Developments in Code Generation Tools for Event-B

Andy Edmunds

April 2, 2013

Since the last Rodin Workshop we have been working on a number of aspects of Code
Generation. We will give an overview of the work that we have undertaken, and what
we are doing currently.

1 State-machine translation

Since the last workshop we added the ability to generate code from Event-B state-
machine diagrams; we will give an overview of the approach. Tasks in Tasking Event-B
can be used to generate code for embedded controllers. The simulation approaches makes
use of a single task, which simulates concurrently executing state-machines. We are then
able to instrument the code to guide the simulation, to improve coverage analysis on the
controller code. Code generation for state-machine generates the following constructs:

e A case construct, for each state-machine.
e A case statement in the construct, for each state in a state-machine.
e A branch for each transition from a state.

e A branch condition that can be used to guide the simulation.

The main program invokes the state-machine implementations in a loop, once per cycle.
Each iUML-B state-machine diagram maps to a procedure. State-machine procedures
are called exactly once before the sends to, and reads, from the variable store. The
evaluation of each state-machine procedure is independent of every other state-machine,
since each state-machine keeps a local copy of the state, copied from the variable store.
Each state-machine procedure has a n state variables v, representing states s; in the state-
machine diagram, where ¢ € 1...n. During code generation we create a procedure for
each state-machine, Each procedure has a case statement (with pseudo-code statement
A;), which has the following form:

procedure statemachinel(){
case v = s7 then Aq;
so then As;. ..
sn then skip;

end case }

In the current code generation tool, each of the n outgoing transitions of a state, is
elaborated by an event Event;. The program statement arising from FEwvent; is a branch
in A;, with a condition g¢;, and an update a;. The following shows the branching style,
where skip leaves the state unchanged:

case v
s1 then
if g; then ay;// from transition 1 (Event;)
elseif g, then ay; // from transition 2 (Events)
elseif g; then a;; // from transition i (Event;)
else skip...

end case

By adding further guards to g; we are able to guide the simulation to improve coverage.

2 FMU translation in C

The ADVANCE project aims to simulate cyber-physical systems modelled using Event-
B. The Functional Mock-up Interface (FMI) approach is being used to support co-
simulation of dynamic models, using a combination of XML-files and compiled C-code.
The system being simulated can consist of a number of Functional Mock-up Units
(FMUs), all of which are under the control of a master simulator. All communications
between the FMUs takes place via the master. The master algorithm works cyclically;
FMU data is read by the master, and distributed to FMUs. Each FMU is instructed to
perform a processing step by the master. The cycle repeats for a specified time period
after which the simulation is complete.

From a code generating viewpoint we are interested in generating controller FMUs
from Event-B models. The environment may then be simulated in ProB, or another
FMU (including environment code that we generate). The output generated for the
controller FMU is contained in a zip file with the following contents:

e an XML model description file,
e C code, and compiled libraries.

We will explain briefly how this can be achieved.

3 Other Work

We are currently involved in a project with Thales Transportation Systems GmbH, in
Germany. The project is in its early stages, and we are hoping to make use of the code
generation capabilities of Tasking Event-B. We will report on progress and the issues
arising from this work.

