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Abstract 

This paper describes an experimental study 

involving the implementation of the method 

of receptances to control binary flutter in a 

wind-tunnel aerofoil rig. The aerofoil and its 

suspension were designed as part of the 

project. The advantage of the receptance 

method over conventional state-space 

approaches is that it is based entirely on 

frequency response function measurements, 

so that there is no need to know or to 

evaluate the system matrices describing 

structural mass, aeroelastic and structural 

damping and aeroelastic and structural 

stiffness. There is no need for model 

reduction or the estimation of unmeasured 

states, for example by the use of an observer. 

It is demonstrated experimentally that a 

significant increase in the flutter margin can 

be achieved by separating the frequencies of 

the heave and pitch modes. Preliminary 

results from a complementary numerical 

programme using a reduced-order model, 

based on linear unsteady aerodynamics, are 

also presented. 

 

 

 

1. Introduction. 

Aeroservoelasticity (ASE) is the engineering 

science of structural deformation interacting 

with aerodynamic and control forces [1-2]. It 

is an essential component for the design of 

next-generation flexible and maneuverable 

aircraft and sensorcraft, manned or 

unmanned, as well as for new flight control 

systems (FCS).  One of the goals of ASE is to 

overcome the dynamic instability 

phenomenon of flutter, which can lead to 

catastrophic structural failure when the 

aircraft structure starts to absorb energy from 

the surrounding aerodynamic flow [3-5]. The 

suppression of flutter, achieved by either 

passive or active means [6-8], may be 

considered as an inverse eigenvalue problem 

[9], often referred to as eigenvalue 

assignment. Passive techniques for flutter 

suppression may require mass balancing and 

structural stiffness or shape modifications. 

Although such passive techniques are 

considered very robust in their performance, 

they introduce additional weight and possibly 

constraints that may be prohibitive to aircraft 

performance.  Alternatively, by supplying 

active control forces using sensors and 
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actuators embedded in the aircraft structure, 

the desired performance may be achieved 

actively. For example, forces originating from 

the coupling of the structure with the 

aerodynamic flow may be modified and flutter 

suppressed by actively controlling the ailerons 

or reshaping the surface of wings (morphing) 

to optimize a performance objective.  

For an adequately designed aircraft, flutter 

will occur outside the desired flight envelope, 

at some matched dynamic pressure and Mach 

number.  Both military and commercial 

aircraft designs require a 15% flutter free 

margin beyond the designed speed and 

altitude envelope [3].  In order to develop the 

next-generation aircraft or spacecraft, or to 

improve the performance of existing aircraft, 

the extension of flutter-free margins needs to 

be realized by active suppression techniques 

using existing control surfaces.  However, it 

should be noted that no aircraft is currently 

flown beyond its flutter speed through the 

incorporation of a flutter suppression system.  

The main objective of this study is to 

demonstrate in principle that by using on-

board sensor and control surfaces, the flutter 

boundaries of a given flight envelope can be 

extended using active control techniques 

based upon vibration measurements.  In 

recent years, the theory and application of 

pole placement by the receptance method 

have been developed in a series of papers 

[10]-[14] based upon this idea.  The main idea 

of the receptance method is to obtain and 

utilize transfer function data from available 

sensors and actuators, and to design control 

gains purely based upon such measurements. 

The receptance approach has a number of 

significant advantages over conventional pole-

placement methods, either cast in the first-

order state-space or as second-order matrix 

polynomials [15].  There is no need to know or 

to evaluate the structural matrices that 

usually contain various modelling assumptions 

and errors, and must be brought into 

agreement with test data by model updating.   

A further approximation for aeroelastic 

systems is that the unsteady aerodynamic 

forces must also be modelled, typically using a 

frequency domain analysis. For ASE 

applications, it is usual to approximate the 

frequency domain aerodynamics, extracted 

from the aeroelastic influence coefficient 

(AIC) matrix at a set of discrete frequencies 

[3,16] into the time domain, via a rational 

fraction approximation of the aerodynamics.  

This procedure, generally dependent upon 

finite element codes such as MSC-NASTRAN, 

ZAERO or ASTROS, is rendered completely 

unnecessary by the receptance method which 

captures the coupled aeroelastic behaviour in 

the measurement. The word receptance 

comes from the first theoretical papers which 

assumed force inputs and displacement 

outputs, but is now a misnomer, since the 

inputs and outputs may be any measurable 

quantities. This means that the measured 

inputs and outputs may, for example, be input 

and output voltage signals to the actuators 

and from the sensors, so that the sensor and 

actuator dynamics are included in the 

measured data.  The sensors and actuators do 

not have to be collocated. There is no 

requirement to estimate unmeasured state 

variables by an observer or Kalman filter, and 

no need for model reduction. This may be 

understood by consideration of the system 

equations, in receptance form they are 

displacement equations, whereas by 

conventional methods force equations are 

formed using dynamic stiffnesses. It is seen 

that a complete displacement equation is 

formed for each measured degree of 

freedom, provided each of the external forces 

applied by a small number of actuators is 

measured. Conversely the force equations are 

not complete unless all the degrees of 
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freedom are measured; this requires 

estimation of the unmeasured state variables.  

For ASE control application, the available 

matrix of receptances is usually quite modest 

in size, determined entirely by the number of 

available on-board sensors and actuators. For 

example, in order to compute the receptance 

transfer function, the input might be the 

voltage applied to a motor for movement of a 

control surface, and the output may be 

obtained from embedded accelerometers. 

The number of sensors is generally equal to 

the number of eigenvalues to be assigned, 

provided that the eigenvalues are observable. 

In principle a single actuator can assign all the 

eigenvalues, which must be simple and 

controllable, and may be implemented using 

time-varying control requiring the in-flight 

measurement of receptances and 

determination of control gains.  

This report describes the theory of the 

method of receptances and its 

implementation on a wind-tunnel aerofoil rig, 

which was designed and constructed as part 

of this project. The receptance method is 

implemented by fitting rational fraction 

polynomials to measured frequency response 

functions (FRFs), in the present case the 

inputs are the voltages applied to a power 

amplifier supplying a ‘V’ stack piezo-actuator 

and the outputs are laser sensor displacement 

signals (and velocities obtained by numerical 

differentiation in dSPACE1). The measured 

FRFs include not only the dynamics of the 

system but also of the actuator and sensors 

and the effects of A/D and D/A conversion, 

numerical differentiation and the application 

of high-pass and low-pass Butterworth filters 

in dSPACE. Successful pole placement is 

achieved in preliminary tests and finally 

                                                           
1
 

http://www.dspace.com/en/inc/home.cfm 

 

flutter-margin extension is demonstrated by 

separating the frequencies of the heave and 

pitch modes.  

2. Preliminary Theory 

 

The governing equation of an aeroelastic 

system can be written as [3] 

��� + ���� + 	
�� + ����
 + �
� = �             (1) 

where, �, �, 
, 	, � are the structural inertia, 

aerodynamic damping, aerodynamic stiffness, 

structural damping and structural stiffness 

matrices respectively, ���
 is the vector of 

generalised coordinates, ���
 is the vector of 

control forces.  The aerodynamic forces, for a 

chosen Mach number and reduced frequency, 

are expressed as additional contributions to 

the system matrices. In equation (1) these 

terms appear as matrices � and 
 which, in 

general, are frequency dependent. Often 

these forces are combined together in the 

form of the aeroelastic influence coefficient 

(AIC) matrix at a set of discrete frequencies. 

Here, a simplified aeroelastic modeling 

approach will be used that still maintains the 

key characteristics of unsteady aerodynamic 

behaviour [3].   

For the open-loop homogenous system, using 

separation of variables, 

 ���
 = ∑ ����exp����� ���� ,   

and the eigenvalue equation of the jth mode is 

expressed as 

!���� + ���� + 	
�� + ����
 + �
" �� = #    (2) 

Where �� is the j
th modal coordinate. The 

complex eigenvalues in equation (2) may be 

written in terms of the jth damping and natural 

frequency, which are determined from the 

real and imaginary parts of the characteristic 

eigenvalues (or poles).  For the models used in 

this report, the matrices, �, �, 
, 	, �, are 

strictly real and constant, with the 
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eigenvalues (and eigenvectors) appearing in 

complex conjugate pairs such that  

��,�$� = −&�'� ± i'�*�1 − &��     
          , = 1, 2, … , /                                             (3) 

For more accurate models, the 

aerodynamic matrices � and 
 are complex 

and depend upon the reduced frequency.  

This approximation does not affect the 

accuracy of the control approach, which is the 

main focus of this work. 

The real part of the eigenvalues defines 

the stability of the system and, when the real 

part of the eigenvalues jλ in equation (3) is 

positive, the system is unstable and results in 

flutter.  The system considered here has linear 

structural and aerodynamic models, so non-

linear phenomena such as Limit Cycle 

Oscillations (LCOs) cannot occur.  For all other 

values of the real part of the eigenvalues, the 

aeroelastic system is either stable or 

marginally stable.  

Flutter of the aircraft, or its components, 

is a dynamic instability associated with the 

aeroelastic system which involves interaction 

and coupling of modes (wing bending/torsion, 

wing torsion/control surface, wing/engine, 

etc.) that results in energy being extracted 

from the airstream leading to negatively 

damped modes and unstable oscillations. For 

a given Mach number, at some critical speed 

(flutter speed) the eigenvalues exhibit 

instability, leading to sustained oscillations 

which can result in catastrophic failure. In a 

flutter analysis the eigenvalues, and hence the 

natural frequencies and damping ratios, are 

computed for varying speeds, altitudes and 

Mach numbers, and the critical flutter speeds 

determined. In aeroelastic control, the goal is 

to suppress flutter, or extend the flutter 

boundaries, by assigning stable poles using 

feedback control forces, usually supplied by 

available control surfaces e.g. ailerons. 

The system matrices in equations (1) and 

(2) depend upon the aeroelastic system, the 

number of degrees of freedom, and on the 

position and size of the control surfaces. The 

objective of the approach is to use the 

Receptance Control Method in order to define 

the control forces required to place the closed 

loop poles in such a manner that the onset of 

flutter is delayed.   This is achieved by placing 

the closed loop poles at different, more 

advantageous, positions in the complex plane 

compared to those of the open loop system. 

 

3.  Active Control by the Method of 

Receptances 

The approach used in this work will be 

demonstrated using a binary aeroelastic 

system, shown in Figure 1, which incorporates 

a control surface as part of a closed loop 

feedback system.   Note that the control 

surface is not a flexible degree of freedom, 

but provides a means to impart a force onto 

the aerofoil which is proportional to the 

control angle β. 

The receptance matrix of the open loop 

system may be expressed in the complex 

Laplace domain as the inverse of the 

aeroelastic dynamic stiffness matrix, 

0�1
 = ��1� + ���� + 	
1 + ����
 + �
 2�
 (4) 

However, in practice it is determined from 

frequency response functions (FRFs) 

estimated from power and cross spectral 

densities of force and response 

measurements using well known procedures, 

for example described by Bendat and Piersol 

[17]. Curve fitting of the estimated  0�i'
, for 

example by the PolyMAX routine [18], allows 

the determination of 0�1
 by substituting s 

for i' in the curve-fitted approximation; this 

approach was demonstrated in active 

vibration control by Tehrani et al. [19]. In this 

paper it is assumed that the matrix of 
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receptances can be determined from in-flight 

measurements of aeroelastic inputs and 

outputs.  It can be demonstrated [19] that any 

input and output signals may be used in 

aeroelastic eigenvalue assignment, in which 

case the dynamics of actuators and sensors 

(including the effects of time delay) may be 

included in the measurement, rendering 

unnecessary the need for mathematical 

models to approximate the behavior of 

actuators and sensors. 

 

Figure 1: Binary Airfoil Configuration with Control 

Surface. 

 

The method depends upon a very useful 

result from the linear algebra, namely the 

Sherman-Morrison formula, which produces a 

modified inverse matrix, 342� = �3 + 567
2�, 

when a known rank 1 modification, 567, and 

original inverse matrix, 328, are available such 

that 

 

342��1
 = 328�1
 − 39:�;
5�;
6<�;
39:�;

�$6<�;
39:�;
5�;
        (5) 

 

In single-input control, the control force is 

typically given by 

���
 = =>��
                                                     (6) 

where 

>��
 = ?@�� + A7�                                            (7) 

for displacement and velocity feedback, 

where the gains ? and A are such that the 

closed loop system has new (closed-loop) 

complex poles B�,�$�  , , = 1, … , /. 

By combining equations (1), (6) and (7), we 

get 

��� + ���� + 	 + =?7
��   +����
 + � + =A7
� = #                            (8) 

or in the complex Laplace domain 

��1� C + ���� + 	 + =?7
1  +C����
 + � + =A7
 ��D
 = #                    (9) 

and so the closed-loop eigenvalue equation 

becomes 

��B�� C + ���� + 	 + =?7
B� 

 +C����
 + � + =A7
 E� = #                     (10) 

Where B�, E�, B�$�, E�$�, , = 1, … , / denote 

the closed-loop eigenvalues and eigenvectors 

in complex-conjugate pairs. 

Evidently, from equation (9), the open-loop 

system is changed by the rank 1 modification, =�1? + A
7. Therefore, the closed-loop 

receptance matrix is given from the Sherman-

Morrison formula as 

04 �1
 = 0�1
 − 0�;
=�;?$A
<0�;

�$�;?$A
<0�;
=                   (11) 

and, from the denominator of equation (11), 

the control gains f, g must be chosen so that 

the equations 

C 1 + �B�? + A 70�B� = = #
1 + �B�$�? + A 70�B�$� = = #F    
                   , = 1, … , /                                     (12) 

are satisfied for the assignment of the closed-

loop eigenvalues in complex-conjugate pairs B�$� = B�⋆. 

Re-arranging and combining equations (12) 

into a single matrix expression leads to 
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H !A?" = I−1⋮−1K                                                (13) 

with 

H =
LM
MN

O�7 B�O�7O�7 B�O�7⋮ ⋮O��7 B��O��7 PQ
QR                                        (14)  

where 

C O��B� = 0�B� =
O�$��B�$� = 0�B�$� =S                            (15) 

which allows the determination of f and g by 

inversion of the matrix G.  Ram and 

Mottershead [10] showed that  

I. H is invertible when the system is 

controllable and the poles B�  , , =1,2, … 2/  are distinct, and  

II. ? and A are real when H is invertible 

and the set B�   , , = 1,2, … 2/ are 

closed under conjugation [9].   

When H is a square matrix there is a unique 

solution for �A ?
7 and when the system 

(14) is under-determined (fewer poles to be 

assigned than the number of gain terms, ?, A) 

then a minimum norm solution is available for 

the minimization of control effort. 

Alternatively, in the latter case, the gains may 

be chosen that assign the chosen eigenvalues 

while at the same time minimizing the 

sensitivity of the assigned poles to inaccuracy 

and noise in the measured receptances. A 

robust pole-placement approach to noise on 

the measured receptances is described by 

Tehrani et al. [14].  

4. The Experimental Rig 

The wind tunnel experiment consists of a 

working section containing a NACA0018 

aerofoil (chord = 0.35 m, span = 1.2m), 

supported by adjustable vertical and torsional 

leaf springs. The aerofoil can be modelled as a 

2D system with pitch and heave degrees of 

freedom as illustrated in Figure 1. 

The design allows the adjustment of the 

stiffnesses of the vertical and torsional 

springs, TU and TV. The maximum air speed 

for the wind tunnel used is around 20 m/s. 

The aim of the design is to explore regions 

close to the flutter speed of the system.  

The vertical spring arrangement is shown in 

Figure 2. By varying the clamp location in the 

direction shown in the figure, it is possible to 

vary the stiffness of the vertical springs, one 

on each side of the wind tunnel, which 

support the wing (attached to the shaft on the 

left of the figure). The vertical stiffness is 

variable in the range 200 to 23000 N/m. 

The adjustable torsional spring is shown in 

Figure 3. By moving the device in the direction 

indicated by the arrows it is possible to 

increase or reduce the torsional stiffness in 

the range 10 to 320 Nm/rad. 

Using these ranges of stiffness, it is possible to 

vary the flutter speed of the aeroelastic 

system approximately between 10 and 70 

m/s. The open working section (with sides 

removed and separated from the wind tunnel) 

is shown in Figure 4. A torsion bar is used in 

order to maintain the same vertical 

displacement on the two sides of the test 

section. The external mass of the system was 

calculated to be around 6.5 Kg. 

Active vibration control described in [20, 21] is 

achieved by means of a ‘V’-stack piezoelectric 

actuator shown in Figure 5 acting on the 

control surface of the wing, allowing a flap 

deflection of about ±7°. The actuator consists 

of two piezo-stacks (Noliac SCMAP09-H80-

A01) in a ‘V’ formation. The flap is actuated 

when one arm of the ‘V’ is made to extend 

while the other retracts by an equal amount – 

caused by applying equal voltages to the two 
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piezo stacks but with 180° phase difference. 

Khron Hite wideband power amplifiers, model 

7500, were used. The ‘V’ stack actuator [21] is 

known to behave as a pure gain provided that 

its natural frequency is well above the 

frequencies of the assigned poles. 

 

 

Figure 2: Adjustable Vertical Spring 

 

Figure 3: Adjustable Torsion Spring 

 

The receptance method was applied with 

voltage input to the power amplifiers and 

displacement output, measured using two 

laser sensors KEYENCE LK-500 and LK-501. The 

laser sensors were mounted externally to the 

working section above a rigid horizontal bar 

attached to the aerofoil shaft. Separation of 

the sensors allowed the measurement of both 

vertical translation and rotation of the shaft 

(heave and pitch).   

 

 

 

 

 

Figure 4: Open Working Section 

 

 
(a) 

 

(b) 

Figure 5 : (a) V-stack actuator; (b) Actuator  

In-Situ 
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5. Implementation of the Receptance 

Method 

Frequency response functions (FRFs) relating 

the power amplifier input voltage �W  to the 

displacements X� and X� measured using the 

laser sensors were determined by stepped-

sine testing using a SCADAS III LMS data 

acquisition system. The frequency range used 

was 5 to 30 Hz and the frequency resolution 

was 0.05 Hz.  

 

Thus at a chosen wind speed �, the matrix 0�', �
 in the theory of Section 4 above is 

given by the relationship, 

Yℎ�,Wℎ�,W[ �W = !X�X�";       

 0�', �
 = Yℎ�,W�', �
ℎ�,W�', �
[                                 (16) 

where X� and X� are the measured 

displacements. The velocities X�� and X�� were 

calculated numerically using Simulink/dSPACE 

with a sampling rate of 10 kHz and a separate 

FRF 0� �', �
 was determined as, 

Yℎ��,Wℎ� �,W[ �W = \X��X��];      

0� �', �
 = Yℎ��,W�', �

ℎ� �,W�', �
[                                  (17) 

The over-dot simply denotes that the FRF 

relates to the velocity and does not imply 

differentiation of 0�', �
. 

The open loop FRFs 0�', �
 and 0� �', �
 

included not only the dynamics of the aerofoil 

system, but also of the power amplifier, the 

actuator, the sensors and the effects of A/D 

and D/A conversion, numerical differentiation 

of the measured displacements and high-pass 

and low-pass Butterworth filters with cut-off 

frequencies of of 1 Hz and 35 Hz respectively 

(also implemented in dSPACE).  

Transfer functions 0�1, �
 and 0� �1, �
 may 

then be obtained by fitting rational fraction 

polynomials to the measured 0�', �
 and 0� �', �
. This was achieved using a pole-

residue model (typically SDTools2). 

Finally, the assignment of two pairs of 

complex-conjugate poles was achieved by the 

application of equation (13) with the matrix H 

given by, 

H =
LM
MN
0�B�, �
 0� �B�, �
0�B�∗ , �
 0� �B�∗ , �
⋮ ⋮0�B�∗ , �
 0� �B�∗ , �
PQ

QR                            (18) 

and _ = 1 since there is a single actuator and 

may take an arbitrary value. 

It should be noted that at no stage in this 

process is it necessary to know or to evaluate 

the matrices �, �, 
, 	, �. Any assumption or 

mis-modelling of the structural- or aero-

dynamics is not included and the performance 

of the resulting controller depends only upon 

the quality of the measured frequency 

response functions 0�', �
 and 0� �', �
. 

 

6. Measurement of FRFs and Pole 

Placement 

One objective of the design of the 

experimental rig was that the flexible modes 

of the aerofoil should be well separated from 

the sprung modes of the aerofoil system, in 

which the aerofoil is effectively rigid. It is 

these sprung modes, in pitch and heave, that 

are to be controlled. A preliminary modal test 

carried out with a small impact hammer 

revealed the first bending mode at 41 Hz and 

first torsion mode of the aerofoil at 47 Hz. 

There was a mode of the aerofoil support 

structure (the springs, linkages and torsion 

bar) at just over 20 Hz and it was important 
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before implementing the controller to ensure 

that these modes will not be destabilized. 

From equations (13) and (18), it is seen that 

the Nyquist stability criterion is satisfied when 07�', �
A + 0� 7�', �
? =
`ℎ�,W ℎ�,Wa !b�b�" + cℎ��,W ℎ� �,Wd \e�e�] does 

not encircle -1. 

 

An example of curve-fitting to a measured FRF 

using SDTools is shown in Figure 6 for the case 

of a pitch mode at 3.9 Hz and a heave mode 

at 6.7 Hz and a wind speed of 7 m/s. 

 

Figure 6. Measured and Curve-Fitted FRFs 

 

An example of pole-placement is given in 

Figure 7, where (1) the frequency of the 

heave mode is shifted by a small amount from 

6.83 Hz to 7 Hz and an increase of 0.5% 

damping is assigned and (2) the frequency of 

the pitch mode is shifted from 3.89 Hz to 3.5 

Hz with an increase in damping of 1.5% 

assigned.  The assigned poles are -0.8±44i and 

-2±22i and the gains are found to be A = �34.6 2.45
7,  ? = �0.734 0.427
7. 

In another example, poles are assigned at -

1.5±42.96i and -1.84±24.49i to achieve mainly 

an increase in damping of the heave mode. 

The corresponding gains are A =

�−16 −14
7 and ? = �0.39 0.42
7. The 

time-domain response of the aerofoil in open- 

and closed-loop to an initial displacement is 

shown in Figure 8. It is seen that a significant 

reduction in vibration amplitude is achieved. 

 

Figure 7. Measured Open- and Closed-Loop 

FRF after Application of Active Pole Placement 

 

Figure 8. Displacement sensor time-domain 

response 

 

7. Flutter Margin Control by Pole 

Placement 

The experiments described in this section 

were carried out with the vertical and 

torsional srings adjusted to give a heave 

frequency of approximately 3.6 Hz and a pitch 

frequency of about 5.6 Hz. Tests were carried 

out to achieve an extended flutter margin by 

separating the heave and pitch frequencies. 
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The frequency spacing between the two 

modes is increased by pole assignment as 

seen in Figure 9. Pole assignment Bno@pU =−3.43 ± 37.2i,  BUqrsq = −1.24 ± 24.7i is 

carried out at � = 15 m/s  resulting in gains  A = `−13.98   9.84aᵀ, ? = `−0.115   0.161aᵀ. 

The same values of A and ? were applied by 

the controller for air speeds from 6 to 15 m/s. 

The Nyquist diagram, shown in Figure 10, is 

the plot of 

 `ℎ�,W ℎ�,Wa !b�b�" + cℎ��,W ℎ� �,Wd \e�e�]  

as explained previously in Section 6. This plot 

was obtained for different gains than those 

given above, but gives a good indication of the 

stability of the system in the range 0.5 ≤ ' ≤ 30 Hz. It is seen that there is a gain 

margin of 5.2 and a phase margin of 36°, 

thereby indicating robust stability at  7 m/s . 

 

 
Figure 9. Frequency and Damping of Heave 

and Pitch Modes. 

 

Figure 9b shows that separation of the modal 

frequencies is achieved mainly by increasing 

the frequency of the pitch mode, while the 

heave frequency remains mostly unchanged. 

The system was found to undergo quite large 

control-surface oscillations when an increase 

in pitch damping as well as in frequency was 

attempted. In Figures 9 and 11 typical 

eigenvalue trends leading eventually to flutter 

may be observed. It can be seen that the 

heave mode is not affected very much by 

control action whereas the poles of the pitch 

mode change considerably. In Figure 9 the 

frequency of the closed-loop pitch mode 

remains almost constant as � is increased, but 

there are signs that it begins to reduce after 

about 14 m/s. Also the damping of the closed-

loop pitch mode is consistently higher than its 

open-loop counterpart. The system behaviour 

becomes very clear in Figure 11 where the 

locus of the closed-loop pitch mode is seen to 

move consistently further away from the 

imaginary axis increase in air speed and does 

not seem to be close to instability. At 15 m/s 

the poles of the pitch frequency are seen to 

be further away from the imaginary axis than 

those of the open loop system. 

 

 
Figure 10. Nyquist Diagram: � = 7 m/s. 

 

 

Figure 11. Root Locus with Air Speed. 
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The flutter margin for a two degree of 

freedom system (without structural damping) 

is given by the non-negative function [22-24] 

of either the open- or closed-loop eigenvalues 

that satisfies the Routh stability test, 

z = Y{'|�� − '|��2 } + {~�� − ~��2 }[�
 

     +4~�~� �!�| ��$�| :�� " + 2 !���$�:�� "�� 

     − �!��2�:��$�:" !�| ��2�| :�� " + 2 !��$�:� "���
       (19) 

where  ~� = −&�'�;  '|� = '�*�1 − &�� ;  

, = 1,2. 
It can be shown that the flutter margin, z, is 

quadratic in the air speed �. 

Figure 12 shows two curves obtained by 

fitting parabolas to experimental values of z��
. The open-loop flutter margin is the full-

line blue curve fitted through experimental 

points given by the red squares. The closed-

loop flutter margin is represented by the 

dashed curve fitted through the experimental 

black circles. An increase in the flutter speed 

of 11.5% from 17.5 m/s to 19.5 m/s is 

predicted by using the method proposed by 

Dimitriadis and Cooper [24]. 

 

Figure 12. Flutter Margin by Separation of 

Heave and Pitch Frequencies. 

8. Towards Integrating Simulation with 

Experiments 

The experimental research described above 

was complemented by a parallel programme 

of numerical work in which the wind tunnel 

aerofoil rig was modelled using a three degree 

of freedom aerofoil section. A linear 

aerodynamic model based on strip theory and 

the incompressible two-dimensional classical 

theory of Theodorsen was used. The 

structural model was linear. More details on 

the modelling approach3 and code validation 

against common test cases can be found in 

[25] and [26].  

The aeroelastic parameters used for the 

simulations are µ = 69.0, '4 = 0.649, ah = -0.33, 

xα = 0.09, and ��� = 0.40. Structural damping 

was included in the model to reproduce 

damping observed in the wind tunnel rig, &no@pU = 0.015, &Uqrsq = 0.02. Symbols used 

here are standard parameters in the literature 

and their definitions can be found, for 

example, in [25].  

The numerical model was first validated 

against wind tunnel measurements in 

predicting the damped frequency and 

damping ratio. A comparison is made in Fig. 

13. The predictions are in good agreement 

with actual measurements. With increasing 

freestream speed, the damping of the coupled 

system increases. At the flutter point, which 

occurs for a speed of 17.63 m/s, the damping 

ratio becomes negative and a coalescence of 

the pitch and plunge modes is observed. The 

flutter point predicted by the numerical 

model compares well with the value of about 

17.5 m/s extrapolated from measurements. 

 

                                                           
3
 The code can be obtained from A. Da 

Ronch, A.Da-Ronch@soton.ac.uk 
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Figure 13. Damped frequency and damping 

ratio for varying freestream speed from 

simulation and wind tunnel measurements 

The stability behaviour is traced throughout 

the speed range of interest solving for an 

eigenvalue problem of the coupled aeroelastic 

system. This information can then be used to 

design a controller to extend the flutter 

boundary. Preliminary work on this has been 

carried out and results will be presented in 

future work. There is, however, the question 

of the cost. The recursive solution of the 

eigenvalue problem is, in general, costly if the 

size of the system is large (see, for example, 

Ref. [27]). A promising alternative is based on 

the approach to model reduction reported in 

Ref. [25]. The generation of a reduced model 

is:  a) straightforward for linear and nonlinear 

systems; b) independent of the underlying 

governing equations; and c) suitable for 

control applications. Here, the reduced model 

was parameterised with respect to the 

airspeed. This allows predicting the system 

response over a range of airspeeds using one 

single reduced model generated at a given 

speed. Figure 14 compares the free response 

to an initial perturbation in heave velocity 

obtained using the full model and the reduced 

order model at three different airspeeds. The 

full model was run at each airspeed and is 

taken to be the reference solution for the 

reduced model. The reduced model was 

generated once at the speed of 6.2 m/s. The 

predictions are in good agreement with the 

reference solution although the airspeed is 

increased by 50% from the point at which the 

reduced model is generated. Future work will 

focus on a) the use of the reduced model for a 

quick assessment of the stability behaviour of 

the aerofoil rig, and b) evaluating the impact 

of model fidelity on the flutter boundary 

extension of the wind tunnel rig. 

 

 

Figure 14. Free response in plunge and pitch: 

lines denote the full-order mode; symbols 

denote predictions of the reduced order 

model generated at 6.2 m/s 
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9. Conclusions 

A wind-tunnel aerofoil test rig has been 

designed and built, making use of a single 

control surface operated by a ‘V’ stack piezo-

actuator. Eigenvalues have been assigned 

successfully and control of flutter has been 

demonstrated using the receptance method 

and the flutter-margin prediction procedure. 

In the experiments carried out with this 

particular aerofoil system the flutter speed 

was increased by around 12 % when pole 

placement was applied to separate the heave 

and pitch frequencies. Pole placement to 

separate the heave and pitch frequencies was 

found to be effective in increasing the flutter 

speed. Preliminary results from a 

complementary numerical programme using a 

reduced-order model, based on linear 

unsteady aerodynamics, were presented. 
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