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Abstract

In this thesis, the exploitation of computational fluid dynamics (CFD) methods for

the flight dynamics of manoeuvring aircraft is investigated. It is demonstrated that

CFD can now be used in a reasonably routine fashion to generate stability and control

databases. Different strategies to create CFD-derived simulation models across the

flight envelope are explored, ranging from combined low-fidelity/high-fidelity methods

to reduced-order modelling.

For the representation of the unsteady aerodynamic loads, a model based on aero-

dynamic derivatives is considered. Static contributions are obtained from steady-state

CFD calculations in a routine manner. To more fully account for the aircraft motion,

dynamic derivatives are used to update the steady-state predictions with additional

contributions. These terms are extracted from small-amplitude oscillatory tests. The

numerical simulation of the flow around a moving airframe for the prediction of dy-

namic derivatives is a computationally expensive task. Results presented are in good

agreement with available experimental data for complex geometries. A generic fighter

configuration and a transonic cruiser wind tunnel model are the test cases. In the pres-

ence of aerodynamic non-linearities, dynamic derivatives exhibit significant dependency

on flow and motion parameters, which cannot be reconciled with the model formula-

tion. An approach to evaluate the sensitivity of the non-linear flight simulation model

to variations in dynamic derivatives is described.

The use of reduced models, based on the manipulation of the full-order model to re-

duce the cost of calculations, is discussed for the fast prediction of dynamic derivatives.

A linearized solution of the unsteady problem, with an attendant loss of generality,

is inadequate for studies of flight dynamics because the aircraft may experience large

excursions from the reference point. The harmonic balance technique, which approxi-

mates the flow solution in a Fourier series sense, retains a more general validity. The

model truncation, resolving only a small subset of frequencies typically restricted to

include one Fourier mode at the frequency at which dynamic derivatives are desired,

provides accurate predictions over a range of two- and three-dimensional test cases.

While retaining the high fidelity of the full-order model, the cost of calculations is a

fraction of the cost for solving the original unsteady problem.

An important consideration is the limitation of the conventional model based on
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aerodynamic derivatives when applied to conditions of practical interest (transonic

speeds and high angles of attack). There is a definite need for models with more re-

alism to be used in flight dynamics. To address this demand, various reduced models

based on system-identification methods are investigated for a model case. A non-linear

model based on aerodynamic derivatives, a multi-input discrete-time Volterra model, a

surrogate-based recurrence-framework model, linear indicial functions and radial basis

functions trained with neural networks are evaluated. For the flow conditions con-

sidered, predictions based on the conventional model are the least accurate. While

requiring similar computational resources, improved predictions are achieved using the

alternative models investigated.

Furthermore, an approach for the automatic generation of aerodynamic tables using

CFD is described. To efficiently reduce the number of high-fidelity (physics-based)

analyses required, a kriging-based surrogate model is used. The framework is applied

to a variety of test cases, and it is illustrated that the approach proposed can handle

changes in aircraft geometry. The aerodynamic tables can also be used in real-time to

fly the aircraft through the database. This is representative of the role played by CFD

simulations and the potential impact that high-fidelity analyses might have to reduce

overall costs and design cycle time.
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Chapter 1

Introduction

Determining the stability and control characteristics of aircraft at the edge of the en-

velope is one of the most difficult and expensive aspects of the aircraft development

process. Non-linearities and unsteadiness in the flow are associated with shock waves,

separation, vortices and their mutual interaction, which can lead to uncommanded

motion and uncontrollable departure. If these issues are discovered at flight test, the

aircraft development can suffer significant delays, a rise in production costs and detri-

mental effects on performance. There have been numerous examples of aircraft experi-

encing uncommanded activity, as reported, for instance, in [1]. Following an extensive

resolution process, immediate improvements are typically achieved by minor configura-

tion changes and modifications to the flight control system and control augmentation

laws. To provide a better fundamental understanding of the flow physics causing de-

graded characteristics, computational approaches have been used [2]. The development

of a reliable computational tool for prediction of these important issues would allow the

designer to screen different configurations prior to building the first prototype, reducing

overall costs and limiting risks [3].

For flight dynamics analysis, force and moment dependency on flight and control

states is often expressed in tabular form. There are several possible sources of data

for this aerodynamic database. Flight testing the aircraft is the most accurate but

also the most expensive of these methods [4]. Wind-tunnel testing of scaled models is

cheaper than flight testing. However, blockage, scaling and Reynolds number effects

together with support interference issues limit the proper modelling of the full scale

aircraft behaviour [5]. The third approach combines data sheets, linear aerodynamic

theory and empirical relations [6]. Due to simplicity, this method is in widespread

use and is a common choice to obtain aerodynamic characteristics in the conceptual

design stage [7, 8]. In the absence of a background database, empiricism is strongly

limited when confronted with novel configurations and flight conditions dominated by

non-linear aerodynamic effects.
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A possible useful addition to the high-fidelity/high-cost of testing and low-

fidelity/low-cost of semi-empirical approaches is Computational Fluid Dynamics

(CFD), which represents the state of the art in predicting non-linear flow physics.

Success has been reported in predicting the non-linear aerodynamic behaviour of air-

craft at full scale Reynolds numbers [9]. However, the generality realized in a CFD

simulation comes at the expense of computational cost. Due to the ”curse of dimen-

sionality” (a term coined by Bellman [10]), routine use of high-fidelity CFD simulations

is costly to cover a large parameter space of conditions, such as in multidisciplinary op-

timization [11], aeroelasticity [12] and studies of flight dynamics [13]. The term fidelity

here indicates the level of physical modelling realized in the numerical techniques used.

High-fidelity analyses refer to mathematical models for the description of the relevant

physics in the problem to be simulated.

To generate the aerodynamic database of forces and moments for the expected

flight envelope, a large number of flow conditions for different aircraft control settings

are required. Considering that the total number of table entries can be in the order

of hundreds of thousands or even millions, the task to simulate aerodynamic loads for

each single entry is extremely expensive, and is intractable using CFD as a source of the

data. An alternative method to the ”brute-force” approach was presented in [14], and is

based on the kriging interpolation [15,16], which is well suited to approximate non-linear

functions [17,18] and does not require a priori knowledge of the function to be approx-

imated. While approximating the non-linear CFD results throughout the parameter

space from a limited number of full-order simulations, the key to the methodology is the

location of sample points. In addition to creating a high-fidelity aerodynamic database

for improved predictions of the aircraft stability and control behaviour, CFD can be

used to establish the limits of tabular models. The mathematical model typically used

for flight dynamic investigations is based on the concept of stability or aerodynamic

derivatives. Forces and moments are assumed to be a function of the instantaneous val-

ues of the disturbance velocities, control angles and their rates [19]. Whilst consistent

with a quasi-steady representation of the aerodynamics, the time-invariant assumption

is questionable in many studies of unsteady aerodynamics [20]. Therefore, several at-

tempts were made to improve the modelling of unsteady aerodynamic loads [21, 22].

The ability of CFD to perform unsteady simulations creates a framework for assessing

the limits of the tabular model due to the neglect of time-history effects on the flow

development. Various maneouvers were created in [23] solving an optimal-control prob-

lem, and aerodynamic predictions obtained from the look-up tables were compared to

the unsteady aerodynamic loads simulated from a time-accurate CFD analysis.

The work presented in this thesis investigates the use of CFD to a variety of appli-

cation studies, ranging from aircraft stability and control predictions to applications of

flight dynamics. The main contribution is toward a comprehensive understanding of

the limitations of the current aerodynamic model used in flight dynamics when aerody-
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namic non-linearities are present. Alternative model formulations are evaluated, and

advances in the prediction of non-linear unsteady aerodynamic loads are likely based

on the results presented.

1.1 Example Applications of CFD

Progress made in reducing the time required to generate an aerodynamic database of

forces and moments for a Harrier aircraft in ground effect was reported in [24]. With

access to large-scale parallel computers, 35 time-dependent Reynolds-Averaged Navier-

Stokes (RANS) simulations were completed in one week. A monotone cubic-spline

interpolation procedure [25] was used to extend the 35 solution database to over 2500

cases for a range in angle of attack between 4◦ and 10◦ and in height above the ground

between 10 and 30 ft. A step towards the generation of a stability and control database

to simulate take-off and landing scenarios for a YAV-8B Harrier was described in [26].

The aerodynamic model for the force and moment coefficients was expressed in terms

of the static and dynamic stability derivatives. It was envisioned that a few hundred

solutions could be obtained, and the remainder of the parameter space filled out with

the use of an interpolation procedure or neural networks. A system to automate the

process of running a large number of expensive CFD simulations on grid resources

based on Globus [27] was developed, allowing the generation of one hundred RANS

and one thousand Euler simulations in one week for a second generation Langley glide-

back booster design [28]. The database of forces and moments was computed varying

the angle of attack, Mach number and angle of sideslip, and was compared against

experimental data.

A modular framework built around existing stand-alone applications with control

scripts to link the different components was described for the generation of aerodynamic

databases with and without control surfaces [29]. A Cartesian CFD method, providing

an efficient and robust mesh generation capability for any arbitrary complex geometry,

was a key part in the setup. Several configurations were tested. A parametric study

on a second generation glide-back booster was conducted examining static effects due

to variations in angle of attack, sideslip and Mach number. The database consisted of

approximately 2900 flow conditions and was compared to experimental and numerical

data to establish confidence in the predictions. Two examples of parametric databases

with control surface deflections were also described. The configurations were flown

through the database by integrating the six degrees-of-freedom equations of motion of

a rigid body using Feldberg’s modified Runge-Kutta scheme [30]. Forces and moments

were then computed from the database with a multi-linear interpolation. The applica-

tions included the validation of a generic neural network control system and trajectory

simulation with the development of a closed-loop feedback pitch controller. The ap-

proach considered only static and control aerodynamic derivatives and neglected the
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influence of any dynamic derivatives. The databases were created from a set of discrete

points at the minimum, median and maximum values for each independent parameter.

While this approach drastically reduces the number of computations, it also presumes

that these points capture all the relevant non-linearities in aerodynamic loads. Further

tests were not reported to investigate the validity of this assumption.

1.2 Predictive Aerodynamic Models

The references cited above exemplify the need for improvements in computational effi-

ciency. While access to high-end computing facilities is essential for numerous examples

of intensive CFD simulations [31,32], to make progress in routinely using CFD, research

has been concentrated on the development of computationally efficient predictive aero-

dynamic models to use in combination with CFD generated data.

1.2.1 Linear and Non-linear Indicial Functions

Linearized aerodynamic models based on a functional representation for the indicial

aerodynamic force and moment responses (see Appendix B) in terms of blade motion

and gust functions were used in subsonic flow [33]. A method was developed to calculate

the indicial and gust responses of an airfoil in compressible flow directly using CFD [34].

The step change was incorporated into an existing CFD solver using a grid-velocity ap-

proach, and accurate solutions compared to exact analytical results were obtained at

low speed. The agreement degraded with non-linear compressibility effects. The fi-

delity of linearized indicial methods for aerodynamic load predictions was assessed,

and it was found that these methods are sufficiently accurate to be used as a practical

design tool [35]. However, simplifying assumptions from the flow physics limits the

generality of the linear indicial approach. When non-linear effects are significant, such

as when there is the appearance/disappearance of a shock wave or topological changes

of the flow, the indicial approach becomes inaccurate [36]. In addition, flowfields with

hysteresis exhibit memory-effects, which violate the assumption of time-invariance un-

derlying the linear indicial approach.

Interest has also concentrated on the use of non-linear indicial functions [37, 38],

which are a generalization of the linear convolution model. This formulation was shown

to be equivalent to a non-linear functional expansion of which the classical Volterra se-

ries is a subset. A non-linear indicial model to predict time-dependent unsteady aero-

dynamic loads associated with flight maneuvers at high angles of attack and high pitch

rate was developed. An analytical model approximating the flight test aerodynamic

responses of a full scale fighter aircraft performing Cobra-type maneuvers was used

to generate the required indicial functions and to compare the indicial predictions for

novel maneuvers [39]. The model was based on the state-space formulation, which was
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demonstrated to accurately describe unsteady aerodynamic effects observed in experi-

mental investigations [22]. The model extends the usual flight dynamics equations by

introducing a first order delay differential equation for an additional internal state vari-

able which accounts for unsteady effects associated with separated and vortical flow.

It was claimed that an efficient parametrization of the indicial function space can be

obtained based only on local information, such as instantaneous angle of attack and

pitch rate. The non-linear indicial prediction model was also tested for a rectangular

wing undergoing dynamic stall [40]. An artificial neural network trained on wind tun-

nel data was used to reproduce the detailed aerodynamic characteristics of the pitching

wing, and deemed accurate enough to provide a reference solution for the prediction

model at negligible cost. In view of the mathematical formulation adopted in this

work, it is significant that a comparison between the non-linear indicial method and

the aerodynamic stability derivatives method was reported. First, a model with con-

stant coefficient aerodynamic derivatives, retaining a quadratic term in angle of attack

and expressing the damping derivative as a function of the angle of attack, was consid-

ered. Constant coefficient derivatives were determined from the neural network using

an identification technique. A second model using a look-up table for static aerody-

namics, augmented with alpha-dependent damping derivatives, was built. Both models

were used to predict aerodynamic loads for a constant pitch rate maneuver at a reduced

frequency of 0.02, from zero up to sixty degrees angle of attack. It was demonstrated

that the indicial method was significantly more accurate than the conventional model

based on aerodynamic stability derivatives for the unsteady maneuver tested, particu-

larly when critical states were crossed. It was concluded that efficient parametrization

of the indicial and critical state function space appears to be achievable using only local

information, such as the instantaneous angle of attack and pitch rate. The accuracy of

the non-linear indicial method was also reported for the prediction of the airloads for

a 65◦ delta wing performing forced roll oscillations at high angle of attack [41].

1.2.2 Regression Models

Research has focused on simulations of complete aircraft configurations, as reported

in [42–45]. While this was motivated by the need of assessing the accuracy of CFD

simulations to predict the unsteady non-linear aerodynamic behaviour, the development

of alternative mathematical models was hindered by the slow turn-around time of the

simulations. A generic fighter with abrupt asymmetric vortex breakdown leading to

uncommanded lateral instability [46] was chosen as a test case [44]. The availability of

experimental and computational investigations made the configuration a good testing

ground to assess the validity of low-order aerodynamic models. The procedure adopted

to create the reduced-order model follows the description given in [43]. First, adequate

computational training maneuvers designed to excite the flow physics of interest are
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calculated with CFD. A reduced-order mathematical model is then built from the sim-

ulated aerodynamic loads using system identification methods [47], and the prediction

model is compared with the training maneuvers used to generate it. Finally, the predic-

tion model is applied to novel maneuvers, and for the prediction of aerodynamic loads at

all flight test points at negligible cost. SIDPAC [48] has been a common choice to build

reduced-order models [49]. It is a least squares regression based method that generates

an explicit relationship between the computed aerodynamic loads and the independent

variables of the aircraft motion. Unsteady time-accurate Delayed Detached-Eddy Sim-

ulations (DDES) were calculated at a Mach number of 0.4, constant angle of attack

of 30◦ and sinusoidally varying angle of sideslip. Five maneuvers were performed at

constant frequency, and a chirp frequency maneuver was additionally performed for a

frequency sweep between zero and 17Hz. To assess validity, the prediction model built

from the chirp frequency motion was used to reproduce the aerodynamic loads for a

maneuver at constant frequency included within the bounds of the training signal used

to generate the model. It was demonstrated [44] that a regression model is incapable

of generating an accurate low-order model of the airloads based on the analysis of one

single training maneuver.

1.2.3 Radial Basis Functions Interpolation

The determination of an appropriate training maneuver is a challenging task, which is

vital for the successful generation of a reduced-order model. Past research has focused

on the development of training maneuvers, and used the frequency content and power

spectral density of the motion variables as figures of merit [50, 51]. This approach is

not always valid as the functional dependences relating the aerodynamic loads to the

aircraft motion are far more complex. A different approach, based on the ability to cover

the relevant regressor space and to capture a range of flow phenomena, was adopted

for the investigation of training maneuvers for a two-dimensional airfoil [52]. Several

training maneuvers, such as chirp, spiral and Schroeder maneuvers, were considered,

and used to build reduced-order models. To assess the accuracy of the prediction

models, aerodynamic loads were compared against time-accurate CFD solutions. The

reduced order models were based on radial basis functions [53], and an improvement in

the ability to predict linear and non-linear aerodynamic characteristics using one single

training signal was observed. It was concluded that the chirp maneuver resulted in

the most robust and reliable reduced order model, and the spiral maneuver was found

adequate for low-frequency and static aerodynamic predictions.

1.2.4 Volterra Theory

Alternative mathematical formulations have been investigated. Since formally intro-

duced into CFD [54], the Volterra functions have been successfully applied for aeroe-

36 of 213



lastic studies of limit cycle oscillations [55,56]. The extension into the area of stability

and control was considered in [57]. Two test cases were evaluated, a NACA 0012 airfoil

and a X-31 aircraft model. The Volterra kernels were identified from a set of Gaus-

sian shaped impulses, and the accuracy of the prediction model for different pitching

motions was assessed. The applications were limited to linear cases, and a good agree-

ment of the Volterra reduced-order modeling was observed when compared to time-

accurate CFD simulations in the linear aerodynamic range. With weakly non-linear

characteristics, the performance of the prediction model quickly degraded. As stated

in the review [56], an important issue is the excitation of multiple degrees of freedom

to properly identify non-linear cross-coupling of the degrees of freedom, and because

of the non-linear nature of the aerodynamic system the principle of superposition is

invalid. A method for the inclusion of Volterra cross-kernels applied to a transonic

two-dimensional airfoil undergoing forced pitch and plunge harmonic oscillations was

investigated [58]. The prediction model was compared to time-accurate CFD solutions,

and the improvement in accuracy over approaches that ignore the cross-kernels was

demonstrated. Addressing the convergence issue of the Volterra series and the need for

the inclusion of higher-order kernels, an alternative formulation was presented [59]. The

pruned Volterra series, with a simplified parametric structure of the kernels, was tested

for a two-dimensional transonic airfoil undergoing forced sinusoidal pitch oscillations

for two AGARD test cases. The identification of kernels up to fourth order demon-

strated a feasible undertaking and a good agreement compared to the time-accurate

CFD solution was achieved. The formulation of the pruned Volterra series was then

used to approximate the flutter boundary and limit-cycle oscillation amplitudes of the

NACA 0012 benchmark model [60]. Showing favourable results, a computational saving

of several orders of magnitude compared to full-order CFD simulations was achieved.

1.2.5 Proper Orthogonal Decomposition

With just a handful of basis vectors, the Proper Orthogonal Decomposition (POD)

technique, also known as the Karhunen-Loève expansions [61], has been used to reduce

the complexity and dimension of aerodynamic models. An overview of the POD method

along with details of how the method has been applied to study a wide variety of

fluid problems can be found in [62]. Reduced-order models constructed using basis

vectors from the POD of an ensemble of small-disturbance frequency-domain solutions

were presented [63]. The technique was applied to two model flow problems, that is,

unsteady transonic flow about an isolated airfoil and subsonic flow through a cascade

of flat-plate airfoils. A reduced-order aeroelastic model was also developed to compute

the flutter boundary of a typical airfoil. In all cases presented, it was demonstrated

that the technique produced low-order high-accurate models of the unsteady flow over a

wide range of reduced frequencies. The computation of the unsteady small-disturbance
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solutions, e.g. snapshots, was identified as the most expensive task. Once the POD

basis vectors were found, the construction and solution of the reduced-order model was

done at negligible cost, making it suitable for parametric studies. Recent studies have

been conducted to bring the POD theory in combination with standard identification

methodologies in the analysis of maneuvering aircraft [64,65]. A prescribed maneuver

designed to densely populate a given flight parameter envelope was simulated with an

unsteady CFD solver. The ensemble of snapshots used in the POD method consists

of surface solutions taken at regular time increments. Time-dependent surface data

were decomposed into a set of orthogonal modes in the spatial coordinate, and a set of

time-dependent coefficients for each mode. The key for the described method is that

the time-dependent coefficients are fitted to a polynomial function of the time histories

of the relevant flight parameters. Once constructed, the model can be used to predict

the surface data for an arbitrary maneuver, again at negligible cost compared to the

full-order simulation.

1.2.6 Surrogate-Based Models

Despite the progress made in the development of reduced-order models, the selection

of appropriate training data remains a key issue. The routine generation of reduced-

order models has not been reported in any previous work. An alternative approach

is based on surrogate modeling [66–68]. First described in [14], the framework builds

on kriging interpolation [15, 16]. Note that the development of a similar framework

applied to a two-dimensional airfoil restricted to one- and two-parameter variables was

reported [69].

In addition to creating a high-fidelity aerodynamic database for improved predic-

tions of the aircraft stability and control behaviour, CFD can be used to establish the

limits of the tabular models. The mathematical model typically used for investiga-

tions of flight dynamics is based on the concept of stability or aerodynamic derivatives.

Forces and moments are assumed to be a function of the instantaneous values of the

disturbance velocities, control angles and their rates [19]. Whilst consistent with a

quasi-steady representation of the aerodynamics, these models cannot predict the non-

linearities associated with post-stall aerodynamics, including bifurcations and hystere-

sis. The ability of CFD to perform unsteady simulations allows the assessment of the

limits of a tabular model arising from the neglect of time-history effects.

1.3 Review of Dynamic Derivatives

The concept of stability or aerodynamic derivatives was introduced by Bryan [19] in

1911 and remains essentially unchanged as the conventional model for the represen-

tation of the aerodynamic loads in the equations of motion. It is assumed that the
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aerodynamic forces and moments are a function of the instantaneous values of the dis-

turbance velocities, control angles and their rates. The dependence of the forces and

moments on these variables is obtained by a Taylor series expansion, discarding higher

order terms [70]. For slow motions at low angle of attack, the static derivatives are

generally sufficient to model the aerodynamic loads [6]. At higher angles of attack

and rates, the inclusion of dynamic derivatives in the aerodynamic model can have

a significant effect on the calculated stability characteristics of an airframe [71]. The

addition of non-linear terms to take into account changes of stability derivatives with

the angle of attack extended the range of flight conditions to high angles of attack

and/or high amplitude manoeuvres. In the linear and non-linear methods, it is as-

sumed that the aerodynamic parameters are time invariant [47]. This assumption was

often questioned based on many studies of unsteady aerodynamics [20]. In the 1920s,

Wagner [72] conducted a series of studies for the unsteady lift generated on an airfoil

due to abrupt changes in angle of attack. Theodorsen extended these studies investi-

gating the forces and moments on an oscillating airfoil. The lift response of an airfoil

penetrating sharp-edge and harmonically-varying gusts was studied by Küssner [73]

and Sears [74], respectively. The first attempts to investigate unsteady aerodynamic

effects on aircraft motion were made by Jones and Fehlner [75], studying the effect of

the wing wake on the lift of the horizontal tail. A more general formulation of linear

unsteady aerodynamics in the aircraft longitudinal equations of motion was introduced

by Tobak [76]. Tobak and Schiff [21] replaced the indicial functions within the integrals

with functionals [77], themselves dependent of the past motion. A different approach

was proposed by Goman et al. [78] introducing additional state variables, named in-

ternal state variables, in the functional relationships for the aerodynamic forces and

moments. The coordinates of a separation point or vortex breakdown location can be

taken as internal state variables, and modelled by differential equations. Goman and

Khrabrov [22] formulated state space models with internal state variables describing

the flow state. A good agreement was achieved with experimental data for a separated

flow on an airfoil and flow with vortex breakdown about a slender delta wing.

Traditionally, wind tunnel testing has been used to produce derivatives for produc-

tion aircraft [79]. The physical realism of wind tunnel data is well known, but can be

limited by blockage, scaling, and Reynolds-number effects together with support in-

terference issues that prevent the proper modelling of the full-scale vehicle behaviour.

Computational Fluid Dynamics (CFD) solvers have reached a level of robustness and

maturity to allow routine use on relatively inexpensive computer clusters. The predic-

tion of dynamic derivatives requires the ability to compute the aerodynamic response

to time-dependent prescribed motions which are used to excite the aerodynamics of

interest. This can be done with present off-the-shelf CFD tools. CFD has potential

for complementing experimental testing techniques for obtaining these values. The

physical limitations and kinematic restrictions of wind tunnel testing including model
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motion as well as the interference effects of the model support are not factors in the

computational analysis. Physical effects can be separated in the CFD solutions in a

way which can be difficult from wind tunnel or flight test data. CFD can also be used

for investigating the modelling of data from flight tests. There is of course a significant

question about the ability of CFD to predict the relevant aerodynamics, and this must

be demonstrated through validation studies. It is therefore possible to use CFD as a

complement to costly experimental campaigns. However, CFD is not meant to replace

testing techniques.

1.4 Thesis Outline

The work in this thesis was partly developed within the SimSAC (Simulating Aircraft

Stability and Control Characteristics for Use in Conceptual Design) project 1 funded

by the European Commission 6th Framework Programme. The project consisted of

a partnership of European academics and industrial contributors. The main driver of

the project was the inadequacy of standard semi-empirical approaches currently used

in conceptual design when confronted with more advanced aircraft configurations [80].

This may cause errors in the design process, which may prove expensive to rectify

via additional design work, wind tunnel and flight testing, in addition to a delay in

certification and performance degradation. To overcome these potential issues, it is

worthwhile to introduce high-fidelity (physics-based) approaches early in the design

process.

In this thesis, the exploitation of CFD is investigated for the generation of the aero-

dynamic database. A framework for the automated generation of tabular aerodynamic

models for studies of flight dynamics is discussed, allowing stability and control con-

siderations to be developed early in the design process. For the representation of the

aerodynamic loads, a model based on stability or aerodynamic derivatives is assumed

because traditionally used by flight dynamicists. In the model formulation, dynamic

derivatives are used to update the static predictions to account for the aircraft motion.

Emphasis is on the evaluation of dynamic derivatives with various CFD methods. As

the limitations of the aerodynamic model are exposed for several test cases, there is a

need for models of more realism and fidelity to be used in flight dynamics. Advances

in this direction are discussed.

Chapter 2 introduces the framework for the generation of aerodynamic tables using

CFD as the source of the data. The framework has been developed at Liverpool by the

author and a colleague. A method to efficiently reduce the number of high-fidelity anal-

yses is accomplished by use of a kriging-based surrogate model. Low-fidelity estimates

are augmented with higher fidelity data, and data fusion combines the two datasets

1More details at http://www.simsacdesign.eu and http://www.ceasiom.com/ [retrieved March 19,
2012]
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into one single database. Once constructed, the look-up tables can be used in real-time

to fly the aircraft through the database. Two methods for the evaluation of dynamic

derivatives are also discussed.

Chapter 3 discusses the evaluation of dynamic derivatives computed using unsteady

time-domain CFD simulations. Two configurations are considered: a generic fighter

model and a transonic cruiser concept design. Numerical results are compared to

experimental measurements, and a good agreement is noted in all cases. A systematic

study to evaluate the dependencies of dynamic derivatives on aircraft motion and flow

parameters, beyond the range of motions performed in dynamic testing facilities, is

presented. It is recognized that in the presence of aerodynamic non-linearities, mainly

due to three dimensional separated flow and concentrated vortices, dynamic derivatives

exhibit a dependence on motion and flow parameters. These dependencies are not

reconcilable with the model formulation, which is based on a Taylor series expansion.

An approach to evaluate the sensitivity of the non-linear unsteady aerodynamic loads

to variations in dynamic derivatives is introduced.

Chapter 4 introduces the use of reduced models, based on the manipulation of the

full-order model, for the fast computation of dynamic derivatives. The underlying

idea is to exploit the periodicity of the resulting aerodynamic system for oscillatory

motions to decrease the cost of calculations. A linearized solution in the frequency

domain and a harmonic balance technique are illustrated for two- and three-dimensional

configurations. To stress the potential of the frequency-domain methods in conditions of

practical interest for aircraft applications, flow conditions were in the transonic regime.

For the formation of moving shock waves, the energy of aerodynamic modes redistribute

at higher frequencies than the predescribed frequency of motion. While a time-domain

calculation supports a continuum of frequencies up to the frequency limits given by the

temporal and spatial resolution, the reduced models considered resolve only a small

subset of frequencies typically restricted to include one Fourier mode at the frequency

at which dynamic derivatives are desired. While providing good estimates of dynamic

derivatives, the cost of the reduced models is a fraction of the cost for solving the

original unsteady problem.

Chapter 5 addresses the demand for alternative model formulations of more realism

to be used in the representation of non-linear unsteady aerodynamic loads. The conven-

tional model based on aerodynamic derivatives is recognized to be adequate in benign

flow conditions. There is, however, the consideration that any model in principle is

applicable to linear cases, and the generality realized in a CFD solver is therefore not

needed. The point of the discussion here is that conditions of practical interest feature

aerodynamic non-linearities. Various reduced models, based on system-identification

methods, are evaluated in presence of aerodynamic non-linearities. While retaining

complex flow features due to shock-induced phenomena, a two-dimensional test case

is considered. For the flow conditions considered, the predictions obtained using the
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conventional model are misleading and not representative of the unsteady time-domain

solution. While providing good approximations for the non-linear unsteady aerody-

namic loads, reduced models investigated were generated with no more computational

resources than that required for the conventional model.

Chapter 6 concludes the thesis and offers an outlook and suggestions for future

work.

The framework for creating CFD-derived stability and control databases described

in Chapter 2 was exercised for several aircraft configurations. The application to six

test cases is presented in Appendix A. The point of the work is to show the range of

applications that this framework has opened up, illustrating the aerodynamic model

generation for each case in the form of a review. Through the range of examples

which have actually been computed, the review shows the progress achieved because

of the adoption of the framework. The work presented in the appendix is the result

of a collaborative effort, and the author contributed directly to the creation of the

aerodynamic database in each case. In addition, the author has led the review article

in [81].

Appendix B illustrates the use of the indicial theory applied to unsteady aerody-

namic problems. The indicial theory can also be used to predict the unsteady aerody-

namic loads in response to a gust perturbation, which is of interest for aircraft loads

calculation and certification. The CFD-based simulation of the interaction between a

gust and a rigid or flexible airframe poses few practical questions. The author has im-

plemented a new functionality in the CFD solver of the University of Liverpool based

on the field velocity approach. Validation studies demonstrate the readiness of the

approach for cases featuring linear and weakly non-linear aerodynamics.

Finally, Appendix C formulates a multi-linear interpolation, which is implemented

in the computational framework described in Chapter 2 as an alternative approach to

kriging interpolation.
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Chapter 2

Formulation

2.1 Introduction

Modeling the aircraft aerodynamics raises the fundamental question of what the math-

ematical structure of the model should be. The functional dependencies of the force

and moment coefficients are in general complex, as they depend in a non-linear fashion

on present and past values of several quantities, such as airspeed, angles of incidence,

etc. Reasonable simplifications are that fluid properties change slowly and the airplane

mass and inertia are significantly larger than the surrounding fluid mass and inertia.

The flow is often considered quasi-steady, which presumes that the flow reaches a steady

state instantaneously and the dependence on the history of the motion variables can be

neglected. One exception to this assumption is the retention of the reduced frequency

effects. With these underlying hypotheses [47], the characterization of the functional

dependencies is broken down as

Ci = f1 (α, β,M, δ) + f2 (Re) + f3

(
Ω c

2U∞

)
+ f4

(
ω c

2U∞

)
(2.1)

for i = L,D,m, Y, l and n

which is the common practice from wind tunnel testing. The first term on the right

hand side is obtained in static wind-tunnel tests, the second term represents Reynolds

number corrections and the last two terms are measured performing, respectively, ro-

tary balance and forced oscillation tests. The above decomposition is valid when the

effects are separable and the superposition principle can be used, that is, under the

hypothesis of linear and uncoupled functional dependencies. The effects of rotary and

forced oscillation are typically modeled as a function of the body axis angular rates, an-

gles of incidence and their first time derivatives [82]. These derivatives were introduced

to obtain a closer correlation between predicted and observed aircraft longitudinal mo-

tion [83], and for a conventional aircraft they represent the finite time that aerodynamic

loads at the tail lag the changes in downwash convected downstream from the wing.
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The aircraft symmetry with respect to the vertical plane motivates the neglection of

the dependence of symmetric (longitudinal) forces and moments on asymmetric (lat-

eral) variables, and vice versa. While the dependence on β̇ is typically neglected for a

quasi-state flow, the inclusion of the α̇ term leads to an identifiability problem when es-

timating the α̇ and q derivatives [84]. To avoid this problem, the two terms are lumped

together and an equivalent derivative is defined as C̄iq = Ciα̇ +Ciq for i = L, D and m.

2.2 Nonlinear Quasi-Steady Aerodynamic Model

Here a non-linear model for quasi-steady flow based on the above assumptions is con-

sidered. The dependence of longitudinal and lateral coefficients on state and control

variables is formulated as

Ci = Ci 0 (α,M, β) + C̄iq (α,M, q) · c q

2U∞

+Ciδ (α,M, δ) · δ (2.2)

for i = L,D, and m

Ci = Ci 0 (α,M, β) + Cip (α,M, p) · b p

2U∞

+ Cir (α,M, r) · c r

2U∞

+ Ciδ (α,M, δ) · δ

(2.3)

for i = Y, l, and n

As the applications presented range from the low-subsonic to transonic regimes, the

aerodynamic coefficients are formulated as non-linear functions of the Mach number.

The static terms, Ci 0, depend non-linearly on the angles of incidence. The dynamic and

control derivatives, while non-linear functions in the arguments, are linear with respect

to the body axis angular rates and control deflections, respectively. Additional simpli-

fications in the functional dependencies of dynamic derivatives might be inconsistent

when compared with experimental and computational findings, see e.g. [85].

The aerodynamic coefficients in Eqs. (2.2) and (2.3) are commonly obtained from

tunnel testing. The aerodynamic model is implemented in tables, with measured or

computed values. Forces and moments are tabulated as functions of the aircraft states

and control settings representing the expected flight envelope. Aerodynamic coefficients

are in wind axes, and the aircraft states feature the angles of incidence and sideslip,

α and β, the Mach number, M , and the body axis angular rates, p, q and r. All

required control deflections are also included. The format of the aerodynamic tables is

illustrated in Table 2.1. Several assumptions have led to the formulation used, limiting

its validity when confronted with uncommanded departures involving aerodynamic and

aircraft motion cross-coupling. In the general case, the six aerodynamic coefficients

would be function of all input variables in a coupled fashion, resulting in a very large

table. To illustrate, if five values are used to provide a coarse resolution for each

parameter in the table, the total number of table entries would be 59, which is of
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magnitude 2 million. This is not normally necessary, and a less coupled formulation

of the aerodynamic coefficients is used instead. Each term in the above equations is

formulated as dependent on three input variables. The main aerodynamic variables

are taken to be the angle of attack, α, and Mach number, M . Forces and moments

are assumed to depend on these variables in combination with each of the remaining

variables separately. The complete aerodynamic database is then divided into three-

parameter sub-tables. Let nx denote the number of values for the parameter x in the

table, and let Nc denote the number of aircraft control effectors. The dimension of the

complete database, ndb, is given by

ndb = nα · nM ·
(
nβ +

Nc∑

i=1

nδi +

3∑

i=1

nωi

)
(2.4)

where ωi indicates the body axis angular rates. For the same example illustrated above,

the total number of table entries would be less than two-hundred. However, a reasonable

aerodynamic database to cover the expected flight envelope can easily require one

hundred-thousand entries. When using the ”brute force” approach in combination to

high-fidelity aerodynamic models to fill the tables, an unrealistic time of 158 years was

estimated [13]. An alternative to the ”brute force” approach was proposed based on

sampling, reconstruction and data fusion of aerodynamic data [14].

α M β δele δrud δail . . . p q r CL CD Cm CY Cl Cn

x x x - - - - - - - x x x x x x
x x - x - - - - - - x x x x x x
x x - - x - - - - - x x x x x x
x x - - - x - - - - x x x x x x
x x - - - - x - - - x x x x x x
x x - - - - - x - - x x x x x x
x x - - - - - - x - x x x x x x
x x - - - - - - - x x x x x x x

Table 2.1: Aerodynamic database format [81]; ”x” indicates a column vector of non-zero
elements

Two scenarios were considered, based on a requirement for generating tables for

a completely new design and for updating the database of the existing configurations

which are being altered. In the first scenario, there is a requirement for a high fidelity

aerodynamic model which can be generated offline without the user waiting for the

database to be generated during an interactive session. The emphasis of the sampling

algorithm is on an efficient search for the non-linearities in the force and moment coef-

ficients. Two approaches to this sampling, based on the Mean Squared Error criterion

of kriging and the Expected Improvement Function [86, 87], were assessed, and are

described in the next section. In the second scenario, a designer is involved in an inter-
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active session. It is assumed that the aircraft geometry is incremented from an initial

design, and that a high-fidelity model is available for the initial design from the first

scenario. Data fusion based on co-kriging is then used to update the initial high-fidelity

aerodynamic model with a small number of additional calculations. In this scenario it

is assumed that the flow topology resulting from the initial geometry does not change

during the geometry increments. If this is not the case, e.g. the wing sweep angle

increases so that vortical flow starts to dominate at moderate angles, then either a new

initial geometry needs to be selected, or the interactive session needs to be suspended

so that a new high-fidelity model can be generated under the first scenario.

The static dependencies of the aerodynamic coefficients are stored in the (α,M, β)

sub-table, which is referred to hereafter as the baseline table. This table provides

a fundamental overview of the aerodynamic loads throughout the flight envelope of

interest, and has the potential to represent non-linear phenomena such as static stall,

compressibility effects and onset and breakdown of vortical flows. The baseline table

is generally the most expensive to generate and, if not otherwise stated, it is obtained

using sampling techniques. Starting with a high-fidelity aerodynamic model based on

the Euler or RANS equations, the dependencies of the control surface deflections are

treated as geometry increments with respect to the initial design, and sub-tables are

populated using co-kriging.

2.3 Kriging-Based Framework

The framework for the generation of a computationally efficient approximation of aero-

dynamic loads determined from expensive high-fidelity calculations consists of the fol-

lowing steps:

1. The independent variables and their range are specified, and initial sampling

is used to begin the procedure and to provide a quick overview of aerodynamic

data throughout the parameter space. Aerodynamic data are calculated at preset

initial sample points using aerodynamic models appropriate for the given task.

2. A surrogate model based on kriging interpolation fitting data in the form of

input/output combinations is generated.

3. The parameter space is iteratively refined by adding sample points at untried

locations to improve the accuracy and verify the robustness of the surrogate

model.

4. If aerodynamic data have been obtained using different fidelity models, data fusion

is then used to combine the low- and high-fidelity predictions in one single dataset

of forces and moments.
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2.3.1 Initial Sampling

The task of the initial sampling is to provide an informative picture of the function

at minimum cost [88]. When confronted with a deterministic computer simulation as

opposed to wind-tunnel or flight tests, a given set of input parameters always produces

the same aerodynamic data. Without information on the function, a design optimal

distribution method can only apply space-filling sampling, in the sense that all areas

of the parameter space are sampled. Several space-filling methods requiring only infor-

mation on the domain are available in the literature, such as Monte Carlo [89], latin

hypercube sampling [90] and Sobol [91]. A major disadvantage of space-filling methods

is that samples are randomly selected, can cluster together and each high-fidelity sim-

ulation may not provide significant additional information. To overcome the potential

lack of uniformity, optimal latin hypercube sampling [92] ensures a more uniform design

of experiment obtained by optimizing a spreading criteria, e.g. minimum distance or

correlation, of the sample points. However, sampling methods which include informa-

tion on the full-order function in sample distribution are preferable. These methods

are named a posteriori sequential sampling methods, as opposed to a priori sampling

used for the space-filling methods. The set of sample points is iteratively refined and

an additional high-fidelity simulation is run for a combination of input parameters in

which the model exhibits maximum error. The drawback is that the high-fidelity sim-

ulations are launched one at a time, whereas they would be launched in parallel with

an a priori method.

The a priori approach is first considered to initialize the procedure. Each three-

parameter sub-table defines a three-dimensional domain. An initial set of ten sample

points is generated as follows. Eight samples are placed at the vertices of the parameter

space, and two sample points are located within the parameter space, typically at the

highest value of the angle of attack and for a given Mach number. This choice is sound

because it avoids the need for extrapolation, and high-fidelity simulations are located in

regions where aerodynamic loads are likely to exhibit non-linearities due to vortical flow

developments, compressible effects and their mutual interaction. The simulations at the

ten sample points provide an initial view of the behaviour of the aerodynamic data.

A sequential sampling approach is then considered to iteratively refine the parameter

space and to verify the accuracy of the approximation model when including additional

data.

2.3.2 Kriging Interpolation

Kriging interpolation is used to approximate non-linear multi-dimensional deterministic

functions by interpolating available sampled data, typically, from a full-order simula-

tion. It is a parametric approach which presumes that the global functional form of the

relationship between the response and the design variables is known.Once constructed,
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kriging is a computationally cheap model to be used in place of the expensive full-

order simulation for prediction of the function at untried points. Kriging has been

successfully applied in different areas and, in particular, to problems involving fixed-

and rotary-wing aerodynamics [17,18].

Here, the mathematical formulation of the aerodynamic coefficients in Eqs. (2.2)

and (2.3) represents the function to be approximated with kriging interpolation. With

suitable assumptions, the 4+Nc aerodynamic terms have been expressed as a function

of three input parameters. To illustrate, consider the baseline table with nα· nM · nβ
entries and the requirement for a high-fidelity representation of the static aerodynamic

force and moment coefficients, Ci 0 for i = L,D,m, Y, l and n. From a small ensemble

of sample points, kriging interpolation is used to predict the aerodynamic data at the

nα· nM · nβ flight conditions. For convenience, let y be a single scalar function represen-

tative of each aerodynamic coefficient in turn, y = Ci. Assume a given set of nsp numer-

ical samples, [x1, . . . ,xnsp ]
T , where xi = [αi, Mi, βi]

T is a vector of input parameters,

and the corresponding full-order aerodynamic coefficients, yx = [y(x1), . . . , y(xnsp)]
T .

Initial samples are selected according to the above guidelines. In kriging, the unknown

function of interest y is assumed to be a realization of a stochastic process

ŷ (x) = f (x) + Z (x) (2.5)

The first term is a low-order regression function (constant, linear or quadratic) and

the second term is a stochastic process, assumed to be Gaussian and with variance

σ2. The regression model, f (x), realizes a globally valid trend function, and the Z (x)

adjusts the prediction for local deviations from f (x), and guarantees that the kriging

predictor ŷ gives the exact value of y at a sample location. The assumption that the

system response in Eq. (2.5) is a random process is made because the deviations from

the regression model can resemble the realization of a stochastic process [15]. The

covariance matrix of Z (x) is a measure of how strongly correlated two points are, and

is equal to the variance σ2 multiplied by the correlation matrix, R. The correlation

matrix of the samples has dimensions nsp × nsp, and each element is given by

Rij(p, xi, xj) =
∏

k

scf
(
pk, x

(k)
i − x

(k)
j

)
(2.6)

where scf is a user defined spatial correlation function, and x
(k)
i denotes the k-th

component of the i-th sample point. This matrix is dense symmetric positive definite

with diagonal elements equal to one, and becomes ill-conditioned when samples are

too close together. The order of the kriging correlation matrix depends only on the

number of samples considered, nsp, and not on the dimension of the input vector, in

this case nα· nM · nβ. Several correlation functions are available, such as exponential,

linear and spline functions, and the choice should be motivated by the underlying
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phenomenon being approximated [86]. For a continuously differentiable problem, the

spline function should be considered because it has a parabolic behaviour near the

origin. To model physical phenomena, which usually have a linear behaviour near the

origin, the use of exponential or linear functions was suggested [93]. The exponential

is the most common correlation function, which is adapted to a wide range of physical

applications. Depending on the correlation function selected and for a large dimension

of the input vector, x, the corresponding correlation matrices can be ill-conditioned,

which is an issue when using kriging for high-dimensional interpolation. In this study,

the correlation function used is the exponential. The regression model is formulated as a

low-order function, f (x) = f(x)T β, with the two vectors having dimension equal to the

number of basis functions of the selected polynomial, Nbasis. Here, the regression model

was taken as a linear function and, for the example illustrated, f(x) =
[
1, α, M, β

]T
. A

matrix F(x), of dimension nsp×Nbasis, is constructed from the vectors f(x), where the

i-th row corresponds to the evaluation of the basis functions at the i-th sample input.

With the generalized least-squares estimates of β and σ, denoted by β̂ and σ̂, the

unknown correlation parameters pk are found by maximizing a likelihood function [16],

which represents the probability that the stochastic process Z (x) produced the value

of the aerodynamic coefficients at the sampled data points. The estimated pk represent

the fitting parameters that are most consistent with the sampled data. The kriging

interpolation of the function y(x) is given as

ŷ(x) = f(x)T β̂ + r(x)T
(
R−1(yx − F β̂)

)
(2.7)

where the correlation vector, written as

r(x) =
[
R11(p,x1,x), . . . , Rnsp1(p,xnsp ,x)

]T
(2.8)

represents the correlation between the provided set of sampled points [x1, . . . ,xnsp ]
T

and an arbitrary unsampled location x in the parameter space. The parameters of the

kriging model are determined from a small ensemble of expensive numerical simulations,

likely obtained from a CFD solver, and the system response is approximated at an

arbitrary unsampled location not included in the initial set at the expense of two scalar

products on f(x) and r(x), as shown in Eq. (2.7). A Matlab toolbox implements the

kriging interpolation [86], and is freely available 1.

2.3.3 Iterative Sampling

The quality of the kriging interpolation depends on the number of sample points and

their location, which is case-dependent. For a systematic methodology to be efficient

and reduce the uncertainty in the prediction of the full-order function, there is a need

1http://www2.imm.dtu.dk/~hbn/dace/ [retrieved March 19, 2012]
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to minimize a suitable figure of merit. Two methodologies are currently adopted, based

on the root Mean Squared Error (MSE) and Expected Improvement Function (EIF).

The goal of both methodologies is to improve the accuracy of the kriging model at

untried sample points, adding additional samples until a criterion for termination is

fulfilled.

The root Mean Squared Error, ϕ, is referred to as the standard error of the kriging

model and is a measure of uncertainty in the prediction. It is evaluated as

ϕ2(x) = σ2
(
1 − r(x)T R−1 r(x) + uT

(
FT R−1 F

)−1
u
)

(2.9)

with the vector u(x) = FT R−1 r(x) − f(x) and the process variance

σ2 =
1

nsp

(
yx − F β̂

)T
R−1

(
yx − F β̂

)
(2.10)

By construction, the MSE is zero at a sample point and increases as the distance

between samples increases, with its maximum value being σ. To further improve the

kriging interpolation, an additional high-fidelity simulation is run at the untried sample

point x where the MSE is maximum. This criterion seeks for a global approximation

of the exact function because it is driven by the weighted distance correlation for the

error terms.

The Expected Improvement Function can be used to concentrate new sample points

around the global minimum or maximum. This is very useful when, for instance,

the maximum lift coefficient is of interest. The kriging predictor in Eq. (2.5) can be

interpreted as a random variable with mean given by the predictor and variance given

by the mean standard error. A probability can then be computed so that the system

response at any point will fall below (or above) the current minimum (or maximum).

The kriging model is iteratively refined placing an additional high-fidelity simulation

at the untried sample point where the EIF has a maximum. This method is suited for

searches of the global maxima or minima but is unable to find local maxima or minima.

A good practice is the use of a combined global and local search [94].

As a high-fidelity evaluation of the system response is obtained in a new suitable

sample point, the procedure is repeated until the maximum error in the prediction

is below a threshold. The number of high-fidelity simulations is likely to be limited

by constraints on computational time and resources, and typically this requirement is

regarded as an additional criterion to stop the sampling procedure.

2.3.4 Data Fusion

The aerodynamic coefficients can be obtained using different aerodynamic sources.

Data fusion combines aerodynamic predictions from different sources. Consider that

data are available from two sources, which are, respectively, cheap (low-fidelity) and
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expensive (high-fidelity) to evaluate. The cheap samples are considered to provide

information at least about the trend of the target function, whereas the expensive

samples give quantitative information. The cheap estimates are usually available in

more locations than the expensive ones. A Kriging function η̂ is calculated from the

samples of the cheap aerodynamic evaluations. This Kriging function is then evaluated

at the locations at which expensive predictions are available, η̂(xi). The vector of

the input parameters at the expensive samples, xi, is augmented by the evaluation

of the kriging function for the cheap samples. In the case of the baseline table, the

augmented vector would have dimension four and be x
aug
i = [αi, Mi, βi, η̂(xi)]

T , with

corresponding aerodynamic coefficients yi = y(xi) for each of the nsp sample points.

A Kriging function is calculated for these augmented samples, η̂(xaug
i ), with the extra

component bringing information to the correlation calculation from the cheap samples.

2.4 Hierarchy of Aerodynamic Models

A prerequisite for realistic predictions of the stability and control characteristics of

an aircraft is the availability of a complete and accurate aerodynamic database. Here

aerodynamic models are used as the source of the force and moment information. The

choice of which aerodynamic model to use is based on available information and demand

for cheap estimates or for detailed analyses. The higher the fidelity of the aerodynamic

model to be used, the higher the execution time is normally. In the early phases of

aircraft development, the geometry is defined with limited fidelity which might render

expensive methods of limited use. More comprehensively, the review paper of Da Ronch

et al. [81] examines the wide range of applications accessed by the use of different fidelity

aerodynamic models, see also Appendix A. A number of models are used in this thesis

and these are now summarized.

2.4.1 Semi-Empirical Method

The Data Compendium (DATCOM) is a document of more than 1500 pages covering

detailed methodologies for determining stability and control characteristics of a vari-

ety of aircraft configurations. In 1979, it was programmed in Fortran and renamed the

USAF stability and control digital DATCOM [6]. Digital DATCOM is a semi-empirical

method which can rapidly produce the aerodynamic derivatives based on geometry de-

tails and flight conditions. This code was primarily developed to estimate aerodynamic

derivatives of conventional configurations [95], and to provide all the individual com-

ponent contributions and the aircraft forces and moments. A design uncertainty factor

is often needed to account for validity of aerodynamic characteristics estimated using

this method.
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2.4.2 Linear Potential Solver

Based on a Vortex-Lattice Method (VLM), TORNADO 2 is an open source Matlab im-

plementation of a modified horse-shoe vortex singularity method for computing steady

and low reduced frequency time-harmonic unsteady flows over wings. It can predict

aircraft stability and control aerodynamic derivatives. The lifting surfaces are created

as unions of thin, not necessarily flat, quadrilateral surface segments. The effect of aero-

foil camber is modeled by surface normal rotation, which is also used to model leading-

and trailing-edge control surfaces deflection. The steady wake can be fixed in the body

coordinate system or can follow the free stream. The influence of compressibility is

included from Prandtl-Glauert similarity [96], and zero-lift drag estimates are obtained

by Eckert’s flat plate analogy. A fuselage can be modelled using a combination of flat

plates or the slender body theory developed by Munk [97].

2.5 CFD Flow Solver

Due to the collaborative nature of the work presented in this thesis, several CFD

solvers were used. A more detailed description is given for the CFD solver of the

University of Liverpool, which has been modified by the author for the simulation of

the gust loads, see Appendix B for more details. A general overview is provided for

the remaining CFD solvers used throughout the work, with emphasis on differences in

the numerical implementation. Deviations in the numerical predictions obtained using

different solvers are therefore expected around complex geometries with challenging

flow conditions.

2.5.1 PMB (University of Liverpool)

The Euler and Reynolds-averaged Navier-Stokes (RANS) equations are discretised on

curvilinear multi-block body conforming grids using a cell-centred finite volume method

which converts the partial differential equations into a set of ordinary differential equa-

tions. The equations are solved on block structured grids using an implicit solver. A

wide variety of unsteady flow problems, including aeroelasticity, cavity flows, aerospike

flows, delta wing aerodynamics, rotorcraft problems and transonic buffet have been

studied using this code. A validation against flight data for the F-16XL aircraft has

also been performed [9]. The main features of the CFD solver are detailed in Badcock

et al. [98].

The three-dimensional Navier-Stokes equations may be written in non-dimensional

conservative form as

∂W

∂ t
+
∂
(
Fi − Fv

)

∂ x
+
∂
(
Gi −Gv

)

∂ y
+
∂
(
Hi −Hv

)

∂ z
= 0 (2.11)

2http://www.redhammer.se/tornado/ [retrieved March 19, 2012]
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where W = (ρ, ρ u, ρ v, ρw, ρE)T is the vector of conserved variables, ρ is the density

and u, v, and w are the components of velocity given by the Cartesian velocity vector

U = (u, v, w)T . The total energy per unit mass is E. The superscripts (i) and (v)

denote the inviscid and viscous components of the flux vectors, F (x-direction), G

(y-direction) and H (z-direction). The inviscid flux vectors, Fi, Gi and Hi, are given

by

Fi =
(
ρ u, ρ u2 + p, ρ u v, ρ uw, u (ρE + p)

)T

Gi =
(
ρ v, ρ v u, ρ v2 + p, ρ v w, v (ρE + p)

)T
(2.12)

Hi =
(
ρw, ρw u, ρw v, ρw2 + p, w (ρE + p)

)T

while the viscous flux vectors, Fv, Gv and Hv, contain terms of the heat flux and

viscous forces exerted on the body, and can be represented by

Fv =
1

Re
(0, τxx, τxy, τxz, u τxx + v τxy + w τxz + qx)

T

Gv =
1

Re
(0, τxy, τyy, τyz, u τxy + v τyy + w τyz + qy)

T (2.13)

Hv =
1

Re
(0, τxz, τyz, τzz, u τxz + v τyz + w τzz + qz)

T

The stress tensor components, τij, and the heat flux vector components, qi, can be

found in numerous text books, e.g. Anderson [99]. The Navier-Stokes equations are

discretised using a cell-centred finite volume approach. The computational domain

is divided into a finite number of non-overlapping control volumes and the governing

equations are applied to each cell in turn. A fully implicit steady solution of the RANS

equations is obtained by advancing the solution forward in time by solving the discrete

non-linear system of equations

Wn+1
ijk −Wn

ijk

∆ t∗
= − 1

Vijk
Rijk

(
Wn+1

ijk

)
(2.14)

where Vijk denotes the cell volume, Wijk represents the fluid variables andRijk(W
n+1
ijk )

the flux residuals. The pseudo time step is indicated by ∆ t∗. Equation (2.14) repre-

sents a system of non-linear algebraic equations and to simplify the solution procedure,

the flux residual is linearised in time. The flux residual is the discretisation of the

convective terms, given here by Osher’s approximate Riemann solver [100], MUSCL

interpolation [101], and Van Albada’s limiter. An iterative Generalised Conjugate Gra-

dient method is used to solve the linear system. A Block Incomplete Lower-Upper

factorisation is used as preconditioner for the system of equations.

The implicit dual-time method proposed by Jameson [102] is used for time-accurate

calculations. The solution iterates in pseudo time for each real time step to achieve
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convergence. In the current application, a key functionality of the CFD solver is the

ability to move the mesh conforming to the motion of the body. Rigid body motions can

be treated by moving the mesh rigidly in response to the applied sinusoidal motion.

The mesh is deformed once per real time step during the unsteady calculation. A

curvilinear time dependent formulation is used to formulate the mapping between the

computational space and the physical space.

The steady state solver for the turbulence model is formulated and solved in a

similar manner to the mean flow as described, with the vector W replaced by the

equivalent turbulent vector and an equivalent substitution for the flux residual. The

eddy viscosity is calculated from the turbulent quantities as specified by the model and

is used to advance the mean flow solution. This new mean flow solution is then used

to update the turbulence solution, freezing the mean flow values. Several turbulence

models are implemented in the PMB solver, including algebraic, one-equation and two-

equation models. In this study, the model used is k−ω with Pω enhancer proposed by

Brandsma et al. [103] for the TCR case.

Control surfaces are blended into the geometry following the approach given in [104].

Mesh block faces are placed on the control surfaces and the mesh points on these faces

are deflected to define the control surface mode shapes. After the surface grid point

deflections are specified, transfinite interpolation is used to distribute these deflections

to the volume grid. Mode shapes are defined for the control surface deflections [105].

Each mode shape specifies the displacement of the grid points on the aircraft surface

for a particular control surface.

2.5.2 TAU (German Aerospace Center)

The DLR TAU code [106, 107] is a modern massively parallel software system for the

simulation of flows around complex geometries from low subsonic to hypersonic flow

regimes. The different modules of TAU can be used stand-alone or in a more efficient

way within a Python scripting framework which allows for inter-module communica-

tion without file I/O by using common memory allocations. The unsteady compressible

RANS flow solver is based on hybrid unstructured grids with a finite volume discretiza-

tion. The flow solver uses an edge-based dual-cell approach, either cell-vertex or cell-

centred, employing either a second-order central scheme or a variety of upwind schemes

with linear reconstruction for second order accuracy.

As for the PMB solver, unsteady simulations use Jameson’s dual-time-stepping

method [102] to integrate the equations in the time-domain. Additionally, the solver re-

spects the geometric conservation law, and bodies which are deforming and in arbitrary

motion can be simulated. For the pseudo time stepping various explicit Runge-Kutta

and a semi-implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme are avail-
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able for enhancing convergence acceleration with a geometrical multi-grid algorithm

and local time-stepping.

TAU includes an adjoint-solver for gradient based numerical shape optimization.

The discrete adjoint method [108] consists of the explicit construction of the exact

flux Jacobians of the spatial discretization with respect to the unknown flow variables

allowing the adjoint equations to be formulated and solved, and is an important part

of the linear frequency domain solver and error estimation methods.

2.5.3 COSA (University of Glasgow)

The structured multi-block Navier-Stokes solver COSA is an explicit multigrid finite

volume cell-centered code. It solves the integral conservation laws in generalized curvi-

linear coordinates making use of a second order discretisation method. The discreti-

sation of the convective fluxes is based on Van Leer’s MUSCL extrapolations and the

approximate Riemann solver of Roe’s flux difference splitting. The discretisation of

the viscous fluxes uses centered finite differences. The set of nonlinear algebraic equa-

tions resulting from the spatial discretisation of the conservation laws is solved with an

explicit approach based on the use of a four-stage Runge-Kutta smoother. The con-

vergence rate is greatly enhanced by means of local time-stepping, variable-coefficient

central implicit residual smoothing and a full approximation storage multigrid algo-

rithm. When solving problems at very low flow speed, computational accuracy and

high rates of convergence are maintained by using a carefully designed low-speed pre-

conditioner [109].

In the case of unsteady problems, Jameson’s dual-time-stepping method [102] is

used to integrate the equations in the time-domain. The interested reader is referred to

references [109–111] for further details on the COSA solver and a thorough validation

of its inviscid and viscous capabilities for steady and unsteady problems.

2.5.4 Cobalt

The Cobalt code solves the unsteady, three-dimensional and compressible Navier-Stokes

equations. The Navier-Stokes equations are discretised on arbitrary grid topologies

using a cell-centered finite volume method. Second order accuracy in space is achieved

using the exact Reimann solver of Gottlieb and Groth [112] and least squares gradient

calculations using QR factorization. To accelerate the discretized system, a point-

implicit method using analytic first-order inviscid and viscous Jacobian is used. A

Newtonian sub-iteration method is used to improve time accuracy of the point-implicit

method. The method is second order accurate in time. Tomaro et al. [113] converted

the code from explicit to implicit, enabling CFL numbers as high as 106. Cobalt uses

an arbitrary Lagrangian-Eulerian formulation and hence allows all translational and

rotational degrees of freedom. For the control surface simulations, an overset grid
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capability is available. The code can simulate both free and specified six degrees of

freedom motions.

2.6 Calculation of Dynamic Derivatives

The estimation of dynamic derivatives is obtained by imposing a forced sinusoidal

motion around the aircraft centre of gravity. For the computation of the longitudinal

dynamic derivative values from the time-histories of the forces and moments, it is

assumed that the aerodynamic coefficients are linear functions of the angle of attack,

α, pitching angular velocity, q, and rates, α̇ and q̇. To illustrate, the increment in the

longitudinal aerodynamic coefficients (lift, drag and pitching moment) with respect to

the mean value during the applied pitching sinusoidal motion is formulated as

∆Cj = Cjα ∆α + Cjα̇

c

2U∞

α̇ + Cjq
c

2U∞

q + Cjq̇

(
c

2U∞

)2

q̇ (2.15)

for j = L,D, and m

The harmonic motion in pitch defines the kinematic relations for the angle of attack,

pitching angular velocity and rate as

∆α = αA sin (ω t)

α̇ = q = ω αA cos (ω t) (2.16)

α̈ = q̇ = −ω2αA sin (ω t)

Eq. (2.15) can then be rewritten as

∆Cj = αA C̄jα sin (ω t) + αA k C̄jq cos (ω t) (2.17)

where k = ω c/(2U∞) indicates the non-dimensional reduced frequency of the applied

motion. The in-phase and out-of-phase components of ∆Cj, respectively indicated as

C̄jα and C̄jq [114], are defined as

C̄jα =
(
Cjα − k2Cjq̇

)
(2.18)

C̄jq =
(
Cjα̇ + Cjq

)
(2.19)
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The dynamic derivative values can be calculated taking the first Fourier coefficients of

the time history of ∆Cj over nc cycles

C̄jα =
2

αA nc T

∫ nc T

0
∆Cj (t) sin (ω t) dt (2.20)

C̄jq =
2

k αA nc T

∫ nc T

0
∆Cj (t) cos (ω t) dt (2.21)

where T = 2π /ω is the period of one cycle of unsteadiness. The model formulation

given in Eq. (2.15) is adequate for aircraft operating at low angles of attack or in lin-

ear and steady aerodynamic flight regimes, with the out-of-phase approximating well

the aerodynamic damping. However, many applications of common interest are in the

transonic speed range and high angle of attack [114,115]. Under these conditions, the

non-linear unsteady aerodynamic behaviour may not be well predicted using the above

linear model, and more advanced mathematical models are then required [38, 39, 56].

The first harmonic is an important term even under conditions where higher order terms

might be required. Due to the orthogonal nature of the model series, the first harmonic

remains unchanged when higher order terms are required to model the non-linear aero-

dynamic behavior. The in-phase component, C̄jα, is comprised of a static derivative

and a rotational derivative, whereas the out-of-phase component, C̄jq , includes a ro-

tary derivative and a translation acceleration derivative. The frequency influence is

accounted for explicitly in the equations for the in-phase component, while the equa-

tions for the out-of-phase component used to determine the damping derivatives do not

include the frequency effect. Models for an aircraft performing a one degree of freedom

oscillatory motion in either roll or yaw can be developed in a similar fashion to that

for the pitching oscillations [116,117].

Two techniques to post-process time-domain sampled data obtained from numerical

investigations have been used. First, the transformation to the frequency domain is

considered to gain insights into the frequency spectra of aerodynamic loads. Then, a

regression-based approach is addressed. In the present study and in all test cases, no

significant difference in dynamic derivative values was obtained from the use of the two

implemented post-processing techniques.

Frequency domain analysis has many advantages and is currently used in different

research areas. The computation of the in-phase and out-of-phase components of the

aerodynamic coefficients is performed by a numerical technique [118] applied to the last

cycle of the steady harmonic outputs. The transformation of the sampled time-domain

data into the frequency domain is achieved by an approximation of the finite Fourier

integral. The finite Fourier integral of a continuous scalar time function, x (t), on a
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finite time interval, t ∈ [0, T ], is defined as

F [x (t)] ≡ x̃ (i ω) =

∫ T

0
x (t) e−i 2πf t dt (2.22)

where i is the imaginary unit and f the dimensional frequency. The accuracy of the

transformation to the frequency domain can be improved using quadrature methods.

The finite Fourier integral is evaluated at discrete values of frequency, fk, evenly spaced

between zero frequency and the Nyquist frequency, fN , with a frequency resolution

equal to the reciprocal of the length of the time record [119]. Arbitrary frequency

resolution in a selected frequency band of interest can be obtained using the Chirp-

z transform [120], decoupling the frequency resolution from the length of the time

record. A cubic Lagrange polynomial interpolation scheme was implemented in the

current framework. A Chirp-z cubic approximation to the finite Fourier integral is also

available.

The system response, quantified by the amplitude ratio and phase lag with respect

to the input, can be determined by the transfer function between the input and the

output. For the pitching moment coefficient, this is

G (i ω) =
F [Cm (t)]

F [α (t)]
= R (ω) ei φ(ω) (2.23)

where R (ω) and φ (ω) are the amplitude ratio and phase lag, respectively, and are

defined as

R (ω) =
‖C̃m (i ω) ‖
‖α̃ (i ω) ‖ (2.24)

φ (ω) = ∠ C̃m (i ω) − ∠ α̃ (i ω) (2.25)

An alternative approach to the calculation of dynamic derivatives is to use the

solution of a least squares problem [121]. Within a general framework, Eq. (2.15) can

be formulated as

y = a0 + a1 x1 + a2 x2 + . . . + ap xp + e (2.26)

for a dependent variable, y, and the p independent arguments, x1, x2, . . . , xp. Here

a0, a1, . . . , ap are unknown parameters of the mathematical model and, e, the approx-

imation error. The dependent variable represents the dependency upon time of the

integrated aerodynamic coefficients. For small amplitude pitch oscillations, the inde-

pendent arguments are the instantaneous angle of attack and its rate of change. The

parameters of the mathematical model are estimated using the n values of the instan-

taneous numerical values of the p + 1 variables, y, x1, x2, . . . , xp. The vector of the

dependent variable sampled in time and the vector of unknown regression parameters

are denoted, respectively, by y = (y1, y2, . . . yn)
T and x = (x1, x2, . . . , xp)

T . The
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vector of approximation errors is e = (e1, e2, . . . , ep)
T and the matrix relating the

unknowns with the independent variables, of dimension n× (p+ 1), is given by

A =




1 a1 1 . . . ap 1

1 a1 2 . . . ap 2
...

...
. . .

...

1 a1n . . . apn




(2.27)

The corresponding linear regression model is given by

y = Ax + e (2.28)

The unknown vector of the approximate solution which minimizes the error is found

by minimizing the functional J = ‖e‖2 /2

∂ J

∂ xi
= 0, for i = 1, 2, . . . , p (2.29)

which results in
(
AT A

)
x = AT y. The use of the linear regression technique provides

the estimation of the aerodynamic derivatives stored in the vector x. In general, the

matrix A is non-square, with more rows than columns. Several numerical methods are

available to solve least squares problems [122], e.g., direct inversion of AT A, Gaussian

elimination, Moore-Penrose generalized inverse approach and the QR factorization.

However, the Moore-Penrose approach and the QR factorization are more accurate

than the Gaussian elimination and the direct inversion solutions. The cost of the QR

factorization is O
(
n2
)
, and the Moore-Penrose inversion involves O

(
n3
)
operations.
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Chapter 3

Dynamic Derivatives from

Unsteady Time-Domain CFD

Simulations

3.1 Introduction

The manoeuvre capabilities of combat aircraft have highlighted the limitations and

shortcomings of the conventional stability or aerodynamic derivative model for the rep-

resentation of the aerodynamic loads in the aircraft equations of motion [123]. An

important consideration is the presence of significant motion frequency effects on the

dynamic derivatives measured in small-amplitude oscillatory wind tunnel tests at higher

mean angles of attack. This frequency dependence cannot be reconciled with the sta-

bility derivatives model. Although these effects were first recognised in the 1950s, they

mostly played an insignificant role for conventional aircraft operating at benign con-

ditions. The changing interest in the determination of dynamic stability derivatives

due to the requirements of increasing angle of attack and Mach number during the

1970s is described in Orlik-Rückemann [124]. Modern combat aircraft are capable of

performing agile manoeuvres involving high pitch rates at extreme angles of attack.

Vehicles manoeuvring in this regime are subject to non-linear aerodynamic loads. The

non-linearities are mainly due to three dimensional separated flow and concentrated

vortices. The appearance of these features alters the dynamic behaviour, in ways that

are not predictable on the basis of linearised formulations of the aerodynamic forces

and moments. Accurate prediction of the non-linear airloads is of importance in the

analysis of aircraft flight motion and in the design of suitable flight control systems.

This work investigates the use of CFD in the prediction of dynamic derivatives for

aircraft configurations. The influence of motion parameters and flight conditions on the

damping values is considered. The traditional mathematical model of unsteady aerody-

namics based on the concept of dynamic derivatives is used to predict large amplitude
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oscillations. Results are presented for the Standard Dynamic Model (SDM) [125] and

the Transonic CRuiser (TCR) [80] geometries.

3.2 Test Cases

3.2.1 Standard Dynamic Model Aircraft

The Standard Dynamic Model (SDM) is a generic fighter configuration based loosely

on the F-16 planform. The model includes a slender strake-delta wing with leading-

edge extensions, horizontal and vertical stabilizers, ventral fins and a blocked-off inlet

(Fig. 3.1). Further details on the geometry can be found in Huang [125]. The SDM

configuration has been tested extensively at various wind tunnel facilities to compare

different measurement techniques [126–129].

51.8 deg

Side View

Length unit (m)

10 deg

Front View

2.1

47.5 deg

Top View

5.613 9.5

40 deg

Figure 3.1: SDM layout [125]

A block structured mesh was generated for a previous study [23] and is shown in

Fig. 3.2. The geometry was slightly simplified by removing the blocked-off intake and

the ventral fins. These were considered reasonable simplifications because the main

interest here is on the impact of the vortical flow developments on the upper lifting

surfaces. A fine Euler mesh was generated with 2.4 million points representing one

half of the SDM configuration. A coarse mesh for the full configuration was obtained

with 701 thousand points by omitting every second point in each direction. The lifting

surfaces all have sharp leading-edges. This allows the Euler equations to approximate

the development of vortical flow since the separation points are fixed at the leading-

edge. In this way, the Euler equations can correctly describe the transport of vorticity

and entropy from the leading-edge, along the vortex sheet, to the roll up into the

leading-edge vortices. However, it is well known that varying the grid refinement in

the leading-edge region alters significantly the solution [130]. Two grids were used to
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evaluate the impact of mesh refinement on the flow development and on the prediction

of dynamic derivatives.

The SDM model geometry has dimensions given in Table 3.1. The moment reference

point is taken at the centre of gravity of the wind tunnel model. Calculations are first

described for the coarse and half-fine mesh to investigate the mesh dependency. In

the following figures, findings for the coarse and half-fine configurations are presented

and indicated, respectively, by C and HF. The temporal resolution of the unsteady

CFD calculations is also addressed to demonstrate that results are well-converged with

respect to time step.

(a) Half-fine, 2.4 million points

(b) Coarse, 0.7 million points

Figure 3.2: Surface grid for the SDM model geometry [131]
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Parameter Value

S 0.1238m2

b 0.6096m
c 0.2299m
d 0.9429m

Table 3.1: Reference values of the SDM model geometry

3.2.2 Transonic CRuiser Wind Tunnel Model

The Transonic CRuiser (TCR) aircraft was designed, built and wind tunnel tested

within the SimSAC project [80] to highlight the difficulties in using engineering meth-

ods for aircraft design in the transonic regime, see also Appendix A.1. A multi-block

structured grid was generated at Liverpool for the half configuration with 8.5 million

points. The main characteristics of the mesh are illustrated in Figs. 3.3 and 3.4. The

mesh around the solid model and the symmetry plane are shown, with a high con-

centration of cells in the regions adjacent to the solid. The non-dimensional minimum

spacing normal to the solid wall is 2.5×10−6 which allows flows with Reynolds numbers

of around 2 million to be simulated. The tips of the wing and the canard of the TCR

model are both blunt, for which the same block topology was chosen. Here, a diamond

shaped block fits into the leading-edge and another at the trailing edge. The quality

of the cells in these two areas is slightly compromised in order to allow the C-blocking

around the wing.

Figure 3.3: Viscous grid of TCR wind tunnel model [131]
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Figure 3.4: Chordwise grid section on the wing

Experimental investigations of the aerodynamic characteristics at low speed and

up to 40◦ angle of attack were performed in the wind tunnel facilities at the Central

Aerohydrodynamic Institute, TsAGI. The T–103 wind tunnel is used for investigations

of unsteady aerodynamic characteristics in the low subsonic velocity range. The wind

tunnel has an open jet working section, of the continuous type, with an elliptical cross

section, 4.0×2.33m. Several configurations of the wind tunnel model were investigated

to allow consideration of the influence of single components (vertical tail and canard

wing on/off) on the overall performance. The approved test matrix contained a large

set of experimental measurements to get insights of static aerodynamic characteristics,

rotary and unsteady aerodynamic derivatives and unsteady non-linear aerodynamic

characteristics during large amplitude oscillations. The normal and lateral forces and

the moment coefficients from static and large amplitude oscillations were measured.

The mean values, in-phase and out-of-phase components of the force and moment

coefficients were measured from the rotary and oscillatory motions. Wind tunnel tests

were run at a freestream speed of 40m/s, which corresponds at sea level to a Mach

number of 0.117, and a Reynolds number, based on the mean aerodynamic chord of

the wind tunnel model, of 0.778 million. The moment reference point and the model

centre of gravity are coincident and located at 54.78% of the fuselage length from the

foremost point. Geometrical dimensions of the wind tunnel model are summarized in

Table 3.2.

3.3 Numerical Results

Numerical results are presented for the SDM model geometry and TCR wind tunnel

model. The flow is modelled using the Euler equations for the SDM. The unsteady

aerodynamic loads arising from forced periodic motions converge to a steady harmonic
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Parameter Value

S 0.3056m2

b 1.12m
c 0.2943m
d 0.1596m

Table 3.2: Reference values of the TCR wind tunnel model

response after the decay of the initial transient. The SDM has been investigated in

previous studies. Benchmarking of steady aerodynamic coefficients can be found in

Ghoreyshi et al [23]. A large set of results was computed and is presented for sinusoidal

pitching motions in the current thesis. A comparison of lateral dynamic derivatives

with experimental data is shown in reference [132]. For the TCR, dynamic derivatives

are predicted from the RANS equations based on small amplitude oscillatory motions

for several values of the reduced frequency up to high mean angles of attack. Large

amplitude oscillatory motions were also numerically simulated to investigate non-linear

effects of flow separation development at dynamic conditions. Then, the predicted

dynamic derivatives from small amplitude oscillations are used in the traditional flight

dynamics mathematical model to predict aerodynamic loads during large amplitude

maneouvers.

3.3.1 Standard Dynamic Model Aircraft

Results presented are limited to forced sinusoidal motions in pitch. Several combina-

tions of solver parameters were examined to find those needed for a numerically well

converged solution. Several experimental [133, 134] and numerical [135] investigations

were addressed to the determination of dynamic derivatives of the SDM geometry model

throughout the transonic regime and at low speed up to high angles of incidence. Wind

tunnel tests [136] were conducted to study the unsteady aerodynamic behaviour of an

airfoil sinusoidally oscillating in plunge for a range of reduced frequencies. However,

the range of motions performed in dynamic testing facilities is limited by wind tunnel

walls, kinematic and vibrational restrictions. The mass and moments of inertia of a

dynamic wind tunnel model must be as low as possible to achieve a favourable ratio

between the aerodynamic forces of interest and the additional inerital forces. The elas-

tic deformation of the tunnel model, on the other hand, must be as small as possible.

A constraint in dynamic tests is that the first eigenfrequency of the model should be

one order of magnitude above the excitation frequency (e.g., above 15Hz) in order to

avoid the excitation of higher frequencies in the model [137]. Explorative studies were

undertaken to assess the variation of the dynamic derivatives with reduced frequency

and amplitude of the applied motion. Each study focuses primarily on the effect of one

motion parameter, as shown in Table 3.3.
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Set 1 Set 2 Set 3 Set 4
M α0 k, (α0) αA, (α0, k)

Table 3.3: Description of the SDM test cases; terms in parentheses indicate secondary depen-
dencies of the investigations

3.3.1.1 Mach Number

The dependency of the damping-in-pitch derivative on Mach number is evaluated in

subsonic and high transonic regimes. The Mach number varies between 0.4 up to 1.1

with a finer step increment near the sonic region where a significant change in damping

was experimentally observed [133, 134]. Results are for the coarse and half-fine grids.

The reduced frequency is held constant. At high speeds (M ∼ 1), the dimensional

frequency of motion is an order larger than at low speeds (M ∼ 0.1), with a significant

impact on wind tunnel requirements. Numerical predictions are compared with results

obtained in the large transonic wind tunnel at TsAGI [134] . With a flowfield featuring

the formation of shock waves and their time-dependent motion, a time step study

was undertaken to evaluate the influence of the time resolution on the flow solution.

Two sets of unsteady calculations were performed. First, the numerical solution was

computed at 20 time steps uniformly distributed in one harmonic period (∆t∗ = 3.18)

and 3 cycles were simulated. Then, the number of time steps per cycle was increased

to 80 (∆t∗ = 0.796), retaining the same number of cycles. Tests verified that an

adequate convergence of the pseudo iterations was achieved at each physical time step.

The influence of the time step is shown in Fig. 3.5 for the coarse grid, and shows that

20 time steps per pitching cycle are adequate for these cases. A similar conclusion holds

valid for the fine grid.

The variation of the damping-in-pitch derivative with Mach number is shown in

Fig. 3.6. Results for the two temporal resolutions were virtually identical and only one

data set is herein included. Numerical results are in good agreement with experimental

measurements. An increase in the damping is predicted for increasing Mach numbers,

with the largest values in the sonic range. Beyond the transonic dip, where some mesh

dependence is observed, the numerical results predict the reduction of the damping

value.

At low speeds, variations of the pressure coefficient in the region of the wing leading-

edge were in phase with the harmonic motion. Variations over the horizontal tailplane

lag behind the angle of attack change because of the lever arm from the rotation axis

and the finite time to convect downstream changes in the flowfield. At higher speeds,

the periodic motion of the shock wave forming at the wing leading-edge is found to

have a phase lag with respect to the forced motion. During the upstroke, the shock

wave near the leading-edge bends toward the wing tip and its downstream location
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Figure 3.5: Pitching moment coefficient loops for the SDM model geometry at two values
of Mach number; the term ”tsc” indicates the number of physical time steps per cycle of
unsteadiness
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Figure 3.6: Influence of Mach number on the pitch damping derivative for the SDM model
geometry; experimental data were obtained in TsAGI [134]

moves until 70–80% of the tip chord and, eventually, interacting with the shock wave

at the trailing-edge. A similar pattern is observed on the lower side of the wing surface

for decreasing angle. Moving from the wing tip inward, the strength of the shock wave

forming at the leading-edge is reduced while an increase in strength is observed for the
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shock wave at the trailing-edge. The low pressure region on the horizontal tailplane

reaches its maximum downstream location up to about 50% of the local chord. Davari

and Soltani [138] performed supersonic visualizations to measure the motion of shock

waves generated from several components of the SDM geometry model in pitching

oscillations, and found that a relationship exists between the shape of the hysteresis

loop of the shock angle and that of the normal force coefficient. The effect of reduced

frequency was observed to be similar in both shock wave and force coefficient hysteresis

loops.

In the absence of boundary-layer separation, the motion of the shock wave is the

essential feature that makes the unsteady transonic problem non-linear [139]. A non-

linear system transfers energy to a range of frequencies higher than the frequency

being forced by the harmonic change in the angle of attack. For low angles of incidence

and amplitude, a linear or quasi-linear response is obtained in terms of integrated

aerodynamic loads, as suggested in Fig. 3.5. The system response, quantified by the

amplitude ratio and phase lag with respect to the input, can be determined by the

transfer function of the input-output pair. For the pitching moment coefficient, this is

G (i ω) =
F [Cm (t)]

F [α (t)]
= R (ω) ei φ(ω) (3.1)

where R (ω) and φ (ω) are the amplitude ratio and phase lag, respectively, and defined

as

R (ω) =
‖C̃m (i ω) ‖
‖α̃ (i ω) ‖ (3.2)

φ (ω) = ∠ C̃m (i ω) − ∠ α̃ (i ω) (3.3)

The amplitude ratio is analogous to the steady-state pitching moment curve slope

with respect to the angle of attack. The Fourier transform of the harmonic change

in angle of attack, α̃ (i ω), has a non-zero component only at the corresponding forced

oscillation, ω̄. It is then possible to quantify the variation of the transfer function at the

oscillatory frequency of interest, G (i ω̄), for several values of Mach number, as shown

in Fig. 3.7. At low speeds, both amplitude ratio and phase angle are constant and the

pitching moment lags behind the angle of attack change by about twenty degrees. Due

to compressibility effects, the amplitude ratio increases continuously until a sudden

drop is observed at the higher end of the Mach range. The variation in phase angle

indicates that the pitching moment coefficient has an increasing phase lag with respect

to the angle of attack. The phase lag appears to be nearly forty-five degrees at the

Mach number which corresponds to the largest aerodynamic damping (see Fig. 3.6),

and is indicated in figure by a vertical line. In case of free pitching oscillations, the free

response would be highly damped.
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Figure 3.7: Amplitude ratio, R (ω̄), and phase angle, φ (ω̄), between the fundamental harmonic
of the angle of attack and the fundamental harmonic of pitching moment coefficient; ω̄ indicates
the oscillatory frequency of the applied forced motion

3.3.1.2 Mean Angle of Incidence

Several independent experimental investigations [128,129] were conducted to assess the

variation of the dynamic derivatives with the mean angle of incidence. Measurements

were obtained in different wind tunnel facilities at low speed. To benchmark computed

values, experimental data of the normal force damping derivative are taken from in-

vestigations conducted in the continuous, open circuit wind tunnel of the aerodynamic

laboratory at IHU, Iran [128]. For damping-in-pitch, experimental data were collected

in the low speed, closed circuit Ankara wind tunnel [129].

As the incidence is increased, a complex interaction of the strake and wing vortices

develops, and this is shown in Fig. 3.8. The investigation was performed by the author

and published in a previous work [23]. At ten degrees, the vortices form, remain

coherent and do not interact over the airframe. At fifteen degrees, the two vortices wind

around each other towards the trailing-edge of the wing and the breakdown location of

the wing vortex moves closer to the trailing-edge. At twenty degrees, the wing vortex

appears to breakdown quickly after formation, whereas the strake vortex is coherent for

longer. Finally at thirty degrees there is no sign of coherent vortices. Consistent with

a number of experimental investigations [140], the location of the vortex breakdown

was found to fluctuate significantly when positioned over the wing. Unsteadiness in the

axial location of the vortex breakdown impacts the aerodynamic loads, in particular

the pitching moment, motivating in the current study the simulation of the unsteady

flow around the aircraft model at fixed-attitude for several values of the angle of attack.
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(a) 10deg incidence (b) 15deg incidence

(c) 20deg incidence

Figure 3.8: Flow field visualization for the SDM model geometry at Mach number of 0.3

One of the most important factors in the execution of the unsteady calculations is

the choice of the non-dimensional time step. The time step should be small enough to

adequately resolve the unsteady fluctuations of the flow, but large enough not to in-

crease excessively the required computational resources. Without any prior knowledge

of the value of the important frequencies in the flow, three values of the non-dimensional

time step were selected, equal to 0.01, 0.005 and 0.001. The unsteady calculations per-

formed by the author used five thousand, ten thousand and fifty thousand real time

steps for a non-dimensional time duration of fifty, which corresponds to about 1.7 sec-

onds based on the mean aerodynamic chord and freestream speed. The vortices were

observed to be highly unsteady with periodic fluctuations in the axial direction. The

corresponding unsteadiness observed in the pitching moment is shown in Fig. 3.9 at

twenty degrees incidence. Unsteadiness in the moment coefficient for the coarse grid

is at a much lower amplitude than that for the half-fine grid, suggesting that the grid
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density on the coarse grid above the wing might be not adequate to resolve the dy-

namics of the vortex breakdown at this angle. Results for the coarse grid are virtually

identical for all temporal resolutions. High-frequency fluctuations at a primary non-

dimensional frequency of 0.2 characterize the half-fine grid, due to the frequency of

the vortex breakdown motion. However, high frequency variations due to the natural

unsteadiness of the flow are at a lower amplitude than the variations due to the oscil-

latory motion. These can interact with each other in ways not predictable on the basis

of linear or linearized theories at higher angles of incidence, and hence the importance

of investigating the effect of varying the amplitude of the forced motion.
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Figure 3.9: Fixed-geometry unsteady calculations for the SDM model geometry at a Mach
number of 0.3 and angle of attack of twenty degrees; the term ”ts” indicates the number of real
time steps; horizontal thick lines mark the variation obtained in forced motion of five degrees
amplitude for the half-fine grid

Figure 3.10 compares the CFD-based damping derivatives with selected wind tun-

nel data. Results are for the coarse and half-fine grids. Because measurements were

obtained in different experimental facilities, and in different atmospheric and flow con-

ditions, the flow conditions used in the CFD calculations can only approximate the

experimental setup in each case. In this respect, the influence of different experimental

setups was found to have a small impact and results compare favourably to measured

quantities. A reasonable agreement is obtained between the two grids. The magnitude

of the peak in the moment coefficient is mesh-dependent, which is not unexpected for

Euler solutions which rely on numerical diffusion in the region of the leading edge for

the generation of vorticity. Varying the level of grid refinement in the leading edge

drastically alters the solution, as Newsome [130] documented. Numerical investiga-
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tions [141,142] have analyzed the effect of grid resolution and topology when computing

delta wing flows, and showed that for Euler simulations the solutions were dependent

on both mesh topology and refinement. Therefore, a finer spatial discretization was not

considered. The purpose of this study is the evaluation of unsteady aerodynamic deriva-

tives and their dependence on several flow and motion parameters. These influence the

values of computed dynamics derivatives, which in turn impact the aerodynamic loads

computed using the traditional flight dynamics mathematical model. Of primary im-

portance is to assess the scatter of aerodynamic loads for arbitrary unsteady motions

due to the variability in dynamic derivatives, and the current study is adequate to

investigate this point. A more accurate modelling of the flow physics in the presence

of vortices breakdown calls for more expensive alternatives (RANS, Dettached Eddy

simulations).

Below ten degrees, the pitch damping derivative continuously decreases as the angle

of attack is increased (see Fig. 3.10(b)). Beyond an angle of attack of fifteen degrees, the

reduction of dynamic stability is due to the breakdown location of the strake vortices

decreasing the longitudinal stability. A time-lag in the response of the vortex flow was

observed during the unsteady motion, which results in a temporarily delayed vortex

formation at lower angles of attack and temporarily delayed vortex breakdown at higher

angles. Hysteresis develops in the vortex flow behaviour with respect to the static

case [143]. The inability of the flow to adapt to changes in the attitude and reach a fully

developed size introduces a further level of complexity in the vortical flowfields. The

unsteady flowfield of the model undergoing pitch oscillation is visualized in Fig. 3.11.

The vortex is made visible by creating an isosurface of pressure, and is shown at the

same instantaneous angle of attack for direction increasing and decreasing angles. The

vortex breakdown is located somewhere over the wing during the upstroke motion.

During the downstroke, the vortex core is expanded at the wing apex, and this is

expected as the breakdown location moves downstream from the foremost position.

The hysteresis in pitching moment coefficient is illustrated in Fig. 3.12(a) at two

values of the mean angle of attack, α0. The aircraft model is statically unstable at low

angles of incidence, recovering stability at larger angles. At the highest α0, the angle of

attack oscillates around a mean value that is of the order of the static stall and hystere-

sis develops in the aerodynamic responses [139]. This is supported by CFD calculations

where the static stall is identified around twenty degrees [23]. In addition, the instanta-

neous aerodynamic damping can become positive during part of the oscillatory motion,

as shown. If the net damping over a cycle is positive, the airframe extracts energy from

the flow and the pitch oscillations will tend to increase in amplitude. An interesting

feature is the cross-over point in the moment coefficient forming the characteristic shape

of ”eight”, and caused by a switch in the lag and lead between the flowfield and the

model attitude. The signal ”1 Harmonic” is the corresponding time-domain response

retaining the fundamental harmonic only and neglecting any other frequency compo-
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Figure 3.10: Influence of mean angle of attack on the damping derivatives for the SDM model
geometry at Mach number 0.3; experimental data were obtained in IHU [128] and AWT [129]

nent. In the non-linear regime, aerodynamic modes are excited at higher frequencies

than the frequency being forced by the applied motion. The frequency content of the

moment coefficient was found to include important frequencies up to three times the

prescribed frequency of motion, as shown in Fig. 3.12(b).
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Figure 3.11: Isosurface of pressure at mean angle of attack of fifteen degrees for direction
increasing and decreasing angle; the axis of rotation is illustrated

3.3.1.3 Reduced Frequency

Two sets of motions were generated. The first set is considered for a range of reduced

frequencies (k = 0.037 to 0.090) representative of the reduced frequencies experienced

by the main wing on high-performance aircraft. The second set is for a relatively large

value of reduced frequency of 0.2. The pitching frequency, based on the freestream

speed and mean aerodynamic chord, is 6Hz.

As the reduced frequency increases, the hysteresis effect becomes larger at a given

angle of attack (see Fig. 3.13(a)). The effect of reduced frequency is seen throughout

most of the pitching cycle, and is dominant at the maximum and minimum values

of the angular velocity during the upstroke and downstroke, respectively. The cross-

over point forming the characteristic shape of ”eight” was found in the slower motions

only. For a two-dimensional configuration, the over- and undershoots in the unsteady

aerodynamic loads relative to the static case have been explained resorting to the

”moving-wall” effect, and this flow mechanism was found to play an equally prominent

role in the case of three-dimensional unsteady separated flows on a manoeuvring combat

aircraft [144]. The phase angle difference between the loads and the model position is

shown in Fig. 3.13(b), as a function of the reduced frequency at ten degrees mean

angle of attack. A near-linear relationship is observed between the phase angle of

the normal force and the reduced frequency. As the reduced frequency increases, so

does the phase lag. For the pitching moment, the phase angle is mostly constant for

the range of reduced frequencies computed. The moment coefficient lags the pitching

motion by nearly ninety degrees, which is expected as the extreme values of the moment

are observed during the upstroke and downstroke motions when the angular velocity

is maximum and minimum. The reason for the phase lag in aerodynamic loads is the

existence of a phase lag in the vortex flow. LeMay et al. [145] presented results of an
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Figure 3.12: Pitching moment coefficient for the SDM model geometry for the coarse grid at
mean angle of attack of 0 and 15 degrees; in (a), the term ”1 Harmonic” indicates a reconstructed
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experimental investigation of vortex dynamics around a sharp leading edge 70deg delta

wing. The phase lag difference of the chordwise breakdown location and the model

motion was found to increase linearly with the reduced frequency. The similarity of
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their findings with the linear relationship presented is noted.
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Figure 3.13: Time history of pitching moment coefficient and phase lag in aerodynamic loads
as a function of the reduced frequency; in (a), α0 = 15.0◦ and αA = 5.0◦; in (b), the mean
angle of attack is ten degrees

Dynamic derivatives are shown in Fig. 3.14 for several values of reduced frequency.

Little variation was found at lower angles of incidence. The effect of reduced frequency

is more dominant in the non-linear aerodynamic regime beyond fifteen degrees. The
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dynamic derivatives computed for the lower values of reduced frequency are very similar,

and indicate the same qualitative trends in both force and moment data. It should be

noted that the damping-in-pitch is locally positive at twenty degrees angle of attack for

a reduced frequency of 0.09. Lower values of force coefficient damping and a continuous

decrease in the longitudinal dynamic stability were observed for the rapid motion.
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Figure 3.14: Influence of reduced frequency on the damping derivatives for the SDM geometry
model at Mach number 0.3 (αA = 5.0◦); experimental data were obtained in IHU [128] and
AWT [129]
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3.3.1.4 Oscillatory Amplitude

The oscillatory amplitude has a moderate influence on damping derivatives in the linear

range of the normal force coefficient [129]. This is verified as long as the amplitude

of motion is lower than five degrees and when separation is not the dominant flow

feature. Computations were performed with both grids for a set of reduced frequencies

of typical high-performance wings (k = 0.037 to 0.090). Variations in aerodynamic

loads due to the forced motion need to be larger than the natural unsteadiness of

the flow. Tests were performed to identify the lower bound in amplitude to properly

excitate the aerodynamics of interest. Values of amplitude presented are 2.0◦, 3.5◦

and 5.0◦, as shown in Fig. 3.15. The system is locally linear but, as the amplitude

of the applied motion is further increased, the non-linear behaviour is the dominant

feature. The instantaneous aerodynamic damping can become positive during part of

the oscillatory motion, as shown for the largest amplitude. If the net damping over a

cycle is positive, the airframe extracts energy from the flow and the pitch oscillations

will tend to increase in amplitude. An interesting feature is the cross-over point in the

moment coefficient forming the characteristic shape of ”eight”, and caused by a switch

in the lag and lead between the flowfield and the model attitude.
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Figure 3.15: Pitching moment coefficient loop for the SDM geometry model for the coarse
grid at Mach number 0.3 and several values of the amplitude of motion, αA

Dynamic derivatives are shown in Fig. 3.16. The effect of varying the oscillation

amplitude is small at low angles of attack but significant at higher incidences. Although

defining similar trends in both force and moment data, values for the smallest amplitude

correspond to higher longitudinal dynamic stability. This observation is valid for all
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reduced frequencies tested.

Effects of varying the small amplitude of motion are similar to those observed vary-

ing the reduced frequency, that is a more dominant influence on dynamic derivatives is

observed above fifteen degrees mean angle of attack. The question whether variations

in dynamic derivatives due to amplitude or reduced frequency changes are the most

significant in terms of aerodynamic loads, within a flight dynamics contest, is addressed

in the next section.

3.3.1.5 Large Amplitude Motions

Dynamic derivatives were shown in the preceding subsections to depend upon several

motion and flow parameters. Dependency on Mach number and angle of attack are in

general included in a simulation mathematical model, with dynamic derivatives taken as

a function of these states [81]. Further dependencies were observed for changes in small

amplitude and reduced frequency of the forced motion. There is no general consensus

or common guideline for prescribing the value of small amplitude to be used in forced

motion tests, and commonly dynamic derivatives are used at the reduced frequency

which is thought to be the most representative of the expected aircraft motions [146].

Results presented above are adequate for the assessment of the variations in aerody-

namic loads using the conventional mathematical model based on aerodynamic stability

derivatives. The approach in the current study consists of simulating an unsteady ma-

noeuvre at moderately high mean angle of attack for large amplitude oscillations in

pitch. The solution obtained using CFD is the reference solution because it is time-

accurate. To improve the predictions of the linear model in Eq. (2.15), the aerodynamic

model is reformulated to include non-linear dependencies of aerodynamic derivatives.

Cj = Cj 0 (α, . . . ) + C̄jq (α, . . . ) ·
c q

2U∞

(3.4)

for j = L,D, and m

The main variable is the instantaneous angle of attack during the unsteady motion,

α, and aerodynamic derivatives are then assumed to depend on this variable in com-

bination with the reduced frequency and small amplitude, separately. The motion

is simulated at constant subsonic speed, and no dependence on the Mach number is

considered. The static terms depend non-linearly on the independent variables. The

dynamic derivatives, while non-linear functions in the arguments, are linear with re-

spect to the pitching angular rate. The manoeuvre is calculated at ten degrees mean

angle of attack for an oscillatory amplitude of ten degrees, and the reduced frequency

is 0.0493. This goes through the angle of attack range where variations in dynamic

derivatives were observed.
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Figure 3.16: Influence of amplitude on the damping derivatives for the SDM geometry model
at Mach number 0.3; experimental data were obtained in IHU [128] and AWT [129]

Simulation results are compared to the time-accurate solution in Fig. 3.17, and two

situations arise. In the first scenario, aerodynamic derivatives are assumed a func-

tion of the angle of attack and forced oscillatory pitch amplitude (αA = 2.0◦ to 5.0◦),

but estimated at the same reduced frequency (k = 0.0493) of the manoeuvre being

simulated. This allows the isolation and exploration of the effect of small oscillatory
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amplitude. In the second scenario, aerodynamic loads are computed from aerodynamic

derivatives provided from a set of forced motions at several values of the reduced fre-

quency (k = 0.037 to 0.090), and for a given amplitude (αA = 5.0◦). Comparison

between the model and the time-accurate solution is illustrated in Fig. 3.17. The non-

linear model agrees with the time-accurate solution, and predicts some of the main

features of the hysteresis loops. Dynamic force dependencies are correctly accounted

for during most of the upstroke motion up to seventeen degrees incidence, and during

part of the downstroke motion. With a loss of performance at the higher end of the

angle of attack range, the model curve approaches the reference curve during the down-

swing earlier under the first scenario. Two significant differences appear in the force

loop when comparing the two scenarios. First, the scatter in the load is at much lower

amplitude under the second scenario than under the first scenario, suggesting that the

variability introduced by changes in oscillation amplitude is more important than that

of the reduced frequency. However, results under the first scenario are more precise,

and do have a higher degree of agreement with the time-accurate solution at higher

angles of incidence. Dependencies on the reduced frequency shift the mean trend away

from the time-accurate solution, degrading significantly the prediction of the moment

coefficient in presence of non-linearities. This is not unexpected because static terms

depend on the reduced frequency [146].

At twenty degrees, the angular rate vanishes and the model formulation reduces

to include only the non-linear static term. This represents a time-averaged solution

of the small amplitude forced motion, as opposed to the instantaneous representation

of the flow realized in the time-accurate simulation. Without time-history effects, the

time-averaged solution can only approximate the development of the flow solution. In

particular, the surface vortex footprint was found in the time-accurate solution to be

of larger intensity and located further downstream than in the time-averaged solution.

Differences in local contributions to the normal force coefficient between the time-

accurate and time-averaged solutions are displayed in Fig. 3.18. Black areas indicate

that the time-accurate solution predicts larger force increments located upstream of the

axis of rotation. This explains the larger force and moment coefficient values observed

in the CFD-based than in the model-based results at the largest angles of attack.

3.3.2 Transonic CRuiser Wind Tunnel Model

Predictions of static aerodynamic characteristics of the TCR were compared using

different CFD codes in a parallel work [147]. In this study, static results are briefly

reviewed. The attention is then addressed to unsteady aerodynamics. Numerical results

of aerodynamic derivatives for small oscillation amplitudes are first presented, followed

by results for large amplitude motions. Dependencies of dynamic characteristics on

mean angle of attack and reduced frequency were investigated both experimentally and
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Figure 3.17: Non-linear mathematical model and unsteady CFD for a large amplitude ma-
noeuvre (α0 = 10.0◦, αA = 10.0◦ and k = 0.0493); (a) and (b) show the small amplitude
effects on the stability derivatives; (c) and (d) show the frequency effects

numerically. In all cases presented, computations are for the wind tunnel model with

vertical tail and undeflected canard wing.

The flow conditions at which experimental data from the TsAGI T–103 wind tun-

nel [148] are available are given in Table 3.4. The Mach number is 0.117 and the

Reynolds number, based on the wing mean aerodynamic chord and freestream speed,

is 0.778 million. The low Reynolds number at the operating wind tunnel conditions and

the blunt leading-edge geometry of the TCR wind tunnel model make the prediction of

the initial flow separation difficult. No transition tripping was used in the wind tunnel

model. Without other information, all simulations assumed fully turbulent flow and

were run at experimental conditions. In all cases computed, results are for zero sideslip

angle and the influence of the rear sting was ignored.
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Figure 3.18: Differences between time-accurate and time-averaged solutions of local contri-
butions to the normal force coefficient; the axis of rotation is illustrated

Parameter Value

U∞ 40m/s
Re 0.778 × 106

Table 3.4: Experimental conditions for testing of the TCR wind tunnel model at TsAGI T–103
facility [148]

3.3.2.1 Static Cases

Tests were performed to guarantee well-converged results over the angle of incidence

range from −10.0◦ to 25.0◦. Two sets of steady-state calculations were generated. First,

results were obtained after ten thousand pseudo iterations. At moderate angles of

attack, the aerodynamic loads were unconverged, and calculations were then restarted

from the previous solution and run for an additional thirty thousand pseudo iterations.

In general, vortical structures were found to be more developed and located further

downstream in the initial solutions, resulting in larger increments in the normal force

coefficient and more negative values (pitch-down) for the pitching moment. To evaluate

the convergence of these steady-state predictions, static results above ten degrees angle

of attack were computed using time-accurate simulations. Static unsteady cases were

run at a non-dimensional time step of 0.005 for a total of ten thousand time steps. Based

on a preliminary study performed by the author with various time steps, the time step

of 0.005 was considered adequate to resolve any flow unsteadiness. The steady-state

converged solutions were in good agreement with static unsteady results for all cases
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computed.

Figure 3.19 illustrates the static normal force and pitching moment coefficients. The

moment curve exhibits two distinct breaks. The first discontinuity occurs at about eight

degrees, followed by a reduction of the pitch-down authority up to the second break

at twenty degrees. After a sudden drop, the moment continues to grow further with

similar unstable characteristics. Simulation results compare well to wind tunnel data

up to the first discontinuity point, with an offset being observed at the higher end of the

angle of attack range. The discontinuity above twenty degrees is well reproduced. An

explanation of the underlying mechanisms for the observed moment curve behaviour

is found when looking at the contributions to the total integrated aerodynamic loads

generated, separately, from the canard and the main wings [147]. The first break

and subsequent slope in pitching moment originates from flow separation on the main

wing. The second break and ensuing change of slope after twenty degrees angle of

attack results from flow separation on the canard wing. Separation starts in a region

confined to the tip and leading-edge, and increases with the angle of attack. At twenty

degrees, there is a large separated area. The outer part of the main wing is dominated

by separated flow, whereas the flow in the inner section is predominantly attached.

Figure 3.20 conveys the flow development around the model for several angles of attack.

Attached flow streamlines are observed at zero angle of attack. Leading-edge vortices

on the canard and on the wing outer section form as the incidence is increased, with

the appearance of an additional wing inboard vortex at higher angles. The outer vortex

moves progressively inboard, followed by the coalescing of the dual vortex system.

3.3.2.2 Small Amplitude Motions

With the TCR wind tunnel model undergoing small amplitude oscillatory motions,

stability characteristics were investigated at low speed. The oscillatory amplitude is

three degrees and the forced motion is applied through the model centre of gravity.

Considering pitch oscillations, the dependency of the aerodynamic derivatives on the

mean angle of attack and reduced frequency were assessed, and compared to wind

tunnel measurements. To conform to the experimental practice, a linear regression

model was used to post-process time-domain data.

The dependency of measured and computed dynamic derivatives on the mean angle

of attack is shown in Fig. 3.21. The variation of the dynamic derivatives measured

from small amplitude motions at several values of the dimensional frequency, from 0.5

to 1.5Hz, is evident. The force dynamic derivative increases with increasing mean

angle of attack, with significant frequency effects. Small variations in the value of the

damping-in-pitch, with a limited dependency on the frequency of motion, are observed

up to fifteen degrees. A strong frequency dependence, with a significant change from the

background trend, is seen in the region between sixteen and twenty-four degrees. The
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Figure 3.19: Static longitudinal aerodynamic characteristics for the TCR wind tunnel model
(M = 0.117 and Re = 0.778× 106)

onset of flow separation on the canard wing was identified as the reason for the positive

damping value. The extensive testing campaign revealed also that the magnitude and

location of the positive damping spike depend on the deflection of the canard wing,

and eventually the unstable characteristic disappears for the model without the canard

wing.
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(a) 0deg incidence (b) 18deg incidence

(c) 25deg incidence

Figure 3.20: Surface streamlines and flow field visualization of the TCR wind tunnel model
at several angles of attack

Numerical results included in Fig. 3.21 were obtained for the model with the un-

deflected canard at a frequency of 1.0Hz. To assess the convergence of the unsteady

simulations, several tests were initially performed at mean angles of attack above ten

degrees representative of difficult convergence from static cases. Three values of the

number of time steps per cycle were used, four hundred, eight hundred and one thou-

sand, corresponding to a non-dimensional time step of 0.33, 0.17 and 0.13, respectively.

The non-dimensional period of an oscillatory motion at a frequency of 1.0Hz is t∗ = 68.

For the two smaller time steps, identical hysteresis loops resulted. The time step of 0.17

was then used for all numerical data presented. Predicted values of dynamic derivatives

compare reasonably to the measured data, being within a five percent band of the max-

imum absolute value from the experimental curve for angles of attack between five and

fifteen degrees. Two important observations can be made for the remaining computed
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points. At zero degrees mean angle of attack, the magnitude of the damping values

from simulation, e.g., the hysteresis in the aerodynamic loops, is under-predicted. A

reason for this deficiency may be associated with the assumption of fully turbulent flow

to model a fluid which is likely to be laminar at these conditions of low angle of attack

and freestream speed. It would be interesting to determine, for the same flow condi-

tions, the impact of the turbulence model used in the RANS modelling and the grid

resolution. The second remark is that the simulation results fail to predict a positive

damping-in-pitch at twenty degrees angle of attack, as observed in wind tunnel testing.

The change in the sign of the measured aerodynamic damping has a significant impact

on the accuracy of the moment coefficient, and resulted in a dramatic failure of the

non-linear model, as shown in the next section. Pursuing the use of more advanced

turbulence models to resolve turbulent eddies is not part of the current work, as the

interest here is on the investigation of the sensitivity of the conventional mathematical

model, using a set of measured and predicted aerodynamic coefficients, to reproduce

dynamic loads for a large amplitude manoeuvre.

The dependency of the dynamic derivatives on the frequency is illustrated in

Fig. 3.22 for a mean angle of attack of ten degrees. As the non-dimensional time

step increases for decreasing frequency, tests verified that convergence was achieved at

each physical time step for the motion at 0.5Hz. The correlation of the numerical

results with the experimental data improves significantly with increasing frequency,

and the best agreement observed at the largest frequency of motion is not unexpected.

The reduction of the hysteresis in the aerodynamic loads for small values of the fre-

quency leads to a difficulty in the accurate prediction of damping terms, caused by

the reduction of the ratio between the aerodynamic load increments being analyzed

and random errors effecting the measurement process or numerical simulation [149].

This poses significant practical challenges for wind tunnel testing and for numerical

simulations [150–152].

3.3.2.3 Large Amplitude Motions

A large amplitude motion was then used to assess the accuracy of the stability derivative

model based on measured and predicted aerodynamic datasets. The manoeuvre was

run at eight degrees mean angle of attack, with an oscillatory amplitude of ten degrees

at a frequency of 1.0Hz, for which measurements are available. Wind tunnel data

were measured for sixteen periods of oscillations, in wind-on and wind-off conditions.

Aerodynamic loads were smoothed with Butterworth digital filtering [153], and the

average values of the aerodynamic coefficients were then calculated for one period. The

same numerical parameters described above were used in the computations.

Figure 3.23 illustrates the force and moment dynamic dependencies, measured from

experimental testing and obtained using time-accurate simulations. The overall shape
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Figure 3.21: Damping derivatives for the TCR wind tunnel model (αA = 3.0◦); (a) and (b)
show the dependence on mean angle of attack (left triangles, f = 0.5Hz; circles, f = 1.0Hz;
right triangles, f = 1.5Hz)

of the hysteresis curves is similar between the two sets of results. Consistent with the

observations from the static cases, at the higher angles of attack the force coefficient

is under-predicted and the moment coefficient has a constant offset. At low angles,

the hysteresis in the numerical results has lower magnitude than in experimental data,
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Figure 3.22: Influence of frequency on the damping derivatives for the TCR wind tunnel
model at mean angle of attack of ten degrees

and this is consistent considering that the damping terms were under-predicted in

magnitude, as shown in Fig. 3.21. In these figures, arrows indicate the time evolution.

If the arrows are oriented in the clockwise direction, the contribution from the dynamic

derivative is positive, and vice versa. Note the lack of any cross-over point in the

moment data, as would be expected in the experimental curve due to the positive
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damping-in-pitch measured above sixteen degrees (see Fig. 3.21(b)).
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Figure 3.23: Dynamic dependencies for the TCR wind tunnel model for a large amplitude
manoeuvre (α0 = 8.0◦, αA = 10.0◦ and f = 1.0Hz)

The force and moment dynamic dependencies for the large amplitude manoeuvre

were reproduced in the upper portion of Fig. 3.24 using the model based on the aero-

dynamic stability derivatives. In this case, aerodynamic terms were assumed to vary

with the angle of attack and frequency. At any given angle of attack, the prediction is
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obtained as the sum of two contributions, that is, a non-linear static term, Cj 0 (α, f),

and an increment due to the dynamic motion, C̄jq (α, f). For the static terms, mean

values of the aerodynamic coefficients obtained from small amplitude oscillations were

used in place of the values from static cases. The former provided a closer correlation

to the reference solution. The reason is that a small amplitude forced motion better

approximates the effects of under- and overshoot in the force and moment loads, as

experienced in dynamic motions, than any steady-state solution. The overall shape

is well predicted for both force and moment coefficients, and the sensitivity of the

model to variations in the frequency used to estimate the dynamic derivatives is lim-

ited throughout most of the oscillatory cycle. However, the model under-predicts the

force dynamic dependency in Fig. 3.24(a), with increasing offset from the large ampli-

tude data for increasing angles of attack. Up to sixteen degrees, a good agreement is

also observed for the moment loop. Above this angle of attack, the model predicts a

cross-over point as the upswing and downswing curves intersect, with a marked fre-

quency dependence (see Fig. 3.24(b)). The change of the hysteresis direction from

counter-clockwise to clockwise is attributable to the positive damping-in-pitch mea-

sured experimentally. This dramatic failure of the non-linear model in predicting the

moment dynamic dependency has been consistently observed when analyzing several

large amplitude manoeuvres available from tunnel testing passing through this critical

range of incidence.

The model based on the aerodynamic stability derivatives obtained from small am-

plitude simulations is compared in the lower part of Fig. 3.24 with the time-accurate

CFD simulation of the large amplitude manoeuvre. The model data points are plot-

ted as symbols at increments of five degrees angle of attack. For the force coefficient,

the model values correlate well to the reference data, laying upon the time-accurate

solution. The agreement is also good for the moment coefficient loop. In all cases,

the reduction of the predicted hysteresis at low angles of attack is well captured, and

consistent with the reference solution in this case. The calculated damping-in-pitch was

negative for all mean angles of attack, which guarantees that the model will correctly

predict the hysteresis loop at the higher end of the angles of attack range.

At moderate angles of attack, the aerodynamic coefficients are not only non-linear

but include effects of higher harmonics and time lags. In such conditions, the flow

unsteadiness can significantly impact the results of dynamic derivative calculations,

which assume steadiness and linearity of aerodynamic coefficients during the dynamic

motion of the model. This is clearly illustrated comparing the model performance in the

two cases above. To produce non-linearities in the aerodynamic coefficients, dynamic

derivatives used were expressed as functions of motion variables. Albeit non-linear, this

formulation is instantaneous. Each aerodynamic coefficient, Cj(t), is only a function

of the current time, t, and the formulation is then inadequate to predict dynamic

manoeuvres when the flow is strongly unsteady and the loads are time dependent.
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Figure 3.24: Mathematical model based on aerodynamic stability derivatives from wind tunnel
(top) and CFD (bottom) simulations for the prediction of a large amplitude manoeuvre (α0 =
8.0◦, αA = 10.0◦ and f = 1.0Hz)

3.4 Conclusions

A framework for the computation of dynamic derivatives using CFD was presented.

Two techniques to post-process time-domain data were detailed. A step towards a more

comprehensive investigation of the limitations of models based on stability derivatives

for the prediction of the aerodynamics of manoeuvring aircraft was also made. For the

SDM model, dynamic stability derivatives at low incidence and up to high-transonic

speed, and at low speed and up to high angles of attack, compared well with tunnel

measurements. Whilst no significant dependence was found in transonic conditions, a

finer temporal discretization was required to resolve high-frequency fluctuations in aero-

dynamic loads due to vortex breakdown. In these conditions, a grid dependence was

also observed. The effects of variations of reduced frequency and small amplitude on
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dynamic derivatives were illustrated. To produce non-linearities in aerodynamic loads,

dynamic derivatives were expressed as functions of motion variables. The main variable

was taken to be the angle of attack, and aerodynamic derivatives were then assumed to

depend on this variable in combination with the frequency and small amplitude, sepa-

rately. As the sensitivity of the dynamic derivatives on parameters investigated fell into

well defined bands, it was considered reasonable that it is only the general behaviour of

these bands, rather than small and often irregular variations in the individual curves,

that may be of practical interest for the flight dynamics simulation. The non-linear

model compared best to the time-accurate solution when aerodynamic derivatives were

estimated at the same frequency of the manoeuvre being analyzed. The scatter in the

predictions was at lower amplitude for variations of aerodynamic derivatives with the

frequency, but resulted in a larger offset at the higher angles of attack.

For the TCR wind tunnel model, dynamic derivatives computed for several values

of the angle of attack were in agreement with measurements, but simulations failed

to predict the positive damping-in-pitch at around twenty degrees observed in tunnel

testing. The effect of frequency was addressed, and it was found that the higher the fre-

quency, the better the correlation between measurements and simulations. A significant

failure of the non-linear model in predicting the moment dependency was found using

measured aerodynamic data. The model predicted a change in the hysteresis direction,

from counter-clockwise to clockwise, associated with positive damping-in-pitch mea-

sured in small amplitude motion, but not observed in any large amplitude oscillation.

This might have some implications when simulating the motion of a free-to-pitch air-

craft. The non-linear formulation based on stability derivatives is instantaneous, that

is, aerodynamic coefficients are only a function of the current time. The formulation

is then not adequate in the case aerodynamic loads are dependent on the flow history

and past motion. It was shown that, in these conditions, large amplitude data cannot

be extrapolated from small amplitude tests and cannot be represented accurately by

stability derivatives.

The major computational cost is the computation of time-accurate simulations in

response to periodic motions. For the SDM, a typical calculation on 16 processors

required about 10 hours of CPU time. For the TCR, a dynamic simulation performed

on 128 processors required about 60 hours of CPU time. For the TCR test case,

computer time was provided through the U.K. Applied Consortium under EPSRC

grant EP/F005954/1. To overcome this practical issue, a concurrent work based on

linear frequency domain and harmonic balance predictions of dynamic derivatives will

be presented. Limiting assumptions of the aerodynamic derivative model motivates the

need to address future research on the use of more advanced mathematical formulations.
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Chapter 4

Dynamic Derivatives from

Frequency-Domain Methods

4.1 Introduction

A common wind-tunnel testing technique for the prediction of dynamic derivatives re-

lies on harmonic forced-oscillation tests. After the decay of initial transients, the nature

of the aerodynamic loads becomes periodic. The objective of this chapter is to exploit

the periodicity of the resulting aerodynamic system to significantly decrease the compu-

tational cost incurred by unsteady CFD simulations. A time-domain simulation of this

problem requires significant computational effort, as described in Section 3.4. Several

oscillatory cycles have to be simulated to obtain a harmonic aerodynamic response, and

a time-accurate solution requires a small time-step increment to accurately capture the

flow dynamics [131,151]. Time-domain calculations support a continuum of frequencies

up to the frequency limits given by the temporal and spatial resolution, but dynamic

derivatives are computed at the frequency of the applied sinusoidal motion. It is there-

fore worthwhile to consider a frequency-domain formulation to obtain a good estimate

of the derivatives at reduced computational cost. The computational methods used

in this thesis, the Harmonic Balance (HB) and the Linear Frequency Domain (LFD)

methods, provide the ability to efficiently approximate the aerodynamics resulting from

small, periodic and unsteady perturbations of the geometry of an aircraft configuration.

By resolving only the frequencies of interest, the computational cost of dynamic deriva-

tives is greatly reduced. Initially developed in the field of turbomachinery [154,155], the

HB and LFD methods have been subsequently used for external aerodynamics applied

to aircraft problems [156–158]. Murman [135] envisioned the exploitation of the period-

icity to reduce the cost of computing dynamic derivatives. The concept of an adaptive

HB method has also been put forward, with good success [159, 160]. A large amount

of research has been devoted to applications of the HB and the LFD technologies to

a broad spectrum of engineering disciplines. There is the question of the influence of
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the approximations on the derivative predictions. The evaluation of the computational

benefits and the predictive limitations are the subject of this chapter.

The chapter begins with a description of the HB and LFD methods. Results are

then presented to compare the dynamic derivative predictions obtained from the time-

domain and from the acceleration methods. Two test cases of increasing complexity

are considered for transonic flows. One of the reasons for choosing flight conditions

featuring compressibility effects is to substantiate the validity of these methods in

providing cheap yet reasonable predictions for aircraft applications of practical interest.

The accuracy of the acceleration methods is evaluated by comparing the predictions

against the underlying time-accurate solver. Conclusions are then given.

4.1.1 Harmonic Balance Method

Reference [161] examined the unsteady viscous transonic flow in the front stage rotor

of a high pressure compressor with the harmonic balance technique. The unsteady

aerodynamic response of the rotor for a case where the aerofoils vibrate harmonically

in pitch about their midchords with a reduced frequency of one and an interblade

phase angle of 30◦ was considered. Pitch amplitudes of 0.01◦ and 1.0◦ were used. Note

that, while these values are sufficiently large for aeroelastic investigations, the response

to larger amplitudes is often required in studies of flight mechanics. For the small-

amplitude case, the mean flow was found identical to the steady-state flow computed

with no motion. This is not unexpected because in this case the unsteadiness is so small

that non-linear effects are unimportant. For the larger-amplitude case, differences were

observed comparing results obtained using various number of harmonics, however the

solution converged rapidly as the number of harmonics was increased. The first har-

monic of the unsteady pressure distribution was then investigated. This component is

important because it contributes to the aerodynamic damping for harmonic pitching

motion of the aerofoils, see also Sections 3.3.1.1 and 4.2.3 for further considerations. For

the small-amplitude case, the first harmonic solution was identical to a time-linearized

solution. For the larger-amplitude case, the pressure distributions computed with var-

ious number of harmonics were different, but converging rapidly for increasing number

of harmonics. For the small amplitude, shock impulses associated with the unsteady

motion of the shocks were observed. For increasing amplitude of the pitching vibra-

tion, these peaks are reduced and spread out because the shock motion is larger and

the resulting shock impulse is spread over a larger chordwise extent. The real part of

the pitching moment is important for aeroelastic stability and for the determination

of the free-response, and accurately determining the damping-in-pitch term is a key

factor. In the absence of mechanical damping, the rotor is stable only if the real part

is less than zero for all interblade phase angles. For a value of 30◦, the computed real

component of the moment was positive (unstable) for small amplitude motions, and it
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was found to cross the real axis at a pitching amplitude of about 0.7◦. Thus, the blade

is likely to vibrate in a stable limit cycle with this pitch amplitude. It was also found

that three to five harmonics are adequate to obtain converged solutions for the zeroth

and first harmonic components of the unsteady flow. The authors claimed that, even

with seven harmonics, the cost of the harmonic balance technique is about ten times

the cost of a steady-state flow solution. However, no direct comparison with the cost

of an unsteady time-domain solution was provided

The study in Ref. [158] investigated the use of a linearized method, referred to as

LUR, and an harmonic balance method over a range of pysical conditions for a two-

dimensional aerofoil. The test case was the NACA 64A006 with an oscillating flap

mounted at three quarter of the chord. The LUR and the HB methods were compared

in terms of accuracy and efficiency to the unsteady time-domain solution. It was found

that, for a subsonic case, the LUR method is the most efficient. In the transonic regime,

the LUR remained the fastest approach, but with limited accuracy around shocks. On

the other hand, a one-harmonic HB solution achieved a closer agreement with the

reference solution. In the case of separation in the transonic regime, the LUR method

did not converge, whereas the HB method was found more robust and accurate.

4.1.2 Small Disturbance Method

The small disturbance method was presented to illustrate the use of the Euler equa-

tions applied to several two-dimensional test cases and an initial extension to a three-

dimensional case [162]. Beside the sub- and supersonic regime, the capabilities of the

implemented approach were demonstrated in the transonic speed range for a NACA

64A010 aerofoil and LANN wing. The small disturbance Euler solution was compared

to the underlying nonlinear Euler solution. For the aerofoil case, the first harmonic

unsteady pressure coefficient distribution displayed a good agreement upstream and

downstream of the shock region. Deviations were observed around the shock, with

spikes detected in the small disturbance solution. Although differences in the shape of

the shock impulse, the load contribution of the shock impulses can be considered equal,

and the first harmonic lift coefficient compared well between the two data sets. This is

quite remarkable because the shock moves up to 20% of the aerofoil chord depending

on the reduced frequency. This asserts the validity of shock capturing in a perturba-

tion method applied to the transonic regime, as originally introduced by Lindquist and

Giles [163]. It is argued that the load contribution to the pitching moment coefficient is

not considered, which typically exhibits higher nonlinearities than the force coefficient

because of the leverage arm between the shock impulse and the reference point. With

the use of different nonlinear Euler codes in addition to the underlying CFD code, the

application of the LANN wing corroborates the capability of the small disturbance Eu-

ler equations for a more complex configuration. It is demonstrated that variations in
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the unsteady pressure coefficient obtained using different CFD solvers are more signifi-

cant than those detected between the small disturbance Euler code and the underlying

nonlinear CFD code. This confirms the capabilities of the small disturbance Euler

method to predict unsteady loads even with a complex shock structure as observed for

the LANN wing.

A 53◦ low aspect ratio cropped delta wing was then tested in the transonic regime

as a frequent high manoeuvrable aircraft wing [164]. The flow topology consists of

leading-edge vortices forming at higher angle of attack and the application of the small

disturbance Euler method was aimed to simulate unsteady aerodynamic loads due to

rigid body, flap and elastic harmonic motions. The important concern to guarantee flap

efficiency during the entire flight envelope calls for an accurate prediction of control

derivatives, which was demonstrated to be possible with the small disturbance method.

An aeroelastic-like example, using an equation with polynomial coefficients for the local

amplitudes for the elastic eigenmode, provided an additional test of the Euler method.

In all cases, a reduction of one order in computational time was achieved using the

small disturbance method with respect to the nonlinear counterpart.

Inviscid methods reach their limitations with flows where viscous effects are a dom-

inant feature (separation, shock/boundary layer interaction), and the extension of the

small disturbance method to viscous flows is an attractive alternative to time marching

the RANS equations. A small disturbance Navier-Stokes method was developed from

the existing inviscid solver supplementing the viscous algorithms and incorporating

turbulence models in an appropriate formulation [165]. Within a linearized framework,

higher harmonics in the aerodynamic response are considered to be negligible. With

the use of a triple decomposition of the flow development [166], an arbitrary instan-

taneous flow quantity is constructed as sum of a steady mean component, a periodic

perturbation and a turbulent fluctuation. The simulation process consists, first, of a

turbulent steady state solution on the reference grid using the nonlinear Navier-Stokes

equations, which provide the prerequisite mean flow values contained in the source term

and the convective flux Jacobian. Then, the small disturbance equations are solved for

the complex amplitude of the unsteady flow solution. Two two-dimensional test cases

were considered and the Spalart-Allmaras turbulence model used in all calculations.

For the NACA 64A010 aerofoil featuring a weak shock, the viscous solutions are com-

pared to the small disturbance Euler solution. The inviscid solution, not including the

influence of the boundary layer in the shock formation, predicts a shock located fur-

ther downstream with a stronger gradient, and an overextended recompression before

merging into the pressure recovery curve close to the trailing edge. Varying the re-

duced frequency, the computational speedup of the small disturbance viscous solution

over the underlying nonlinear viscous solution is between a factor of 5 and 28. The

perturbation method requires more than three times the working memory computed

with the time-accurate method. The second test case is the NLR 7301 aerofoil fea-
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turing a strong shock. When including the viscous effects, the shock location in the

zeroth harmonic component is in good agreement with experimental data whereas the

inviscid solution predicts a shock situated 20% further downstream due to the neglect

of the strong shock/boundary layer interaction. Furthermore, contribution of higher

harmonics in the shock region was detected in the nonlinear solutions, resulting in a

poor prediction of the unsteady pitching moment coefficient obtained using the small

disturbance Navier-Stokes equations.

Derived from the wing of a supersonic transport aircraft configuration, the 50◦

NASA clipped delta wing was considered in conditions featuring varying shock strength

and leading-edge vortex formation [157]. Inviscid and viscous solutions were compared

to available experimental data. For the weak shock case, the experimental data of first

harmonic unsteady pressure coefficient are best reproduced using the inviscid methods.

Surprisingly, the small disturbance Euler method performs better in terms of unsteady

aerodynamic loads than the nonlinear counterpart and, in particular, predicts the very

similar damping term compared with the nonlinear Navier-Stokes calculations. The

inclusion of the viscous effects has a significant and consistent improvement on the

moment damping with respect to the inviscid methods, and is of paramount importance

when free pitching oscillations are considered. The second case is a medium strength

shock extending from the wing root to the tip featuring a leading edge vortex formation.

The interaction of the shock with the vortical flow in the outer wing section close to

the wing tip results in deviations between the two viscous solutions in the unsteady

pressure distribution. The dynamic shock/vortex interaction introduces in this limited

wing region higher harmonics into the flow solution, which are beyond the assumptions

of the small disturbance method. A strong shock is then considered, extending beyond

the wing tip. In these circumstances, the inclusion of the viscous terms improves the

predictions of the small disturbance method compared to the inviscid counterpart.

Depending on the flow conditions, the computational efficiency increase varied between

a factor of 10 and 20 in all cases.

4.2 Frequency-Domain Methods

4.2.1 Harmonic Balance Method

As an alternative to time marching, the Harmonic Balance method [161] allows for a

direct calculation of the periodic state. Write the semi-discrete form as a system of

ordinary differential equations

I(t) =
dW(t)

dt
+R(t) = 0 (4.1)
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Consider the solution vector W and residual R to be periodic in time and a function

of ω,

W(t) ≈ Ŵ0 +

NH∑

n=1

(
Ŵan cos(ωnt) + Ŵbn sin(ωnt)

)
(4.2)

R(t) ≈ R̂0 +

NH∑

n=1

(
R̂an cos(ωnt) + R̂bn sin(ωnt)

)
(4.3)

giving a system of NT = 2NH + 1 equations in NT unknown harmonic terms, which

can be expressed as

ωAŴ+ R̂ = 0 (4.4)

where A is a NT × NT matrix containing the entries A(n + 1, NH + n + 1) = n and

A(NH + n+ 1, n + 1) = −n, and Ŵ and R̂ are vectors of the Fourier coefficients.

The difficulty with solving Eq. (4.4) is in finding a relationship between R̂ and Ŵ.

To avoid this problem, the system is converted back to the time domain. The solution

is split into NT discrete equally spaced sub-intervals over the period T = 2π/ω

Whb =





W(t0 +∆t)

W(t0 + 2∆t)
...

W(t0 + T )





Rhb =





R(t0 +∆t)

R(t0 + 2∆t)
...

R(t0 + T )





(4.5)

where ∆t = 2π/(NTω). Then there is a transformation matrix [167] which allows

Eq. (4.4) to be written as

ωDWhb +Rhb = 0 (4.6)

where the components of D are defined by

Di,j =
2

NT

NH∑

k=1

k sin(2πk(j − i)/NT ) (4.7)

One can then apply pseudo-time marching to the harmonic balance equation

dWhb

dt
+ ωDWhb +Rhb = 0 (4.8)

The HB method was implemented within the structured PMB and COSA codes. The

main difference between the PMB and COSA implementations of the HB method is that

the former solves the equations with an implicit method [168], whereas the latter adopts

an explicit multigrid integration [169]. Reference [169] presents a stabilization technique

to handle the harmonic balance source term, ωDWhb, when using an explicit numerical

integration process. Such a stabilization method can be viewed as the conterpart of that
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reported in reference [170], which instead applies to the case of implicit integration. The

parallelization of the COSA explicit multigrid HB solver is based on a hybrid distributed

(MPI) and shared (OpenMP) architecture, which is reported in reference [171].

4.2.2 Linear Frequency Domain Method

The Linear Frequency Domain (LFD) method [172] is obtained by linearizing Eq. (4.4),

in which the residual R̂ is considered as a function of the grid point locations, x, the

grid point velocities, ẋ, and flow solution, W. Assuming an unsteady motion with a

small amplitude, the unsteady terms can be expressed as a superposition of a steady

mean state and a perturbation, which is expressed by a Fourier series

W(t) ≈ Ŵ0 + W̃ (t) , ‖W̃‖ ≪ ‖Ŵ0‖
x(t) ≈ x̂0 + x̃ (t) , ‖x̃‖ ≪ ‖x̂0‖
ẋ(t) ≈ ˙̃x (t)

When linearizing about the steady mean state, Eq. (4.4) results in the following

complex-valued linear system of equations for the n-th mode index

[
∂R / ∂W ω n I

−ω n I ∂R / ∂W

] {
Ŵan

Ŵbn

}
= −

[
∂R / ∂x ω n∂R/∂ẋ

−ω n∂R/∂ẋ ∂R/∂x

] {
X̂an

X̂bn

}

(4.9)

Derivatives of the residual are all evaluated at the steady mean state (Ŵ0, x̂0). This

system of equations can be written in the form of a linear equation, Ax = b. The

accuracy of the result will depend on the degree to which the dual assumptions of small

perturbations and linearity are satisfied.

The Jacobian ∂R/∂W has been obtained previously in the context of the discrete

adjoint method by analytic differentiation of the flow solver. Considerable attention has

been given to ensure that the evaluation of the Jacobian and matrix-vector products

involving the Jacobian are efficient in terms of memory and time, and requires no more

than four times the memory requirements of the non-linear code. The frequency domain

residual however requires two products of a vector with the Jacobian, and hence a single

evaluation is approximately 20 to 60% more expensive than a non-linear residual on

the same case.

The terms ∂R/∂x and ∂R/∂ẋ, which arise from the prescribed periodic deformation

of the grid, are evaluated using central finite differences

∂R

∂x
x̃ ≈

R
(
Ŵ0 , x̂0 + ǫ x̃ , 0

)
− R

(
Ŵ0 , x̂0 − ǫ x̃ , 0

)

2 ǫ
(4.10)

∂R

∂ẋ
˙̃x ≈

R
(
Ŵ0 , x̂0 , ǫ ˙̃x

)
− R

(
Ŵ0 , x̂0 , − ǫ ˙̃x

)

2 ǫ
(4.11)
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where ǫ is a small number chosen to balance truncation and rounding errors.

4.2.3 Method of Data Analysis

The dynamic derivatives from the time-domain solutions and the LFD method were

obtained using the techniques described in Chapter 2.6. A different approach was

adopted for the HB solver, whose solution is computed at NT = 2NH + 1 equally

spaced points in time over one cycle. Then

W (x, y, z, t) ≈ Ŵ0 (x, y, z)+

NH∑

n=1

(
Ŵan (x, y, z) cos (ω n t) + Ŵbn (x, y, z) sin (ω n t)

)

(4.12)

where Ŵ0, Ŵan and Ŵbn are the Fourier coefficients of a flow variable, W (x, y, z, t).

This expression is easily re-written in matrix form as [170]





W1

W2

...

WNT





︸ ︷︷ ︸
W∗

=




1 cos (ω t1) sin (ω t1) . . . cos (NH ω t1) sin (NH ω t1)

1 cos (ω t2) sin (ω t2) . . . cos (NH ω t2) sin (NH ω t2)
...

...
...

. . .
...

...

1 cos (ω tNT
) sin (ω tNT

) . . . cos (NH ω tNT
) sin (NH ω tNT

)




︸ ︷︷ ︸
E−1





Ŵ0

Ŵa1

Ŵb1
...

ŴaNH

ŴbNH





︸ ︷︷ ︸
W̃

(4.13)

whereW∗ is the vector of the flow variable at 2NH+1 equally spaced points in time over

one period and E−1 is the matrix that is the inverse discrete Fourier transform operator.

The time instances at which the HB solution is known are denoted by ti = t0 + i∆ t,

i = 1, 2, . . . , NT . The Fourier coefficients of the flow variable are computed as

W̃ = EW∗ (4.14)

Dynamic derivatives, as well as the real and imaginary parts of the flow variable, are

determined directly from the Fourier coefficients without any additional transformation

in the time domain.

To determine the stability behaviour of the free-to-pitch oscillations, the work done

by the fluid on the airframe over one single period can be expressed as

E =

∫ α(T )

α(0)
∆Cm (α) dα

= αA ω

∫ t0+T

t0

(
Ĉma1 cos (ω t) + Ĉmb1 sin (ω t)

)
cos (ω t) dt (4.15)

= 2π αA Ĉma1
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Parameter Value

M 0.755
α0 0.016◦

αA 2.51◦

k 0.0814

Table 4.1: Description of the AGARD CT5 conditions for the NACA 0012 aerofoil [173]

The second equality follows by assuming a Fourier series for the pitching moment and,

recalling the orthogonality properties of the trigonometric series, it is apparent that

the energy transfer is proportional to the imaginary part of the aerodynamic moment.

It is shown that Ĉma1 is proportional to the damping term in Eq. (2.21). Hence,

for αA > 0, the free pitching oscillation can be classified as unstable if Ĉma1 > 0

(equivalently, C̄mq > 0), or stable if Ĉma1 < 0 (equivalently, C̄mq < 0).

4.3 Two-Dimensional Case

Experimental data for the NACA 0012 aerofoil undergoing oscillatory pitch motions are

available [173]. Measured quantities include the pressure at 30 locations distributed on

the aerofoil surface. These data were collected at several time intervals. No transition

tripping was applied in the experiments, and corrections corresponding to a steady

interference have been applied to the measured quantities. There were some questions

about unsteady interference effects on the experimental data. However, the deviation

between numerical and experimental data is not the emphasis of the present work which

is instead on the quality of the HB and LFD results compared to the time-domain

predictions.

This thesis focuses on the AGARD CT5 case because it is transonic with strong

non-linearities in the aerodynamic loops arising from shock wave motions. The flow

conditions for the case CT5 are summarized in Table 4.1.

4.3.1 Numerical Setup

A preliminary study was made to test that solutions presented are independent of the

grid used. Three sets of grids were generated. The two-dimensional domain extends

fifty chords from the solid wall to the farfield. The coarsest grid had a total number

of 13068 points, with 132 nodes on the aerofoil, and 36 in the normal direction. The

wake behind the aerofoil was discretized using 36 points in the streamwise direction. A

medium grid consisted of 32028 grid points, 212 nodes were distributed on the aerofoil,

51 points were used in the normal direction and along the streamwise direction for the

wake (see Fig. 4.1). The finest grid was obtained with a total of 37180 grid points. The
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CN 0 C̄Nα C̄Nq Cm 0 C̄mα C̄mq

Coarse 3.51· 10−3 7.66 −3.71· 101 −7.58· 10−5 −1.10· 10−1 -3.07
Medium 3.51· 10−3 7.66 −3.72· 101 −6.98· 10−5 −1.03· 10−1 -3.14
Fine 3.51· 10−3 7.66 −3.72· 101 −7.15· 10−5 −1.03· 10−1 -3.14

Table 4.2: NACA 0012: grid influence on static and dynamic derivatives obtained from the
time-domain PMB solution for the AGARD CT5 conditions

structured grids consisted of six blocks, and were converted to an unstructured format

for use with the unstructured solver TAU.

Note that the three grids were used in combination with each time-domain solver,

and numerical results were compared with tunnel measurements under static [174] and

unsteady conditions. Table 4.2 conveys the grid influence on the dynamic derivatives

of the normal force and moment coefficients. Aerodynamic data of the force coefficient

show little sensitivity to the grid used. Values of Cm 0 can be considered numerically nil

and thus grid invariant. For the computations on the medium grid, dynamic derivatives

of the moment coefficient are observed to be identical to the respective values obtained

using the finest grid. Some deviations are identified in the case of the coarsest grid.

Based on this comparison, results presented hereafter are for the medium grid.

Unsteady simulations were run for three periods using 128 time-steps per cycle.

A time-step study was also performed for the unsteady PMB solver, and details are

given in Section 4.3.4. The choice of the numerical parameters led to well converged

solutions in all cases. For TAU, the CFL number used was 1.5 in combination with a

”4w” multigrid cycle. For the LFD, the LU-SGS scheme with multigrid was used. The

COSA pair used three multigrid levels, performing 10 smoothed Runge-Kutta cycles

on the coarsest level, and 3 on the finest levels. The CFL number was 4 for both the

time-domain and the harmonic balance solver. The implicit CFL number for the PMB

solver was 500. A Block Incomplete Lower Upper (BILU) factorization was used with

no fill-in for the linear solver preconditioner.

4.3.2 Validation

The Euler solutions presented are for the medium grid, shown in Fig. 4.1. The flow

for the AGARD CT5 conditions is non-linear, with a shock appearing in the leading

edge region and moving downstream for increasing angle of attack. The shock continues

downstream until approximately forty-five per cent of the chord. Then the shock returns

upstream close to the leading edge. The same pattern is repeated on the opposite

side of the aerofoil. The flow remains attached throughout the cycle of unsteadiness.

Since this case features a strong shock on the upper and lower surface, the question is

whether the presence of the dynamic shock has a negative impact on the accuracy of

the frequency-domain solvers. First, a validation study of the unsteady time-accurate
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solutions was performed before attempting to compare the spectral methods to the

underlying CFD solvers. Figure 4.2 illustrates the comparison of numerical predictions

of integrated aerodynamic loads with experimental data. The initial transient was

removed from the numerical solutions, and two arrows indicate the time evolution.

If the arrows are oriented in the counter-clockwise direction, the contribution from

the dynamic derivative is negative, and vice versa. Results compare well for all time-

accurate solutions. It is seen that the force coefficient is harmonic with a phase lag

with respect to the forced motion. No contribution from higher harmonics can be

detected. The moment coefficient is influenced by the instantaneous location of the

moving shock wave due to its moment arm with respect to the reference point. A

favourable agreement between the tunnel measurements and the numerical solutions is

observed.

Figure 4.1: Grid used for the NACA 0012 aerofoil, medium grid (212× 51)

Measurements of the instantaneous pressure coefficient distribution were taken at

several time instances in one cycle of unsteadiness, and the nearest angle at which

numerical results were computed was used for comparison. Numerical solutions are

compared with tunnel measurements in Figs. 4.3 and 4.4. The numerical solutions

agree well with each other, with minor deviations around the shock wave. The over-

all performance and systematic variations from measurements are in line with other

independent numerical investigations, e.g., Batina [175] and Marques et al. [176].

For the range of test cases computed in Da Ronch et al. [131], the dependence of

dynamic derivatives on motion and flow conditions was reported. In the present study,

the influence of the amplitude of the forced-motion, αA, was examined for the conditions

given in Table 4.1. Values of amplitude presented are between 0.01◦ and 2.81◦. The
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Figure 4.2: NACA 0012: predictions of unsteady time-accurate Euler solutions (M = 0.755,
α0 = 0.016◦, αA = 2.51◦, and k = 0.0814); experimental data from Landon [173]

variation of the pitching moment coefficient dynamic derivatives is shown in Fig. 4.5.

Dynamic derivatives are nearly constant for small values of oscillatory amplitude, and

exhibit a significant variation for values of amplitude larger than approximately 1.0◦.

Predictions obtained using the LFD solver are included in the figure as a dotted line, and

are closer to the results obtained using time-domain calculations for small amplitude
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Figure 4.3: Instantaneous pressure coefficient distribution compared to experimental data
of Landon [173]; the terms up and down in parenthesis indicate the direction increasing and
decreasing angle, respectively (continued)
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Figure 4.4: Instantaneous pressure coefficient distribution compared to experimental data
of Landon [173]; the terms up and down in parenthesis indicate the direction increasing and
decreasing angle, respectively (concluded)
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values. Increasing the oscillatory amplitude of the forced-motion above 1.0◦ causes the

periodic appearance and disappearance of the shock wave on the aerofoil surface, with a

considerable impact on dynamic derivatives. Numerical predictions representative of a

one-mode harmonic balance solution were computed for several values of the oscillatory

ampliude. It is recognized that the harmonic balance solution closely approximates the

time-domain solution in all cases. Note that dynamic derivatives computed at the

nominal conditions of the AGARD CT5 are also included in the figure.

4.3.3 Frequency-Domain Results

To demonstrate the convergence of the HB method to the unsteady solution, cases

were run using up to 7 harmonics. Figure 4.6 shows the loops of the integrated loads

against the instantaneous angle of attack. The time evolution in the force coefficient was

observed to be linear and harmonic with the forced variation in the motion variable.

This reflects the satisfactory agreement achieved by the frequency-domain methods

using one Fourier harmonic, as illustrated in Fig. 4.6(a). It also suggests that the motion

of the shock wave is harmonic and lags behind the angle of attack change. Increasing

the number of Fourier modes in the HB solution had little effect on the result, as most

of the energy is at the frequency of the applied motion. The moment coefficient is

illustrated in the remaining figures for each solver pair, separately. Comparing the

harmonic balance solutions obtained using the PMB-HB and COSA-HB highlights the

similarity in the results from the two solvers, as shown in Figs. 4.6(b) and 4.6(c).

Observe that including the third Fourier mode in the HB solution has a far larger

impact on improving the correlation to the reference solution than adding the second

mode. This reflects the frequency spectrum of the moment coefficient, due to the flow

conditions and symmetry in the aerofoil geometry, as described below. Higher modes

are not included, but they closely overlap the reference solution. The LFD solution is

illustrated in Fig. 4.6(d), and indicates a degraded prediction of the moment dynamic

dependence. Consistent with the other data, the LFD predicts a large hysteresis but

the loop is rotated in the opposite direction. This is quantified calculating the system

response between the prescribed angle of attack and the aerodynamic loads. Let us

denote x and y, respectively, the input and the output of interest. Then, the system

response is

G (j ω) =
F [y (t)]

F [x (t)]
= R (ω) ej φ(ω) (4.16)

where R (ω) and φ (ω) indicate, respectively, the amplitude ratio and the phase lag,

and are defined as

R (ω) =
‖ỹ (j ω) ‖
‖x̃ (j ω) ‖ (4.17)

φ (ω) = ∠ ỹ (j ω) − ∠ x̃ (j ω) (4.18)
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Figure 4.5: NACA 0012: influence of amplitude of oscillatory motion, αA, on the pitching
moment coefficient dynamic derivatives (M = 0.755, α0 = 0.016◦, and k = 0.0814)

Values from the one-mode HB and the LFD solutions are summarized in Table 4.3,

along with the reference solution. In the table, the subscript and superscript indicate,

respectively, the input and the output, and the phase angle is measured in degrees.

Apart from the satisfactory agreement observed for the force data, a discrepancy is

detected in the phase angle of the moment coefficient. For a sinusoidally varying input,
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Figure 4.6: NACA 0012: normal force and pitching moment coefficients dynamic dependence
(M = 0.755, α0 = 0.016◦, αA = 2.51◦, and k = 0.0814)

a phase angle of −90◦ corresponds to shifting the response to a cosine function. The

positive mean curve slope of the LFD solution in Fig. 4.6(d) reflects a phase lag in the

moment dynamic dependence greater than −90◦. On the contrary, a larger phase angle,

in absolute value, reflects a negative mean curve slope, consistent with the one-mode

HB solution.

To get further insights on the performance of the frequency-domain methods, the

first harmonic unsteady surface pressure coefficient distribution is presented in Fig. 4.7.

Results on the left side of the figure are for the one-mode HB and the LFD solutions,

and the axis of rotation is also illustrated, while the right side illustrates the effect of

retaining higher Fourier modes. Due to the similarity with the trends defined by the

PMB-HB results, the COSA-HB solutions presented include only one Fourier mode.

Figure 4.7(a) shows the zeroth harmonic, that is, the average value of the pressure
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RCN
α φCN

α RCm
α φCm

α

Time Domain 0.144 -21.6 4.80 · 10−3 -112.1
PMB-HB, 1 Mode 0.143 -21.5 4.86 · 10−3 -112.1
COSA-HB, 1 Mode 0.145 -21.4 4.98 · 10−3 -116.3
LFD 0.145 -21.5 5.60 · 10−3 -85.2

Table 4.3: NACA 0012: amplitude ratio and phase angle of the fundamental harmonic between
the input, α, and the outputs, CN and Cm

coefficient through a cycle of unsteadiness. The HB solutions are identical for the two

solvers, and are significantly different from the LFD solution. The asymmetric shock

pattern on the lower and upper surfaces is attributable to the use of one Fourier mode

and the actual location of the three time instances computed, which form a solution

base sampled at uniformly spaced temporal intervals. Note that two snapshots feature a

shock wave on the lower side, and on the upper surface for one snapshot, giving the over-

prediction of the shock strength on the lower side and the under-prediction on the upper

surface, in combination with a more upstream and downstream location, respectively.

The mean solution of the LFD method corresponds to a steady-state analysis, and shows

a good agreement away from the reference shock location. The dynamic conditions of

the prescribed forced motion moves the averaged shock position backward from its

static position, determined at the mean angle of attack, by nearly twenty per cent

of the aerofoil chord. Convergence to the time-accurate solution is obtained when

increasing the number of modes in the HB method, as shown in Fig. 4.7(b). The

real and imaginary parts, shown in Figs. 4.7(c) and 4.7(e), respectively, exhibit the

already mentioned asymmetric pattern of the one-mode HB solution. Large spikes in the

LFD solution are located around the steady-state shock position, and indicate a linear

harmonic motion of the shock wave. The results for increasing number of harmonics

are illustrated in Figs. 4.7(d) and 4.7(f). Note the different vertical scales used with

respect to the prior set of corresponding figures. While consistently converging to

the time-accurate solution, the rate of convergence is hindered by oscillations around

the shock. Considering that three modes were adequate to approximate the moment

dynamic dependence, this case illustrates the greater difficulty in converging a local

quantity than an integrated one.

Table 4.4 summarizes the dynamic derivatives for the force and moment coefficients.

A satisfactory agreement for the force dynamic derivatives is noted. For the moment

values, the PMB-HB results illustrate that the one-mode solution provides a good es-

timation of the information needed for flight dynamics. The predictions of the LFD

are reasonable for the aerodynamic damping term, while the in-phase component fea-

tures a large inaccuracy. The contrasting sign reflects the observation that the moment

loop was rotated in the opposite direction, indicating an unstable longitudinal static

stability. A consideration is that the steady-state shock wave, shown in Fig. 4.7(a),
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Figure 4.7: NACA 0012: zeroth and first harmonic unsteady surface pressure coefficient
distribution (M = 0.755, α0 = 0.016◦, αA = 2.51◦, and k = 0.0814)

is located near the reference point at one quarter of the chord, and makes the mo-

113 of 213



C̄Nα C̄Nq C̄mα C̄mq

Time Domain 7.66 −3.72· 101 −1.03· 10−1 -3.14
PMB-HB, 1 Mode 7.63 −3.70· 101 −1.04· 10−1 -3.17
PMB-HB, 2 Modes 7.63 −3.72· 101 −1.06· 10−1 -3.19
PMB-HB, 3 Modes 7.64 −3.72· 101 −1.02· 10−1 -3.14
PMB-HB, 4 Modes 7.65 −3.72· 101 −1.04· 10−1 -3.15
PMB-HB, 5 Modes 7.65 −3.72· 101 −1.03· 10−1 -3.14
PMB-HB, 6 Modes 7.65 −3.72· 101 −1.03· 10−1 -3.14
PMB-HB, 7 Modes 7.65 −3.72· 101 −1.03· 10−1 -3.14
LFD 7.73 −3.73· 101 0.27· 10−1 -3.93

Table 4.4: NACA 0012: normal force and pitching moment coefficient dynamic derivatives
(M = 0.755, α0 = 0.016◦, αA = 2.51◦, and k = 0.0814)

ment data sensitive to any upstream or downstream variation of the resulting centre of

pressure.

The frequency spectrum of the moment coefficient is presented in Fig. 4.8. Data

for the time-domain solution are shown up to the seventh harmonic component. The

LFD and the one-mode HB solutions show a good agreement for the magnitude term.

The phase angle of the LFD solution differs by about thirty degrees from the HB

counterpart. For the frequency range included, the amplitude of any odd harmonic is

lower than the amplitude of the accompanying even harmonic. This arises from the

symmetry of the aerofoil section and the nearly zero mean angle of attack.

4.3.4 Computational Efficiency

Figure 4.9 conveys the computational efficiency of the spectral methods with respect

to the underlying time-domain simulation. For the comparison, the solutions were

obtained using 128 time-steps per cycle and were simulated for 3 periods. In this

case, the LFD solution was obtained in about 5% of the time of the corresponding

time-domain solver. While achieving the largest computational saving time, a loss in

accuracy was observed in the LFD-based predictions of dynamic derivatives. With a

performance similar to the LFD solver, the HB formulation was seen to be adequate

for the prediction of stability characteristics and local flow variables. By retaining

more Fourier modes, the HB method rapidly loses favor relative to solving the time-

dependent equations. It is observed, however, that the computational efficiency of the

HB method is solver-dependent.

A detailed quantification of the computational efficiency of the HB method com-

pared with the underlying unsteady solution was undertaken for the PMB solver pair,

and following the procedure outlined in reference [177]. To assess the sensitivity of the

temporal discretization used, unsteady solutions were obtained using 8, 16, 32, 64, 128,

256, 512 and 1024 time-steps per oscillatory cycle. All cases were run using the same
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Figure 4.8: NACA 0012: magnitude and phase of pitching moment coefficient (M = 0.755,
α0 = 0.016◦, αA = 2.51◦, and k = 0.0814)

solver parameters. To reduce the effects of the initial transient on the solution, eleven

cycles were simulated. The damping-in-pitch term was taken as the figure of merit,

which is of interest for this work. For each time step, the dynamic term was deter-

mined from the last cycle of the solution computed, and compared with the reference

value obtained from the most accurate simulation, that is, using 1024 time-steps. The
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norm

En = |C̄n
mq

− C̄1024
mq

| / |C̄1024
mq

| (4.19)

indicates the temporal error. The procedure was also adopted for the PMB-HB results,

and the seven-mode solution was assumed the reference solution. Figure 4.10(a) shows

the error levels for the two solvers. The intersection of the PMB-HB lines with the PMB

curve indicates the temporal resolution needed in the unsteady simulation to achieve

an equivalent error level. To match the error level defined by the one-mode PMB-

HB solution, 50 time-steps per oscillation are required for the time-domain simulation,

increasing to 90 to guarantee a similar error level as for the three-mode HB solution.

A convergence study was then performed to identify the number of oscillatory cycles

needed to obtain asymptotic convergence. Results for the two time-steps are shown

in Fig. 4.10(b). The curves converge to an error level representing the minimum error

achievable using the corresponding time-step size. Convergence is observed after 3

oscillatory cycles for the larger time-step size, increasing to 6 in combination with the

finer step increment. Data are summarized in Table 4.5. It was found that the execution

time of the HB solution using one-mode is about 11 times faster than the time required

for the unsteady results. The time saving decreases to less than 3 times when three-

modes are retained in the solution. Increased work associated with the linear solver as

the number of modes is increased contributes to increased cost.

The memory cost of the PMB-HB method to store the linear system scales as
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(4N2
H + 16NH + 7)/7 [168]. The memory is expressed as a fraction of the memory

required by the implicit steady state solver on the same grid. The memory requirements

grow quickly and become significant above a small number of harmonics.
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Figure 4.10: NACA 0012: error norm in the prediction of the damping-in-pitch obtained
using the PMB solver pair; in (b), the term tsc indicates the number of time steps per cycle
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PMB-HB PMB Speed-Up
(tsc× nc)

1 Mode 50× 3 10.9
3 Modes 90× 6 2.6

Table 4.5: NACA 0012: time reduction of the PMB-HB solution compared to unsteady
PMB solution using the damping-in-pitch as the figure of merit; the terms tsc and nc indicate,
respectively, the number of time-steps per cycle and the number of oscillatory cycles

4.4 Three-Dimensional Case

The second test case is for a civil passenger transport aircraft tested at the German

Aerospace Center (DLR), and referred to as the DLR-F12 model. Extensive tunnel

investigations and numerical simulations focused on the linear aerodynamics range,

that is, at low speed and at low angles of attack [137,150,172,178–180]. The emphasis

in the current work is for a transonic cruise condition, which has been investigated in

a previous study [181].

4.4.1 Numerical Setup

Two Euler grids for the half-configuration of the wind tunnel model were used for the

PMB and TAU pairs, shown in Fig. 4.11. A structured grid including 300 blocks was

generated with around 2 million grid points, and 1.8 million points were used for the

unstructured grid. A detailed comparison of the structured and unstructured grids can

be found, for example, in Mialon et al. [178].

Calculations presented in this thesis are for a cruise condition at an altitude of

6000m, Mach number of 0.73 and trim angle of attack of 0.7◦. The analysis is performed

on the clean configuration with undeflected control surfaces. This was considered a

reasonable simplification because the required trim elevator deflection is lower than

one degree and, consistent with the traditional mathematical formulation, forces and

moments are expanded in a Taylor series around the equilibrium level flight condition

to obtain the stability and control derivatives. Data for the oscillatory pitching motion

are summarized in Table 4.6. The mean aerodynamic chord of the wind tunnel model

is c = 0.2526m. The rotation point and the model centre of gravity are coincident and

located at 46.7% of the fuselage length from the foremost point. The moment reference

point is set at the aircraft nose.

Unsteady simulations were run for three periods using 128 time-steps per cycle.

Note that all time-domain calculations were repeated for a smaller time-step that has

twice the number of points per cycle, with identical results obtained. For the TAU

solver, a GMRES Krylov solver was used in combination with a ”3v” multigrid cycle

as preconditioner at a CFL number of 10. The PMB calculations were also run at a

constant CFL number of 10. The HB method was run with one Fourier mode only
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Figure 4.11: Structured and unstructured grids for the DLR-F12 model [182]

due to memory requirements. The COSA solver is under development and a three-

dimensional version of the code is not available at the time of writing. Therefore, it

was not used for the current configuration.

4.4.2 Results

Results obtained using the PMB and TAU solvers are illustrated in Fig. 4.12. Aerody-

namic loops are similar in shape, and in this case the shock motion does not introduce a

large distortion from a harmonic time response, when compared with the aerofoil case.

For the pitching moment, the contribution from the dynamic derivative is negative, and

the slope is also negative. This guarantees that the aircraft is statically and dynam-

ically stable in the longitudinal plane. When comparing Figs. 4.12(b) and 4.12(d), a

deviation in the values of the pitching moment at the lower end of the angle of attack

range can be detected, indicating some grid dependence in the solutions.

Frequency-domain calculations are illustrated for comparison to the underlying CFD

solver in Fig. 4.12. It is observed that the HB solution reproduces the force and mo-
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Parameter Value

M 0.73
α0 0.70◦

αA 0.50◦

k 0.034
h 6000m

Table 4.6: Description of the conditions for the DLR-F12 aircraft model

ment dynamic dependence well, whereas the LFD solution underpredicts the hysteresis

in the moment data. As shown below, this deficiency of the LFD is attributable to

underpredicting the real part of the first harmonic pressure coefficient distribution on

the horizontal tail.
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Figure 4.12: DLR-F12 model: normal force and pitching moment coefficients dynamic de-
pendence (M = 0.73, α0 = 0.70◦, αA = 0.50◦, k = 0.034, and h = 6000m)

Stability characteristics relative to the nominal flight conditions are summarized in
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CN 0 C̄Nα C̄Nq Cm 0 C̄mα C̄mq

PMB 2.11· 10−1 7.59 1.17 −9.00· 10−1 -34.7 −20.1
PMB-HB, 1 Mode 2.11· 10−1 7.60 1.65 −8.99· 10−1 -34.7 −21.6

TAU 2.10· 10−1 7.16 2.80 −9.41· 10−1 -32.7 −28.1
LFD 2.10· 10−1 7.26 3.28 −9.41· 10−1 -33.1 −17.7

Table 4.7: DLR-F12 model: normal force and pitching moment coefficient dynamic derivatives
(M = 0.73, α0 = 0.70◦, αA = 0.50◦, k = 0.034, and h = 6000m)

Table 4.7, which includes static and dynamic derivatives. Frequency-domain results

are in agreement with the respective time-domain results, with the exception of the

LFD method in the prediction of the damping-in-pitch term. However, the HB solu-

tion performs well, with deviations within 7% of the reference values. While reducing

substantially the computational cost compared to a time-accurate solution, one single

calculation with a frequency-domain method provides both static and dynamic deriva-

tive information. In this case, the frequency-domain solutions based on the HB and LFD

methods were obtained in approximately 3% of the time required for a time-accurate

simulation. This corresponds to a speed up of about 30. Due to the computational cost

of the time-accurate method, an objective evaluation of the computational efficiency of

the frequency-domain methods, similar to that outlined for the aerofoil case, was not

performed.

Again, the zeroth and first harmonic of the pressure coefficient distribution at a

spanwise section Y/s = 0.148 is shown in detail in Fig. 4.13. The selected spanwise

section intersects both wing and horizontal tail, and features the periodically moving

shock wave on the wing. The left and right side of the figure illustrates, respectively, the

wing and horizontal tail station. The steady-state solution based on the LFD solver and

the time-averaged solution are in good agreement, as seen in Figs. 4.13(a) and 4.13(b).

This is indicative of less significant dynamic effects due to the limited oscillatory am-

plitude. Two considerations are noted for the real part of the first harmonic, shown

in Figs. 4.13(c) and 4.13(d). The contribution from the wing is much smaller than the

contribution which originates from the horizontal tail. This is expected because of the

finite time to convect downstream changes in aircraft attitude. On the horizontal tail,

a difference between time-accurate solutions occurs around the suction peak, where the

formation of a shock wave of limited extent was observed during part of the sinusoidal

cycle. At this section, the LFD solution differs substantially from the reference solution,

and this causes the underprediction of the hysteresis in the moment loop observed in

Fig. 4.12(d). This shows the limitations of the LFD method in cases featuring dynamic

non-linearities not present in the steady-state reference solution. A better correlation of

the frequency-domain methods to the underlying method is observed for the imaginary

part. As expected, the response on the wing is larger in this case when compared to

the real part of the pressure distribution.
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Figure 4.13(d) clearly shows that the variations in the computational results due to

numerical modelling (PMB and TAU solvers) are more significant than the differences

obtained using the PMB-HB and the PMB solver. The HB method is therefore ap-

propriate for the description of periodic unsteady flows. Variations between PMB and

TAU results may be attributed to different grids used.

4.5 Conclusions

The current work explored the capabilities and limitations of the Harmonic Balance

and Linear Frequency Domain methods in predicting aircraft stability characteristics in

a computationally efficient way. Two test cases were presented, a NACA 0012 aerofoil

and a wind tunnel aircraft configuration based on the DLR-F12 wind tunnel model.

To stress the potential of the frequency-domain methods in conditions of practical

interest for aircraft applications, flow conditions were in the transonic regime. For the

formation of moving shock waves, the energy of aerodynamic modes redistribute at

higher frequencies than the predescribed frequency of motion. While a time-domain

calculation supports a continuum of frequencies up to the frequency limits given by the

temporal and spatial resolution, the Harmonic Balance and Linear Frequency Domain

methods resolve only a small subset of frequencies typically restricted to include one

Fourier mode at the frequency at which dynamic derivatives are desired.

For the aerofoil case, it was noted that the Harmonic Balance method was able to

predict dynamic derivatives very accurately. For the Linear Frequency Domain method,

a loss in accuracy may be experienced whenever amplitudes increase and moving shocks

appear. In terms of pressure distribution, convergence to time-accurate results was as-

sessed for an increasing number of Fourier modes in the Harmonic Balance solution. It

was demonstrated that the dynamic conditions of the prescribed forced motion moves

the average shock position downstream from its static position by nearly twenty per

cent of the aerofoil chord. In this case, a loss in accuracy of the Linear Frequency Do-

main method is expected. Numerical experiments for these cases demonstrate that the

Harmonic Balance and Linear Frequency Domain methods are an order of magnitude

more efficient than time-accurate methods.

Similar considerations were noted for a three-dimensional configuration based on

the DLR-F12 wind tunnel model, for which a comparison of static and dynamic sta-

bility derivatives was presented. It was shown that frequency-domain methods are not

intended to simply augment static calculations, but rather to complement and replace

the static steady-state flow solver for flight and configuration conditions in which stabil-

ity characteristics are desired. One single calculation with a frequency-domain method

provides both static and dynamic derivative information at a fraction of the calcula-

tion time of a time-accurate simulation. In this case, the cost of the frequency-domain

method was approximately 3% of the unsteady counterpart.
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Figure 4.13: DLR-F12 model: zeroth and first harmonic unsteady surface pressure coefficient
distribution at Y/s = 0.148 (M = 0.73, α0 = 0.70◦, αA = 0.50◦, k = 0.034, and h = 6000m)
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This work demonstrates that the Harmonic Balance method is more robust than

the Linear Frequency Domain method for cases featuring non-linear flow conditions. In

addition to transonic cases herein presented, this was also observed for vortical flows

at high angle of attack.
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Chapter 5

Reduced Models for Flight

Dynamics

5.1 Introduction

Previous work [23,183] substantiated the limitations of tabular models when comparing

the predictions to CFD and flight test data, and this motivates the study detailed in this

chapter. The objective is to evaluate various reduced models for the representation of

non-linear unsteady aerodynamic loads. There are two approaches to model reduction.

System identification methods take the response of the system to known inputs, and

use this information to build a low-order model. The second approach is to manipulate

the full-order system to reduce the cost of calculations. Because the model based on

aerodynamic derivatives uses an input/output relationship, in this chapter the focus

is on the first approach. This is a sensible choice because the assessment of various

reduced models, within the same general class of identification-based methods, can

be made. While in Chapter 4 two methods, based on a harmonic balance technique

and a linearized solution in the frequency domain, were investigated for the prediction

of dynamic derivatives, there is a need for a more general formulation to enhance the

current practice in flight dynamics. The manipulation of the full-order residual to create

a non-linear reduced order model is being investigated in non-linear aeroelasticity and

control of flexible systems 1. Based on the results presented in [184], the methodology

has the potential to be applied to problems of flight dynamics.

In [185], CFD is combined with predictive modelling methods of low complexity

to allow efficient and accurate predictions of the stability and control characteristics.

The question whether the conventional model based on the concept of aerodynamic

derivatives retains sufficient accuracy in predicting unsteady non-linear phenomena to

1The work is performed within the EPSRC project entitiled ”Nonlinear Flexibility Effects on Flight
Dynamics and Control of Next-Generation Aircraft”.
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pay off the significant initial cost incurred in generating the aerodynamic database will

be assessed in this chapter.

The generality realized in a CFD simulation comes at the expense of computational

cost. Routine use of high-fidelity CFD simulations can be hindered by the cost of

calculations. The analysis of unsteady flows, in particular, is a computational chal-

lenge due to the time-step size used to accurately simulate the flow dynamics and the

duration time of the simulation. This point motivates the need to assess the benefits

and limitations in using low-order models for the prediction of non-linear unsteady

aerodynamic loads. A two-dimensional aerofoil is the test case used in this chapter.

While retaining complex flow features due to shock-induced phenomena, the time re-

quired for the unsteady time-domain simulations is drastically reduced when compared

to three-dimensional cases. It is assumed that any consideration on the readiness of the

mathematical models can be transferred to the analysis of more complex geometries.

Future studies will be performed to demonstrate this point. Low-order mathematical

models are used as computationally efficient approximations in place of the non-linear

system of equations governing the flow physics. However, the success of a low-order

model depends on appropriate information to be generated using unsteady time-domain

calculations. The cost for the generation of suitable aerodynamic data and for the se-

lection of appropriate training inputs will be considered.

The chapter continues with a description of the test case and various reduced models

are formulated. Model predictions are then compared to the time-accurate solution for

a manoeuvre dominated by significant non-linearities. Conclusions are then given.

5.2 Two-Dimensional Case

5.2.1 Numerical Setup

Unsteady time-domain viscous calculations were computed using the PMB and Cobalt

(see Section 2.5.4) solvers. For the PMB solver, a refinement study was performed by

the author to test that solutions presented were independent of the grid used. Three sets

of grids were generated. In all cases, the two-dimensional domain extends fifty chords

from the solid wall to the farfield. The coarsest grid had a total number of 50142 points,

with 293 nodes on the aerofoil, and 61 in the normal direction. The wake behind the

aerofoil was discretized using 59 points in the streamwise direction. A medium grid

consisted of 96660 grid points, 377 nodes were distributed on the aerofoil, 90 points were

used in the normal direction and 80 along the streamwise direction for the wake. The

finest grid was obtained with a total of 125460 grid points. The grids were clustered at

the aerofoil surface and the non-dimensional distance y+ of the first grid point off the

wall is less than unity. A time-step refinement study was also performed in combination

with each grid using various numbers of time steps per oscillatory cycle, from 16 up
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to 1024. Tests verified that convergent solutions were obtained on the medium grid,

Fig. 5.1(a), and that 128 time steps per cycle were adequate for temporal accuracy.

The viscous grid for use with Cobalt has a rectangular computational domain with

the aerofoil geometry centrally located. The farfield is located twenty chords from the

solid wall. The unstructured mesh shown in Fig. 5.1(b) has prisms in the boundary

layer and tetrahedra elsewhere. This grid has been used in previous work, and further

considerations on refinement studies can be found in Ref. [52].

(a) Structured grid, 377× 90 (PMB) (b) Unstructured grid (Cobalt)

Figure 5.1: Viscous grids used for the NACA 0012 aerofoil

5.2.2 Validation

Numerical simulations were compared to experimental data of Landon [173] for the

AGARD CT2 test case. The corresponding flow conditions are summarized in Table 5.1.

In this case, the Mach number is lower than for the AGARD CT5 case (see Table 4.1).

The reason to consider the CT2 case for validation is that the aerofoil is forced to

oscillate at higher angles of attack, where viscous contributions are more important.

Figure 5.2 conveys predictions and measurements of the normal force and pitching

moment coefficient. The k−ω turbulence model was used for the PMB results, whereas

the Spalart-Allmaras was used in combination with Cobalt. In all cases, the flow was

assumed fully turbulent. There are some variations in the numerical results, which

are more evident for the moment case. This is likely because of the use of different

turbulence models. Preliminary tests were made with PMB to assess the effects of

grid resolution and turbulence modelling on the numerical solutions. It was found that

varying the turbulence closures had a larger impact on the solutions than changing the

grid resolution. However, the evaluation of differences between numerical simulations

is not the objective of this work, which is instead on evaluating the readiness of reduced

models.
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Parameter Value

M 0.6
α0 3.16◦

αA 4.59◦

k 0.0811
Re 4.8 × 106

Table 5.1: Description of the AGARD CT2 conditions for the NACA 0012 aerofoil [173]
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Figure 5.2: NACA 0012: predictions of unsteady time-accurate viscous solutions (M =
0.6, α0 = 3.16◦, αA = 4.59◦, k = 0.0811, and Re = 4.8 × 106); experimental data from
Landon [173]

5.2.3 Large Amplitude Manoeuvre

The training data for the generation of reduced models were obtained before the ma-

noeuvre to be predicted was made. A pitching case was considered around zero degrees

angle of attack, α0 = 0.0◦, at Mach number of 0.764 and reduced frequency k = 0.10.

A Reynolds number of 3 million was assumed. The oscillatory amplitude, αA, was taken

to vary between 0◦ and 10◦, and represents the independent parameter of the problem.

These conditions correspond to a popular modelling case described in the literature,

see for example Refs. [17, 186], but experimental data are not available. Once reduced

models were constructed, the test case used to compare the model predictions to the

time-accurate solution was defined. Results presented are for an oscillatory amplitude

of 8.5◦.

Shown in Figs. 5.3(a) and 5.3(b) is the normal force and pitching moment dynamic

dependence computed using a time-accurate solution, which is the reference solution for

the reduced models. The initial transient was removed from the numerical solutions,

and two arrows indicate the time evolution. The flow on the upper surface of the

aerofoil is dominated by a shock which moves downstream for increasing angles. The
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shock wave becomes stronger and interacts with the boundary layer. The boundary

layer immediately after the shock separates, and this condition is shown in Fig. 5.3(c) as

the separation becomes visible. At the largest angle of attack, there is a large separated

area extending from the shock to the trailing edge, Fig. 5.3(d). During the downstroke

motion, the flow reattaches and the same pattern is repeated on the opposite side of

the aerofoil. It was found that changes in sign of the instantaneous value of Cmα during

the oscillatory motion are related to the appearance/disappearance of flow separation.
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Figure 5.3: NACA 0012: unsteady time-accurate viscous solutions for the manoeuvre to be
predicted (M = 0.764, α0 = 0.0◦, αA = 8.5◦, k = 0.0811, and Re = 3.0 × 106); in (c) and
(d), pressure contour

5.3 Model Formulation

Various low-order models are now introduced. For a description of the aerodynamic

model based on aerodynamic derivatives, which represents the reference formulation
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used in flight dynamics, the reader is referred to Section 2.2.

5.3.1 Volterra Series

The Volterra theory is well-known in the theory of non-linear systems [187], and it has

been applied to systems involving transonic aerodynamics [188]. A brief overview on

the applications of the Volterra theory can be found in Section 1.2.4.

For convenience, denote each aerodynamic coefficient, y = Ci for i = L, D, m. The

output of a continuous-time, casual, time-invariant, fading memory system in response

to an input, x (t), is formulated as

y (t) = Ψ (x (t)) =

p∑

i=1

Hi (x (t)) (5.1)

The output response, y (t), is modeled using the p-th order Volterra series. The term

Hi represents the i-th order Volterra operator, which is defined as an i-fold convolution

between the input, x (t), and the i-th order Volterra kernel, Hi.

Hi (x (t)) =

∫ t

−∞

. . .

∫ t

−∞

Hi (t − τ1, t − τ2, . . . , t − τi)

i∏

n=1

x (τn) dτn (5.2)

For incompressible flow, unsteady aerodynamic loads are often expressed as a func-

tion of the angle of attack and its time derivatives [189]. Based on this consideration,

the single-input Volterra model in Eq. (5.1) may be inadequate even for the represen-

tation of loads in the linear aerodynamic regime. For oscillations about the pitch axis,

the relevant external inputs are

x (t) =
(
α (t) , α̇ (t) , α̈ (t)

)
(5.3)

A multi-input Volterra series is then formulated as

y (t) = Ψ
(
x1 (t) , x2 (t) , . . . , xm (t)

)
=

p∑

i=1

H
m
i (5.4)

The term H
m
i is the multi-input Volterra operator defined as a mp-fold summation of

p-fold convolution integrals between the inputs and the p-th order multi-input Volterra
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kernels [58]. The output response up to second order is rewritten as

y (t) =
m∑

j=1

∫ t

−∞

H
xj

1 (t− τ) xj (τ) dτ +

m∑

j1 =1

m∑

j2 =1

∫ t

−∞

∫ t

−∞

H
xj1

, xj2
2 (t− τ1, t− τ2) xj1 (τ1) xj2 (τ2) dτ1 dτ2 + O

(
|x|3
)

(5.5)

Note that the superscripts in Eq. (5.5) identify to which inputs the kernel corresponds.

Consider, for example, the second-order kernel H
xj1

, xj3

2 , which correlates the inputs

xj1 and xj3 . Note that the second and higher-order kernels are symmetric with respect

to the arguments, H
xj1

, xj3

2 = H
xj3

, xj1

2 .

The identification of the Volterra kernels is performed using an unsteady time-

domain simulation as the source of the data. The CFD solution is discrete in time, and

the time-step is indicated by ∆t∗. Denote x[n] = x (n∆t∗) = x (t). The discrete-time

representation of Eq. (5.5) is

y [n] =

m∑

j=1

×
n∑

k=0

H
xj

1 [n − k] xj [k] +

m∑

j1 =1

m∑

j2 =1

×
n∑

k1 =0

n∑

k2 =0

H
xj1

, xj2

2 [n − k1, n − k2]xj1 [k1] xj2 [k2] + O
(
|x|3
)

(5.6)

The identification of discrete-time Volterra kernels involves the resolution of an

overdetermined system. Values of aerodynamic coefficients and the time-history of

the motion variables are known from the CFD simulation used as training input. Let

y = (y[0], y[1], . . . , y[n])T denote each aerodynamic load computed using CFD, and

let A contain the permutations of input parameters relevant to the unsteady motion.

Equation (5.6) can be recast in the form

y = Ab (5.7)

where the vector b contains the unknown Volterra kernels. The matrix A is in general

non-square, with more rows than columns. Several numerical methods are available to

solve least squares problems, e.g., direct inversion of ATA, Gauss elimination, Moore-

Penrose generalized inverse approach and the QR factorization. However, the Moore-

Penrose approach and the QR factorization are more accurate than the Gaussian elim-

ination and the direct inversion solutions. The cost of the QR factorization is O
(
n2
)
,

and the Moore-Penrose inversion involves O
(
n3
)
operations. Note that computational

resources attributable to the identification of the Volterra kernels grow exponentially
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with order. Increasing the order of the Volterra series introduces a requirement for a

training manoeuvre of sufficient duration. A remedy to this is the use of a simplified

form of the kernel parametric structure. Following, for example, Ref. [59]

H
xj1

, xj2
, ..., xjp

p [n − k1, n − k2, . . . , n − kp] = 0 (5.8)

for k1 6= k2 6= . . . 6= kp

all off-diagonal terms of the kernel are set to zero. Note that the above form of the

Volterra series, with an attendant loss of generality, was not used for the results pre-

sented.

The Volterra kernels are first identified from Eq. (5.7) solving for b, with y and

A being known for a training manoeuvre. The matrix A is then recomputed for a

novel manoeuvre, and the low-order model in Eq. (5.7) is used to predict the resulting

unsteady aerodynamic loads in place of the full-order system.

5.3.2 Surrogate-Based Recurrence-Framework

The set of non-linear equations describing the CFD system can be interpreted as a

general representation of a non-linear time-invariant discrete-time dynamical system.

The state vector consists of the conservative variables, W, and its size is proportional

to the number of grid points. In this study, the aerodynamic loads form the vector of

outputs, which are not only a function of the instantaneous values of the inputs, but

also a function of the time history of the inputs.

To generate a computationally efficient approximation of the unsteady aerodynamic

loads without solving the expensive CFD equations, the form of a dynamical system is

assumed [17]. When the state vector of the full-order system is finite in dimension, the

following non-linear system is equivalent to the unsteady CFD equations

y (t) = Φ
(
x (t) , x (t − ∆t) , . . . , x (t − m∆t) , y (t − ∆t) , . . . , y (t − n∆t)

)
(5.9)

where x takes the form of Eq. (5.3). The function Φ maps the inputs to the outputs.

The terms m and n represent the number of previous values of the external inputs

and outputs, respectively, influencing the output at the current time instant. These

parameters account for time-history effects and phase-lag in the flow development.

Central to the generation of the reduced-order model is the computation of the

function Φ. Without a closed-form analytical expression, a numerical approximation

of Φ is constructed using a number of CFD solutions. For the pitching aerofoil case,

see Eq. (2.16), any motion can be expressed as function of three parameters, e.g., α0,

αA, and k. These independent variables form a parameter space, which represents the

envelope of all possible flow conditions in which the aerofoil configuration is expected

to operate. To generate a consistent set of unsteady aerodynamic loads in response
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to a given aerofoil motion time history, the training cases at which CFD solutions are

calculated should be representative of the expected flow conditions. Several design of

experiment methods are available in the literature. A description of the kriging-based

framework used in this study is detailed in Ref. [81]. Let NT be the number of training

cases at which CFD solutions are available. Each training case consists of different

combinations of the independent parameters,

xi =
(
αi (t) , α̇i (t) , α̈i (t)

)
for i = 1, . . . , NT (5.10)

and the corresponding aerodynamic loads are indicated by yi (t). The approximation

of the function Φ is obtained by interpolating the sampled data in the form of an in-

put/output relationship. Several interpolation methods are available in the literature,

and two of these have been used in the present study. Kriging interpolation is a com-

mon choice, see Section 2.3, but for increasing number of independent parameters the

problem can result to be ill-conditioned. An alternative approach is the multi-linear

interpolation technique, see Appendix C, which is in general faster than the kriging

interpolation.

5.3.3 Indicial Function

The buildup in the aerodynamic loads in response to a unit step in one of the inputs

can be evaluated by convolution. Let H (t) indicate the Heaviside step function, or the

unit step function, defined as

H (t) =

{
1.0 for t ≥ 0

0.0 for t < 0
(5.11)

The unit response, or indicial admittance, is denoted by A (t). Assuming a linear

relationship between the forcing function and the output, the airloads are defined as

the convolution or Durhamel’s superposition [190] of the indicial response with the

derivative of the forcing function, f (t).

y (t) = f (0) A (t) +

∫ t

0

d f (τ)

dτ
A (t − τ) dτ (5.12)

This model can approximate any finite-memory, time-invariant, single input/single out-

put and continuous linear system [191]. The indicial response functions are used as a

fundamental approach to represent the unsteady aerodynamic loads [37, 38]. Let Cjα

and Cjq be the time response in the unsteady aerodynamic loads due to a step change

in the angle of attack, α, and angular velocity, q. If these functions are known, then
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the unsteady airloads at time t can be obtained as

Ci (t) = Ci 0 +

∫ t

0

dα (τ)

dτ
Ciα (t − τ) dτ +

∫ t

0

d q (τ)

dτ
Ciq (t − τ) dτ (5.13)

for i = L,D, and m

These models approximate the unsteady lift and pitching-moment in the linear regimes

of the flight envelope. For non-linear aerodynamics, the indicial response is computed

at several values of the angle of attack, and this adds a considerable computational

cost to the construction of the model. Linear indicial functions were used in the results

presented. Further details on linear indicial aerodynamics can be found in Appendix B,

where the calculation of the indicial response to a step change in any motion param-

eter and for the penetration into an arbitrary gust field are also discussed. Being a

mathematical concept, experimental measurements of the step response are practically

non-existent, and a modification to an existing CFD code is required for a correct de-

termination of the indicial response. The author implemented a new functionality in

the University of Liverpool PMB solver to calculate the indicial response to motion

inputs and gust perturbations. More details are given in Appendix B.

5.3.4 Radial Basis Function

In this approach, the unsteady aerodynamic loads are approximated by learning an

input-output mapping from a set of training data [192].The reconstructed state space

model is presented in Eq. (5.9). The term Φ is a vector-valued non-linear function that

maps the inputs to the output. The terms m and n are integers representing the past

values in the output and input, respectively. The mapping function, Φ, is learned by

a Radial Basis Function Neural Network (RBFNN). The remaining problem is how to

choose n = m such that the reconstructed model accurately represents the state-space

model. For the results presented, the value of n is selected using ”trial and error”

attempts. Design of experiments are often used to select NT combinations of these

variables for training purposes. However, such an approach often needs a large value

of NT to cover the important regimes of the regressor space of the input variables.

Ghoreyshi et al. [192] reduced the number of manoeuvre simulations using the design

of new training manoeuvres. This approach was also used in this study.

5.4 Numerical Results

The model based on aerodynamic derivatives, the Volterra model, and the surrogate-

based recurrence-framework model were generated using the PMB solver. The genera-

tion of models based on the indicial and radial basis function was made with Cobalt.
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Predictions are compared to the time-accurate solution of the CFD solver used to create

the model.

5.4.1 Model based on Aerodynamic Derivatives

Dynamic derivatives are illustrated in the upper part of Fig. 5.4 at the reduced fre-

quency of the manoeuvre to be simulated, k = 0.10, and for several values of the

oscillatory amplitude, αA. Values of amplitude of the forced motion are 0.1◦, 0.5◦,

3.0◦, and 5.0◦. The force data, shown in Fig. 5.4(a), are negative for small values of the

angle of attack, and become positive for larger values. The change in sign is observed

to occur between 2◦ and 4◦ in all cases. At the lower and higher ends of the angle of

attack range dynamic derivatives are similar in value independently of the amplitude

αA. This is attributed to the flow features at these conditions. For a small mean

angle of attack, the flow is attached and the shock motion is the dominant non-linear

effect. For a larger mean value, the flow is likely to be separated, and the separation

is now the dominant effect. The largest differences in the results presented are found

at intermediate values of the mean angle of attack, where shock-induced separation is

observed. The damping-in-pitch, shown in Fig. 5.4(b), is negative throughout the angle

of attack range. However, for the small amplitude case, dynamic derivatives have an

erratic behaviour and show an increase in damping about a mean angle of 2◦.

Based on this comparison, dynamic derivatives present a dependence on the oscil-

latory amplitude of the forced motion. For smaller amplitudes, spikes are found at

median values of the angle of attack, whereas for the larger amplitude case, a contin-

uous decrease/increase is noted. This is further investigated in Fig. 5.4, where results

for the smallest and largest values of the oscillatory amplitude are presented for several

values of the reduced frequency (k = 0.05, 0.10, and 0.15). For the smallest amplitude

(αA = 0.1◦), a change in sign in the force damping derivative shown in Fig. 5.4(c)

is noted between 2◦ and 4◦. The force data largely depend on the reduced frequency

at small values of the mean angle of attack. In fact, increasing the reduced frequency

primarily affects the mean slope of the force data (not shown), with a negligible ef-

fect on the hysteresis. At larger values of the angle of attack, the values are positive

and similar for all reduced frequencies. In the case of the damping-in-pitch, shown in

Fig. 5.4(d), the results computed for various values of the reduced frequency are simi-

lar. Next, the aerodynamic derivatives for the case in which the aerofoil oscillates with

pitch amplitude of 5.0◦ are presented in Figs. 5.4(e) and 5.4(f). For the force data, a

continuous increase is seen throughout the angle of attack range, whereas the moment

data continuously decrease.

The aerodynamic information presented above were used in combination with the

non-linear quasi-steady aerodynamic model in Eq. (2.2) to predict the unsteady loads

for the manoeuvre selected. The dynamic dependence of the force and moment coef-
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Figure 5.4: Dynamic derivatives for the NACA 0012 aerofoil (M = 0.764 and α0 = 0.0◦); in
(a)-(b), k = 0.10 and several values of amplitude; in (c)-(d), αA = 0.1◦ and several values of
reduced frequency; in (e)-(d), αA = 5.0◦ and several values of reduced frequency
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ficients shown in the upper part of Fig. 5.5 were computed using aerodynamic data

estimated at the same reduced frequency of the manoeuvre, k = 0.10. In this case, the

scatter indicates variations attributed to varying the amplitude of the forced motion.

A cross-over point is detected in the force dynamic dependence at an angle of attack

of about 3◦, however not observed in the time-accurate solution. However, the model

provides misleading results, and the agreement is poor for both force and moment data

throughout the oscillatory cycle. The unsteady responses in the remaining figures il-

lustrate the effects of varying the oscillatory amplitude at which dynamic derivatives

were estimated. The results were obtained, respectively, for an amplitude of 0.1◦ and

5.0◦. In both cases, the scatter is representative of variations attributable to reduced

frequency effects. For the smallest amplitude case, see Figs 5.5(c) and 5.5(d), the agree-

ment is poor and the force data exhibit a large dependence on the reduced frequency.

Increasing the oscillatory amplitude has a positive effect of moving the model predic-

tions closer to the reference solution, see Figs 5.5(e) and 5.5(f). Reduced frequency

effects are moderate in this case but in all cases predictions are not representative of

the time-accurate solution.

While for a two-dimensional aerofoil a systematic study on the dependencies of dy-

namic derivatives can be made, results demonstrate that the model predictions may be

misleading. A point to consider is that aerodynamic data obtained from forced motions

at a small amplitude do not necessarily provide a better agreement to the unsteady CFD

solution than using aerodynamic information obtained for a larger amplitude case. In

fact, the solution computed for a small amplitude is similar to a time-linearized solu-

tion which capture the flow behaviour near the point at which the calculation is done.

This is in general inadequate for studies of flight dynamics because the aircraft may

experience large excursions from the reference point. Performing a forced motion at a

larger amplitude exposes the flow to some non-linearities, and this may improve some-

what the predictions. These observations are in agreement with the conclusions given

in Chapter 4, where the predictive limitations of a linearized technique were discussed.

5.4.2 Volterra Series

For the identification of the Volterra kernels, a training case was run at the reduced

frequency of the manoeuvre to be simulated. The oscillatory amplitude, being an

independent parameter, was varied linearly from 0◦ up to 10◦, and back to 0◦. The

duration time of the training data was equivalent to six periods. Kernels up to third

order were retained in the model. However, not all kernels need to be identified because

the resulting aerodynamic loads, for a symmetric aerofoil forced to oscillate around zero

degrees mean angle of attack, are odd functions of the angle of attack change. For the
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Figure 5.5: Non-linear mathematical model and unsteady CFD for a large amplitude ma-
noeuvre (M = 0.764, α0 = 0.0◦, αA = 8.5◦, and k = 0.10); in (a)-(b), dependence on the
oscillatory amplitude at reduced frequency k = 0.10; in (c)-(d), dependence on the reduced
frequency at oscillatory amplitude αA = 0.1◦; in (e)-(f), dependence on the reduced frequency
at oscillatory amplitude αA = 5.0◦
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flow conditions considered in this chapter, the following kernels were retained

Hα
1 H α̈

1

Hα, α̇
2 H α̇, α̈

2

Hα, α, α
3 Hα, α̇, α̇

3 H α̇, α̇, α̈
3 Hα,α, α̈

3

(5.14)

The term k in Eq. (5.6) approximates time-history effects. For the kernel Hα
1 , k = 3,

whereas for the remaining first order kernels it was set to 2. For the second order kernel

relating the angle of attack to its time derivative, k = 1. The value k = 0 was set for

all of the order kernels shown in Eq. 5.14.

Figure 5.6 compares the aerodynamic coefficients from the time-accurate solution

and from the Volterra model. For the force data, the model predicts a virtually linear

response despite kernels up to third order were retained. While there are differences

for the moment coefficient, the model prediction provides a reasonable approximation

to the reference solution. The value of k for each kernel was optimum in the sense that,

for a given model, the error norm was minimized.
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Figure 5.6: NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764,
α0 = 0.0◦, αA = 8.5◦, and k = 0.10); ”Model” refers to the discrete-time multi-input Volterra
model

For the case presented, the Volterra model was found to perform better than the

model based on aerodynamic derivatives. The robustness of the model is however a cru-

cial question which needs further investigations. A key point in the model identification

is the selection of an appropriate training motion. In general, a suitable training ma-

noeuvre is designed to allow sufficient representative data to create a low-order model

with predictive capabilities within a desired parameter space. Previous research focused

on training manoeuvres development [51, 57], but it was argued that an appropriate

manoeuvre used to predict stability and control characteristics is not primarily given
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by its frequency content or power density spectra [52]. As the low-order model is used

to predict the aerodynamic behaviour within certain flight and control states, a suffi-

cient coverage of the parameter space should be realized by the design manoeuvre to

be effective. The downside of this consideration is the likely non-physical nature of the

training input used for generation of the Volterra model, which limits the applicability

of the model to numerical simulations.

5.4.3 Surrogate-Based Recurrence-Framework

Shown in Fig. 5.7 is the time evolution of the aerodynamic coefficients for several values

of the oscillatory amplitude. The parameter space, in this case, is one-dimensional and

varies between 0◦ and 10◦ with a step increment of 0.25◦. The response surfaces were

obtained using 10 CFD solutions, and the remainder of the parameter space was filled

out with the use of kriging interpolation. A first CFD calculation was made for the

largest value of the amplitude, and successive calculations were sampled according

to the RMS criterion. The trivial solution corresponding to a null amplitude with

no aerofoil motion was not run, and to avoid extrapolation, aerodynamic coefficients

were set to zero. Increasing variations in the aerodynamic coefficients for increasing

oscillatory amplitude are noted. However, the degree of non-linearity of the unsteady

loads with respect to the applied sinusoidal motion is not attainable from the surface

responses.
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Figure 5.7: Response surfaces of the time evolution of aerodynamic coefficients throughout
the parameter space of oscillatory amplitude, αA (M = 0.764, α0 = 0.0◦, and k = 0.10); the
solid curve indicates the solution at an amplitude of 5 deg

To demonstrate the appearance of non-linearities, Fig. 5.8 conveys the dynamic

dependence of the aerodynamic coefficients as a function of the instantaneous angle

of attack. For clarity, curves are plotted for a one-degree increment in the oscillatory
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amplitude. Linear behaviour is found in the force data up to 6◦, whereas for larger

amplitude values the loops become distorted from the shape of an ellipse. Note also

that, in contrast with other results, the force loop for an oscillatory amplitude of 8◦ has

a vanishing hysteresis and this is likely to impact the model prediction when reducing

the number of training cases, as shown below. For the moment dynamic dependence,

a localized non-linearity at both ends of the amplitude range is first noted, which is

similar in shape to that computed for the AGARD CT5 conditions in Fig. 4.2. The

upswing and downswing curves intersect each other for values of amplitude between

5◦ and 7◦, and for larger values the cross-over points disappear. These features are

indicative of a flow around an aerofoil which experiences various physical conditions.
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Figure 5.8: Aerodynamic coefficients dynamic dependence for several value of oscillatory
amplitude (M = 0.764, α0 = 0.0◦, and k = 0.10); curves are plotted every one-degree
increment in amplitude

Figure 5.9 compares the dynamic dependencies obtained using the time-accurate

solution and the predictive model. Models were created retaining various numbers of

training cases. For the model based on 10 training cases, predictions are virtually

identical to the unsteady solution. The dependence of the solution when varying the

values of m and n appearing in Eq. (5.9) was first investigated. The value of n was

found to have the largest effect on the solution and, for a given value of m, predictions

degraded for m ≤ n in all cases. For the results presented, m = 4 and n = 2

proved adequate to approximate time-history effects. Next, a new model was generated

recursively by removing the last training case included in the existing model. As shown

in figure, a model created using 5 training cases is a good approximation to the reference

solution. It can be argued, however, that the quality of the prediction depends on the

location of sample points within the parameter space. In this case, three samples

were located at the minimum, median and maximum values of the amplitude, and the
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remaining two points were in the lower- and upper-half of the parameter range. For

a more objective evaluation of the model predictions, a model was created using the

three samples at the minimum, median and maximum values of the amplitude. The

sample at zero amplitude has little or no effect on the prediction, being the furthest

from the amplitude at which the manoeuvre is simulated. For the moment case, the

model reproduces well the time-accurate solution. Differences in the force data are

seen during part of the cycle and are indicative of the appearance of non-linearities

for amplitudes larger than 5◦ (see Fig. 5.8). A consideration is that the validity of a

predictive model, without any physical mechanism governing the flow development, is

limited to the training dataset used to create it. Because the input data are reformatted

when creating the prediction, the amount of information is critical.
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Figure 5.9: Model predictions and unsteady CFD for a large amplitude manoeuvre (M =
0.764, α0 = 0.0◦, αA = 8.5◦, and k = 0.10); ”Model” refers to the surrogate-based recurrence-
framework

Good predictions presented above should be confirmed by results for a higher-

dimensional problem. The extension to include the dependencies on the reduced fre-

quency and mean angle of attack is an interesting option.

5.4.4 Indicial Function and Radial Basis Function

The indicial responses of the aerofoil for a step change in angle of the attack and for a

step change in pitch rate are shown in Fig. 5.10. The lift responses have an initial peak

followed by a falling trend, see for example Appendix B. This can be explained based

on the energy of the acoustic wave system created by the initial perturbation [190].

The initial peak becomes smaller as the Mach number increases. It was found that the

translation of the grid (angle of attack response) has larger effects on the lift changes

compared with rotating the grid. Note that the pitching moment has a negative peak
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as the grid starts to move. The computational cost for each response is around the cost

of 10 steady-state calculations.
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Figure 5.10: NACA 0012: indicial responses of pitching moment coefficient to step change in
angle of attack and in pitch rate (M = 0.764 and Re = 3.0× 106)

The design of a new manoeuvre allows a reduction in the number of training motions.

The training manoeuvre used in this study is a spiral manoeuvre which consists of a

sweep in the amplitude

α (t) = αA t
∗ sin (2 k t∗) (5.15)

The spiral motion eliminates the need for repeating motions for different values of

amplitude. However, for reduced frequency effects, the motion with different values of

k needs to be considered. In this study, a spiral motion was defined starting from zero

degrees angle of attack at a reduced frequency of 0.10. The simulation was run for 35

oscillatory cycles. For RBFNN training, the amount of calculated data was reduced

on the order of thousands using an interpolation scheme. This allows a faster network

training and avoids any out-of-memory error. The reduced spiral data were rearranged

according to Eq. (5.9) and then the network performance was tested for different values

of n. Results showed that using n = 2 and n = 4 is sufficient for modelling the lift

and the pitching moment, respectively.

A reduced model based on indicial functions was created using Eq. (5.9). The

networks were also trained using training data in the same form. The validity of the

models was tested for the manoeuvre to be simulated. Figure 5.11 conveys the non-

linear results for the large amplitude pitch oscillation. The results show that the model

based on indicial functions provides misleading results because the model formulation

stems from the concept of linearity. On the other hand, the RBFNN predicts the overall

trend of the pitching moment.
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Figure 5.11: NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764,
α0 = 0.0◦, αA = 8.5◦, k = 0.10, and Re = 3.0 × 106); in (a), ”Model” refers to the linear
indicial functions, and in (b) to radial basis functions

5.5 Model Evaluation

For a thorough evaluation of the reduced models, relevant aspects are the accuracy

in the predictions and the cost for model generation. To quantify the error between

the time-accurate solution and the model prediction, the following error norm was

introduced

E =
1

N

∑N
i=1 | ycfd [i] − yrom [i] |

ycfdmax − ycfdmin

× 100 (5.16)

which represents the average error in the models relative to the range of the reference

solution. The term N is the total number of time-steps used in the CFD simulation, and

the superscripts cfd and rom indicate the full- and the reduced-order models, respec-

tively. The cost for model generation was normalized by the cost for the simulation of

three oscillatory cycles. Table 5.2 summarizes the errors in the moment predictions and

the cost for the models considered. Similar conclusions were found when considering

the error norm in the force coefficient.

For the conventional model, aerodynamic data were computed at seven values of

the angle of attack, and each calculation was run for three oscillatory cycles. The error

is representative of the mean value of the predictions, shown in Fig. 5.5(f), and it does

not account for the variations to changes in reduced frequency. It is found that the

conventional model has the largest error in the predictions and is the most expensive to

generate. The accuracy and the cost of the model based on linear indicial functions are

similar to the values obtained for the conventional model. Improved predictions were

achieved by the three remaining models. While similar in accuracy, the cost for the
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Error, Cm Cost

DynDer 23.3 7
Volterra 7.8 2
SBRF 5.4 2
LIF 18.3 5

RBFNN 7.7 6

Table 5.2: Error norm in the model predictions of pitching moment coefficient and related
cost for model generation

generation of the Volterra model was lower than for the generation of the model based

on radial basis functions trained with neural networks. For the conditions presented,

the surrogate-based recurrence-framework model resulted in the smallest error at a

favourable cost. As explained above, for the surrogate-based recurrence-framework

model the trivial solution corresponding to a null amplitude was not run.

5.6 Conclusions

Previous work demonstrated that the conventional model formulation of aerodynamic

loads based on aerodynamic derivatives may experience a loss in accuracy for flow

conditions of practical interest. The present chapter addresses the demand to explore

alternative reduced-model formulations for the prediction of non-linear unsteady air-

loads. To allow a fast turn-around time of the investigations, the test case is the NACA

0012 aerofoil. The purpose of considering a pitching aerofoil at transonic conditions is

to establish the effectiveness of the reduced-order models in a non-linear regime of the

flow envelope. The non-linearities are attributable to shock motion and shock-induced

separation.

Several modelling formulations were presented. A non-linear model based on aero-

dynamic derivatives, a multi-input discrete-time Volterra model, a surrogate-based

recurrence-framework model, linear indicial functions and radial basis functions trained

with neural networks were considered. To assess the predictions, reduced models were

compared to unsteady time-domain CFD simulations for oscillatory pitching motions.

The model based on aerodynamic derivatives exhibited large deviations from the refer-

ence solution. While retaining higher order Volterra kernels, the multi-input discrete-

time model achieved a reasonable agreement. For the flow conditions presented, the loss

of accuracy shown for the model based on indicial functions was expected. The remain-

ing two models, e.g., surrogate-based recurrence-framework and radial basis functions

trained with neural networks, achieved a good agreement with the CFD solution. The

point to highlight is that these models, while providing good approximations for both

force and moment data, were generated with no more computational resources than re-

quired for the conventional model. The application to more complex geometries should
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verify these conclusions. The generation of a stability and control database will then

be considered to assess the readiness of the reduced-models.
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Chapter 6

Conclusions and Outlook

In this thesis, the exploitation of computational fluid dynamics (CFD) for the gener-

ation of flight simulation models was investigated. A tabular model based on aerody-

namic derivatives was considered because commonly used by flight dynamicists. CFD

was used as source of the aerodynamic information. In the model formulation, steady-

state predictions are supplemented using dynamic derivatives to account for the aircraft

motion. While the calculation of steady-state dependencies by a CFD solver is made in

a routine manner, the numerical simulation of dynamic derivatives is a computationally

expensive task. These terms are obtained in small-amplitude oscillatory tests, which

involve the accurate prediction of the flow development around a moving airframe.

Dynamic derivatives computed using unsteady time-domain calculations were in

agreement with available experimental data for two configurations. For a generic fighter

model, a systematic study on the investigation of the dependencies of dynamic deriva-

tives was presented. For a transonic cruiser wind tunnel model, a database of static

and dynamic dependencies was created. In the presence of aerodynamic non-linearities,

mainly due to three dimensional separated flow and concentrated vortices, dynamic

derivatives were found to depend on motion and flow parameters. These dependen-

cies are not reconcilable with the model formulation, which is based on a Taylor series

expansion. However, as the sensitivity of dynamic derivatives on parameters inves-

tigated fell into well defined bands, it was considered reasonable that it is only the

general behaviour of these bands, rather than small and often irregular variations in

the individual curves, that may be of practical interest for flight dynamics simulations.

An approach to evaluate the sensitivity of the non-linear flight simulation model

to variations in dynamic derivatives was introduced. The model predictions compared

best to the time-accurate solution when aerodynamic information was estimated at

the same frequency as the manoeuvre being simulated. This, however, introduces the

question on how to determine the frequencies of interest prior to the manoeuvre being

executed. For the transonic cruiser wind tunnel model, the model predictions for a

large amplitude manoeuvre in the presence of flow separation were found misleading
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and must be carefully interpreted. It was recognized that the non-linear formulation

based on stability derivatives is instantaneous, that is, aerodynamic coefficients are

only a function of the current time. The formulation is then not adequate in the

case aerodynamic loads are dependent on the flow history and past motion. It was

shown that, in these conditions, large amplitude data cannot be extrapolated from

small amplitude tests and cannot be represented accurately by stability derivatives.

As the calculation of dynamic derivatives is the most expensive task, various reduced

models for the fast computation of these terms were investigated. Reduced models were

based on the manipulation of the full-order model to reduce the cost of calculations. The

underlying idea is to exploit the periodicity of the aerodynamic system for oscillatory

motions to significantly decrease the computational cost of unsteady time-accurate

simulations. In fact, a time-domain calculation supports a continuum of frequencies

up to the frequency limits given by the temporal and spatial resolution. It is therefore

worthwhile to consider a frequency-domain formulation to obtain a good estimate of

the derivatives at reduced cost.

A linearized solution of the unsteady problem, with an attendant loss of generality,

was found inadequate to provide good predictions for the parameters at which dynamic

derivatives are required. The reason is that a linearized solution captures the flow

behaviour near the point at which the calculation is done, and the extrapolation of these

information in presence of non-linearities may be misleading. It was recognized that this

method is inadequate for studies of flight dynamics because the aircraft may experience

large excursions from the reference point. These considerations were corroborated by

additional findings, as explained below.

A harmonic balance technique, which approximate the flow solution in a Fourier

series sense, retains a more general validity. While resolving a small subset of fre-

quencies typically restricted to include one Fourier mode at the frequency at which

dynamic derivatives are desired, the harmonic balance technique achieved good predic-

tions of dynamic derivatives at a fraction of the cost for solving the original unsteady

problems. Investigations demonstrated that a reduced model is not intended to simply

augment static calculations, but rather complement and replace the static steady-state

flow solver for flight and configuration conditions in which stability characteristics are

desired. One single calculation with the two methods investigated provides both static

and dynamic derivative information at an equivalent cost of few steady-state runs.

Two- and three-dimensional test cases in the transonic regime were analyzed.

While the application of reduced models was successful for the fast computation

of dynamic derivatives, the range of test cases considered exposed the limitations and

shortcomings of the conventional model used by flight dynamicists. The limitations

are due to the neglect of time history and unsteady effects, and other assumptions

on dynamic derivatives. To address the need for models of more realism to be used

in flight dynamics, enabling the aircraft design for extended flight envelopes, various
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reduced models based on system identification methods were assessed. To allow a fast

turn-around time of the investigations, a two-dimensional aerofoil is the test case. It

was assumed that any consideration on the readiness of the models can be transferred

to the analysis of more complex geometries. Tests on aircraft gemetries should verify

this point. For the flow conditions considered, the dynamic shock motion and the

shock-induced separation were the sources of strong non-linearities in the unsteady

aerodynamic loads.

In addition to the conventional model, four model formulations were described.

Compared to the unsteady time-domain results, the model based on aerodynamic

derivatives was the least accurate. Dependencies of aerodynamic information were

investigated for several parameters. It was recognized that aerodynamic data obtained

from forced motions at a small amplitude do not necessarily provide a better agree-

ment to the unsteady CFD solution than using aerodynamic information obtained for

a larger amplitude case. The solution computed for a small amplitude is similar to a

time-linearized solution which capture the flow behaviour near the point at which the

calculation is done. This is in general inadequate for studies of flight dynamics because

the aircraft may experience large excursions from the reference point. Performing a

forced motion at a larger amplitude exposes the flow to some non-linearities, and this

may improve somewhat the predictions.

While requiring similar computational resources than needed for the conventional

model, improved predictions were achieved using the remaining non-linear models inves-

tigated. These results should be extended to more complex configurations and applied

to the routine generation of aerodynamic models. There is, however, the question of

appropriate training data to be generated, and the issue of model robustness. The

development of reduced models based on the manipulation of the full-order residual is

an appealing option, which is currently investigated by the author for flexible aircraft

control design. The application of this methodology is a research question.

A framework for the automated generation of tabular aerodynamic data using CFD

was described. Applications to the areas of flight handling qualities, stability and con-

trol characteristics and manoeuvring aircraft were considered for six test cases. Em-

phasis on the crucial question of how to keep down the computational cost incurred to

generate the aerodynamic database was addressed. The framework presented is based

on a kriging-based surrogate model. The kriging model is used as a multi-dimensional

interpolation to efficiently predict aerodynamic information at untried flight conditions

from a set of initial calculations. The number and location of computed flight condi-

tions and the fidelity of the data are fundamental aspects for a robust and accurate

kriging-based aerodynamic model. Many low-fidelity computationally cheap estimates

are typically augmented by a few high-quality data, which are made available at a later

time during the design refinement. Data fusion combines the two datasets into one

single database, which is more accurate than the two databases separately.
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During the design process, the aircraft geometry iteratively changes as undesired

characteristics are discovered and in order to screen alternative configurations. An at-

tractive feature of the framework presented is the flexibility offered in such cases. It

was demonstrated that an existing high-quality database, for a given aircraft geome-

try being iteratively modified, can be updated to be representative of the incremented

geometry at the cost of a few high-fidelity calculations. This is illustrative of the role

played by CFD simulations and the potential impact that high-fidelity analyses might

have to reduce overall costs and design cycle time. Two criteria to automate the selec-

tion of candidate sample points to strengthen and verify the readiness of the surrogate

model were used. However, they can capture only global non-linear features. This

motivates the need to address further research at the development of a methodology to

efficiently identify local minima/maxima and changes in curvature in the aerodynamic

loads.

The major computational cost is the computation of CFD analyses at points in

non-linear regions of the flight envelope. Once constructed, the surrogate-based model

is used in place of the expensive simulation process to calculate, at a negligible cost, the

aerodynamic loads at any flight point. The tabular model is consistent with a non-linear

quasi-steady representation of the aerodynamics and can be used in real-time to fly an

aircraft through the database. This gives the opportunity to establish the limitations

of the tabular model due to the neglect of time history and unsteady effects, and to

assess other limitations related to sampling and assumptions on dynamic derivatives.

The simulation of manoeuvring aircraft involves costly time-accurate analyses,

which were confronted with solutions obtained from the tabular data for several ma-

noeuvres and different model configurations. It was recognized that the tabular solution

was adequate in representing time histories of the forces and moments in benign con-

ditions. In these cases, the inclusion of dynamic stability derivatives had a significant

impact in improving the correlation to the reference solution. However, simplifying as-

sumptions pertaining to the flow physics restrict the validity of the tabular model, and

there is a demand for more advanced model formulations for non-linear aerodynamics.

Future work will evaluate the benefits and limitations of reduced-order models for

complex configurations. The routine use of these aerodynamic models for manoeuvring

aircraft will be investigated and compared to the unsteady time-domain CFD simulation

or experimental data.

To briefly summarize, the main points of the work presented in this thesis are

1. exploitation of CFD for the generation of flight simulation models; physics-based

simulations can now be used early in the aircraft design process for extended

flight envelopes; a range of applications demonstrated the potential of CFD to

reduce overall design cycle costs and time
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2. different strategies to create CFD-derived simulation models across the flight en-

velope were assessed, ranging from a hierarchy of aerodynamic models to reduced-

order modelling; the limitations and shortcomings of the conventional model

based on aerodynamic stability derivatives were investigated

3. the level of accuracy and sensitivity of various flight simulation models compared

to unsteady CFD solution were evaluated; predictions using the conventional

model were found misleading when considering conditions of practical interest; the

development of robust CFD-based reduced models applicable to transonic speeds

and high angles of attack is a research question currently under investigation.
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Appendix A

Applications to Flight Dynamics

Six test cases are now presented. Each case study is briefly described and then emphasis

is put on table generation and on the application of the aerodynamic database. The

details of each study are given in associated references. The point of the discussion here

is to illustrate that a variety of applications have been investigated using the framework

described in Section 2.3. The first four testcases focus on the prediction of stability and

control characteristics, and the last two on some aspects of flight dynamics. Of interest,

Appendix A.5 shows that the inclusion of dynamic derivatives may be important in

replaying manoeuvres at high angular rates.

A.1 Transonic CRuiser Model

The design of the Transonic CRuiser (TCR) model was made during the SimSAC (Sim-

ulating Aircraft Stability and Control Characteristics for Use in Conceptual Design)

project 1. The final configuration includes an all-moving canard for longitudinal con-

trol. More details on the model design are given, for example, in [80, 147, 193]. The

mission profile is illustrated in Fig. A.1, and shows the requirement for a design cruise

speed in the sonic speed range. The specification for a cruise Mach number of 0.97

was set to stress the shortcomings of engineering methods traditionally used in the

early design phase. A wind tunnel model was built and wind-tunnel testing for static

and dynamic conditions was performed in the wind tunnel facilities at the Central

Aerohydrodynamic Institute, TsAGI [148] (Fig. A.2).

Three questions were addressed. First, the availability of wind tunnel measurements

made the configuration useful to assess the level and range of validity of several aero-

dynamic models. Then, the kriging-based framework was tested for the generation of a

database of forces and moments calculated from different fidelity models and measured

from testing. To evaluate the sensitivity arising from the aerodynamics, the database of

numerical data was compared to the database of wind-tunnel data in terms of stability

1http://www.simsacdesign.eu [retrieved March 19, 2012]
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Figure A.1: Mission profile for the TCR configuration

(a) Canard wing on (b) Canard wing off

Figure A.2: Wind-tunnel testing of the TCR model in TsAGI [148]

and control characteristics at low speed. Finally, the use of CFD to predict the flying

characteristics in the transonic speed range was investigated.

Two aerodynamic models were considered. At the low fidelity level, the linear

potential method was used to provide computationally cheap estimates of aerodynamic

loads. CFD was employed as the high-fidelity option to better represent non-linear

compressibility effects and viscous contributions (see Fig. A.3). Three CFD solvers were

exercised and compared to experimental data. In addition to RANS simulations, the

flow was modeled with the Euler equations in the EDGE [194] and NSMB [195] analyses,

while the PMB solver was used for the computation of dynamic stability derivatives

from forced motions (see Chap. 3). A grid was generated for each solver. Further details

on numerical modelling, static and dynamic cases can be found in [85,147,148,179].

To assess the accuracy of the computations, numerical simulations were compared

against wind tunnel measured data. The pitching moment is an interesting figure of

merit for stability and control studies, and is shown in Fig. A.4. Low- and high-fidelity

aerodynamic models are compared to experimental data. The moment curve exhibits

several discontinuity points and a non-linear behaviour, which makes it suitable to

show the range of validity of the aerodynamic models. The low-fidelity model predicts
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(a) Flowfield visualization (b) Deflected canard wing

Figure A.3: TCR wind tunnel model; in (a), flow development computed using the PMB
solver at 18◦ angle of attack at low speed; in (b), canard deflections of ±10◦ on a grid for use
with the EDGE solver

a linear moment curve with constant negative slope for all angles of attack tested and

reasonable estimates are obtained in the range ±5◦. A significant improvement in the

correlation to experimental data is achieved by the high-fidelity aerodynamic model.

Except for a localized deviation at twenty degrees incidence, the CFD results are within

a five percent band of the maximum value from the experimental curve up to twenty-

five degrees. At higher angles of attack, the CFD solutions are less accurate. More

details on flow mechanisms leading to observed non-linearities in the moment curve can

be found in [147]. Note that a systematic grid refinement study was not shown in any

of the mentioned references.

A factor in using a kriging-based framework is the ability to combine many computa-

tionally cheap estimates from the low-fidelity model and few high-quality information

from a limited number of expensive high-fidelity simulations. This was key for the

generation of aerodynamic data to cover a flight envelope from low speed up to tran-

sonic cruise speed. Each aerodynamic model was used in a domain which is the most

representative of its validity.

At low speed, a dataset of measured and computed aerodynamic predictions was

generated. Each dataset included two sub-tables, that is, a baseline table of static

dependencies (α,M, β) and a sub-table for the canard deflection (α,M, δ). The aero-

dynamic database representative of wind tunnel testing was obtained by compiling in

tabular form the measured force and moment coefficients. Static wind tunnel testing

was performed at a nominal Mach number of 0.17 for several values of angle of attack.

The angle of attack was varied from −10◦ up to 40◦, and the angle of sideslip up to

16◦, with a step increment of 2◦ in both cases. The increments in aerodynamic loads

due to canard deflection were measured for deflection angles from −30◦ up to 10◦ at
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Figure A.4: Pitching moment coefficient at low speed for the TCR model; the reference point
is located at the centre of gravity given in Table A.1

increments of 5◦. A negative canard deflection indicates trailing-edge down. Kriging

interpolation was used to extract the aerodynamic quantities at any combination of

flight conditions and canard setting not included in the tabular model.

The database of aerodynamic information from computed results was generated as

follows. A low-fidelity representation of the tables was first obtained using the linear

potential method. The sampling approach in combination with the RMS criterion

filled the baseline table and the sub-table for different canard deflection angles. The

flight envelope was limited between −10◦ and 10◦ for the angle of attack, and from

0.1 up to 0.64 for the Mach number. The low-fidelity database was then incremented

by combining it with the high-fidelity aerodynamic results from RANS analyses. The

EDGE solver was used in the angle of attack range between −4◦ and 34◦, and the

influence of canard deflection was investigated for a deflection angle of −5◦ and −10◦.

The NSMB solver provided aerodynamic information for an angle of attack between

−5◦ and 30◦, limiting the sideslip angle up to 5◦. The influence of the canard was

computed at 5◦ and 10◦ deflection angles. The PMB solver was considered in the angle

of attack range at which measurements were performed, from −10◦ up to 40◦. A set of

static and dynamic stability derivatives was obtained for different reduced frequencies

and several angles of attack. Data fusion was used to update the low-fidelity results

with these high-fidelity calculations.

In the absence of wind tunnel testing in the transonic speed range, one database

of computed aerodynamic loads was generated. Use of CFD was considered the only

reasonable option for accurate predictions in this range. All CFD analyses were made
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for symmetric flow, a combination of Euler and RANS models was considered and the

influence of the Mach number and canard deflection were investigated. Euler analyses

were performed using the EDGE solver. The Mach number was set to 0.65, 0.75 and

0.85 and three values of the angle of attack were considered. For all flow combinations,

a canard deflection of 5◦ and 10◦ was computed. The NSMB solver performed Euler

analyses for three values of the angle of attack (−5◦, 0◦ and 5◦) and three values of

the Mach number (0.60, 0.92 and 0.97). For all combinations of these parameters, the

influence of the canard deflection was investigated for angles of −5◦ and 5◦. RANS

calculations were made at cruise Mach number and angle of attack of −1◦, 0◦ and 1◦.

At these flight conditions, aerodynamic increments due to the canard for deflection

angles of 5◦ and 10◦ were calculated. These CFD runs were used to create the corre-

sponding high-fidelity aerodynamic database at the transonic speed range with kriging

interpolation.

The coverage of the angle of attack and Mach number space is illustrated in Fig. A.5

for the low- and high-fidelity aerodynamic models. The shaded area represents many

cheap solutions obtained using TORNADO in combination with the sampling approach.

The large number of CFD calculations clustering at low speed was motivated by two

needs, that is, to benchmark the results obtained using different solvers and to establish

the range of their validity. Conditions at which wind tunnel testing was performed

are not included as they would cover the CFD data at low speed. The data shown

are a fraction of the calculations computed for the complete aerodynamic database.

Including the dependencies on the angle of sideslip and deflection of the canard wing,

a total of 270 CFD calculations was performed, of which one third were solving the

Euler equations.

Flight dynamics studies require information on the mass and inertia properties of the

model, which might not be readily available even for flying configurations. Without any

other information, the CEASIOM (Computerized Environment for Aircraft Synthesis

and Integrated Optimization Methods) software 2 was used to estimate these data [196].

Reference values and predicted mass and inertia information are given in Table A.1.

The propulsion system is assumed to provide the necessary thrust during all phases of

the flight envelope.

The application of the aerodynamic databases was focused on the prediction of the

trim conditions and flight handling qualities. In the subsonic speed range, the databases

based on wind tunnel measurements and numerical results were compared in terms of

trim conditions. A decrease in trim angle of attack and canard deflection for increasing

speed was reported, with a reasonable agreement between tunnel and numerical results.

Note that the dynamic pressure was altered to extrapolate the trim conditions for the

wind tunnel dataset to higher speeds than the nominal speed at which measurements

were performed. At transonic speed and high altitude, the investigations found that a

2http://www.ceasiom.com/ [retrieved March 19, 2012]
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Figure A.5: Distribution of low- and high-fidelity calculations in the two-dimensional param-
eter space of angle of attack and Mach number; the shaded area illustrates many solutions
obtained using the linear potential method, TORNADO; CFD solutions were obtained at an
ensemble of isolated points

Parameter Value

S 488.96m2

b 44.8m
c 11.772m
d 63.84m

xcg 38.33m
zcg 0.0m

MTOW 208 × 103 kg
Ixx 15.17 × 106 kg·m2

Iyy 17.52 × 106 kg·m2

Izz 32.10 × 106 kg·m2

Table A.1: Reference values and mass and inertia properties of the TCR aircraft model

nearly constant canard deflection was required for trim at all speeds tested except in the

vicinity of the speed of sound. The reason for this was related to the formation of shock

waves on the main wing aft of the centre of gravity, producing a pitch-down tendency.

It is worth mentioning that the trim canard deflection falls outside the range of values

at which CFD calculations were computed, and the results presented were possibly

extrapolated. Tables should be extended to confirm the results. The assessment of the

flight handling qualities indicated poor longitudinal characteristics at low speed, which
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were found acceptable in the transonic regime. With the appearance of shock waves,

the aerodynamic centre moves away from the centre of gravity. A consideration is for

the increasing value of static margin for increasing speed, and illustrates a challenge in

designing a transonic airplane.

The point of the discussion of the TCR results was to show what is now possible

with the framework described above. Although a large number of CFD calculations at

low speed was motivated by the availability of tunnel measurements, different fidelity

aerodynamic models were exercised, and predictions combined into one single database.

The generation of aerodynamic tables was key to the subsequent investigations into the

area of stability and control. It is worth noting that flight dynamics issues such as poor

flying qualities at low speed and improved flying qualities across the transonic region

were related to what was observed in physics-based simulations.

A.2 Asymmetric Aircraft Model

The purpose of the study detailed in [197] was to investigate whether drag reductions in

cruise condition can be achieved for an aircraft by selecting a three-lifting surface asym-

metric design. A conventional T-tail design based on the existing Eclipse Aerospace

500 Very Light Jet (EA500), as seen in Fig. A.6(a), was selected as the baseline aircraft,

and this was redesigned into a novel asymmetric configuration. Aerodynamic databases

were generated for both aircraft based on CFD simulations, and the thrust required to

achieve trim in the cruise condition was assessed for each case.

The novel configuration was designed to fullfil the same role as the baseline aircraft,

with design decisions made to ensure that any drag reduction was a result of using

three-lifting surfaces rather than from relaxing the static margin. The same mass and

inertia properties were used for both aircraft to isolate any improvement attributable

to the aerodynamics. Look-up tables were generated with the same CFD solver. The

asymmetric three-lifting surface aircraft is referred hereafter as the Z-configuration, as

opposed to the baseline configuration to indicate the original T-tail design.

The Z-configuration has a split wing, with the starboard semi-wing located low on

the fore fuselage, and the port semi-wing located high on the aft fuselage. Both semi-

wings have the same area and span but different sweep and dihedral angles. There is

no horizontal tail, and the vertical tail is canted to starboard to provide a third lifting

surface, with a dihedral angle of 35◦. Figure A.7(a) shows an overhead view of the two

aircraft configurations. For the Z-configuration, five control surfaces were created. Two

ailerons on the outer sections and two elevators on the inner sections of each semi-wing,

and a rudder on the canted vertical tail are shown in Fig. A.7(b).

As the interest is around the cruise condition at the higher end of the subsonic

speed range, the flow was modeled using the Euler equations. The flow solver used for

the aerodynamic predictions was EDGE. The low-fidelity aerodynamic models were not
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(a) EA500 Very Light Jet (b) Baseline configuration with control surfaces

Figure A.6: Baseline configuration representative of the EA500 Very Light Jet

considered in this case study. A simplified geometry representative of the EA500 was

constructed with a best-fit of the overall shape from available three-dimensional views,

and is shown in Fig. A.6(b) with positive deflection of control surfaces. Engine nacelles

were removed from the model. This was considered a reasonable simplification because

the emphasis here is on the comparison between two aircraft configurations using the

same aerodynamic model.

An unstructured grid for each configuration was generated. The grid for the baseline

configuration was obtained with approximately 130k nodes and 830k edges, whilst

the grid for the Z-configuration contains approximately 188k nodes and 1.1 million

edges. Grid points were clustered at the leading- and trailing-edges, and a finer spatial

resolution was used for the control surfaces. This explains the larger grid size for

the Z-configuration with controls extending throughout most of the lifting surfaces.

To automate the generation of aerodynamic tables and to work with one single grid

for each configuration, the transpiration boundary approach was used to calculate the

aerodynamic increments due to control deflection.

A flight envelope around the cruise condition was defined for the generation of the

look-up tables. The complete aerodynamic database included the effects of angle of

attack, Mach number, sideslip angle and the deflection of control surfaces. The angle

of attack varied between −4◦ and 10◦, the Mach number between 0.20 and 0.65 and the

angle of sideslip up to 6◦. The deflection of the ailerons and elevator was limited up

to 15◦, while the rudder was deflected up to 20◦. The run matrix included 8 separate

values for the angle of attack, 4 for the Mach number and 5 for the sideslip angle. Five

values were used for all controls. The aerodynamic dataset for the baseline configuration

included a total of 640 flow conditions for different control settings. With the inclusion

of more control surfaces, the database of the Z-configuration had a larger number of
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(a) Overlay of original and asymmetric models (b) Z-configuration with control surfaces

Figure A.7: Asymmetric three-lifting surface configuration

table entries. Aerodynamic tables for the baseline configuration were generated using

the EDGE solver as the source of the aerodynamic predictions as follows. The sampling

approach based on the RMS criterion was used for the generation of the baseline table,

and kriging interpolation was then used to interpolate the 45 sample database to the

remaining flight conditions. Three sub-tables were then generated to represent the

aerodynamic increments due to control deflections. With a general overview of the

aerodynamic loads given by the baseline table, sample points were located along the

borders of the three-parameter domain to avoid extrapolation. A median location

within the parameter space was also chosen. While a few sample points were selected,

in the parameter range examined the aerodynamic responses were expected to behave

linearly, so that the limited number of calculations was sufficient. Each sub-table

was filled out with the co-kriging approach. To verify the quality of the prediction

model, additional calculations were performed at a few random untried locations and

compared against the predicted value obtained from the tables. In all cases, predicted

values from the look-up tables matched well the actual values from simulation. A total

of 130 CFD simulations were performed for the baseline configuration to generate all

required look-up tables. For the Z-configuration, the baseline table was generated from

scratch. Sampling based on the RMS criterion was again used to populate the table.

The geometric asymmetry raises the question of how to control the aircraft with the

available control surfaces. Five sub-tables were generated using the Euler equations

to include the aerodynamic increments arising from the independent deflection of each

control surface. Co-kriging was then used to fill out the remaining entries in each

sub-table. The same approach as above for selecting sample points was used. About

two-hundred calculations were run for the Z-configuration.
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The two aircraft configurations were trimmed at cruise for straight and level flight at

a Mach number of 0.65 and an altitude of 10000m. Mass and inertia properties of the

EA500 are available, and these were used for both configurations. The mass at cruise

condition was set to 2400 kg, and to guarantee the same static margin as that of the

baseline configuration, the centre of gravity of the Z-configuration was moved slightly

aft. For the baseline configuration, the lift, drag and pitching moment are controlled

by adjusting the angle of attack, elevator deflection and thrust. The asymmetry of

the Z-configuration results in a coupling of the longitudinal and lateral quantities. Up

to eight parameters can be varied to control the six aerodynamic forces and moments

acting on the aircraft, and these are the angles of attack and sideslip, the five control

surface deflections and the thrust. The system is overdetermined. Trim configurations

were analyzed for a sideslip angle set to zero. Several different angles of attack were

used in these configurations, with the smallest control surface deflections achieved when

the angle of attack was three degrees. This over-determined trim system was solved

whilst constraining one independent variable to zero, therefore the proposed solution

might be the optimal solution of a subset problem and not a globally optimum solution

of the original problem. A more general approach to formulate the problem involves

the solution of a control allocation problem. By defining the independent variables as

above and restricting their range as problem constraints, an optimal solution is found

minimizing an appropriate functional. The objective of the minimization problem is to

achieve the trim condition minimizing the trim drag. More details can be found, for

instance, in [198,199].

Comparison of the thrust required for trim demonstrated that the Z-configuration is

a less efficient design than the baseline configuration. The increase in drag was related

to the use of larger control surface deflections. A key issue of the novel design was

identified in a poor control authority in the lateral and directional channels. Because

the tail is canted, the rudder has a small effect on the yawing moment, but a large

impact on the pitching moment. Deflecting the rudder on the baseline configuration,

on the other hand, affects the yawing moment coefficient over ten times more than the

pitching moment coefficient.

The results presented show that the CFD-based framework can be used in a routine

basis to screen the potential/limitations of novel aircraft configurations. The key issue

here is the generality realized in a CFD simulation, and the absence of any restriction,

as in the case of traditional engineering methods, when considering new designs.

A.3 DLR-F12 Model

The DLR-F12 model represents a conventional wing-fuselage-tail configuration for a

civil passenger transport aircraft designed by the German Aerospace Center (DLR). A

wind tunnel model was built and experimental investigations were conducted in the fa-
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cilities of the German-Dutch Wind Tunnels (DNW-NWB) during the SimSAC project

(Fig. A.8). Further information on static and dynamic investigations can be found,

for instance, in [150, 178, 179, 200]. The need to explore the influence of using differ-

ent fidelity levels in geometry and aerodynamic modelling was assessed in a previous

work [181].

Figure A.8: Wind-tunnel testings of the DLR-F12 model in DNW-NWB [200]

Low- and high-fidelity geometric descriptions of the DLR-F12 wind tunnel model

were used in combination with several aerodynamic models. The low-fidelity configu-

ration was built to approximate the wind tunnel model using as few as one hundred

geometry parameters. With a generic aerofoil section, a simple description of the fore-

most fuselage section and approximating the wing-fuselage intersection, this geometry

is typical of the conceptual design phase. This configuration is referred hereafter as the

XML configuration. An unstructured grid was then generated for this geometry for a

solution of the Euler equations. The flow solver used was EDGE.

A multi-block structured topology was created around the wind-tunnel model geom-

etry to allow a high-fidelity representation, and the PMB solver was used to solve the

Euler and RANS equations. This configuration is referred to as the WT configuration.

A comparison of the XML and WT geometries is illustrated in Fig. A.9.

The generation of aerodynamic tables for the low- and high-fidelity aircraft ge-

ometries proved useful in highlighting the benefits of sampling and data fusion. Two

separate aerodynamic databases for the XML configuration were generated, that is,

based on DATCOM and on the EDGE solver using the Euler equations. The tables

obtained from EDGE were created from scratch. The baseline table comprised 648 en-

tries. Sampling based on the EIF criterion was used to search for potential non-linear

aerodynamic characteristics, and kriging was used to interpolate the 65 CFD solutions

to the remaining flight conditions. Sixteen samples were then generated at random

flight conditions, and the directly calculated aerodynamic coefficients were compared

to those obtained from the baseline table. In all cases and for all coefficients, the RMS

error was small indicating that the baseline table reproduced well the aerodynamic
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(a) XML, mesh overview (b) XML, nose close up (c) XML, fairings close up

(d) WT, mesh overview (e) WT, nose close up (f) WT, fairings close up

(g) XML, tail close up (h) WT, tail close up

Figure A.9: Different fidelity geometry representations of the DLR-F12 model; XML and WT
indicate, respectively, the low- and high-fidelity configurations; the elevator is highlighted in the
XML geometry and the WT geometry has been mirrored to facilitate the geometry comparison
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characteristics of the underlying XML configuration [181]. The table describing the

effect of elevator deflection on aerodynamic loads was then generated. Twelve samples

were located along the border of the three-parameter domain and in the non-linear re-

gions observed from the baseline table, such as the combination of high angle of attack

and high Mach number. The values at these samples were then used to increment the

baseline table using co-kriging. The approach used to calculate the increments due to

elevator deflection was based on the transpiration boundary conditions.

Geometry increments from the baseline XML configuration were defined to simulate

a design study. Seven parameters were originally investigated, and variations of the

wing quarter-chord sweep angle, Λw, and wing area, S, are shown in Fig. A.10. The

assumption that the flow topology does not change significantly for the incremented

geometries is key in this application. For each geometry increment, a baseline table was

produced updating the aerodynamic informations from the original XML configuration

with additional samples. For each case study, fourteen samples were chosen along the

borders of the domain to avoid extrapolation and a few at the higher values of the angle

of attack and Mach number. To guarantee that enough information was included in the

updated baseline table for the incremented geometries, sixteen additional samples were

considered at random locations within the parameter space to check that the tables

were adequate. A good accuracy was observed in all cases.

For the WT configuration, a baseline table was constructed based on a few expen-

sive viscous calculations 3. Twenty samples were chosen in the parameter space, and

the PMB solver was used to solve the RANS equations. With the assumption that the

WT geometry table is an increment of the XML table, co-kriging was used to update

the low-fidelity database and to generate a baseline table for the high-fidelity aerody-

namic model. To add the effects of elevator deflection on the baseline WT table, the

increments in forces and moments were considered identical to those computed for the

XML configuration.

The mass and inertia properties of the DLR-F12 full aircraft model were provided

by the DLR. Table A.2 summarizes the reference values, and predicted mass and inertia

properties.

The aerodynamic databases for the XML and WT configurations were used to trim

the aircraft for a range of flight speeds at an altitude of 6000m. The trim angle of

attack, trim elevator deflection and the required thrust are illustrated in Fig. A.11.

Results obtained from look-up tables for the two configurations are compared. For the

XML configuration, the Euler predictions result in smaller elevator deflection angles

than DATCOM, which is explained by the different pitching moment curve slope for

the CFD simulations at transonic conditions. The increase in drag force results in an

3As an example, while a CFD solution on the XML configuration was obtained in one hour on
a single processor, a well converged solution solving the RANS equations on the WT configuration
required two hours on thirty-two processors.
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Λw = 26◦ Λw = 29◦ Λw = 35◦

S = 601m2 S = 686m2 S = 945m2

Figure A.10: Geometry increments to simulate a design study, featuring variation of wing
quarter-chord sweep angle, Λw, and wing area, S; the arrow points at the wing tip trailing-edge
of the baseline XML configuration, which represents the original XML design

Parameter Value

S 710.62m2

b 80.72m
c 10.105m

xcg 41.95m
zcg −1.21m
mass 115.7 × 103 kg
Ixx 11.828 × 103 kg·m2

Iyy 16.679 × 103 kg·m2

Izz 27.163 × 103 kg·m2

Table A.2: Reference values and mass and inertia properties of the DLR-F12 full aircraft
model

increased thrust as the flight speed increases. For the entire speed range, the Euler

results for the XML configuration are close and representative of the RANS results for

the WT configuration.

Handling qualities were also assessed. Figure A.12 shows the short-period and

phugoid characteristics compared to ICAO (International Civil Aviation Organization)

opinion-contour graph and using a Cooper-Harper handling qualities rating scale [201].
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Figure A.11: Trim conditions for the DLR-F12 full aircraft model at an altitude of 6000m
comparing DATCOM and Euler solutions on the XML configuration and RANS solution on
WT configuration
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The rating scale establishes a relationship between the stability and control parameters

of the airplane and the pilot’s opinion of the airplane. The Cooper-Harper handling

qualities rating scale goes from 1 to 10 with low numbers corresponding to good flying

or handling qualities. The scale is an indication of the difficulty in achieving the

desired performance that the pilot expects. Results are based on tables for the XML

configuration built using DATCOM and the EDGE solver in Euler mode, and for the

WT configuration from the PMB code solving the RANS equations. Two flight speeds,

of 200 and 300m/s, are included. For the short-period, DATCOM results are less

satisfactory and controllable compared to those found for the Euler option. This is

explained considering the very small magnitude of natural frequencies predicted using

DATCOM. For the phugoid, a large discrepancy is observed at the higher speed between

the Euler-based and DATCOM-based results. This arises from the Euler drag and

pitching moment increases at transonic speeds. The Phugoid attributes improve with

increasing flight speed for all of the aerodynamic sources, but the DATCOM predicted

value is poor. The aircraft natural frequencies are too small when using the DATCOM

aerodynamic tables.

The impact of geometry increments on the handling qualities was then investigated.

The influence of the wing quarter-chord sweep angle, Λw, and wing area, S, on the short-

period mode are presented in Fig. A.13. The flight speed is 300m/s at an altitude of

6000m. While the period, T , depends largely on the pitching moment curve slope,

the time to half amplitude, T1/2, depends also on the aircraft pitch damping. The

predictions include the effect of changes in the moments of inertia and the aircraft

mass.

The results suggest that the CFD-based aerodynamic tables provide better under-

standing of the vehicle handling qualities at transonic conditions, whereas the tables

from DATCOM are misleading.

The results presented demonstrate that the CFD-based framework provides a better

understanding of the vehicle handling qualities at transonic conditions when compared

to results obtained using engineering methods. In addition, the original geometry of

the DLR-F12 model was modified to simulate the iterative process of aircraft design.

It was shown that a small number of CFD calculations is required to update existing

aerodynamic tables, and the impact of some geometric increments on predicted flight

handling qualities was assessed.

A.4 Large Transport Civil Aircraft Model

Several aerodynamic models for a large transonic civil aircraft configuration were con-

sidered in a previous work [202]. The low-fidelity aerodynamic models were derived

from DATCOM and a linear potential solver. For higher fidelity, the flow was mod-
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Figure A.12: Short-period and phugoid characteristics for the DLR-F12 full aircraft model
at an altitude of 6000m compared to ICAO recommendations [201]
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Figure A.13: Impact of geometry increments in the short-period characteristics for the DLR-
F12 full aircraft model at an altitude of 6000m

elled using the Euler equations. For shorthand, the configuration is referred to as the

B747-like model.

The model geometry was created to best reproduce the layout of the B747 aircraft

from available three-dimensional views, as illustrated in Fig. A.14. This simplified

geometry, which is well suited in the conceptual design, is built using around one

hundred geometric parameters and is shared between all aerodynamic sources. An

unstructured grid was generated using the open-source code SUMO 4 for use with

the EDGE solver. The grid, suitable to model the flow with the Euler equations,

consists of 258 thousand nodes, 1.69 million edges and 1.35 million tetrahedra elements.

The surface grid lacks detailed refinement and adopts a simple description for many

4http://larosterna.com/sumo.html [retrieved March 19, 2012]
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components. Control surfaces were sized from the aircraft model. Flaps, inner and

outer ailerons on each semi-wing, an all-moving stabilizer, four-segment elevator and

two-segment rudder are illustrated in Fig. A.15.

Figure A.14: Overlay of a three-view of a B747 aircraft model and lifting surfaces for low-
fidelity aerodynamics

(a) Overview (b) Nose close up (c) Tail close up

Figure A.15: Medium-fidelity surface geometry for the B747-like model with control surfaces

Three aerodynamic databases were created for each aerodynamic model used. To

assess accuracy in the results, aerodynamic predictions were compared to experimental

data for the B747. Flight handling qualities were also investigated for a transonic

cruise condition. The first database to be generated was representative of low-fidelity

aerodynamics based on DATCOM estimates. A database was then created using the

linear potential method. The corresponding aerodynamic database covered 2160 flight

conditions for different control settings. The Mach number varied between 0.1 and

0.9, the angle of attack between −5◦ and 10◦. The sampling algorithm and the RMS

criterion were used to fill out the baseline table. As the dataset was used in a parallel

work for a control allocation study [198], control surfaces were independently deflected

one at a time. Tables for control surfaces deflection were created using the same

sampling approach as for the baseline table.

As most of the benefit in using CFD in Euler mode comes from a better represen-

tation of non-linear ompressibility effects, tables representative of this higher-fidelity

aerodynamics were generated from scratch for a limited flight envelope around the cruise
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speed. In total, the aerodynamic dataset included nearly ten thousand flow conditions.

The angle of attack varied between −5◦ and 10◦, the Mach number between 0.70 and

0.95 and the angle of sideslip up to 6◦. The deflection of the elevator was limited up

to 10◦, while the rudder and the ailerons were deflected up to 15◦. The run matrix

included 20 separate values for the angle of attack, 10 for the Mach number and 9 for

the sideslip angle. For the angular rates and control surface deflections, 15 separate

values were selected. The baseline table was created using the sampling methodology in

combination with the EIF criterion. The same approach was also used to calculate the

increments in aerodynamic loads for the deflection of the two-rudder segments. Due to

the aircraft symmetry, only positive deflections were analyzed. Figure A.16 illustrates

the variations of aerodynamic coefficients with variations of angle of attack and deflec-

tion of the two-rudder segments. As the surfaces shown are for a Mach number of 0.9,

they represent a slice through the parameter space (α,M, δrud). Black cubes indicate

actual CFD calculations. In the plots, eight samples were automatically selected at

different positions along the borders, mostly at the lower and higher ends of the rudder

deflection range. The location and number of samples differ for surfaces at different

Mach numbers, and sample points were observed within the surface boundaries for

some values of the Mach number. A larger number of sample calculations were placed

at the low and high Mach numbers.

Tables for other control surfaces, that is, the all-moving stabilizer, the four-elevator

segment and the ailerons, were generated from additional CFD calculations. These

sample points were distributed along the border and within the parameter space. One

example sample distribution is shown in Fig. A.17 depicting actual CFD calculations

and the space spanned by the table for aileron deflections. Co-kriging was then used to

update the baseline table for these control deflections. A total of about one hundred

CFD calculations was used to fill out the entire aerodynamic database. Transpiration

boundary conditions was used throughout this study.

Predictions of aerodynamic loads based on different aerodynamic models were com-

pared to wind tunnel experimental data from [203, 204]. The interest here is on the

cruise condition, and more details can be found in [202] for the subsonic speed range.

Fig. A.18 compares aerodynamic coefficients obtained using different fidelity aero-

dynamic models. For the lift coefficient, the Euler results show the closest correlation

to the published data. The actual values and the curve slope compare well to exper-

imental values. DATCOM shows comparable lift curve slope, with the actual values

slightly less than experimental data. However, as the Mach number increases, DAT-

COM results begin to fall away from experimental results. TORNADO results without

the compressibility correction remain constant through all Mach numbers, and the

offset from experimental data increases because of the more influential effect of com-

pressibility at higher speeds. TORNADO results with the Prandtl-Glauert similarity

role overpredict the lift-curve slope, diverging at higher Mach numbers. For the drag
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Figure A.16: Variation of aerodynamic coefficients with angle of attach and rudder deflection
at a Mach number of 0.9; the black cubes indicate sample points
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Figure A.17: Illustration of the aerodynamic table for ailerons deflection; black cubes indicate
sample points

polar, it is observed that the DATCOM result shows the best correlation with the

experimental data. This is not unexpected because DATCOM was developed using

conventional configurations and the semi-empirical methods calibrated using, amongst

others, data for the B747. The Euler results differ from the viscous experimental data

in the absence of any estimate of the drag due to friction. The linear potential results

achieve a poor agreement with other data sets. The pitching moment coefficient curve

slope is a good indicator of the aircraft static stability. A good correlation of numer-

ical data sets is achieved in terms of stability. However, the numerical values deviate

by a constant offset, which suggests discrepancies in the Cm 0 value. This is expected

because the term is highly dependent on the aerofoil section and fuselage geometry

used in the computations. The linear potential results with compressibility correction
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Figure A.18: Variable-fidelity aerodynamic predictions compared to experimental data at
Mach number of 0.8 for the B747-like model; experimental data are from [204]

overpredicts the curve-slope, amplifying the compressibility effect on the static stabil-

ity. The Euler results achieve a good comparison with experimental data for the Mach

numbers considered. At the higher end of the angle of attack range, the trend line for

the experimental data set has non-linear behaviour, possibly caused by interactions of

the boundary-layer and shock waves.

For the flight dynamics studies to follow, reference values of the B747-like model

are summarized in Table A.3. The mass and inertia properties were estimated, and are

given in the same table. The propulsion system was assumed to provide the necessary

thrust during all phases of the flight envelope.

Using the available aerodynamic databases, the trim conditions for the B747-like

model were computed at cruise altitude of 11000m for several values of the Mach num-

ber. The trim angle of attack and trim elevator deflection are presented in Fig. A.19.

The angle of attack required for trim decreases as the Mach number increases, which
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Parameter Value

S 511.0m2

b 59.64m
c 9.0798m
d 68.5m

xcg 29.35m
zcg −0.69m

MTOW 367.52 × 103 kg
Ixx 32.158 × 106 kg·m2

Iyy 49.838 × 106 kg·m2

Izz 77.613 × 106 kg·m2

Table A.3: Reference values and mass and inertia properties of the B747-like model
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Figure A.19: Trim conditions at transonic speed range for the B747-like model at an altitude
of 11000m using different fidelity aerodynamic models

is not unexpected due to the corresponding higher dynamic pressure. With signif-

icant compressibility effects in the transonic regime, and with shock waves moving

downstream on the wings, the aerodynamic centre moves aft and the static margin

increases. The required elevator deflection to trim the aircraft also increases. The cor-

relation to experimental data is best for the database of forces and moments generated

using the Euler equations. This highlights the shortcomings of engineering methods in

the transonic regime, which calls for a higher-fidelity representation of the flow physics

as achieved in a CFD simulation. It also indicates that the aerodynamics computed

using CFD for the B747-like model is representative of the real aircraft model, and that

modelling the flow with the Euler equations on a simplified geometry description can

provide the designer with valuable information otherwise not predicted with low-fidelity

models.
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A.5 Standard Dynamic Model

The framework for generating manoeuvres based on the solution of a time-optimal

problem was exercised with the SDM model [23]. More details pertaining the model

configuration, block structured grid and numerical simulations were presented in Chap-

ter 3.2.1. To allow manoeuvring the aircraft, control surfaces were added to the com-

putational mesh. Mesh block faces were placed on the control surfaces, and the mesh

points on these faces were deflected to define the control surface mode shapes. After

the surface grid point deflections are specified, transfinite interpolation is used to dis-

tribute these deflections to the volume grid [104]. A view of the surface mesh for the

deflected control surfaces is shown in Fig. A.20. An all-moving elevator, ailerons and

rudder were used for longitudinal and lateral-directional control.

Figure A.20: Deflected control surfaces for the SDM model

Geometry reference values were given in Table 3.1. Mass and inertia properties

of the SDM model are available for a free-flight model which represents a 1/72 scale

aircraft [205]. These values were scaled-up to match the dimensions of the current

computational model. The maximum total thrust force, Tm = 26.24 kN , is assumed

to cross the centre of gravity. The direction of the thrust relative to the aircraft is

assumed to remain unchanged with altitude and flight speed, and to vary linearly with

the engine throttle.

To generate the aerodynamic database of forces and moments, four sub-tables were

created, three were for the control surface deflections. The Mach number was varied be-

tween 0.1 and 0.4, and all manoeuvres were simulated in the subsonic speed range. The

angle of attack was varied between −14◦ and 28◦, and deflection limit for all controls
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Parameter Value

xcg 9.91m
mass 9295.44 kg
Ixx 12.874 × 103 kg·m2

Iyy 75.673 × 103 kg·m2

Izz 85.552 × 103 kg·m2

Table A.4: Mass and inertia properties of the SDM model

was set to 20◦. Around 6000 table entries were defined. The baseline table consisted of

156 flight conditions, and a brute force approach was considered for varying the Mach

number and angle of attack, while keeping the sideslip angle to zero. For the lateral

coefficients, a different approach was considered because all the lateral coefficients in

the created baseline table were zero. Lateral coefficients obtained using DATCOM

were used as low-fidelity data, and then co-kriging with a few Euler results was used

to generate the updated baseline table. The dependence of the longitudinal forces and

moments on other parameters was assumed to be an increment of the baseline table

and the co-kriging data fusion method was used to include these variation in a compu-

tationally efficient way. With fifteen additional samples the variation with the elevator,

ailerons and rudder was included in the tables. Samples were located at the vertices

of the parameter space and at a median value within the domain. The response of

the aerodynamic coefficients to variations in angle of attack and elevator deflection at

a Mach number of 0.4 is illustrated in Fig. A.21. Considering the non-linear features

shown, it can be argued that the number of sample points used was small for an ade-

quate representation of the aerodynamic loads. While static coefficients were adequate

to represent aerodynamic loads for slow manoeuvres, the simulation of faster motions

included dynamic dependencies. Dynamic derivatives were computed from forced mo-

tions, and assumed to be independent of the Mach number and to vary with the angle

of attack only. This assumption was demonstrated to be adequate in the speed range

below a Mach number of 0.5, as given for example in [85] where dynamic derivatives

from low-subsonic to high-transonic regime were compared to experimental results (see

also Chapter 3.3.1).

Aerodynamic loads for a set of manoeuvres were predicted using the tabular model

of forces and moments, and these were compared to the unsteady CFD solution, which

is the reference solution because it is time-accurate. To guarantee a realism in the

manoeuvres to be simulated, these were generated solving an optimal control problem.

The problem of moving the aircraft from the initial state to the final state is rewritten

as a control problem by minimizing a suitable cost function. Constraints are specified

for the states, describing the aircraft position and attitude, and for the controls, re-

alizing physical limitations on the use of control effectors. The resulting constrained
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Figure A.21: Response of aerodynamic coefficients to angle of attach and elevator deflection
at a Mach number of 0.4

optimization problem, with the six degrees of freedom equations of motion as a fur-

ther constraint, can be solved using standard techniques, as in [206]. In the current

framework, the DIDO code 5 [207] is used for the solution of the optimal problem, with

aerodynamic forces and moments obtained from the look-up tables. Technical details

can be found, for instance, in [208–210].

Two sets of manoeuvres were generated using the optimal control problem to demon-

strate, first, a good comparison between the tabular model and the CFD solution for

slow motions, and, then, to stress the limitations of the tabular model when confronted

with flows exhibiting time-history effects. A variety of manoeuvres, two of which are

illustrated in Fig. A.22, were simulated at low rate, and the solution of the optimal

control problem was found using static tabular data. In all cases presented, the aero-

dynamic loads from the tabular model compared well with the time-accurate solution.

The assumption of quasi-steady aerodynamics describes well the flow around the mov-

ing airframe, adapting instantaneously to changes in geometry attitude and without

time-history effects influencing its development. The effect of increasing the angu-

lar rate for a given manoeuvre was then investigated. The manoeuvre was a pull-up

with time-varying angle of attack, and was simulated initially at a pitch rate as low

as 2.0◦/s. Whilst for 20.0◦/s the inclusion of dynamic terms shifted the static pre-

diction to match the time-accurate solution up to high angles of attack, discrepancies

were observed at the higher end of the angle of attack range when the pitch rate was

increased to 100.0◦/s. Under these circumstances, significant history effects due to

vortical interactions are present as illustrated inspecting the vortex surface footprint.

5http://www.elissarglobal.com/ [retrieved March 19, 2012]
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Turn 90deg

Wing−Over

Figure A.22: Wing-over and a 90-degree turn manoeuvres were simulated for the SDM model
in [23]

A.6 Ranger 2000 Aircraft

The framework for the replay of manoeuvres was tested for several aerobatic manoeu-

vres performed with the Ranger 2000 aircraft [183]. The influence of dynamic deriva-

tives, however, was neglected in this study. This aircraft is a mid-wing, tandem seat

military training aircraft with a turbofan engine with uninstalled thrust of 14.19 kN . A

three-view representation of the Ranger 2000 aircraft is shown in Fig. A.23. Reference

values, and mass and inertia properties are summarized in Table A.5. Conventional

control surfaces are used.
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Figure A.23: A three-view of the Ranger 2000 aircraft

A block structured grid for the PMB solver was generated at Liverpool with 14.5

million points for the half-configuration. The flow was modelled using the Euler equa-

tions. Control surfaces were included to the grid, and a grid for a full-configuration was

used for lateral manoeuvres. Deflected control surfaces are illustrated in Fig. A.24.

The complete aerodynamic database included the effects of angle of attack, Mach

number, sideslip angle and the deflection of the three conventional control surfaces. In

total, the aerodynamic dataset covered nearly 5900 flow conditions. The angle of attack
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Parameter Value

S 15.5m2

b 10.46m
c 1.545m
d 10.39m

MTOW 3765 kg
Ixx 9.287 × 103 kg·m2

Iyy 13.584 × 103 kg·m2

Izz 21.237 × 103 kg·m2

Table A.5: Reference values and mass and inertia properties of the Ranger 2000 aircraft

(a) Surface pressure distribution (b) Deflected control surfaces

Figure A.24: Grid for the Ranger 2000 aircraft; the surface solution is obtained at α = 6.0◦

and M = 0.8

varied between −10◦ and 12◦, the Mach number between 0.25 and 0.60 and the angle

of sideslip up to 20◦. The deflection of the elevator and ailerons was limited between

−25◦ and 15◦, while the rudder was deflected up to 17.5◦. Cases for negative sideslip

angles, negative rudder and ailerons deflections were not computed due to geometric

symmetry. The run matrix included 23 separate values for the angle of attack, 8 for the

Mach number and 9 for the sideslip angle. For the control surfaces, 9 separate values

for the elevator and ailerons, and 5 for the rudder were selected.

The baseline table was created from scratch using sampling methodology based on

the EIF criterion to efficiently identify non-linearities in the aerodynamic loads. A total

of sixty-five CFD calculations was computed for the baseline table and extended to cover

the 1656 different combinations of (α,M, β). Figure A.25 illustrates the distribution

of sample points obtained with the EIF criterion in the three-parameter space, limited

to positive values of the sideslip angle. The figure also shows surface plots of the
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aerodynamic coefficients for variations in angle of attack and Mach number. Black

cubes indicate CFD calculations at sample points. At low speed, the lift and moment

coefficients have a linear behaviour and the drag coefficient behaves as a quadratic

function of the angle of attack. As the angle of attack increases at the higher end

of the Mach range, the shocks become stronger resulting in a backward shift of the

aerodynamic centre.
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Figure A.25: Response of aerodynamic coefficients to angle of attach and Mach number at
zero sideslip angle; the black cubes indicate sample points

To include the aerodynamic increments due to the deflection of control surfaces,

three tables were generated for the ailerons, elevator and rudder. CFD calculations

were computed at an ensemble of chosen points, and co-kriging was used to update the

baseline table with these solutions. Figure A.26 illustrates the position of the chosen

sample points in the parameter space for the ailerons, elevator and rudder deflections

at a Mach number of 0.25. Black squares indicate actual CFD runs. Calculations

at zero deflection angles were made when creating the baseline table. Sample points
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were uniformly distributed throughout the parameter space, as seen for the ailerons

and for the rudder. A lack of samples at moderate angles of attack is observed for the

elevator, and the distribution shown is clearly inadequate to capture any non-linear

phenomena associated with the elevator deflection. As the interest in the study was

focussed on replaying manoeuvres at subsonic flow, the coverage of the two-dimensional

parameter space is poorer at higher Mach numbers. A total of 101 CFD analyses were

run to populate an aerodynamic database consisting of nearly 5900 entries. Note that

a validation of aerodynamic predictions against wind tunnel data was performed and

showed agreement between the two sources in terms of static and control aerodynamic

information.
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(c) Rudder deflection

Figure A.26: Illustration of the aerodynamic tables for deflection of control surfaces at a
Mach number of 0.25; black squares indicate sample points

The flight test data consists of all aerodynamic forces and moments with respect

to the aircraft states, which include angle of attack, sideslip angle, Mach number,

rotational rates, acceleration rates, elevator, rudder, control and the altitude of flight.
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Various aerobatic manoeuvres were performed to demonstrate general aircraft handling

qualities. These include Barrel Rolls, Clover Leafs, Immelmann Turns, inverted flight,

Lazy Eights, Loops, and Split-S. The entry conditions and the time histories for each

manoeuvre were provided by EADS military air systems. Figure A.27 illustrates the

manoeuvres considered in reference [183].

Lazy Eight

Immelmann Turn

Barrel Roll

Figure A.27: Simulation of manoeuvres for the Ranger 2000 aircraft compared to flight test
data

The time-accurate CFD solution corresponding to the time-optimal manoeuvre was

calculated, and compared to the aerodynamic forces extracted from the tabular model.

In all cases considered, the solutions from the look-up tables match the time-accurate

solutions from the replay. This can be attributed to considering benign flight conditions

which do not exhibit significant hysteresis effects, but illustrates the validity of the

CFD framework for generating aerodynamic tables and replaying manoeuvres to test

the aerodynamic database.

The framework of replaying manoeuvres using CFD was exercised with other con-

figurations, including the Standard Dynamic Model [23] and an unmanned combat air

vehicle model [211]. More details on the methodology and testcases can be found in

reference [32]. The investigations presented suggest that the tabular model is ade-

quate to represent the aerodynamics of manoeuvring aircraft in benign flow conditions.

With topological changes in the flow, the underlying assumptions of linearity and time-

invariance are not met, and a loss of accuracy can be experienced. It is worthwhile

to investigate the application of alternative mathematical models. In reference [185],

several low-order models were compared for ability to predict non-linear unsteady aero-

dynamic loads for a two-dimensional aerofoil under conditions of shock-induced sepa-

ration. The model based on aerodynamic derivatives was also included. It was claimed

that the training data plays a key role in the development of the model, and dependency

upon model parameters was observed. With a lack of robustness, low-order models are
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unlikely to replace the current model based on aerodynamic derivatives. The need for

improvements opens up large opportunities in this research area.

A.7 Conclusions

Despite possible limitations, this appendix illustrates that CFD can now be used in a

reasonably routine fashion for stability and control studies.
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Appendix B

Applications of Indicial

Aerodynamics

Extensive use of indicial aerodynamic functions in the study of manoeuvring lifting

surfaces has been made, see for example Ref. [76]. The indicial aerodynamic response

can be thought of as the aerodynamic response, as a function of time, to an instanta-

neous change in one of the conditions determining the aerodynamic properties of the

system in a steady flow. The indicial theory stems from the assumption of linearity.

This allows to compute the system response to a simple input function, and any de-

sired output can be calculated from this known response by convolution. When the

governing equations are linear, the response y (t) to any forcing function f (t), having

a continuous derivative, is obtained by the convolution or Duhamel’s integral

y (t) = f (0) A (t) +

∫ t

0

d f (τ)

dτ
A (t − τ) dτ (B.1)

where A indicates the indicial response to a step change function. The integral can

also be written as

y (t) =

∫ t

0
f (τ) H (t − τ) dτ (B.2)

where H is the indicial response to a unit-impulse function.

Being a mathematical concept, there are no direct means of measuring the indi-

cial aerodynamic response by experiments. However, attempts were reported to relate

experiments for oscillating flows back to the indicial response from the frequency do-

main [190]. For a compressible flow, there are no exact closed-form analytical solutions

for all time. By use of linear piston theory [212], the initial values of the indicial re-

sponse can be obtained, and the final values are given by a steady-state method. Exact

analytical expressions of the indicial response to a step change in angle of attack, a

step change in pitch rate and for the penetration into a sharp-edged gust in subsonic
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compressible flow were obtained by Lomax [213]. More recently, CFD has been used

as the source for the computation of indicial responses, and this is presented next.

Note that the identification of the aerodynamic response to a unit-impulse function

has been performed using CFD without great success [214]. This can be attributed to

the sensitivity of the response simulated to the time-step size of the unsteady simulation

and to the dependence on the amplitude of the applied impulse. It was shown that

inaccuracies in the impulse-based response degraded the prediction for any arbitrary

input obtained by convolution. Therefore, the approach based on the identification of

the unit-impulse response was not pursued in the framework presented.

B.1 Formulation

The first attempts to directly determine the indicial response by CFD were reported in

Refs. [34,215]. It was suggested that the numerical simulation of a step change in some

motion parameter was likely to present some challenges, as described below. To over-

come these issues, previous approaches used an indirect method for the determination

of the indicial response [36]. A smoothed function, continuous in time, was preferred

to a step change function because the flow is not exposed to any discontinuites. The

indicial response of the integrated loads was extracted using the Laplace transform,

but in the transformation, insights into the flow development were not attainable.

An alternative is based on the direct determination of the indicial response caused

by the step change, but this poses some questions. If the step change is applied as a

boundary condition (moving the grid), numerical oscillations may be experienced and

non-physical features in the flow observed because of the very large time derivative. A

valid consideration is that changes in one parameter may affect another input. Consider,

for example, the case of an aerofoil subject to a step change in angle of attack. Because

the aerofoil also experiences a very large pitch rate at the initial time, the indicial

response computed will be representative of the combined effects of the two parameters.

A method was suggested in Refs. [34, 215]. The underlying idea of the field-velocity

approach is the equivalence between a moving aerofoil in a stationary flow, and the

moving flow over a stationary aerofoil. In this case, the step change in a motion

parameter is incorporated into the CFD solver by modification of the grid velocity

throughout the flow domain. The grid velocity is the velocity of a grid point during

the unsteady motion of the aerofoil. The step change in any input can be thought of

as a step change in grid velocity over the entire flow domain. The indicial response

to a pitch rate is computed by imposing a grid velocity that varies linearly with the

distance from the rotation axis. This avoids the need to move the mesh, and leads to

a natural decoupling of the input parameters that influence the aerofoil loading.

The PMB code was enhanced to simulate the time histories of the aerodynamic

loads to a step change in any motion parameter and to an arbitrary gust shape. The
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two direct methods described above were used to compute the response to a step change

in angle of attack. The approach based on grid motion is referred to hereafter as BCA,

whereas the field-velocity approach denoted by FVA. The latter was also used for the

gust response.

B.2 Validation

Numerical results are compared to exact closed-form expressions obtained for a flat

plate [213]. To reduce the effects of thickness, a NACA 0006 aerofoil was used.

The computational mesh for the solution of the Euler equations is similar to that

described in Chapter 4.3. In all cases, the unsteady simulations used five thousand

time steps for a non-dimensional time duration of thirty. Note that calculations were

repeated for a smaller time-step, with identical results obtained. It is worth noting

that the non-dimensional time used in the analytical formulation below is given by

s = 2 t U∞/c. This is in contrast to the convention commonly adoped in CFD, where

the non-dimensional time is defined as t∗ = t U∞/c.

Shown in Fig. B.1 is the indicial response of the lift coefficient for a step change in

angle of attack, ∆α = 4.58◦, for several values of Mach number. For all time, numerical

results obtained by grid rotation are virtually identical to results computed using the

field velocity approach. The indicial response consists of two distint regions, separated

by an intermediate overlapping area. The initial part of the response is representative

of the impulsive motion of the body, and of the resulting pressure difference between

the upper and lower surfaces where the formation of a compression and expansion wave

is observed. The effects of the initial non-circulatory loading are confined within a few

chord lengths of the distance traveled. The initial values of the indicial response are

given by linear piston theory

CL (0)

∆α
=

4

M
(B.3)

After the decay of initial transients, the response converges asymptotically to the

steady-state value correponding to the effective angle of attack caused by the step

change. The asymptotic value of the circulatory loading can be obtained by linearized

quasi-steady theory

lim
s→∞

CL (s)

∆α
=

2π√
1 − M2

(B.4)

Table B.1 summarizes analytical and numerical results of the asymptotic values of the

indical response. Increased differences for the highest Mach number are likely because of

non-linear compressibility effects captured by CFD calculations. The Wagner function

gives the indicial build-up of the circulatory part of the lift. It accounts for the influence
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Mach Quasi-Steady CFD

0.3 6.58 6.74
0.5 7.25 7.39
0.8 10.47 12.17

Table B.1: Asymptotic values of the indicial response of lift coefficient for a step change in
angle of attack, CL(∞)/∆α

of the shed wake, and is known exactly in terms of Bessel functions. For a practical

evaluation of the Duhamel integral, the Wagner function is expressed as an exponential

approximation

φ (s) = 1 − Φ1 e
−ε1 s − Φ2 e

−ε2 s (B.5)

with the coefficients Φ1 = 0.165, Φ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3 from

R. T. Jones [216]. Several approximations are available in the literature, as given

by Garrick [217] and W. P. Jones [218]. Observe that φ (0) = 0.5. No closed-form

analytical expressions are available in the intermediate overlapping region. However,

the similarity of the results presented in Fig. B.1 with CFD calculations from Ref. [34]

is noted.
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Figure B.1: Indicial response of lift coefficient for a step change in angle of attack (∆α =
4.58◦)

An exact analytical expression was obtained by Lomax [213] for a flat plate in a lin-

earized compressible flow. The expression is valid for small times, less than a chord of
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the distance traveled,

CL (s)

∆α
=

4

M

(
1 − 1 − M

2M
s

)
for 0 ≤ s ≤ 2M

(1 + M)
(B.6)

Figure B.2 conveys a comparison between the above expression and numerical results.

The application of the analytical formulation to the highest Mach number is suspect. A

good correlation of numerical data to CFD-based simulations from Ref. [34] is observed.
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Figure B.2: Indicial response of lift coefficient for a step change in angle of attack for small
times (∆α = 4.58◦); reference data are from Lomax [213]

Next, the response to a sharp-edged gust is considered. At the initial time step, the

gust front is located at the aerofoil leading-edge. For successive time steps, the gust

advances toward the aerofoil and the gust velocity is assigned to all points of the flow

domain of coordinate x̄ ≤ s, where x̄ is the non-dimensional length referred to the

aerofoil semichord. A gust velocity of intensity wg/U = 0.08 was selected to induce

a net change in angle of attack identical to the previous case. The Küssner function

gives the lift build-up for the penetration into a sharp-edged gust. Like the Wagner

function, it is known exactly in terms of Bessel functions, but for practical calculations,

it is convenient to approximate the Küssner function using an exponential form

ψ (s) = 1 − Ψ1 e
−ε3 s − Ψ2 e

−ε4 s (B.7)

where the coefficients Ψ1 = 0.5792, Ψ2 = 0.4208, ε3 = 0.1393, and ε4 = 1.802 are

taken from Ref. [219]. Note that Ψ (0) = 0. Figure B.3 shows the lift response for the

penetration into a sharp-edged gust. The CFD-based solution was normalized by the
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asymptotic value of the lift coefficient, and was obtained at Mach number 0.20. Overall,

a good agreement is observed. For increasing Mach number, increasing differences

between CFD and the Küssner function are expected due to compressibility effects.

Decreasing the Mach number results in the appearance of oscillations of small entity

in the numerical solution as the gust travels over the aerofoil surface, as shown in the

inset. This phenomenon has been reported in a previous study [220], and attribuited to

the convergence process as the gust moves between two adjacent grid points. For small
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Figure B.3: Indicial response of lift coefficient for a sharp-edged gust at Mach number 0.20
normalized by its asymptotic value (wg/U = 0.08)

times, a closed-form expression was given by Lomax [213] for the penetration into a

sharp-edged gust as

CL (s)

wg/U
=

2 s√
M

for 0 ≤ s ≤ 2M

1 + M
(B.8)

Figure B.4 shows the computed and analytical results for small times. At lower Mach

numbers, results are virtually identical. At the largest Mach number, differences are

attribuitable to compressibility effects not account for in the analytical formulation.

Results for a sharp-edged gust travelling at constant horizontal speed ug were also

computed. The gust can either advance toward or away from the aerofoil. This is

quantified in terms of the advance ratio

λ =
M

M + ug/a
(B.9)

where a indicates the speed of sound. For a stationary gust, λ = 1, and for a step
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Figure B.4: Indicial response of lift coefficient for a sharp-edged gust for small times (wg/U =
0.08); reference data are from Lomax [213]

change in angle of attack λ approaches zero. Responses of lift coefficient for several

values of the advance ratio are shown in Fig. B.5. Results are in agreement with those

presented in Ref. [220].
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Figure B.5: Indicial response of lift coefficient for a moving sharp-edged gust at Mach number
0.20 normalized by its asymptotic value (wg/U = 0.08); the solution for λ = 1 is not plotted,
see Fig. B.3
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B.3 Prediction

With the computation of indicial aerodynamic responses demonstrated above, the pre-

diction of the linear unsteady aerodynamic loads for any arbitrary input time history

can be achieved using Eq. (B.1). For the results presented, two deterministic gust

models were considered. A sinusoidal gust is expressed as

Wg (s) =
wg

U
sin

(
π

τg
s

)
(B.10)

and a one-minus-cosine gust function as

Wg (s) =
wg

2U

(
1 − cos

(
π

τg
s

))
(B.11)

for 0 ≤ s ≤ 2 τg. The term τg indicates the gust gradient. CFD calculations were run

using the field velocity approach.

Numerical results are shown in Fig. B.6 for gusts of different wavelengths at two

values of Mach number (0.2 and 0.7). The time-accurate CFD simulation is the ref-

erence solution for two convolution models. A first convolution model was generated

from the CFD-based indicial response to a sharp-edge gust at each Mach number. A

second convolution model was constructed based on the Küssner function. The test-

case illustrated in Fig. B.6(a) is for a sinusoidal gust of 10 chords at Mach number 0.2.

The convolution with the closed-form function is similar in behaviour to CFD results.

Differences are representative of those arising in the indicial response between the two

models, as seen in Fig. B.1. The CFD-based convolution response is identical to the

reference solution. This consolidates the introduced capability of the CFD solver to

simulate gust responses and the adequacy of the CFD-based indicial response to serve

as a reduced-order model for predicting linear responses to arbitrary gust inputs. The

perfect agreement also exemplifies the linearity of the problem. Figure B.6(b) illus-

trates the results for a one-minus-cosine gust of 25 chords. The similarity of the results

computed with the previous testcase is not unexpected because linear aerodynamics is

a dominant effect. A more challenging testcase is proposed in Fig. B.6(c) for a Mach

number 0.7. For compressible flows, there is an approximate exponential form of the

Küssner function, of the form

ψ (s) = b0 + b1 e
−β1 s + b2 e

−β2 s + b3 e
−β3 s (B.12)

and this was used in the corresponding convolution model. The coefficients are tabu-

lated in Ref. [221] (taken from Ref. [222]) for several values of Mach number. At Mach

number 0.7, b0 = 1.400, b1 = −0.563, b2 = −0.645, b3 = −0.192, β1 = 0.0542,

β2 = 0.3125, and β3 = 1.474. The increased gust intensity and the higher Mach num-
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ber cause the formation of a shock wave on the upper surface, which moves downstream

up to midchord as the aerofoil penetrates into the gust field. Then, the shock moves

toward the leading-edge and disappears. The lift coefficient dynamic dependence is not

distorted with respect to the subsonic case. The convolution model with the Küssner

function in Eq. (B.12) has increasing differences from the CFD solution when the shock

is present, s > 15. The CFD-based indicial response was computed at Mach number

0.7 for a sharp-edge gust of intensity wg/U = 0.035. There are differences between the

CFD-based convolution model and the time-accurate solution, and this suggests that

the indicial formulation starts to loose its potential when boring into a small source of

non-linearity. In this case, the error in the CFD-based prediction is within 3% of the

maximum value of the reference solution.
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(a) Sinusoidal gust, M = 0.2
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Figure B.6: Lift dynamic dependence from unsteady CFD calculations and two convolution
models in response to gust of different shapes; in (a), τg = 10 and wg/U = 0.08; in (b),
τg = 25 and wg/U = 0.08; and in (c), τg = 25 and wg/U = 0.14
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B.4 Conclusions

Based on the results presented, the indicial theory applied to unsteady aerodynamic

problems is a simple but powerful predictive tool. The ability to predict the response

to an arbitary input comes at the expense of linearity, which is the major limitation of

this approach. The inclusion of the field velocity approach into an existing CFD solver

is straighforward and well suited to the determination of indicial responses and to the

simulation of gust problems. Results presented confirm this. The point to address,

however, is that the indicial approach in combination with CFD may be not attractive

when extended to non-linear cases. A computational challenge is the calculation of

indicial responses at several values of Mach number and angle of attack for a sufficient

duration time. This makes the non-linear indicial aerodynamics to loose appeal when

CFD is the source of the data. Therefore the extension to a non-linear formulation

was not pursued. Finally, note that the concept of field velocity approach is well suited

to the determination of quasi-steady dynamic derivatives. By superimposing to the

oncoming uniform flow a grid velocity which varies linearly with the distance from the

rotation axis, the derivative of the aerodynamic loads with respect to the angular rate,

e.g. CLq , can be predicted from two steady-state runs.
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Appendix C

Multi-Linear Interpolation

Consider a regular Cartesian parameter space in d-dimensions, and denote x =

(x0, x1, . . . , xd−1) the point at which the evaluation of the function f : Rd → R is de-

sired. The hypercube, which bounds this point, has 2d points, zi = (z0, z1, . . . , zd−1)i,

at which the values of the function are known. For convenience, map the bounding

hypercube to the interval [0, 1]d. The interpolated function, f̃ , is obtained from the

known values of f at the corners of the hypercube

f̃ (x) ≈
2d − 1∑

i=0

f (zi)

d− 1∏

j =0

(
1 − (xj − zji)

)
=

2d − 1∑

i=0

f (zi) wi (x) (C.1)

where f (zi) are the ordinates to f̃ (x) at 2d points, and wi is the basis function associ-

ated with the i-th corner point. The term wi (x) indicates the weight of the i-th corner

point in the computation of f̃ (x).

Note that the computation in Eq. C.1 requires 2d products, each of which is itself

the product of d terms involving 2 operations. Hence, it requires O
(
2d+1

)
operations.
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