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Abstract

This paper describes an experimental study
involving the implementation of the method
of receptances to control binary flutter in a
wind-tunnel aerofoil rig. The aerofoil and its
suspension were designed as part of the
project. The advantage of the receptance
method over conventional state-space
approaches is that it is based entirely on
frequency response function measurements,
so that there is no need to know or to
evaluate the system matrices describing
structural mass, aeroelastic and structural
damping and aeroelastic and structural
stiffness. There is no need for model
reduction or the estimation of unmeasured
states, for example by the use of an observer.
It is demonstrated experimentally that a
significant increase in the flutter margin can
be achieved by separating the frequencies of
the heave and pitch modes. Preliminary
results from a complementary numerical
programme using a reduced-order model,
based on linear unsteady aerodynamics, are
also presented.

1. Introduction.

Aeroservoelasticity (ASE) is the engineering
science of structural deformation interacting
with aerodynamic and control forces [1-2]. It
is an essential component for the design of
next-generation flexible and maneuverable
aircraft and sensorcraft, manned or
unmanned, as well as for new flight control
systems (FCS). One of the goals of ASE is to
overcome the dynamic instability
phenomenon of flutter, which can lead to
catastrophic structural failure when the
aircraft structure starts to absorb energy from
the surrounding aerodynamic flow [3-5]. The
suppression of flutter, achieved by either
passive or active means [6-8], may be
considered as an inverse eigenvalue problem
[9], often referred to as eigenvalue
assignment. Passive techniques for flutter
suppression may require mass balancing and
structural stiffness or shape modifications.
Although such passive techniques are
considered very robust in their performance,
they introduce additional weight and possibly
constraints that may be prohibitive to aircraft
performance.  Alternatively, by supplying
active control forces using sensors and



actuators embedded in the aircraft structure,
the desired performance may be achieved
actively. For example, forces originating from
the coupling of the structure with the
aerodynamic flow may be modified and flutter
suppressed by actively controlling the ailerons
or reshaping the surface of wings (morphing)
to optimize a performance objective.

For an adequately designed aircraft, flutter
will occur outside the desired flight envelope,
at some matched dynamic pressure and Mach
number. Both military and commercial
aircraft designs require a 15% flutter free
margin beyond the designed speed and
altitude envelope [3]. In order to develop the
next-generation aircraft or spacecraft, or to
improve the performance of existing aircraft,
the extension of flutter-free margins needs to
be realized by active suppression techniques
using existing control surfaces. However, it
should be noted that no aircraft is currently
flown beyond its flutter speed through the
incorporation of a flutter suppression system.

The main objective of this study is to
demonstrate in principle that by using on-
board sensor and control surfaces, the flutter
boundaries of a given flight envelope can be
extended using active control techniques
based upon vibration measurements. In
recent years, the theory and application of
pole placement by the receptance method
have been developed in a series of papers
[10]-[14] based upon this idea. The main idea
of the receptance method is to obtain and
utilize transfer function data from available
sensors and actuators, and to design control
gains purely based upon such measurements.
The receptance approach has a number of
significant advantages over conventional pole-
placement methods, either cast in the first-
order state-space or as second-order matrix
polynomials [15]. There is no need to know or
to evaluate the structural matrices that

usually contain various modelling assumptions
and errors, and must be brought into
agreement with test data by model updating.

A further approximation for aeroelastic
systems is that the unsteady aerodynamic
forces must also be modelled, typically using a
frequency domain analysis. For  ASE
applications, it is usual to approximate the
frequency domain aerodynamics, extracted
from the aeroelastic influence coefficient
(AIC) matrix at a set of discrete frequencies
[3,16] into the time domain, via a rational
fraction approximation of the aerodynamics.
This procedure, generally dependent upon
finite element codes such as MSC-NASTRAN,
ZAERO or ASTROS, is rendered completely
unnecessary by the receptance method which
captures the coupled aeroelastic behaviour in
the measurement. The word receptance
comes from the first theoretical papers which
assumed force inputs and displacement
outputs, but is now a misnomer, since the
inputs and outputs may be any measurable
quantities. This means that the measured
inputs and outputs may, for example, be input
and output voltage signals to the actuators
and from the sensors, so that the sensor and
actuator dynamics are included in the
measured data. The sensors and actuators do
not have to be collocated. There is no
requirement to estimate unmeasured state
variables by an observer or Kalman filter, and
no need for model reduction. This may be
understood by consideration of the system
equations, in receptance form they are
displacement  equations, whereas by
conventional methods force equations are
formed using dynamic stiffnesses. It is seen
that a complete displacement equation is
formed for each measured degree of
freedom, provided each of the external forces
applied by a small number of actuators is
measured. Conversely the force equations are
not complete unless all the degrees of



freedom are measured; this requires
estimation of the unmeasured state variables.

For ASE control application, the available
matrix of receptances is usually quite modest
in size, determined entirely by the number of
available on-board sensors and actuators. For
example, in order to compute the receptance
transfer function, the input might be the
voltage applied to a motor for movement of a
control surface, and the output may be
obtained from embedded accelerometers.
The number of sensors is generally equal to
the number of eigenvalues to be assigned,
provided that the eigenvalues are observable.
In principle a single actuator can assign all the
eigenvalues, which must be simple and
controllable, and may be implemented using
time-varying control requiring the in-flight
measurement of receptances and
determination of control gains.

This report describes the theory of the
method of receptances and its
implementation on a wind-tunnel aerofoil rig,
which was designed and constructed as part
of this project. The receptance method is
implemented by fitting rational fraction
polynomials to measured frequency response
functions (FRFs), in the present case the
inputs are the voltages applied to a power
amplifier supplying a ‘V’ stack piezo-actuator
and the outputs are laser sensor displacement
signals (and velocities obtained by numerical
differentiation in dSPACE'). The measured
FRFs include not only the dynamics of the
system but also of the actuator and sensors
and the effects of A/D and D/A conversion,
numerical differentiation and the application
of high-pass and low-pass Butterworth filters
in dSPACE. Successful pole placement is
achieved in preliminary tests and finally
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flutter-margin extension is demonstrated by
separating the frequencies of the heave and
pitch modes.

2. Preliminary Theory

The governing equation of an aeroelastic
system can be written as [3]

Ag + (pvB + D)q + (pv°*C+E)q=p (1)

where, A4, B, C, D, E are the structural inertia,
aerodynamic damping, aerodynamic stiffness,
structural damping and structural stiffness
matrices respectively, q(t) is the vector of
generalised coordinates, p(t) is the vector of
control forces. The aerodynamic forces, for a
chosen Mach number and reduced frequency,
are expressed as additional contributions to
the system matrices. In equation (1) these
terms appear as matrices B and € which, in
general, are frequency dependent. Often
these forces are combined together in the
form of the aeroelastic influence coefficient
(AIC) matrix at a set of discrete frequencies.
Here, a simplified aeroelastic modeling
approach will be used that still maintains the
key characteristics of unsteady aerodynamic
behaviour [3].

For the open-loop homogenous system, using
separation of variables,

q(t) = 332, aj@ exp (4t),

and the eigenvalue equation of the jth mode is
expressed as

(/1]2A + (pvB + D)A; + (pv*C + E)) ;=0 (2)

Where a; is the /™ modal coordinate. The
complex eigenvalues in equation (2) may be
written in terms of the /" damping and natural
frequency, which are determined from the
real and imaginary parts of the characteristic
eigenvalues (or poles). For the models used in
this report, the matrices, A,B,C,D,E, are
strictly real and constant, with the



eigenvalues (and eigenvectors) appearing in
complex conjugate pairs such that

Ajmtj = =G tiw; [(1-¢7)

j=12,..,n (3)

For more accurate models, the
aerodynamic matrices B and C are complex
and depend upon the reduced frequency.
This approximation does not affect the
accuracy of the control approach, which is the
main focus of this work.

The real part of the eigenvalues defines
the stability of the system and, when the real

part of the eigenvalues )\jin equation (3) is

positive, the system is unstable and results in
flutter. The system considered here has linear
structural and aerodynamic models, so non-
linear phenomena such as Limit Cycle
Oscillations (LCOs) cannot occur. For all other
values of the real part of the eigenvalues, the
aeroelastic system is either stable or
marginally stable.

Flutter of the aircraft, or its components,
is a dynamic instability associated with the
aeroelastic system which involves interaction
and coupling of modes (wing bending/torsion,
wing torsion/control surface, wing/engine,
etc.) that results in energy being extracted
from the airstream leading to negatively
damped modes and unstable oscillations. For
a given Mach number, at some critical speed
(flutter speed) the eigenvalues exhibit
instability, leading to sustained oscillations
which can result in catastrophic failure. In a
flutter analysis the eigenvalues, and hence the
natural frequencies and damping ratios, are
computed for varying speeds, altitudes and
Mach numbers, and the critical flutter speeds
determined. In aeroelastic control, the goal is
to suppress flutter, or extend the flutter
boundaries, by assigning stable poles using
feedback control forces, usually supplied by
available control surfaces e.g. ailerons.

The system matrices in equations (1) and
(2) depend upon the aeroelastic system, the
number of degrees of freedom, and on the
position and size of the control surfaces. The
objective of the approach is to use the
Receptance Control Method in order to define
the control forces required to place the closed
loop poles in such a manner that the onset of
flutter is delayed. This is achieved by placing
the closed loop poles at different, more
advantageous, positions in the complex plane
compared to those of the open loop system.

3. Active Control by the Method of
Receptances

The approach used in this work will be
demonstrated using a binary aeroelastic
system, shown in Figure 1, which incorporates
a control surface as part of a closed loop
Note that the control
surface is not a flexible degree of freedom,

feedback system.

but provides a means to impart a force onto
the aerofoil which is proportional to the
control angle f3.

The receptance matrix of the open loop
system may be expressed in the complex
Laplace domain as the inverse of the
aeroelastic dynamic stiffness matrix,

H(s) = (As* + (pvB + D)s + (pv*C + E))_l (4)

However, in practice it is determined from
functions (FRFs)
estimated from power and cross spectral

frequency  response

densities of force and response
measurements using well known procedures,
for example described by Bendat and Piersol
[17]. Curve fitting of the estimated H(iw), for
example by the PolyMAX routine [18], allows
the determination of H(s) by substituting s
for iw in the curve-fitted approximation; this
approach was demonstrated in active
vibration control by Tehrani et al. [19]. In this
paper it is assumed that the matrix of



receptances can be determined from in-flight
measurements of aeroelastic inputs and
outputs. It can be demonstrated [19] that any
input and output signals may be used in
aeroelastic eigenvalue assignment, in which
case the dynamics of actuators and sensors
(including the effects of time delay) may be
included in the measurement, rendering
unnecessary the need for mathematical
models to approximate the behavior of
actuators and sensors.

Figure 1: Binary Airfoil Configuration with Control

Surface.

The method depends upon a very useful
result from the linear algebra, namely the
Sherman-Morrison formula, which produces a
modified inverse matrix, Z~! = (Z + uv’)™ 1,
when a known rank 1 modification, uv’, and
original inverse matrix, Z~1 are available such
that

Z71(uls)vT(s)Z71(s)

7—1 —_ 7—1 —
27 =270~ T

(5)

In single-input control, the control force is
typically given by

p(t) = bu(t) (6)
where
u(t) = f'q+49"q (7)

for displacement and velocity feedback,
where the gains f and g are such that the

closed loop system has new (closed-loop)
complex poles Uin+j ] = 1,..,n.

By combining equations (1), (6) and (7), we
get

A4+ (pvB+ D + bfT)q
+(pv?C+E+bgT)q=0 (8)

or in the complex Laplace domain

(As?+ (pvB+ D + bf")s
+(pv*C+E+bg™))q(s) =0 (9)

and so the closed-loop eigenvalue equation
becomes

(Au? + (pvB + D + bf "y
+(pv?C+E+bg"))p; =0 (10)

Where pij, ¥, pin+j, Yn+j, j = 1, ...,n denote
the closed-loop eigenvalues and eigenvectors
in complex-conjugate pairs.

Evidently, from equation (9), the open-loop
system is changed by the rank 1 modification,
b(sf + g)T. Therefore, the closed-loop
receptance matrix is given from the Sherman-
Morrison formula as

H(s)b(sf+g)TH(s)

H(s) =H(s) — 1+(sf+g)TH(s)b

(11)

and, from the denominator of equation (11),
the control gains f, g must be chosen so that
the equations

L+ (wf +9) H(w)b =10

1+ (s jf + 9) H(ptnaj)b = 0
j=1,..,n (12)

are satisfied for the assignment of the closed-
loop eigenvalues in complex-conjugate pairs

Hn+j = ﬂ}(-

Re-arranging and combining equations (12)
into a single matrix expression leads to



G(‘?) = <_1> (13)

ror]
g #zrg | (14)

r2n :u2nr 2n

(15)

rj(1;) = H(w;)b }

rn+j(:un+j) = H(l"n+j)b

which allows the determination of f and g by
inversion of the matrix G. Ram and

Mottershead [10] showed that

l. G is invertible when the system is
controllable and the poles Wi Jj=
1,2, ...2n are distinct, and

II.  fand g are real when G is invertible
and the set u; ,j=12,..2n are
closed under conjugation [9].

When G is a square matrix there is a unique
solution for (g f)T and when the system
(14) is under-determined (fewer poles to be
assigned than the number of gain terms, f, g)
then a minimum norm solution is available for
the  minimization of control effort.
Alternatively, in the latter case, the gains may
be chosen that assign the chosen eigenvalues
while at the same time minimizing the
sensitivity of the assigned poles to inaccuracy
and noise in the measured receptances. A
robust pole-placement approach to noise on
the measured receptances is described by
Tehrani et al. [14].

4. The Experimental Rig

The wind tunnel experiment consists of a
working section containing a NACA0018
aerofoil (chord = 0.35 m, span = 1.2m),
supported by adjustable vertical and torsional

leaf springs. The aerofoil can be modelled as a
2D system with pitch and heave degrees of
freedom as illustrated in Figure 1.

The design allows the adjustment of the
stiffnesses of the vertical and torsional
springs, ky and kg. The maximum air speed
for the wind tunnel used is around 20 m/s.
The aim of the design is to explore regions
close to the flutter speed of the system.

The vertical spring arrangement is shown in
Figure 2. By varying the clamp location in the
direction shown in the figure, it is possible to
vary the stiffness of the vertical springs, one
on each side of the wind tunnel, which
support the wing (attached to the shaft on the
left of the figure). The vertical stiffness is
variable in the range 200 to 23000 N/m.

The adjustable torsional spring is shown in
Figure 3. By moving the device in the direction
indicated by the arrows it is possible to
increase or reduce the torsional stiffness in
the range 10 to 320 Nm/rad.

Using these ranges of stiffness, it is possible to
vary the flutter speed of the aeroelastic
system approximately between 10 and 70
m/s. The open working section (with sides
removed and separated from the wind tunnel)
is shown in Figure 4. A torsion bar is used in
order to maintain the same vertical
displacement on the two sides of the test
section. The external mass of the system was
calculated to be around 6.5 Kg.

Active vibration control described in [20, 21] is
achieved by means of a ‘V’-stack piezoelectric
actuator shown in Figure 5 acting on the
control surface of the wing, allowing a flap
deflection of about £7°. The actuator consists
of two piezo-stacks (Noliac SCMAPQ09-H80-
A01) in a ‘V’ formation. The flap is actuated

o

when one arm of the V' is made to extend
while the other retracts by an equal amount -

caused by applying equal voltages to the two



piezo stacks but with 180° phase difference.
Khron Hite wideband power amplifiers, model
7500, were used. The ‘V’ stack actuator [21] is
known to behave as a pure gain provided that
its natural frequency is well above the
frequencies of the assigned poles.

Heave Adjustable
motion clamp

location

=] —

Figure 3: Adjustable Torsion Spring

The receptance method was applied with
voltage input to the power amplifiers and
displacement output, measured using two
laser sensors KEYENCE LK-500 and LK-501. The
laser sensors were mounted externally to the
working section above a rigid horizontal bar
attached to the aerofoil shaft. Separation of
the sensors allowed the measurement of both
vertical translation and rotation of the shaft
(heave and pitch).

Torsiona Stiffness

Torsion Bar

Vertical Stiffness

Figure 4: Open Working Section

(b)
Figure 5 : (a) V-stack actuator; (b) Actuator
In-Situ



5. Implementation of the Receptance
Method

Frequency response functions (FRFs) relating
the power amplifier input voltage vg to the
displacements x; and x, measured using the
laser sensors were determined by stepped-
sine testing using a SCADAS Il LMS data
acquisition system. The frequency range used
was 5 to 30 Hz and the frequency resolution
was 0.05 Hz.

Thus at a chosen wind speed v, the matrix
H(w, v) in the theory of Section 4 above is
given by the relationship,

hl:ﬁ X .
It =G
H(w,v) = [hl'ﬁ (@ U)] (16)

where x; and x, are the measured
displacements. The velocities x; and X, were
calculated numerically using Simulink/dSPACE
with a sampling rate of 10 kHz and a separate
FRF H(w, v) was determined as,

hl,ﬁ Xy
[h ]”“’ - (i)
2,8

hl,/j’ (w,v)

. (17)
hZ,ﬁ ((1), 17)

H(w,v) = [
The over-dot simply denotes that the FRF
relates to the velocity and does not imply
differentiation of H(w, v).

The open loop FRFs H(w,v) and H(w,v)
included not only the dynamics of the aerofoil
system, but also of the power amplifier, the
actuator, the sensors and the effects of A/D
and D/A conversion, numerical differentiation
of the measured displacements and high-pass
and low-pass Butterworth filters with cut-off
frequencies of of 1 Hz and 35 Hz respectively
(also implemented in dSPACE).

Transfer functions H(s,v) and H(s,v) may
then be obtained by fitting rational fraction
polynomials to the measured H(w,v) and
H(w,v). This was achieved using a pole-
residue model (typically SDTools?).

Finally, the assighment of two pairs of
complex-conjugate poles was achieved by the
application of equation (13) with the matrix G
given by,

[H(ul,v) I?(Ml,v)]
G=|H(u.i,17) H(M.I'U)l (18)

lHGg,v) B v)]

and b = 1 since there is a single actuator and
may take an arbitrary value.

It should be noted that at no stage in this
process is it necessary to know or to evaluate
the matrices 4, B, C,D, E. Any assumption or
mis-modelling of the structural- or aero-
dynamics is not included and the performance
of the resulting controller depends only upon
the quality of the measured frequency
response functions H(w, v) and H(w, v).

6. Measurement of FRFs and Pole
Placement

One objective of the design of the
experimental rig was that the flexible modes
of the aerofoil should be well separated from
the sprung modes of the aerofoil system, in
which the aerofoil is effectively rigid. It is
these sprung modes, in pitch and heave, that
are to be controlled. A preliminary modal test
carried out with a small impact hammer
revealed the first bending mode at 41 Hz and
first torsion mode of the aerofoil at 47 Hz.
There was a mode of the aerofoil support
structure (the springs, linkages and torsion
bar) at just over 20 Hz and it was important

? http://www.sdtools.com/




before implementing the controller to ensure
that these modes will not be destabilized.

From equations (13) and (18), it is seen that
the Nyquist stability criterion is satisfied when
H(w,v)g + H (w,v)f =

[h1,p  hapl (gi) + [fh,ﬁ flzlﬁ] (2) does

not encircle -1.

An example of curve-fitting to a measured FRF
using SDTools is shown in Figure 6 for the case
of a pitch mode at 3.9 Hz and a heave mode
at 6.7 Hz and a wind speed of 7 m/s.

Wind speed 7 m/s
10 T T

Measured
§ Curvefit
é W\m/ s e T
< B |
10‘5 L L L 1 L
2 4 6 8 10 12
Frequency (Hz)
4 . . T : -
ol Wb Measured i
e [l ™ 0 |=== Curvefit
ﬁ ok —— ]
£ ~
2t i 1

2 4 6 8 10 12
Frequency (Hz)

Figure 6. Measured and Curve-Fitted FRFs

An example of pole-placement is given in
Figure 7, where (1) the frequency of the
heave mode is shifted by a small amount from
6.83 Hz to 7 Hz and an increase of 0.5%
damping is assigned and (2) the frequency of
the pitch mode is shifted from 3.89 Hz to 3.5
Hz with an increase in damping of 1.5%
assigned. The assigned poles are -0.8+44i and
-2+22i and the gains are found to be
g =346 2457, f=(0.734 0.427)7.

In another example, poles are assigned at -
1.5£42.96i and -1.84+24.49i to achieve mainly
an increase in damping of the heave mode.
The  corresponding gains are g=

(=16 —14)T and f=(0.39 0.42)T. The
time-domain response of the aerofoil in open-
and closed-loop to an initial displacement is
shown in Figure 8. It is seen that a significant
reduction in vibration amplitude is achieved.

0.07

0.06+

0.05+

0.04+

0.03r

Amplitude [Voltage)

2 4 [} 8 10 12
Frequency [Hz]

Figure 7. Measured Open- and Closed-Loop
FRF after Application of Active Pole Placement
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8h
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@ --------- closed-loop
o0
S 4
o
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[}
5 of
(3]
3 1
o -2
k] H
[ i

4Hi

B+

-8 L 1 L L L

0 0.5 1 1.5 2 25 3

time [sec]

Figure 8. Displacement sensor time-domain
response

7. Flutter Margin Control by Pole
Placement

The experiments described in this section
were carried out with the vertical and
torsional srings adjusted to give a heave
frequency of approximately 3.6 Hz and a pitch
frequency of about 5.6 Hz. Tests were carried
out to achieve an extended flutter margin by
separating the heave and pitch frequencies.



The frequency spacing between the two
modes is increased by pole assighment as
seen in Figure 9. Pole assignment p,;tcp =
—3.43 £ 37.21, Upeqve = —1.24 + 24.7i is
carried out at v = 15 m/s resulting in gains
g =[-13.98 9.84]", f = [-0.115 0.161]".
The same values of g and f were applied by
the controller for air speeds from 6 to 15 m/s.

The Nyquist diagram, shown in Figure 10, is
the plot of

[h1,ﬁ hz,ﬁ] (g;) + [fll_ﬁ flz_ﬁ] (2)

as explained previously in Section 6. This plot
was obtained for different gains than those
given above, but gives a good indication of the
stability of the system in the range
0.5 < w < 30 Hz. It is seen that there is a gain
margin of 5.2 and a phase margin of 36°,
thereby indicating robust stability at 7 m/s .
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Figure 9. Frequency and Damping of Heave
and Pitch Modes.

Figure 9b shows that separation of the modal
frequencies is achieved mainly by increasing
the frequency of the pitch mode, while the
heave frequency remains mostly unchanged.
The system was found to undergo quite large
control-surface oscillations when an increase
in pitch damping as well as in frequency was
attempted. In Figures 9 and 11 typical
eigenvalue trends leading eventually to flutter

may be observed. It can be seen that the

10

heave mode is not affected very much by
control action whereas the poles of the pitch
mode change considerably. In Figure 9 the
frequency of the closed-loop pitch mode
remains almost constant as v is increased, but
there are signs that it begins to reduce after
about 14 m/s. Also the damping of the closed-
loop pitch mode is consistently higher than its
open-loop counterpart. The system behaviour
becomes very clear in Figure 11 where the
locus of the closed-loop pitch mode is seen to
move consistently further away from the
imaginary axis increase in air speed and does
not seem to be close to instability. At 15 m/s
the poles of the pitch frequency are seen to
be further away from the imaginary axis than
those of the open loop system.

0.2

-0.21

0.4r

0.6F

Imag
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T 05 0 05 1
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Figure 10. Nyquist Diagram: v = 7 m/s.
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Figure 11. Root Locus with Air Speed.



The flutter margin for a two degree of
freedom system (without structural damping)
is given by the non-negative function [22-24]
of either the open- or closed-loop eigenvalues
that satisfies the Routh stability test,

&2 — &2 52 — g2 2
F= 2 1), (22 1
2 2

[l ) 2 (=22)] o)

where g; = —{jw;; @) = w; (1- {]-2);

j=1.2.

It can be shown that the flutter margin, F, is
guadratic in the air speed v.

Figure 12 shows two curves obtained by
fitting parabolas to experimental values of
F(v). The open-loop flutter margin is the full-
line blue curve fitted through experimental
points given by the red squares. The closed-
loop flutter margin is represented by the
dashed curve fitted through the experimental
black circles. An increase in the flutter speed
of 11.5% from 17.5 m/s to 19.5 m/s is
predicted by using the method proposed by
Dimitriadis and Cooper [24].

5) 4t
©
= 2
£
2 of ®
0 Closed-loop measured data ’
2F Closed-loop fit
¢ Closed-loop predicted flutter speed
-4r o Open loop measured data
Open loop fit
6 A Open loop predicted flutter speed
8 . \ . L . . .
6 8 10 12 14 16 18 20

Wind speed [m/s]

Figure 12. Flutter Margin by Separation of
Heave and Pitch Frequencies.
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8. Towards Integrating Simulation with
Experiments

The experimental research described above
was complemented by a parallel programme
of numerical work in which the wind tunnel
aerofoil rig was modelled using a three degree
of freedom aerofoil section. A linear
aerodynamic model based on strip theory and
the incompressible two-dimensional classical
theory of Theodorsen was used. The
structural model was linear. More details on
the modelling approach® and code validation
against common test cases can be found in
[25] and [26].

The aeroelastic parameters used for the
simulations are u = 69.0, @ = 0.649, a, = -0.33,
X, = 0.09, and 12 = 0.40. Structural damping
was included in the model to reproduce
damping observed in the wind tunnel rig,
Cpitcn = 0.015, {peqpe = 0.02. Symbols used
here are standard parameters in the literature
and their definitions can be found, for
example, in [25].

The numerical model was first validated
against wind tunnel measurements in
predicting the damped frequency and
damping ratio. A comparison is made in Fig.
13. The predictions are in good agreement
with actual measurements. With increasing
freestream speed, the damping of the coupled
system increases. At the flutter point, which
occurs for a speed of 17.63 m/s, the damping
ratio becomes negative and a coalescence of
the pitch and plunge modes is observed. The
flutter point predicted by the numerical
model compares well with the value of about
17.5 m/s extrapolated from measurements.

® The code can be obtained from A. Da
Ronch, A.Da-Ronch@soton.ac.uk
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Figure 13. Damped frequency and damping
ratio for varying freestream speed from
simulation and wind tunnel measurements

The stability behaviour is traced throughout
the speed range of interest solving for an
eigenvalue problem of the coupled aeroelastic
system. This information can then be used to
design a controller to extend the flutter
boundary. Preliminary work on this has been
carried out and results will be presented in
future work. There is, however, the question
of the cost. The recursive solution of the
eigenvalue problem is, in general, costly if the
size of the system is large (see, for example,
Ref. [27]). A promising alternative is based on
the approach to model reduction reported in
Ref. [25]. The generation of a reduced model
is: a) straightforward for linear and nonlinear
systems; b) independent of the underlying
governing equations; and c) suitable for
control applications. Here, the reduced model
respect to the

was parameterised with

airspeed. This allows predicting the system

12

response over a range of airspeeds using one
single reduced model generated at a given
speed. Figure 14 compares the free response
to an initial perturbation in heave velocity
obtained using the full model and the reduced
order model at three different airspeeds. The
full model was run at each airspeed and is
taken to be the reference solution for the
reduced model. The reduced model was
generated once at the speed of 6.2 m/s. The
predictions are in good agreement with the
reference solution although the airspeed is
increased by 50% from the point at which the
reduced model is generated. Future work will
focus on a) the use of the reduced model for a
quick assessment of the stability behaviour of
the aerofoil rig, and b) evaluating the impact
of model fidelity on the flutter boundary

extension of the wind tunnel rig.

09

)
=
&

Pitch angle (degrees)
o

-0.45

0.004

0.002 Hj

Heave displacement (m)
I~

-0.002

r L 1
0.004 04
Time (s)

Figure 14. Free response in plunge and pitch:
lines denote the full-order mode; symbols
denote predictions of the reduced order
model generated at 6.2 m/s



9. Conclusions

A wind-tunnel aerofoil test rig has been
designed and built, making use of a single
control surface operated by a ‘V’ stack piezo-
actuator. Eigenvalues have been assigned
successfully and control of flutter has been
demonstrated using the receptance method
and the flutter-margin prediction procedure.
In the experiments carried out with this
particular aerofoil system the flutter speed
was increased by around 12 % when pole
placement was applied to separate the heave
and pitch frequencies. Pole placement to
separate the heave and pitch frequencies was
found to be effective in increasing the flutter
speed. Preliminary  results  from a
complementary numerical programme using a
based on linear

reduced-order model,

unsteady aerodynamics, were presented.
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