could be passed around, and we

would need to consider session typing techniques for delegation. In a type and effect

formulation, this would require dependent typing within the effect system, which whilst

possible would significantly complicate our current analysis. Examples of state accesses

include (snd(c, 3),Unit) and (rcv(c), Int) which denote the communication actions of

snd(c, 3) and rcv(c)(x : Int) respectively, but not their continuations or the variable

binding for rcv.

The conditional operator is standard. Service branching is provided using the case split

operator caseα(ṽ) in {T̃ 7→ t}. This operator performs the communication action α(ṽ),

as defined above, and then does a case split on the type of the result. If the value

returned is not of an expected type then the case split reduces to error. We denote

errors using the error term; errors cannot reduce, in and of themselves.

We parameterise our work on a resource model, which is a collection of states ranged

over by σ, and a function that maps a state and a label to a return value and another

state: we write σ(α(ṽ)) = v and σ
α(ṽ)−−→ σ′ to denote this map. The resource model is

a generalised model, and hence can be instantiated with either finite or infinite models.

In particular, it is not restricted to queues, though in this thesis we will only consider

examples that use queues.
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〚snd(c, e).t〛 def
= (λx : T.(snd(c, x),Unit) 〚e〛); 〚t〛 Sends

〚rcv(c)(x : T ).t〛 def
= (λx : T.〚t〛) (rcv(c), T ) Receives

〚if e then t else t〛 def
= if 〚e〛 then 〚t〛 else 〚t〛 Conditionals

〚sel(c, l).t〛 def
= (snd(c, l),Unit); 〚t〛 Service Selection

〚case c of {l̃ 7→ t}〛 def
= case rcv(c) in { ˜Lab l 7→ 〚t〛} Service Branching

〚µX.t〛 def
= recX(x : Unit).〚t〛 Recursion, where x is

not free in t

〚X〛 def
= X () Recursion Variable

〚error〛 def
= error Errors

〚e〛 def
= . . . Typical λ-calculus

embedding of numbers,
etc.

〚P ‖ P 〛 def
= 〚P 〛 ‖ 〚P 〛 Parallel Threads

σ[c 7→ q]
snd(c,v)−−−−−→ σ[c 7→ (q, v)] σ[c 7→ (v, q)]

rcv(c)−−−−→ σ[c 7→ q]

σ(snd(c, v))
def
= () σ[c 7→ v, q](rcv(c))

def
= v

Figure 3.6: Blocking Message Passing Calculus Embedding

We can embed the message passing calculus presented in Section 2.2 in our language. We

describe this embedding in Figure 3.6; it is relatively straightforward, using functions to

represent binding of received values. Recursion variables are mapped to an application

of unit to the recursion variable.

3.3 Behavioural Abstraction

We use effects as an abstraction of the actions on the shared state. We describe this

behaviour in both thread-local and global (parallel) settings. We also present an effect

system that determines the effect of a program. In order to provide our safety and

liveness guarantees, however, we need to do more than determine the effect of a program.

We need to place some restrictions on which programs are valid. We describe these

restrictions in Sections 3.4.

3.3.1 Parallel and Local Session Types

In Figure 3.7 we present the syntax of our types and effects.

Types consist of base types, function types, and two nominal types (those where the

type is defined by the singleton value which has said type). A function type T1
ϕ−→ T2
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ϕ ::= Local Effects

| (α(T̃ ), T ) State Access
| ϕ; ϕ Sequence
| ϕ⊕ ϕ Internal Choice
| ϕ&ϕ External Choice
| µX.ϕ Recursion
| X Recursion Variable
| ε Empty Effect
| error Error

T ::= Types
| Bool Booleans
| Int Integers
| Unit Units
| Res r Resources
| Lab l Labels

| T
ϕ−→ T Functions

Φ ::= Parallel
Effects

| ϕ Local effect
| Φ ‖ Φ Parallel

Composition

Figure 3.7: Types, and Local and Parallel Effects

is annotated with the latent effect ϕ of the function’s body (as in Section 2.1). This

denotes that when an argument is applied to the function, the body of the function will

reduce with an effect described by ϕ. To aid our later analyses we wish to distinguish

all resources and labels at the type level. We hence use nominal types for resources and

labels; a resource r has type Res r, and a label l has type Lab l, respectively.

Local Effects describe the structure of actions performed by a single thread on the shared

state. An abstract action (α(T̃ ), T ) denotes performing an action α, where the types

of the parameters to the action are T̃ , and the expected type of the return value is T .

For example, the action (snd(c, 3),Unit) is abstracted using (snd(Res c, Int),Unit).

Sequencing, recursion, empty effects, and errors are standard. Internal choice ϕ1 ⊕ ϕ2

denotes that a program can proceed with either the behaviour described in ϕ1 or the

behaviour described in ϕ2, and the choice will be made within the given process in an

opaque manner. We will use internal choice to describe the behaviour of if statements.

External choice ϕ1&ϕ2 denotes that a program can proceed with either the behaviour

described in ϕ1 or that described in ϕ2, but that in order to choose a specific path the

first action of that path must be reducible, and not blocked, at the time the choice is

made. Parallel Effects are simply Local Effects in parallel with each other.

We make use of an equivalence relation over effects, which is the least relation defined

structurally over Parallel Effects using:

ε; ϕ ≡ ϕ ≡ ϕ; ε µX.ϕ ≡ ϕ[µX.ϕ/X] (3.6)
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3.3.2 Typing Rules

In Figure 3.8 we present our type and effect system. A typing judgement ϕ o Γ ` t : T
denotes that, under typing assumptions Γ the communication behaviour of some code

t is represented by the effect ϕ, and the code will return a value of type T . A typing

judgement for parallel processes is similarly defined, without the typing environment or

the return type. We make use of a type system for simple expressions, whose judgement

t : T denotes that t is a term, that performs no actions on the shared state, whose return

type is T .

Values are abstracted to empty effects. Resources and labels are nominally typed. Vari-

ables are typed using the typing assumptions. Actions are abstracted using the types of

the parameters, and we require that an action does not return a resource type. Recursive

functions are typed under the assumption that the variable x has type T1, and that the

function itself has type T1
X−→ T2. An action (α(ṽ), T ), that reduces the shared state

using label α(ṽ) and expects a return value of type T , assumes that the value returned

will be of the expected type, and that it will not be a resource. Note that at this stage

we have no guarantee that the return value actually will be of the expected type. In

order to ensure that communication errors do not occur, such as that in Example 3.2,

we need to verify that no such errors exist. We describe this verification in Section 3.4.

Recursive functions are abstracted using a function type, with a latent recursive effect.

When typing the body of the function we assume that the recursion variable has the

type of a function from T1 to T2, with the latent effect X to denote the recursion.

We require that x is not free in Γ, T1, T2, or ϕ. This prevents the function from being

passed a resource variable as a parameter, and effectively prohibits functions from having

polymorphic effect dependent on the function parameter. Application is abstracted as

a sequence of effects, firstly that of reducing the left hand side to a value, then that of

reducing the right hand side to a value, then that of reducing the function body.

Conditional terms are abstracted as the effect of the term being split over, followed by

the internal choice between the effects of the consequent and the alternative. We require

that the predicate not access the shared state. A case split caseα(ṽ) in {T̃ 7→ t}M is

abstracted as the external choice between, for each m ∈M , performing action α(T̃ ) and

receiving a value of type Tm, followed by the effect of the continuation tm. As such &ϕi

is syntactic sugar for ϕ1& . . .&ϕn where I = {1, . . . , n}. We also assume that none of

the values received are resources. Threads are typed using an empty type environment.

Parallel threads are abstracted as the parallel composition of their constituent effects.

3.3.3 Semantics of Effects

As the type and effect system rules out simple type errors such as 4 + true, type errors

can only be introduced by the reception of a value which is not of the type that a
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ε o Γ ` n : Int ε o Γ ` b : Bool ε o Γ ` () : Unit ε o Γ ` r : Res r

ε o Γ ` x : Γ(x) ε o Γ ` l : Lab l
ε o Γ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o Γ ` (α(ṽ), T ) : T

ϕ o Γ, x : T1, X : T1
X−→ T2 ` t : T2

x /∈ fv(Γ), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x : T1).t : T1
µX.ϕ−−−→ T2

ϕ1 o Γ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ ` t1 t2 : T1

ϕ1 o Γ ` t1 : Bool
ϕ2 o Γ ` t2 : T ϕ3 o Γ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o Γ ` if t1 then t2 else t3 : T

ϕi o Γ ` ti : T ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ ` caseα(ṽ) in {T̃ 7→ t} : T

ϕ o Γ ` t : T ϕ ≡ ϕ′

ϕ o Γ ` t : ϕ′
ϕ o ∅ ` t : T

` t : ϕ

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

Figure 3.8: Typing Rules

program expects. In other words, the only source of type errors is actions performed

on the shared state; we can therefore prove an absence of type errors by considering

the actions on the shared state alone. In order to reason about how the effect of a

program reduces, in the presence of some shared state, we also make use of an abstract

resource model which abstracts away from particular values associated with resource

states and provides a representation of the resource types. An abstract resource model

is a collection of abstract states ranged over by Σ and a function that maps a state and

an abstract label to a type and another abstract state: we write Σ(L) = T and Σ
L−→ Σ′

as above. Abstract actions are of the form α(T̃ ), so that a label α(ṽ) corresponds to

a unique abstract label α(T̃ ) via simple typing of values. We assume the fact that we

can relate the resource model and abstract resource model via an abstraction map Λ

with the property that σ
α(ṽ)−−→ σ′ implies Λ(σ)

α(T̃ )−−−→ Λ(σ′) and σ(α(ṽ)) : Λ(σ)(α(T̃ )).

We include a semantics for effects and abstract models in Figure 3.9, with a definition

of the label abstraction rule in Figure 3.10.

If an action returns a value of the expected type ,then that action reduces to the empty

effect. If that action does not return a value of the expected type that action reduces

to an error. Sequential composition and internal choice are standard. External choice

can only reduce to one of the branches when that branch can also reduce (i.e. it is

not blocked). When both options are enabled, if one can reduce without causing an

error, that reduction will be chosen. If both can reduce without error then the path
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Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) = T

[Σ] (α(T̃ ), T ) −→ [Σ′] ε

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) 6= T

[Σ] (α(T̃ ), T ) −→ [Σ′] error

[Σ] ϕ1
γ−→ [Σ′] ϕ′1

[Σ] ϕ1 ; ϕ2
γ−→ [Σ′] ϕ′1 ; ϕ2

i ∈ 1, 2

[Σ] ϕ1 ⊕ ϕ2 −→ [Σ] ϕi

∃ϕ′i, αi. [Σ] ϕi
αi(T̃ )−−−→ [Σ′i] ϕ

′
i ∧ error ∈ ϕ′i

[Σ] ϕ1&ϕ2
αi(T̃ )−−−→ [Σ′i] ϕ

′
i

∀ϕ′i, αi. [Σ] ϕi
αi(T̃ )−−−→ [Σ′i] ϕ

′
i ⇒ error ∈ ϕ′i

[Σ] ϕ1&ϕ2
αj(T̃ )
−−−→ [Σ′j ] ϕ

′
j

[Σ] µX.ϕ −→ [Σ] ϕ[µX.ϕ/X]
Φ ≡ Φ1 [Σ] Φ1 −→ [Σ′] Φ2 Φ2 ≡ Φ′

[Σ] Φ −→ [Σ′] Φ′

[Σ] Φ1
γ−→ [Σ′] Φ′1

[Σ] Φ1 ||Φ2
γ−→ [Σ′] Φ′1 ||Φ2

[Σ] Φ2
γ−→ [Σ′] Φ′2

[Σ] Φ1 ||Φ2
γ−→ [Σ′] Φ1 ||Φ′2

Figure 3.9: Effect Semantics

ε o ∅ ` vi : Ti
α(T̃ ) ` α(ṽ)

Figure 3.10: Label Abstraction

is chosen non-deterministically. If both can reduce with an error then the path is also

chosen non-deterministically. Recursion unfolding, equivalence reduction, and parallel

reduction are standard.

One contribution in this area is the explicit definition of what type should be returned

for a given shared state access. Whilst this is currently done in Session Typing analyses

for receive actions, we extend it to all actions. One use for being able to return, and

handle, different types for the same action permits us to provide information about the

shared state and how it has responded to the action. This is particularly used in our

handling of the control flow of non-blocking message passing (Section 3.5.2).

3.4 General Formulation

In order to provide safety and liveness guarantees we need to do more than determine

the effect of a program. We must place some restrictions on which programs are valid, in
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G0(Σ,Φ)
def
= true

Gk+1(Σ,Φ)
def
=

 [Σ] Φ −→ [Σ′] Φ′ ⇒ Gk(Σ′,Φ′)
∧ [Σ] Φ −→ [Σ′] Φ′ ∨ Φ = Π ε

∧@error ∈ Φ
where k > 0

G(Σ,Φ) =
∧
k∈N Gk(Σ,Φ)

Figure 3.11: Global Compatibility

order to rule out errors and deadlock, such as those discussed in Section 3.1. We define

a program point to consist of an effect Φ and a shared state abstraction Σ (or a program

and some shared state, respectively). A program point is safe and deadlock free if it

does not contain an error, if all its reductions result in safe and deadlock free program

points, and if it can perform at least one reduction (or consists of empty effects). We

formalise these using the function in Figure 3.11. We refer to this property as Global

Compatibility, and denote a globally compatible program point as G(Σ,Φ). We describe

this formalisation in more detail as follows:

@error ∈ Φ (3.7)

This requires that no errors exist in a globally compatible program point.

[Σ] Φ −→ [Σ′] Φ′ ⇒ G(Σ′,Φ′) (3.8)

This requires that for any reduction which can occur at this point that the reduced

program must also be globally compatible.

[Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε (3.9)

This requires that either the effect can reduce, or it is equivalent to empty effects.

The predicate can alternatively be characterised as the greatest fixed point of the fol-

lowing function, defined over the state space S of all possible pairs (Σ,Φ) of abstract

states and parallel effects:

g(S) =

{
(Σ,Φ) | ∀Σ′,Φ′.[Σ]Φ→ [Σ′]Φ′ ⇒ (Σ′,Φ′) ∈ S and

(∃Σ′,Φ′. [Σ]Φ→ [Σ′]Φ′ or Φ ≡ Π ε) and 6 ∃error ∈ Φ

}
(3.10)

This is a monotone function on the powerset lattice of pairs of abstract states and

effects. It has a greatest fixed point νg (which is just a set of tuples). Using the

Knaster-Tarski fixed point theorem, we know that the predicate G(Σ,Φ) is defined if

and only if (Σ,Φ) ∈ νg.
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3.4.1 Key Lemmas

Using the definition of Global Compatibility we can proceed to prove some key lemmas.

3.4.1.1 Subject Reduction

If a term and its accompanying shared state’s abstraction is globally compatible then

we know that:

[Σ] ϕ −→ [Σ′] ϕ′ ⇒ error /∈ ϕ′ (3.11)

This is as, if G(Σ, ϕ), then we know that G(Σ′, ϕ′) and that if G(Σ′, ϕ′) then error /∈ ϕ′.
Given that there are no type rules for error we know that all well typed programs are

error free. We can use Equation 3.11 to show that a single reduction results in a well

typed reduced term, and that the effect of the original program point can reduce to the

effect of the new program point.

Lemma 3.1. Expression Subject Reduction

For all ϕ,ϕ′′, t, t′, T, σ, σ′′ if ϕ o ∅ ` t : T , and [σ] t
γ−→ [σ′] t′ and if whenever γ′ ` γ

and [Λ(σ)] ϕ
γ′−→ [Λ(σ′′)] ϕ′′ then error /∈ ϕ′′, then there exists a ϕ′ such that typing

judgement ϕ′ o ∅ ` t′ : T holds.

Proof. Suppose the hypotheses. We then prove the conclusions simultaneously by in-

duction over the derivation of [σ] t
γ−→ [σ′] t′. The key cases are as follows.

Consider the case where the last reduction rule used in the derivation is:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] σ(α(ṽ))

As t = (α(ṽ), T ) and ϕ o ∅ ` (α(ṽ), T ) : T , then by the type rules we know that the

following holds:
ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

where ϕ ≡ (α(T̃ ), T ). Given that γ = α(ṽ), by the definition of γ′ ` γ we know that

then any relevant γ′ must be α(T̃ ) where ṽ : T̃ . If [Λ(σ)] (α(T̃ ), T )
γ′−→F [Λ(σ′′)] ϕ′′

then it will be by one of the following two rules:

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) = T

[Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→ [Λ(σ′)] ε

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) 6= T

[Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→ [Λ(σ′)] error
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As we assume that error /∈ ϕ′′ then we must use the first rule, and hence have that

ϕ′′ = ε and that Λ(σ)(α(T̃ )) = T . By our assumptions about the definition of the

state projection function we know that σ(α(ṽ)) : T . Then by Lemma A.9 we know that

ε o ∅ ` σ(α(ṽ)) : T holds, as required.

Consider the case where the last reduction rule used in the derivation is:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ 6= T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] error

As t = (α(ṽ), T ) and ϕ o ∅ ` (α(ṽ), T ) : T , then by the type rules we know that the

following holds:
ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

where ϕ ≡ (α(T̃ ), T ). Given that γ = α(ṽ), by the definition of γ′ ` γ we know that

then any relevant γ′ must be α(T̃ ) where ṽ : T̃ . If [Λ(σ)] (α(T̃ ), T )
γ′−→F [Λ(σ′′)] ϕ′′

then it will be by one of the following two rules:

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) = T

[Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→ [Λ(σ′)] ε

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) 6= T

[Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→ [Λ(σ′)] error

Consider when the first rule is used. Then we must have that Λ(σ)(α(T̃ )) = T . However,

by the reduction rule being considered we have that Λ(σ)(α(T̃ )) 6= T , as σ(α(ṽ)) : T ′′ 6=
T , and by our assumptions we must have T ′′ be the same as Λ(σ)(α(ṽ)). Hence we have

a contradiction.

Consider when the second rule is used. Then we have that [Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→

[Λ(σ′)] error. By our assumptions, however, we do not consider any such reductions.

Hence we have a contradiction.

As our hypotheses are not fulfilled in this example, indeed they provide a contradiction,

then we can disregard the [σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] error reduction.

Consider the case where the last reduction rule used in the derivation is:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : Ti Ti ∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] ti

As t = caseα(ṽ) in {T̃ 7→ t} and ϕ o ∅ ` caseα(ṽ) in {T̃ 7→ t} : T , then by the type

rules we know that the following holds:

ϕi o ∅ ` ti : T ε o ∅ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o ∅ ` caseα(ṽ) in {T̃ 7→ t} : T
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By the reduction rule we know that ∃Ti ∈ T̃ such that σ(α(ṽ)) : Ti. By the same

reduction rule we know that caseα(ṽ) in {T̃ 7→ t} reduces to the associated ti. By the

type rule we know that ϕi o ∅ ` ti : T , as required.

Consider the case where the last reduction rule used in the derivation is:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ T ′ /∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] error

As t = caseα(ṽ) in {T̃ 7→ t} and ϕ o ∅ ` caseα(ṽ) in {T̃ 7→ t} : T , then by the type

rules we know that the following holds:

ϕi o ∅ ` ti : T ε o ∅ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o ∅ ` caseα(ṽ) in {T̃ 7→ t} : T

Given that γ = α(ṽ), by the definition of γ′ ` γ we know that then any relevant γ′

must be α(T̃ ) where ṽ : T̃ . There are several possible derivations for the reduction

[Λ(σ)] &(α(T̃ ), Ti); ϕi
γ′−→F [Λ(σ′′)] ϕ′′. it starts by one of the following rules.

∃i.( [Σ] (α(T̃ ), Ti); ϕi
α(T̃ )−−−→ [Σ′] ϕ′i ∧ error 6∈ ϕ′i)

[Σ] &I (α(T̃ ), Ti); ϕi
α(T̃ )−−−→ [Σ′] ϕ′i

∀i.( [Σ] (α(T̃ ), Ti); ϕi
α(T̃ )−−−→ [Σ′] ϕ′i ∧ error ∈ ϕ′i)

[Σ] &I (α(T̃ ), Ti); ϕi
α(T̃ )−−−→ [Σ′] ϕ′j

As in the hypotheses we assume that error /∈ ϕ′′ we can disregard the second rule. The

derivation then proceeds by:

[Σ] (α(T̃ ), Ti)
α(T̃ )−−−→ [Σ′] ε

[Σ] (α(T̃ ), Ti); ϕi
α(T̃ )−−−→ [Σ′] ϕi

and finally by one of the following two rules:

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) = Ti

[Λ(σ)] (α(T̃ ), Ti)
α(T̃ )−−−→ [Λ(σ′)] ε

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) 6= Ti

[Λ(σ)] (α(T̃ ), Ti)
α(T̃ )−−−→ [Λ(σ′)] error

Consider when the first rule is used. Then we must have that Λ(σ)(α(T̃ )) = Ti.

However, by the reduction rule being considered we have that @i .Λ(σ)(α(T̃ )) = Ti,
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as @i . σ(α(ṽ)) : T ′′ = Ti, and by our assumptions we must have T ′′ be the same as

Λ(σ)(α(ṽ)). Hence we have a contradiction.

Consider when the second rule is used. Then we have that [Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→

[Λ(σ′)] error. By our assumptions, however, we do not consider any such reductions.

Hence we have a contradiction.

As our hypotheses are not fulfilled in this example, indeed they provide a contradiction,

then we can disregard the [σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] error reduction.

We can straightforwardly use Lemma 3.1 to prove a similar property for processes.

Lemma 3.2. Thread Subject Reduction

For all Φ,Φ′′, P, P ′, σ, σ′′, γ, γ′ if ` P : Φ, and [σ] P
γ−→ [σ′] P ′, and if whenever γ′ ` γ

and [Λ(σ)] Φ
γ′−→ [Λ(σ′′)] Φ′′ then error /∈ ϕ′′, then there exists a Φ′ such that typing

judgement ` P ′ : Φ′ holds.

Proof. Suppose the hypotheses. We then prove the conclusions simultaneously by in-

duction over the derivation of [σ] P
γ−→ [σ′] P ′.

3.4.1.2 Liveness

By Equation 3.9 we know that the effect of a Globally Compatible program point can

either perform a reduction, or it consists of empty effects and recursion variables. Using

this fact we can prove that such program points have various liveness properties. Firstly

we can show that if an expression has an empty effect that it can either perform a

reduction, or it is a value.

Lemma 3.3. Empty Effect Expression Liveness

For all t, T , if ε o ∅ ` t : T then we know that either t = v, or there exists a t′ such that

[σ] t
τ−→ [σ] t′.

Proof. Suppose the hypotheses. We then prove the conclusions by induction over the

derivation of ε o ∅ ` t : T . The key cases are as follows.

Consider the case where the last typing rule used in the derivation is:

ε o ∅ ` t1 : T2
ε−→ T1 ε o ∅ ` t2 : T2

(ε; ε; ε) o ∅ ` t1 t2 : T1
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As ε o ∅ ` t1 : T2
ε−→ T1 and ε o ∅ ` t2 : T2 we can apply the inductive step to each of

them and show that [σ] t1
τ−→ [σ] t′1 ∨ t1 = v1, and [σ] t2

τ−→ [σ] t′2 ∨ t2 = v2. If

[σ] t1
τ−→ [σ] t′1 then we can perform the following reduction:

[σ] t1
τ−→ [σ′] t′1

[σ] t1 t2
τ−→ [σ′] t′1 t2

as required. If t1 = v1 then we consider the properties of t2. If [σ] t2
τ−→ [σ] t′2 then,

given that t1 = v1, we can perform the following reduction:

[σ] t2
τ−→ [σ′] t′2

[σ] v t′2
τ−→ [σ′] v t′2

as required. The final case is when t1 = v1 and t2 = v2. By the typing rule, we know

that ε o ∅ ` t1 : T2
ε−→ T1, and hence that t1 = recX(x : T ).t. Hence we can perform the

following reduction:

[σ] recX(x : T ).t v2
τ−→ [σ] t[recX(x : T ).t/X][v2/x]

as required.

Consider the case where the last typing rule used in the derivation is:

ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

By the hypothesis we know that

(α(ṽ), T ) ≡ ε

This is a contradiction, and hence we can disregard this case.

We then consider non-empty effects. We show that if a program has an effect that can

reduce then that program can always reduce.

Lemma 3.4. Active Effect Expression Liveness

For all ϕ,ϕ′, t, T, γ′, σ′, σ if ϕ o ∅ ` t : T and [Λ(σ)] ϕ
γ′−→ [Λ(σ′)] ϕ′ then there exists

t′, γ that [σ] t
γ−→ [σ′] t′.

Proof. Suppose the hypotheses. We then prove the conclusions by induction over the

derivation of ε o ∅ ` t : T . The key cases are as follows.
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Consider the case where the last typing rule used in the derivation is:

ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

By the hypothesis we know that [Λ(σ)] (α(T̃ ), T ) −→ [Λ(σ′)] ϕ′. There are two relevant

reduction rules for that derive this reduction:

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) = T

[Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→ [Λ(σ′)] ε

Λ(σ)
α(T̃ )−−−→ Λ(σ′) Λ(σ)(α(T̃ )) 6= T

[Λ(σ)] (α(T̃ ), T )
α(T̃ )−−−→ [Λ(σ′)] error

Consider if the reduction is performed using the former. By our assumptions about the

abstract and concrete state transition functions we know that the abstract state can

reduce if and only if the concrete state can reduce, on a given action. By the premise

of the reduction we know that Λ(σ)
α(T̃ )−−−→ Λ(σ′), and hence that σ

α(ṽ)−−→ σ′. We also

know that Λ(σ)(α(T̃ )) = T . By our assumptions about the abstract and concrete state

projection function we know that Λ(σ)(α(T̃ )) = T if and only if σ(α(ṽ)) : T . We then

have all the premises required in order to use the following rule:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] σ(α(ṽ))

to reduce (α(ṽ), T ) as required.

Consider if the reduction is performed using the latter. By our assumptions about the

abstract and concrete state transition functions we know that the abstract state can

reduce if and only if the concrete state can reduce, on a given action. By the premise

of the reduction we know that Λ(σ)
α(T̃ )−−−→ Λ(σ′), and hence that σ

α(ṽ)−−→ σ′. We also

know that Λ(σ)(α(T̃ )) 6= T . By our assumptions about the abstract and concrete state

projection function we know that Λ(σ)(α(T̃ )) = T if and only if σ(α(ṽ)) : T ′ and T ′ 6= T .

We then have all the premises required in order to use the following rule:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ 6= T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] error

to reduce (α(ṽ), T ) as required.

Consider the case where the last typing rule used in the derivation is:

ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1 ϕ2 o ∅ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o ∅ ` t1 t2 : T1
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By the hypotheses we know that [Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′, and by using a

combination of the rule for sequence and equivalent effect reduction:

[Σ] ϕ1
γ−→ [Σ′] ϕ′1

[Σ] ϕ1; ϕ2
γ−→ [Σ′] ϕ′1; ϕ2

Φ ≡ Φ1 [Σ] Φ1
γ−→ [Σ′] Φ2 Φ2 ≡ Φ′

[Σ] Φ
γ−→ [Σ′] Φ′

we know that either [Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′1; ϕ2; ϕ3 or [Λ(σ)] ϕ1; ϕ2; ϕ3

γ′−→

[Λ(σ′)] ϕ′2; ϕ3 where ϕ1 ≡ ε, or [Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′3 where ϕ1 ≡ ϕ2 ≡ ε.

In each case we also know that [Λ(σ)] ϕi
γ′−→ [Λ(σ′)] ϕ′i.

Consider the case where [Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′1; ϕ2; ϕ3. As ϕ1 o ∅ ` t1 : T2

ϕ3−→

T1 and [Λ(σ)] ϕ1
γ′−→ [Λ(σ′)] ϕ′1 we can apply the inductive step and hence know that

[σ] t1
γ−→ [σ′] t′1. Hence we can reduce t1 t2 using the following rule:

[σ] t1
γ−→ [σ′] t′1

[σ] t1 t2
γ−→ [σ′] t′1 t2

as required.

Consider the case where [Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′2; ϕ3. As ϕ2 o ∅ ` t2 : T2

and [Λ(σ)] ϕ2
γ′−→ [Λ(σ′)] ϕ′2 we can apply the inductive step and hence know that

[σ] t2
γ−→ [σ′] t′2. By Lemma 3.3 we know that, as ϕ1 ≡ ε that either [σ] t1

γ−→ [σ′] t′1
or t1 = v1. If the former then we can reduce t1 t2 using the following rule:

[σ] t1
γ−→ [σ′] t′1

[σ] t1 t2
γ−→ [σ′] t′1 t2

as required. If the latter then we can reduce t1 t2 using the following rule:

[σ] t2
γ−→ [σ′] t′2

[σ] v t′2
γ−→ [σ′] v t′2

as required. Consider the case when t1 = v1. By Lemma 3.3 we know that, as ϕ2 ≡ ε

that either [σ] t2
γ−→ [σ′] t′2 or t2 = v2. If the former then we can reduce t1 t2 using the

following rule:

[σ] t2
γ−→ [σ′] t′2

[σ] v t′2
γ−→ [σ′] v t′2

as required. If t1 = v1 and t2 = v2 then, as ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1, we know that

t1 = recX(x : T ).t, and hence can reduce t1 t2 using the following rule:

[σ] recX(x : T ).t v
τ−→ [σ] t[recX(x : T ).t/X][v/x]
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as required.

The case where [Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′3 is similar to the case where

[Λ(σ)] ϕ1; ϕ2; ϕ3
γ′−→ [Λ(σ′)] ϕ′2; ϕ3.

We can extend these results straightforwardly to threads.

Lemma 3.5. Empty Effect Thread Liveness Lemma

For all P , if ` P : ΠI ε then we know that either P = ΠI v, or there exists a P ′ such

that [σ] P
τ−→ [σ] P ′.

Proof. Suppose the hypotheses. We then simultaneously prove the conclusions by in-

duction over the derivation of ` P : ΠI ε.

Lemma 3.6. Active Effect Thread Liveness Lemma

For all Φ,Φ′, P, γ′, σ′, σ if ` P : Φ and [Λ(σ)] Φ
γ′−→ [Λ(σ′)] Φ′ then there exists P ′, γ

that [σ] P
γ−→ [σ′] P ′.

Proof. Suppose the hypotheses. We then prove the conclusions by induction over the

derivation of ` P : Φ.

3.4.2 Key Theorems

Checking whether Global Compatibility holds for a given system amounts to model

checking, as the predicate involves considering all possible interleavings of effect reduc-

tions. As such a check is computationally expensive we permit an analysis to use stronger

properties that imply Global Compatibility, which are often easier to prove. We express

this using the following type rule:

` P : Φ ∃C.C(Λ(σ),Φ) and (C =⇒ G)

` [σ] P
(3.12)

This denotes that, if we can find a property which implies Global Compatibility, then

we consider programs and states that fulfil that property to be Globally Compatible.

We refer to program points which can be validated using the rule in Equation 3.12 to

be valid. We explore the stronger properties in Section 3.5.

We can prove key theorems using the lemmas in Section 3.4.1. Firstly we prove Subject

Reduction. This states that if a valid program point performs a reduction, that the new

program point is also valid.
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Theorem 3.7. Valid Program Points Subject Reduction

` [σ] P ∧ [σ] P −→ [σ′] P ′ ⇒ ` [σ′] P ′

Proof.

We know that:
` P : Φ ∃C.C(Λ(σ),Φ) and (C =⇒ G)

` [σ] P

By the definition of global compatibility we know that Equation 3.8 holds. We can then

show that:

[Σ] ϕ −→ [Σ′] ϕ′ ⇒ @error ∈ ϕ′ (3.13)

Hence we can use Lemma 3.2 to show, by choosing C = G that:

` P ′ : Φ′ [Λ(σ)] Φ
γ′−→ [Λ(σ′)] Φ′ (3.14)

By Equation 3.8 we know that G(Σ′,Φ′) holds. Hence we can show that:

` P ′ : Φ′ ∃C.C(Λ(σ′),Φ′) and (C =⇒ G)

` [σ′] P ′

We also prove that all valid program points are live; this denotes that a set of threads

can either reduce, or each thread consists of a value. In particular this denotes, if there

are several possible actions in reducible positions, that at least one must not be blocked.

Theorem 3.8. Liveness of Valid Program Points

` [σ] P ⇒ [σ] P −→ [σ′] P ′ ∨ P = Π v

Proof. By the definition of global compatibility we know that Equation 3.9 holds. We

can perform a case analysis on the two disjuncts.

[Σ] Φ −→ [Σ′] Φ ∨ Φ ≡ Π ε (3.15)

Case (Φ = Π ε)

By Lemma 3.5 we have that:

[σ] P
γ−→ [σ] P ′ ∨ P = ΠI v (3.16)

Case [Σ] Φ −→ [Σ′] Φ′
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da −→ db : c〈T̃ 7→ G〉M � da
def
= ⊕N (c!〈Tn〉; Gn � da) ∅ 6= N ⊆M

da −→ db : c〈T̃ 7→ G〉M � db
def
= &M (c?(Tm); Gm � db)

da −→ db : c〈T̃ 7→ G〉M � d
def
= G1 � d

(µX.G′) � d
def
= µX.(G′ � d)

X � d
def
= X

0 � d
def
= 0

Figure 3.12: Global Session Types Projection

By Lemma 3.6.

[σ] P
γ−→ [σ′] P ′ (3.17)

Theorems 3.7 and 3.8 can also be proved as corollaries of Theorems 4.1 and 4.2 respec-

tively

3.5 Specific Formulations

Instead of investigating all possible inter leavings of a system, we attempt to prove

stronger properties that imply Global Compatibility, as these properties are often easier

to prove. The challenge is then to define a C such that C =⇒ G. In this section we

describe two such compatibility predicates, one for message passing systems that use

blocking receives (Section 3.5.1), and one for message passing systems that use non-

blocking receives (Section 3.5.2).

3.5.1 Blocking Message Passing

Global Session Types (Figure 2.9) describe communication protocols between multiple

role at a high level of abstraction (Bettini et al., 2008). Intuitively each participant role

is played out by one thread in a program. We make use of the projection of Global

Session Types to effects (Figure 3.12). Note that, in the case where the participant

being projected to is neither the sender nor the receiver, we require that the projection

of all the continuations be the same, so we (arbitrarily) project for the first one. We

use the notation c!〈T 〉 as shorthand for (snd(Res c, T ),Unit) and c?(T ) as shorthand

for (rcv(Res c), T ).

In order for a program to avoid communication errors and deadlock it is not sufficient

for the effect of the program to be a projection of a Global Session Type. Consider the
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∆
def
=
⋃
n<ω

∆n ∆0
def
= { [Σ∅] Φ�G}

∆n+1
def
= { δ( [c 7→ T ; Σk] ,&J(c?(Tj);ϕ

j
b), ϕ

k
a) | ∀j ∈ J.δ(Σj , ϕjb, ϕ

j
a) ∈ ∆n)}

∪ { δ( [Σ] ,⊕K(c!〈Tk〉; ϕka),&J(c?(Tj); ϕ
j
b) |

∀k ∈ K . δ(Σ, ϕka, ϕ
k
b ) ∈ ∆n ∧ Σ(c) = ∅)

∪ ∆n

where c = dadb and ∅ ⊂ K ⊆ J .

Figure 3.13: Blocking Message Passing Safe Program Points Set

following program:

1 [c 7→ 4] snd(c, true).0 ‖ rcv(c)(x : Bool).0

2 [→] [c 7→ 4, true] 0 ‖ rcv(c)(x : Bool).0

3 [→] [c 7→ true] 0 ‖ error
(3.18)

The effect of the code on line 1 is c!〈Bool〉 ‖ c?(Bool) which is complementary, ac-

cording to the standard definition (Honda, 1993). However, since there are messages in

the queue, in order to rule out communication errors and deadlock we cannot consider

solely the effect of the code. We must also consider the state of the message queues. We

do this by ensuring that the messages in the queue are complementary to the effect of

the code, and that after that point the effects are complementary (Bettini et al., 2008).

3.5.1.1 Safe Program Points

We use the notation δ(Σ, ϕi, ϕj) to represent some parallel configuration with two par-

ticular participants pi, pj identified:

[Σ] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕj ‖ . . . ‖ ϕn

By writing δ(Σ′, ϕ′i, ϕ
′
j) we refer to this same configuration but with possible changes

in the abstract state and identified participants’ effects. We make use of δ(Σ, ϕi) to

similarly single out one participant from a parallel configuration.

We inductively define a set of safe program points, which can be reduced without causing

error or deadlock (Figure 3.13). The base case ∆0 consists of the projection of global

session types, alongside empty message queues. The inductive step defines new valid

points, using existing valid points, in one of two ways. Intuitively, the first adds a

message to the front of the queue and a receive action that can expects a value of that

type. The second adds a send and a receive that match up in terms of the type of values

sent and received. The above intuition is complicated by the provision of choice, as is

explained below. We explain these cases by example.
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Adding a message. Consider the following Global Session Type, and a program point

of its projection:

G = d1 −→ d2 : c 〈l1 7→
d1 −→ d2 : c 〈T1 7→ 0〉

〉
(3.19)

[Σ∅] c!〈l1〉; c!〈T1〉 ‖ c?(l1); c?(T1) ∈ ∆0 (3.20)

This program point can perform a reduction that sends the label on the shared channel:

[Σ∅] c!〈l1〉; c!〈T1〉 ‖ c?(l1); c?(T1) −→ [c 7→ l1] c!〈T1〉 ‖ c?(l1); c?(T1) (3.21)

We can show that this new program point, derived from the first, is in the set of safe

program points, using the extensions defined in Figure 3.13. Consider the global session

type d1 → d2 : c 〈T1 7→ 0〉. We can define a program point that is a projection of this

global session type, and hence in ∆0:

[Σ∅] c!〈T1〉 ‖ c?(T1) (3.22)

This point can be extended by adding a message of the correct type to the queue, and

adding a receive action of the same type, to the receiving process:

[c 7→ Lab l1] c!〈T1〉 ‖ c?(Lab l1); c?(T1) (3.23)

This approach of adding a message onto a channel queue, and a corresponding receive,

is relatively straightforward, and forms the basis of the first inductive definition in

Figure 3.13. Were this the limit of what we wished to permit, we could define this first

inductive step as:

{ δ( [c 7→ T ; Σ] , c?(Tj);ϕb, ϕa) | δ(Σ, ϕb, ϕa) ∈ ∆n)} (3.24)

When a value is received, however, it is possible for a case split to be performed on

its type. In order to account for this case we must construct the set in a slightly more

complex manner. Consider the following global session type:

G = d1 −→ d2 : c〈
l1 7→ (d1 −→ d2 : c〈T1 7→ 0〉)
l2 7→ (d1 −→ d2 : c〈T2 7→ 0〉)

〉

(3.25)

and a program point with one of its projections:

[Σ∅] c!〈Lab l1〉; c!〈T1〉 ‖ (c?(Lab l1); c?(T1))&(c?(Lab l2); c?(T2)) ∈ ∆0 (3.26)
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This program point can perform a reduction that sends the label on the shared channel:

[Σ∅] c!〈Lab l1〉; c!〈T1〉 ‖ (c?(Lab l1); c?(T1))&(c?(Lab l2); c?(T2)) −→
[c 7→ Lab l1] c!〈T1〉 ‖ (c?(Lab l1); c?(T1))&(c?(Lab l2); c?(T2))

(3.27)

Using the former approach we can straightforwardly show that the following program

points are valid:

[c 7→ Lab l1] c!〈T1〉 ‖ c?(Lab l1); c?(T1) [c 7→ Lab l2] c!〈T2〉 ‖ c?(Lab l2); c?(T2)

(3.28)

We can combine these two points, using the state and the effect of the sender from one

program point, and performing an external choice between the effects of the receiver in

each program point, to generate the program point:

[c 7→ Lab l1] c!〈T1〉 ‖ (c?(Lab l1); c?(T1))&(c?(Lab l2); c?(T2)) (3.29)

Note that the two points being combined have different accompanying states, and this

is reflected in the precondition for this construction δ(Σj , ϕjb, ϕ
j
a) ∈ ∆n.

In the full version of the ‘adding a message’ case, we take a set of valid program points

{ϕj1 , . . . , ϕjn}, such as those in Equation 3.28, where the effects of all threads, apart

from those of the proposed sender and receiver, are the same. We sequence a receive

action of the associated type onto each continuation, for the receive effects, so that

we obtain {c?(Tj1); ϕj1b , . . . , c?(Tjn); ϕjnb }. We define an external choice between these

effects, and obtain

c?(Tj1); ϕj1b & . . .& c?(Tjn); ϕjnb (3.30)

We then choose some k in j1 . . . jn, and add a message Tk to the front of the queue

of the designated channel between the sender and the receiver. As the Tj1 , . . . , Tjn are

required to be distinct, we know that c?(Tj1); ϕj1b & . . .& c?(Tjn); ϕjnb , with message Tk

at the front of its queue, can only ever evolve to ϕkb . Therefore, in order to maintain

duality, we pair this external choice with the effect ϕka, obtaining a final definition:

{ δ( [c 7→ T ; Σk] ,&J(c?(Tj);ϕ
j
b), ϕ

k
a) | ∀j ∈ J.δ(Σj , ϕjb, ϕ

j
a) ∈ ∆n)} (3.31)

Adding a send-receive pair. Consider the following Global Session Type:

d1 → d2 : c1(T1); d3 → d2 : c2(T3) (3.32)

whose projection is:

[Σ∅] c1!〈T1〉 || c1?(T1); c2?(T3) || c2!〈T3〉 ∈ ∆0 (3.33)

49



We can show that we can derive this program point from the projection of the session:

d3 → d2 : c2(T3) (3.34)

whose projection is:

[Σ∅] ε || c2?(T3) || c2!〈T3〉 ∈ ∆0 (3.35)

This point can be extended by adding the dual pair of c1!〈T1〉 and c1?(T1) between the

first and second processes

[Σ∅] c1!〈T1〉 || c1?(T1); c2?(T3) || c2!〈T3〉 (3.36)

which returns us to the original projection. Given that the original was also a projection

of a global session type, this may seem like a redundant construction, but it is essential

when we consider how the c2?(T3) || c2!〈T3〉 interaction can occur with respect to the

c1!〈T1〉 || c1?(T1) interaction.

We can show that the full system can reduce as:

[Σ∅] c1!〈T1〉 || c1?(T1); c2?(T3) || c2!〈T3〉
c2!〈T3〉−−−−→ [c2 7→ T3] c1!〈T1〉 || c1?(T1); c2?(T3) || ε

(3.37)

This particular program point cannot be constructed by projecting a global session type

and then using the emphadding a message technique, as that adds message/receive pairs

to the front of the effect of the receiving process. Instead, we start with an empty session,

and directly add a message/receive pair between the third and second processes:

[c2 7→ T3] ε || c2?(T3) || ε (3.38)

We then make use of the adding a send/receive pair to add the not-yet-commenced dual

interaction between the first and the second processes

[c2 7→ T3] c1!〈T1〉 || c1?(T1); c2?(T3) || ε (3.39)

Note the side condition for this case, that the channel queue being added to must be

empty. If we didn’t have this side condition, then we could construct a program point

such as

[c2 7→ T3] ε || c2?(T1); c2?(T3) || c2!〈T1〉; ε (3.40)

by adding the send/receive pair c2!〈T1〉 and c2?(T1) to the third and second processes

respectively. As the message queue for c2 is not empty, and we can place a receive

expecting an arbitrary type at the front of the receiving process, the existing message in

the queue will probably not be compatible with the first receive action of the receiving

thread.

This construction makes use of a key design decision. We use a separate channel for each
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direction of each pair of communicating roles (principle channel allocation (Deniélou and

Yoshida, 2010)). This enables us to determine that it is safe to add a send/receive pair

in front of existing message/receive pairs. The requirement that the channel being used

is empty, and that the receiving process can only receive from the sending process on the

channel being used, guarantees that the send/receive pair being added will not interact

in error with any existing messages. For all message passing instances, for the remainder

of the thesis, we assume that principle channel allocation is used.

3.5.1.2 Formal Properties

We can prove that if a program point is in the valid points set for a given G, and if the

point reduces, then it stays in a valid points set, for a possibly different G′.

Lemma 3.9. Valid Points Set Subject Reduction

∀Σ,Φ, n,Σ′,Φ′. [Σ] Φ ∈ ∆n ∧ [Σ] Φ −→ [Σ′] Φ′ ⇒ [Σ′] Φ′ ∈ ∆n+1

Proof. Suppose the hypotheses. We then prove the conclusion by induction over the n

of ∆n.

Consider the case where n = 0. We then continue by a case analysis on the last reduction

rule used in the derivation of [Σ] Φ −→ [Σ′] Φ′.

Consider the case when the last reduction performed is an internal choice. By the

definition of ∆n in Figure 3.13, we know that [Σ] Φ is of the form:

[Σ∅] ϕ1 ‖ . . . ‖ ⊕Nc!〈Tn〉; ϕna ‖ . . . ‖ ϕm

Hence,by the rule for internal choice:

i ∈ 1, 2

[Σ] ϕ1 ⊕ ϕ2
τ−→ [Σ] ϕi

we know that:

[Σ∅] ϕ1 ‖ . . . ‖ ⊕Nc!〈Tn〉; ϕna ‖ . . . ‖ ϕm −→ [Σ∅] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕm

By Lemma B.2 we know that: ∃G′ = da −→ db : c〈T̃ 7→ G〉M . N ⊆M ∧ ΠG′ � di ≡ Π ϕi

By the definition of the projection relation � we know that it is possible to project G′

such that G′ � da ≡ c!〈Tn〉; ϕna . Hence we can show that ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖
ϕm ≡ ΠG′ � di and [Σ∅] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕm ∈ ∆0, as required.

Consider the case when the last reduction performed is a send action, in sequence with

some continuation. By the definition of ∆n in Figure 3.13, we know that [Σ] Φ is of
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the form [Σ] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕm. By the action reduction and sequencing

rules:

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) = T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] ε

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) 6= T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] error

[Σ] ϕ1
γ−→F [Σ′] ϕ′1

[Σ] ϕ1; ϕ2
γ−→F [Σ′] ϕ′1; ϕ2

we know that, if [Σ∅] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕo −→ [c 7→ Tn] ϕ1 ‖ . . . ‖ ϕna ‖ . . . ‖
ϕo then [Σ∅] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕo −→ [c 7→ Tn] ϕ1 ‖ . . . ‖ ϕna ‖ . . . ‖ ϕo.

By the first part of the definition of ∆n+1 in Figure 3.13, in order to show that δ(c 7→
T, ϕka,&J(c?(Tj); ϕ

j
b)) ∈ ∆1, we need to show that for each j ∈ J that δ(Σ∅, ϕ

k
a, ϕ

j
b)) ∈

∆0.

By Lemma B.2 we know that ∃G′ = da −→ db : c〈T̃ 7→ G〉M .ΠG′ � di ≡ Π ϕi. Hence

we have that, for each of the threads that are not the sender or receiver threads, that

ϕi ≡ G′ � di ≡ Gd � di, for any d ∈ M . In such cases let ϕ′i ≡ ϕi. By the definition

of projection we know that G′ � db ≡ &Mc?(Tm); (Gm � db) ≡ &Mc?(Tm); ϕ,
m

b and G′ �

da ≡ c!〈Tn〉; (Gn � da) ≡ c!〈Tn〉; ϕ,
n

a Hence we have that [Σ∅] Π ϕ,
m

i ≡ ΠGm � di ∈ ∆0,

as required.

Consider the case where n > 0. By the structure of parallel effects we can identify one

effect which is the one that reduces:

[Σ] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕm −→ [Σ′] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ ϕm

As [Σ] Φ ∈ ∆n we know that either in one of the constructs included in the definition

of ∆n, or it is in ∆n−1.

Consider the case when [Σ] Φ ∈ { δ([c 7→ T ; Σk],&J(c?(Tj); ϕ
j
b))} where ∀j ∈ J.δ(Σj , ϕjb) ∈

∆n−1 (as in Figure 3.13). We can perform a case split over the index i. If i = b then,

by the reduction rules, we know that ϕ′i ≡ ϕkb and that Σ′ = Σk. Hence we have that

[Σ′] Φ′ ≡ δ(Σk, ϕka, ϕ
k
b ). Hence by our hypotheses we know that [Σ′] Φ′ ∈ ∆n. Consider

the case when i 6= b. By Lemma B.1 we know that:

[c 7→ T ; Σk] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕm −→ [c 7→ T ; Σ′
k
] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ ϕm

if and only if:

[Σk] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ‖ ϕm −→

[Σ′k] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ‖ ϕm
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Then, by the parallel reduction rules, we know that:

[Σk] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕkb ‖ . . . ‖ ϕm −→ [Σ′k] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ ϕkb ‖ . . . ‖ ϕm

By the hypotheses we know that [Σk] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕkb ‖ . . . ‖ ϕm ∈ ∆n−1. Hence,

by the inductive step, we know that [Σ′k] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ ϕkb ‖ . . . ‖ ϕm ∈ ∆n−1.

By the definition of ∆�G
n in Figure 3.13 we hence know that:

[Σ′
k
] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ &J(c?(Tj); ϕ

j
b) ‖ . . . ‖ ϕm ∈ ∆n

as required.

Consider the case when [Σ] Φ ∈ { δ(Σ,⊕K(c!〈Tk〉; ϕka),&J(c?(Tj); ϕ
j
b))} where ∀j ∈

J.δ(Σj , ϕja, ϕ
j
b) ∈ ∆�G

n−1 and Σ(c) = ∅ (as in Figure 3.13). We can perform a case split

over the index i. If i = b then, by the reduction rules we know that Σ(c) = T, q, which

contradicts the hypotheses, and hence can disregard this case. Consider the case when

i = a. If ⊕K(c!〈Tk〉; ϕka) is a choice then we can use the internal choice reduction rules

to show that:

[Σ] ϕ1 ‖ . . . ‖ ⊕K(c!〈Tk〉; ϕka) ‖ . . . ‖ ϕm −→ [Σ] ϕ1 ‖ . . . ‖ ⊕L(c!〈Tl〉; ϕla) ‖ . . . ‖ ϕm

for some L such that ∅ ⊂ L ⊆ J . We straightforwardly have that ϕ1 ‖ . . . ‖ ⊕L(c!〈Tl〉; ϕla) ‖
. . . ‖ ϕm ∈ ∆n. If ⊕K(c!〈Tk〉; ϕka) is a vacuous choice then it is simply of the form

c!〈Tk〉; ϕka. By the reduction rules then we know that Σ′ = Σk; c 7→ Tk and ϕ′a = ϕka. By

the hypotheses we know that δ(Σk, ϕka, ϕ
k
b ) ∈ ∆n−1. Then, by the first part of the defini-

tion of ∆�G
n in Figure 3.13 we know that [Σ′] Φ′ = δ([c 7→ T ; Σk], ϕka,&J(c?(Tj); ϕ

j
b)) ∈

∆n as required. Consider the case when i 6= b and i 6= a. This follows similarly to the

case where [Σ] Φ ∈ { δ([c 7→ T ; Σk], ϕka,&J(c?(Tj); ϕ
j
b))} and i 6= b, above.

Consider the case when [Σ] Φ ∈ ∆n−1. By the inductive hypothesis we have that

[Σ′] Φ′ ∈ ∆n−1, and hence that [Σ′] Φ′ ∈ ∆n as required.

We can also prove relatively straightforwardly that if program point is in one of the ∆n

of ∆ then it contains no errors, and that it is live or empty.

Lemma 3.10. Valid States Safety Lemma

∀Σ,Φ, n. [Σ] Φ ∈ ∆n ⇒ error /∈ Φ

Proof. Suppose the hypothesis. We then prove the conclusion by induction over n.

Lemma 3.11. Valid States Liveness

∀Σ,Φ, n. [Σ] Φ ∈ ∆n ⇒ ∃Σ′,Φ′. [Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε
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Proof. Suppose the hypothesis. We then prove that one of the two conclusions hold, by

induction over the n of ∆n.

Consider the case where n = 0. We then proceed by case analysis of G.

If [Σ∅] Φ ∈ ∆0 and Φ ≡ Φ′ then [Σ∅] Φ′ ∈ ∆0 and hence it is sufficient to consider

direct reduction.

Consider the case where G = da −→ db : c〈T̃ 7→ G〉. The global session type can be

projected in different ways for the da component of the effect. If da −→ db : c〈T̃ 7→ G〉 �
da ≡ ⊕N (c!〈Tn〉; Gn � da) then by the reduction rules we know that we can perform the

following reduction:

[Σ∅] ϕ1 ‖ . . . ‖ ⊕N (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo −→ [Σ∅] ϕ1 ‖ . . . ‖ (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo

If, however, the global session type is projected to a send followed by a continuation,

rather than a choice between such effects, such as da −→ db : c〈T̃ 7→ G〉 � da ≡ ϕ1 ‖ . . . ‖
(c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo , then we know that the effect can perform the following

reduction:

[Σ∅] ϕ1 ‖ . . . ‖ (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo −→ [c 7→ Tn] ϕ1 ‖ . . . ‖ Gn � da ‖ . . . ‖ ϕo

Hence we have that [Σ∅] Φ is live, as required.

Consider the case where G = 0. Here we have that 0 � di ≡ ε for each di. Hence Φ ≡ Π ε,

as required.

Consider the case where n > 0. As [Σ] Φ ∈ ∆n then by Figure 3.13 we know that

[Σ] Φ is of one of the following forms.

If it is of the form:

{ δ( [c 7→ T ; Σk] ,&J(c?(Tj);ϕ
j
b), ϕ

k
a) | ∀j ∈ J.δ(Σj , ϕjb, ϕ

j
a) ∈ ∆n)}

then we can perform the reduction:

[c 7→ Tk; Σ] ϕ1 ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . .||ϕm −→ [Σ] ϕ1 ‖ . . . ‖ ϕkb ‖ . . .||ϕm

If it is of the form δ(Σ,⊕K(c!〈Tk〉; ϕka),&J(c?(Tj); ϕ
j
b)) then we can perform the reduc-

tion:

[Σ] ϕ1 ‖ . . . ‖ ⊕Nc!〈Tn〉; ϕna ‖ . . . ‖ ϕm −→ [Σ] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕm

If it is of the form δ(Σ, (c!〈Tk〉; ϕka),&J(c?(Tj); ϕ
j
b)) then we can perform the reduction:

[Σ] ϕ1 ‖ . . . ‖ c!〈Tn〉; ϕna ‖ . . . ‖ ϕm −→ [Σ; c 7→ Tn] ϕ1 ‖ . . . ‖ ϕna ‖ . . . ‖ ϕm
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Hence in each of the cases it is possible to reduce, as required.

Using these lemmas we can prove that if a program point is in ∆ then it is globally

compatible:

Theorem 3.12. Sufficiency of Global Session Types

∀Σ,Φ. [Σ] Φ ∈ ∆⇒ ∃k.Gk(Σ,Φ)

Proof. Suppose the hypothesis. We then prove the conclusion by induction over k in the

definition of Gk(Σ,Φ).

Consider the case where k = 0. By the definition of ∆ we know that Gk(Σ′,Φ′) def
= true,

and hence the implication [Σ] Φ ∈ ∆⇒ G0(Σ,Φ) is trivially valid,

Consider the case where k > 0. By Figure 3.11 we know that

Gk(Σ,Φ)
def
=


[Σ] Φ −→ [Σ′] Φ′ ⇒ Gk−1(Σ′,Φ′)

∧ [Σ] Φ −→ [Σ′] Φ′ ∨ Φ = Π ε

∧@error ∈ Φ

In order to show that Gk(Σ,Φ) holds we show that each of the constituents hold.

By Lemma 3.9 we know that, as [Σ] Φ −→ [Σ′] Φ′, then we have that [Σ′] Φ′ ∈ ∆. By

the inductive step we know that [Σ] Φ ∈ ∆⇒ Gl(Σ,Φ), for all Σ and Φ and l < k, and

hence that Gk−1(Σ′,Φ′). We therefore have that the implication [Σ] Φ −→ [Σ′] Φ′ ⇒
Gk−1(Σ′,Φ′) holds.

By Lemma 3.11 we know that:

[Σ] Φ ∈ ∆⇒ [Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε

By Lemma 3.10 we know that error /∈ Φ. By Lemma 3.9 we know that:

[Σ] Φ ∈ ∆ ∧ [Σ] Φ −→ [Σ′] Φ′ ⇒ [Σ′] Φ′ ∈ ∆

which proves all the constituent conjuncts of Gk(Σ,Φ), as required.

We reiterate the key safety and liveness theorems from (Bettini et al., 2008) as instan-

tiations of Theorems 3.7 and 3.8, defining C def
= [Σ] Φ using the fact that [Σ] Φ ∈ ∆⇒

G(Σ,Φ) (by Theorem 3.12).
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Observation 3.13. Safety of Static Message Passing Programs

If ` [σ] P using C def
= [Σ] Φ ∈ ∆ and [σ] P −→ [σ′] P ′ then @error ∈ P ′ and ` [σ′] P ′

Observation 3.14. Liveness of Static Message Passing Programs

If ` [σ] P using C def
= [Σ] Φ ∈ ∆ then [σ] P −→ [σ′] P ′ ∨ P = Π v

3.5.2 Non-Blocking Message Passing

In order to increase asynchrony we may wish to permit receive actions to continue when

they attempt to receive from an empty queue, rather than blocking and waiting for a

value to become available. Whilst this asynchrony leads to less idling, the synchroni-

sation behaviour required in order to avoid message passing errors is more complex.

Consider the following program abstraction:

[Σ∅] c!〈l1〉; c!〈T1〉 ⊕ c!〈l2〉; c!〈T2〉 ‖ c?(l1); c?(T1)&c?(l2); c?(T2)&c?(l[]); c?(T3) (3.41)

In this program the receiver presents two services to the sender. It also contains a third

service, mapped to by l[]; this is the value returned when a receive action is performed on

an empty queue, to denote that case. We make use of a semantics that, upon performing

a receive on an empty channel, puts a place-holder [] into the queue that denotes that

the next value sent on the queue should be immediately discarded. We suggest this

as a possible semantics for non-blocking receives, which has not been considered in the

session typing world, and as such is novel Consider a reduction sequence, where the

receiver acts before the sender:

[Σ∅] c!〈l1〉; c!〈T1〉 ⊕ c!〈l2〉; c!〈T2〉 ‖ c?(l1); c?(T1)&c?(l2); c?(T2)&c?(l[]); c?(T3)

−→ [c 7→ []] c!〈l1〉; c!〈T1〉 ⊕ c!〈l2〉; c!〈T2〉 ‖ c?(T3)

−→ [c 7→ []] c!〈l1〉; c!〈T1〉 ‖ c?(T3)

−→ [Σ∅] c!〈T1〉 ‖ c?(T3)

−→ [c 7→ T1] ε ‖ c?(T3)

−→ [Σ∅] ε ‖ error
(3.42)

Here, as the receiver chooses which service is to be performed, and the sender is not

informed of this choice, it goes on to perform a different service, and a communication

error can occur. In order to avoid such errors we must provide feedback to the sender,

so that its control flow choices will mirror those of the receiver. In the non-blocking

semantics, whenever a send action is performed we automatically return a unit value;

this denotes that a send action always succeeds at adding a value on to the end of

the relevant queue. We modify this semantics (Figure 3.15). The modified semantics

makes use of queues that consist entirely of place-holders or entirely of typed messages

(Figure 3.14). When a send is performed on a queue without any place-holders, a unit
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q[] ::= []

| ∅
| q[], q[]

Figure 3.14: Queues With Type Holes

Σ[c 7→ q[]]
c?(T )−−−→ Σ[c 7→ [], q[]] Σ[c 7→ T ′, q]

c?(T )−−−→ Σ[c 7→ q]

Σ[c 7→ [], q[]]
c!〈T 〉−−−→ Σ[c 7→ q[]] Σ[c 7→ q]

c!〈T 〉−−−→ Σ[c 7→ q, T ]

Σ[c 7→ q[]](c?(T )) = l[] Σ[c 7→ T ′, q](c?(T )) = T

Σ[c 7→ [], q[]](c!〈T 〉) = l[] Σ[c 7→ q](c?(T )) = Unit

Figure 3.15: Semantics Of Non Blocking Message Queues

d1 −→ d2 : r〈T̃ 7→ G〉M � d1
def
= ⊕N ((c!〈Tn〉,Unit); Gn � d1&(c!〈Tn〉, l[]); Gl[] � d1)

N 6= ∅ ∧ (N ∪ l[] 7→ Gl[]) ⊆M
d1 −→ d2 : r〈T̃ 7→ G〉 � d2

def
= &M (c?(Tm); Gm � d1)

d1 −→ d2 : r〈T̃ 7→ G〉 � d def
= G1 � d

(µX.G′) � d
def
= µX.(G′ � d)

X � d
def
= X

0 � d
def
= 0

Figure 3.16: Global Session Types Projection For Blocking Message Passing

value is returned to indicate success, and that the receiver has not already passed this

point. When a send is performed on a queue containing a place-holder [] the action

returns l[] to indicate that this has occurred. Then, for each possible service choice, we

create an external choice between an action that transmits the service choice where a

unit value returned, followed by the sender’s side of that service, and an action that

transmits the service choice but returns a place-holder l[], followed by the service for l[].

We demonstrate this with an example:
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[Σ∅] ((snd(c, l1),Unit); c!〈T1〉)&((snd(c, l1), l[]); c!〈T3〉) ‖ c?(l1); c?(T1)&c?(l[]); c?(T3)

−→ [c 7→ []] ((snd(c, l1),Unit); c!〈T1〉)&((snd(c, l1), l[]); c!〈T3〉) ‖ c?(T3)

−→ [Σ∅] c!〈T3〉 ‖ c?(T3)

−→ [c 7→ T1] ε ‖ c?(T3)

−→ [Σ∅] ε ‖ ε
(3.43)

Note that, in order to avoid similar errors for the second send we would have to also

replace the send c!〈T3〉 with (snd(c, l1),Unit)&(snd(c, l1), l[]), the receive c?(T1) with

c?(T1)&c?(l[]), and the receive c?(T3) with c?(T3)&c?(l[]); we omit these in order to

simplify this example.

We define the updated projection function of Global Session Types for non-blocking

message passing in Figure 3.16. We add an additional requirement to the well formedness

of Global Session Types, namely that each send/receive pair must include the case of

when l[] is received, as it can occur in any send/receive pair. Note that, in the projection

d1 −→ d2 : r〈T̃ 7→ G〉 � d2
def
= &M (c?(Tm); Gm � d1), the T̃ 7→ G includes Lab l[] 7→ Gl[] .

We construct the set of safe program points (Figure 3.17) in a similar way to how we

constructed the set for blocking message passing. The base case consists of effects that

are projections of Global Session Types, alongside empty channel queues. The first half

of the inductive case is similar to that in Figure 3.13, adding a message to the front of

the queue and performing an external choice at the receiver. Note that this construction

is only permitted if there are no place-holders in the queue that is being extended. The

second half of the inductive case is formalises the approach described above of providing

external choice at the receiver. A place-holder can be placed at the front of some message

queues assuming no actual messages are in the queue being extended (but place-holders

may be in the queue). The extended effect provides an external choice between a send

action that receives a place-holder, indicating that the receiver has already skipped over

this send, and and a send action that receives the unit value, indicating that the message

has been successfully added to the relevant queue.

We can prove to show that if a program point is in the valid points set, and if the point

reduces, then it stays in the valid points set.

Lemma 3.15. Valid Points Set Reduction

∀Σ,Φ, n,Σ′,Φ′. [Σ] Φ ∈ ∆n ∧ [Σ] Φ −→ [Σ′] Φ′ ⇒ [Σ′] Φ′ ∈ ∆n+1

Proof. The proof proceeds similarly to that in Lemma 3.9. Suppose the hypotheses. We

then prove the conclusion by induction over the n of ∆n. The key differences are in the

case where n > 0. By the structure of parallel effects we can identify one effect which is
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∆
def
=
⋃
n<ω

∆n ∆0
def
= { [Σ∅] Φ�G}

∆n+1
def
= { δ( [c 7→ T ; Σk] ,&J(c?(Tj);ϕ

j
b), ϕ

k
a) | ∀j ∈ J.δ(Σj , ϕjb, ϕ

j
a) ∈ ∆n)}

∪ { δ( [Σ] ,⊕K(c!〈Tk〉; ϕka),&J(c?(Tj); ϕ
j
b) |

∀k ∈ K . δ(Σ, ϕka, ϕ
k
b ) ∈ ∆n ∧ Lab l[] ∈ T̃K ∧ Σ(c) = ∅)

∪ { δ( [c 7→ []; Σk] , (⊕J((c!〈Tj〉,Unit); φja))&((c?(Tk), l[]); φ
k
a)) |

∀j ∈ J.δ(Σj , ϕjb, ϕ
j
a) ∈ ∆n)}

∪ ∆n

where c = dadb and ∅ ⊂ K ⊆ J .

Figure 3.17: Non Blocking Message Passing Safe Program Points Set

the one that reduces:

[Σ] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕm −→ [Σ′] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ ϕm

As [Σ] Φ ∈ ∆n we know that either in one of the constructions in the definition of ∆n,

or it is in ∆n−1. The case when [Σ] Φ ∈ { δ([c 7→ T ; Σk],&J(c?(Tj); ϕ
j
b))} is the same

as in Lemma 3.9.

Consider the case when [Σ] Φ ∈ { δ(Σ,⊕K(c!〈Tk〉; ϕka),&J(c?(Tj); ϕ
j
b))} where ∀j ∈

J.δ(Σj , ϕja, ϕ
j
b) ∈ ∆n−1 and l[] ∈ T̃J and Σ(c) = ∅ (as in Figure 3.17). We can perform

a case split over the index i. If i = b then, by the reduction rules we know that

Σ′ = Σ; c 7→ l[] and ϕ′b = ϕ
l[]
b . By the third part of the definition of ∆n+1 we can

show that δ([c 7→ []; Σk],⊕J((c!〈Tj〉,Unit); ϕja)&((c?(Tl[]), l[]); ϕ
l[]
a ), ϕ

l[]
b ) ∈ ∆n, as by

the hypothesis we know that ∀j ∈ J.δ(Σj , ϕja, ϕ
j
b) ∈ ∆n. Consider the case when i = a.

If ⊕K(c!〈Tk〉; ϕka) is a choice then we can use the internal choice reduction rules to show

that:

[Σ] ϕ1 ‖ . . . ‖ ⊕K(c!〈Tk〉; ϕka) ‖ . . . ‖ ϕm −→ [Σ] ϕ1 ‖ . . . ‖ ⊕L(c!〈Tl〉; ϕla) ‖ . . . ‖ ϕm

for some L such that ∅ ⊂ L ⊆ J . We straightforwardly have that ϕ1 ‖ . . . ‖ ⊕L(c!〈Tl〉; ϕla) ‖
. . . ‖ ϕm ∈ ∆n. If ⊕K(c!〈Tk〉; ϕka) is a vacuous choice then it is simply of the form

c!〈Tk〉; ϕka. By the reduction rules then we know that Σ′ = Σk; c 7→ Tk and ϕ′a = ϕka. By

the hypotheses we know that δ(Σk, ϕka, ϕ
k
b ) ∈ ∆n−1. Then, by the first part of the defini-

tion of ∆�G
n in Figure 3.17 we know that [Σ′] Φ′ = δ([c 7→ T ; Σk], ϕka,&J(c?(Tj); ϕ

j
b)) ∈

∆�G
n as required. Consider the case when i 6= b and i 6= a. This follows similarly to the

case where [Σ] Φ ∈ { δ([c 7→ T ; Σk], ϕka,&J(c?(Tj); ϕ
j
b))} and i 6= b, above.

Consider the case where, given ∀j ∈ J.δ(Σj , ϕja, ϕ
j
b) ∈ ∆n−1, that [Σ] Φ ∈ { δ([c 7→

[]; Σk],⊕J((c!〈Tj〉,Unit); ϕja)&((c?(Tk), l[]); ϕ
k
a)) } . We can perform a case split over

the index i. Consider the case where i = a. By the reduction rules we know that Σ′ = Σk
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and ϕ′a = ϕka. By the hypotheses we know that δ(Σk, ϕka, ϕ
k
b ) ∈ ∆n−1, and hence that

δ(Σk, ϕka, ϕ
k
b ) ∈ ∆n as required. Consider the case when i 6= a. This case is similar to

the case where [Σ] Φ ∈ { δ([c 7→ T ; Σk],&J(c?(Tj); ϕ
j
b))} and i 6= b, above.

Consider the case when [Σ] Φ ∈ ∆n−1. By the inductive hypothesis we have that

[Σ′] Φ′ ∈ ∆n−1, and hence that [Σ′] Φ′ ∈ ∆n as required.

We can also prove relatively straightforwardly that if program point is in ∆ then it

contains no errors, and that it is live.

Lemma 3.16. Non Blocking Valid States Safety

∀Σ,Φ, n. [Σ] Φ ∈ ∆n ⇒ error /∈ Φ

Proof. Suppose the hypothesis. We then prove the conclusion by induction over n.

Lemma 3.17. Non Blocking Valid States Liveness

∀Σ,Φ, n. [Σ] Φ ∈ ∆n ⇒ ∃Σ′,Φ′. [Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε

Proof. Suppose the hypothesis. We then prove that one or other of the conclusions are

true, by induction over the n of ∆n. This proof essentially follows that in Lemma 3.11.

The key difference is when n > 0 and

[Σ] Φ ∈ { δ([c 7→ []; Σk],⊕J((c!〈Tj〉,Unit); ϕja)&((c?(Tk), l[]); ϕ
k
a))}

where ∀j ∈ J.δ(Σj , ϕja) ∈ ∆n. By the reduction rules we know that:

[c 7→ []; Σk] c?(Tk)→ [Σk] ε

and hence that

δ([c 7→ []; Σk],⊕J((c!〈Tj〉,Unit); ϕja)&((c?(Tk), l[]); ϕ
k
a))→ δ(Σk, φka)

as required.

Using these lemmas we can prove that if a program point is in ∆ then it is globally

compatible:

Theorem 3.18. Sufficiency of Global Session Types

∀Σ,Φ. [Σ] Φ ∈ ∆⇒ ∃k.Gk(Σ,Φ)

Proof. This proof is similar to that of Theorem 3.12, except for it uses Lemmas 3.15,

3.16 and 3.17 rather than Lemmas 3.9, 3.10 and 3.11.
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We can hence guarantee an absence of communication errors in a message passing system

with very little synchronisation. The synchronisation behaviour for blocking message

passing relies on the fact that the participant that provides a service must wait for the

participant that invokes the service to choose which service will be performed. When the

participant that provides a service can choose which service will proceed, the participant

that invokes the service must similarly be informed of the decision, to ensure that both

participants proceed down the same service path. The proofs of safety and liveness for

blocking message passing make use of an intuitive, inductive definition that determines

which states are acceptable (those that can be reached by reduction from the projection

of a Global Session Type). When we use this definition, the portions of the proofs that

use the synchronisation behaviour are immediately apparent. Hence we can reuse the

structure and large portions of the proof for blocking message passing.

3.6 Conclusions

In this chapter we consider communication safety and liveness for functional programs

which access accompanying shared state with an arbitrary semantics. Our contributions

are as follows. We extend previous work where only receive actions could return values

of different types to a system where all accesses to the shared state can return typed

values. We show how to prove safety and liveness in a system where the shared state

has arbitrary semantics. We reprove existing results of safety and liveness for block-

ing message passing programs, using a novel, inductive definition, which we believe is

significantly more comprehensible. We extend this technique to cover non-blocking mes-

sage passing systems, and show how our inductive definition can be straightforwardly

modified to cover non-blocking message passing.
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Chapter 4

Dynamic Software Update

In this chapter we consider how to update message passing programs, whilst maintain-

ing safety and liveness properties. We explore communications safety and deadlock

freedom for updatable asynchronous message passing programs with blocking receives,

and provide examples of erroneous updates to programs, and reductions of such sys-

tems (Section 4.1). We provide a calculus for updates to the language presented in

Chapter 3, an operational semantics for update, and extend our behavioural abstraction

(Section 4.2). We provide a general, inductive description of the communication safety

and deadlock freedom properties in the presence of arbitrary updates (Section 4.3). We

present our conclusions in Section 4.4

tc = µX.sel(c1, prime?).snd(c1, . . .).rcv(c2)(x : Int).X
ts = µX ′.case c1 of { prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).X

′,
. . .}

Figure 4.1: Maths Server

t′c = µX.sel(c1, prime?).snd(c1, . . .).case c2 of { result 7→ rcv(c2)(x : Int).X,
err 7→ X}

t′s = µX ′.case c1 of { prime? 7→ rcv(c1)(x : Int).
ifx < 3000 then

sel(c2, result).snd(c2, . . .).X
′

else

sel(c2, err).X ′

. . .}

Figure 4.2: Updated Maths Server
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1 [σ∅] (tc ‖ ts)
2 −→ . . .

3 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Bool).tc ‖ ts)

4
ψ−→ [c1 7→ prime?, 3457] (rcv(c2)(x : Bool).t′c ‖ t′s)

5 ≡ [c1 7→ prime?, 3457] (rcv(c2)(x : Bool).t′c ‖
ifx < 3000 then sel(c2, result).snd(c2, . . .).t

′
s else sel(c2, err).t′s)

6 −→ [c1 7→ 3457] (rcv(c2)(x : Bool).t′c ‖ rcv(c1)(x : Int).

ifx < 3000 then sel(c2, result).snd(c2, . . .).t
′
s else sel(c2, err).t′s)

7 −→ . . .

8 −→ [σ∅] (rcv(c2)(x : Bool).t′c ‖ sel(c2, result).snd(c2, . . .).t
′
s)

9 −→ [c2 7→ result] (rcv(c2)(x : Bool).t′c ‖ snd(c, . . .).t′s)

10 −→ [σ∅] (error ‖ snd(c2, . . .).t
′
s)

Figure 4.3: Update Error Due To Update At Mismatched Code Points

4.1 Motivation: Message Passing Programs

We specify a maths server program in Figure 4.1. In this program the client tc tells the

server ts that it would like the server to tell it if a given number is a prime. The client

then sends the number to the server, and the server will send an integer reply. When the

program is deployed it may be discovered that the server is often encountering errors due

to overflow or timeouts. We may then wish to modify the program so that the server

can choose to abort the calculation, and inform the client whether the computation

produced a result or an error. We specify such a program in Figure 4.2. In order to

migrate from one program to another we need some mechanism to modify the running

code. We delay the full specification of this mechanism until Section 4.2 and, for the

purposes of the motivation, describe updates informally.

The introduction of an update at an inopportune point can introduce a communication

error into an otherwise safe program. Consider the reduction shown in Figure 4.3. The

original maths server reduces until line 3. Then an update reduction, which is annotated

with ψ, occurs on line 4; this modifies the continuations of both the client and the server

to be the bodies of the updated maths server. Note that at line 3 the client has entered

the body of its recursive loop, whilst the server has not. As the update occurs at this

point we end up with a partial reduction of the old client code attempting to interact

with the new version of the server; hence the server sends the result label to indicate

that it has completed the computation successfully. Unfortunately the client is only

expecting a boolean result, rather than a label and a result, and hence a communication

error occurs. This illustrates how messages in the queue at the point an update is applied

can affect whether the updated program is safe.
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We specify a Producer/Consumer program, with an acknowledgement, in Figure 4.4. In

this program the producer tp sends one data item to the consumer tco , and waits for

an acknowledgement from the consumer that indicates that it is ready to continue. We

may then wish to modify the program to permit the producer to send two data items

before waiting for the acknowledgement, in order to increase asynchrony. We specify

such a program in Figure 4.5.

The introduction of an update at an inopportune point can also introduce deadlock into

an otherwise live program. Consider a reduction of the Producer/Consumer example,

shown in Figure 4.6. The original Producer/Consumer program runs until line 3. Then

an update reduction occurs on line 4; this modifies the continuations of both the client

and the server to be the bodies of the updated Producer/Consumer program. Note that

at line 3 the producer has entered the body of its recursive loop, while the consumer has

not. As the update occurs at this point we end up with a partial reduction of the old

producer attempting to interact with the new version of the server. The producer hence

sends one data value and waits for an acknowledgement whilst the consumer receives the

first data value and waits to receive the second before it sends the acknowledgement.

This leads to a deadlocked system, where the producer and the consumer are both

waiting for a message from the other.

tp = µX.snd(c1, v1).rcv(c2)(x : Unit).X
tco = µX ′.rcv(c1)(x : T1).snd(c2, ()).X

′

Figure 4.4: Producer/Consumer System With Acknowledgement

t′p = µX.snd(c1, v1).snd(c1, v2).rcv(c2)(x : Unit).X

t′co = µX ′.rcv(c1)(x : T1).rcv(c1)(x : T2).snd(c2, ()).X
′

Figure 4.5: Updated Producer/Consumer System With Acknowledgement

1 [σ∅] (tp ‖ tco)
2 −→ . . .

3 −→ [σ∅] (snd(c1, v1).rcv(c2)(x : Unit).tp ‖ tco)

4
ψ−→ [σ∅] (snd(c1, v1).rcv(c2)(x : Unit).t′p ‖ t′co)

5 −→ [c1 7→ v1] (rcv(c2)(x : Unit).t′p ‖ t′co)
6 −→ [c1 7→ v1] (rcv(c2)(x : Unit).t′p ‖ rcv(c1)(x : T1).rcv(c1)(x : T2).snd(c2, ()).t

′
co)

7 −→ [σ∅] (rcv(c2)(x : Unit).t′p ‖ rcv(c1)(x : T2).snd(c2, ()).t
′
co)

8 6−→

Figure 4.6: Update Deadlock Due To Update At Mismatched Code Points
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1 [σ∅] (tp ‖ tco)
2 −→ . . .

3 −→ [σ∅] (snd(c1, v1).rcv(c2)(x : Unit).tp ‖ rcv(c1)(x : T1).snd(c2, ()).tco)

4
ψ−→ [σ∅] (snd(c1, v1).rcv(c2)(x : Unit).t′p ‖ rcv(c1)(x : T1).snd(c2, ()).tco)

5 −→ . . .

6 −→ [σ∅] (t′p ‖ tco)
7 −→ . . .

8 −→ [σ∅] (snd(c1, v2).rcv(c2)(x : Unit).t′p ‖ snd(c2, ()).tco)

9 −→ . . .

10 −→ [c1 7→ v2, c2 7→ ()] (rcv(c2)(x : Unit).t′p ‖ rcv(c1)(x : T1).snd(c2, ()).tco)

11 −→ [c2 7→ ()] (rcv(c2)(x : Unit).t′p ‖ error)

Figure 4.7: Update Error Due To Inconsistent Update

We also wish to rule out trivial update errors. Consider an update that modifies the

code of the producer to t′p but leaves the code of the consumer as tco. We present one

reduction of this system in Figure 4.7. We apply the update on line 4. The system then

reduces to complete one loop of each thread’s main loop. When the producer starts

a new loop it uses the new code (line 6). The sender sends both its values, and the

consumer performs two loops. On its second loop the consumer receives v2, which is not

of the type it is expecting.

It is, however, possible to safely perform the updates to the maths server and the Pro-

ducer/Consumer system. Consider again the maths server and its update (Figures 4.1

& 4.2). We present a possible reduction which leaves the program both safe and live

after the update occurs (Figure 4.8). The original maths server starts reducing; on line

6, part way through each thread’s recursive loop, the update is applied. Since the server

and the client are each part way through their old code’s loop body they both continue

communicating using the old code until they reach the point the point where they would

recurse (line 11), at which point each continues using the new code.

To summarise, the effect of the code, and the messages in queue, at the point an update is

applied will determine the safety and liveness of the updated program. In particular, all

threads must update when they are on the same ‘run’ of an protocol. Possible techniques

to achieve this include ensuring that all participants are always on the same run of a

protocol, or to determine the run of the participant that is the furthest ahead, and to

update each participant when it reaches that point.
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1 [σ∅] (tc ‖ ts)
2 −→ . . .

3 −→ [c1 7→ prime?] (snd(c, 3457).rcv(c2)(x : Int).tc ‖
µX ′.case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).X

′, . . .})
4 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).tc ‖

µX ′.case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).X
′, . . .})

5 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).tc ‖
case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).ts, . . .})

6
ψ−→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).t′c ‖

case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).t
′
s, . . .})

7 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).t′c ‖
case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).t

′
s, . . .})

8 −→ [c1 7→ 3457] (rcv(c2)(x : Int).t′c ‖ rcv(c1)(x : Int).snd(c2, . . .).t
′
s)

9 −→ [σ∅] (rcv(c2)(x : Int).t′c ‖ snd(c2, . . .).t
′
s)

10 −→ [c2 7→ true] (rcv(c2)(x : Int).t′c ‖ t′s)
11 −→ [σ∅] (t′c ‖ t′s)
12 −→ . . .

Figure 4.8: Update Success In Maths Server

4.2 Update Calculus

In order to reason about how and when updates occur we introduce two additions to

our calculus (Figure 4.9). We augment our language from Figure 3.4 with terms used

to describe where updates can occur. We define our notion of updates, which describe

the changes to a running program, and the program points at which said changes can

be made. We also extend our behavioural abstraction to encompass updates.

4.2.1 Language Additions

A region annotation f(t) denotes a region or body of code, annotated with the name

f , which can be replaced in its entirety. Such regions normally consist of a procedure

or a function, but could be used to consider conceptual units of work, for example a

series of processing calls, or a series of logging calls. When reducing this region, in the

absence of updates, the annotation is stripped away as the region proper is reduced.

Once the annotation has been stripped away the body cannot be replaced (though it

may be possible to replace further annotated regions within the body). Updates replace

the body of code inside an annotation with another body of code. This corresponds with

our intuition that the body of the annotated region can only be replaced in its entirety.

Annotations are a variant of the standard Dynamic Software Update approach which
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t ::= Terms
| . . .
| f(t) updatable regions
| dmod

f̃
(t) transactional regions

ψ, ω ::= Predicated Updates
| p 7→ u Map from predicate to update
| ψ,ψ List of predicated updates
| ∅ Empty predicated update

u ::= Region updates
| f 7→ t Map from region

to new code
| u, u Set of updates
| ∅ Empty update

p ::= Update predicates
| p(σ, P ) on code and message queues

Figure 4.9: Update Calculus

[σ] t
τ−→F [σ′] t′

[σ′] f(t)
τ−→F [σ′] f(t′)

[σ] t
α(ṽ)−−→F [σ′] t′

[σ] f(t)
α(ṽ)−−→F∪{f} [σ′] t′

[σ] f(v)
τ−→ [σ] v

[σ] t
γ−→F ′ [σ′] t′ regions(t) 6⊆ F

[σ] dmodF (t)
γ−→F ′ [σ′] dmodF∪F ′(t′)

regions(t) ⊆ F

[σ] dmodF (t)
τ−→ [σ] t

[σ] P
γ−→F [σ′] P ′ @p ∈ dom(ψ).p(σ, P )

[σ] P,ψ
γ−→ [σ′] P ′, ψ

[σ] P,ψ
τ−→ [σ] P, (ψ, ω)

ψ = p1 7→ u1, . . . , pn 7→ un i smallest in 1...n.pi(σ, P )

[σ] P,ψ
τ−→ [σ] upd(P, ui, false), ψ \ pi 7→ ui

Figure 4.10: Update Calculus Operational Semantics

permits the bodies of functions to be changed in their entirety (Hicks, 2005; Stoyle et al.,

2005). The standard approach holds the body of a function in the heap and substitutes

it for the function whenever a call is made. Instead, we simply annotate the code itself.

A transactional annotation dmod
f̃
(t) denotes a region of code where, if an update modifies

more than one annotated region, that it must be able to modify all annotated regions

within the transactional annotation, or none of them. The subscript f̃ records the

annotations of named regions which have already been entered, by reducing the body
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upd(v, u, b)
def
= v v 6= recX(x : T ).t

upd((α(ṽ), T ), u, b)
def
= (α(ṽ), T )

upd(recX(x : T ).t, u, b)
def
= recX(x : T ).upd(t, u, b)

upd(t1 t2, u, b)
def
= upd(t1, u, b) upd(t2, u, b)

upd(if t1 then t2 else t3, u, b)
def
= if t′1 then t

′
2 else t

′
3 t′i = upd(ti, u, b)

upd(caseα(ṽ) in {T̃ 7→ t}, u, b) def
= caseα(ṽ) in { ˜T 7→ upd(t1, u, b)}

upd(dmodF (t1), u, b)
def
= dmodF (upd(t1, u, true)) F ∩ dom(u) = ∅

upd(dmodF (t1), u, b)
def
= dmodF (upd(t1, u, false)) F ∩ dom(u) 6= ∅

upd(f(t1), u, b)
def
= f(upd(t1, u, b)) ¬b∨ 6 ∃t.

(f 7→ t) ∈ u
upd(f(t1), u, true)

def
= f(t′) (f 7→ t′) ∈ u

Figure 4.11: Update Function

1 [ ] dmod∅(. . . ; f(t1); . . . ; g(t2))

2 −→ . . .

3 −→ [ ] dmod∅(f(t1); . . . ; g(t2))

4 −→ [ ] dmodf (t1; . . . ; g(t2))

5 −→ . . .

6 −→ [ ] dmodf (g(t2))

7 −→ [ ] dmodf,g(t2)

9 −→ [ ] t2
8 −→ . . .

Figure 4.12: updatable region Reduction Example

of the transactional region. We explain using the reduction in Figure 4.12. When an

updatable region (named region) is reduced inside a transactional region its region name

is added to the set of updatable regions which cannot be updated within the transactional

region (lines 4 and 7). An update to f can occur at any point up to and including line

3, an update to g can occur at any point up to and including line 6, and an update

to both f and g can occur at any point up to and including line 3. If a transactional

region is nested within another transactional region it is handled separately to the body

of the encapsulating region. In order to inform encapsulating transactional regions

that an updatable region has been entered we annotate our reduction rules; compound

operators pass through reductions of sub-terms, and all destructive operator reductions

are annotated with τ except the reduction for updatable regions.

In order to be able to update the bodies of the recursive loops of the Producer/Consumer

example, as we did on line 4 of Figure 4.6, in our full calculus we write the original
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1 [σ∅] (tp ‖ tco), ψ∅
2 −→ . . .

3 −→ [c1 7→ v1] (rcv(c2)(x : Unit).tp ‖ rcv(c1)(x : T1).snd(c2, ()).tco), ψ∅

4 −→ [c1 7→ v1] (rcv(c2)(x : Unit).tp ‖ rcv(c1)(x : T1).snd(c2, ()).tco), ψ

5 −→ . . .

6 −→ [σ∅] (µX.dmod∅(f(snd(c1, . . .).rcv(c2)(x : Unit).X)) ‖
µX ′.dmod∅(g(rcv(c1)(x : T1).snd(c2, ()).X

′))), ψ

7 −→ [σ∅] (µX.dmod∅(f(µX ′′.snd(c1, . . .).snd(c1, . . .).rcv(c2)(x : Unit).X ′′)) ‖
µX ′.dmod∅(g(µX ′′′.rcv(c1)(x : T1).rcv(c1)(x : T2).snd(c2, ()).X

′′′))), ψ∅
8 −→ . . .

ψ
def
= p 7→ u p(σ, P )

def
= (P = tp ‖ tco) u

def
= f 7→ t′p, f 7→ t′co

tp = µX.dmod∅(f(snd(c1, . . .).rcv(c2)(x : Unit).X))
tco = µX ′.dmod∅(g(rcv(c1)(x : T1).snd(c2, ()).X

′))

t′p = µX ′′.snd(c1, . . .).snd(c1, . . .).rcv(c2)(x : Unit).X ′′

t′co = µX ′′′.rcv(c1)(x : T1).rcv(c1)(x : T2).snd(c2, ()).X
′′′

Figure 4.13: Example Update Reduction

program as:

tp = µX.dmod∅(f(snd(c1, . . .).rcv(c2)(x : Unit).X))

tco = µX ′.dmod∅(g(rcv(c1)(x : T1).snd(c2, ()).X
′))

(4.1)

4.2.2 Updates

In Figure 4.9 we present our definition of updates. Region updates u are maps from

region names f to new region bodies t. Predicated updates ψ are a list of mappings

from update predicates to region updates. An update predicate p(σ, P ) is a first order

logic predicate, over the structure of the code, the shared state, and the structure of

the predicated updates themselves. Update predicates denote when it is appropriate to

apply a given region update to the existing program. Example predicates include:

p(σ, P )
def
= (σ = σ∅) p(σ, P )

def
= (P = tp ‖ tco) (4.2)

A region update is applied to the code as soon as its associated update predicate becomes

true:
ψ = p1 7→ u1, . . . , pn 7→ un i smallest in 1...n.pi(σ, P )

[σ] P,ψ
τ−→ [σ] upd(P, ui, false), ψ \ pi 7→ ui

(4.3)
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The order of the maps from predicates to region updates is important, as updates are

applied from left to right (oldest to newest). We define an update function upd(t, u, b)

(Figure 4.11) where b denotes whether t occurs in a context which is appropriate to

update. The definition of update for transactional regions describes in which situations

it is appropriate to update:

upd(dmod
f̃
(t1), u, b)

def
= dmod

f̃
(upd(t1, u, true)) f̃ ∩ dom(u) = ∅

upd(dmod
f̃
(t1), u, b)

def
= dmod

f̃
(upd(t1, u, false)) f̃ ∩ dom(u) 6= ∅

(4.4)

When no updatable regions (that are being updated by u) have been entered, within a

given transactional region, then it is appropriate to update all possible named regions

within the transactional region, otherwise it is not. When an update is applied to a

named region, if we are in an appropriate context, and the update contains a replacement

body for the named region, then we replace the body of the region in its entirety:

upd(f(t1), u, true)
def
= f(u(f)) f ∈ dom(u) (4.5)

Otherwise we continue recursively:

upd(f(t1), u, b)
def
= f(upd(t1, u, b)) (¬b ∨ f /∈ dom(u)) (4.6)

Updates can be introduced at any time, and are always appended onto the end of the

update list:

[σ] P,ψ
τ−→ [σ] P, (ψ, ω) (4.7)

Here ω is introduced externally. An external, or out-of-band, update (Soules et al.,

2003; Ajmani, 2004; Stoyle et al., 2005; Nicoara et al., 2008) is one where the update

is introduced using some mechanism that isn’t considered as part of the system. An

example of this would be the change of a physical piece of hardware, or making use of

some system level code that isn’t available to normal message passing programs. We

use the notation ψ∅ to indicate an empty list of Predicated Updates. In order to make

our analysis tractable we assume that a program starts with no pending updates, and

that only one update can be introduced into the system. That update, however, can

be introduced at any point in the execution of the original program. This approach

could be extended to multiple updates by considering an updated program as the initial

program for the second update, and applying the analyses presented in this thesis for

single updates, on the modified code with a new update.

Normal reductions (Figure 3.5) can only occur when no updates are applicable:

[σ] P
γ−→ [σ′] P ′ @p ∈ dom(ψ).p(σ, P )

[σ] P,ψ
γ−→ [σ′] P ′, ψ

(4.8)
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ψ, ω ::= Predicated Updates
| p 7→ u Map from predicate to update
| ψ,ψ List of predicate updates
| ∅ Empty predicate update

u ::= Region updates
| f 7→ t Map from region to new code
| u, u Set of updates
| ∅ Empty update

p ::= Update predicate
| p(zΣ, zΦ, zψ) on code and message queues and current updates

Figure 4.14: Update Calculus

We define all the additions to the operational semantics that handle updates in Fig-

ure 4.10. We make use of the auxiliary function regions(t) that is inductively defined

over the structure of terms, and returns a set of the region annotations used in t.

We provide a full reduction example for update in Figure 4.13. The region update

maps regions f and g to the new region bodies t′p and t′co respectively. The update

predicate states that the only valid point at which the update can be applied is when

both the producer and the consumer are at the top of their recursive loops. The update

is introduced on line 4, but the update predicate doesn’t become true until line 6, at

which point the update is applied on line 7.

We assume that the new code included in a region update is all typable as Unit under

an empty type environment:

∀f 7→ t ∈ u . ϕ o ∅ ` t : Unit (4.9)

There is a wide variety of work that considers how to update functions in a way that

changes their type signature (Baumann et al., 2007; Soules et al., 2003; Baumann et al.,

2005; Subramanian, 2010; Altekar et al., 2005; Kaashoek and Arnold, 2009). The tech-

niques therewith are largely orthogonal to ours. We work under the simplifying as-

sumption that the types of bodies of code will not change (in particular, that they have

the unit assumption). This is as, to incorporate the techniques used to prove safety of

changing type signatures as well, would have significantly complicated the presentation.

We refer to such a region update as well formed ; we only consider well formed updates.
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ϕ o Γ ` t : T

f(ϕ) o Γ ` f(t) : T

ϕ o Γ ` t : T

dmod
f̃
(ϕ) o Γ ` dmod

f̃
(t) : T

Figure 4.15: Extensions To Typing Rules

[Σ] f(ε)
τ−→ [Σ] ε

[Σ] ϕ
τ−→F [Σ′] ϕ′

[Σ] f(ϕ)
τ−→F [Σ′] f(ϕ′)

[Σ] ϕ
α(T̃ )−−−→F [Σ′] ϕ′

[Σ] f(ϕ)
α(T̃ )−−−→F [Σ′] ϕ′

[Σ] ϕ1
γ−→F ′ [Σ′] ϕ′1 regions(ϕ1) 6⊆ F

[Σ] dmodF (ϕ1)
γ−→F ′ [Σ′] dmodF∪F ′(ϕ′1)

regions(ϕ1) ⊆ F

[Σ] dmodF (ϕ1)
τ−→ [Σ] ϕ1

[Σ] Φ
γ−→ [Σ′] Φ′ @p ∈ dom(ψ).p(Σ,Φ)

[Σ] Φ, ψ
γ−→ [Σ′] Φ′, ψ

ψ′ 6= ∅ introduced externally

[Σ] Φ, ψ
τ−→ [Σ] Φ, (ψ,ψ′)

ψ = p1 7→ u1, . . . , pn 7→ un i smallest in 1...n.pi(Σ,Φ)
Φ = ϕ1 ‖ . . . ‖ ϕn ϕ′j = upd(ϕj , ui, false)

[Σ] Φ, ψ
τ−→ [Σ] ϕ′1 ‖ . . . ‖ ϕ′n, ψ \ pi 7→ ui

Figure 4.16: Update Extensions To Effect Semantics

4.2.3 Behavioural Abstraction

We extend the behavioural abstraction we defined in Section 3.3 to accommodate up-

dates. We include typing rules for updatable regions and transactional regions (Fig-

ure 4.15). The effect reduction rules are extended to cover update (Figure 4.16); these

mirror the concrete semantics. We abuse notation for the purposes of update predicates

etc., assuming that:

∃Σ,Φ.p(Σ,Φ) ⇔ ∃P, σ. ` P : Φ ∧ Σ = Λ(σ) ∧ p(σ, P ) (4.10)

We define the update function over effects similarly to over terms (Figure 4.17). The

most notable case is:

upd(f(ϕ), u, b)
def
= f(ϕ′) b ∧ f ∈ dom(u) ∧ ϕ′ o ∅ ` u(f) : (4.11)

Here, instead of substituting the new body we instead determine its effect, under an

empty type environment (which is possible for well formed updates), and substitute the

effect.
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4.3 General Formulation

In order to provide safety and liveness guarantees we must place restrictions on which

programs are valid, in order to rule out errors and deadlock. We define a program

point to consist of an effect Φ, a shared state abstraction Σ, and possibly an update.

A program point is safe and deadlock free if it does not contain an error, if all its

reductions result in safe and deadlock free program points, and if it can perform at least

one reduction (or consists of empty effects). We formalise these in the following section.

We then proceed to prove key properties of our update system.

4.3.1 Global Update Compatibility

In order to rule out deadlock and errors we must prove three things: 1) that whenever

the underlying language reductions are enabled that no errors are present and that the

system is not deadlocked, 2) that update reductions leave a program and messages in a

compatible state, and 3) that introducing the update at any point in the execution is safe.

We refer the property that comprises these conditions as Global Update Compatibility

and formalise them function that is inductively defined in Figure 4.18; this is an extension

of our earlier work (Anderson and Rathke, 2011).

The predicate G(Σ,Φ, ψ, ω) denotes that, given a program abstracted by Φ, shared state

Σ, a list of pending updates ψ, and an update ω that can be introduced into the list

of pending updates at any time, that no reductions will reduce in type errors, that the

system is not deadlocked, and that any updates will leave the system in a safe state. We

describe the restrictions in more detail below.

The predicate can alternatively be characterised as the greatest fixed point of the fol-

lowing function, defined over the state space S of tuples (Σ,Φ, ψ, ω) of abstract states,

parallel effects, and pairs of updates.

g(S) =



(Σ,Φ, ψ, ω) |



 ∀p ∈ dom(ψ).¬p(Σ,Φ) and ∀Σ′,Φ′.[Σ]Φ→ [Σ′]Φ′ ⇒
(Σ′,Φ′, ψ, ω) ∈ S and (∃Σ′,Φ′. [Σ]Φ→ [Σ′]Φ′

or Φ ≡ Π ε)


or, for the first p 7→ u in ψ such that p(Σ,Φ) we have

(Σ, upd(Φ, u), (ψ \ p 7→ u), ω) ∈ S


and 6 ∃error ∈ Φ

and(Σ,Φ, (ψ, ω), ∅) ∈ S


(4.12)

This is a monotone function on the powerset lattice of tuples of abstract states, effects,

updates, and updates. It has a greatest fixed point νg (which is just a set of tuples).

Using the Knaster-Tarski fixed point theorem, we know that the predicate G(Σ,Φ, ψ, ω)

is defined if and only if (Σ,Φ, ψ, ω) ∈ νg.
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upd(ε, u, b)
def
= ε

upd(X,u, b)
def
= X

upd((α(T̃ ), T ), u, b)
def
= (α(T̃ ), T )

upd(ϕ1; ϕ2, u, b)
def
= upd(ϕ1, u, b); upd(ϕ2, u, b)

upd(ϕ1 ⊕ ϕ2, u, b)
def
= upd(ϕ1, u, b)⊕ upd(ϕ2, u, b)

upd(ϕ1&ϕ2, u, b)
def
= upd(ϕ1, u, b)&upd(ϕ2, u, b)

upd(µX.ϕ, u, b)
def
= µX.upd(ϕ, u, b)

upd(error, u, b)
def
= error

upd(f(ϕ), u, b)
def
= f(upd(ϕ, u, b)) (¬b ∨ f 7→/∈ u)

upd(f(ϕ), u, true)
def
= f(ϕ′) 6 ∃t.f 7→ t ∈ u∧

ϕ′ o ∅ ` t′ : Unit

upd(dmodγ(ϕ), u, b)
def
= dmodγ(upd(ϕ, u, true)) γ ∩ dom(u) = ∅

upd(dmodγ(ϕ), u, b)
def
= dmodγ(upd(ϕ, u, false)) γ ∩ dom(u) 6= ∅

Figure 4.17: Update Function On Effects

Language Reductions

An error occurs when a thread receives a value it does not expect. In order to rule out

such cases we need to ensure that, at every point which a program can reach, if the

program can perform a reduction it reduces to another valid state:

[Σ] Φ
γ−→ [Σ′] Φ′ ⇒ G(Σ′,Φ′, ψ, ω) (4.13)

Deadlock occurs when a process wants to access the shared state but the action is

blocked. In order to rule out deadlock we need to ensure, at every point [Σ] Φ which a

program can reach, that either it is able to perform a reduction, or it consists of empty

effects:

[Σ] Φ
γ−→ [Σ′] Φ′ ∨ Φ = ΠI ε (4.14)

We can only perform reductions on the Message Passing Calculus if there are no updates

which are applicable at that point:

[σ] P
γ−→ [σ′] P ′ @p ∈ dom(ψ).p(σ, P )

[σ] P,ψ
γ−→ [σ′] P ′, ψ

(4.15)

Hence we only need to ensure that (4.13) and (4.14) hold in situations where @p ∈
dom(ψ).p(Σ, P ):

@p ∈ dom(ψ).p(Σ,Φ) ∧ (∃Σ′,Φ′. [Σ] Φ
γ−→ [Σ′] Φ′ ∨ Φ ≡ ΠI ε)∧

(∀Φ′. [Σ] Φ
γ−→ [Σ′] Φ′ ⇒ Gk(Σ′,Φ′, ψ, ω))

(4.16)
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G0(Σ,Φ, ψ, ω)
def
= true

Gk(Σ,Φ, ψ, ω)
def
=


@p ∈ dom(ψ).p(Σ,Φ)∧

(∀Φ′. [Σ] Φ
γ−→ [Σ′] Φ′ ⇒ Gk−1(Σ′,Φ′, ψ, ω))

∧ (∃Σ′,Φ′. [Σ] Φ
γ−→ [Σ′] Φ′ ∨ Φ = ΠI ε)

∨ψ = p1 7→ u1, . . . , pn 7→ un ∧ i smallest in 1...n.
pi(Σ,Φ) ∧ Gk−1(Σ, upd(Φ, ui, false), ψ \ pi 7→ ui, ω)


∧@error ∈ Φ ∧ Gk−1(Σ,Φ, (ψ, ω), ∅)

where k > 0

G(Σ,Φ, ψ, ω) =
∧
k∈N Gk(Σ,Φ, ψ, ω)

Figure 4.18: Global Update Compatibility

4.3.1.1 Applying Updates

If a pending Predicated Update is applicable (if its update predicate is true) we apply

it straight away. Hence we require, whenever a pending Predicate Update is applicable,

that it leaves the system in a Globally Consistent state:

ψ = p1 7→ u1, . . . , pn 7→ un ∧ i smallest in 1 . . . n.

pi(Σ,Φ) ∧ G(Σ, upd(Φ, ui, false), (ψ \ pi 7→ ui), ω)
(4.17)

4.3.1.2 Introducing Updates

Updates can be introduced into the system at any time:

[σ] P,ψ
τ−→ [σ] P, (ψ, ω) (4.18)

In order to make our work tractable we assume that a program commences execution

with no pending updates, and that only one update, ω, is introduced in the entire course

of the program. We require that if we move the update we are considering into the list

of pending updates, that the system remains Globally Compatible:

G(Σ,Φ, (ψ, ω), ∅) (4.19)

4.3.2 Key Properties

As discussed in Section 3.4, verifying that Global Update Compatibility holds for a

given system amounts to model checking, and such a check is computationally expensive.
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We again permit stronger properties which imply General Compatibility for updatable

programs:
` P : Φ ∃C.C(Λ(σ),Φ, ψ, ω) and (C =⇒ G)

`ω [σ] P,ψ
(4.20)

The judgement `ω [σ] P,ψ defines that a program P , with shared state σ, pending

updates ψ, and an update which can become pending at some arbitrary point in the

future ω, has Global Update Compatibility. We refer to program points that can be

validated using the rule in Equation 4.20 to be update valid.

We can prove that an update valid program points will retain safety in the presence of

update.

Theorem 4.1. Subject Reduction of Update Valid Program Points

For all ω, σ, P, ψ, γ, σ′, P ′, ψ′ if:

`ω [σ] P,ψ [σ] P,ψ
γ−→ [σ′] P ′, ψ′

then there exists ω′ such that

`ω′ [σ′] P ′, ψ′

Proof. Suppose the hypotheses. We then prove the conclusion by induction over the

derivation tree of the reduction [σ] P,ψ
γ−→ [σ′] P ′, ψ′.

Consider the case where the last reduction rule used is RNoUpd:

[σ] P
γ−→F [σ′] P ′ @p ∈ dom(ψ).p(σ, P )

[σ] P,ψ
γ−→ [σ′] P ′, ψ

By the reduction rule we know that @p ∈ dom(ψ).p(Σ,Φ). We can use Lemma 3.2 to show

that as [σ] P
γ−→ [σ′] P ′ then we know that ` P ′ : Φ′ and [Λ(σ)] Φ, ψ

γ′−→ [Λ(σ′)] Φ′, ψ′.

Then, by the definition of G, we can know that: @error ∈ Φ and [Σ] Φ −→ [Σ′] Φ′ ⇒
G(Σ′,Φ′, ψ, ω) and hence that @error ∈ Φ′. Finally, given that G(Σ′,Φ′, ψ, ω), then

letting C = G, we can show that: `ω [σ′] P ′, ψ, using the rule in Equation 4.20.

Consider the case where the last reduction rule used is RIntrUpd. By the definition of G we

know that G(Σ,Φ, (ψ, ω), ∅). Hence we can straightforwardly show that `∅ [σ] P,ψ, ω,

using the rule in Equation 4.20.

Consider the case where the last reduction rule used is RUpd:

ψ = p1 7→ u1, . . . , pn 7→ un i smallest in 1...n.pi(σ, P )

[σ] P,ψ
τ−→ [σ] upd(P, ui, false), ψ \ pi 7→ ui
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By Lemma A.5 we can show that as ` P : Φ and ∀f 7→ t.ϕ o ∅ ` t : Unit we know

that ` upd(P, u, false) : upd(Φ, u, false). By the definition of G we know that given

that ψ = p1 7→ u1, . . . , pn 7→ un there exists a smallest i such that pi(Σ,Φ) holds,

and furthermore that G(Σ, upd(Φ, ui, false), ψ \ pi 7→ ui, ω). Hence we can show that

`ω [σ′] P ′, ψ, using the rule in Equation 4.20.

We can prove that an update valid program points will retain liveness in the presence

of update.

Theorem 4.2. Liveness of Update Valid Program Points

For all ω, σ, P, ψ, if:

`ω [σ] P,ψ

then either P = Πv, or there exists γ, σ′, P ′, ψ′ such that

[σ] P,ψ
γ−→ [σ′] P ′, ψ′

Proof. It is the case that either there exists an update predicate that is fulfilled by the

current shared state and program point, or there is not. We perform a case split on

these conditions.

Consider the case where there is no applicable update. As `ω [σ] P,ψ holds then by

the definition of G, we know that either there exists Σ′,Φ′ such that [Σ] Φ
γ−→ [Σ′] Φ′,

or that Φ ≡ ΠI ε. We perform a case split between these two possibilities.

Consider the case where [Σ] Φ
γ−→ [Σ′] Φ′. By Lemma 3.6 we know that [σ] P

γ−→
[σ′] P ′, and hence, using the (RNoUpd) rule we can show that [σ] P,ψ

γ−→ [σ′] P ′, ψ′, as

required.

Consider the case where Φ = ΠI ε. By Lemma 3.5 we know that either [σ] P
γ−→ [σ′] P ′

or P = ΠI v, as required.

Consider the case where there is an applicable update. We know that G holds. As there

exists an update predicate that is true for the current program point we can choose the

smallest i such that pi(Σ,Φ) holds. Hence, using the (RNoUpd) rule, we can show that

[σ] P,ψ
γ−→ [σ′] upd(P, u, false), ψ \ pi 7→ ui, as required
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4.4 Conclusions

In this chapter we consider communication safety and liveness for side effecting programs

that can be updated at runtime. Our contributions are as follows. We demonstrate

several examples of how update can introduce errors and deadlock into otherwise safe and

live programs. In particular we show how if a consumer is updated before a producer, in

a producer consumer system with acknowledgement, deadlock can be introduced into the

system. We show how to extend general compatibility to incorporate dynamic programs.

This approach is of even higher complexity than that for global compatibility presented

in Chapter 3. This is as each at each reachable program point obtained by interleaving

of the program, we must check to see if it is safe to introduce an update, and that all

interleavings of the updated program are also safe. We again rely on the implication

that we will develop specific systems that have reduced verification complexity. These

are explored in the next chapter.
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Chapter 5

Specific Formulations for DSU

The cost of verifying general compatibility is un-necessarily expensive, due to the high

checking complexity. We explore stronger properties that imply Global Update Compat-

ibility, as these properties are often easier to prove, and reduce the cost of verification.

In this chapter we present two techniques to statically prove safety of updates to mes-

sage passing programs, where we informally argue that the cost of verification is linear

in the modified program. The first technique is a form of Global Synchronisation that

is straightforward to reason about and prove safe (Section 5.1). The second technique

uses the semantics of blocking message passing to provide synchronisation so that we

can update groups of threads separately rather than all threads at a synchronised point

(Section 5.2). We contrast their trade-off between simplicity and restrictions on the

programs and updates allowed, present our conclusions, and describe our novel contri-

butions in Section 5.3.

81



G ::= d1 → d2 : 〈T̃ 7→ G〉 | µX.G | X | 0 | f(G) | dmod(G)

Figure 5.1: Global Session Types With Update Extensions

f(G) � d
def
= fd(G � d) dmodF (G) � d

def
= dmod{fd|f∈F}(G � d)

Figure 5.2: Extended Global Session Type Projection Function

5.1 Global Typability

We extend Global Session Types to include updatable and transactional regions (Fig-

ure 5.1). The programs that most benefit from DSU are those that are structured as

long running processing loops (Subramanian, 2010). Hence we consider pre-update mes-

sage passing programs which can be abstracted using Global Session Types of the form

µX.dmod(f(G)), where there are no additional region annotations in G; this denotes

a long running loop that can be updated by replacing the all future iterations of a

processing loop with another processing loop.

We define the projection of the extended Global Session Types in Figure 5.2 (extending

the function in Figure 2.10). We handle projection of updatable and transactional

regions as follows. The projection of annotation f(G) onto a participant d is defined to

be fd(G � d). Note the subscript d on the region name for the local Session Type of

d; this simply permits us to ensure the region annotation in the Global Session Type is

projected to syntactically separate region annotations in each of the participant’s local

Session Types. We do this in order to be able to update each process independently.

The projection of transactional regions is straightforward.

5.1.1 Formalisation

One important feature of the Global Session Type approach is that each communication

action in the Global Type projects to a pair of send/receive actions in the local Session

Types. As this pair of actions is decoupled into independent processes, in terms of

protocol a point where one of the actions has been executed and the other hasn’t is not

a suitable point for update. Checking for emptiness of queues would be sufficient to

rule out this case, however this Global action may be a part of a larger transaction, as

indicated by the regions. In order to maintain transactional sanity we do not want to

permit one process to be updated when another is not, as in Figure 4.3. As processes can

enter the transactional regions in the local types independently, we must also verify that

either all processes involved in that particular transactions have entered the region, or

all processes have not. A straightforward way of doing this is to check that the processes
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∆�G def
=
⋃
n<ω

∆�G
n ∆�G

0
def
= { [Σ∅] Φ�G}

∆�G
n+1

def
= { δ( [c 7→ T ; Σk] , ϕ′b, ϕ

k
a) | ∀j ∈ J.δ(Σj , ϕjb, ϕ

j
a) ∈ ∆�G

n )}
∪ { δ( [Σ] , ϕ′a, ϕ

j
b) | ∀k ∈ K . δ(Σ, ϕka, ϕ

k
b ) ∈ ∆�G

n ∧ Σ(c) = ∅)
∪ { δ( [Σ] , dmodF (ϕ)) | δ(Σ, ϕ) ∈ ∆�G

n ∧ F ⊆ regions(ϕ))

∪ ∆�G
n

where c = dadb,∅ ⊂ K ⊆ J , all G are of the form dmod(f(G′)), that the only place that
the dmod() and f() annotations appear is at top level, and

ϕ′a =

{
dmod∅(f(⊕K(c!(Tk); ϕ

k
a))) if G � da ≡ dmod∅(fdi(⊕K(c!(Tk); ϕ

k
a)))

⊕K(c!(Tk); ϕ
k
a otherwise

ϕ′b =

{
dmod∅(f(&J(c?(Tj); ϕ

j
b)))) if G � db ≡ dmod∅(fdi(&J(c?(Tj); ϕ

j
b))))

&J(c?(Tj); ϕ
j
b) otherwise

Figure 5.3: Annotated Blocking Message Passing Safe Program Points Set

are typable using some Global Session Type, and that the message queues are empty.

This guarantees that communications actions are in parity, and also that processes are in

consistent states with respect to transactions. We call this approach Global Typability,

and formalise its constraints on the updates that are permissible as:

GT (ψ) iff (ψ = pgt(zΣ, zΦ, zψ) 7→ { ˜fdi 7→ tdi} and ∃Φ. `
∏

tdi : Φ�) (5.1)

where pgt(zΣ, zΦ, zψ) is the predicate (zΣ = Σ∅) ∧ zΦ� , and zΦ� denotes that zΦ is the

projection of some Global Session Type.

In order to ensure that updates transform programs from (provably) safe and live states

to (provably) safe and live states, we must extend the consistency definition from Fig-

ure 3.13 to account for possible program states that can be reached by reducing a

program with dmod() and f() annotations. We modify the inductive definition of a safe

program points sets to comprise such points (Figure 5.3). Note that, unlike in Fig-

ure 3.13, the safe points set is parameterised by a global session type G. This is used

to maintain correct encapsulation with respect to updateable and transactional regions.

We return to this in the description of the second construction, below. The base case

consists of program points that are projections of Global Session Types, with accompa-

nying empty message queues. Here we make explicit our assumption that programs are

of the form µX.dmod(f(G1)), and that the only place that the dmod() and f() annota-

tions appear is at top level. In addition, we require that the body of the protocol only

appear at top level, under the recursive binding. We will return to this requirement

momentarily.
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1 [σ∅] (tc ‖ ts), ψ∅
2 −→ . . .

3 −→ [c1 7→ prime?] (snd(c, 3457).rcv(c2)(x : Int).tc ‖
µX ′.g(case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).X

′, . . .})), ψ∅
4 −→ [c1 7→ prime?] (snd(c, 3457).rcv(c2)(x : Int).tc ‖

µX ′.g(case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).X
′, . . .})), ψ

5 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).tc ‖
µX ′.g(case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).X

′, . . .})), ψ
6 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).tc ‖

g(case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).ts, . . .})), ψ
7 −→ [c1 7→ prime?, 3457] (rcv(c2)(x : Int).tc ‖

case c1 of {prime? 7→ rcv(c1)(x : Int).snd(c2, . . .).ts, . . .}), ψ
8 −→ [c1 7→ 3457] (rcv(c2)(x : Int).tc ‖ rcv(c1)(x : Int).snd(c2, . . .).ts), ψ

9 −→ [σ∅] (rcv(c2)(x : Int).tc ‖ snd(c2, . . .).ts), ψ

10 −→ [σ∅] (rcv(c2)(x : Int).t′c ‖ snd(c2, . . .).t
′
s), ψ∅

11 −→ . . .

where

ψ = p 7→ (f 7→ t′c, g 7→ t′s) ps(Σ,Φ)
def
= (Σ = Σ∅ ∧ ∃G.Φ = G � d1 ‖ . . . ‖ G � dn)

Figure 5.4: Update Success In Maths Server Using Global Typability

The first and second constructions are similar to those for blocking message passing in

Figure 3.13, in that they add a value to the front of the queue with a complementary

external choice on receive, and add complementary internal choice between sends and

external choice between receives, respectively. There is an additional aspect to the

construction, however, that we explain by example. We want to guarantee that all

threads are updated, and that an update does not result in old code intreating with new

code. Specifically, we wish to rule out situations such as:

[Σ∅] µX.dmod∅(f(c!〈T 〉; X)) ‖ µX.(c?(T ); X) (5.2)

In this case we could update the producer to be empty, thus introducing deadlock into

the system. Hence we require that any time we use a construction rule, that if the

extended process is the projection of the top level protocol µX.dmod(f(G1)), that the

relevant dmod() and f() annotations must be added. The third construction permits

us to add a dmodF () where the region set F comprises all regions within the enclosed

process; this means that the next reduction for this process will simply strip away the

extraneous annotation.

We can use Global Typability to perform the update to the maths server (from Figure 4.1

to Figure 4.2) using the update predicate for Global Typability. An example reduction
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for such an update is shown in Figure 5.4. On line 4 we introduce the update when

there are values in the message queues. The program then continues evaluating until

the update predicate becomes true on line 9, after which the update is performed on

line 10. The Global Update predicate will rule out example erroneous reductions such

as in Figures 4.3.

5.1.2 Properties and Proofs

In order to prove that Global Typability implies Global Compatibility we make use of the

following lemmas. First we show that any program point within the set of safe program

points reduces, then the new program point is still within the set of safe program points.

Lemma 5.1. Valid Simple Points Reduction

∀Σ,Φ, G1, n,Σ
′,Φ′. [Σ] Φ ∈ ∆�G1

n ∧ [Σ] Φ −→ [Σ′] Φ′ ⇒ [Σ′] Φ′ ∈ ∆�G1
n

Proof. The proof proceeds similarly to that in Lemma 3.9. Suppose the hypotheses. We

then prove the conclusion by induction over the n of ∆�G1
n . The key differences are in

the case where n > 0. By the structure of parallel effects we can identify one effect

which is the one that reduces:

[Σ] ϕ1 ‖ . . . ‖ ϕi ‖ . . . ‖ ϕm −→ [Σ′] ϕ1 ‖ . . . ‖ ϕ′i ‖ . . . ‖ ϕm

As [Σ] Φ ∈ ∆�G1
n we know that [Σ] Φ is either in one of the sets included in the

definition of ∆�G1
n , or it is in ∆�G1

n−1.

Consider the case when [Σ] Φ ∈ {δ([c 7→ T ; Σk], ϕ′b)} where ∀j ∈ J.δ(Σj , ϕjb) ∈ ∆�G1
n−1

(as in Figure 5.3). We can perform a case split over the index i. If i = b then ϕb is

of one of two forms. If ϕ ≡ dmod∅(f(&J(c!(Tj); ϕ
j
b)))) then by the reduction rules, we

know that ϕ′i ≡ dmodfdb (ϕkb ) and that Σ′ = Σk. As we have that δ(Σk, ϕka, ϕ
k
b ) ∈ ∆�G1

n−1,

then by the third construction in Figure 5.3 we have that δ(Σk, dmodfdb (ϕkb )) ∈ ∆�G1
n−1,

as required. The cases where ϕ ≡ &J(c!(Tj); ϕ
j
b) and i 6= b continue as in Lemma 3.9.

Consider the case when [Σ] Φ ∈ { δ(Σ, ϕ′a, ϕ′b)} where ∀j ∈ J.δ(Σj , ϕja, ϕ
j
b) ∈ ∆�G1

n−1 and

Σ(c) = ∅ (as in Figure 5.3). This follows the first case, and has four permutations (rather

than two), as ϕ′a can be of form dmod∅(f(⊕K(c!(Tk); ϕ
k
a))) and of form ⊕K(c!(Tk); ϕ

k
a),

and ⊕K(c!(Tk); ϕ
k
a) can either be a true choice, or a degenerate choice c!(Tk); ϕ

k
a, again

making use of the third construction in Figure 5.3 when ϕ′a ≡ dmod∅(f(⊕K(c!(Tk); ϕ
k
a))).

Consider the case when [Σ] Φ ∈ { δ(Σ, dmodF (ϕi)} where δ(Σ, ϕi) ∈ ∆�G1
n−1 and F ⊆

regions(ϕa) (as in Figure 5.3). By the (DMod) rule we know that [Σ] ϕi → [Σ′] ϕ′i.

As δ(Σ, ϕi) ∈ ∆�G1
n−1, then by the inductive hypothesis we can show that δ(Σ′, ϕ′i) ∈
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∆�G1
n−1. Then by the third construction we can show that δ(Σ′, dmodF (ϕ′i)) ∈ ∆�G1

n−1, as

required

We can prove that valid program points are safe and live.

Lemma 5.2. Valid States Safety Lemma

∀Σ,Φ, G, n. [Σ] Φ ∈ ∆�G
n ⇒ error /∈ Φ

Proof. Similar to that of Lemma 3.10.

Lemma 5.3. Valid States Liveness

∀Σ,Φ, G, n. [Σ] Φ ∈ ∆�G
n ⇒ ∃Σ′,Φ′. [Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε

Proof. The proof proceeds similarly to that of Lemma 3.11, by induction over n. The key

difference is where n > 0 and where [Σ] Φ ∈ { δ(Σ, dmodF (ϕi)}, given that δ(Σ, ϕi) ∈
∆�G
n−1 and F ⊆ regions(ϕ). By the reduction rules, as F ⊆ regions(ϕ), we know that

[Σ] dmodF (φ)→ [Σ] φ, and hence

[Σ] φ1|| . . . ||dmodF (φ)|| . . . ||φm → [Σ] φ1|| . . . ||φ|| . . . ||φm

as required.

We prove that, if we apply a well formed update to a valid (abstract) process point, that

the updated point is still valid.

Lemma 5.4. Global Session Type Updatability

∀Φ, G, u, fi, ti, φi, G′, b. if

Φ ≡ Φ�G u = f̃i 7→ tiI ϕi o ∅ ` ti : Unit G′ � di ≡ ϕi

Then ∃G′′,Φ′ such that

upd(Φ, u, b) ≡ Φ′�G
′′

Proof. Suppose the hypotheses. We then prove the conclusion by induction over the

structure of G. The key cases are as follows.

Consider the case where G = f(G1). The update function depends on the boolean value

b. Hence we perform a case split on its possible values. Consider the case b = true. By
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the definition of � we know that Π f(G1) � d ≡ Π fd(G1 � d). By Lemma A.4 and the

definition of upd we know that:

Π upd(f(G1) � d, u, true) ≡ Π upd(ϕ′i, u, true)

≡ Π upd(G′ � d, u, true)

as required. Consider the case where b = false. By Lemma A.4 and the definition of

upd we know that Π upd(f(G1) � d, u, false) ≡ Π fd(upd(G1 � d, u, false)). We can use

the inductive hypothesis to show that Π upd(G1 � d, u, false) ≡ ΠG′′′ � d. Hence we

have that Π upd(f(G1) � d, u, false) ≡ Π fd(upd(G′′′ � d, u, false)) and G′′ = f(G′′′),

as required.

Consider the case where G = dmodF (G1). By Lemma A.4 and the definition of upd

we know that Π upd(dmodF (G1) � d, u, b) ≡ Π dmodFd
(upd(G1 � d, u, true)), where

regions(G1)∩F = ∅ and Π upd(dmodF (G1) � d, u, b) ≡ Π dmodFd
(upd(G1 � d, u, false)),

where regions(G1)∩F 6= ∅. By the inductive hypothesis we can show that Π upd(G1 �

d, u, b) ≡ ΠG′′′ � d. Hence we have that Π upd(dmodF (G1) � d, u, b) ≡ Π (dmodF (G′′′)) �

d, as required.

We can show that if we apply a well formed update to a valid program point then the

updated point is still valid.

Lemma 5.5. Global Typability Update Consistency

If:

` P : Φ ∃G.Φ = G � d1 ‖ . . . ‖ G � dn
u = fd1 7→ td1 , . . . , fdn 7→ tdn .∃G′.∀i ∈ 1 . . . n .G � di o ∅ ` tdi : T

then:

` upd(P, u, false) : Φ′ ∃G′.Φ′ = G′ � d1 ‖ . . . ‖ G′ � dn

Proof. By induction over the structure of G.

We can then prove that if such an update is introduced into a (valid) message passing

program that has reduced from the projection of a Global Session Type, that whenever

the update is applied it will result in another valid program. An informal explanation of

this proof is as follows. Up until the point that an update is introduced, and its update

predicate has become true, we can use the fact that the program point is a member of

the valid points set to show that the program is live and safe, as in Observation 3.13

and Observation 3.14. At the point the update is applied we know that the message

queues are empty, and the effect of the process is the projection of a Global Session

Type. When the well formed update is applied to the program we can use Lemma 5.4 to

show that the updated program’s effect is still the projection of a Global Session Type.

As the message queues are still empty then we can show that ` upd(P, u, false) : Φ′�.
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and hence that [Σ] upd(Φ, u, false) ∈ ∆G2
0 . After the update is applied we know that

no updates will be introduced or applied again. hence we can show that the resulting

program is safe and live, as in Section 3.5.1.

Theorem 5.6. Global Typability Theorem

For all k,Σ, P, ψ, ω, if (GT (ψ) or φ = ψ = ∅) and [Σ] Φ ∈ ∆G1 then Gk(Σ,Φ, ψ, ω).

Proof. Suppose the hypotheses. We then prove the conclusion by induction over the k

in Gk(Σ,Φ, ψ, ω).

Consider the case where k = 0. We trivially have that G0(Σ,Φ, ψ, ω) = true.

Consider the case where k > 0. We prove each of the conjuncts of G separately. In order

to prove the second conjunct: by Lemma 5.2 we can show that @error ∈ Φ′, as required.

We can show the third conjunct directly using the inductive hypothesis, and hence have

Gk−1(Σ,Φ, (ψ, ω), ∅) as required, as k − 1 < k. In order to prove the third conjunct

we must either show that no update is applicable, and for all possible reductions the

resulting program points are globally compatible, or if an update is applicable then the

updated program point is globally compatible.

Consider the case where there are no applicable updates. By Lemma 5.1 we know that if

there exists Σ′ and Φ′ such that there is a reduction [Σ] Φ −→ [Σ′] Φ′ then the resulting

program point [Σ′] Φ′ are still in the valid points set, [Σ′] Φ′ ∈ ∆G1 . By the inductive

hypothesis, as GT (ψ) and [Σ′] Φ′ ∈ ∆G1 then we know that Gk−1(Σ′,Φ′, ψ, ω). By

Lemma 5.3, then as [Σ] Φ ∈ ∆G
n then we know that either [Σ] Φ −→ [Σ′] Φ′ or Φ ≡ Π ε,

as required.

Consider the case where there is an applicable update. We can choose the first update

such that its predicate is applicable, and let i be this update’s index. By Lemma 5.4 we

know that upd(Φ, u, b) ≡ Φ�, and hence that [Σ∅] upd(Φ, u, b) ∈ ∆G2
0 . We can use the

inductive hypothesis to show that Gk−1(Σ∅, upd(Φ, u, b), ∅, ∅), as required.

5.1.3 Summary

We can update programs whose effects are projections of Global Session Types; such

situations correspond to a degree of global synchronisation. As such, at each point

during the reduction we must consider whether the whole program can be so abstracted.

At first glance this might seem a heavy requirement, however in practice we believe that

we could use a check in/check out approach similar to that used in (Neamtiu and Hicks,

2009) to mitigate this cost. As an example we present an annotation of the program
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tp = µX.dmod∅(f(snd(c1, v1).X))
tb = µX ′.dmod∅(f

′(rcv(c1)(x : T1).snd(c2, v2).X ′))
tco = µX ′′.dmod∅(f

′′(rcv(c2)(x : T2).X ′′))

Figure 5.5: Buffer System

1 [σ∅] (tp ‖ tb ‖ tco)
2 −→ [c1 7→ v1] (dmodf (tp) ‖ tb ‖ tco)
3 −→ [σ∅] (dmodf (tp) ‖ dmodf ′(snd(c2, v2).tb) ‖ tco)
4 −→ [σ∅] (tp ‖ dmodf ′(snd(c2, v2).tb) ‖ tco)
5 −→ [σ∅] (tp ‖ snd(c2, v2).tb ‖ tco)
6 −→ [c1 7→ v1] (dmodf (tp) ‖ snd(c2, v2).tb ‖ tco)
7 −→ [c1 7→ v1, c1 7→ v2] (dmodf (tp) ‖ tb ‖ tco)
8 −→ [c1 7→ v1] (dmodf (tp) ‖ tb ‖ dmodf ′′(tco))
9 −→ . . .

Figure 5.6: Infinite Delay Using Round Robin Fair Scheduling

defined in Figure 4.4.

tp = 1µX.2snd(c1, v1).3rcv(c2)(x : Unit).X

tco = 1µX ′.2rcv(c1)(x : T1).3snd(c2, ()).X
′ (5.3)

We can then represent the code point tp ‖ tco as 11, the code point:

2snd(c1, v1).3rcv(c2)(x : Unit).tp ‖ tco (5.4)

as 21, etc. We can then easily show that the effect of a program is the projection of a

Global Session Type when a program is at point 11, 22, etc.

5.2 Local Update

While the Global Typability approach is applicable to all long running event processing

loops, it suffers from the disadvantage that in some settings the update can be delayed

indefinitely. One example where we may reasonably expect the indefinite delay of an

update’s application, even in the presence of fair scheduling, is a producer/consumer

example with a buffer (Figure 5.5). If we take a round robin scheduling of this process,

we obtain the reduction sequence shown in Figure 5.6. Here, after the initial point, we

never reach a state where the system is the projection of a global session type; either

a value is in the channel queues, or the threads are out of sync with respect to their

dmod() annotations.
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tp1 = µX.dmod∅(f(snd(c1, v1).X))
tp2 = µX ′.dmod∅(f

′(snd(c2, v2).X ′))
tco = µX ′′.dmod∅(f

′′(rcv(c1)(x : T1).rcv(c2)(x : T2).X ′′))

Figure 5.7: Two Producer/Consumer System Without Acknowledgement

1 [σ∅] (tp1 ‖ tp2 ‖ tco), ψ∅
2 −→ [c1 7→ v1] (dmodf (tp1) ‖ tp2 ‖ tco), ψ∅
3 −→ [c1 7→ v1] (dmodf (tp1) ‖ tp2 ‖ tco), ψ
4 −→ [c1 7→ v1] (dmodf (tp1) ‖ t′p2 ‖ tco), ψ′

5 −→ [c1 7→ v1] (tp1 ‖ t′p2 ‖ tco), ψ′

6 −→ [c1 7→ v1] (t′p1 ‖ t′p2 ‖ tco), ψ′′

Figure 5.8: Introducing Deadlock Using Local Update

We should be able to update the system in Figure 5.5; intuitively we can see that if we

update the producer first, then the buffer, then finally the consumer, that we should

avoid errors and deadlock. This, however, requires updating the threads separately, and

risks the old protocol interacting with the new.

Communication errors occur when a value is received on a channel that is not of the

expected type. If we assume that the new program uses different channels to those in

the old program, then neither can receive a value sent by the other, and we rule out

communication errors completely. The problem then consists of guaranteeing liveness.

In this example, the producer never receives any values, and hence cannot be blocked

(and hence deadlocked) while it is performing the old protocol. If we are to update the

threads separately, this therefore seems like a good candidate to be the first updated.

Once updated it may block waiting for values sent by other threads under the new

protocol; this is not problematic if we can show that all threads will be updated to the

new protocol, and that once they all are that the system behaves as a static message

passing programs as in Chapter 3. We then have to guarantee that each thread in turn

migrates to the new protocol.

The key restriction that we introduce in order to update a program using Local Update

is that only one process can start the protocol. Consider the system in Figure 5.7. This

program is a producer/consumer protocol with two senders and one receiver. Hence

either the first or the second producer can evaluate first, and start the protocol. Consider

an update that consists of three separate predicated updates. The predicates for tpi are

true when the thread reaches the top of its loop. The predicate for tco is true when

it reaches the top of its loop, its channel queues are empty, and the producer threads

have already performed their updates. Then consider one reduction of this system
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1 [σ∅] (tp ‖ tb ‖ tco)), ψ∅
2 −→ . . .

3 −→ [c1 7→ v1] (tp ‖ tb ‖ tco), ψ∅
4 −→ [c1 7→ v1] (tp ‖ tb ‖ tco), ψ1, ψ2, ψ3

5 −→ [c1 7→ v1] (t′p ‖ tb ‖ tco), ψ2, ψ3

6 −→ [σ∅] (t′p ‖ dmodf2(c2!〈v2〉; tb) ‖ tco), ψ2, ψ3

7 −→ [σ∅] (t′p ‖ c2!〈v2〉; tb ‖ tco), ψ2, ψ3

8 −→ [c2 7→ v2] (t′p ‖ tb ‖ tco), ψ2, ψ3

9 −→ [c2 7→ v2] (t′p ‖ t′b ‖ tco), ψ3

10 −→ [σ∅] (t′p ‖ t′b ‖ dmodf3(tco)), ψ3

11 −→ [σ∅] (t′p ‖ t′b ‖ tco), ψ3

12 −→ [σ∅] (t′p ‖ t′b ‖ t′co), ψ∅
where:

ψi = pi 7→ (fi 7→ ti) p1( [Σ] Φ, ψ)
def
= (ϕ1 ≡ µX.dmod∅(f1(ϕ′1)))

p2( [Σ] Φ, ψ)
def
= (ϕ2 ≡ µX.dmod∅(f2(ϕ′2)) ∧ Σ(c1) = ∅ ∧ ψ1 6∈ u)

p3( [Σ] Φ, ψ)
def
= (ϕ3 ≡ µX.dmod∅(f3(ϕ′3)) ∧ Σ(c2) = ∅ ∧ ψ1 6∈ u ∧ ψ2 6∈ u)

Figure 5.9: Update Success Using Local Update

(Figure 5.8). After the first producer sends a value, the update is introduced. The

second consumer updates straight away. The first consumer then drops its old dmod()

and updates (line 6). As the first producer is now working under the new protocol, it

will never send a value on c1. As the second producer has already sent a value under

the old protocol, however, the consumer cannot update, but also will never reduce as it

will never receive on channel c1, hence the consumer is deadlocked.

We describe an example where Local Update preserves safety and liveness. We abuse

notation and define the update predicates over effects rather than terms. Consider an

update to the system defined in Figure 5.5, which updates the producer whenever it is

at the top of its main loop, which updates the buffer when it is at the top of its main

loop, it has no messages in its buffers, and the producer has already been updated, and

updates the consumer when it is at the top of its main loop, it has no messages in its

buffers, and both the producer and the buffer have already been updated. We present

one possible reduction sequence of this system in Figure 5.9. Note how the producer

is updated immediately (line 3), but the buffer must reduce and consumer its messages

before it can update (line 9). Note also how the consumer waits until the buffer has

updated before it performs its update, despite the fact it is at the top of its main loop

and has no messages in its channel queues. In this example the consumer could update

before the buffer without incident, however in a similar system, where the consumer
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∆�G
D

def
=
⋃
n<ω

n∆�G
D 0∆�G

D
def
= { [Σ∅] Φ�G

D }

n+1∆�G
D

def
= { δ([c 7→ T ; Σk], ϕ′b) | ∀j ∈ J.δ(Σj , ϕjb) ∈ n∆�G

D ∧ k ∈ J}

∪ { δ(Σ, ϕ′a, ϕ′b) | ∀j ∈ J.δ(Σ, ϕ
j
a, ϕ

j
b) ∈ n∆�G

D ∧ Σ(c) = ∅ ∧ da, db ∈ D}

∪ { δ(Σ, dmod{fdb}
(ϕkb )) | δ(Σ, ϕkb ) ∈ n∆�G

D ∧
G � db ≡ dmod∅(fdb(&J(c?(Tj); ϕ

j
b))))}

∪ { δ(Σ, dmod{fda}(ϕ
k
a)) | δ(Σ, ϕka) ∈ n∆�G

D ∧
G � da ≡ dmod∅(fda(⊕K(c!(Tk); ϕ

k
a)))}

∪ n∆�G
D

where c = dadb, ∅ ⊂ K ⊆ J , D = D ∪D, and D ∩D = ∅, and

ϕ′a =

{
dmod∅(fda(⊕K(c!(Tk); ϕ

k
a))) if G � da ≡ dmod∅(fda(⊕K(c!(Tk); ϕ

k
a)))

⊕K(c!(Tk); ϕ
k
a otherwise

ϕ′b =

{
dmod∅(fdb(&J(c?(Tj); ϕ

j
b)))) if G � db ≡ dmod∅(fdb(&J(c?(Tj); ϕ

j
b))))

&J(c?(Tj); ϕ
j
b) otherwise

∆�G
D

def
= { [Σ]

∏
D φdi | [Σ]

∏
D ∈ ∆�G∧

∀d ∈ D.(φd ≡ G � d ∧ ∀c ∈ S(φd).Σ(c) = ∅)}

Figure 5.10: Relaxed Valid Points Sets for Local Update

sends an acknowledgement to the buffer after receiving a value, if the consumer updates

before the buffer then the buffer could be left part way through its execution, waiting

for the acknowledgement, introducing deadlock.

Before we define Local Update we need to make some simplifying assumptions. We

again will consider looping global types Go that are of the form µX.f(Go) where G0

does not contain any instances of µ nor any region annotations, as in the previous

section. We assume that the old program is one that can evolve to the projection of

a global type G1. We assume that the new program is a projection of the global type

G2, that no channels are shared between G1 and G2, and that G1 and G2 share the

same set of roles. We assume that G1 and G2 are both of form Go We define a partial

order <G1 over participants d of a protocol G1 denoting the order under which the

participants can begin execution of a protocol G1 (Figure 5.11). For example, for the

Producer/Buffer/Consumer example we would define dp < db < dco. We prove that the

relation defined in Figure 5.11 is a strict partial order in Lemma D.1.
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d1 <G d2

d1 <µX.G d3

d1 <G d2

d1 <f(G) d3

d1 <G d2

d1 <dmodF (G) d3

d1 <G d2 d2 <G d3

d1 <G d3

d1 <Gk
d2 d2 6= d, d′

d1 <d→d′:c〈T̃ 7→G〉 d2
d1 <d1→d2:c〈T̃ 7→Gk〉

d2

Figure 5.11: Definition of Participant Partial Order

We require that the order has a unique minimum element. In particular this will rule

out examples such as:

µX.dmod(f( d1 −→ d3 : c1〈T1〉;
d2 −→ d3 : c2〈T2〉;
0

))

(5.5)

which represents the system in Figure 5.6. We omit the subscript when the meaning is

clear. We only define <G1 for the Global Session Type G1 of the original program. This

order does not change as a given [Σ] Φ reduces. We assume that we can partition the

roles in G1 (and hence G2) into two disjoint sets, where D denotes the roles of processes

that have not yet been updated, and D denote the roles of processes that have been

updated. We write D < D when ∀d ∈ D, d′ ∈ D we have that d 6< d′.

We refer to the set of channels that are received upon in an effect φ as R(φ), and refer to

the set of channels that are sent upon by an effect φ as S(φ). Define the Local Update

predicate (LU)φ on code updates as:

LU(ψ) iff (ψ = ( ˜pi(zΣ, zΦ, zψ) 7→ (fdi 7→ tdi)D and ∀di ∈ D . ` tdi : G � di) (5.6)

where pi(zΣ, zΦ, zψ) is ∀c ∈ R(zφi).zΣ(c) = ∅ ∧ ∀dj <G1 di.zψj
is empty, ψj is the update

for process projected from dj , and D is the set of all roles used in G1.

We relax the definition of the set of abstract configurations reducing towards G. We

define the relaxed projection Φ�G
D to mean that Φ ≡

∏
DG � G � di for all participants

di in a given D. Note that D need not comprise all roles in the given G.

We define the relaxed set of configurations for the non-updated roles D as ∆�G1

D , where

G1 is the protocol of the old program (Figure 5.10). This definition permits the prefix of

messages from processes whose role is not present in D when prefixing a receive action

to a process that is present, along with prefixing send and receive actions to processes

whose roles are both in D. We perform the choice between possible branches, and the

correct annotation of regions as previously.

We define the relaxed set of configurations for the updated roles D as ∆�G2

D
, where G2 is

the protocol of the new program (Figure 5.10). This set filters the non-relaxed definition
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∆�G2 (Figure 5.3) for those configurations where the effects of all the roles that are not in

D are projections of the protocol G2. That is, any roles that have not yet been updated

should start at the beginning of their runs of G2.

5.2.1 Properties and Proofs

In order to prove that Local Update implies Global Compatibility we make use of some

technical lemmas.

Lemma 5.7. Old Program Subject Reduction

∀Σ,Φ, G, n,D,Σ′,Φ′. [Σ] Φ ∈ n∆�G
D ∧ [Σ] Φ→ [Σ′] Φ′ ⇒ [Σ′] Φ′ ∈ ∆�G

D

where the participants of G are D, and D <G D.

Proof. This proof is similar that of Lemma 5.1, and proceeds by induction over n. The

key differences are in the case when n > 0, in the third and fourth productions of n+1∆�G
D ,

as in Figure 5.10. Let [Σ] Φ ∈ { δ(Σ, dmod{fdb}
(ϕkb )), where δ(Σ, ϕkb ) ∈ n∆�G

D and G �

db ≡ dmod∅(fdb(&J(c?(Tj); ϕ
j
b))))}. If the process that is reduced is dmod{fdb}

(ϕkb ) then,

by the reduction rules, we know that [σ] dmod{fdb}
(ϕkb )→ [Σ] ϕkb . By the hypotheses

we know that δ(Σ, ϕkb ) ∈ n∆�G
D , as required. If another process is reduced than we

proceed as in Lemma 5.1. The fourth case is similar to the third.

Lemma 5.8. New Program Subject Reduction

∀Σ,Φ, n,G,D,Σ′,Φ′. [Σ] Φ ∈ n∆�G
D
∧ [Σ] Φ→ [Σ′] Φ′ ⇒ [Σ′] Φ′ ∈ ∆�G

D

where the participants of G are D, and D <G D.

Proof. This proof directly follows that of Lemma 5.1, and proceeds by induction over n.

Note that the key differences between the definition of n∆�G
D

and ∆�G (as in Lemma 5.1)

are the restriction on which processes are included, and the fact that channels for non-

included roles must have empty queues. As reduction does not add or remove processes,

and cannot add messages to channels of processes that are not included (by principle

channel allocation), then we can use essentially the same proof technique.

We prove the straightforward property that program points in the valid set do not

contain errors.
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Lemma 5.9. Local Update Safety

∀Σ,Φ, G,D,D. [Σ] Φ ∈ n∆�G
D ⇒ error 6∈ Φ

∀Σ,Φ, G,D,D. [Σ] Φ ∈ n∆�G
D
⇒ error 6∈ Φ

where the participants of G are D, and D <G D.

Proof. Assume the hypotheses. We then prove the conclusions by straightforward in-

duction over n. This proof is similar to that of Lemma 3.10.

We prove that each program point in the old program points set is either live, or has

are relaxed projections of a global type:

Lemma 5.10. Old Program Liveness

∀Σ,Φ, n,G,D If [Σ] Φ ∈ n∆�G
D then either ∃Σ′,Φ′. [Σ] Φ → [Σ′] Φ′ or [Σ] Φ =

[Σ∅] Φ�G
D , where the participants of G are D, and D <G D.

Proof. Assume the hypothesis. We then prove that one of the two conclusions hold, by

induction over n.

Consider the case where n = 0. We straightforwardly have, by the definition of 0∆�G
D ,

that [Σ] Φ = [Σ∅] Φ�G1

D .

Consider the case where n > 0. We consider each of the cases of the definition of n∆�G
D

in Figure 5.10. Consider the case where [Σ] Φ ∈ { δ([c 7→ T ; Σk], ϕ′b)}. We know that

[c 7→ Tk] &J(c?(Tj); ϕ
j
b) → [Σ] ϕkb , and hence ∃Σ′,Φ′. [Σ] Φ → [Σ′] Φ′, as required.

Consider the case where [Σ] Φ ∈ { δ(Σ, ϕ′a, ϕ′b)}. By the reduction rules we know

that [Σ] ⊕K (c!(Tk); ϕ
k
a → [Σ; c→ Tk] ϕ

k
a, and hence ∃Σ′,Φ′. [Σ] Φ → [Σ′] Φ′, as

required. Consider the case where [Σ] Φ ∈ { δ(Σ, dmod{fdb}
(ϕkb ))}. By the definition

of well formed global session types we know that the only region annotation that each

process (with role di) will have is fdi . Hence by the reduction rules for dmod we can

show that Σ, dmod{fdb}
(ϕkb ) → Σ, ϕkb , and hence ∃Σ′,Φ′. [Σ] Φ → [Σ′] Φ′, as required.

Consider the case where [Σ] Φ ∈ { δ(Σ, dmod{fda}(ϕ
k
a))}. By the definition of well

formed global session types we know that the only region annotation that each process

(with role di) will have is fdi . Hence by the reduction rules for dmod we can show that

Σ, dmod{fda}(ϕ
k
a) → Σ, ϕka, and hence ∃Σ′,Φ′. [Σ] Φ → [Σ′] Φ′, as required. The case

where [Σ] Φ ∈ n−1∆�G
D proceeds immediately from the inductive hypothesis.

We need to make sure that updating a process of role di with an update LU(ψ) results

in a process that conforms to the new protocol G2.
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Lemma 5.11. ∀G1, di, T, ψ. if G1 � di o ∅ ` tdi : T and LU(ψ) then ∃G2. G2 � di o ∅ `
upd(ti, fdi 7→ t′di , false) : T .

Where ψ = ( ˜pi(zΣ, zΦ, zψ) 7→ (fdi 7→ tdi)D, as LU(ψ) holds.

Proof. This proof follows that of Lemma 5.4.

We need to show that if we extend a relaxed configuration of updated processes with a

newly updated process then the new configuration will be in relaxed set, extended by

the new role:

Lemma 5.12. ∀Σ,Φ, G2, D, d
′, D′. if [Σ] Φ ∈ ∆�G2

D
and D′ = D ∪ {d′} then [Σ] (Φ||G2 �

d′) ∈ ∆�G2

D′ .

Proof. By the definition of ∆�G2

D
we know that [Σ] Φ = [Σ]

∏
D φdi , where [Σ]

∏
D ∈

∆�G and ∀d ∈ D.(φd ≡ G � d ∧ ∀c ∈ S(φd).Σ(c) = ∅)}. Hence we can straightforwardly

show that [Σ] (Φ||G2 � d′) ∈ ∆�G2

D′ .

We also need to show that if we redact a relaxed configuration of non-updated pro-

cesses by a newly updated process then the new configuration will be in the relaxed set,

redacted by the updated role:

Lemma 5.13. ∀Σ,Φ, G1, D, n, d
′, D′. if [Σ] (Φ||G1 � d′) ∈ n∆�G1

D′ . and ∀c ∈ R(G �

d′).Σ(c) = ∅ and D′ = D ∪ {d′} and 6 ∃d ∈ D such that d < d′ then [Σ] Φ ∈ n∆�G1

D .

Proof. Assume the hypotheses. We then show the conclusion by induction over the n in

n∆�G1

D . The case where n = 0 is immediate by the definition of 0∆�G1

D . We consider the

case when n > 0. We then proceed by case analysis over the definition of n∆�G1

D′ , as in

Figure 5.10.

Consider the case where [Σ] Φ ∈ { δ([c 7→ T ; Σk], ϕ′b)}. We can then consider the

identity of d′. If d′ = db then we have a contradiction, as the hypotheses state that

(c 7→ Tk; Σ)(c) = ∅, which is clearly not true. If d′ = db then by the inductive hypothesis

we know that as δ(Σ, φdb) = [Σ] . . . ||φb|| . . . ||φd′ || . . . ∈ n−1∆�G1

D′ then we know that

[Σ] . . . ||φb|| . . . ∈ n−1∆�G1

D , and hence by the first construction of Figure 5.10 that

[Σ] . . . ||φ′b|| . . . ∈ n−1∆�G1

D , as required.

Consider the case where [Σ] Φ ∈ { δ(Σ, ϕ′a, ϕ′b)}. We can then consider the identity of

d′. If d′ = db and φ′b = &J(c?(Tj); ϕ
j
b) then we have a contradiction, as the hypothesis

requires that φd′ ≡ G1 � d′ ≡ dmod∅(fdb(&J(c?(Tj); ϕ
j
b)))). If d′ = db and φ′b =

dmod∅(fdb(&J(c?(Tj); ϕ
j
b)))) then we either have that da ∈ D′ or not. If da ∈ D′ then

we have a contradiction, as da < db, and the hypothesis states that 6 ∃d ∈ D′ such that

d < d′. Consider the case where da 6∈ D′. This is a contradiction, as the hypothesis
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states that da, db ∈ D. If d′ 6= db and d′ 6= da then the proof proceeds as when d′ 6= db

in the first case.

The cases where [Σ] Φ ∈ { δ(Σ, dmod{fdb}
(ϕkb ))} and where [Σ] Φ ∈ { δ(Σ, dmod{fda}(ϕ

k
a))}

proceed similarly to the first case. The case where [Σ] Φ ∈ n∆�G
D proceeds directly from

the inductive hypothesis.

Finally, we can then use these lemmas to prove that Local Update implies Global Com-

patibility:

Theorem 5.14. Local Update Theorem

For all k,Σ, P, ψ, ω, if LU(ψ, ω) and we can form the partitions Σ = Σ1,Σ2 and D = D]
D such that [Σ1]

∏
D φd ∈ ∆�G

D and [Σ2]
∏
D φd ∈ ∆�G

D
and D < D then Gk(Σ,Φ, ψ, ω).

Proof. Assume the hypotheses. We then proceed by induction over k in Gk(Σ,Φ, ψ, ω).

The base case is trivial. Consider the case where k < 0. We prove each of the conjuncts

of Gk(Σ,Φ, ψ, ω), as defined in Figure 4.18, separately. In order to show error 6∈ Φ we

appeal to Lemma 5.9 that shows that there are no errors in either
∏
D φd or

∏
D φd. In

order to show that Gk(Σ,Φ, ψ, ω, ∅) we appeal to the fact that ∅ is the unit in update

composition, and we have that LU(ψ, ω, ∅) and hence can use the inductive hypothesis

to show that Gk−1(Σ,Φ, ψ, ω). In order to show the first conjunct we perform a case

analysis on whether an update is applicable or not.

Consider the case where an update is applicable. We must show that all reductions

lead to safe program states, and the program is either live or empty. Consider a given

reduction. This reduction must either be in the old program (d ∈ D) or in the new

program (d ∈ D). If the former ( [Σ1]
∏
D φd → [Σ′1]

∏
D φ
′
d) then by Lemma 5.8 we

know that [Σ′1]
∏
D φ
′
d ∈ n∆�G

D . We then have a decomposition of [Σ′] Φ′ such that

Σ′ = Σ′1,Σ2 and [Σ′1]
∏
D φ
′
d ∈ ∆�G

D and [Σ2]
∏
D φd ∈ ∆�G

D
, and hence can use the

inductive hypothesis to show that Gk−1(Σ′,Φ′, ψ, ω). In order to show that the program

is live or empty we appeal to Lemma 5.10, which denotes that the old program partition

is either live or one of its processes are updatable. As there are no processes that are

eligible for update, then the old program partition is live, as required.

Consider the case where an update is applicable. Let this process’s role be d. By

the update predicates we know that φd ≡ G1 � d. By Lemma 5.11 we know that

G2 � di o ∅ ` upd(ti, fdi 7→ t′di , false) : T . Let D = D′ ] {d} and D′ = D ] {d}. Then,

by Lemmas 5.12 and 5.13 we can show that given the new partitions D′ and D′ that

we have that [Σ1]
∏
D′ φd ∈ ∆�G

D′ and [Σ2]
∏
D′ φ′d ∈ ∆�G

D′ , where for each d′ 6= d we

have that φ′d′ = φd′ , and φ′d = upd(φd, fd 7→ t′d, false), and that D′ < D′. Hence can

use the inductive hypothesis to show that Gk−1(Σ, upd(Φ, fdi 7→ t′di , b), ψ \ fdi 7→ t′di , ∅),
as required.
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5.2.2 Summary

In order to be able to update threads separately we restrict the possible programs that

be updated. In particular we consider only programs where each iteration of the event

processing loop has a clear leader. The resulting system permits separate updates of

individual threads, without any global synchronisation. In particular, this simplifies the

checking of when the relevant update predicates are fulfilled: a separate monitor can be

maintained for each thread, which only activates when a thread is at the top of its event

processing loop, and in that case only needs to examine its channel queues and whether

or not certain other threads have been updated.
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5.3 Conclusions

We consider two possible approaches to providing update to blocking message passing

programs: Global Typability and Local Update.

The main advantages of Global Typability are that it can handle most message passing

programs that can be abstracted using Global Session Typing, that it can update to

any program which can be abstracted using Global Session Typing, and that the update

semantics is relatively straightforward to understand. The main disadvantages of Global

Typability are that there is no guarantee that an update will ever be applied, and the

cost of checking the update predicates.

The main advantages of Local Update are that threads can be updated separately,

reducing the cost of checking update predicates (as no global information is required),

and that assuming fair scheduling that updates will not be infinitely delayed. The

disadvantage is that we restrict the form of updatable programs to those which have

a unique thread that starts each iteration of the event processing loop. The degree to

which this restriction will real out desired programs, in actual system development, is a

topic for further research.
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Chapter 6

Conclusions and Future Work

In this thesis we present techniques to prove communication safety and liveness in mes-

sage passing programs. We re-prove key results from the session typing literature, using

a novel inductive technique. We extend existing results of liveness and communication

safety to non-blocking message passing systems.

We extend the above techniques to accommodate message passing programs that can be

dynamically updated. Our key contribution are techniques which can be used to update

multi-threaded programs without introducing deadlock. In particular we show how to, in

certain situations, update threads separately, without requiring global synchronisation.

We also present our intuition behind Update Liveness, the property that an update will

not be delayed indefinitely.

The discovery of points at which update can be performed on more that one thread is

widely accepted to be very difficult. We can utilise insights illuminated by our analysis

to provide design patterns that are amenable to update. This has the potential to widely

extend the ability to update multi-threaded programs.

In this chapter we provide a summary of how the above was achieved (Section 6.1) and

the possibilities for future work (Section 6.2).

6.1 Summary

We began by considering examples that displayed type safety, type errors, liveness,

and deadlock, for blocking message passing programs. From this we defined a general

technique for ensuring safety and liveness, that amounts to model checking. We reproved

existing results in Session Types work for blocking message passing programs using

an intuitive inductive technique. In the course of this proof we identified the aspects

that relied on the synchronisation behaviour of the blocking semantics. Then, when
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we wanted to prove similar results for non-blocking message passing, we were able to

straightforwardly define the synchronisation behaviour required.

We then considered type safety and liveness for Dynamic Software Update. We analysed

examples that display type safety, type errors, liveness, and deadlock, for updatable

message passing programs. We then extended our general technique for proving safety

and liveness of static programs to encompass updatable programs. These updates could

be introduced at any time and applied at an arbitrary point specified by a predicate

over the code and the state. We then considered techniques for performing update to

programs that can be abstracted using Global Session Types. We proved that updates

using these techniques would not introduce communication errors or deadlock. We made

use of the synchronisation behaviour inherent in blocking message passing to co-ordinate

when updates occurred. In certain cases this permitted us to update mutually dependent

threads separately.

6.2 Future Work

While Dynamic Software Update has been informally considered since the early 1980s,

it has only begun to be strongly focused upon in the last 10 years. As such a young field

of inquiry, there are a wide variety of paths currently open for future work.

At a high methodological level it is unclear how much complexity is acceptable for pro-

grammers using DSU frameworks. The semantics of when an update occurs, particularly

in systems where individual functions or class definitions are transformed rather than

the entire program, is complex. As such, it is difficult for a non-specialist to reason about

how state transformation functions behave at runtime. When updates are made more

transparent, however, to the degree that state transformation functions are no longer

needed, updates that change function or class signatures must be ruled out (Gregersen

and Jorgensen, 2009). Clearly, given studies that indicate that at least 10% of all up-

dates require such flexibility, this is not an acceptable restriction. Further study is

needed to determine the acceptable level of complexity for users of DSU. One possible

line of research is to give DSU tools to real programmers, and to get them experiment

with updates to real programs, and to write the relevant transformation functions. One

could then compare the functions written by programmers to those written by DSU

specialists, and gather feedback on what was straightforward, and what was complex.

One approach to decrease the complexity of programming using DSU is to perform whole

program transformation, starting the update at specified update points in the code, and

re-entering the new code at specified entry points. While this technique significantly

reduces the conceptual burden, it relies on programs reaching specific update points.

This restriction is more consequential in multi-threaded programs; in a naive implemen-

tation there is no guarantee that the threads will ever all be at an updatable point.
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We could incorporate our analysis, which uses synchronisation behaviour, into work on

whole program transformation in order to provide confidence that updates will not be

delayed indefinitely.

Mobile computation devices, such as smart phones, run many programs (known as apps)

concurrently. Unfortunately, due to hardware constraints, it is currently not possible to

keep all of these apps in memory at the same time. As a result the OS will often shut

down an app when the user wishes to run another. In order to maintain the illusion

that an app has been in the background, rather than shut down and restarted, the app

designers can make use of design pattern that allows them to save existing state to

backing store, and to automatically load in that state when the app is restarted. This

is a form of DSU (Hayden et al., 2011d), in particular one that uses a form of whole

program transformation. As the mobile apps must run on limited hardware they are

typically smaller than many production systems. As such it may be possible to perform

case studies on how amenable they are to DSU on a large number of such apps, in order

to obtain more general results.

Various behaviours have been identified when performing Dynamic Software Update

that, while they are not necessarily errors in traditional safety properties, cause confus-

ing or intuitively incorrect behaviour (Gregersen and Jorgensen, 2011). Some of these

behaviours we may wish to consider erroneous, such as when classes are removed by a

dynamic update, but live objects that belong to that class remain. Some of these be-

haviours may be erroneous or not, depending on the situation. Transient inconsistency

occurs when an updated application is temporally in an unreachable runtime state; in

Local Update, in the period between when the leading thread updates and the following

threads do, the system is in a transiently inconsistent state, but will eventually reach

a consistent state. Further study is required to determine where and when these phe-

nomena are actually erroneous, particularly by examining the behaviour of real updated

programs. Gregersen and Jorgensen also describe several design patterns that they

posit will ameliorate such phenomena. Study into the impact of using such patterns on

programmers, and on the efficacy of these patterns, is also required.

Session Typing techniques can be used to analyse the call graph of object oriented

programs. As such, we should be able to straightforwardly extend our techniques to

updating object oriented programs. There exists a significant body of work on updating

object oriented programs, in particular (Subramanian, 2010) which utilises interrupts

to detect safe update points and the garbage collector to provide object transformation.

These techniques provide update facilities with minimal overhead. One major drawback,

however, is that, in the interest of maintaining type safety in a straightforward manner,

Subramanian only permits update to methods that are not active. This leads to some

updates being delayed indefinitely. We believe that we could combine our more complex

safety analysis with their efficient implementation to provide an update system that

permits update to active methods, but still has minimal overhead. In addition, we
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would like to formalise our work on Update Liveness, and prove, for certain classes of

Global Typability and Local Update, that updates are never delayed indefinitely.
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Appendix A

General Formulation

In this chapter we provide the proofs of communication safety and liveness for the

general formulation of dynamic programs. The proofs for the general formulation of

static programs are instantiations of these proofs.

A.1 Environment Extension Lemma

Lemma A.1. If ϕ o Γ ` t : T then ϕ o Γ,Γ′ ` t : T .

Proof. By simultaneous induction over t and l. Note that dom(Γ) ∩ dom(Γ′) = ∅

NB: as we type v using an empty environment it cannot be another variable x′.

Case: t = n

ε o Γ ` n : Int

We can trivially say that:

ε o Γ,Γ′ ` n : Int

Case: t = b, t = (), t = r, t = l

Similar to Case: t = n.

Case: t = x

ε o Γ ` x : Γ(x)
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As Γ(x) is defined we know that x ∈ dom(Γ). Since composition of type environments

assumes disjoint domains then we can say that:

ε o (Γ,Γ′) ` x : (Γ,Γ′)(x)

Case: t = X

Γ(X) = T1
X−→ T2

X o Γ ` X : Γ(X)

As Γ(X) is defined we know that X ∈ dom(Γ). Since composition of type environments

assumes disjoint domains then we can say that:

(Γ,Γ′)(X) = T1
X−→ T2

X o (Γ,Γ′) ` X : (Γ,Γ′)(X)

Case: t = (α(ṽ), T )

ε o Γ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o Γ ` l : T

As this type rule places no restrictions on Γ then we can trivially show that:

ε o Γ,Γ′ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o Γ,Γ′ ` l : T

Case: l

ε o Γ ` vi : Ti
Γ ` α(ṽ) : α(T̃ )

By induction we know that ε o Γ,Γ′ ` vi : Ti. Hence we can say that:

ε o Γ,Γ′ ` vi : Ti
Γ,Γ′ `ψ α(ṽ) : α(T̃ )

Case: t = recX(x : T ).t

ϕ o Γ, x : T1, X : T1
X−→ T2 ` t : T2

x /∈ fv(Γ), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x : T1).t : T1
µX.ϕ−−−→ T2
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By induction we know that ϕ o Γ, x : T1, X : T1
ϕ−→ T2,Γ

′ ` vi : Ti, where we α-convert x

as necessary to ensure that they do not appear in Γ′. Hence we can say that:

ϕ o Γ,Γ′, x : T1, X : T1
X−→ T2 ` t : T2

x /∈ fv(Γ,Γ′), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o Γ,Γ′ ` recX(x : T1).t : T1
µX.ϕ−−−→ T2

Case: t = t1 t2

ϕ1 o Γ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ ` t1 t2 : T1

By induction we know that:

ϕ1 o Γ,Γ′ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ,Γ′ ` t2 : T2

Hence we can say that:

ϕ1 o Γ,Γ′ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ,Γ′ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ,Γ′ ` t1 t2 : T1

Case: t = case l in {T̃ 7→ t}

ϕi o Γ ` ti : T ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ ` case l in {T̃ 7→ t} : T

By induction we know that

ϕi o Γ,Γ′ ` ti : T

Hence we can say that:

ϕi o Γ,Γ′ ` ti : T ε o Γ,Γ′ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ,Γ′ ` case l in {T̃ 7→ t} : T

Case: t = error

This case can never be typed and hence can be disregarded as the hypothesis assumes

that t is typed.

Case: t = f(t)

ϕ o Γ ` t : T
f(ϕ) o Γ ` f(t) : T
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By induction we know that

ϕ o Γ,Γ′ ` t : T

Hence we can say that:

ϕ o Γ,Γ′ ` t : T
f(ϕ) o Γ,Γ′ ` f(t) : T

Case: t = dmod
f̃
(t)

ϕ o Γ ` t : T

dmod
f̃
(ϕ) o Γ ` dmod

f̃
(t) : T

By induction we know that:

ϕ o Γ,Γ′ ` t : T

Hence we can say that:
ϕ o Γ,Γ′ ` t : T

dmod
f̃
(ϕ) o Γ,Γ′ ` dmod

f̃
(t) : T
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A.2 Substitution Lemma

Lemma A.2. If

ϕ o Γ, x : T ′ ` t : T ε o ∅ ` v : T ′′ T ′[v/x] = T ′′

then

ϕ[v/x] o Γ[v/x] ` t[v/x] : T [v/x]

Proof. By induction over t

Case: t = n

ε o Γ, x : T ′ ` n : Int

we know that:

ε[v/x] = ε n[v/x] = n Int[v/x] = Int = T ′′

hence we can say:

ε o Γ[v/x] ` n : Int

Case: t = b, t = (), t = l, t = X

Similar to Case: t = n.

Case: t = x′

ε o Γ′ ` x′ : Γ′(x′)

where Γ′ = Γ, x : T ′.

If x′ = x:

ε[v/x] = ε x′[v/x] = v

We want to prove that ε o Γ[v/x] ` v : T ′[v/x]. We do this by a case split over the

structure of T ′

Case T ′ = Int,Bool,Unit

T ′[v/x] = T ′ = T ′′

ε o Γ[v/x] ` v : T ′ using the TInt, TBool, or TUnit rule respectively

111



Case T ′ = Res r

By the hypothesis we know that ε o ∅ ` v : Res r.

As the type environment is empty of this type judgement is empty, the only

way we could derive this fact is by using the TRes rule, and hence v = r = r.

The only T ′ such that Res r[v/x] = Res v = T ′′ are Res v and Resx.

As here T = T ′ we then know that T must be either Res v or Resx.

We can easily show that:

Res v[v/x] = Res v Resx[v/x] = Res v

We then can use the TRes rule to show that:

ε o Γ[v/x] ` v : Res v

Case T ′ = T1
ϕ−→ T2

By the hypothesis we know that:

ε o ∅ ` v : (T1
ϕ−→ T2)[v/x]

By the Environment Extension Lemma we can say:

ε o Γ[v/x] ` v : (T1
ϕ−→ T2)[v/x]

as required.

If x′ 6= x:

ε[v/x] = ε x′[v/x] = x′ Γ(x′)[v/x] = Γ[v/x](x′)

ε o Γ[v/x] ` x′ : Γ[v/x](x′)

Case: t = r

ε o Γ, x : T ′ ` r : Res r

We know that r 6= x and hence that

ε[v/x] = ε r[v/x] = r Res r[v/x] = Res r
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We can then simply use the TRes rule:

ε o Γ[v/x] ` r : Res r

Case: t = recX(x′ : T1).t′

ϕ o Γ, x : T ′, x′ : T1, X : T1
X−→ T2 ` t′ : T2

x′ /∈ fv(Γ, x : T ′), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o Γ, x : T ′ ` recX(x′ : T1).t′ : T1
µX.ϕ−−−→ T2

By induction, where T ′[v/x] = T ′′:

ϕ[v/x] o (Γ, x′ : T1, X : T1
x′−→ T2)[v/x] ` t′[v/x] : T2[v/x]

As x′ is not free in t, (Γ, x : T ′) we can α convert it to ensure it does not clash with x,

hence we have that:

ϕ[v/x] o Γ[v/x], x′′ : T1[v/x], X : T1[v/x]
X−→ T2[v/x] ` t′[v/x] : T2[v/x]

x′′ /∈ fv(Γ[v/x]), fv(T1[v/x]), fv(T2[v/x]), fv(ϕ[v/x]) X /∈ fv(T1), fv(T2)

ε o Γ[v/x] ` recX(x′′ : T1[v/x]).t′[v/x] : T1[v/x]
µX.ϕ[v/x]−−−−−−→ T2[v/x]

and hence:

ε o Γ[v/x] ` (recX(x′′ : T1).t′)[v/x] : (T1
µx′.ϕ−−−→ T2)[v/x]

Case: t = t1 t1

ϕ1 o Γ, x : T ′ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ, x : T ′ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ, x : T ′ ` t1 t2 : T1

By induction:

ϕ1[v/x] o Γ[v/x] ` t1[v/x] : T1
ϕ3−→ T1[v/x]

ϕ2[v/x] o Γ[v/x] ` t2[v/x] : T2[v/x]

Therefore we can say:

ϕ1[v/x] o Γ[v/x] ` t1[v/x] : T2[v/x]
ϕ3[v/x]−−−−→ T1[v/x] ϕ2[v/x] o Γ[v/x] ` t2[v/x] : T2[v/x]

(ϕ1[v/x]; ϕ2[v/x]; ϕ3[v/x]) o Γ[v/x] ` t1[v/x] t2[v/x] : T1[v/x]
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and hence:

(ϕ1; ϕ2; ϕ3)[v/x] o Γ[v/x] ` (t1 t2)[v/x] : T1[v/x]

Case: t = (α(ṽ), T )

ε o Γ, x : T ′ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o Γ, x : T ′ ` (α(ṽ), T ) : T

By induction we have that ε o Γ[v/x] ` vi[v/x] : Ti[v/x]. Hence we can show, using the

TAcc rule, that:

(α(T̃ ), T )[v/x] o Γ[v/x] ` (α(T̃ ), T )[v/x] : T [v/x]

Case: t = if t1 then t2 else t3

ϕ1 o Γ, x : T ′ ` t1 : Bool

ϕ2 o Γ, x : T ′ ` t2 : T ϕ3 o Γ, x : T ′ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o Γ, x : T ′ ` if t1 then t2 else t3 : T

By induction:

ϕ1[v/x] o Γ[v/x] ` t1[v/x] : Bool[v/x]

ϕ2[v/x] o Γ[v/x] ` t2[v/x] : T [v/x] ϕ3[v/x] o Γ[v/x] ` t3[v/x] : T [v/x]

We can the use the TIf rule:

ϕ1[v/x] o Γ[v/x] ` t1[v/x] : Bool

ϕ2[v/x] o Γ[v/x] ` t2[v/x] : T [v/x] ϕ3[v/x] o Γ[v/x] ` t3[x/x] : T [v/x]

ϕ1[v/x]; (ϕ2[v/x]⊕ ϕ3[v/x]) o Γ[v/x] ` if t1[v/x] then t2[v/x] else t3[x/x] : T [v/x]

and hence:

ϕ1; (ϕ2 ⊕ ϕ3)[v/x] o Γ[v/x] ` (if t1 then t2 else t3)[v/x] : T [v/x]
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Case: t = caseα(ṽ) in {T̃i 7→ ti}

ϕi o Γ, x : T ′ ` ti : T ε o Γ, x : T ′ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ, x : T ′ ` case l in {T̃ 7→ t} : T

By induction we know that:

ϕi[v/x] o Γ[v/x] ` ti[v/x] : T [v/x]

We can then say, using the TCase rule:

ϕi[v/x] o Γ[v/x] ` ti[v/x] : T [v/x] ˜T [v/x] 7→ t[v/x] = T1[v/x] 7→ t1[v/x] . . . Tn[v/x] 7→ tn[v/x]
(:TCase)

&(α(ṽ)[v/x], Ti[v/x]); ϕi[v/x] o Γ[v/x] ` caseα(ṽ)[v/x] in { ˜T [v/x] 7→ t[v/x]} : T [v/x]

which implies:

(&(α(ṽ), Ti); ϕi)[v/x] o Γ[v/x] ` caseα(ṽ) in {T̃ 7→ t}[v/x] : T [v/x]

Case: t = error

This case can never be typed and hence can be disregarded as the hypothesis assumes

that t is typed.

Case: t = dmodF1(t′)

ϕ o Γ, x : T ′ ` t′ : Unit

dmodγ1(ϕ) o Γ, x : T ′ ` dmodγ1(t′) : Unit

By induction we know that:

ϕ[v/x] o Γ[v/x] ` t′[v/x] : Unit

Hence we can say that:

ϕ[v/x] o Γ[v/x] ` t′[v/x] : Unit

dmodγ1(ϕ[v/x]) o Γ[v/x] ` dmodγ1(t′[v/x]) : Unit

which implies:

dmodγ1(ϕ)[v/x] o Γ[v/x] ` dmodF1(t′)[v/x] : Unit
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Case: t = f(t)

Similar to case t = dmodF1(t).
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A.3 Recursive Variable Substitution Lemma

Lemma A.3. If

ϕ o Γ, X : T1
X−→ T2 ` t : T ε o ∅ ` v : T1

ϕ′
−→ T2 X /∈ fv(T1), fv(T2)

then:

ϕ[ϕ′/X] o Γ ` t[v/X] : T [ϕ′/X]

Proof. By induction over t

Case: t = n

ε o Γ, X : T1
X−→ T2 ` n : Int

we know that:

ε[ϕ′/X] = ε n[v/X] = n Int[ϕ′/X] = Int

hence we can say:

ε o Γ ` n : Int

Case: t = b, t = (), t = l, t = x, t = r

Similar to Case: t = n.

Case: t = X ′

Γ′(X ′) = T1
X′
−→ T2

X ′ o Γ′ ` X ′ : Γ′(X ′)

where Γ′ = Γ, X : T1
X−→ T2.

If X ′ = X:

X[ϕ′/X] = ϕ′ X ′[v/X] = v T1
X−→ T2[ϕ′/X] = T1[ϕ′/X]

ϕ′
−→ T2[ϕ′/X] = T1

ϕ′
−→ T2

as X /∈ fv(T1), fv(T2).
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By the hypothesis we know that:

ε o ∅ ` v : T1
ϕ′
−→ T2

and hence, using the Environment Extension Lemma, that:

X[ε/X] o Γ ` v : T1
X−→ T2[ϕ′/X]

If X ′ 6= X:

X ′[ϕ′/X] = X ′ X ′[v/X] = X ′ T1
X′
−→ T2[ϕ/X] = T1

X′
−→ T2

and hence that:

X ′[ϕ′/X] o Γ ` X ′ : T1
X′
−→ T2[ϕ′/X]

Case: t = recX ′(x′ : T1).t′

ϕ o Γ, X : T1
X−→ T2, x

′ : T3, X
′ : T3

X′
−→ T4 ` t′ : T4

x′ /∈ fv(Γ, X : T1
X−→ T2), fv(T3), fv(T4), fv(ϕ) X ′ /∈ fv(T1), fv(T2)

ε o Γ, X : T1
X−→ T2 ` recX ′(x′ : T3).t′ : T3

µX′.ϕ−−−−→ T4

By induction, where T ′[v/x] = T ′′:

ϕ[ϕ′/X] o (Γ, x′ : T3, X : T3
X′
−→ T4)[v/x] ` t′[v/X] : T4[ϕ′/X]

As X ′ is not free in t, (Γ, x : T ′) we can α convert it to ensure it does not clash with X,

hence we have that:

ϕ[ϕ′/X] o Γ, x′ : T1[v/X], X : T1[v/X]
X−→ T2[ϕ′/X] ` t′[v/X] : T2[ϕ′/X]

x′ /∈ fv(Γ), fv(T1[v/X]), fv(T2[ϕ′/X]), fv(ϕ[ϕ′/X]) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x′ : T1[v/X]).t′[v/X] : T1[v/X]
µX.ϕ[ϕ′/X]−−−−−−−→ T2[ϕ′/X]

and hence:

ε[ϕ′/X] o Γ ` (recX(x′′ : T1).t′)[v/X] : (T1
µx′.ϕ−−−→ T2)[ϕ′/X]
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Case: t = t1 t1

ϕ1 o Γ, X : T1
X−→ T2 ` t1 : T2

ϕ3−→ T1 ϕ2 o Γ, X : T1
X−→ T2 ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ, X : T1
X−→ T2 ` t1 t2 : T1

By induction:

ϕ1[ϕ′/X] o Γ ` t1[v/X] : T1
ϕ3−→ T1[ϕ′/X]

ϕ2[ϕ′/X] o Γ ` t2[v/X] : T2[ϕ′/X]

Therefore we can say:

ϕ1[ϕ′/X] o Γ ` t1[v/X] : T2[ϕ′/X]
ϕ3[ϕ′/X]−−−−−→ T1[ϕ′/X] ϕ2[ϕ′/X] o Γ ` t2[v/X] : T2[ϕ′/X]

(ϕ1[ϕ′/X]; ϕ2[ϕ′/X]; ϕ3[ϕ′/X]) o Γ ` t1[v/X] t2[v/X] : T1[ϕ′/X]

and hence:

(ϕ1; ϕ2; ϕ3)[ϕ′/X] o Γ ` (t1 t2)[v/X] : T1[ϕ′/X]

Case: t = (α(ṽ), T )

ε o Γ, X : T1
X−→ T2 ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o Γ, X : T1
X−→ T2 ` (α(ṽ), T ) : T

By induction we have that ε o Γ ` vi[v/X] : Ti[ϕ
′/X]. Hence we can show, using the

TAcc rule, that:

(α(T̃ ), T )[ϕ′/X] o Γ ` (α(T̃ ), T )[v/X] : T [ϕ′/X]

Case: t = if t1 then t2 else t3

ϕ1 o Γ, x : T ′ ` t1 : Bool

ϕ2 o Γ, x : T ′ ` t2 : T ϕ3 o Γ, x : T ′ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o Γ, x : T ′ ` if t1 then t2 else t3 : T

By induction:

ϕ1[ϕ′/X] o Γ ` t1[v/X] : Bool[ϕ′/X]

ϕ2[ϕ′/X] o Γ ` t2[v/X] : T [ϕ′/X] ϕ3[ϕ′/X] o Γ ` t3[v/X] : T [ϕ′/X]
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We can the use the TIf rule:

ϕ1[ϕ′/X] o Γ ` t1[v/X] : Bool

ϕ2[v/x] o Γ ` t2[v/X] : T [ϕ′/X] ϕ3[v/x] o Γ ` t3[x/X] : T [ϕ′/X]

ϕ1[ϕ′/X]; (ϕ2[v/x]⊕ ϕ3[v/x]) o Γ ` if t1[v/X] then t2[v/X] else t3[x/X] : T [ϕ′/X]

and hence:

ϕ1; (ϕ2 ⊕ ϕ3)[ϕ′/X] o Γ ` (if t1 then t2 else t3)[v/X] : T [ϕ′/X]

Case: t = caseα(ṽ) in {T̃i 7→ ti}

ϕi o Γ, X : T1
X−→ T2 ` ti : T ε o Γ, X : T1

X−→ T2 ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ, X : T1
X−→ T2 ` caseα(T̃ ) in {T̃ 7→ t} : T

By induction we know that:

ϕi[ϕ
′/X] o Γ ` ti[v/X] : T [ϕ′/X]

We can then say, using the TCase rule:

ϕi[ϕ
′/X] o Γ ` ti[v/X] : T [ϕ′/X] Ti 6= Res r

(:TCase)

&(α(ṽ)[ϕ′/X], Ti[ϕ
′/X]); ϕi[ϕ

′/X] o Γ ` caseα(ṽ)[v/X] in { ˜T [v/X] 7→ t[v/X]} : T [ϕ′/X]

which implies that:

(&(α(ṽ), Ti); ϕi)[ϕ
′/X] o Γ[v/x] ` caseα(ṽ) in {T̃ 7→ t}[v/X] : T [ϕ′/X]

Case: t = error

This case can never be typed and hence can be disregarded as the hypothesis assumes

that t is typed.
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Case: t = dmodF1(t′)

ϕ o Γ, X : T1
X−→ T2 ` t′ : Unit

dmodγ1(ϕ) o Γ, X : T1
X−→ T2 ` dmodγ1(t′) : Unit

By induction we know that:

ϕ[ϕ′/X] o Γ ` t′[v/X] : Unit[ϕ′/X]

Hence we can say that:

ϕ[ϕ′/X] o Γ ` t′[v/X] : Unit[ϕ′/X]

dmodγ1(ϕ[ϕ′/X]) o Γ ` dmodγ1(t′[v/X]) : Unit[ϕ′/X]

which implies:

dmodγ1(ϕ)[ϕ′/x] o Γ ` dmodF1(t′)[v/X] : Unit

Case: t = f(t)

Similar to case t = dmodF1(t).

121



A.4 Update Equivalence Lemma

Lemma A.4.

ϕ ≡ ϕ′ ⇒ upd(ϕ, u, b) ≡ upd(ϕ′, u, b)

Proof. By induction over ≡

Case ϕ ≡ ε; ϕ

upd(ε; ϕ, u, b) = ε; upd(ϕ, u, b)

≡ upd(ϕ, u, b)

Case µX.ϕ ≡ ϕ[µX.ϕ/X]

upd(µX.ϕ, u, b) = µX.upd(ϕ, u, b)

≡ upd(ϕ, u, b)[µX.upd(ϕ, u, b)/X]

Case ϕ = ϕ1; ϕ2

By induction we know that:

ϕ′i ≡ ϕi ⇒ upd(ϕi, u, b) ≡ upd(ϕ′i, u, b)

We know that:

upd(ϕ1; ϕ2, u, b) = upd(ϕ1, u, b); upd(ϕ2, u, b)

Hence we have that:

upd(ϕ1; ϕ2, u, b) ≡ upd(ϕ′1; ϕ′2, u, b)

Case ϕ = ϕ1 ⊕ ϕ2, ϕ1&ϕ2, µX.ϕ1, f(ϕ1), dmodF (ϕ1)

Similar to case ϕ = ϕ1; ϕ2.
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Case ϕ = f(ϕ1)

Case b = true

By the definition of upd we know that:

upd(f(ϕ1), u, false) = f(ϕ′)

where:

f 7→ t′ /∈ u ϕ′ o ∅ ` t′ :

Hence we have that:

upd(f(ϕ1), u, true) = upd(f(ϕ′1), u, true) = f(ϕ′)

Case b = false

By induction we know that:

ϕ′1 ≡ ϕ1 ⇒ upd(ϕ1, u, b) ≡ upd(ϕ′1, u, b)

By the definition of upd we know that:

upd(f(ϕ1), u, false) = f(upd(ϕ1, u, b))

Hence we have that:

upd(f(ϕ1), u, false) ≡ upd(f(ϕ′1), u, false)
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Case ϕ = dmodF (ϕ1)

Case γ ∩ dom(u) = ∅

By the definition of upd we know that:

upd(dmodγ(ϕ1), u, b) = dmodγ(upd(ϕ1, u, true))

By induction we know that:

ϕ′1 ≡ ϕ1 ⇒ upd(ϕ1, u, b) ≡ upd(ϕ′1, u, b)

Hence we have that:

upd(dmodγ(ϕ1), u, true) ≡ upd(dmodγ(ϕ′1), u, true)

Case γ ∩ dom(u) 6= ∅

By the definition of upd we know that:

upd(dmodγ(ϕ1), u, b) = dmodγ(upd(ϕ1, u, false))

By induction we know that:

ϕ′1 ≡ ϕ1 ⇒ upd(ϕ1, u, b) ≡ upd(ϕ′1, u, b)

Hence we have that:

upd(dmodγ(ϕ1), u, false) ≡ upd(dmodγ(ϕ′1), u, false)
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A.5 Expression Update Consistency Lemma

Lemma A.5. If:

ϕ o Γ ` t : T

then:

upd(ϕ, u, b) o Γ ` upd(t, u, b) : T ′ T ≡eff T ′

T1 = T2

T1 ≡eff T2

T1 ≡eff T ′1 T2 ≡eff T ′2

T1
ϕ−→ T2 ≡eff T ′1

ϕ′
−→ T ′2

Proof: by induction over t.

Case: t = n

ε o Γ ` n : Int

By the definition of upd:

upd(n, u, b)
def
= n upd(ε, u, b)

def
= ε

Hence we can say that:

upd(ε, u, b) o Γ ` upd(n, u, b) : Int

Case: t = b, t = (), t = r, t = x, t = (α(ṽ), T ), t = X

Similar to case t = n.

Case: t = recX(x : T ).t1

ϕ o Γ, x : T1, X : T1
X−→ T2 ` t1 : T2

x /∈ fv(Γ), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x : T1).t1 : T1
µX.ϕ−−−→ T2

By the definition of upd:

upd(recX(x : T ).t, u, b)
def
= recX(x : T ).upd(t, u, b) upd(ε, u, b)

def
= ε

By induction we know that:

upd(ϕ, u, b) o Γ, x : T1, X : T1
ϕ−→ T2 ` upd(t1, u, b) : T ′2 T2 ≡eff T ′2
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Hence we can say that:

upd(ϕ, u, b) o Γ, x : T1, X : T1
X−→ T ′2 ` upd(t1, u, b) : T ′2

x /∈ fv(Γ), fv(T1), fv(T ′2), fv(upd(ϕ, u, b)) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x : T1).upd(t1, u, b) : T1
µX.upd(ϕ,u,b)−−−−−−−−−→ T ′2

which implies that:

upd(ε, u, b) o Γ ` upd(recX(x : T ).t, u, b) : T1
µX.upd(ϕ,u,b)−−−−−−−−−→ T ′2

where T1
ϕ−→ T2 ≡eff T1

µX.upd(ϕ,u,b)−−−−−−−−−→ T ′2 as T1 = T1 and T2 ≡eff T ′2 and

T1 ≡eff T ′1 T2 ≡eff T ′2

T1
ϕ−→ T2 ≡eff T ′1

ϕ′
−→ T ′2

Case: t = t1 t2

ϕ1 o Γ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ ` t1 t2 : T1

By the definition of upd:

upd(t1 t2, u, b)
def
= upd(t1, u, b) upd(t2, u, b)

upd(ϕ1; ϕ2; ϕ3, u, b)
def
= upd(ϕ1, u, b); upd(ϕ2, u, b); upd(ϕ3, u, b)

By induction we know that:

upd(ϕ1, u, b) o Γ ` upd(t1, u, b) : T ′2
upd(ϕ3,u,b)−−−−−−−→ T ′1

upd(ϕ2, u, b) o Γ ` upd(t2, u, b) : T ′2

where Ti ≡eff T ′i . Hence we can say that:

ϕ′1 o Γ ` t′1 : T ′2
ϕ′
3−→ T ′1 ϕ′2 o Γ ` t′2 : T ′2

(ϕ′1; ϕ′2; ϕ′3) o Γ ` t′1 t′2 : T ′1

where t′i = upd(ti, u, b), ϕ
′
i = upd(ϕi, u, b), Ti ≡eff T ′i .

Case: t = if t then t else t, dmodF1(t)

Similar to case t = t1 t2
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Case: t = caseα(ṽ) in {T̃ 7→ t′}

ϕi o Γ ` ti : T ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ ` caseα(ṽ) in {T̃ 7→ t} : T

By the definition of upd:

upd(caseα(ṽ) in {T̃ 7→ t}, u, b) def
= caseα(ṽ) in { ˜T 7→ upd(t1, u, b)}

upd(&ϕi, u, b)
def
= &upd(ϕi, u, b)

By induction we have that:

upd(ϕi, u, b) o Γ ` upd(ti, u, b) : T ′

where T ≡eff T ′. Hence we can say that:

upd(ϕi, u, b) o Γ ` ti : T ′ ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); upd(ϕi, u, b) o Γ ` caseα(ṽ) in { ˜T 7→ upd(ti, u, b)} : T ′

where T ≡eff T ′, which implies

upd(&(α(T̃ ), Tn); ϕn, u, b) o Γ ` upd(caseα(ṽ) in {T̃ 7→ t′}, u, b) : T ′

Case: t = error

This case can never be typed and hence can be disregarded as the hypothesis assumes

that t is typed.

Case: t = f(t1)

ϕ o Γ ` t : Unit

f(ϕ) o Γ ` f(t) : Unit

We can perform a case split on the relevant conditions in the definition of upd:

Case b ∧ f ∈ dom(u)

upd(f(t1), u, true)
def
= f(t′) (f 7→ t′) ∈ u

upd(f(ϕ1), u, true)
def
= f(ϕ′) (f 7→ t′) ∈ u ∧ ϕ′ o ∅ ` t′ : γ
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As we assume updates are well formed then we know that we can make the judgement:

ϕ′ o ∅ ` t′ : Unit

We can then use the TReg typing rule to show that:

ϕ′ o Γ ` t′ : Unit

f(ϕ′) o Γ ` f(t′) : Unit

and hence that:

upd(f(ϕ1), u, true) o Γ ` upd(f(t1), u, true) : Unit

Case ¬ (b ∧ f ∈ dom(u))

upd(f(t1), u, b)
def
= f(upd(t1, u, b)) (¬b ∨ (f 7→ γ) /∈ u)

upd(f(ϕ1), u, b)
def
= f(upd(ϕ, u, b)) (¬b ∨ (f 7→ γ) /∈ u)

By induction we know that

upd(ϕ1, u, b) o Γ ` upd(t1, u, b) : T ′

where Unit ≡eff T ′. The only possible such T ′ is Unit. Hence we can straightforwardly

say that:

upd(ϕ, u, b) o Γ ` upd(t′, u, b) : Unit

f(upd(ϕ, u, b)) o Γ ` f(upd(t′, u, b)) : Unit

Case: t = dmodF (t1)

ϕ1 o Γ ` t1 : Unit

dmodγ(ϕ1) o Γ ` dmodγ(t1) : Unit

ϕ o Γ ` t : T ϕ ≡ ϕ′

ϕ o Γ ` t : ϕ′

We can perform a case split on the relevant conditions in the definition of upd:

Case f̃ ∩ dom(u) = ∅

By the definition of upd:

upd(dmodF (t1), u, b)
def
= dmodF (upd(t1, u, true)) f̃ ∩ dom(u) = ∅

upd(dmodγ(ϕ), u, b)
def
= dmodγ(upd(ϕ, u, true)) f̃ ∩ dom(u) = ∅
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By induction we know that

upd(ϕ1, u, true) o Γ ` upd(t1, u, true) : T ′

where Unit ≡eff T ′. The only possible such T ′ is Unit. Hence we can straightforwardly

say that:

upd(ϕ1, u, true) o Γ ` upd(t1, u, true) : Unit

dmodγ(upd(ϕ1, u, true)) o Γ ` dmodγ(upd(t1, u, true)) : Unit

Case f̃ ∩ dom(u) 6= ∅

By the definition of upd:

upd(dmodF (t1), u, b)
def
= dmodF (upd(t1, u, false)) f̃ ∩ dom(u) 6= ∅

upd(dmodγ(ϕ), u, b)
def
= dmodγ(upd(ϕ, u, false)) f̃ ∩ dom(u) 6= ∅

By induction we know that

upd(ϕ1, u, false) o Γ ` upd(t1, u, false) : T ′

where Unit ≡eff T ′. The only possible such T ′ is Unit. Hence we can straightforwardly

say that:

upd(ϕ1, u, false) o Γ ` upd(t1, u, false) : Unit

dmodγ(upd(ϕ1, u, false)) o Γ ` dmodγ(upd(t1, u, false)) : Unit
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A.6 Thread Update Consistency Lemma

Lemma A.6. If:

` P : Φ ∀f 7→ t.ϕ o ∅ ` t : Unit

then:

` upd(P, u, false) : upd(Φ, u, false)

Proof: by induction over P

Case: P = t

ϕ o ∅ ` t : T

` t : ϕ
By the Expression Update Consistency Lemma:

upd(ϕ, u, b) o ∅ ` upd(t, u, b) : T ′ T ≡eff T ′

Hence:
upd(ϕ, u, b) o ∅ ` upd(t, u, b) : T ′

` upd(t, u, b) : upd(ϕ, u, b)

Case: P = P1 ‖ P2

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

By induction we know that:

` upd(P1, u, false) : upd(Φ1, ui, false) ` upd(P2, u, false) : upd(Φ2, ui, false)

Hence we can say that:

` upd(P1 ‖ P2, u, false) : upd(Φ1 ‖ Φ2, u, false)
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A.7 Expression Safety Lemma

Lemma A.7.

ϕ o Γ ` t : T ⇒ @error ∈ t

Proof. By induction over t

Case t = n, P = b, P = (), P = r, P = l, P = x, P = X,P = (α(ṽ), T )

We trivially know that none of these include error.

Case t = recX(x : T ).t1

ϕ1 o Γ, x : T1, X : T1
X−→ T2 ` t1 : T2

x /∈ fv(Γ), fv(T1), fv(T2), fv(ϕ1) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x : T1).t1 : T1
µX.ϕ1−−−−→ T2

We know that ϕ1 o Γ, x : T1, X : T1
X−→ T2 ` t1 : T2. We can then use the inductive hy-

pothesis to show that @error ∈ t1. We know straightforwardly that @error ∈ x, T1, X.

Hence we can say that @error ∈ recX(x : T ).t1.

Case: t = t1 t1

ϕ1 o Γ ` t1 : T2
ϕ3−→ T1 ϕ2 o Γ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o Γ ` t1 t2 : T1

By induction we know that @error ∈ t1, t2. Hence we have that @error ∈ t1 t1

Case: t = (α(ṽ), T )

ε o Γ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o Γ ` (α(ṽ), T ) : T

We know straightforwardly, and by induction, that @error ∈ vi. Hence we have that

@error ∈ (α(ṽ), T )
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Case: t = if t1 then t2 else t3

ϕ1 o Γ ` t1 : Bool

ϕ2 o Γ ` t2 : T ϕ3 o Γ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o Γ ` if t1 then t2 else t3 : T

By induction we know that @error ∈ t1, t2, t3. Hence we have that @error ∈ if t1 then t2 else t3.

Case: t = caseα(ṽ) in {T̃i 7→ ti}

ϕi o Γ ` ti : T ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ ` caseα(T̃ ) in {T̃ 7→ t} : T

We know straightforwardly that @error ∈ vi, Ti. By induction we know that @error ∈
ti. Hence we have that @error ∈ caseα(ṽ) in {T̃i 7→ ti}.

Case: t = letx = new in t′

Similar to case t = letx = α(ṽ) in t′.

Case: t = error

This case can never be typed and hence can be disregarded as the hypothesis assumes

that t is typed.

Case: t = dmodF1(t1)

ϕ1 o Γ ` t1 : Unit

dmodγ1(ϕ1) o Γ ` dmodγ1(t1) : Unit

We know straightforwardly that @error ∈ γ. By induction we know that @error ∈ t1.

Hence we have that @error ∈ dmodF1(t1).
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Case: t = f(t1)

We know straightforwardly that @error ∈ f . By induction we know that @error ∈ t1.

Hence we have that @error ∈ f(t1).
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A.8 Safety Theorem

Theorem A.8.

` P : Φ⇒ @error ∈ P

Proof. By induction over P

Case P = t

ϕ o ∅ ` t : T

` t : ϕ

As ϕ o ∅ ` t : T , by Lemma A.7 we know that @error ∈ t

Case P = P1 ‖ P2

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

By induction we know that @error ∈ P1, P2. Hence we have that @error ∈ P1 ‖ P2
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A.9 Value Effect Lemma

Lemma A.9.

t = v ⇒ ε o Γ ` t : T

Proof. Proof: by case split over v

Case v = n

ε o Γ ` n : Int

Case v = b

ε o Γ ` b : Bool

Case v = ()

ε o Γ ` () : Unit

Case v = r

ε o Γ ` r : Res r

Case v = x

ε o Γ ` x : Γ(x)

Case v = l

ε o Γ ` l : Lab l

Case v = recX(x : T ).t1

ϕ o Γ, x : T1, X : T1
X−→ T2 ` t : T2

x /∈ fv(Γ), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o Γ ` recX(x : T1).t : T1
µX.ϕ−−−→ T2
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A.10 General Compatibility Well Definedness Lemma

Lemma A.10. G(Σ,Φ, ψ, ω) is well defined fixed point satisfying
∧
k∈N Gk(Σ,Φ, ψ, ω).

G(Σ,Φ, ψ, ω) =
∧
k∈N Gk(Σ,Φ, ψ, ω):

G0(Σ,Φ, ψ, ω) = true

Gk(Σ,Φ, ψ, ω) =


@p ∈ dom(ψ).p(Σ,Φ)∧

(∀Φ′.[Σ] Φ
γ−→ [Σ′] Φ′ ⇒ Gk−1(Σ′,Φ′, ψ, ω))

∧ (∃Σ′,Φ′.[Σ] Φ
γ−→ [Σ′] Φ′ ∨ Φ = ΠI ε)

∨ψ = p1 7→ u1, . . . , pn 7→ un ∧ i smallest in 1...n.

pi(Σ,Φ) ∧ Gk−1(Σ, upd(Φ, ui, false), ψ \ pi 7→ ui, ω)


∧@error ∈ Φ ∧ Gk−1(Σ,Φ, (ψ, ω), ∅)

where k > 0

Proof: We prove (anti) monotonicity by induction over k: if Gk+1(Σ,Φ, ψ, ω) then

Gk(Σ,Φ, ψ, ω).

Case k = 0

By the definition G0(Σ,Φ, ψ, ψ′) = true, and hence we trivially have that given G1(Σ,Φ, ψ, ω)

then G0(Σ,Φ, ψ, ω).

Case k = n > 0

By the hypothesis we know that:


@p ∈ dom(ψ).p(Σ,Φ)∧

(∀Φ′.[Σ] Φ
γ−→ [Σ′] Φ′ ⇒ Gn(Σ′,Φ′, ψ, ω))

∧ (∃Σ′,Φ′.[Σ] Φ
γ−→ [Σ′] Φ′ ∨ Φ = ΠI ε)

∨ψ = p1 7→ u1, . . . , pn 7→ un ∧ i smallest in 1...n.

pi(Σ,Φ) ∧ Gn(Σ, upd(Φ, ui, false), ψ \ pi 7→ ui, ω)


∧@error ∈ Φ ∧ Gn(Σ,Φ, (ψ, ω), ∅)

holds.
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By induction we know that if k = n−1 that Gn(Σ,Φ, ψ, ω) then Gn−1(Σ,Φ, ψ, ω). Hence

we can show that:


@p ∈ dom(ψ).p(Σ,Φ)∧

(∀Φ′.[Σ] Φ
γ−→ [Σ′] Φ′ ⇒ Gn−1(Σ′,Φ′, ψ, ω))

∧ (∃Σ′,Φ′.[Σ] Φ
γ−→ [Σ′] Φ′ ∨ Φ = ΠI ε)

∨ψ = p1 7→ u1, . . . , pn 7→ un ∧ i smallest in 1...n.

pi(Σ,Φ) ∧ Gn−1(Σ, upd(Φ, ui, false), ψ \ pi 7→ ui, ω)


∧@error ∈ Φ ∧ Gn−1(Σ,Φ, (ψ, ω), ∅)

which, as n > 0, is the definition of Gn(Σ,Φ, ψ, ω).
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A.11 Expression Subject Reduction Lemma

Lemma 3.1

If:

ϕ o ∅ ` t : T [Σ]ϕ −→ [Σ′]ϕ′ ⇒ @error ∈ ϕ′ [σ] t
γ−→F [σ′] t′

Then

ϕ′ o ∅ ` t′ : T [Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ γ′ ` γ

Proof. By induction over [σ] t −→ [σ′] t′.

Case RAppOne

ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1 ϕ2 o ∅ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o ∅ ` t1 t2 : T1

By induction we know that if:

[Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ error /∈ ϕ′1 [σ] t1

γ−→F [σ′] t′1

then:

ϕ′1 o ∅ ` t′1 : T γ′ ` γ

Hence we can show that:
[σ] t1

γ−→F [σ′] t′1

[σ] t1 t2
γ−→F [σ′] t′1 t2

Case RAppTwo

Similar to case RAppOne

Case RAppThree

[σ] recX(x : T ).t v
τ−→ [σ] t[recX(x : T ).t/X][v/x]

ε o ∅ ` recX(x : T ).t : T2
µX.ϕ3−−−−→ T1 ε o ∅ ` v : T2

(ε; ε; µX.ϕ3) o ∅ ` recX(x : T ).t v : T1

ϕ o ∅, x : T1, X : T1
X−→ T2 ` t : T2

x /∈ fv(∅), fv(T1), fv(T2), fv(ϕ) X /∈ fv(T1), fv(T2)

ε o ∅ ` recX(x : T1).t : T1
µX.ϕ−−−→ T2
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Hence we know that:

µX.ϕ3 o ∅ ` recX(x : T ).t v : T1

By Lemma A.2 and Lemma A.3 we know that:

ϕ3[µX.ϕ3/X][v/x] o ∅[v/x] ` t[recX(x : T ).t/X][v/x] : T2[v/x][µX.ϕ3/X]

as x /∈ fv(Γ), fv(T1), fv(T2), fv(ϕ3) and X /∈ fv(T2) we can say that:

ϕ3[µX.ϕ3/X] o ∅ ` t[recX(x : T ).t/X][v/x] : T2

As

ϕ3[µX.ϕ3/X] ≡ ϕ3

we can use RTRec to show that:

[Σ]µX.ϕ3
τ−→ [Σ]ϕ3[µX.ϕ3/X]

where γ = τ .

Case RAccOne

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′]σ(α(ṽ))

ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

By our assumptions we know that σ(α(ṽ)) = v. By Lemma A.9 we know that:

t = v ⇒ ε o Γ ` t : T

We can show that [Λ(σ)] ((α(ṽ), T ), T ) −→ [Λ(σ′)] ε using the RTAccSucc rule:

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) = T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] ε

According to TAcc we know that:

ε o Γ ` vi : Ti

and hence we can show that:
ε o ∅ ` vi : Ti
α(T̃ ) ` α(ṽ)
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Case RAccTwo

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ 6= T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] error

ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

Using the premises of RAccTwo we can show that:

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) 6= T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] error

By the premises we know that:

[Λ(σ)] (α(T̃ ), T ) −→ [Λ(σ′)]ϕ′′ ⇒ @error ∈ ϕ′′

This is a contradiction. Hence this reduction cannot occur, and we can disregard it.

Case RIfOne

[σ] if true then t2 else t3
τ−→ [σ] t2

ϕ1 o ∅ ` true : Bool

ϕ2 o ∅ ` t2 : T ϕ3 o ∅ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o ∅ ` if true then t2 else t3 : T

By Lemma A.9 we know that ϕ1 = ε, and hence that:

ϕ2 ⊕ ϕ3 o Γ ` if true then t2 else t3 : T

By TInt we know that:

ϕ2 o ∅ ` t2 : T

We can show that [Λ(σ)]ϕ2 ⊕ ϕ3
γ′−→ [Λ(σ)]ϕ2 using RTIntChoice:

i ∈ 1, 2

[Σ]ϕ1 ⊕ ϕ2
τ−→ [Σ]ϕi

Case RIfTwo

Similar to case RIfOne.
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Case RIfThree

ϕ1 o ∅ ` t1 : Bool

ϕ2 o ∅ ` t2 : T ϕ3 o ∅ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o ∅ ` if t1 then t2 else t3 : T

By induction we know that if:

[Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ error /∈ ϕ′1 [σ] t1

γ−→F [σ′] t′1

then:

ϕ′1 o ∅ ` t′1 : T γ′ ` γ

Hence we can show that:

[σ′] t1
γ−→F [σ] t′1

[σ] if t1 then t2 else t3
γ−→F [σ′] if t′1 then t2 else t3

Case RCaseOne

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : Ti Ti ∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] ti

ϕi o ∅ ` ti : T ε o ∅ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o ∅ ` caseα(ṽ) in {T̃ 7→ t} : T

By TCase we know that ϕi o ∅ ` ti : T . As σ(l) : Ti we can use RTAccSucc to show that:

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) = T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] ε

We can then use RTExtChoiceOne and RTExtChoiceTwo to show that:

[Λ(σ)] &(α(T̃ ), T ); ϕi −→ [Λ(σ′′)]ϕi

By our assumptions we know that if:

σ
α(ṽ)−−→ σ′ α(T̃ ) ` α(ṽ)

that

Λ(σ)
α(T̃ )−−−→ Λ(σ′)

By TCase we know that ε o ∅ ` vi : Ti, and hence σ′′ = σ′.
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Case RCaseTwo

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ T ′ /∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] error

ϕi o ∅ ` ti : T ε o ∅ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o ∅ ` caseα(ṽ) in {T̃ 7→ t} : T

As T ′ /∈ T̃ , by RTAccErr we know that ∀Ti ∈ T̃ :

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) 6= T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] error

Hence we can use

∀i . ([Σ]ϕi
α(T̃ )−−−→F [Σ1]ϕ′i ∧ error ∈ ϕ′i)

[Σ]ϕ1&ϕ2
α(T̃ )j−−−→F [Σi]ϕ

′
j

to show that:

[Λ(σ)] &(α(T̃ ), T ); ϕi −→ [Λ(σ′)] error; ϕi

By the hypotheses we know that:

[Λ(σ)] (α(T̃ ), T ) −→ [Λ(σ′)]ϕ′′ ⇒ @error ∈ ϕ′′

This is a contradiction. Hence this reduction cannot occur, and we can disregard it.

Case RRegOne

ϕ1 o Γ ` t1 : Unit

f(ϕ1) o Γ ` f(t1) : Unit

By induction we know that if:

[Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ error /∈ ϕ′1 [σ] t1

γ−→F [σ′] t′1

then:

ϕ′1 o ∅ ` t′1 : T γ′ ` γ

Hence we can show that:
[σ] t1

τ−→F [σ′] t′1

[σ′] f(t1)
τ−→F [σ′] f(t′1)

Case RRegTwo

ϕ1 o Γ ` t1 : Unit

f(ϕ1) o Γ ` f(t1) : Unit
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By induction we know that if:

[Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ error /∈ ϕ′1 [σ] t1

γ−→F [σ′] t′1

then:

ϕ′1 o ∅ ` t′1 : T γ′ ` γ

Hence we can show that:

[σ] t
α(ṽ)−−→F [σ′] t′

[σ] f(t)
α(ṽ)−−→F∪{f} [σ′] t′

Case RRegThree

[σ] f(t)
τ−→ [σ] t

ϕ1 o Γ ` v : Unit

f(ϕ1) o Γ ` f(v) : Unit

By Lemma A.9 we know that ϕ1 = ε. We can straightforwardly show that:

[Σ] f(ε)
τ−→ [Σ] ε

Case RDmodOne

ϕ o Γ ` t : Unit

dmodγ1(ϕ) o Γ ` dmodγ1(t) : Unit

By induction we know that if:

[Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ error /∈ ϕ′1 [σ] t1

γ−→F [σ′] t′1

then:

ϕ′1 o ∅ ` t′1 : T γ′ ` γ

Hence we can show that:

[σ] t
γ−→F ′ [σ′] t′ regions(t) 6⊆ F

[σ] dmodF (t)
γ−→F ′ [σ′] dmodF∪F ′(t′)
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Case RDmodTwo

regions(t) ⊆ F

[σ] dmodF (t)
τ−→ [σ] t

ϕ o Γ ` t : Unit

dmodγ1(ϕ) o Γ ` dmodγ1(t) : Unit

We can straightforwardly use RTDmodTwo to show that:

regions(ϕ1) ⊆ F

[Λ(σ)] dmodF (ϕ1)
τ−→ [Λ(σ)]ϕ1
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A.12 Process Subject Reduction Lemma

Lemma 3.2

If:

` P : Φ [Σ] Φ −→ [Σ′] Φ′ ⇒ @error ∈ Φ′ [σ]P
γ−→ [σ′]P ′

then

` P ′ : Φ′ [Λ(σ)] Φ
γ′−→ [Λ(σ′)] Φ′

where

γ′ ` γ

Proof. By induction over P

Case: P = t

This case can be typed using:

ϕ o ∅ ` t : T

` t : ϕ

` t : ϕ res(t) ∪ res(σ) ⊆ R
∃C.C(Λ(σ), ϕ, ψ, ω) and (C =⇒ S)

`Sω [σ] t, ψ : ϕ

Using Lemma 3.1 we know that, if:

ϕ o ∅ ` t : T S(Σ, ϕ, ψ, ω) [σ] t
γ−→F [σ′] t′

then

ϕ′ o ∅ ` t′ : T [Λ(σ)]ϕ
γ′−→F [Λ(σ′)]ϕ′ γ′ ` γ

We can then apply the TThread typing rule:

ϕ′ o ∅ ` t′ : T

` t′ : ϕ′
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Case: P = P1 ‖ P2

This case can be typed using:

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

` t : ϕ res(t) ∪ res(σ) ⊆ R
∃C.C(Λ(σ), ϕ, ψ, ω) and (C =⇒ S)

`Sω [σ] t, ψ : ϕ

By the reduction rules:

[Σ] Φ1
γ−→F [Σ′] Φ′1

[Σ] Φ1 ‖ Φ2
γ−→F [Σ′] Φ′1 ‖ Φ2

[Σ] Φ2
γ−→F [Σ′] Φ′2

[Σ] Φ1 ‖ Φ2
γ−→F [Σ′] Φ1 ‖ Φ′2

we know that if:

@error ∈ Φ1 ‖ Φ2 [Σ] Φ1 ‖ Φ2 −→ [Σ′] Φ′ ⇒ @error ∈ ϕ′

then:

@error ∈ Φ1,Φ2 [Σ] Φ1 −→ [Σ′] Φ′1 ⇒ @error ∈ ϕ′ [Σ] Φ2 −→ [Σ′] Φ′2 ⇒ @error ∈ ϕ′

We can then use the inductive hypothesis to show that if:

[σ]P1
γ−→ [σ′]P ′1

then

` P ′1 : Φ′1 [Λ(σ)] Φ
γ′−→ [Λ(σ′)] Φ′

We can then show that:
` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

and:
[Λ(σ)] Φ1

γ−→F [Λ(σ′)] Φ′1

[Λ(σ)] Φ1 ‖ Φ2
γ−→F [Λ(σ′)] Φ′1 ‖ Φ2

The case for P2 is symmetrical.
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A.13 Empty Effect Expression Liveness Lemma

Lemma 3.3

If

ε o ∅ ` t : T

then

[σ] t
γ′−→ [σ] t′ ∨ t = v

Proof. By induction over t.

Case t = v

We trivially have that t = v.

Case: t = t1 t2

ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1 ϕ2 o ∅ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o ∅ ` t1 t2 : T1

We perform a case split on the structure of t1 t2

Case t1 6= v

By the hypothesis and the TApp rule we know that:

ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1 [Σ] ϕ −→ [Σ′] ϕ′ ϕ ≡ ϕ1; ϕ2; ϕ3

By the inductive hypothesis we know that:

[σ] t1
γ′−→ [σ] t′1 ∨ t1 = v

We know the latter cannot be the case, as it contradicts the assumption that t1 6= v.

Hence:

[σ] t1
γ′−→ [σ] t′1

Hence we can show that:
[σ] t1

γ−→F [σ′] t′1

[σ] t1 t2
γ−→F [σ′] t′1 t2
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Case t1 = v, t2 6= v′

By the hypothesis and the TApp rule we know that:

ϕ2 o ∅ ` t2 : T2

By the inductive hypothesis we know that:

[σ] t2
γ′−→ [σ] t′2 ∨ t2 = v

We know the latter cannot be the case, as it contradicts the assumption that t2 6= v.

Hence:

[σ] t2
γ′−→ [σ] t′2

Hence we can show that:
[σ] t2

γ−→F [σ′] t′2

[σ] v t2
γ−→F [σ′] v t′2

Case t1 = v, t2 = v′

As t1 = v then we know that t1 = recX(x : T ).t3. Hence we can straightforwardly

apply the RAppThree rule:

[σ] recX(x : T ).t v
τ−→ [σ] t[recX(x : T ).t/X][v/x]

Case: t = (α(ṽ), T )

ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

By the hypothesis we know that

(α(ṽ), T ) ≡ ε

This is a contradiction, and hence we can disregard this case.

Case: t = if t1 then t2 else t3

ϕ1 o ∅ ` t1 : Bool

ϕ2 o ∅ ` t2 : T ϕ3 o ∅ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o ∅ ` if t1 then t2 else t3 : T
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By the inductive hypothesis we know that:

[σ] t1
γ′−→ [σ] t′1 ∨ t1 = v

If the former is the case then we can show that:

[σ] t1
γ′−→ [σ] t′1

and hence that:

[σ′] t1
γ−→F [σ] t′1

[σ] if t1 then t2 else t3
γ−→F [σ′] if t′1 then t2 else t3

If the latter is the case then we can show that:

[σ] if true then t2 else t3
τ−→ [σ] t2 [σ] if false then t2 else t3

τ−→ [σ] t3

Case: t = caseα(T̃ ) in {T̃ 7→ t}

ϕi o Γ ` ti : T ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ ` caseα(ṽ) in {T̃ 7→ t} : T

By the hypothesis we know that

&(α(T̃ ), T ); ϕi ≡ ε

This is a contradiction, and hence we can disregard this case.

Case: t = f(t1)

ϕ1 o Γ ` t1 : Unit

f(ϕ1) o Γ ` f(t1) : Unit

By the hypothesis we know that

f(ϕ1) ≡ ε

This is a contradiction, and hence we can disregard this case.

Case: t = dmodF1(t1)

ϕ1 o ∅ ` t1 : Unit

dmodγ1(ϕ1) o ∅ ` dmodγ1(t1) : Unit
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By the hypothesis we know that

dmodF (ϕ1) ≡ ε

This is a contradiction, and hence we can disregard this case.
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A.14 Active Effect Expression Liveness Lemma

Lemma 3.4

If

ϕ o ∅ ` t : T [Λ(σ)]ϕ
γ′−→ [Λ(σ′)]ϕ′

then

[σ] t
γ′−→ [σ′] t′

Proof. By induction over t.

Case t = v

By Lemma A.9 we know that ϕ = ε. There are no reduction rules for ε. Therefore the

premises of the lemma are not fulfilled, and we can disregard the case.

Case: t = t1 t2

ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1 ϕ2 o ∅ ` t2 : T2

(ϕ1; ϕ2; ϕ3) o ∅ ` t1 t2 : T1

We perform a case split on the structure of t1 t2

Case t1 6= v

By the hypothesis and the TApp rule we know that:

ϕ1 o ∅ ` t1 : T2
ϕ3−→ T1 [Σ] ϕ −→ [Σ′] ϕ′ ϕ ≡ ϕ1; ϕ2; ϕ3

Either ϕ1 ≡ ε or ϕ1 6≡ ε.

Case: ϕ1 ≡ ε By Lemma 3.3 we know that:

[σ] t1
γ′−→ [σ′] t′1 ∨ t1 = v

We know the latter cannot be the case, as it contradicts the assumption that t1 6= v.

Hence:

[σ] t1
γ′−→ [σ′] t′1
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Case: ϕ1 6≡ ε The reduction rule for sequencing is:

[Σ]ϕ1
γ−→F [Σ′]ϕ′1

[Σ]ϕ1; ϕ2; ϕ3
γ−→F [Σ′]ϕ′1; ϕ2; ϕ3

By this reduction rule we know that:

[Λ(σ)]ϕ1
γ−→ [Λ(σ′)]ϕ′1

Hence we can use the inductive hypothesis to show that:

[σ] t1
γ−→ [σ′] t′1

Hence we can show that, irrespective of whether or not ϕ1 ≡ ε that:

[σ] t1
γ−→F [σ′] t′1

[σ] t1 t2
γ−→F [σ′] t′1 t2

Case t1 = v, t2 6= v′

By the hypothesis and the TApp rule we know that:

ϕ2 o ∅ ` t2 : T2

By Lemma A.9, we know that ϕ1 = ε. Either ϕ2 ≡ ε or ϕ2 6≡ ε.

Case: ϕ2 ≡ ε By Lemma 3.3 we know that:

[σ] t2
γ′−→ [σ′] t′2 ∨ t2 = v

We know the latter cannot be the case, as it contradicts the assumption that t2 6= v.

Hence:

[σ] t2
γ′−→ [σ′] t′2

Case: ϕ2 6≡ ε The reduction rule for sequencing is:

[Σ]ϕ2
γ−→F [Σ′]ϕ′2

[Σ]ϕ2; ϕ3
γ−→F [Σ′]ϕ′2; ϕ3

By this reduction rule we know that:

[Λ(σ)]ϕ1
γ−→ [Λ(σ′)]ϕ′1
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Hence we can use the inductive hypothesis to show that:

[σ] t1
γ−→ [σ′] t′1

Hence we can show that, irrespective of whether or not ϕ2 ≡ ε that:

[σ] t2
γ−→F [σ′] t′2

[σ] v t2
γ−→F [σ′] v t′2

Case t1 = v, t2 = v′

As t1 = v then we know that t1 = recX(x : T ).t3. Hence we can straightforwardly

apply the RAppThree rule:

[σ] recX(x : T ).t v
τ−→ [σ] t[recX(x : T ).t/X][v/x]

Case: t = (α(ṽ), T )

ε o ∅ ` vi : Ti Res r /∈ T

(α(T̃ ), T ) o ∅ ` (α(ṽ), T ) : T

By the hypothesis we know that

[Σ] (α(T̃ ), T ) −→ [Σ′] ϕ′

The reduction rules for (α(T̃ ), T ) that fulfil these conditions are:

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) = T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] ε

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) 6= T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] error

Hence we can show that Λ(σ)
α(T̃ )−−−→ Λ(σ′). By our assumptions we know that:

Λ(σ)
α(T̃ )−−−→ Λ(σ′)⇔ σ

α(ṽ)−−→ σ′

Hence we can reduce (α(ṽ), T ) using either the RAccSucc or RAccErr rule:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′]σ(α(ṽ))

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ 6= T

[σ] (α(ṽ), T )
α(ṽ)−−→ [σ′] error
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Case: t = if t1 then t2 else t3

ϕ1 o ∅ ` t1 : Bool

ϕ2 o ∅ ` t2 : T ϕ3 o ∅ ` t3 : T

ϕ1; (ϕ2 ⊕ ϕ3) o ∅ ` if t1 then t2 else t3 : T

Either ϕ1 ≡ ε or ϕ1 6≡ ε.

Case: ϕ1 ≡ ε By Lemma 3.3 we know that:

[σ] t1
γ′−→ [σ′] t′1 ∨ t1 = v

If the former is the case then we can show that:

[σ] t1
γ′−→ [σ′] t′1

and hence that:

[σ′] t1
γ−→F [σ] t′1

[σ] if t1 then t2 else t3
γ−→F [σ′] if t′1 then t2 else t3

If the latter is the case then we can show that:

[σ] if true then t2 else t3
τ−→ [σ] t2 [σ] if false then t2 else t3

τ−→ [σ] t3

Case: ϕ1 6≡ ε The reduction rule for sequencing is:

[Σ]ϕ1
γ−→F [Σ′]ϕ′1

[Σ]ϕ1; ϕ2 ⊕ ϕ3
γ−→F [Σ′]ϕ′1; ϕ2 ⊕ ϕ3

By this reduction rule we know that:

[Λ(σ)]ϕ1
γ−→ [Λ(σ′)]ϕ′1

Hence we can use the inductive hypothesis to show that:

[σ] t1
γ−→ [σ′] t′1

and hence that:

[σ′] t1
γ−→F [σ] t′1

[σ] if t1 then t2 else t3
γ−→F [σ′] if t′1 then t2 else t3
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Case: t = caseα(T̃ ) in {T̃ 7→ t}

ϕi o Γ ` ti : T ε o Γ ` vi : Ti Ti 6= Res r

&(α(T̃ ), Ti); ϕi o Γ ` caseα(ṽ) in {T̃ 7→ t} : T

By the hypothesis we know that

[Σ] &(α(T̃ ), T ); ϕi −→ [Σ′] ϕ′

The reduction rules for &(α(T̃ ), T ); ϕi that fulfils these conditions are:

∃i . ([Σ]ϕi
α(T̃ )−−−→F [Σ′]ϕ′i ∧ @error ∈ ϕ′i)

[Σ]ϕ1&ϕ2
α(T̃ )−−−→F [Σ′]ϕ′i

[Σ]ϕ2
α(T̃ )−−−→F [Σ′]ϕ′2 @error ∈ ϕ′2

[Σ]ϕ1&ϕ2
α(T̃ )−−−→F [Σ′]ϕ′2

∀i . ([Σ]ϕi
α(T̃ )−−−→F [Σ1]ϕ′i ∧ error ∈ ϕ′i)

[Σ]ϕ1&ϕ2
α(T̃ )j−−−→F [Σi]ϕ

′
j

Each of these can only reduce if:

[Σ] (α(T̃ ), Ti) −→

By our assumptions we know that Λ(σ)
α(T̃ )−−−→ Λ(σ′)⇔ σ

α(ṽ)−−→ σ′.

Hence we can reduce (α(ṽ), T ) using either the RCaseSucc or the RCaseErr rule:

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : Ti Ti ∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] ti

σ
α(ṽ)−−→ σ′ σ(α(ṽ)) : T ′ T ′ /∈ T̃

[σ] caseα(ṽ) in {T̃ 7→ t} α(ṽ)−−→ [σ′] error

Case: t = f(t1)

ϕ1 o Γ ` t1 : Unit

f(ϕ1) o Γ ` f(t1) : Unit

By the hypothesis we know that:

[Σ] f(ϕ1) −→ [Σ′] ϕ′

There are three possible reduction rules for f(ϕ1).

Case RTRegOne

[Σ]ϕ1
τ−→F [Σ′]ϕ′

[Σ] f(ϕ1)
τ−→F [Σ′] f(ϕ′1)
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As

[Λ(σ)]ϕ1
γ′−→ [Λ(σ′)]ϕ′1

we can apply the inductive hypothesis and show that:

[σ] t1
γ−→ [σ′] t′1

We can then show that:
[σ] t1

τ−→F [σ′] t′1

[σ′] f(t1)
τ−→F [σ′] f(t′1)

Case RTRegTwo

[Σ]ϕ1
α(T̃ )−−−→F [Σ′]ϕ′

[Σ] f(ϕ1)
α(T̃ )−−−→F [Σ′]ϕ′1

As

[Λ(σ)]ϕ1
γ′−→ [Λ(σ′)]ϕ′1

we can apply the inductive hypothesis and show that:

[σ] t1
γ−→ [σ′] t′1

We can then show that:

[σ] t1
α(ṽ)−−→F [σ′] t′1

[σ] f(t1)
α(ṽ)−−→F∪{f} [σ′] t′1

Case RTRegThree

[Σ] f(ε)
τ−→ [Σ] ε

When exp = v We can straightforwardly use the following reduction rule:

[σ] f(v)
τ−→ [σ] v

Otherwise we can use RTRegOne or RTRegTwo.

Case: t = dmodF1(t1)

ϕ1 o ∅ ` t1 : Unit

dmodγ1(ϕ1) o ∅ ` dmodγ1(t1) : Unit

There are two possible reductions for dmodF1(ϕ1). We can perform a case split on the

rules’ premises:
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Case regions(ϕ) 6⊆ γ1

[Σ]ϕ1
γ−→F ′ [Σ′]ϕ′1 regions(ϕ1) 6⊆ F

[Σ] dmodF (ϕ1)
γ−→F ′ [Σ′] dmodF∪F ′(ϕ′1)

As

[Λ(σ)]ϕ1
γ′−→ [Λ(σ′)]ϕ′1

we can apply the inductive hypothesis and show that:

[σ] t
γ−→ [σ′] t′

and hence can show that:

[σ] t
γ−→F ′ [σ′] t′ regions(t) 6⊆ F

[σ] dmodF (t)
γ−→F ′ [σ′] dmodF∪F ′(t′)

Case regions(ϕ) ⊆ γ1

regions(ϕ1) ⊆ F

[Σ] dmodF (ϕ1)
τ−→ [Σ]ϕ1

In this case we can straightforwardly apply the following reduction rule:

regions(t) ⊆ F

[σ] dmodF (t)
τ−→ [σ] t
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A.15 Empty Effect Thread Liveness Lemma

Lemma 3.5 If:

` P : Φ Φ = ΠI ϕi (ϕi ≡ ε ∨ ϕi ≡ X)

then

[σ]P
γ−→ [σ]P ′ ∨ P = ΠI v

Proof. Case Φ = ϕ

ϕ o ∅ ` t : T

` t : ϕ

By Lemma 3.3 we know that:

[σ] t
γ−→ [σ] t′ ∨ t = v

Case: Φ = Φ1 ‖ Φ1

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

We can then use the inductive hypothesis to show that:

([σ]P1
γ−→ [σ]P ′1 ∨ P1 = Π v)

([σ]P2
γ−→ [σ]P ′2 ∨ P2 = Π v)

and hence that:

[σ]P1 ‖ P2
γ−→ [σ]P ′1 ‖ P2 ∨ [σ]P1 ‖ P2

γ−→ [σ]P1 ‖ P ′2 ∨ P1 ‖ P2 = Π v
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A.16 Active Effect Thread Liveness Lemma

Lemma 3.6

If:

` P : Φ [Λ(σ)] Φ
γ′−→ [Λ(σ′)] Φ′

then

[σ]P
γ−→ [σ′]P ′

Proof. By induction over [Λ(σ)] Φ
γ′−→ [Λ(σ′)] Φ′

Case RTAccSucc, RTSeq, RTIntChoice, RTExtChoiceOne, RTExtChoiceTwo,

RTExtChoiceThree, RTRegOne, RTRegTwo, RTRegThree, RTDmodOne,

RTDmodTwo

ϕ o ∅ ` t : T

` t : ϕ

By Lemma 3.4 we know that:

[σ] t
γ−→ [σ′] t′

Case: RTParOne

` P1 : Φ1 ` P2 : Φ2

` P1 ‖ P2 : Φ1 ‖ Φ2

[Σ] Φ1
γ−→F [Σ′] Φ′1

[Σ] Φ1 ‖ Φ2
γ−→F [Σ′] Φ′1 ‖ Φ2

By the reduction rule we know that:

[Λ(σ)] Φ1
γ′−→ [Λ(σ′)] Φ′1

We can then use the inductive hypothesis to show that:

[σ]P1
γ−→ [σ′]P ′1

and hence that:
[σ]P1

γ−→F [σ′]P ′1

[σ]P1 ‖ P2
γ−→F [σ′]P ′1 ‖ P2

Case: RTParTwo

Similar to case RTParOne.
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Case: RTEquiv

Φ ≡ Φ1 [Σ] Φ1
γ−→ [Σ′] Φ2 Φ2 ≡ Φ′

[Σ] Φ
γ−→ [Σ′] Φ′

By induction.
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Appendix B

Blocking Message Passing

In this chapter we provide the full proofs of how the blocking message passing approach

in Section 3.5.1 implies General Compatibility of static programs.

B.1 Separate Channels Lemma

Lemma B.1.

[Σ]ϕi −→ [Σ′]ϕ′i ⇔ [c 7→ q; Σ]ϕi −→ [c 7→ q; Σ′]ϕ′i

where

c 6= ddi ∧ ϕi has principle channel allocation

Proof. By induction over −→

Case: RTAccSucc

Σ
α(T̃ )−−−→ Σ′ Σ(α(T̃ )) = T

[Σ] (α(T̃ ), T )
α(T̃ )−−−→ [Σ′] ε

The only actions we can perform are sending and receiving.

Case c!〈T 〉

Here Σ′ = Σ[c 7→ q′, T ]. Hence:

[Σ[c 7→ q′]] c!〈T 〉 −→ [Σ[c 7→ q′, T ]] ε⇔ [Σ[c 7→ q, q′]] c!〈T 〉 −→ [Σ[c 7→ q, q′, T ]]ϕ′1
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Case c′?(T )

As c 6= ddi and ϕi has principle channel allocation we know that c′ 6= c. Hence:

[Σ[c′ 7→ q′]] c?(T ) −→ [Σ[c′ 7→ q′′, T ]] ε⇔ [c 7→ q; Σ[c′ 7→ q′]] c?(T ) −→ [c 7→ q; Σ[c′ 7→ q′′]]ϕ′1

Case: RTAccErr

Similar to case RTAccSucc

Case: RTSeq

[Σ]ϕ1
γ−→F [Σ′]ϕ′1

[Σ]ϕ1; ϕ2
γ−→F [Σ′]ϕ′1; ϕ2

By induction we know that:

[Σ]ϕ1 −→ [Σ′]ϕ′1 ⇔ [c 7→ q; Σ]ϕ1 −→ [c 7→ q; Σ′]ϕ′1

Hence we have that:

[Σ]ϕ1; ϕ2 −→ [Σ′]ϕ′1; ϕ2 ⇔ [c 7→ q; Σ]ϕ1; ϕ2 −→ [c 7→ q; Σ′]ϕ′1; ϕ2

Case: RTIntChoice

i ∈ 1, 2

[Σ]ϕ1 ⊕ ϕ2
τ−→ [Σ]ϕi

Trivial

Case: RTExtChoiceOne

∃i . ([Σ]ϕi
α(T̃ )−−−→F [Σ′]ϕ′i ∧ @error ∈ ϕ′i)

[Σ]ϕ1&ϕ2
α(T̃ )−−−→F [Σ′]ϕ′i

By induction we know that:

[Σ]ϕi −→ [Σ′]ϕ′i ⇔ [c 7→ q; Σ]ϕi −→ [c 7→ q; Σ′]ϕ′i

Hence we have that:

[Σ]ϕ1&ϕ2 −→ [Σ′]ϕ′i ⇔ [c 7→ q; Σ]ϕ1&ϕ2 −→ [c 7→ q; Σ′]ϕ′i
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Case: RTExtChoiceTwo

Similar to case RTExtChoiceOne.

Case: RTUnfold

[Σ]µX.ϕ
τ−→ [Σ]ϕ[µX.ϕ/X]

Trivial

Case: RTEquiv

ϕ ≡ ϕ1 [Σ]ϕ1
γ−→ [Σ′]ϕ2 ϕ2 ≡ ϕ′

[Σ]ϕ
γ−→ [Σ′]ϕ′

By induction we know that:

[Σ]ϕ1 −→ [Σ′]ϕ2 ⇔ [c 7→ q; Σ]ϕ1 −→ [c 7→ q; Σ′]ϕ2

Hence we have that:

[Σ]ϕ −→ [Σ′]ϕ′ ⇔ [c 7→ q; Σ]ϕ −→ [c 7→ q; Σ′]ϕ′
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B.2 Send Action Equivalence Lemma

Lemma B.2. If

ΠG � di ≡ Π ϕi ∧ ϕa ≡ ⊕N (c!〈Tn〉; ϕnb ) ∧ N 6= ∅

Then

∃G′ = da −→ db : c〈T̃ 7→ G〉M . N ⊆M ∧ ΠG′ � di ≡ Π ϕi

Proof. By induction over G

Case G = 0, X

G � da 6≡ ⊕N (c!〈Tn〉; ϕnb )

Hence we can disregard these cases.

Case G = µX.G′′

By equivalence we know that:

µX.G′′ � da ≡ µX.⊕N (c!〈Tn〉; ϕnb )

≡ ⊕N (c!〈Tn〉; ϕnb )[µX.⊕N (c!〈Tn〉; ϕnb )/X]

≡ (G′′[µX.G′′/X]) � da

Hence we can consider (G′[µX.G′/X]) � da directly.
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Case G = da′ −→ db′ : c
′〈T̃ 7→ G〉M

c′ = c

We let G′ = G directly.

c′ 6= c

Hence a′ 6= a, b′ 6= b. By the definition of � we know that:

Gm � da ≡ ⊕N (c!〈Tn〉; ϕnb )

Let Φm ≡ ΠGm � di. Then, by induction we can show that:

∃G′m .Φm ≡ ΠG′m � di G′m = da −→ db : c〈T̃ 7→ G〉O N ⊆ O

Then let:

G′ = da −→ db : c〈 ˜
To 7→ da′ −→ db′ : c′〈 ˜Tm 7→ Go〉M 〉O

Here:

ΠG′ � di ≡ Π ϕi
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B.3 Receive Action Equivalence Lemma

Lemma B.3. If

ΠG � di ≡ Π ϕi ∧ ϕb ≡ &M (c!〈Tm〉; ϕmb )

Then

∃G′ = da −→ db : c〈T̃ 7→ G〉N .ΠG′ � di ≡ Π ϕi

Proof. Similar to Lemma B.2.
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B.4 Valid States Safety Lemma

Lemma 3.10

[Σ] Φ ∈ ∆⇒ error /∈ Φ

Proof. By induction over n.

Case n = 0

∆0
def
= {[Σ∅] Φ |Φ ≡ ΠG � di}

By induction over G

Case G = 0, X

Trivial.

Case G = µX.G

By induction we have that:

Φ′ = Π ϕi ≡ ΠG � di ⇒ error /∈ ϕ

Hence:

Φ = Π µX.ϕi ≡ Π µX.G � di ⇒ error /∈ ϕ′

Case G = da −→ db : c〈T̃ 7→ G〉

d1 −→ d2 : r〈T̃ 7→ G〉M � d1
def
= ⊕N (c!〈Tn〉; Gn � d1) ∅ 6= N ⊆M

d1 −→ d2 : r〈T̃ 7→ G〉 � d2
def
= &M (c?(Tm); Gm � d1)

d1 −→ d2 : r〈T̃ 7→ G〉 � d def
= G1 � d

By induction we know that:

Φ′Π ϕ′i ≡ ΠGm � di ⇒ error /∈ Φ′

Hence:

ϕai ≡ ⊕N (c!〈Tn〉; Gn � d1)⇒ error /∈ ϕai

ϕni ≡ &M (c?(Tm); Gm � d1)⇒ error /∈ ϕbi

167



Therefore we have that:

Φ ≡ Π da −→ db : c〈T̃ 7→ G〉 � di ⇒ error /∈ Φ

Case n > 0

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm k ∈ J

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕjb ‖ . . . ‖ ϕ
j
a ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ‖ ϕ

k
a ‖ . . . ϕm k ∈ J

By induction we know that:

[Σ] Φ′ = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n ⇒ error /∈ Φ′

Hence we have that:

error /∈ &J(c?(Tj); ϕ
j
b)

Therefore we can show that:

[ ] Φ = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm ⇒ error /∈ Φ
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B.5 Valid States Liveness Lemma

Lemma 3.11

[Σ] Φ ∈ ∆⇒ [Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε ∨ Φ ≡ ΠX

Proof. By induction over n.

Case n = 0

By case analysis of G.

If [Σ∅] Φ ∈ ∆0 and Φ ≡ Φ′ then [Σ∅] Φ′ ∈ ∆0 and hence it is sufficient to consider direct

reduction.

Case G = da −→ db : c〈T̃ 7→ G〉

If

da −→ db : c〈T̃ 7→ G〉 � da ≡ ⊕N (c!〈Tn〉; Gn � da)

then:

[Σ∅]ϕ1 ‖ . . . ‖ ⊕N (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo −→ [Σ∅]ϕ1 ‖ . . . ‖ (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo

If

da −→ db : c〈T̃ 7→ G〉 � da ≡ ϕ1 ‖ . . . ‖ (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo

then:

[Σ∅]ϕ1 ‖ . . . ‖ (c!〈Tn〉; Gn � da) ‖ . . . ‖ ϕo −→ [c 7→ Tn]ϕ1 ‖ . . . ‖ Gn � da ‖ . . . ‖ ϕo

Case G = 0

Φ ≡ Π ε

Case G = X

Φ ≡ ΠX
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Case n > 0

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm k ∈ J

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕjb ‖ . . . ‖ ϕ
j
a ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ‖ ϕ

k
a ‖ . . . ϕm k ∈ J

We can show that:

[c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm −→ [Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ ϕ

j
b ‖ . . . ϕm
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Appendix C

Non Blocking Message Passing

In this chapter we provide the full proofs of how the non-blocking message passing

approach in Section 3.5.2 implies General Compatibility of static programs.

C.1 Non Blocking Send Action Equivalence Lemma

Lemma C.1. If

ϕa ≡ ⊕N ((c!〈Tn〉,Unit); Gn � d1&(c!〈Tn〉, l[]); Gl[] � d1)

ΠG � di ≡ Π ϕi N 6= ∅

Then

∃G′ = da −→ db : c〈T̃ 7→ G〉M . N ⊆M ΠG′ � di ≡ Π ϕi

Proof. By induction over G

Case G = 0, X

G � da 6≡ ⊕N (c!〈Tn〉; ϕnb )

Hence we can disregard these cases.
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Case G = µX.G′′

By equivalence we know that:

µX.G′′ � da ≡ µX.⊕N (c!〈Tn〉; ϕnb )

≡ ⊕N (c!〈Tn〉; ϕnb )[µX.⊕N (c!〈Tn〉; ϕnb )/X]

≡ (G′′[µX.G′′/X]) � da

Hence we can consider (G′[µX.G′/X]) � da directly.

Case G = da′ −→ db′ : c
′〈T̃ 7→ G〉M

c′ = c

We let G′ = G directly.

c′ 6= c

Hence a′ 6= a, b′ 6= b. By the definition of � we know that:

Gm � da ≡ ⊕N ((c!〈Tn〉,Unit); Gn � d1&(c!〈Tn〉, l[]); Gl[] � d1)

Let Φm ≡ ΠGm � di. Then, by induction we can show that:

∃G′m .Φm ≡ ΠG′m � di G′m = da −→ db : c〈T̃ 7→ G〉O N ⊆ O

Then let:

G′ = da −→ db : c〈 ˜
To 7→ da′ −→ db′ : c′〈 ˜Tm 7→ Go〉M 〉O

Here:

ΠG′ � di ≡ Π ϕi
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C.2 Non Blocking Receive Action Equivalence Lemma

Lemma C.2. If

ΠG � di ≡ Π ϕi ∧ ϕb ≡ &M (c!〈Tm〉; ϕmb )

Then

∃G′ = da −→ db : c〈T̃ 7→ G〉N .ΠG′ � di ≡ Π ϕi

Proof. Similar to Lemma C.1.
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C.3 Valid States Safety Lemma

Lemma 3.16

[Σ] Φ ∈ ∆⇒ error /∈ Φ

Proof. By induction over n.

Case n = 0

∆0
def
= {[Σ∅] Φ |Φ ≡ ΠG � di}

By induction over G

Case G = 0, X

Trivial.

Case G = µX.G

By induction we have that:

Φ′ = Π ϕi ≡ ΠG � di ⇒ error /∈ ϕ

Hence:

Φ = Π µX.ϕi ≡ Π µX.G � di ⇒ error /∈ ϕ′

Case G = da −→ db : c〈T̃ 7→ G〉

d1 −→ d2 : r〈T̃ 7→ G〉M � d1
def
= ⊕N ((c!〈Tn〉,Unit); Gn � d1&(c!〈Tn〉, l∅); Gl∅ � d1)

∅ 6= N ∪ l∅ 7→ Gl∅ ⊆M
d1 −→ d2 : r〈T̃ 7→ G〉 � d2

def
= &M (c?(Tm); Gm � d1)

d1 −→ d2 : r〈T̃ 7→ G〉 � d def
= G1 � d

By induction we know that:

Φ′Π ϕ′i ≡ ΠGm � di ⇒ error /∈ Φ′

Hence:

ϕai ≡ ⊕N ((c!〈Tn〉,Unit); Gn � d1&(c!〈Tn〉, l∅); Gl∅ � d1)⇒ error /∈ ϕai

ϕni ≡ &M (c?(Tm); Gm � d1)⇒ error /∈ ϕbi
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Therefore we have that:

Φ ≡ Π da −→ db : c〈T̃ 7→ G〉 � di ⇒ error /∈ Φ

Case n > 0

Case: type in queue

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm k ∈ J

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕjb ‖ . . . ‖ ϕ
j
a ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ‖ ϕ

k
a ‖ . . . ϕm k ∈ J

By induction we know that:

[Σ] Φ′ = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n ⇒ error /∈ Φ′

Hence we have that:

error /∈ &J(c?(Tj); ϕ
j
b)

Therefore we can show that:

[ ] Φ = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm ⇒ error /∈ Φ

Case: type hole in queue

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

Σ[c 7→ q[]] δj = [Σ]ϕ1 ‖ . . . ‖ ϕjb ‖ . . . ‖ ϕ
j
a ‖ . . . ‖ ϕm δj ∈ ∆n
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then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ []; Σ]ϕ1 ‖ . . . ‖ ϕ
l[]
b ‖ . . . ‖

⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖ ϕm k ∈ J

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

Σ[c 7→ q[]] δj = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ‖ ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ []; Σ]ϕ1 ‖ . . . ‖ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖

ϕ
l[]
b ‖ . . . ‖ ϕm k ∈ J

By induction we know that:

[Σ] Φ′ = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n ⇒ error /∈ Φ′

Hence we have that:

error /∈ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a )

Therefore we can show that:

[ ] Φ = [c 7→ []; Σ]ϕ1 ‖ . . . ‖ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖ ϕl[]b ‖ . . . ϕm

⇒ error /∈ Φ
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C.4 Valid States Liveness Lemma

Lemma 3.17

[Σ] Φ ∈ ∆⇒ [Σ] Φ −→ [Σ′] Φ′ ∨ Φ ≡ Π ε ∨ Φ ≡ ΠX

Proof. By induction over n.

Case n = 0

By case analysis of G.

If [Σ∅] Φ ∈ ∆0 and Φ ≡ Φ′ then [Σ∅] Φ′ ∈ ∆0 and hence it is sufficient to consider direct

reduction.

Case G = da −→ db : c〈T̃ 7→ G〉

If

da −→ db : c〈T̃ 7→ G〉 � da ≡ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a )

then:

[Σ∅]ϕ1 ‖ . . . ‖ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖ ϕo −→

[Σ∅]ϕ1 ‖ . . . ‖ ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖ ϕo

If

da −→ db : c〈T̃ 7→ G〉 � da ≡ ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a )

then:
[Σ∅]ϕ1 ‖ . . . ‖ ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ

l[]
a ) ‖ . . . ‖ ϕo −→

[c 7→ Tn]ϕ1 ‖ . . . ‖ Gn � da ‖ . . . ‖ ϕo

Case G = 0

Φ ≡ Π ε

Case G = X

Φ ≡ ΠX
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Case n > 0

Case: type in queue

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm k ∈ J

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

δj = [Σ]ϕ1 ‖ . . . ‖ ϕjb ‖ . . . ‖ ϕ
j
a ‖ . . . ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ‖ ϕ

k
a ‖ . . . ϕm k ∈ J

We can show that:

[c 7→ Tk; Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ &J(c?(Tj); ϕ
j
b) ‖ . . . ϕm −→ [Σ]ϕ1 ‖ . . . ‖ ϕka ‖ . . . ‖ ϕ

j
b ‖ . . . ϕm

Case: type hole in queue

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

Σ[c 7→ q[]] δj = [Σ]ϕ1 ‖ . . . ‖ ϕjb ‖ . . . ‖ ϕ
j
a ‖ . . . ‖ ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ []; Σ]ϕ1 ‖ . . . ‖ ϕ
l[]
b ‖ . . . ‖

⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖ ϕm k ∈ J

∀ϕi, c = dadb ∀j ∈ J choose some ϕja, ϕb,Σ such that:

Σ[c 7→ q[]] δj = [Σ]ϕ1 ‖ . . . ‖ ϕja ‖ . . . ‖ ϕ
j
b ‖ . . . ‖ ϕm δj ∈ ∆n

then δ′k ∈ ∆n+1 where:

δ′k = [c 7→ []; Σ]ϕ1 ‖ . . . ‖ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ
l[]
a ) ‖ . . . ‖

ϕ
l[]
b ‖ . . . ‖ ϕm k ∈ J
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We can show that:

[c 7→ []; Σ]ϕ1 ‖ . . . ‖ ϕ
l[]
b ‖ . . . ‖ ⊕N ((c!〈Tk〉,Unit); ϕka)&((c!〈Tk〉, l[]); ϕ

l[]
a ) ‖ . . . ‖ ϕm

−→ [Σ]ϕ1 ‖ . . . ‖ ϕ
l[]
b ‖ . . . ‖ ϕ

l[]
a ‖ . . . ‖ ϕm
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Appendix D

Global Typability and Local

Update

In this chapter we provide the auxiliary proofs used to show that Global Typability and

Local Update imply General Update Compatibility of dynamic programs.
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D.1 Participants Relation as Strict Partial Order

Lemma D.1. <G is a partial order.

Proof. A partial order is anti-symmetric and transitive. We have transitivity straight-

forwardly from the rules. We then need to prove anti-symmetry: that d1 <G d2 implies

that d2 <G d1 is not the case. We proceed by induction on the last derivation rule used

for d1 <G d2.

Consider the case where the rule used is that for f(G′), µX.G′, or dmodF (G′). The

conclusions then follow directly by application of the induction hypothesis.

Consider the case where the last rule used is:

d1 <Gk
d2 d2 6= d, d′

d1 <d→d′:c〈T̃ 7→G〉 d2

By induction we know that it is not the case that d2 <Gk
d1, for some Gk ∈ G̃. Suppose

for contradiction that d2 <G d1 also holds. In that case, we also have d2 <G′
k
d1 for

some G′k ∈ G̃. We know that Gk � d2 = Gk′ � d2 and by Lemma D.2 we also have

d2 <Gk
d1. This contradicts the fact that d2 <Gk

d1 does not hold.

Consider the case where the last rule used is:

d1 <d1→d2:c〈T̃ 7→G〉 d2

as the only possible rule that could derive d2 <G d1 is an application of

d1 <Gk
d2 d2 6= d, d′

d1 <d→d′:c〈T̃ 7→G〉 d2

on some d′ <Gk
d1 (to allow for transitivity) for some Gk ∈ G̃. The side-condition

d1 6= d, d′ cannot, however, hold in this case, so this is not possible.
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D.2 Equivalent Projection Give Equivalent Orderings

Lemma D.2. If d1 <G d2 and G � d2 ≡ G′ � d2 then d1 <G′ d2

Proof. By lexicographic induction on the structure of G then the structure of G′.

Consider the cases where G is 0 or X. There are no derivation rule for d1 <G d2 for

such G, and hence we can disregard these cases.

Consider the cases where G is µX.G1, f(G1), dmodF (G1). Each case follows directly by

induction.

Consider the case where G is d→ d′ : c〈 ˜T 7→ G〉. We proceed by a case split on the last

rule used to derive d1 <G d2.

If the last rule used is

d1 <d1→d2:c〈T̃ 7→G〉 d2

Recall that here d = d1 and d′ = d2. We then proceed by a case split over the structure

of G′. In the case where G′ = µX.G, 0 or X, then we have a contradiction, as G′ � d2 6≡
G � d2. Consider the case where G′ = d3 → d4 : c′〈 ˜T ′ 7→ G′〉. If we have that d4 = d2,

then by the hypotheses we have that G′ � d2 = G � d2. By principle channel allocation,

and the fact that c = d1, d2 we also know that d1 = d3. Then by

d1 <d1→d2:c〈T̃ ′ 7→G′〉 d2

we have that d1 <
′
G d2. If we have that d4 6= d2, then by the definition of projection we

know that G � d2 = G′k � d2, for some, for some Gk ∈ G̃ and for some G′k ∈ G̃′. Then,

by lexicographic induction we then can show that d1 <G′
k
d2, and hence that d1 <G′ d2.

If the last rule used is
d1 <Gk

d2 d2 6= d, d′

d1 <d→d′:c〈T̃ 7→G〉 d2

Here we know that d2 6= d, d′. By the definition of projection we know that G � d2 = Gk �

d2, for some Gk ∈ G̃. By applying the inductive hypothesis we know that d1 <G′ d2. as

required.
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D.3 Global Session Type Updatability Lemma

Lemma 5.4

If

Φ ≡ ΠI G � di u = f̃i 7→ tiI ϕi o ∅ ` ti : Unit G′ � di ≡ ϕi

Then

upd(Φ, u, b) ≡ ΠI G
′′ � di

Proof. By induction over G.

Case G = 0

By the definition of � we have that:

0 � d = ε

Hence we have that:

Φ ≡ ΠI ε

By Lemma A.4 and the definition of upd we know that:

upd(Φ, u, b) ≡ ΠI ε

Hence we can say that:

upd(Φ, u, b) ≡ ΠI 0 � di

Case G = X

Similar to case: G = 0.

Case G = da −→ db : c〈T̃ 7→ G〉

By the definition of � we know that:

ΠI da −→ db : c〈T̃ 7→ G〉 � diΠ ϕi

where:

ϕa ≡ ⊕(snd(Res r, T1),Unit); Gj � d1 ϕb ≡ &(rcv(Res r), Ti); Gj � d2
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By Lemma A.4 and the definition of upd we know that:

upd((α(ṽ), T ); ϕ, u, b) ≡ (α(ṽ), T ); upd(ϕ, u, b)

By the well formedness of Global Session Types we know that:

G � di ≡ Gj � di

where i ∈ I \ a, b. Using the inductive hypothesis we have that:

Φ′ ≡ ΠI Gj � di ⇒ upd(Φ′, u, b) ≡ ΠI G
′
j � di

Hence we have that:

upd(ΠI da −→ db : c〈 ˜T 7→ Gj〉 � di, u, b) ≡ ΠI da −→ db : c〈 ˜T 7→ G′j〉 � di

Case G = µX.G1

By the definition we know that:

µX.G1 � d ≡ µX.G1 � d

By induction we know that:

Π upd(G1 � d, u, b) ≡ ΠG′′′ � d

By Lemma A.4 and the definition of upd we know that:

Π upd(µX.G1 � d, u, b) ≡ Π µX.G′′′ � d

Case G = f(G1)

Case b = true

By the definition of � we know that:

Π f(G1) � d ≡ Π fd(G1 � d)

By Lemma A.4 and the definition of upd we know that:

Π upd(f(G1) � d, u, true) ≡ Π upd(ϕ′i, u, true)

≡ Π upd(G′ � d, u, true)
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Case b = false

By Lemma A.4 and the definition of upd we know that:

Π upd(f(G1) � d, u, false) ≡ Π fd(upd(G1 � d, u, false))

By induction we know that:

Π upd(G1 � d, u, false) ≡ ΠG′′′ � d

Hence we have that:

Π upd(f(G1) � d, u, false) ≡ Π fd(upd(G′′′ � d, u, false))

G′′ = f(G′′′)

Case G = dmodF (G1)

By Lemma A.4 and the definition of upd we know that:

Π upd(dmodF (G1) � d, u, b) ≡ Π dmodFd
(upd(G1 � d, u, true))

where regions(G1) ∩ F = ∅ and

Π upd(dmodF (G1) � d, u, b) ≡ Π dmodFd
(upd(G1 � d, u, false))

where regions(G1) ∩ F 6= ∅. By induction we know that:

Π upd(G1 � d, u, b) ≡ ΠG′′′ � d

Hence we have that:

Π upd(dmodF (G1) � d, u, b) ≡ Π (dmodF (G′′′)) � d
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