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Abstract

In this thesis, the exploitation of computational fluid dynamics (CFD) methods for
the flight dynamics of manoeuvring aircraft is investigated. It is demonstrated that
CFD can now be used in a reasonably routine fashion to generate stability and control
databases. Different strategies to create CFD-derived simulation models across the
flight envelope are explored, ranging from combined low-fidelity /high-fidelity methods

to reduced-order modelling.

For the representation of the unsteady aerodynamic loads, a model based on aero-
dynamic derivatives is considered. Static contributions are obtained from steady-state
CFD calculations in a routine manner. To more fully account for the aircraft motion,
dynamic derivatives are used to update the steady-state predictions with additional
contributions. These terms are extracted from small-amplitude oscillatory tests. The
numerical simulation of the flow around a moving airframe for the prediction of dy-
namic derivatives is a computationally expensive task. Results presented are in good
agreement with available experimental data for complex geometries. A generic fighter
configuration and a transonic cruiser wind tunnel model are the test cases. In the pres-
ence of aerodynamic non-linearities, dynamic derivatives exhibit significant dependency
on flow and motion parameters, which cannot be reconciled with the model formula-
tion. An approach to evaluate the sensitivity of the non-linear flight simulation model

to variations in dynamic derivatives is described.

The use of reduced models, based on the manipulation of the full-order model to re-
duce the cost of calculations, is discussed for the fast prediction of dynamic derivatives.
A linearized solution of the unsteady problem, with an attendant loss of generality,
is inadequate for studies of flight dynamics because the aircraft may experience large
excursions from the reference point. The harmonic balance technique, which approxi-
mates the flow solution in a Fourier series sense, retains a more general validity. The
model truncation, resolving only a small subset of frequencies typically restricted to
include one Fourier mode at the frequency at which dynamic derivatives are desired,
provides accurate predictions over a range of two- and three-dimensional test cases.
While retaining the high fidelity of the full-order model, the cost of calculations is a

fraction of the cost for solving the original unsteady problem.

An important consideration is the limitation of the conventional model based on
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aerodynamic derivatives when applied to conditions of practical interest (transonic
speeds and high angles of attack). There is a definite need for models with more re-
alism to be used in flight dynamics. To address this demand, various reduced models
based on system-identification methods are investigated for a model case. A non-linear
model based on aerodynamic derivatives, a multi-input discrete-time Volterra model, a
surrogate-based recurrence-framework model, linear indicial functions and radial basis
functions trained with neural networks are evaluated. For the flow conditions con-
sidered, predictions based on the conventional model are the least accurate. While
requiring similar computational resources, improved predictions are achieved using the
alternative models investigated.

Furthermore, an approach for the automatic generation of aerodynamic tables using
CFD is described. To efficiently reduce the number of high-fidelity (physics-based)
analyses required, a kriging-based surrogate model is used. The framework is applied
to a variety of test cases, and it is illustrated that the approach proposed can handle
changes in aircraft geometry. The aerodynamic tables can also be used in real-time to
fly the aircraft through the database. This is representative of the role played by CFD
simulations and the potential impact that high-fidelity analyses might have to reduce

overall costs and design cycle time.
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Chapter 1

Introduction

Determining the stability and control characteristics of aircraft at the edge of the en-
velope is one of the most difficult and expensive aspects of the aircraft development
process. Non-linearities and unsteadiness in the flow are associated with shock waves,
separation, vortices and their mutual interaction, which can lead to uncommanded
motion and uncontrollable departure. If these issues are discovered at flight test, the
aircraft development can suffer significant delays, a rise in production costs and detri-
mental effects on performance. There have been numerous examples of aircraft experi-
encing uncommanded activity, as reported, for instance, in [1]. Following an extensive
resolution process, immediate improvements are typically achieved by minor configura-
tion changes and modifications to the flight control system and control augmentation
laws. To provide a better fundamental understanding of the flow physics causing de-
graded characteristics, computational approaches have been used [2]. The development
of a reliable computational tool for prediction of these important issues would allow the
designer to screen different configurations prior to building the first prototype, reducing

overall costs and limiting risks [3].

For flight dynamics analysis, force and moment dependency on flight and control
states is often expressed in tabular form. There are several possible sources of data
for this aerodynamic database. Flight testing the aircraft is the most accurate but
also the most expensive of these methods [4]. Wind-tunnel testing of scaled models is
cheaper than flight testing. However, blockage, scaling and Reynolds number effects
together with support interference issues limit the proper modelling of the full scale
aircraft behaviour [5]. The third approach combines data sheets, linear aerodynamic
theory and empirical relations [6]. Due to simplicity, this method is in widespread
use and is a common choice to obtain aerodynamic characteristics in the conceptual
design stage [7,8]. In the absence of a background database, empiricism is strongly
limited when confronted with novel configurations and flight conditions dominated by

non-linear aerodynamic effects.
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A possible useful addition to the high-fidelity /high-cost of testing and low-
fidelity /low-cost of semi-empirical approaches is Computational Fluid Dynamics
(CFD), which represents the state of the art in predicting non-linear flow physics.
Success has been reported in predicting the non-linear aerodynamic behaviour of air-
craft at full scale Reynolds numbers [9]. However, the generality realized in a CFD
simulation comes at the expense of computational cost. Due to the ”curse of dimen-
sionality” (a term coined by Bellman [10]), routine use of high-fidelity CFD simulations
is costly to cover a large parameter space of conditions, such as in multidisciplinary op-
timization [11], aeroelasticity [12] and studies of flight dynamics [13]. The term fidelity
here indicates the level of physical modelling realized in the numerical techniques used.
High-fidelity analyses refer to mathematical models for the description of the relevant
physics in the problem to be simulated.

To generate the aerodynamic database of forces and moments for the expected
flight envelope, a large number of flow conditions for different aircraft control settings
are required. Considering that the total number of table entries can be in the order
of hundreds of thousands or even millions, the task to simulate aerodynamic loads for
each single entry is extremely expensive, and is intractable using CFD as a source of the
data. An alternative method to the ”brute-force” approach was presented in [14], and is
based on the kriging interpolation [15,16], which is well suited to approximate non-linear
functions [17,18] and does not require a priori knowledge of the function to be approx-
imated. While approximating the non-linear CFD results throughout the parameter
space from a limited number of full-order simulations, the key to the methodology is the
location of sample points. In addition to creating a high-fidelity aerodynamic database
for improved predictions of the aircraft stability and control behaviour, CFD can be
used to establish the limits of tabular models. The mathematical model typically used
for flight dynamic investigations is based on the concept of stability or aerodynamic
derivatives. Forces and moments are assumed to be a function of the instantaneous val-
ues of the disturbance velocities, control angles and their rates [19]. Whilst consistent
with a quasi-steady representation of the aerodynamics, the time-invariant assumption
is questionable in many studies of unsteady aerodynamics [20]. Therefore, several at-
tempts were made to improve the modelling of unsteady aerodynamic loads [21, 22].
The ability of CFD to perform unsteady simulations creates a framework for assessing
the limits of the tabular model due to the neglect of time-history effects on the flow
development. Various maneouvers were created in [23] solving an optimal-control prob-
lem, and aerodynamic predictions obtained from the look-up tables were compared to
the unsteady aerodynamic loads simulated from a time-accurate CFD analysis.

The work presented in this thesis investigates the use of CFD to a variety of appli-
cation studies, ranging from aircraft stability and control predictions to applications of
flight dynamics. The main contribution is toward a comprehensive understanding of

the limitations of the current aerodynamic model used in flight dynamics when aerody-
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namic non-linearities are present. Alternative model formulations are evaluated, and
advances in the prediction of non-linear unsteady aerodynamic loads are likely based

on the results presented.

1.1 Example Applications of CFD

Progress made in reducing the time required to generate an aerodynamic database of
forces and moments for a Harrier aircraft in ground effect was reported in [24]. With
access to large-scale parallel computers, 35 time-dependent Reynolds-Averaged Navier-
Stokes (RANS) simulations were completed in one week. A monotone cubic-spline
interpolation procedure [25] was used to extend the 35 solution database to over 2500
cases for a range in angle of attack between 4° and 10° and in height above the ground
between 10 and 30 ft. A step towards the generation of a stability and control database
to simulate take-off and landing scenarios for a YAV-8B Harrier was described in [26].
The aerodynamic model for the force and moment coefficients was expressed in terms
of the static and dynamic stability derivatives. It was envisioned that a few hundred
solutions could be obtained, and the remainder of the parameter space filled out with
the use of an interpolation procedure or neural networks. A system to automate the
process of running a large number of expensive CFD simulations on grid resources
based on Globus [27] was developed, allowing the generation of one hundred RANS
and one thousand Euler simulations in one week for a second generation Langley glide-
back booster design [28]. The database of forces and moments was computed varying
the angle of attack, Mach number and angle of sideslip, and was compared against
experimental data.

A modular framework built around existing stand-alone applications with control
scripts to link the different components was described for the generation of aerodynamic
databases with and without control surfaces [29]. A Cartesian CFD method, providing
an efficient and robust mesh generation capability for any arbitrary complex geometry,
was a key part in the setup. Several configurations were tested. A parametric study
on a second generation glide-back booster was conducted examining static effects due
to variations in angle of attack, sideslip and Mach number. The database consisted of
approximately 2900 flow conditions and was compared to experimental and numerical
data to establish confidence in the predictions. Two examples of parametric databases
with control surface deflections were also described. The configurations were flown
through the database by integrating the six degrees-of-freedom equations of motion of
a rigid body using Feldberg’s modified Runge-Kutta scheme [30]. Forces and moments
were then computed from the database with a multi-linear interpolation. The applica-
tions included the validation of a generic neural network control system and trajectory
simulation with the development of a closed-loop feedback pitch controller. The ap-

proach considered only static and control aerodynamic derivatives and neglected the
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influence of any dynamic derivatives. The databases were created from a set of discrete
points at the minimum, median and maximum values for each independent parameter.
While this approach drastically reduces the number of computations, it also presumes
that these points capture all the relevant non-linearities in aerodynamic loads. Further

tests were not reported to investigate the validity of this assumption.

1.2 Predictive Aerodynamic Models

The references cited above exemplify the need for improvements in computational effi-
ciency. While access to high-end computing facilities is essential for numerous examples
of intensive CFD simulations [31,32], to make progress in routinely using CFD, research
has been concentrated on the development of computationally efficient predictive aero-

dynamic models to use in combination with CFD generated data.

1.2.1 Linear and Non-linear Indicial Functions

Linearized aerodynamic models based on a functional representation for the indicial
aerodynamic force and moment responses (see Appendix [B]) in terms of blade motion
and gust functions were used in subsonic flow [33]. A method was developed to calculate
the indicial and gust responses of an airfoil in compressible flow directly using CFD [34].
The step change was incorporated into an existing CFD solver using a grid-velocity ap-
proach, and accurate solutions compared to exact analytical results were obtained at
low speed. The agreement degraded with non-linear compressibility effects. The fi-
delity of linearized indicial methods for aerodynamic load predictions was assessed,
and it was found that these methods are sufficiently accurate to be used as a practical
design tool [35]. However, simplifying assumptions from the flow physics limits the
generality of the linear indicial approach. When non-linear effects are significant, such
as when there is the appearance/disappearance of a shock wave or topological changes
of the flow, the indicial approach becomes inaccurate [36]. In addition, flowfields with
hysteresis exhibit memory-effects, which violate the assumption of time-invariance un-
derlying the linear indicial approach.

Interest has also concentrated on the use of non-linear indicial functions [37, 38],
which are a generalization of the linear convolution model. This formulation was shown
to be equivalent to a non-linear functional expansion of which the classical Volterra se-
ries is a subset. A non-linear indicial model to predict time-dependent unsteady aero-
dynamic loads associated with flight maneuvers at high angles of attack and high pitch
rate was developed. An analytical model approximating the flight test aerodynamic
responses of a full scale fighter aircraft performing Cobra-type maneuvers was used
to generate the required indicial functions and to compare the indicial predictions for

novel maneuvers [39]. The model was based on the state-space formulation, which was
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demonstrated to accurately describe unsteady aerodynamic effects observed in experi-
mental investigations [22]. The model extends the usual flight dynamics equations by
introducing a first order delay differential equation for an additional internal state vari-
able which accounts for unsteady effects associated with separated and vortical flow.
It was claimed that an efficient parametrization of the indicial function space can be
obtained based only on local information, such as instantaneous angle of attack and
pitch rate. The non-linear indicial prediction model was also tested for a rectangular
wing undergoing dynamic stall [40]. An artificial neural network trained on wind tun-
nel data was used to reproduce the detailed aerodynamic characteristics of the pitching
wing, and deemed accurate enough to provide a reference solution for the prediction
model at negligible cost. In view of the mathematical formulation adopted in this
work, it is significant that a comparison between the non-linear indicial method and
the aerodynamic stability derivatives method was reported. First, a model with con-
stant coeflicient aerodynamic derivatives, retaining a quadratic term in angle of attack
and expressing the damping derivative as a function of the angle of attack, was consid-
ered. Constant coefficient derivatives were determined from the neural network using
an identification technique. A second model using a look-up table for static aerody-
namics, augmented with alpha-dependent damping derivatives, was built. Both models
were used to predict aerodynamic loads for a constant pitch rate maneuver at a reduced
frequency of 0.02, from zero up to sixty degrees angle of attack. It was demonstrated
that the indicial method was significantly more accurate than the conventional model
based on aerodynamic stability derivatives for the unsteady maneuver tested, particu-
larly when critical states were crossed. It was concluded that efficient parametrization
of the indicial and critical state function space appears to be achievable using only local
information, such as the instantaneous angle of attack and pitch rate. The accuracy of
the non-linear indicial method was also reported for the prediction of the airloads for

a 65° delta wing performing forced roll oscillations at high angle of attack [41].

1.2.2 Regression Models

Research has focused on simulations of complete aircraft configurations, as reported
in [42-45]. While this was motivated by the need of assessing the accuracy of CFD
simulations to predict the unsteady non-linear aerodynamic behaviour, the development
of alternative mathematical models was hindered by the slow turn-around time of the
simulations. A generic fighter with abrupt asymmetric vortex breakdown leading to
uncommanded lateral instability [46] was chosen as a test case [44]. The availability of
experimental and computational investigations made the configuration a good testing
ground to assess the validity of low-order aerodynamic models. The procedure adopted
to create the reduced-order model follows the description given in [43]. First, adequate

computational training maneuvers designed to excite the flow physics of interest are
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calculated with CFD. A reduced-order mathematical model is then built from the sim-
ulated aerodynamic loads using system identification methods [47], and the prediction
model is compared with the training maneuvers used to generate it. Finally, the predic-
tion model is applied to novel maneuvers, and for the prediction of aerodynamic loads at
all flight test points at negligible cost. SIDPAC [48] has been a common choice to build
reduced-order models [49]. It is a least squares regression based method that generates
an explicit relationship between the computed aerodynamic loads and the independent
variables of the aircraft motion. Unsteady time-accurate Delayed Detached-Eddy Sim-
ulations (DDES) were calculated at a Mach number of 0.4, constant angle of attack
of 30° and sinusoidally varying angle of sideslip. Five maneuvers were performed at
constant frequency, and a chirp frequency maneuver was additionally performed for a
frequency sweep between zero and 17 Hz. To assess validity, the prediction model built
from the chirp frequency motion was used to reproduce the aerodynamic loads for a
maneuver at constant frequency included within the bounds of the training signal used
to generate the model. It was demonstrated [44] that a regression model is incapable
of generating an accurate low-order model of the airloads based on the analysis of one

single training maneuver.

1.2.3 Radial Basis Functions Interpolation

The determination of an appropriate training maneuver is a challenging task, which is
vital for the successful generation of a reduced-order model. Past research has focused
on the development of training maneuvers, and used the frequency content and power
spectral density of the motion variables as figures of merit [50,51]. This approach is
not always valid as the functional dependences relating the aerodynamic loads to the
aircraft motion are far more complex. A different approach, based on the ability to cover
the relevant regressor space and to capture a range of flow phenomena, was adopted
for the investigation of training maneuvers for a two-dimensional airfoil [52]. Several
training maneuvers, such as chirp, spiral and Schroeder maneuvers, were considered,
and used to build reduced-order models. To assess the accuracy of the prediction
models, aerodynamic loads were compared against time-accurate CFD solutions. The
reduced order models were based on radial basis functions [53], and an improvement in
the ability to predict linear and non-linear aerodynamic characteristics using one single
training signal was observed. It was concluded that the chirp maneuver resulted in
the most robust and reliable reduced order model, and the spiral maneuver was found

adequate for low-frequency and static aerodynamic predictions.

1.2.4 Volterra Theory

Alternative mathematical formulations have been investigated. Since formally intro-

duced into CFD [54], the Volterra functions have been successfully applied for aeroe-
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lastic studies of limit cycle oscillations [55,56]. The extension into the area of stability
and control was considered in [57]. T'wo test cases were evaluated, a NACA 0012 airfoil
and a X-31 aircraft model. The Volterra kernels were identified from a set of Gaus-
sian shaped impulses, and the accuracy of the prediction model for different pitching
motions was assessed. The applications were limited to linear cases, and a good agree-
ment of the Volterra reduced-order modeling was observed when compared to time-
accurate CFD simulations in the linear aerodynamic range. With weakly non-linear
characteristics, the performance of the prediction model quickly degraded. As stated
in the review [56], an important issue is the excitation of multiple degrees of freedom
to properly identify non-linear cross-coupling of the degrees of freedom, and because
of the non-linear nature of the aerodynamic system the principle of superposition is
invalid. A method for the inclusion of Volterra cross-kernels applied to a transonic
two-dimensional airfoil undergoing forced pitch and plunge harmonic oscillations was
investigated [58]. The prediction model was compared to time-accurate CFD solutions,
and the improvement in accuracy over approaches that ignore the cross-kernels was
demonstrated. Addressing the convergence issue of the Volterra series and the need for
the inclusion of higher-order kernels, an alternative formulation was presented [59]. The
pruned Volterra series, with a simplified parametric structure of the kernels, was tested
for a two-dimensional transonic airfoil undergoing forced sinusoidal pitch oscillations
for two AGARD test cases. The identification of kernels up to fourth order demon-
strated a feasible undertaking and a good agreement compared to the time-accurate
CFD solution was achieved. The formulation of the pruned Volterra series was then
used to approximate the flutter boundary and limit-cycle oscillation amplitudes of the
NACA 0012 benchmark model [60]. Showing favourable results, a computational saving

of several orders of magnitude compared to full-order CFD simulations was achieved.

1.2.5 Proper Orthogonal Decomposition

With just a handful of basis vectors, the Proper Orthogonal Decomposition (POD)
technique, also known as the Karhunen-Loeéve expansions [61], has been used to reduce
the complexity and dimension of aerodynamic models. An overview of the POD method
along with details of how the method has been applied to study a wide variety of
fluid problems can be found in [62]. Reduced-order models constructed using basis
vectors from the POD of an ensemble of small-disturbance frequency-domain solutions
were presented [63]. The technique was applied to two model flow problems, that is,
unsteady transonic flow about an isolated airfoil and subsonic flow through a cascade
of flat-plate airfoils. A reduced-order aeroelastic model was also developed to compute
the flutter boundary of a typical airfoil. In all cases presented, it was demonstrated
that the technique produced low-order high-accurate models of the unsteady flow over a

wide range of reduced frequencies. The computation of the unsteady small-disturbance
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solutions, e.g. snapshots, was identified as the most expensive task. Once the POD
basis vectors were found, the construction and solution of the reduced-order model was
done at negligible cost, making it suitable for parametric studies. Recent studies have
been conducted to bring the POD theory in combination with standard identification
methodologies in the analysis of maneuvering aircraft [64,65]. A prescribed maneuver
designed to densely populate a given flight parameter envelope was simulated with an
unsteady CFD solver. The ensemble of snapshots used in the POD method consists
of surface solutions taken at regular time increments. Time-dependent surface data
were decomposed into a set of orthogonal modes in the spatial coordinate, and a set of
time-dependent coeflicients for each mode. The key for the described method is that
the time-dependent coefficients are fitted to a polynomial function of the time histories
of the relevant flight parameters. Once constructed, the model can be used to predict
the surface data for an arbitrary maneuver, again at negligible cost compared to the

full-order simulation.

1.2.6 Surrogate-Based Models

Despite the progress made in the development of reduced-order models, the selection
of appropriate training data remains a key issue. The routine generation of reduced-
order models has not been reported in any previous work. An alternative approach
is based on surrogate modeling [66-68]. First described in [14], the framework builds
on kriging interpolation [15,16]. Note that the development of a similar framework
applied to a two-dimensional airfoil restricted to one- and two-parameter variables was
reported [69)].

In addition to creating a high-fidelity aerodynamic database for improved predic-
tions of the aircraft stability and control behaviour, CFD can be used to establish the
limits of the tabular models. The mathematical model typically used for investiga-
tions of flight dynamics is based on the concept of stability or aerodynamic derivatives.
Forces and moments are assumed to be a function of the instantaneous values of the
disturbance velocities, control angles and their rates [19]. Whilst consistent with a
quasi-steady representation of the aerodynamics, these models cannot predict the non-
linearities associated with post-stall aerodynamics, including bifurcations and hystere-
sis. The ability of CFD to perform unsteady simulations allows the assessment of the

limits of a tabular model arising from the neglect of time-history effects.

1.3 Review of Dynamic Derivatives

The concept of stability or aerodynamic derivatives was introduced by Bryan [19] in
1911 and remains essentially unchanged as the conventional model for the represen-

tation of the aerodynamic loads in the equations of motion. It is assumed that the
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aerodynamic forces and moments are a function of the instantaneous values of the dis-
turbance velocities, control angles and their rates. The dependence of the forces and
moments on these variables is obtained by a Taylor series expansion, discarding higher
order terms [70]. For slow motions at low angle of attack, the static derivatives are
generally sufficient to model the aerodynamic loads [6]. At higher angles of attack
and rates, the inclusion of dynamic derivatives in the aerodynamic model can have
a significant effect on the calculated stability characteristics of an airframe [71]. The
addition of non-linear terms to take into account changes of stability derivatives with
the angle of attack extended the range of flight conditions to high angles of attack
and/or high amplitude manoeuvres. In the linear and non-linear methods, it is as-
sumed that the aerodynamic parameters are time invariant [47]. This assumption was
often questioned based on many studies of unsteady aerodynamics [20]. In the 1920s,
Wagner [72] conducted a series of studies for the unsteady lift generated on an airfoil
due to abrupt changes in angle of attack. Theodorsen extended these studies investi-
gating the forces and moments on an oscillating airfoil. The lift response of an airfoil
penetrating sharp-edge and harmonically-varying gusts was studied by Kiissner [73]
and Sears [74], respectively. The first attempts to investigate unsteady aerodynamic
effects on aircraft motion were made by Jones and Fehlner [75], studying the effect of
the wing wake on the lift of the horizontal tail. A more general formulation of linear
unsteady aerodynamics in the aircraft longitudinal equations of motion was introduced
by Tobak [76]. Tobak and Schiff [21] replaced the indicial functions within the integrals
with functionals [77], themselves dependent of the past motion. A different approach
was proposed by Goman et al. [78] introducing additional state variables, named in-
ternal state variables, in the functional relationships for the aerodynamic forces and
moments. The coordinates of a separation point or vortex breakdown location can be
taken as internal state variables, and modelled by differential equations. Goman and
Khrabrov [22] formulated state space models with internal state variables describing
the flow state. A good agreement was achieved with experimental data for a separated

flow on an airfoil and flow with vortex breakdown about a slender delta wing.

Traditionally, wind tunnel testing has been used to produce derivatives for produc-
tion aircraft [79]. The physical realism of wind tunnel data is well known, but can be
limited by blockage, scaling, and Reynolds-number effects together with support in-
terference issues that prevent the proper modelling of the full-scale vehicle behaviour.
Computational Fluid Dynamics (CFD) solvers have reached a level of robustness and
maturity to allow routine use on relatively inexpensive computer clusters. The predic-
tion of dynamic derivatives requires the ability to compute the aerodynamic response
to time-dependent prescribed motions which are used to excite the aerodynamics of
interest. This can be done with present off-the-shelf CFD tools. CFD has potential
for complementing experimental testing techniques for obtaining these values. The

physical limitations and kinematic restrictions of wind tunnel testing including model

39 of 213



motion as well as the interference effects of the model support are not factors in the
computational analysis. Physical effects can be separated in the CFD solutions in a
way which can be difficult from wind tunnel or flight test data. CFD can also be used
for investigating the modelling of data from flight tests. There is of course a significant
question about the ability of CFD to predict the relevant aerodynamics, and this must
be demonstrated through validation studies. It is therefore possible to use CFD as a
complement to costly experimental campaigns. However, CFD is not meant to replace

testing techniques.

1.4 Thesis Outline

The work in this thesis was partly developed within the SImSAC (Simulating Aircraft
Stability and Control Characteristics for Use in Conceptual Design) project Ll funded
by the European Commission 6th Framework Programme. The project consisted of
a partnership of European academics and industrial contributors. The main driver of
the project was the inadequacy of standard semi-empirical approaches currently used
in conceptual design when confronted with more advanced aircraft configurations [80].
This may cause errors in the design process, which may prove expensive to rectify
via additional design work, wind tunnel and flight testing, in addition to a delay in
certification and performance degradation. To overcome these potential issues, it is
worthwhile to introduce high-fidelity (physics-based) approaches early in the design
process.

In this thesis, the exploitation of CFD is investigated for the generation of the aero-
dynamic database. A framework for the automated generation of tabular aerodynamic
models for studies of flight dynamics is discussed, allowing stability and control con-
siderations to be developed early in the design process. For the representation of the
aerodynamic loads, a model based on stability or aerodynamic derivatives is assumed
because traditionally used by flight dynamicists. In the model formulation, dynamic
derivatives are used to update the static predictions to account for the aircraft motion.
Emphasis is on the evaluation of dynamic derivatives with various CFD methods. As
the limitations of the aerodynamic model are exposed for several test cases, there is a
need for models of more realism and fidelity to be used in flight dynamics. Advances
in this direction are discussed.

Chapter 2] introduces the framework for the generation of aerodynamic tables using
CFED as the source of the data. The framework has been developed at Liverpool by the
author and a colleague. A method to efficiently reduce the number of high-fidelity anal-
yses is accomplished by use of a kriging-based surrogate model. Low-fidelity estimates

are augmented with higher fidelity data, and data fusion combines the two datasets

"More details at http: //www.simsacdesign.eu|and http://www.ceasiom.com/| [retrieved March 19,
2012]
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into one single database. Once constructed, the look-up tables can be used in real-time
to fly the aircraft through the database. Two methods for the evaluation of dynamic
derivatives are also discussed.

Chapter B discusses the evaluation of dynamic derivatives computed using unsteady
time-domain CFD simulations. Two configurations are considered: a generic fighter
model and a transonic cruiser concept design. Numerical results are compared to
experimental measurements, and a good agreement is noted in all cases. A systematic
study to evaluate the dependencies of dynamic derivatives on aircraft motion and flow
parameters, beyond the range of motions performed in dynamic testing facilities, is
presented. It is recognized that in the presence of aerodynamic non-linearities, mainly
due to three dimensional separated flow and concentrated vortices, dynamic derivatives
exhibit a dependence on motion and flow parameters. These dependencies are not
reconcilable with the model formulation, which is based on a Taylor series expansion.
An approach to evaluate the sensitivity of the non-linear unsteady aerodynamic loads
to variations in dynamic derivatives is introduced.

Chapter @ introduces the use of reduced models, based on the manipulation of the
full-order model, for the fast computation of dynamic derivatives. The underlying
idea is to exploit the periodicity of the resulting aerodynamic system for oscillatory
motions to decrease the cost of calculations. A linearized solution in the frequency
domain and a harmonic balance technique are illustrated for two- and three-dimensional
configurations. To stress the potential of the frequency-domain methods in conditions of
practical interest for aircraft applications, flow conditions were in the transonic regime.
For the formation of moving shock waves, the energy of aerodynamic modes redistribute
at higher frequencies than the predescribed frequency of motion. While a time-domain
calculation supports a continuum of frequencies up to the frequency limits given by the
temporal and spatial resolution, the reduced models considered resolve only a small
subset of frequencies typically restricted to include one Fourier mode at the frequency
at which dynamic derivatives are desired. While providing good estimates of dynamic
derivatives, the cost of the reduced models is a fraction of the cost for solving the
original unsteady problem.

Chapter Bl addresses the demand for alternative model formulations of more realism
to be used in the representation of non-linear unsteady aerodynamic loads. The conven-
tional model based on aerodynamic derivatives is recognized to be adequate in benign
flow conditions. There is, however, the consideration that any model in principle is
applicable to linear cases, and the generality realized in a CFD solver is therefore not
needed. The point of the discussion here is that conditions of practical interest feature
aerodynamic non-linearities. Various reduced models, based on system-identification
methods, are evaluated in presence of aerodynamic non-linearities. While retaining
complex flow features due to shock-induced phenomena, a two-dimensional test case

is considered. For the flow conditions considered, the predictions obtained using the
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conventional model are misleading and not representative of the unsteady time-domain
solution. While providing good approximations for the non-linear unsteady aerody-
namic loads, reduced models investigated were generated with no more computational
resources than that required for the conventional model.

Chapter [ concludes the thesis and offers an outlook and suggestions for future
work.

The framework for creating CFD-derived stability and control databases described
in Chapter 21 was exercised for several aircraft configurations. The application to six
test cases is presented in Appendix [Al The point of the work is to show the range of
applications that this framework has opened up, illustrating the aerodynamic model
generation for each case in the form of a review. Through the range of examples
which have actually been computed, the review shows the progress achieved because
of the adoption of the framework. The work presented in the appendix is the result
of a collaborative effort, and the author contributed directly to the creation of the
aerodynamic database in each case. In addition, the author has led the review article
in [81].

Appendix [Bl illustrates the use of the indicial theory applied to unsteady aerody-
namic problems. The indicial theory can also be used to predict the unsteady aerody-
namic loads in response to a gust perturbation, which is of interest for aircraft loads
calculation and certification. The CFD-based simulation of the interaction between a
gust and a rigid or flexible airframe poses few practical questions. The author has im-
plemented a new functionality in the CFD solver of the University of Liverpool based
on the field velocity approach. Validation studies demonstrate the readiness of the
approach for cases featuring linear and weakly non-linear aerodynamics.

Finally, Appendix [C] formulates a multi-linear interpolation, which is implemented
in the computational framework described in Chapter [2] as an alternative approach to

kriging interpolation.
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Chapter 2

Formulation

2.1 Introduction

Modeling the aircraft aerodynamics raises the fundamental question of what the math-
ematical structure of the model should be. The functional dependencies of the force
and moment coefficients are in general complex, as they depend in a non-linear fashion
on present and past values of several quantities, such as airspeed, angles of incidence,
etc. Reasonable simplifications are that fluid properties change slowly and the airplane
mass and inertia are significantly larger than the surrounding fluid mass and inertia.
The flow is often considered quasi-steady, which presumes that the flow reaches a steady
state instantaneously and the dependence on the history of the motion variables can be
neglected. One exception to this assumption is the retention of the reduced frequency
effects. With these underlying hypotheses [47], the characterization of the functional

dependencies is broken down as

Ci = f1(a, 8,M,0) + f2 (Re) + f3 (%) + fa (;;]c > (2.1)

for i=L,D,m,Y,l and n

which is the common practice from wind tunnel testing. The first term on the right
hand side is obtained in static wind-tunnel tests, the second term represents Reynolds
number corrections and the last two terms are measured performing, respectively, ro-
tary balance and forced oscillation tests. The above decomposition is valid when the
effects are separable and the superposition principle can be used, that is, under the
hypothesis of linear and uncoupled functional dependencies. The effects of rotary and
forced oscillation are typically modeled as a function of the body axis angular rates, an-
gles of incidence and their first time derivatives [82]. These derivatives were introduced
to obtain a closer correlation between predicted and observed aircraft longitudinal mo-
tion [83], and for a conventional aircraft they represent the finite time that aerodynamic

loads at the tail lag the changes in downwash convected downstream from the wing.
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The aircraft symmetry with respect to the vertical plane motivates the neglection of
the dependence of symmetric (longitudinal) forces and moments on asymmetric (lat-
eral) variables, and vice versa. While the dependence on B is typically neglected for a
quasi-state flow, the inclusion of the ¢ term leads to an identifiability problem when es-
timating the & and ¢ derivatives [84]. To avoid this problem, the two terms are lumped

together and an equivalent derivative is defined as C’iq = Ci, +C;, fori =L, D and m.

2.2 Nonlinear Quasi-Steady Aerodynamic Model

Here a non-linear model for quasi-steady flow based on the above assumptions is con-
sidered. The dependence of longitudinal and lateral coefficients on state and control

variables is formulated as

Ci = Cio (a, M, B) + Ci, (a, M, q) - QCUq + O, (a, M, 5) -6 (2.2)

for i=L,D, and m
bp cr
CZ‘ZCZ‘Q(OC,M,ﬂ)-FCZ‘p (Oé,M,p)-W-i-CiT (OC,MJ)'W"FC@; (Oé,M,(S)-(S
(2.3)

for t =Y,l, and n

As the applications presented range from the low-subsonic to transonic regimes, the
aerodynamic coefficients are formulated as non-linear functions of the Mach number.
The static terms, C; o, depend non-linearly on the angles of incidence. The dynamic and
control derivatives, while non-linear functions in the arguments, are linear with respect
to the body axis angular rates and control deflections, respectively. Additional simpli-
fications in the functional dependencies of dynamic derivatives might be inconsistent
when compared with experimental and computational findings, see e.g. [85].

The aerodynamic coefficients in Egs. ([2.2]) and (2.3]) are commonly obtained from
tunnel testing. The aerodynamic model is implemented in tables, with measured or
computed values. Forces and moments are tabulated as functions of the aircraft states
and control settings representing the expected flight envelope. Aerodynamic coefficients
are in wind axes, and the aircraft states feature the angles of incidence and sideslip,
« and B, the Mach number, M, and the body axis angular rates, p, ¢ and r. All
required control deflections are also included. The format of the aerodynamic tables is
illustrated in Table 2.1l Several assumptions have led to the formulation used, limiting
its validity when confronted with uncommanded departures involving aerodynamic and
aircraft motion cross-coupling. In the general case, the six aerodynamic coefficients
would be function of all input variables in a coupled fashion, resulting in a very large
table. To illustrate, if five values are used to provide a coarse resolution for each

parameter in the table, the total number of table entries would be 5°, which is of
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magnitude 2 million. This is not normally necessary, and a less coupled formulation
of the aerodynamic coeflicients is used instead. Each term in the above equations is
formulated as dependent on three input variables. The main aerodynamic variables
are taken to be the angle of attack, a, and Mach number, M. Forces and moments
are assumed to depend on these variables in combination with each of the remaining
variables separately. The complete aerodynamic database is then divided into three-
parameter sub-tables. Let n, denote the number of values for the parameter x in the
table, and let N, denote the number of aircraft control effectors. The dimension of the

complete database, ng, is given by

Ne 3
Ngpy = Mo MM - <n5 + Z ns, + Z nwi> (2.4)
=1 i=1

where w; indicates the body axis angular rates. For the same example illustrated above,
the total number of table entries would be less than two-hundred. However, a reasonable
aerodynamic database to cover the expected flight envelope can easily require one
hundred-thousand entries. When using the ”brute force” approach in combination to
high-fidelity aerodynamic models to fill the tables, an unrealistic time of 158 years was
estimated [13]. An alternative to the ”brute force” approach was proposed based on

sampling, reconstruction and data fusion of aerodynamic data [14].

« M /8 5ele 5rud 5ail R 4 q r CL CD Cm CY Cl Cn
X X X - - - - - - - X X X X X X
X X - X - - - - - - X X X X X X
X X - - X - - - - - X X X X X X
X X - - - X - - - - X X X X X X
X X - - - - X - - - X X X X X X
X X - - - - - X - - X X X X X X
X X - - - - - - X - X X X X X X
X X - - - - - - - X X X X X X X

Table 2.1: Aerodynamic database format [81]; ”x” indicates a column vector of non-zero
elements

Two scenarios were considered, based on a requirement for generating tables for
a completely new design and for updating the database of the existing configurations
which are being altered. In the first scenario, there is a requirement for a high fidelity
aerodynamic model which can be generated offline without the user waiting for the
database to be generated during an interactive session. The emphasis of the sampling
algorithm is on an efficient search for the non-linearities in the force and moment coef-
ficients. Two approaches to this sampling, based on the Mean Squared Error criterion
of kriging and the Expected Improvement Function [86, 87|, were assessed, and are

described in the next section. In the second scenario, a designer is involved in an inter-
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active session. It is assumed that the aircraft geometry is incremented from an initial
design, and that a high-fidelity model is available for the initial design from the first
scenario. Data fusion based on co-kriging is then used to update the initial high-fidelity
aerodynamic model with a small number of additional calculations. In this scenario it
is assumed that the flow topology resulting from the initial geometry does not change
during the geometry increments. If this is not the case, e.g. the wing sweep angle
increases so that vortical flow starts to dominate at moderate angles, then either a new
initial geometry needs to be selected, or the interactive session needs to be suspended
so that a new high-fidelity model can be generated under the first scenario.

The static dependencies of the aerodynamic coefficients are stored in the («, M, 3)
sub-table, which is referred to hereafter as the baseline table. This table provides
a fundamental overview of the aerodynamic loads throughout the flight envelope of
interest, and has the potential to represent non-linear phenomena such as static stall,
compressibility effects and onset and breakdown of vortical flows. The baseline table
is generally the most expensive to generate and, if not otherwise stated, it is obtained
using sampling techniques. Starting with a high-fidelity aerodynamic model based on
the Euler or RANS equations, the dependencies of the control surface deflections are
treated as geometry increments with respect to the initial design, and sub-tables are

populated using co-kriging.

2.3 Kriging-Based Framework

The framework for the generation of a computationally efficient approximation of aero-
dynamic loads determined from expensive high-fidelity calculations consists of the fol-

lowing steps:

1. The independent variables and their range are specified, and initial sampling
is used to begin the procedure and to provide a quick overview of aerodynamic
data throughout the parameter space. Aerodynamic data are calculated at preset

initial sample points using aerodynamic models appropriate for the given task.

2. A surrogate model based on kriging interpolation fitting data in the form of

input/output combinations is generated.

3. The parameter space is iteratively refined by adding sample points at untried
locations to improve the accuracy and verify the robustness of the surrogate

model.

4. If aerodynamic data have been obtained using different fidelity models, data fusion
is then used to combine the low- and high-fidelity predictions in one single dataset

of forces and moments.
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2.3.1 Initial Sampling

The task of the initial sampling is to provide an informative picture of the function
at minimum cost [88]. When confronted with a deterministic computer simulation as
opposed to wind-tunnel or flight tests, a given set of input parameters always produces
the same aerodynamic data. Without information on the function, a design optimal
distribution method can only apply space-filling sampling, in the sense that all areas
of the parameter space are sampled. Several space-filling methods requiring only infor-
mation on the domain are available in the literature, such as Monte Carlo [89], latin
hypercube sampling [90] and Sobol [91]. A major disadvantage of space-filling methods
is that samples are randomly selected, can cluster together and each high-fidelity sim-
ulation may not provide significant additional information. To overcome the potential
lack of uniformity, optimal latin hypercube sampling [92] ensures a more uniform design
of experiment obtained by optimizing a spreading criteria, e.g. minimum distance or
correlation, of the sample points. However, sampling methods which include informa-
tion on the full-order function in sample distribution are preferable. These methods
are named a posteriori sequential sampling methods, as opposed to a priori sampling
used for the space-filling methods. The set of sample points is iteratively refined and
an additional high-fidelity simulation is run for a combination of input parameters in
which the model exhibits maximum error. The drawback is that the high-fidelity sim-
ulations are launched one at a time, whereas they would be launched in parallel with
an a priori method.

The a priori approach is first considered to initialize the procedure. Each three-
parameter sub-table defines a three-dimensional domain. An initial set of ten sample
points is generated as follows. Eight samples are placed at the vertices of the parameter
space, and two sample points are located within the parameter space, typically at the
highest value of the angle of attack and for a given Mach number. This choice is sound
because it avoids the need for extrapolation, and high-fidelity simulations are located in
regions where aerodynamic loads are likely to exhibit non-linearities due to vortical flow
developments, compressible effects and their mutual interaction. The simulations at the
ten sample points provide an initial view of the behaviour of the aerodynamic data.
A sequential sampling approach is then considered to iteratively refine the parameter
space and to verify the accuracy of the approximation model when including additional
data.

2.3.2 Kriging Interpolation

Kriging interpolation is used to approximate non-linear multi-dimensional deterministic
functions by interpolating available sampled data, typically, from a full-order simula-
tion. It is a parametric approach which presumes that the global functional form of the

relationship between the response and the design variables is known.Once constructed,
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kriging is a computationally cheap model to be used in place of the expensive full-
order simulation for prediction of the function at untried points. Kriging has been
successfully applied in different areas and, in particular, to problems involving fixed-

and rotary-wing aerodynamics [17,18].

Here, the mathematical formulation of the aerodynamic coefficients in Eqgs. (2.2])
and (2.3]) represents the function to be approximated with kriging interpolation. With
suitable assumptions, the 4 + N, aerodynamic terms have been expressed as a function
of three input parameters. To illustrate, consider the baseline table with n,- nas- ng
entries and the requirement for a high-fidelity representation of the static aerodynamic
force and moment coefficients, C;g for i = L, D, m,Y,l and n. From a small ensemble
of sample points, kriging interpolation is used to predict the aerodynamic data at the
N - ng flight conditions. For convenience, let y be a single scalar function represen-
tative of each aerodynamic coefficient in turn, y = C;. Assume a given set of ns, numer-
ical samples, [x1,... ,anp]T, where x; = [y, M;, 3;]7 is a vector of input parameters,
and the corresponding full-order aerodynamic coefficients, y, = [y(x1),...,y(xn,,)]".
Initial samples are selected according to the above guidelines. In kriging, the unknown

function of interest y is assumed to be a realization of a stochastic process

y(x) = fx) + Z(x) (2.5)

The first term is a low-order regression function (constant, linear or quadratic) and
the second term is a stochastic process, assumed to be Gaussian and with variance
o2. The regression model, f (x), realizes a globally valid trend function, and the Z (x)
adjusts the prediction for local deviations from f (x), and guarantees that the kriging
predictor i gives the exact value of y at a sample location. The assumption that the
system response in Eq. (2.5]) is a random process is made because the deviations from
the regression model can resemble the realization of a stochastic process [15]. The
covariance matrix of Z (x) is a measure of how strongly correlated two points are, and

2

is equal to the variance o multiplied by the correlation matrix, R. The correlation

matrix of the samples has dimensions ng, X ng,, and each element is given by

Rij(p, xi, Xj) = H scf (pk, xz(k) — mgk)> (2.6)
k

where scf is a user defined spatial correlation function, and :ng) denotes the k-th
component of the i-th sample point. This matrix is dense symmetric positive definite
with diagonal elements equal to one, and becomes ill-conditioned when samples are
too close together. The order of the kriging correlation matrix depends only on the
number of samples considered, ny,, and not on the dimension of the input vector, in
this case ny- nar- ng. Several correlation functions are available, such as exponential,

linear and spline functions, and the choice should be motivated by the underlying
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phenomenon being approximated [86]. For a continuously differentiable problem, the
spline function should be considered because it has a parabolic behaviour near the
origin. To model physical phenomena, which usually have a linear behaviour near the
origin, the use of exponential or linear functions was suggested [93]. The exponential
is the most common correlation function, which is adapted to a wide range of physical
applications. Depending on the correlation function selected and for a large dimension
of the input vector, x, the corresponding correlation matrices can be ill-conditioned,
which is an issue when using kriging for high-dimensional interpolation. In this study,
the correlation function used is the exponential. The regression model is formulated as a
low-order function, f (x) = f(x)? 3, with the two vectors having dimension equal to the
number of basis functions of the selected polynomial, Np,;s. Here, the regression model
was taken as a linear function and, for the example illustrated, f(x) = [1, a, M, ﬁ] T A
matrix F(x), of dimension ng, X Npgsis, is constructed from the vectors f(x), where the
i-th row corresponds to the evaluation of the basis functions at the i-th sample input.
With the generalized least-squares estimates of 8 and o, denoted by B and o, the
unknown correlation parameters py are found by maximizing a likelihood function [16],
which represents the probability that the stochastic process Z (x) produced the value
of the aerodynamic coeflicients at the sampled data points. The estimated pj, represent
the fitting parameters that are most consistent with the sampled data. The kriging

interpolation of the function y(x) is given as
i(x) = £(x)7 B + r(x)" (R} (y. — FB) 2.7)
§x) = £697 B + 19T (R~ (y, — FB)) e
where the correlation vector, written as

r(x) = [Rn(p,xl, X)),y ,Rnspl(p,xnsp,x)]T (2.8)
represents the correlation between the provided set of sampled points [x1,... ,xnsp]T
and an arbitrary unsampled location x in the parameter space. The parameters of the
kriging model are determined from a small ensemble of expensive numerical simulations,
likely obtained from a CFD solver, and the system response is approximated at an
arbitrary unsampled location not included in the initial set at the expense of two scalar
products on f(x) and r(x), as shown in Eq. . A Matlab toolbox implements the

le [1.

kriging interpolation [86], and is freely availab

2.3.3 Iterative Sampling

The quality of the kriging interpolation depends on the number of sample points and
their location, which is case-dependent. For a systematic methodology to be efficient

and reduce the uncertainty in the prediction of the full-order function, there is a need

Yhttp://www2.imm.dtu.dk/~hbn/dace/| [retrieved March 19, 2012]

49 of P13


http://www2.imm.dtu.dk/~hbn/dace/

to minimize a suitable figure of merit. Two methodologies are currently adopted, based
on the root Mean Squared Error (MSE) and Expected Improvement Function (EIF).
The goal of both methodologies is to improve the accuracy of the kriging model at
untried sample points, adding additional samples until a criterion for termination is
fulfilled.

The root Mean Squared Error, ¢, is referred to as the standard error of the kriging

model and is a measure of uncertainty in the prediction. It is evaluated as
©?(x) = o? (1 —rx) R 'r(x) + u’ (FTR! F)71 u) (2.9)
with the vector u(x) = FT R7!r(x) — f(x) and the process variance

) 1 NT ~
o= (v. - FB) R7'(y. - FB) (2.10)
By construction, the MSE is zero at a sample point and increases as the distance
between samples increases, with its maximum value being o. To further improve the
kriging interpolation, an additional high-fidelity simulation is run at the untried sample
point x where the MSE is maximum. This criterion seeks for a global approximation
of the exact function because it is driven by the weighted distance correlation for the
error terms.

The Expected Improvement Function can be used to concentrate new sample points
around the global minimum or maximum. This is very useful when, for instance,
the maximum lift coefficient is of interest. The kriging predictor in Eq. (23] can be
interpreted as a random variable with mean given by the predictor and variance given
by the mean standard error. A probability can then be computed so that the system
response at any point will fall below (or above) the current minimum (or maximum).
The kriging model is iteratively refined placing an additional high-fidelity simulation
at the untried sample point where the EIF has a maximum. This method is suited for
searches of the global maxima or minima but is unable to find local maxima or minima.
A good practice is the use of a combined global and local search [94].

As a high-fidelity evaluation of the system response is obtained in a new suitable
sample point, the procedure is repeated until the maximum error in the prediction
is below a threshold. The number of high-fidelity simulations is likely to be limited
by constraints on computational time and resources, and typically this requirement is

regarded as an additional criterion to stop the sampling procedure.

2.3.4 Data Fusion

The aerodynamic coefficients can be obtained using different aerodynamic sources.
Data fusion combines aerodynamic predictions from different sources. Consider that

data are available from two sources, which are, respectively, cheap (low-fidelity) and

50 of RT3



expensive (high-fidelity) to evaluate. The cheap samples are considered to provide
information at least about the trend of the target function, whereas the expensive
samples give quantitative information. The cheap estimates are usually available in
more locations than the expensive ones. A Kriging function 7 is calculated from the
samples of the cheap aerodynamic evaluations. This Kriging function is then evaluated
at the locations at which expensive predictions are available, 7(x;). The vector of
the input parameters at the expensive samples, x;, is augmented by the evaluation
of the kriging function for the cheap samples. In the case of the baseline table, the
augmented vector would have dimension four and be x{" = [oy, M;, B;, 7(x;)]T, with
corresponding aerodynamic coefficients y; = y(x;) for each of the ng, sample points.
A Kriging function is calculated for these augmented samples, 7(x;"?), with the extra

component bringing information to the correlation calculation from the cheap samples.

2.4 Hierarchy of Aerodynamic Models

A prerequisite for realistic predictions of the stability and control characteristics of
an aircraft is the availability of a complete and accurate aerodynamic database. Here
aerodynamic models are used as the source of the force and moment information. The
choice of which aerodynamic model to use is based on available information and demand
for cheap estimates or for detailed analyses. The higher the fidelity of the aerodynamic
model to be used, the higher the execution time is normally. In the early phases of
aircraft development, the geometry is defined with limited fidelity which might render
expensive methods of limited use. More comprehensively, the review paper of Da Ronch
et al. [81] examines the wide range of applications accessed by the use of different fidelity
aerodynamic models, see also Appendix[Al A number of models are used in this thesis

and these are now summarized.

2.4.1 Semi-Empirical Method

The Data Compendium (DATCOM) is a document of more than 1500 pages covering
detailed methodologies for determining stability and control characteristics of a vari-
ety of aircraft configurations. In 1979, it was programmed in Fortran and renamed the
USAF stability and control digital DATCOM [6]. Digital DATCOM is a semi-empirical
method which can rapidly produce the aerodynamic derivatives based on geometry de-
tails and flight conditions. This code was primarily developed to estimate aerodynamic
derivatives of conventional configurations [95], and to provide all the individual com-
ponent contributions and the aircraft forces and moments. A design uncertainty factor
is often needed to account for validity of aerodynamic characteristics estimated using
this method.
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2.4.2 Linear Potential Solver

Based on a Vortex-Lattice Method (VLM), TORNADO is an open source Matlab im-
plementation of a modified horse-shoe vortex singularity method for computing steady
and low reduced frequency time-harmonic unsteady flows over wings. It can predict
aircraft stability and control aerodynamic derivatives. The lifting surfaces are created
as unions of thin, not necessarily flat, quadrilateral surface segments. The effect of aero-
foil camber is modeled by surface normal rotation, which is also used to model leading-
and trailing-edge control surfaces deflection. The steady wake can be fixed in the body
coordinate system or can follow the free stream. The influence of compressibility is
included from Prandtl-Glauert similarity [96], and zero-lift drag estimates are obtained
by Eckert’s flat plate analogy. A fuselage can be modelled using a combination of flat
plates or the slender body theory developed by Munk [97].

2.5 CFD Flow Solver

Due to the collaborative nature of the work presented in this thesis, several CFD
solvers were used. A more detailed description is given for the CFD solver of the
University of Liverpool, which has been modified by the author for the simulation of
the gust loads, see Appendix [Bl for more details. A general overview is provided for
the remaining CFD solvers used throughout the work, with emphasis on differences in
the numerical implementation. Deviations in the numerical predictions obtained using
different solvers are therefore expected around complex geometries with challenging

flow conditions.

2.5.1 PMB (University of Liverpool)

The Euler and Reynolds-averaged Navier-Stokes (RANS) equations are discretised on
curvilinear multi-block body conforming grids using a cell-centred finite volume method
which converts the partial differential equations into a set of ordinary differential equa-
tions. The equations are solved on block structured grids using an implicit solver. A
wide variety of unsteady flow problems, including aeroelasticity, cavity flows, aerospike
flows, delta wing aerodynamics, rotorcraft problems and transonic buffet have been
studied using this code. A validation against flight data for the F-16XL aircraft has
also been performed [9]. The main features of the CFD solver are detailed in Badcock
et al. [98].

The three-dimensional Navier-Stokes equations may be written in non-dimensional

conservative form as

OW 9 (FF-F) 9(G'-G") 9 (H -H")
5r oy + 7 + 55 =0 (2.11)

*http://www.redhammer . se/tornado/| [retrieved March 19, 2012

52 of 213


http://www.redhammer.se/tornado/

where W = (p, pu, pv, pw, p E)T is the vector of conserved variables, p is the density
and u, v, and w are the components of velocity given by the Cartesian velocity vector
U = (u, v, w)". The total energy per unit mass is £. The superscripts (*) and (?)
denote the inviscid and viscous components of the flux vectors, F (z-direction), G
(y-direction) and H (z-direction). The inviscid flux vectors, F?, G¢ and H', are given
by

; T
F' = (pu, pu® + p, puv, puw, u(pE + p))

; T
G' = (pv, pvu, pv* + p, prw, v(pE + p)) (2.12)
H' = (pw, pwu, pwo, pw® + p,w(pE + p))’

while the viscous flux vectors, F, GY and H", contain terms of the heat flux and

viscous forces exerted on the body, and can be represented by

1

FY = E (07 Texs Teys Toz, UTzx + U Ty + WTey + qgc)T
1

GY = o (0, Ty, Tyys Tyz, UTay + VTyy + WTy, + qy)T (2.13)
1

HY = E (0, Trzy Tyzs Tzzy UTxz + U Tyz + Wty + q,z)T

The stress tensor components, 7;;, and the heat flux vector components, ¢g;, can be
found in numerous text books, e.g. Anderson [99]. The Navier-Stokes equations are
discretised using a cell-centred finite volume approach. The computational domain
is divided into a finite number of non-overlapping control volumes and the governing
equations are applied to each cell in turn. A fully implicit steady solution of the RANS
equations is obtained by advancing the solution forward in time by solving the discrete
non-linear system of equations
Wi —wr, 1

ijk n
L () "
ij

where V;;;, denotes the cell volume, W ;. represents the fluid variables and Rijk(ij'};l)
the flux residuals. The pseudo time step is indicated by At¢*. Equation (2.I4]) repre-
sents a system of non-linear algebraic equations and to simplify the solution procedure,
the flux residual is linearised in time. The flux residual is the discretisation of the
convective terms, given here by Osher’s approximate Riemann solver [100], MUSCL
interpolation [101], and Van Albada’s limiter. An iterative Generalised Conjugate Gra-
dient method is used to solve the linear system. A Block Incomplete Lower-Upper

factorisation is used as preconditioner for the system of equations.

The implicit dual-time method proposed by Jameson [102] is used for time-accurate

calculations. The solution iterates in pseudo time for each real time step to achieve
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convergence. In the current application, a key functionality of the CFD solver is the
ability to move the mesh conforming to the motion of the body. Rigid body motions can
be treated by moving the mesh rigidly in response to the applied sinusoidal motion.
The mesh is deformed once per real time step during the unsteady calculation. A
curvilinear time dependent formulation is used to formulate the mapping between the

computational space and the physical space.

The steady state solver for the turbulence model is formulated and solved in a
similar manner to the mean flow as described, with the vector W replaced by the
equivalent turbulent vector and an equivalent substitution for the flux residual. The
eddy viscosity is calculated from the turbulent quantities as specified by the model and
is used to advance the mean flow solution. This new mean flow solution is then used
to update the turbulence solution, freezing the mean flow values. Several turbulence
models are implemented in the PMB solver, including algebraic, one-equation and two-
equation models. In this study, the model used is k — w with P, enhancer proposed by
Brandsma et al. [103] for the TCR case.

Control surfaces are blended into the geometry following the approach given in [104].
Mesh block faces are placed on the control surfaces and the mesh points on these faces
are deflected to define the control surface mode shapes. After the surface grid point
deflections are specified, transfinite interpolation is used to distribute these deflections
to the volume grid. Mode shapes are defined for the control surface deflections [105].
Each mode shape specifies the displacement of the grid points on the aircraft surface

for a particular control surface.

2.5.2 TAU (German Aerospace Center)

The DLR TAU code [106,107] is a modern massively parallel software system for the
simulation of flows around complex geometries from low subsonic to hypersonic flow
regimes. The different modules of TAU can be used stand-alone or in a more efficient
way within a Python scripting framework which allows for inter-module communica-
tion without file I/O by using common memory allocations. The unsteady compressible
RANS flow solver is based on hybrid unstructured grids with a finite volume discretiza-
tion. The flow solver uses an edge-based dual-cell approach, either cell-vertex or cell-
centred, employing either a second-order central scheme or a variety of upwind schemes

with linear reconstruction for second order accuracy.

As for the PMB solver, unsteady simulations use Jameson’s dual-time-stepping
method [102] to integrate the equations in the time-domain. Additionally, the solver re-
spects the geometric conservation law, and bodies which are deforming and in arbitrary
motion can be simulated. For the pseudo time stepping various explicit Runge-Kutta

and a semi-implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme are avail-
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able for enhancing convergence acceleration with a geometrical multi-grid algorithm
and local time-stepping.

TAU includes an adjoint-solver for gradient based numerical shape optimization.
The discrete adjoint method [108] consists of the explicit construction of the exact
flux Jacobians of the spatial discretization with respect to the unknown flow variables
allowing the adjoint equations to be formulated and solved, and is an important part

of the linear frequency domain solver and error estimation methods.

2.5.3 COSA (University of Glasgow)

The structured multi-block Navier-Stokes solver COSA is an explicit multigrid finite
volume cell-centered code. It solves the integral conservation laws in generalized curvi-
linear coordinates making use of a second order discretisation method. The discreti-
sation of the convective fluxes is based on Van Leer’s MUSCL extrapolations and the
approximate Riemann solver of Roe’s flux difference splitting. The discretisation of
the viscous fluxes uses centered finite differences. The set of nonlinear algebraic equa-
tions resulting from the spatial discretisation of the conservation laws is solved with an
explicit approach based on the use of a four-stage Runge-Kutta smoother. The con-
vergence rate is greatly enhanced by means of local time-stepping, variable-coefficient
central implicit residual smoothing and a full approximation storage multigrid algo-
rithm. When solving problems at very low flow speed, computational accuracy and
high rates of convergence are maintained by using a carefully designed low-speed pre-
conditioner [109].

In the case of unsteady problems, Jameson’s dual-time-stepping method [102] is
used to integrate the equations in the time-domain. The interested reader is referred to
references [109-111] for further details on the COSA solver and a thorough validation

of its inviscid and viscous capabilities for steady and unsteady problems.

2.5.4 Cobalt

The Cobalt code solves the unsteady, three-dimensional and compressible Navier-Stokes
equations. The Navier-Stokes equations are discretised on arbitrary grid topologies
using a cell-centered finite volume method. Second order accuracy in space is achieved
using the exact Reimann solver of Gottlieb and Groth [112] and least squares gradient
calculations using QR factorization. To accelerate the discretized system, a point-
implicit method using analytic first-order inviscid and viscous Jacobian is used. A
Newtonian sub-iteration method is used to improve time accuracy of the point-implicit
method. The method is second order accurate in time. Tomaro et al. [113] converted
the code from explicit to implicit, enabling CFL numbers as high as 10%. Cobalt uses
an arbitrary Lagrangian-Fulerian formulation and hence allows all translational and

rotational degrees of freedom. For the control surface simulations, an overset grid
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capability is available. The code can simulate both free and specified six degrees of

freedom motions.

2.6 Calculation of Dynamic Derivatives

The estimation of dynamic derivatives is obtained by imposing a forced sinusoidal
motion around the aircraft centre of gravity. For the computation of the longitudinal
dynamic derivative values from the time-histories of the forces and moments, it is
assumed that the aerodynamic coefficients are linear functions of the angle of attack,
«, pitching angular velocity, ¢, and rates, & and ¢. To illustrate, the increment in the
longitudinal aerodynamic coefficients (lift, drag and pitching moment) with respect to

the mean value during the applied pitching sinusoidal motion is formulated as

AC; = C; Aa+Cja2U +c]q2U

for j=L,D, and m

2
& .

The harmonic motion in pitch defines the kinematic relations for the angle of attack,

pitching angular velocity and rate as

Aa = aysin(wt)
& = q = waycos(wt) (2.16)

4 =4 =—wlaysin(wt)
Eq. (2.I5) can then be rewritten as
AC; = axCj, sin(wt) + askCj, cos(wt) (2.17)

where k = we¢/(2Uy) indicates the non-dimensional reduced frequency of the applied
motion. The in-phase and out-of-phase components of A C}, respectively indicated as
Cj, and Cj, [114], are defined as

Ci. = (Cj, — K*Cj,) (2.18)
Cj, = (G, + Cj,) (2.19)

56 of RT3



The dynamic derivative values can be calculated taking the first Fourier coefficients of

the time history of A Cj; over n. cycles

B ) neT

- _ AC; j 2.2
Cj. aan.T /0 Cj (t) sin (wt) dt (2.20)
N ) neT

= AC; 2.21
= T /O C; (t) cos (wi) dt (2.21)

where T' = 27 /w is the period of one cycle of unsteadiness. The model formulation
given in Eq. (218)) is adequate for aircraft operating at low angles of attack or in lin-
ear and steady aerodynamic flight regimes, with the out-of-phase approximating well
the aerodynamic damping. However, many applications of common interest are in the
transonic speed range and high angle of attack [114,115]. Under these conditions, the
non-linear unsteady aerodynamic behaviour may not be well predicted using the above
linear model, and more advanced mathematical models are then required [38, 39, 56].
The first harmonic is an important term even under conditions where higher order terms
might be required. Due to the orthogonal nature of the model series, the first harmonic
remains unchanged when higher order terms are required to model the non-linear aero-
dynamic behavior. The in-phase component, C_'ja, is comprised of a static derivative
and a rotational derivative, whereas the out-of-phase component, C_’jq, includes a ro-
tary derivative and a translation acceleration derivative. The frequency influence is
accounted for explicitly in the equations for the in-phase component, while the equa-
tions for the out-of-phase component used to determine the damping derivatives do not
include the frequency effect. Models for an aircraft performing a one degree of freedom
oscillatory motion in either roll or yaw can be developed in a similar fashion to that
for the pitching oscillations [116,117].

Two techniques to post-process time-domain sampled data obtained from numerical
investigations have been used. First, the transformation to the frequency domain is
considered to gain insights into the frequency spectra of aerodynamic loads. Then, a
regression-based approach is addressed. In the present study and in all test cases, no
significant difference in dynamic derivative values was obtained from the use of the two

implemented post-processing techniques.

Frequency domain analysis has many advantages and is currently used in different
research areas. The computation of the in-phase and out-of-phase components of the
aerodynamic coefficients is performed by a numerical technique [118] applied to the last
cycle of the steady harmonic outputs. The transformation of the sampled time-domain
data into the frequency domain is achieved by an approximation of the finite Fourier

integral. The finite Fourier integral of a continuous scalar time function, x (), on a
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finite time interval, ¢t € [0, T, is defined as
T .
Fle)] = 7(iw) = / x(t) e P2t gt (2.22)
0

where 4 is the imaginary unit and f the dimensional frequency. The accuracy of the
transformation to the frequency domain can be improved using quadrature methods.
The finite Fourier integral is evaluated at discrete values of frequency, fi, evenly spaced
between zero frequency and the Nyquist frequency, fn, with a frequency resolution
equal to the reciprocal of the length of the time record [119]. Arbitrary frequency
resolution in a selected frequency band of interest can be obtained using the Chirp-
z transform [120], decoupling the frequency resolution from the length of the time
record. A cubic Lagrange polynomial interpolation scheme was implemented in the
current framework. A Chirp-z cubic approximation to the finite Fourier integral is also

available.

The system response, quantified by the amplitude ratio and phase lag with respect
to the input, can be determined by the transfer function between the input and the

output. For the pitching moment coefficient, this is

Z [C (t)]

Cliw) = Z )

= R(w) '@ (2.23)

where R (w) and ¢ (w) are the amplitude ratio and phase lag, respectively, and are

defined as

_ G (iw) |
H = T G (224
p(w) = LCp (iw) — La(iw) (2.25)

An alternative approach to the calculation of dynamic derivatives is to use the
solution of a least squares problem [121]. Within a general framework, Eq. (Z15]) can

be formulated as

Yy=a + a1z +axry+ ... +apT, + € (2.26)
for a dependent variable, y, and the p independent arguments, x1, x2, ..., z,. Here
ap, ai, ..., ap are unknown parameters of the mathematical model and, e, the approx-

imation error. The dependent variable represents the dependency upon time of the
integrated aerodynamic coefficients. For small amplitude pitch oscillations, the inde-
pendent arguments are the instantaneous angle of attack and its rate of change. The
parameters of the mathematical model are estimated using the n values of the instan-
taneous numerical values of the p + 1 variables, y, x1, 2, ..., ;. The vector of the
dependent variable sampled in time and the vector of unknown regression parameters
)T

are denoted, respectively, by y = (y1, ¥2, ... yn)" and x = (z1, z2, ..., xp)T. The
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. . . T . .
vector of approximation errors is e = (e1, ez, ..., €p)” and the matrix relating the

unknowns with the independent variables, of dimension n x (p + 1), is given by

1 arr --. Qpi1
1 arg ... Qap2

A= (2.27)
1 ain ... apn

The corresponding linear regression model is given by
y=Ax+e (2.28)

The unknown vector of the approximate solution which minimizes the error is found

by minimizing the functional J = |le||* /2
oJ
oz, =0, fori=1,2,...,p (2.29)

which results in (AT A) x = ATy. The use of the linear regression technique provides
the estimation of the aerodynamic derivatives stored in the vector x. In general, the
matrix A is non-square, with more rows than columns. Several numerical methods are
available to solve least squares problems [122], e.g., direct inversion of AT A, Gaussian
elimination, Moore-Penrose generalized inverse approach and the QR factorization.
However, the Moore-Penrose approach and the QR factorization are more accurate
than the Gaussian elimination and the direct inversion solutions. The cost of the QR

factorization is O (n2), and the Moore-Penrose inversion involves O (n3) operations.
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Chapter 3

Dynamic Derivatives from
Unsteady Time-Domain CFD

Simulations

3.1 Introduction

The manoeuvre capabilities of combat aircraft have highlighted the limitations and
shortcomings of the conventional stability or aerodynamic derivative model for the rep-
resentation of the aerodynamic loads in the aircraft equations of motion [123]. An
important consideration is the presence of significant motion frequency effects on the
dynamic derivatives measured in small-amplitude oscillatory wind tunnel tests at higher
mean angles of attack. This frequency dependence cannot be reconciled with the sta-
bility derivatives model. Although these effects were first recognised in the 1950s, they
mostly played an insignificant role for conventional aircraft operating at benign con-
ditions. The changing interest in the determination of dynamic stability derivatives
due to the requirements of increasing angle of attack and Mach number during the
1970s is described in Orlik-Riickemann [124]. Modern combat aircraft are capable of
performing agile manoeuvres involving high pitch rates at extreme angles of attack.
Vehicles manoeuvring in this regime are subject to non-linear aerodynamic loads. The
non-linearities are mainly due to three dimensional separated flow and concentrated
vortices. The appearance of these features alters the dynamic behaviour, in ways that
are not predictable on the basis of linearised formulations of the aerodynamic forces
and moments. Accurate prediction of the non-linear airloads is of importance in the
analysis of aircraft flight motion and in the design of suitable flight control systems.
This work investigates the use of CFD in the prediction of dynamic derivatives for
aircraft configurations. The influence of motion parameters and flight conditions on the
damping values is considered. The traditional mathematical model of unsteady aerody-

namics based on the concept of dynamic derivatives is used to predict large amplitude
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oscillations. Results are presented for the Standard Dynamic Model (SDM) [125] and
the Transonic CRuiser (TCR) [80] geometries.

3.2 Test Cases

3.2.1 Standard Dynamic Model Aircraft

The Standard Dynamic Model (SDM) is a generic fighter configuration based loosely
on the F-16 planform. The model includes a slender strake-delta wing with leading-
edge extensions, horizontal and vertical stabilizers, ventral fins and a blocked-off inlet
(Fig. Bl). Further details on the geometry can be found in Huang [125]. The SDM
configuration has been tested extensively at various wind tunnel facilities to compare

different measurement techniques [126-129].

40 deg>
Length unit (m) < C ==+ 5.613 | 9.!
\ \
Top Vie

Front View Side View

Figure 3.1: SDM layout [125]

A block structured mesh was generated for a previous study [23] and is shown in
Fig. The geometry was slightly simplified by removing the blocked-off intake and
the ventral fins. These were considered reasonable simplifications because the main
interest here is on the impact of the vortical flow developments on the upper lifting
surfaces. A fine Euler mesh was generated with 2.4 million points representing one
half of the SDM configuration. A coarse mesh for the full configuration was obtained
with 701 thousand points by omitting every second point in each direction. The lifting
surfaces all have sharp leading-edges. This allows the Euler equations to approximate
the development of vortical flow since the separation points are fixed at the leading-
edge. In this way, the Euler equations can correctly describe the transport of vorticity
and entropy from the leading-edge, along the vortex sheet, to the roll up into the
leading-edge vortices. However, it is well known that varying the grid refinement in

the leading-edge region alters significantly the solution [130]. Two grids were used to
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evaluate the impact of mesh refinement on the flow development and on the prediction

of dynamic derivatives.

The SDM model geometry has dimensions given in Table[3.Il The moment reference
point is taken at the centre of gravity of the wind tunnel model. Calculations are first
described for the coarse and half-fine mesh to investigate the mesh dependency. In
the following figures, findings for the coarse and half-fine configurations are presented
and indicated, respectively, by C and HF. The temporal resolution of the unsteady
CFD calculations is also addressed to demonstrate that results are well-converged with

respect to time step.

(a) Half-fine, 2.4 million points

(b) Coarse, 0.7 million points

Figure 3.2: Surface grid for the SDM model geometry [131]

63 of 213



Parameter Value

S 0.1238 m?
b 0.6096 m
¢ 0.2299 m
d 0.9429m

Table 3.1: Reference values of the SDM model geometry

3.2.2 Transonic CRuiser Wind Tunnel Model

The Transonic CRuiser (TCR) aircraft was designed, built and wind tunnel tested
within the SImSAC project [80] to highlight the difficulties in using engineering meth-
ods for aircraft design in the transonic regime, see also Appendix [A.Jl A multi-block
structured grid was generated at Liverpool for the half configuration with 8.5 million
points. The main characteristics of the mesh are illustrated in Figs. and 3.4l The
mesh around the solid model and the symmetry plane are shown, with a high con-
centration of cells in the regions adjacent to the solid. The non-dimensional minimum
spacing normal to the solid wall is 2.5 x 10~% which allows flows with Reynolds numbers
of around 2 million to be simulated. The tips of the wing and the canard of the TCR
model are both blunt, for which the same block topology was chosen. Here, a diamond
shaped block fits into the leading-edge and another at the trailing edge. The quality
of the cells in these two areas is slightly compromised in order to allow the C-blocking

around the wing.

Figure 3.3: Viscous grid of TCR wind tunnel model [131]
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Figure 3.4: Chordwise grid section on the wing

Experimental investigations of the aerodynamic characteristics at low speed and
up to 40° angle of attack were performed in the wind tunnel facilities at the Central
Aerohydrodynamic Institute, TsAGI. The T-103 wind tunnel is used for investigations
of unsteady aerodynamic characteristics in the low subsonic velocity range. The wind
tunnel has an open jet working section, of the continuous type, with an elliptical cross
section, 4.0 x 2.33 m. Several configurations of the wind tunnel model were investigated
to allow consideration of the influence of single components (vertical tail and canard
wing on/off) on the overall performance. The approved test matrix contained a large
set of experimental measurements to get insights of static aerodynamic characteristics,
rotary and unsteady aerodynamic derivatives and unsteady non-linear aerodynamic
characteristics during large amplitude oscillations. The normal and lateral forces and
the moment coefficients from static and large amplitude oscillations were measured.
The mean values, in-phase and out-of-phase components of the force and moment
coefficients were measured from the rotary and oscillatory motions. Wind tunnel tests
were run at a freestream speed of 40 m/s, which corresponds at sea level to a Mach
number of 0.117, and a Reynolds number, based on the mean aerodynamic chord of
the wind tunnel model, of 0.778 million. The moment reference point and the model
centre of gravity are coincident and located at 54.78% of the fuselage length from the
foremost point. Geometrical dimensions of the wind tunnel model are summarized in
Table

3.3 Numerical Results

Numerical results are presented for the SDM model geometry and TCR wind tunnel
model. The flow is modelled using the Euler equations for the SDM. The unsteady

aerodynamic loads arising from forced periodic motions converge to a steady harmonic
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Parameter Value

S 0.3056 m?
b 1.12m

c 0.2943 m
d 0.1596 m

Table 3.2: Reference values of the TCR wind tunnel model

response after the decay of the initial transient. The SDM has been investigated in
previous studies. Benchmarking of steady aerodynamic coefficients can be found in
Ghoreyshi et al [23]. A large set of results was computed and is presented for sinusoidal
pitching motions in the current thesis. A comparison of lateral dynamic derivatives
with experimental data is shown in reference [132]. For the TCR, dynamic derivatives
are predicted from the RANS equations based on small amplitude oscillatory motions
for several values of the reduced frequency up to high mean angles of attack. Large
amplitude oscillatory motions were also numerically simulated to investigate non-linear
effects of flow separation development at dynamic conditions. Then, the predicted
dynamic derivatives from small amplitude oscillations are used in the traditional flight
dynamics mathematical model to predict aerodynamic loads during large amplitude

maneouvers.

3.3.1 Standard Dynamic Model Aircraft

Results presented are limited to forced sinusoidal motions in pitch. Several combina-
tions of solver parameters were examined to find those needed for a numerically well
converged solution. Several experimental [133,134] and numerical [135] investigations
were addressed to the determination of dynamic derivatives of the SDM geometry model
throughout the transonic regime and at low speed up to high angles of incidence. Wind
tunnel tests [136] were conducted to study the unsteady aerodynamic behaviour of an
airfoil sinusoidally oscillating in plunge for a range of reduced frequencies. However,
the range of motions performed in dynamic testing facilities is limited by wind tunnel
walls, kinematic and vibrational restrictions. The mass and moments of inertia of a
dynamic wind tunnel model must be as low as possible to achieve a favourable ratio
between the aerodynamic forces of interest and the additional inerital forces. The elas-
tic deformation of the tunnel model, on the other hand, must be as small as possible.
A constraint in dynamic tests is that the first eigenfrequency of the model should be
one order of magnitude above the excitation frequency (e.g., above 15H z) in order to
avoid the excitation of higher frequencies in the model [137]. Explorative studies were
undertaken to assess the variation of the dynamic derivatives with reduced frequency
and amplitude of the applied motion. Each study focuses primarily on the effect of one

motion parameter, as shown in Table 3.3l
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Set 1 Set 2 Set 3 Set 4
M Qo ka (QO) aAp, (QO? k)

Table 3.3: Description of the SDM test cases; terms in parentheses indicate secondary depen-
dencies of the investigations

3.3.1.1 Mach Number

The dependency of the damping-in-pitch derivative on Mach number is evaluated in
subsonic and high transonic regimes. The Mach number varies between 0.4 up to 1.1
with a finer step increment near the sonic region where a significant change in damping
was experimentally observed [133,134]. Results are for the coarse and half-fine grids.
The reduced frequency is held constant. At high speeds (M ~ 1), the dimensional
frequency of motion is an order larger than at low speeds (M ~ 0.1), with a significant
impact on wind tunnel requirements. Numerical predictions are compared with results
obtained in the large transonic wind tunnel at TsAGI [134] . With a flowfield featuring
the formation of shock waves and their time-dependent motion, a time step study
was undertaken to evaluate the influence of the time resolution on the flow solution.
Two sets of unsteady calculations were performed. First, the numerical solution was
computed at 20 time steps uniformly distributed in one harmonic period (At* = 3.18)
and 3 cycles were simulated. Then, the number of time steps per cycle was increased
to 80 (At* = 0.796), retaining the same number of cycles. Tests verified that an
adequate convergence of the pseudo iterations was achieved at each physical time step.
The influence of the time step is shown in Fig. for the coarse grid, and shows that
20 time steps per pitching cycle are adequate for these cases. A similar conclusion holds
valid for the fine grid.

The variation of the damping-in-pitch derivative with Mach number is shown in
Fig. Results for the two temporal resolutions were virtually identical and only one
data set is herein included. Numerical results are in good agreement with experimental
measurements. An increase in the damping is predicted for increasing Mach numbers,
with the largest values in the sonic range. Beyond the transonic dip, where some mesh
dependence is observed, the numerical results predict the reduction of the damping

value.

At low speeds, variations of the pressure coefficient in the region of the wing leading-
edge were in phase with the harmonic motion. Variations over the horizontal tailplane
lag behind the angle of attack change because of the lever arm from the rotation axis
and the finite time to convect downstream changes in the flowfield. At higher speeds,
the periodic motion of the shock wave forming at the wing leading-edge is found to
have a phase lag with respect to the forced motion. During the upstroke, the shock

wave near the leading-edge bends toward the wing tip and its downstream location
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Figure 3.5: Pitching moment coefficient loops for the SDM model geometry at two values
of Mach number; the term ”tsc” indicates the number of physical time steps per cycle of
unsteadiness
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Figure 3.6: Influence of Mach number on the pitch damping derivative for the SDM model
geometry; experimental data were obtained in TsAGI [134]

moves until 70-80% of the tip chord and, eventually, interacting with the shock wave
at the trailing-edge. A similar pattern is observed on the lower side of the wing surface
for decreasing angle. Moving from the wing tip inward, the strength of the shock wave

forming at the leading-edge is reduced while an increase in strength is observed for the
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shock wave at the trailing-edge. The low pressure region on the horizontal tailplane
reaches its maximum downstream location up to about 50% of the local chord. Davari
and Soltani [138] performed supersonic visualizations to measure the motion of shock
waves generated from several components of the SDM geometry model in pitching
oscillations, and found that a relationship exists between the shape of the hysteresis
loop of the shock angle and that of the normal force coefficient. The effect of reduced
frequency was observed to be similar in both shock wave and force coefficient hysteresis

loops.

In the absence of boundary-layer separation, the motion of the shock wave is the
essential feature that makes the unsteady transonic problem non-linear [139]. A non-
linear system transfers energy to a range of frequencies higher than the frequency
being forced by the harmonic change in the angle of attack. For low angles of incidence
and amplitude, a linear or quasi-linear response is obtained in terms of integrated
aerodynamic loads, as suggested in Fig. The system response, quantified by the
amplitude ratio and phase lag with respect to the input, can be determined by the

transfer function of the input-output pair. For the pitching moment coefficient, this is

7 [C (1)]

Clw) = Z )

= R(w) %@ (3.1)

where R (w) and ¢ (w) are the amplitude ratio and phase lag, respectively, and defined

G (i) |
Rl = Tato)| (3.2)
¢ (w) = £LCp(iw) — ZLa(iw) (3.3)

The amplitude ratio is analogous to the steady-state pitching moment curve slope
with respect to the angle of attack. The Fourier transform of the harmonic change
in angle of attack, & (iw), has a non-zero component only at the corresponding forced
oscillation, w. It is then possible to quantify the variation of the transfer function at the
oscillatory frequency of interest, G (i @), for several values of Mach number, as shown
in Fig. 37l At low speeds, both amplitude ratio and phase angle are constant and the
pitching moment lags behind the angle of attack change by about twenty degrees. Due
to compressibility effects, the amplitude ratio increases continuously until a sudden
drop is observed at the higher end of the Mach range. The variation in phase angle
indicates that the pitching moment coeflicient has an increasing phase lag with respect
to the angle of attack. The phase lag appears to be nearly forty-five degrees at the
Mach number which corresponds to the largest aerodynamic damping (see Fig. B.0),
and is indicated in figure by a vertical line. In case of free pitching oscillations, the free

response would be highly damped.
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Figure 3.7: Amplitude ratio, R (@), and phase angle, ¢ (&), between the fundamental harmonic
of the angle of attack and the fundamental harmonic of pitching moment coefficient; w indicates
the oscillatory frequency of the applied forced motion

3.3.1.2 Mean Angle of Incidence

Several independent experimental investigations [128,129] were conducted to assess the
variation of the dynamic derivatives with the mean angle of incidence. Measurements
were obtained in different wind tunnel facilities at low speed. To benchmark computed
values, experimental data of the normal force damping derivative are taken from in-
vestigations conducted in the continuous, open circuit wind tunnel of the aerodynamic
laboratory at THU, Iran [128]. For damping-in-pitch, experimental data were collected
in the low speed, closed circuit Ankara wind tunnel [129].

As the incidence is increased, a complex interaction of the strake and wing vortices
develops, and this is shown in Fig. B.8 The investigation was performed by the author
and published in a previous work [23]. At ten degrees, the vortices form, remain
coherent and do not interact over the airframe. At fifteen degrees, the two vortices wind
around each other towards the trailing-edge of the wing and the breakdown location of
the wing vortex moves closer to the trailing-edge. At twenty degrees, the wing vortex
appears to breakdown quickly after formation, whereas the strake vortex is coherent for
longer. Finally at thirty degrees there is no sign of coherent vortices. Consistent with
a number of experimental investigations [140], the location of the vortex breakdown
was found to fluctuate significantly when positioned over the wing. Unsteadiness in the
axial location of the vortex breakdown impacts the aerodynamic loads, in particular
the pitching moment, motivating in the current study the simulation of the unsteady

flow around the aircraft model at fixed-attitude for several values of the angle of attack.
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(a) 10deg incidence (b) 15deg incidence

(¢) 20deg incidence

Figure 3.8: Flow field visualization for the SDM model geometry at Mach number of 0.3

One of the most important factors in the execution of the unsteady calculations is
the choice of the non-dimensional time step. The time step should be small enough to
adequately resolve the unsteady fluctuations of the flow, but large enough not to in-
crease excessively the required computational resources. Without any prior knowledge
of the value of the important frequencies in the flow, three values of the non-dimensional
time step were selected, equal to 0.01, 0.005 and 0.001. The unsteady calculations per-
formed by the author used five thousand, ten thousand and fifty thousand real time
steps for a non-dimensional time duration of fifty, which corresponds to about 1.7 sec-
onds based on the mean aerodynamic chord and freestream speed. The vortices were
observed to be highly unsteady with periodic fluctuations in the axial direction. The
corresponding unsteadiness observed in the pitching moment is shown in Fig. [3.9] at
twenty degrees incidence. Unsteadiness in the moment coefficient for the coarse grid

is at a much lower amplitude than that for the half-fine grid, suggesting that the grid
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density on the coarse grid above the wing might be not adequate to resolve the dy-
namics of the vortex breakdown at this angle. Results for the coarse grid are virtually
identical for all temporal resolutions. High-frequency fluctuations at a primary non-
dimensional frequency of 0.2 characterize the half-fine grid, due to the frequency of
the vortex breakdown motion. However, high frequency variations due to the natural
unsteadiness of the flow are at a lower amplitude than the variations due to the oscil-
latory motion. These can interact with each other in ways not predictable on the basis
of linear or linearized theories at higher angles of incidence, and hence the importance

of investigating the effect of varying the amplitude of the forced motion.
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Figure 3.9: Fixed-geometry unsteady calculations for the SDM model geometry at a Mach
number of 0.3 and angle of attack of twenty degrees; the term ”ts” indicates the number of real
time steps; horizontal thick lines mark the variation obtained in forced motion of five degrees
amplitude for the half-fine grid

Figure B0 compares the CFD-based damping derivatives with selected wind tun-
nel data. Results are for the coarse and half-fine grids. Because measurements were
obtained in different experimental facilities, and in different atmospheric and flow con-
ditions, the flow conditions used in the CFD calculations can only approximate the
experimental setup in each case. In this respect, the influence of different experimental
setups was found to have a small impact and results compare favourably to measured
quantities. A reasonable agreement is obtained between the two grids. The magnitude
of the peak in the moment coefficient is mesh-dependent, which is not unexpected for
Euler solutions which rely on numerical diffusion in the region of the leading edge for
the generation of vorticity. Varying the level of grid refinement in the leading edge

drastically alters the solution, as Newsome [130] documented. Numerical investiga-
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tions [141,142] have analyzed the effect of grid resolution and topology when computing
delta wing flows, and showed that for Euler simulations the solutions were dependent
on both mesh topology and refinement. Therefore, a finer spatial discretization was not
considered. The purpose of this study is the evaluation of unsteady aerodynamic deriva-
tives and their dependence on several flow and motion parameters. These influence the
values of computed dynamics derivatives, which in turn impact the aerodynamic loads
computed using the traditional flight dynamics mathematical model. Of primary im-
portance is to assess the scatter of aerodynamic loads for arbitrary unsteady motions
due to the variability in dynamic derivatives, and the current study is adequate to
investigate this point. A more accurate modelling of the flow physics in the presence
of vortices breakdown calls for more expensive alternatives (RANS, Dettached Eddy
simulations).

Below ten degrees, the pitch damping derivative continuously decreases as the angle
of attack is increased (see Fig.[3.10(b))). Beyond an angle of attack of fifteen degrees, the
reduction of dynamic stability is due to the breakdown location of the strake vortices
decreasing the longitudinal stability. A time-lag in the response of the vortex flow was
observed during the unsteady motion, which results in a temporarily delayed vortex
formation at lower angles of attack and temporarily delayed vortex breakdown at higher
angles. Hysteresis develops in the vortex flow behaviour with respect to the static
case [143]. The inability of the flow to adapt to changes in the attitude and reach a fully
developed size introduces a further level of complexity in the vortical flowfields. The
unsteady flowfield of the model undergoing pitch oscillation is visualized in Fig. 3111
The vortex is made visible by creating an isosurface of pressure, and is shown at the
same instantaneous angle of attack for direction increasing and decreasing angles. The
vortex breakdown is located somewhere over the wing during the upstroke motion.
During the downstroke, the vortex core is expanded at the wing apex, and this is
expected as the breakdown location moves downstream from the foremost position.

The hysteresis in pitching moment coefficient is illustrated in Fig. [3.12(a)| at two
values of the mean angle of attack, ag. The aircraft model is statically unstable at low
angles of incidence, recovering stability at larger angles. At the highest «q, the angle of
attack oscillates around a mean value that is of the order of the static stall and hystere-
sis develops in the aerodynamic responses [139]. This is supported by CFD calculations
where the static stall is identified around twenty degrees [23]. In addition, the instanta-
neous aerodynamic damping can become positive during part of the oscillatory motion,
as shown. If the net damping over a cycle is positive, the airframe extracts energy from
the flow and the pitch oscillations will tend to increase in amplitude. An interesting
feature is the cross-over point in the moment coefficient forming the characteristic shape
of 7eight”, and caused by a switch in the lag and lead between the flowfield and the
model attitude. The signal ”1 Harmonic” is the corresponding time-domain response

retaining the fundamental harmonic only and neglecting any other frequency compo-
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Figure 3.10: Influence of mean angle of attack on the damping derivatives for the SDM model
geometry at Mach number 0.3; experimental data were obtained in THU [128] and AWT [129]

nent. In the non-linear regime, aerodynamic modes are excited at higher frequencies
than the frequency being forced by the applied motion. The frequency content of the
moment coefficient was found to include important frequencies up to three times the

prescribed frequency of motion, as shown in Fig. |3.12(b)]
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Upstroke

Downstroke

Figure 3.11: Isosurface of pressure at mean angle of attack of fifteen degrees for direction
increasing and decreasing angle; the axis of rotation is illustrated

3.3.1.3 Reduced Frequency

Two sets of motions were generated. The first set is considered for a range of reduced
frequencies (kK = 0.037t00.090) representative of the reduced frequencies experienced
by the main wing on high-performance aircraft. The second set is for a relatively large
value of reduced frequency of 0.2. The pitching frequency, based on the freestream

speed and mean aerodynamic chord, is 6 H z.

As the reduced frequency increases, the hysteresis effect becomes larger at a given
angle of attack (see Fig. [3.13(a))). The effect of reduced frequency is seen throughout
most of the pitching cycle, and is dominant at the maximum and minimum values
of the angular velocity during the upstroke and downstroke, respectively. The cross-
over point forming the characteristic shape of ”eight” was found in the slower motions
only. For a two-dimensional configuration, the over- and undershoots in the unsteady
aerodynamic loads relative to the static case have been explained resorting to the
"moving-wall” effect, and this flow mechanism was found to play an equally prominent
role in the case of three-dimensional unsteady separated flows on a manoeuvring combat
aircraft [144]. The phase angle difference between the loads and the model position is
shown in Fig. as a function of the reduced frequency at ten degrees mean
angle of attack. A near-linear relationship is observed between the phase angle of
the normal force and the reduced frequency. As the reduced frequency increases, so
does the phase lag. For the pitching moment, the phase angle is mostly constant for
the range of reduced frequencies computed. The moment coefficient lags the pitching
motion by nearly ninety degrees, which is expected as the extreme values of the moment
are observed during the upstroke and downstroke motions when the angular velocity
is maximum and minimum. The reason for the phase lag in aerodynamic loads is the

existence of a phase lag in the vortex flow. LeMay et al. [145] presented results of an
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Figure 3.12: Pitching moment coefficient for the SDM model geometry for the coarse grid at
mean angle of attack of 0 and 15 degrees; in (a), the term ”1 Harmonic” indicates a reconstructed
signal with the fundamental frequency only; in (b), the magnitude is plotted as function of the
Strouhal number, St

experimental investigation of vortex dynamics around a sharp leading edge 70deg delta
wing. The phase lag difference of the chordwise breakdown location and the model

motion was found to increase linearly with the reduced frequency. The similarity of




their findings with the linear relationship presented is noted.
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Figure 3.13: Time history of pitching moment coefficient and phase lag in aerodynamic loads
as a function of the reduced frequency; in (a), oy = 15.0° and ay4 = 5.0°; in (b), the mean
angle of attack is ten degrees

Dynamic derivatives are shown in Fig. 314l for several values of reduced frequency.
Little variation was found at lower angles of incidence. The effect of reduced frequency

is more dominant in the non-linear aerodynamic regime beyond fifteen degrees. The
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dynamic derivatives computed for the lower values of reduced frequency are very similar,

and indicate the same qualitative trends in both force and moment data. It should be

noted that the damping-in-pitch is locally positive at twenty degrees angle of attack for

a reduced frequency of 0.09. Lower values of force coefficient damping and a continuous

decrease in the longitudinal dynamic stability were observed for the rapid motion.
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Figure 3.14: Influence of reduced frequency on the damping derivatives for the SDM geometry

model at Mach number
AWT [129]

0.3 (wa = 5.0°); experimental data were obtained in IHU [128] and
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3.3.1.4 Oscillatory Amplitude

The oscillatory amplitude has a moderate influence on damping derivatives in the linear
range of the normal force coefficient [129]. This is verified as long as the amplitude
of motion is lower than five degrees and when separation is not the dominant flow
feature. Computations were performed with both grids for a set of reduced frequencies
of typical high-performance wings (k = 0.037t00.090). Variations in aerodynamic
loads due to the forced motion need to be larger than the natural unsteadiness of
the flow. Tests were performed to identify the lower bound in amplitude to properly
excitate the aerodynamics of interest. Values of amplitude presented are 2.0°, 3.5°
and 5.0°, as shown in Fig. The system is locally linear but, as the amplitude
of the applied motion is further increased, the non-linear behaviour is the dominant
feature. The instantaneous aerodynamic damping can become positive during part of
the oscillatory motion, as shown for the largest amplitude. If the net damping over a
cycle is positive, the airframe extracts energy from the flow and the pitch oscillations
will tend to increase in amplitude. An interesting feature is the cross-over point in the
moment coefficient forming the characteristic shape of "eight”, and caused by a switch

in the lag and lead between the flowfield and the model attitude.
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Figure 3.15: Pitching moment coefficient loop for the SDM geometry model for the coarse
grid at Mach number 0.3 and several values of the amplitude of motion, a4

Dynamic derivatives are shown in Fig. B.J6l The effect of varying the oscillation
amplitude is small at low angles of attack but significant at higher incidences. Although
defining similar trends in both force and moment data, values for the smallest amplitude

correspond to higher longitudinal dynamic stability. This observation is valid for all
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reduced frequencies tested.

Effects of varying the small amplitude of motion are similar to those observed vary-
ing the reduced frequency, that is a more dominant influence on dynamic derivatives is
observed above fifteen degrees mean angle of attack. The question whether variations
in dynamic derivatives due to amplitude or reduced frequency changes are the most
significant in terms of aerodynamic loads, within a flight dynamics contest, is addressed

in the next section.

3.3.1.5 Large Amplitude Motions

Dynamic derivatives were shown in the preceding subsections to depend upon several
motion and flow parameters. Dependency on Mach number and angle of attack are in
general included in a simulation mathematical model, with dynamic derivatives taken as
a function of these states [81]. Further dependencies were observed for changes in small
amplitude and reduced frequency of the forced motion. There is no general consensus
or common guideline for prescribing the value of small amplitude to be used in forced
motion tests, and commonly dynamic derivatives are used at the reduced frequency

which is thought to be the most representative of the expected aircraft motions [146].

Results presented above are adequate for the assessment of the variations in aerody-
namic loads using the conventional mathematical model based on aerodynamic stability
derivatives. The approach in the current study consists of simulating an unsteady ma-
noeuvre at moderately high mean angle of attack for large amplitude oscillations in
pitch. The solution obtained using CFD is the reference solution because it is time-
accurate. To improve the predictions of the linear model in Eq. (2.15)), the aerodynamic

model is reformulated to include non-linear dependencies of aerodynamic derivatives.

cq
2Us

Cj:Cjo(a,...)—i—éjq(oz,...)- (3.4)

for j=L,D, and m

The main variable is the instantaneous angle of attack during the unsteady motion,
a, and aerodynamic derivatives are then assumed to depend on this variable in com-
bination with the reduced frequency and small amplitude, separately. The motion
is simulated at constant subsonic speed, and no dependence on the Mach number is
considered. The static terms depend non-linearly on the independent variables. The
dynamic derivatives, while non-linear functions in the arguments, are linear with re-
spect to the pitching angular rate. The manoeuvre is calculated at ten degrees mean
angle of attack for an oscillatory amplitude of ten degrees, and the reduced frequency
is 0.0493. This goes through the angle of attack range where variations in dynamic

derivatives were observed.
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Figure 3.16: Influence of amplitude on the damping derivatives for the SDM geometry model
at Mach number 0.3; experimental data were obtained in THU [128] and AWT [129]

Simulation results are compared to the time-accurate solution in Fig. 317, and two
situations arise. In the first scenario, aerodynamic derivatives are assumed a func-
tion of the angle of attack and forced oscillatory pitch amplitude (ag = 2.0°to05.0°),
but estimated at the same reduced frequency (k = 0.0493) of the manoeuvre being

simulated. This allows the isolation and exploration of the effect of small oscillatory
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amplitude. In the second scenario, aerodynamic loads are computed from aerodynamic
derivatives provided from a set of forced motions at several values of the reduced fre-
quency (k = 0.037t00.090), and for a given amplitude (g = 5.0°). Comparison
between the model and the time-accurate solution is illustrated in Fig. B.17l The non-
linear model agrees with the time-accurate solution, and predicts some of the main
features of the hysteresis loops. Dynamic force dependencies are correctly accounted
for during most of the upstroke motion up to seventeen degrees incidence, and during
part of the downstroke motion. With a loss of performance at the higher end of the
angle of attack range, the model curve approaches the reference curve during the down-
swing earlier under the first scenario. Two significant differences appear in the force
loop when comparing the two scenarios. First, the scatter in the load is at much lower
amplitude under the second scenario than under the first scenario, suggesting that the
variability introduced by changes in oscillation amplitude is more important than that
of the reduced frequency. However, results under the first scenario are more precise,
and do have a higher degree of agreement with the time-accurate solution at higher
angles of incidence. Dependencies on the reduced frequency shift the mean trend away
from the time-accurate solution, degrading significantly the prediction of the moment
coeflicient in presence of non-linearities. This is not unexpected because static terms
depend on the reduced frequency [146].

At twenty degrees, the angular rate vanishes and the model formulation reduces
to include only the non-linear static term. This represents a time-averaged solution
of the small amplitude forced motion, as opposed to the instantaneous representation
of the flow realized in the time-accurate simulation. Without time-history effects, the
time-averaged solution can only approximate the development of the flow solution. In
particular, the surface vortex footprint was found in the time-accurate solution to be
of larger intensity and located further downstream than in the time-averaged solution.
Differences in local contributions to the normal force coefficient between the time-
accurate and time-averaged solutions are displayed in Fig. B8l Black areas indicate
that the time-accurate solution predicts larger force increments located upstream of the
axis of rotation. This explains the larger force and moment coefficient values observed
in the CFD-based than in the model-based results at the largest angles of attack.

3.3.2 Transonic CRuiser Wind Tunnel Model

Predictions of static aerodynamic characteristics of the TCR were compared using
different CFD codes in a parallel work [147]. In this study, static results are briefly
reviewed. The attention is then addressed to unsteady aerodynamics. Numerical results
of aerodynamic derivatives for small oscillation amplitudes are first presented, followed
by results for large amplitude motions. Dependencies of dynamic characteristics on

mean angle of attack and reduced frequency were investigated both experimentally and
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Figure 3.17: Non-linear mathematical model and unsteady CFD for a large amplitude ma-
noeuvre (g = 10.0°, g = 10.0° and & = 0.0493); (a) and (b) show the small amplitude
effects on the stability derivatives; (¢) and (d) show the frequency effects

numerically. In all cases presented, computations are for the wind tunnel model with

vertical tail and undeflected canard wing.

The flow conditions at which experimental data from the TsAGI T-103 wind tun-
nel [148] are available are given in Table B4l The Mach number is 0.117 and the
Reynolds number, based on the wing mean aerodynamic chord and freestream speed,
is 0.778 million. The low Reynolds number at the operating wind tunnel conditions and
the blunt leading-edge geometry of the TCR wind tunnel model make the prediction of
the initial flow separation difficult. No transition tripping was used in the wind tunnel
model. Without other information, all simulations assumed fully turbulent flow and
were run at experimental conditions. In all cases computed, results are for zero sideslip

angle and the influence of the rear sting was ignored.
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Figure 3.18: Differences between time-accurate and time-averaged solutions of local contri-
butions to the normal force coefficient; the axis of rotation is illustrated

Parameter Value
Uso 40m/s
Re 0.778 x 109

Table 3.4: Experimental conditions for testing of the TCR wind tunnel model at TsAGI T-103
facility [148]

3.3.2.1 Static Cases

Tests were performed to guarantee well-converged results over the angle of incidence
range from —10.0° to 25.0°. T'wo sets of steady-state calculations were generated. First,
results were obtained after ten thousand pseudo iterations. At moderate angles of
attack, the aerodynamic loads were unconverged, and calculations were then restarted
from the previous solution and run for an additional thirty thousand pseudo iterations.
In general, vortical structures were found to be more developed and located further
downstream in the initial solutions, resulting in larger increments in the normal force
coefficient and more negative values (pitch-down) for the pitching moment. To evaluate
the convergence of these steady-state predictions, static results above ten degrees angle
of attack were computed using time-accurate simulations. Static unsteady cases were
run at a non-dimensional time step of 0.005 for a total of ten thousand time steps. Based
on a preliminary study performed by the author with various time steps, the time step
of 0.005 was considered adequate to resolve any flow unsteadiness. The steady-state

converged solutions were in good agreement with static unsteady results for all cases
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computed.

Figure[B.I9illustrates the static normal force and pitching moment coefficients. The
moment curve exhibits two distinct breaks. The first discontinuity occurs at about eight
degrees, followed by a reduction of the pitch-down authority up to the second break
at twenty degrees. After a sudden drop, the moment continues to grow further with
similar unstable characteristics. Simulation results compare well to wind tunnel data
up to the first discontinuity point, with an offset being observed at the higher end of the
angle of attack range. The discontinuity above twenty degrees is well reproduced. An
explanation of the underlying mechanisms for the observed moment curve behaviour
is found when looking at the contributions to the total integrated aerodynamic loads
generated, separately, from the canard and the main wings [147]. The first break
and subsequent slope in pitching moment originates from flow separation on the main
wing. The second break and ensuing change of slope after twenty degrees angle of
attack results from flow separation on the canard wing. Separation starts in a region
confined to the tip and leading-edge, and increases with the angle of attack. At twenty
degrees, there is a large separated area. The outer part of the main wing is dominated
by separated flow, whereas the flow in the inner section is predominantly attached.
Figure conveys the flow development around the model for several angles of attack.
Attached flow streamlines are observed at zero angle of attack. Leading-edge vortices
on the canard and on the wing outer section form as the incidence is increased, with
the appearance of an additional wing inboard vortex at higher angles. The outer vortex

moves progressively inboard, followed by the coalescing of the dual vortex system.

3.3.2.2 Small Amplitude Motions

With the TCR wind tunnel model undergoing small amplitude oscillatory motions,
stability characteristics were investigated at low speed. The oscillatory amplitude is
three degrees and the forced motion is applied through the model centre of gravity.
Considering pitch oscillations, the dependency of the aerodynamic derivatives on the
mean angle of attack and reduced frequency were assessed, and compared to wind
tunnel measurements. To conform to the experimental practice, a linear regression
model was used to post-process time-domain data.

The dependency of measured and computed dynamic derivatives on the mean angle
of attack is shown in Fig. B2l The variation of the dynamic derivatives measured
from small amplitude motions at several values of the dimensional frequency, from 0.5
to 1.5 Hz, is evident. The force dynamic derivative increases with increasing mean
angle of attack, with significant frequency effects. Small variations in the value of the
damping-in-pitch, with a limited dependency on the frequency of motion, are observed
up to fifteen degrees. A strong frequency dependence, with a significant change from the

background trend, is seen in the region between sixteen and twenty-four degrees. The
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Figure 3.19: Static longitudinal aerodynamic characteristics for the TCR wind tunnel model
(M = 0.117 and Re = 0.778 x 109)

onset of flow separation on the canard wing was identified as the reason for the positive
damping value. The extensive testing campaign revealed also that the magnitude and
location of the positive damping spike depend on the deflection of the canard wing,
and eventually the unstable characteristic disappears for the model without the canard

wing.
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(a) Odeg incidence (b) 18deg incidence

(c) 25deg incidence

Figure 3.20: Surface streamlines and flow field visualization of the TCR wind tunnel model
at several angles of attack

Numerical results included in Fig. B.21] were obtained for the model with the un-
deflected canard at a frequency of 1.0 Hz. To assess the convergence of the unsteady
simulations, several tests were initially performed at mean angles of attack above ten
degrees representative of difficult convergence from static cases. Three values of the
number of time steps per cycle were used, four hundred, eight hundred and one thou-
sand, corresponding to a non-dimensional time step of 0.33, 0.17 and 0.13, respectively.
The non-dimensional period of an oscillatory motion at a frequency of 1.0 Hz is t* = 68.
For the two smaller time steps, identical hysteresis loops resulted. The time step of 0.17
was then used for all numerical data presented. Predicted values of dynamic derivatives
compare reasonably to the measured data, being within a five percent band of the max-
imum absolute value from the experimental curve for angles of attack between five and

fifteen degrees. Two important observations can be made for the remaining computed
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points. At zero degrees mean angle of attack, the magnitude of the damping values
from simulation, e.g., the hysteresis in the aerodynamic loops, is under-predicted. A
reason for this deficiency may be associated with the assumption of fully turbulent flow
to model a fluid which is likely to be laminar at these conditions of low angle of attack
and freestream speed. It would be interesting to determine, for the same flow condi-
tions, the impact of the turbulence model used in the RANS modelling and the grid
resolution. The second remark is that the simulation results fail to predict a positive
damping-in-pitch at twenty degrees angle of attack, as observed in wind tunnel testing.
The change in the sign of the measured aerodynamic damping has a significant impact
on the accuracy of the moment coefficient, and resulted in a dramatic failure of the
non-linear model, as shown in the next section. Pursuing the use of more advanced
turbulence models to resolve turbulent eddies is not part of the current work, as the
interest here is on the investigation of the sensitivity of the conventional mathematical
model, using a set of measured and predicted aerodynamic coefficients, to reproduce
dynamic loads for a large amplitude manoeuvre.

The dependency of the dynamic derivatives on the frequency is illustrated in
Fig. for a mean angle of attack of ten degrees. As the non-dimensional time
step increases for decreasing frequency, tests verified that convergence was achieved at
each physical time step for the motion at 0.5 Hz. The correlation of the numerical
results with the experimental data improves significantly with increasing frequency,
and the best agreement observed at the largest frequency of motion is not unexpected.
The reduction of the hysteresis in the aerodynamic loads for small values of the fre-
quency leads to a difficulty in the accurate prediction of damping terms, caused by
the reduction of the ratio between the aerodynamic load increments being analyzed
and random errors effecting the measurement process or numerical simulation [149].
This poses significant practical challenges for wind tunnel testing and for numerical
simulations [150-152].

3.3.2.3 Large Amplitude Motions

A large amplitude motion was then used to assess the accuracy of the stability derivative
model based on measured and predicted aerodynamic datasets. The manoeuvre was
run at eight degrees mean angle of attack, with an oscillatory amplitude of ten degrees
at a frequency of 1.0 Hz, for which measurements are available. Wind tunnel data
were measured for sixteen periods of oscillations, in wind-on and wind-off conditions.
Aerodynamic loads were smoothed with Butterworth digital filtering [153], and the
average values of the aerodynamic coefficients were then calculated for one period. The
same numerical parameters described above were used in the computations.

Figure B 23] illustrates the force and moment dynamic dependencies, measured from

experimental testing and obtained using time-accurate simulations. The overall shape
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Figure 3.21: Damping derivatives for the TCR wind tunnel model (a4 = 3.0°); (a) and (b)
show the dependence on mean angle of attack (left triangles, f = 0.5 Hz; circles, f = 1.0 Hz;
right triangles, f = 1.5 Hz)

of the hysteresis curves is similar between the two sets of results. Consistent with the
observations from the static cases, at the higher angles of attack the force coefficient
is under-predicted and the moment coefficient has a constant offset. At low angles,

the hysteresis in the numerical results has lower magnitude than in experimental data,
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Figure 3.22: Influence of frequency on the damping derivatives for the TCR wind tunnel
model at mean angle of attack of ten degrees

and this is consistent considering that the damping terms were under-predicted in
magnitude, as shown in Fig. B2Tl In these figures, arrows indicate the time evolution.
If the arrows are oriented in the clockwise direction, the contribution from the dynamic
derivative is positive, and vice versa. Note the lack of any cross-over point in the

moment data, as would be expected in the experimental curve due to the positive
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damping-in-pitch measured above sixteen degrees (see Fig. [3.21(Db))).
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Figure 3.23: Dynamic dependencies for the TCR wind tunnel model for a large amplitude
manoeuvre (ag = 8.0°, ag = 10.0° and f = 1.0Hz)

The force and moment dynamic dependencies for the large amplitude manoeuvre
were reproduced in the upper portion of Fig. 3.24] using the model based on the aero-
dynamic stability derivatives. In this case, aerodynamic terms were assumed to vary

with the angle of attack and frequency. At any given angle of attack, the prediction is
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obtained as the sum of two contributions, that is, a non-linear static term, Cjg (e, f),
and an increment due to the dynamic motion, C'jq (a, f). For the static terms, mean
values of the aerodynamic coefficients obtained from small amplitude oscillations were
used in place of the values from static cases. The former provided a closer correlation
to the reference solution. The reason is that a small amplitude forced motion better
approximates the effects of under- and overshoot in the force and moment loads, as
experienced in dynamic motions, than any steady-state solution. The overall shape
is well predicted for both force and moment coefficients, and the sensitivity of the
model to variations in the frequency used to estimate the dynamic derivatives is lim-
ited throughout most of the oscillatory cycle. However, the model under-predicts the
force dynamic dependency in Fig. [3.24(a)|, with increasing offset from the large ampli-
tude data for increasing angles of attack. Up to sixteen degrees, a good agreement is
also observed for the moment loop. Above this angle of attack, the model predicts a
cross-over point as the upswing and downswing curves intersect, with a marked fre-
quency dependence (see Fig. |3.24(b)). The change of the hysteresis direction from
counter-clockwise to clockwise is attributable to the positive damping-in-pitch mea-
sured experimentally. This dramatic failure of the non-linear model in predicting the
moment dynamic dependency has been consistently observed when analyzing several
large amplitude manoeuvres available from tunnel testing passing through this critical
range of incidence.

The model based on the aerodynamic stability derivatives obtained from small am-
plitude simulations is compared in the lower part of Fig. with the time-accurate
CFD simulation of the large amplitude manoeuvre. The model data points are plot-
ted as symbols at increments of five degrees angle of attack. For the force coefficient,
the model values correlate well to the reference data, laying upon the time-accurate
solution. The agreement is also good for the moment coefficient loop. In all cases,
the reduction of the predicted hysteresis at low angles of attack is well captured, and
consistent with the reference solution in this case. The calculated damping-in-pitch was
negative for all mean angles of attack, which guarantees that the model will correctly
predict the hysteresis loop at the higher end of the angles of attack range.

At moderate angles of attack, the aerodynamic coefficients are not only non-linear
but include effects of higher harmonics and time lags. In such conditions, the flow
unsteadiness can significantly impact the results of dynamic derivative calculations,
which assume steadiness and linearity of aerodynamic coefficients during the dynamic
motion of the model. This is clearly illustrated comparing the model performance in the
two cases above. To produce non-linearities in the aerodynamic coefficients, dynamic
derivatives used were expressed as functions of motion variables. Albeit non-linear, this
formulation is instantaneous. Each aerodynamic coefficient, C;(t), is only a function
of the current time, t, and the formulation is then inadequate to predict dynamic

manoeuvres when the flow is strongly unsteady and the loads are time dependent.
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Figure 3.24: Mathematical model based on aerodynamic stability derivatives from wind tunnel
(top) and CFD (bottom) simulations for the prediction of a large amplitude manoeuvre (o =
8.0°, a4 = 10.0° and f = 1.0 Hz)

3.4 Conclusions

A framework for the computation of dynamic derivatives using CFD was presented.
Two techniques to post-process time-domain data were detailed. A step towards a more
comprehensive investigation of the limitations of models based on stability derivatives
for the prediction of the aerodynamics of manoeuvring aircraft was also made. For the
SDM model, dynamic stability derivatives at low incidence and up to high-transonic
speed, and at low speed and up to high angles of attack, compared well with tunnel
measurements. Whilst no significant dependence was found in transonic conditions, a
finer temporal discretization was required to resolve high-frequency fluctuations in aero-
dynamic loads due to vortex breakdown. In these conditions, a grid dependence was

also observed. The effects of variations of reduced frequency and small amplitude on
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dynamic derivatives were illustrated. To produce non-linearities in aerodynamic loads,
dynamic derivatives were expressed as functions of motion variables. The main variable
was taken to be the angle of attack, and aerodynamic derivatives were then assumed to
depend on this variable in combination with the frequency and small amplitude, sepa-
rately. As the sensitivity of the dynamic derivatives on parameters investigated fell into
well defined bands, it was considered reasonable that it is only the general behaviour of
these bands, rather than small and often irregular variations in the individual curves,
that may be of practical interest for the flight dynamics simulation. The non-linear
model compared best to the time-accurate solution when aerodynamic derivatives were
estimated at the same frequency of the manoeuvre being analyzed. The scatter in the
predictions was at lower amplitude for variations of aerodynamic derivatives with the
frequency, but resulted in a larger offset at the higher angles of attack.

For the TCR wind tunnel model, dynamic derivatives computed for several values
of the angle of attack were in agreement with measurements, but simulations failed
to predict the positive damping-in-pitch at around twenty degrees observed in tunnel
testing. The effect of frequency was addressed, and it was found that the higher the fre-
quency, the better the correlation between measurements and simulations. A significant
failure of the non-linear model in predicting the moment dependency was found using
measured aerodynamic data. The model predicted a change in the hysteresis direction,
from counter-clockwise to clockwise, associated with positive damping-in-pitch mea-
sured in small amplitude motion, but not observed in any large amplitude oscillation.
This might have some implications when simulating the motion of a free-to-pitch air-
craft. The non-linear formulation based on stability derivatives is instantaneous, that
is, aerodynamic coefficients are only a function of the current time. The formulation
is then not adequate in the case aerodynamic loads are dependent on the flow history
and past motion. It was shown that, in these conditions, large amplitude data cannot
be extrapolated from small amplitude tests and cannot be represented accurately by
stability derivatives.

The major computational cost is the computation of time-accurate simulations in
response to periodic motions. For the SDM, a typical calculation on 16 processors
required about 10 hours of CPU time. For the TCR, a dynamic simulation performed
on 128 processors required about 60 hours of CPU time. For the TCR test case,
computer time was provided through the U.K. Applied Consortium under EPSRC
grant EP/F005954/1. To overcome this practical issue, a concurrent work based on
linear frequency domain and harmonic balance predictions of dynamic derivatives will
be presented. Limiting assumptions of the aerodynamic derivative model motivates the

need to address future research on the use of more advanced mathematical formulations.
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Chapter 4

Dynamic Derivatives from

Frequency-Domain Methods

4.1 Introduction

A common wind-tunnel testing technique for the prediction of dynamic derivatives re-
lies on harmonic forced-oscillation tests. After the decay of initial transients, the nature
of the aerodynamic loads becomes periodic. The objective of this chapter is to exploit
the periodicity of the resulting aerodynamic system to significantly decrease the compu-
tational cost incurred by unsteady CFD simulations. A time-domain simulation of this
problem requires significant computational effort, as described in Section 3.4l Several
oscillatory cycles have to be simulated to obtain a harmonic aerodynamic response, and
a time-accurate solution requires a small time-step increment to accurately capture the
flow dynamics [131,151]. Time-domain calculations support a continuum of frequencies
up to the frequency limits given by the temporal and spatial resolution, but dynamic
derivatives are computed at the frequency of the applied sinusoidal motion. It is there-
fore worthwhile to consider a frequency-domain formulation to obtain a good estimate
of the derivatives at reduced computational cost. The computational methods used
in this thesis, the Harmonic Balance (HB) and the Linear Frequency Domain (LFD)
methods, provide the ability to efficiently approximate the aerodynamics resulting from
small, periodic and unsteady perturbations of the geometry of an aircraft configuration.
By resolving only the frequencies of interest, the computational cost of dynamic deriva-
tives is greatly reduced. Initially developed in the field of turbomachinery [154,155], the
HB and LFD methods have been subsequently used for external aerodynamics applied
to aircraft problems [156-158]. Murman [135] envisioned the exploitation of the period-
icity to reduce the cost of computing dynamic derivatives. The concept of an adaptive
HB method has also been put forward, with good success [159,160]. A large amount
of research has been devoted to applications of the HB and the LFD technologies to

a broad spectrum of engineering disciplines. There is the question of the influence of
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the approximations on the derivative predictions. The evaluation of the computational
benefits and the predictive limitations are the subject of this chapter.

The chapter begins with a description of the HB and LFD methods. Results are
then presented to compare the dynamic derivative predictions obtained from the time-
domain and from the acceleration methods. Two test cases of increasing complexity
are considered for transonic flows. One of the reasons for choosing flight conditions
featuring compressibility effects is to substantiate the validity of these methods in
providing cheap yet reasonable predictions for aircraft applications of practical interest.
The accuracy of the acceleration methods is evaluated by comparing the predictions

against the underlying time-accurate solver. Conclusions are then given.

4.1.1 Harmonic Balance Method

Reference [161] examined the unsteady viscous transonic flow in the front stage rotor
of a high pressure compressor with the harmonic balance technique. The unsteady
aerodynamic response of the rotor for a case where the aerofoils vibrate harmonically
in pitch about their midchords with a reduced frequency of one and an interblade
phase angle of 30° was considered. Pitch amplitudes of 0.01° and 1.0° were used. Note
that, while these values are sufficiently large for aeroelastic investigations, the response
to larger amplitudes is often required in studies of flight mechanics. For the small-
amplitude case, the mean flow was found identical to the steady-state flow computed
with no motion. This is not unexpected because in this case the unsteadiness is so small
that non-linear effects are unimportant. For the larger-amplitude case, differences were
observed comparing results obtained using various number of harmonics, however the
solution converged rapidly as the number of harmonics was increased. The first har-
monic of the unsteady pressure distribution was then investigated. This component is
important because it contributes to the aerodynamic damping for harmonic pitching
motion of the aerofoils, see also Sections[B.3. 1.1 and 2.3l for further considerations. For
the small-amplitude case, the first harmonic solution was identical to a time-linearized
solution. For the larger-amplitude case, the pressure distributions computed with var-
ious number of harmonics were different, but converging rapidly for increasing number
of harmonics. For the small amplitude, shock impulses associated with the unsteady
motion of the shocks were observed. For increasing amplitude of the pitching vibra-
tion, these peaks are reduced and spread out because the shock motion is larger and
the resulting shock impulse is spread over a larger chordwise extent. The real part of
the pitching moment is important for aeroelastic stability and for the determination
of the free-response, and accurately determining the damping-in-pitch term is a key
factor. In the absence of mechanical damping, the rotor is stable only if the real part
is less than zero for all interblade phase angles. For a value of 30°, the computed real

component of the moment was positive (unstable) for small amplitude motions, and it
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was found to cross the real axis at a pitching amplitude of about 0.7°. Thus, the blade
is likely to vibrate in a stable limit cycle with this pitch amplitude. It was also found
that three to five harmonics are adequate to obtain converged solutions for the zeroth
and first harmonic components of the unsteady flow. The authors claimed that, even
with seven harmonics, the cost of the harmonic balance technique is about ten times
the cost of a steady-state flow solution. However, no direct comparison with the cost
of an unsteady time-domain solution was provided

The study in Ref. [158] investigated the use of a linearized method, referred to as
LUR, and an harmonic balance method over a range of pysical conditions for a two-
dimensional aerofoil. The test case was the NACA 64A006 with an oscillating flap
mounted at three quarter of the chord. The LUR and the HB methods were compared
in terms of accuracy and efficiency to the unsteady time-domain solution. It was found
that, for a subsonic case, the LUR method is the most efficient. In the transonic regime,
the LUR remained the fastest approach, but with limited accuracy around shocks. On
the other hand, a one-harmonic HB solution achieved a closer agreement with the
reference solution. In the case of separation in the transonic regime, the LUR method

did not converge, whereas the HB method was found more robust and accurate.

4.1.2 Small Disturbance Method

The small disturbance method was presented to illustrate the use of the Euler equa-
tions applied to several two-dimensional test cases and an initial extension to a three-
dimensional case [162]. Beside the sub- and supersonic regime, the capabilities of the
implemented approach were demonstrated in the transonic speed range for a NACA
64A010 aerofoil and LANN wing. The small disturbance Euler solution was compared
to the underlying nonlinear Euler solution. For the aerofoil case, the first harmonic
unsteady pressure coefficient distribution displayed a good agreement upstream and
downstream of the shock region. Deviations were observed around the shock, with
spikes detected in the small disturbance solution. Although differences in the shape of
the shock impulse, the load contribution of the shock impulses can be considered equal,
and the first harmonic lift coefficient compared well between the two data sets. This is
quite remarkable because the shock moves up to 20% of the aerofoil chord depending
on the reduced frequency. This asserts the validity of shock capturing in a perturba-
tion method applied to the transonic regime, as originally introduced by Lindquist and
Giles [163]. It is argued that the load contribution to the pitching moment coefficient is
not considered, which typically exhibits higher nonlinearities than the force coefficient
because of the leverage arm between the shock impulse and the reference point. With
the use of different nonlinear Euler codes in addition to the underlying CFD code, the
application of the LANN wing corroborates the capability of the small disturbance Eu-

ler equations for a more complex configuration. It is demonstrated that variations in
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the unsteady pressure coefficient obtained using different CFD solvers are more signifi-
cant than those detected between the small disturbance Euler code and the underlying
nonlinear CFD code. This confirms the capabilities of the small disturbance Euler
method to predict unsteady loads even with a complex shock structure as observed for
the LANN wing.

A 53° low aspect ratio cropped delta wing was then tested in the transonic regime
as a frequent high manoeuvrable aircraft wing [164]. The flow topology consists of
leading-edge vortices forming at higher angle of attack and the application of the small
disturbance Euler method was aimed to simulate unsteady aerodynamic loads due to
rigid body, flap and elastic harmonic motions. The important concern to guarantee flap
efficiency during the entire flight envelope calls for an accurate prediction of control
derivatives, which was demonstrated to be possible with the small disturbance method.
An aeroelastic-like example, using an equation with polynomial coefficients for the local
amplitudes for the elastic eigenmode, provided an additional test of the Euler method.
In all cases, a reduction of one order in computational time was achieved using the
small disturbance method with respect to the nonlinear counterpart.

Inviscid methods reach their limitations with flows where viscous effects are a dom-
inant feature (separation, shock/boundary layer interaction), and the extension of the
small disturbance method to viscous flows is an attractive alternative to time marching
the RANS equations. A small disturbance Navier-Stokes method was developed from
the existing inviscid solver supplementing the viscous algorithms and incorporating
turbulence models in an appropriate formulation [165]. Within a linearized framework,
higher harmonics in the aerodynamic response are considered to be negligible. With
the use of a triple decomposition of the flow development [166], an arbitrary instan-
taneous flow quantity is constructed as sum of a steady mean component, a periodic
perturbation and a turbulent fluctuation. The simulation process consists, first, of a
turbulent steady state solution on the reference grid using the nonlinear Navier-Stokes
equations, which provide the prerequisite mean flow values contained in the source term
and the convective flux Jacobian. Then, the small disturbance equations are solved for
the complex amplitude of the unsteady flow solution. Two two-dimensional test cases
were considered and the Spalart-Allmaras turbulence model used in all calculations.
For the NACA 64A010 aerofoil featuring a weak shock, the viscous solutions are com-
pared to the small disturbance Euler solution. The inviscid solution, not including the
influence of the boundary layer in the shock formation, predicts a shock located fur-
ther downstream with a stronger gradient, and an overextended recompression before
merging into the pressure recovery curve close to the trailing edge. Varying the re-
duced frequency, the computational speedup of the small disturbance viscous solution
over the underlying nonlinear viscous solution is between a factor of 5 and 28. The
perturbation method requires more than three times the working memory computed
with the time-accurate method. The second test case is the NLR 7301 aerofoil fea-
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turing a strong shock. When including the viscous effects, the shock location in the
zeroth harmonic component is in good agreement with experimental data whereas the
inviscid solution predicts a shock situated 20% further downstream due to the neglect
of the strong shock/boundary layer interaction. Furthermore, contribution of higher
harmonics in the shock region was detected in the nonlinear solutions, resulting in a
poor prediction of the unsteady pitching moment coefficient obtained using the small

disturbance Navier-Stokes equations.

Derived from the wing of a supersonic transport aircraft configuration, the 50°
NASA clipped delta wing was considered in conditions featuring varying shock strength
and leading-edge vortex formation [157]. Inviscid and viscous solutions were compared
to available experimental data. For the weak shock case, the experimental data of first
harmonic unsteady pressure coefficient are best reproduced using the inviscid methods.
Surprisingly, the small disturbance Euler method performs better in terms of unsteady
aerodynamic loads than the nonlinear counterpart and, in particular, predicts the very
similar damping term compared with the nonlinear Navier-Stokes calculations. The
inclusion of the viscous effects has a significant and consistent improvement on the
moment damping with respect to the inviscid methods, and is of paramount importance
when free pitching oscillations are considered. The second case is a medium strength
shock extending from the wing root to the tip featuring a leading edge vortex formation.
The interaction of the shock with the vortical flow in the outer wing section close to
the wing tip results in deviations between the two viscous solutions in the unsteady
pressure distribution. The dynamic shock/vortex interaction introduces in this limited
wing region higher harmonics into the flow solution, which are beyond the assumptions
of the small disturbance method. A strong shock is then considered, extending beyond
the wing tip. In these circumstances, the inclusion of the viscous terms improves the
predictions of the small disturbance method compared to the inviscid counterpart.
Depending on the flow conditions, the computational efficiency increase varied between

a factor of 10 and 20 in all cases.

4.2 Frequency-Domain Methods

4.2.1 Harmonic Balance Method

As an alternative to time marching, the Harmonic Balance method [161] allows for a
direct calculation of the periodic state. Write the semi-discrete form as a system of

ordinary differential equations

AW (t)
dt

I(t) = +R(t) =0 (4.1)
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Consider the solution vector W and residual R to be periodic in time and a function

of w,
~ Wy + Z < a,, cos(wnt) + Wb sm(wnt)) (4.2)

~Rg + Z ( a,, cos(wnt) + Rb sm(wnt)) (4.3)

giving a system of Ny = 2Ny + 1 equations in Ny unknown harmonic terms, which
can be expressed as

wAW +R =0 (4.4)
where A is a Ny x Np matrix containing the entries A(n + 1, Ny +n+ 1) = n and

A(Ng+n+1n+1)=—n, and W and R are vectors of the Fourier coefficients.

The difficulty with solving Eq. (£4)) is in finding a relationship between R and W.
To avoid this problem, the system is converted back to the time domain. The solution

is split into Np discrete equally spaced sub-intervals over the period T = 27 /w

Wity + At) Rty + At)
Wty + 2At) R(to + 2At)
Wiy, = : Ry, = : (4.5)
Wty +T) R(to + T)

where At = 27/(Nrw). Then there is a transformation matrix [167] which allows
Eq. (44) to be written as
wDWp+Rpp =0 (4.6)

where the components of D are defined by

2
D;; = stm 2rk(j —1i)/Nr) (4.7

One can then apply pseudo-time marching to the harmonic balance equation

dW py,
dt

+wDWp + Ry, =0 (4.8)

The HB method was implemented within the structured PMB and COSA codes. The
main difference between the PMB and COSA implementations of the HB method is that
the former solves the equations with an implicit method [168], whereas the latter adopts
an explicit multigrid integration [169]. Reference [169] presents a stabilization technique
to handle the harmonic balance source term, w D Wy, when using an explicit numerical

integration process. Such a stabilization method can be viewed as the conterpart of that
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reported in reference [170], which instead applies to the case of implicit integration. The
parallelization of the COSA explicit multigrid HB solver is based on a hybrid distributed
(MPI) and shared (OpenMP) architecture, which is reported in reference [171].

4.2.2 Linear Frequency Domain Method

The Linear Frequency Domain (LFD) method [172] is obtained by linearizing Eq. (4.4,
in which the residual R is considered as a function of the grid point locations, x, the
grid point velocities, x, and flow solution, W. Assuming an unsteady motion with a
small amplitude, the unsteady terms can be expressed as a superposition of a steady

mean state and a perturbation, which is expressed by a Fourier series

W(t) ~ Wy + W (1), Wl < [[Wo
x(t) ~ Ro + % (1), %] < |I%ol
x(t) = X (t)

When linearizing about the steady mean state, Eq. (£4]) results in the following

complex-valued linear system of equations for the n-th mode index

OR/OW  wnl W | OR/0x  wndR/Ox X,
~wnl OR/OW ] { W, } o [ ~wnoR/0kx  OR/0x ] { Xs, }
(4.9)
Derivatives of the residual are all evaluated at the steady mean state (\/7\\/'0,520). This
system of equations can be written in the form of a linear equation, Ax = b. The
accuracy of the result will depend on the degree to which the dual assumptions of small
perturbations and linearity are satisfied.

The Jacobian OR/OW has been obtained previously in the context of the discrete
adjoint method by analytic differentiation of the flow solver. Considerable attention has
been given to ensure that the evaluation of the Jacobian and matrix-vector products
involving the Jacobian are efficient in terms of memory and time, and requires no more
than four times the memory requirements of the non-linear code. The frequency domain
residual however requires two products of a vector with the Jacobian, and hence a single
evaluation is approximately 20 to 60% more expensive than a non-linear residual on
the same case.

The terms OR/0x and OR /0%, which arise from the prescribed periodic deformation

of the grid, are evaluated using central finite differences

OR. R<W0,§0+6§,0)—R(Wo,io—ei,())
—X R (4.10)
ox 2€

. R<W0,§0,6§)—R<Wo,§0,—€§)
a—Ri ~ (4.11)
ox 2€
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where € is a small number chosen to balance truncation and rounding errors.

4.2.3 Method of Data Analysis

The dynamic derivatives from the time-domain solutions and the LFD method were
obtained using the techniques described in Chapter A different approach was
adopted for the HB solver, whose solution is computed at Ny = 2 Ny + 1 equally

spaced points in time over one cycle. Then
W (z,y, z, t) ~ Wo x, Y, 2 —i—Z < (x,y, z) cos(wnt) +an($, Y, 2) sin(wnt))

(4.12)
where \/7\\/'0, Wan and \/7\\/'1," are the Fourier coefficients of a flow variable, W (z, y, z, t).

This expression is easily re-written in matrix form as [170]

( Wo 3\
W, 1 cos(wty)  sin(wty) cos(Ngwty) sin(Ngwty) Wal
Wy 1 cos(wte)  sin(wtq) cos (Ngwty)  sin(Ngwts) \/7\\/'1,1
W, 1 cos(wty,) sin(wtn,) cos (Ngwtn,) sin(Ngwtn,) WU«NH
N— ~~ W
W+ E-1 \ YVWbny
—
w
(4.13)

where W* is the vector of the flow variable at 2 Ny +1 equally spaced points in time over
one period and E~! is the matrix that is the inverse discrete Fourier transform operator.
The time instances at which the HB solution is known are denoted by t; = to + i At,
i = 1,2, ..., Np. The Fourier coefficients of the flow variable are computed as

W = EW* (4.14)
Dynamic derivatives, as well as the real and imaginary parts of the flow variable, are
determined directly from the Fourier coefficients without any additional transformation
in the time domain.

To determine the stability behaviour of the free-to-pitch oscillations, the work done

by the fluid on the airframe over one single period can be expressed as

a(T)
E = / ACp () da
a(0)

to+T
= aAw/ < 'ma, COS(wt) +Cmb1 sin (wt)) cos (wt) dt (4.15)
t

0

=271 asChq
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Parameter Value

M 0.755

o 0.016°

aa 2.51°

k 0.0814

Table 4.1: Description of the AGARD CT5 conditions for the NACA 0012 aerofoil [173]

The second equality follows by assuming a Fourier series for the pitching moment and,
recalling the orthogonality properties of the trigonometric series, it is apparent that
the energy transfer is proportional to the imaginary part of the aerodynamic moment.
It is shown that émal is proportional to the damping term in Eq. (22I]). Hence,
for a4 > 0, the free pitching oscillation can be classified as unstable if émal > 0
(equivalently, Cy,, > 0), or stable if Crnay < 0 (equivalently, Crmy < 0).

4.3 Two-Dimensional Case

Experimental data for the NACA 0012 aerofoil undergoing oscillatory pitch motions are
available [173]. Measured quantities include the pressure at 30 locations distributed on
the aerofoil surface. These data were collected at several time intervals. No transition
tripping was applied in the experiments, and corrections corresponding to a steady
interference have been applied to the measured quantities. There were some questions
about unsteady interference effects on the experimental data. However, the deviation
between numerical and experimental data is not the emphasis of the present work which
is instead on the quality of the HB and LFD results compared to the time-domain
predictions.

This thesis focuses on the AGARD CT5 case because it is transonic with strong
non-linearities in the aerodynamic loops arising from shock wave motions. The flow

conditions for the case CT5H are summarized in Table 4.1

4.3.1 Numerical Setup

A preliminary study was made to test that solutions presented are independent of the
grid used. Three sets of grids were generated. The two-dimensional domain extends
fifty chords from the solid wall to the farfield. The coarsest grid had a total number
of 13068 points, with 132 nodes on the aerofoil, and 36 in the normal direction. The
wake behind the aerofoil was discretized using 36 points in the streamwise direction. A
medium grid consisted of 32028 grid points, 212 nodes were distributed on the aerofoil,
51 points were used in the normal direction and along the streamwise direction for the
wake (see Fig.[4]]). The finest grid was obtained with a total of 37180 grid points. The
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C’N 0 CN o C’N q Cm 0 Cma Cmq
Coarse  3.51-107% 7.66 —3.71-10' —7.58-10~°> —1.10-10"! -3.07
Medium 3.51-10~2 7.66 —3.72-10' —6.98-107° —1.03-107! -3.14
Fine 3.51-1073  7.66 —3.72-10' —7.15-10°> —1.03-10~! -3.14

Table 4.2: NACA 0012: grid influence on static and dynamic derivatives obtained from the
time-domain PMB solution for the AGARD CT5 conditions

structured grids consisted of six blocks, and were converted to an unstructured format
for use with the unstructured solver TAU.

Note that the three grids were used in combination with each time-domain solver,
and numerical results were compared with tunnel measurements under static [174] and
unsteady conditions. Table conveys the grid influence on the dynamic derivatives
of the normal force and moment coefficients. Aerodynamic data of the force coefficient
show little sensitivity to the grid used. Values of C}, ¢ can be considered numerically nil
and thus grid invariant. For the computations on the medium grid, dynamic derivatives
of the moment coefficient are observed to be identical to the respective values obtained
using the finest grid. Some deviations are identified in the case of the coarsest grid.
Based on this comparison, results presented hereafter are for the medium grid.

Unsteady simulations were run for three periods using 128 time-steps per cycle.
A time-step study was also performed for the unsteady PMB solver, and details are
given in Section .34l The choice of the numerical parameters led to well converged
solutions in all cases. For TAU, the CFL number used was 1.5 in combination with a
”4w” multigrid cycle. For the LFD, the LU-SGS scheme with multigrid was used. The
COSA pair used three multigrid levels, performing 10 smoothed Runge-Kutta cycles
on the coarsest level, and 3 on the finest levels. The CFL number was 4 for both the
time-domain and the harmonic balance solver. The implicit CFL number for the PMB
solver was 500. A Block Incomplete Lower Upper (BILU) factorization was used with

no fill-in for the linear solver preconditioner.

4.3.2 Validation

The Euler solutions presented are for the medium grid, shown in Fig. A1l The flow
for the AGARD CT5 conditions is non-linear, with a shock appearing in the leading
edge region and moving downstream for increasing angle of attack. The shock continues
downstream until approximately forty-five per cent of the chord. Then the shock returns
upstream close to the leading edge. The same pattern is repeated on the opposite
side of the aerofoil. The flow remains attached throughout the cycle of unsteadiness.
Since this case features a strong shock on the upper and lower surface, the question is
whether the presence of the dynamic shock has a negative impact on the accuracy of

the frequency-domain solvers. First, a validation study of the unsteady time-accurate

104 of 213



solutions was performed before attempting to compare the spectral methods to the
underlying CFD solvers. Figure illustrates the comparison of numerical predictions
of integrated aerodynamic loads with experimental data. The initial transient was
removed from the numerical solutions, and two arrows indicate the time evolution.
If the arrows are oriented in the counter-clockwise direction, the contribution from
the dynamic derivative is negative, and vice versa. Results compare well for all time-
accurate solutions. It is seen that the force coefficient is harmonic with a phase lag
with respect to the forced motion. No contribution from higher harmonics can be
detected. The moment coefficient is influenced by the instantaneous location of the
moving shock wave due to its moment arm with respect to the reference point. A
favourable agreement between the tunnel measurements and the numerical solutions is

observed.

Figure 4.1: Grid used for the NACA 0012 aerofoil, medium grid (212 x 51)

Measurements of the instantaneous pressure coefficient distribution were taken at
several time instances in one cycle of unsteadiness, and the nearest angle at which
numerical results were computed was used for comparison. Numerical solutions are
compared with tunnel measurements in Figs. 3] and 441 The numerical solutions
agree well with each other, with minor deviations around the shock wave. The over-
all performance and systematic variations from measurements are in line with other
independent numerical investigations, e.g., Batina [175] and Marques et al. [176].

For the range of test cases computed in Da Ronch et al. [131], the dependence of
dynamic derivatives on motion and flow conditions was reported. In the present study,
the influence of the amplitude of the forced-motion, a4, was examined for the conditions
given in Table [l Values of amplitude presented are between 0.01° and 2.81°. The
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Figure 4.2: NACA 0012: predictions of unsteady time-accurate Euler solutions (M = 0.755,
ap = 0.016°, oy = 2.51°, and k = 0.0814); experimental data from Landon [173]

variation of the pitching moment coefficient dynamic derivatives is shown in Fig.
Dynamic derivatives are nearly constant for small values of oscillatory amplitude, and
exhibit a significant variation for values of amplitude larger than approximately 1.0°.
Predictions obtained using the LFD solver are included in the figure as a dotted line, and

are closer to the results obtained using time-domain calculations for small amplitude
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Figure 4.3: Instantaneous pressure coefficient distribution compared to experimental data
of Landon [173]; the terms up and down in parenthesis indicate the direction increasing and
decreasing angle, respectively (continued)
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values. Increasing the oscillatory amplitude of the forced-motion above 1.0° causes the
periodic appearance and disappearance of the shock wave on the aerofoil surface, with a
considerable impact on dynamic derivatives. Numerical predictions representative of a
one-mode harmonic balance solution were computed for several values of the oscillatory
ampliude. It is recognized that the harmonic balance solution closely approximates the
time-domain solution in all cases. Note that dynamic derivatives computed at the
nominal conditions of the AGARD CT5 are also included in the figure.

4.3.3 Frequency-Domain Results

To demonstrate the convergence of the HB method to the unsteady solution, cases
were run using up to 7 harmonics. Figure shows the loops of the integrated loads
against the instantaneous angle of attack. The time evolution in the force coeflicient was
observed to be linear and harmonic with the forced variation in the motion variable.
This reflects the satisfactory agreement achieved by the frequency-domain methods
using one Fourier harmonic, as illustrated in Fig. It also suggests that the motion
of the shock wave is harmonic and lags behind the angle of attack change. Increasing
the number of Fourier modes in the HB solution had little effect on the result, as most
of the energy is at the frequency of the applied motion. The moment coefficient is
illustrated in the remaining figures for each solver pair, separately. Comparing the
harmonic balance solutions obtained using the PMB-HB and COSA-HB highlights the

similarity in the results from the two solvers, as shown in Figs. [4.6(b)| and [4.6(c)}

Observe that including the third Fourier mode in the HB solution has a far larger
impact on improving the correlation to the reference solution than adding the second
mode. This reflects the frequency spectrum of the moment coefficient, due to the flow
conditions and symmetry in the aerofoil geometry, as described below. Higher modes
are not included, but they closely overlap the reference solution. The LFD solution is
illustrated in Fig. and indicates a degraded prediction of the moment dynamic
dependence. Consistent with the other data, the LFD predicts a large hysteresis but
the loop is rotated in the opposite direction. This is quantified calculating the system
response between the prescribed angle of attack and the aerodynamic loads. Let us
denote = and y, respectively, the input and the output of interest. Then, the system

response is
Z [y (t)]

— R(w) &9 _
Flm) ~ F@ (4.16)

Gw) =

where R (w) and ¢ (w) indicate, respectively, the amplitude ratio and the phase lag,

and are defined as

iG]
B =156 (4.17)
(W) = L§(w) — L3 (w) (4.18)
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Figure 4.5: NACA 0012: influence of amplitude of oscillatory motion, «4, on the pitching
moment coefficient dynamic derivatives (M = 0.755, ap = 0.016°, and k& = 0.0814)

Values from the one-mode HB and the LFD solutions are summarized in Table [£.3]
along with the reference solution. In the table, the subscript and superscript indicate,
respectively, the input and the output, and the phase angle is measured in degrees.
Apart from the satisfactory agreement observed for the force data, a discrepancy is

detected in the phase angle of the moment coefficient. For a sinusoidally varying input,
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Figure 4.6: NACA 0012: normal force and pitching moment coefficients dynamic dependence
(M = 0.755, ap = 0.016°, a4 = 2.51°, and k = 0.0814)

a phase angle of —90° corresponds to shifting the response to a cosine function. The
positive mean curve slope of the LFD solution in Fig. reflects a phase lag in the
moment dynamic dependence greater than —90°. On the contrary, a larger phase angle,
in absolute value, reflects a negative mean curve slope, consistent with the one-mode
HB solution.

To get further insights on the performance of the frequency-domain methods, the
first harmonic unsteady surface pressure coefficient distribution is presented in Fig. 4.7
Results on the left side of the figure are for the one-mode HB and the LFD solutions,
and the axis of rotation is also illustrated, while the right side illustrates the effect of
retaining higher Fourier modes. Due to the similarity with the trends defined by the
PMB-HB results, the COSA-HB solutions presented include only one Fourier mode.
Figure shows the zeroth harmonic, that is, the average value of the pressure
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RO o0 RO o
Time Domain 0.144 -21.6 4.80-10~3 -112.1
PMB-HB, 1 Mode 0.143 -21.5 4.86-10% -112.1
COSA-HB, 1 Mode 0.145 -21.4 4.98-1073 -116.3
LFD 0.145 -21.5 5.60-1072 -85.2

Table 4.3: NACA 0012: amplitude ratio and phase angle of the fundamental harmonic between
the input, a, and the outputs, Cy and C,

coeflicient through a cycle of unsteadiness. The HB solutions are identical for the two
solvers, and are significantly different from the LFD solution. The asymmetric shock
pattern on the lower and upper surfaces is attributable to the use of one Fourier mode
and the actual location of the three time instances computed, which form a solution
base sampled at uniformly spaced temporal intervals. Note that two snapshots feature a
shock wave on the lower side, and on the upper surface for one snapshot, giving the over-
prediction of the shock strength on the lower side and the under-prediction on the upper
surface, in combination with a more upstream and downstream location, respectively.
The mean solution of the LFD method corresponds to a steady-state analysis, and shows
a good agreement away from the reference shock location. The dynamic conditions of
the prescribed forced motion moves the averaged shock position backward from its
static position, determined at the mean angle of attack, by nearly twenty per cent
of the aerofoil chord. Convergence to the time-accurate solution is obtained when
increasing the number of modes in the HB method, as shown in Fig. The
real and imaginary parts, shown in Figs. |4.7(c)| and 4.7(e)| respectively, exhibit the

already mentioned asymmetric pattern of the one-mode HB solution. Large spikes in the
LFD solution are located around the steady-state shock position, and indicate a linear
harmonic motion of the shock wave. The results for increasing number of harmonics
are illustrated in Figs. 4.7(d)| and [4.7(f)} Note the different vertical scales used with

respect to the prior set of corresponding figures. While consistently converging to
the time-accurate solution, the rate of convergence is hindered by oscillations around
the shock. Considering that three modes were adequate to approximate the moment
dynamic dependence, this case illustrates the greater difficulty in converging a local

quantity than an integrated one.

Table [4.4] summarizes the dynamic derivatives for the force and moment coefficients.
A satisfactory agreement for the force dynamic derivatives is noted. For the moment
values, the PMB-HB results illustrate that the one-mode solution provides a good es-
timation of the information needed for flight dynamics. The predictions of the LFD
are reasonable for the aerodynamic damping term, while the in-phase component fea-
tures a large inaccuracy. The contrasting sign reflects the observation that the moment
loop was rotated in the opposite direction, indicating an unstable longitudinal static

stability. A consideration is that the steady-state shock wave, shown in Fig. [4.7(a)]
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Figure 4.7: NACA 0012: zeroth and first harmonic unsteady surface pressure coefficient
distribution (M = 0.755, ap = 0.016°, a4 = 2.51°, and k = 0.0814)

is located near the reference point at one quarter of the chord, and makes the mo-
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Ch,, Ch, Crna, Cin,
Time Domain 7.66 —3.72-10' —1.03-10~' -3.14
PMB-HB, 1 Mode 7.63 —3.70-10% —1.04-10"! -3.17
PMB-HB, 2 Modes 7.63 —3.72-10% —1.06-10"! -3.19
PMB-HB, 3 Modes 7.64 —3.72-10% —1.02-10! -3.14
PMB-HB, 4 Modes 7.65 —3.72-10" —1.04-10"! -3.15
PMB-HB, 5 Modes 7.65 —3.72-10% —1.03-10! -3.14
PMB-HB, 6 Modes 7.65 —3.72-10% —1.03-10"! -3.14
PMB-HB, 7 Modes 7.65 —3.72-10% —1.03-10! -3.14
LFD 7.73 —3.73-10'  0.27-107' -3.93

Table 4.4: NACA 0012: normal force and pitching moment coefficient dynamic derivatives
(M = 0.755, ap = 0.016°, oy = 2.51°, and k = 0.0814)

ment data sensitive to any upstream or downstream variation of the resulting centre of
pressure.

The frequency spectrum of the moment coefficient is presented in Fig. [£.8 Data
for the time-domain solution are shown up to the seventh harmonic component. The
LFD and the one-mode HB solutions show a good agreement for the magnitude term.
The phase angle of the LFD solution differs by about thirty degrees from the HB
counterpart. For the frequency range included, the amplitude of any odd harmonic is
lower than the amplitude of the accompanying even harmonic. This arises from the

symmetry of the aerofoil section and the nearly zero mean angle of attack.

4.3.4 Computational Efficiency

Figure 49 conveys the computational efficiency of the spectral methods with respect
to the underlying time-domain simulation. For the comparison, the solutions were
obtained using 128 time-steps per cycle and were simulated for 3 periods. In this
case, the LFD solution was obtained in about 5% of the time of the corresponding
time-domain solver. While achieving the largest computational saving time, a loss in
accuracy was observed in the LFD-based predictions of dynamic derivatives. With a
performance similar to the LFD solver, the HB formulation was seen to be adequate
for the prediction of stability characteristics and local flow variables. By retaining
more Fourier modes, the HB method rapidly loses favor relative to solving the time-
dependent equations. It is observed, however, that the computational efficiency of the
HB method is solver-dependent.

A detailed quantification of the computational efficiency of the HB method com-
pared with the underlying unsteady solution was undertaken for the PMB solver pair,
and following the procedure outlined in reference [177]. To assess the sensitivity of the
temporal discretization used, unsteady solutions were obtained using 8, 16, 32, 64, 128,

256, 512 and 1024 time-steps per oscillatory cycle. All cases were run using the same
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Figure 4.8: NACA 0012: magnitude and phase of pitching moment coefficient (M = 0.755,
ag = 0.016°, vy = 2.51°, and k = 0.0814)

solver parameters. To reduce the effects of the initial transient on the solution, eleven
cycles were simulated. The damping-in-pitch term was taken as the figure of merit,
which is of interest for this work. For each time step, the dynamic term was deter-
mined from the last cycle of the solution computed, and compared with the reference

value obtained from the most accurate simulation, that is, using 1024 time-steps. The
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norm
En = |C, = Co 1/ 100 (4.19)

indicates the temporal error. The procedure was also adopted for the PMB-HB results,
and the seven-mode solution was assumed the reference solution. Figure shows
the error levels for the two solvers. The intersection of the PMB-HB lines with the PMB
curve indicates the temporal resolution needed in the unsteady simulation to achieve
an equivalent error level. To match the error level defined by the one-mode PMB-
HB solution, 50 time-steps per oscillation are required for the time-domain simulation,
increasing to 90 to guarantee a similar error level as for the three-mode HB solution.
A convergence study was then performed to identify the number of oscillatory cycles
needed to obtain asymptotic convergence. Results for the two time-steps are shown
in Fig. The curves converge to an error level representing the minimum error
achievable using the corresponding time-step size. Convergence is observed after 3
oscillatory cycles for the larger time-step size, increasing to 6 in combination with the
finer step increment. Data are summarized in Table[£5l It was found that the execution
time of the HB solution using one-mode is about 11 times faster than the time required
for the unsteady results. The time saving decreases to less than 3 times when three-
modes are retained in the solution. Increased work associated with the linear solver as

the number of modes is increased contributes to increased cost.

The memory cost of the PMB-HB method to store the linear system scales as
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(4N% + 16Ny + 7)/7 [168]. The memory is expressed as a fraction of the memory
required by the implicit steady state solver on the same grid. The memory requirements

grow quickly and become significant above a small number of harmonics.
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Figure 4.10: NACA 0012: error norm in the prediction of the damping-in-pitch obtained
using the PMB solver pair; in (b), the term tsc indicates the number of time steps per cycle
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PMB-HB PMB Speed-Up

(tse x )
1 Mode 50 x 3 10.9
3 Modes 90 x 6 2.6

Table 4.5: NACA 0012: time reduction of the PMB-HB solution compared to unsteady
PMB solution using the damping-in-pitch as the figure of merit; the terms tsc and n. indicate,
respectively, the number of time-steps per cycle and the number of oscillatory cycles

4.4 Three-Dimensional Case

The second test case is for a civil passenger transport aircraft tested at the German
Aecrospace Center (DLR), and referred to as the DLR-F12 model. Extensive tunnel
investigations and numerical simulations focused on the linear aerodynamics range,
that is, at low speed and at low angles of attack [137,150,172,178-180]. The emphasis
in the current work is for a transonic cruise condition, which has been investigated in

a previous study [181].

4.4.1 Numerical Setup

Two Euler grids for the half-configuration of the wind tunnel model were used for the
PMB and TAU pairs, shown in Fig. £T1l A structured grid including 300 blocks was
generated with around 2 million grid points, and 1.8 million points were used for the
unstructured grid. A detailed comparison of the structured and unstructured grids can
be found, for example, in Mialon et al. [178].

Calculations presented in this thesis are for a cruise condition at an altitude of
6000 m, Mach number of 0.73 and trim angle of attack of 0.7°. The analysis is performed
on the clean configuration with undeflected control surfaces. This was considered a
reasonable simplification because the required trim elevator deflection is lower than
one degree and, consistent with the traditional mathematical formulation, forces and
moments are expanded in a Taylor series around the equilibrium level flight condition
to obtain the stability and control derivatives. Data for the oscillatory pitching motion
are summarized in Table The mean aerodynamic chord of the wind tunnel model
is ¢ = 0.2526 m. The rotation point and the model centre of gravity are coincident and
located at 46.7% of the fuselage length from the foremost point. The moment reference
point is set at the aircraft nose.

Unsteady simulations were run for three periods using 128 time-steps per cycle.
Note that all time-domain calculations were repeated for a smaller time-step that has
twice the number of points per cycle, with identical results obtained. For the TAU
solver, a GMRES Krylov solver was used in combination with a ”3v” multigrid cycle
as preconditioner at a CFL number of 10. The PMB calculations were also run at a

constant CFL number of 10. The HB method was run with one Fourier mode only
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Figure 4.11: Structured and unstructured grids for the DLR-F12 model [182]

due to memory requirements. The COSA solver is under development and a three-
dimensional version of the code is not available at the time of writing. Therefore, it

was not used for the current configuration.

4.4.2 Results

Results obtained using the PMB and TAU solvers are illustrated in Fig. Aerody-
namic loops are similar in shape, and in this case the shock motion does not introduce a
large distortion from a harmonic time response, when compared with the aerofoil case.
For the pitching moment, the contribution from the dynamic derivative is negative, and
the slope is also negative. This guarantees that the aircraft is statically and dynam-
ically stable in the longitudinal plane. When comparing Figs. [4.12(b)| and 4.12(d)}, a

deviation in the values of the pitching moment at the lower end of the angle of attack

range can be detected, indicating some grid dependence in the solutions.
Frequency-domain calculations are illustrated for comparison to the underlying CFD
solver in Fig. .12l It is observed that the HB solution reproduces the force and mo-
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Parameter  Value

M 0.73
(674} 0.70°

oA 0.50°
k 0.034
h 6000 m

Table 4.6: Description of the conditions for the DLR-F12 aircraft model

ment dynamic dependence well, whereas the LFD solution underpredicts the hysteresis
in the moment data. As shown below, this deficiency of the LFD is attributable to
underpredicting the real part of the first harmonic pressure coefficient distribution on

the horizontal tail.
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Figure 4.12: DLR-F12 model: normal force and pitching moment coefficients dynamic de-
pendence (M = 0.73, ap = 0.70°, a4 = 0.50°, k = 0.034, and h = 6000 m)

Stability characteristics relative to the nominal flight conditions are summarized in
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CN 0 C_’N o C_’N q Cm 0 C_’ma C_’mq

PMB 2.11-107' 759 1.17 —9.00-107' -34.7 —20.1
PMB-HB, 1 Mode 2.11-10"! 7.60 1.65 —8.99-10~! -34.7 —21.6
TAU 2.10-1071 7.16 2.80 —9.41-107' -32.7 —28.1
LFD 2.10-107! 7.26 328 —941.-107' -33.1 —17.7

Table 4.7: DLR-F12 model: normal force and pitching moment coefficient dynamic derivatives
(M = 0.73, ag = 0.70°, ag = 0.50°, &k = 0.034, and h = 6000 m)

Table A7 which includes static and dynamic derivatives. Frequency-domain results
are in agreement with the respective time-domain results, with the exception of the
LFD method in the prediction of the damping-in-pitch term. However, the HB solu-
tion performs well, with deviations within 7% of the reference values. While reducing
substantially the computational cost compared to a time-accurate solution, one single
calculation with a frequency-domain method provides both static and dynamic deriva-
tive information. In this case, the frequency-domain solutions based on the HB and LED
methods were obtained in approximately 3% of the time required for a time-accurate
simulation. This corresponds to a speed up of about 30. Due to the computational cost
of the time-accurate method, an objective evaluation of the computational efficiency of
the frequency-domain methods, similar to that outlined for the aerofoil case, was not

performed.

Again, the zeroth and first harmonic of the pressure coefficient distribution at a
spanwise section Y/s = 0.148 is shown in detail in Fig. 13l The selected spanwise
section intersects both wing and horizontal tail, and features the periodically moving
shock wave on the wing. The left and right side of the figure illustrates, respectively, the

wing and horizontal tail station. The steady-state solution based on the LFD solver and

the time-averaged solution are in good agreement, as seen in Figs. 4.13(a)|and [4.13(b)]

This is indicative of less significant dynamic effects due to the limited oscillatory am-
plitude. Two considerations are noted for the real part of the first harmonic, shown

in Figs. |4.13(c)|and 4.13(d)} The contribution from the wing is much smaller than the

contribution which originates from the horizontal tail. This is expected because of the
finite time to convect downstream changes in aircraft attitude. On the horizontal tail,
a difference between time-accurate solutions occurs around the suction peak, where the
formation of a shock wave of limited extent was observed during part of the sinusoidal
cycle. At this section, the LFD solution differs substantially from the reference solution,
and this causes the underprediction of the hysteresis in the moment loop observed in
Fig. This shows the limitations of the LFD method in cases featuring dynamic
non-linearities not present in the steady-state reference solution. A better correlation of
the frequency-domain methods to the underlying method is observed for the imaginary
part. As expected, the response on the wing is larger in this case when compared to

the real part of the pressure distribution.
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Figure clearly shows that the variations in the computational results due to
numerical modelling (PMB and TAU solvers) are more significant than the differences
obtained using the PMB-HB and the PMB solver. The HB method is therefore ap-
propriate for the description of periodic unsteady flows. Variations between PMB and
TAU results may be attributed to different grids used.

4.5 Conclusions

The current work explored the capabilities and limitations of the Harmonic Balance
and Linear Frequency Domain methods in predicting aircraft stability characteristics in
a computationally efficient way. Two test cases were presented, a NACA 0012 aerofoil
and a wind tunnel aircraft configuration based on the DLR-F12 wind tunnel model.
To stress the potential of the frequency-domain methods in conditions of practical
interest for aircraft applications, flow conditions were in the transonic regime. For the
formation of moving shock waves, the energy of aerodynamic modes redistribute at
higher frequencies than the predescribed frequency of motion. While a time-domain
calculation supports a continuum of frequencies up to the frequency limits given by the
temporal and spatial resolution, the Harmonic Balance and Linear Frequency Domain
methods resolve only a small subset of frequencies typically restricted to include one
Fourier mode at the frequency at which dynamic derivatives are desired.

For the aerofoil case, it was noted that the Harmonic Balance method was able to
predict dynamic derivatives very accurately. For the Linear Frequency Domain method,
a loss in accuracy may be experienced whenever amplitudes increase and moving shocks
appear. In terms of pressure distribution, convergence to time-accurate results was as-
sessed for an increasing number of Fourier modes in the Harmonic Balance solution. It
was demonstrated that the dynamic conditions of the prescribed forced motion moves
the average shock position downstream from its static position by nearly twenty per
cent of the aerofoil chord. In this case, a loss in accuracy of the Linear Frequency Do-
main method is expected. Numerical experiments for these cases demonstrate that the
Harmonic Balance and Linear Frequency Domain methods are an order of magnitude
more efficient than time-accurate methods.

Similar considerations were noted for a three-dimensional configuration based on
the DLR-F12 wind tunnel model, for which a comparison of static and dynamic sta-
bility derivatives was presented. It was shown that frequency-domain methods are not
intended to simply augment static calculations, but rather to complement and replace
the static steady-state flow solver for flight and configuration conditions in which stabil-
ity characteristics are desired. One single calculation with a frequency-domain method
provides both static and dynamic derivative information at a fraction of the calcula-
tion time of a time-accurate simulation. In this case, the cost of the frequency-domain

method was approximately 3% of the unsteady counterpart.
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This work demonstrates that the Harmonic Balance method is more robust than
the Linear Frequency Domain method for cases featuring non-linear flow conditions. In
addition to transonic cases herein presented, this was also observed for vortical flows

at high angle of attack.
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Chapter 5

Reduced Models for Flight

Dynamics

5.1 Introduction

Previous work [23,183] substantiated the limitations of tabular models when comparing
the predictions to CFD and flight test data, and this motivates the study detailed in this
chapter. The objective is to evaluate various reduced models for the representation of
non-linear unsteady aerodynamic loads. There are two approaches to model reduction.
System identification methods take the response of the system to known inputs, and
use this information to build a low-order model. The second approach is to manipulate
the full-order system to reduce the cost of calculations. Because the model based on
aerodynamic derivatives uses an input/output relationship, in this chapter the focus
is on the first approach. This is a sensible choice because the assessment of various
reduced models, within the same general class of identification-based methods, can
be made. While in Chapter 4 two methods, based on a harmonic balance technique
and a linearized solution in the frequency domain, were investigated for the prediction
of dynamic derivatives, there is a need for a more general formulation to enhance the
current practice in flight dynamics. The manipulation of the full-order residual to create
a non-linear reduced order model is being investigated in non-linear aeroelasticity and
control of flexible systems H Based on the results presented in [184], the methodology
has the potential to be applied to problems of flight dynamics.

In [185], CFD is combined with predictive modelling methods of low complexity
to allow efficient and accurate predictions of the stability and control characteristics.
The question whether the conventional model based on the concept of aerodynamic

derivatives retains sufficient accuracy in predicting unsteady non-linear phenomena to

'The work is performed within the EPSRC project entitiled ”Nonlinear Flexibility Effects on Flight
Dynamics and Control of Next-Generation Aircraft”.
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pay off the significant initial cost incurred in generating the aerodynamic database will
be assessed in this chapter.

The generality realized in a CFD simulation comes at the expense of computational
cost. Routine use of high-fidelity CFD simulations can be hindered by the cost of
calculations. The analysis of unsteady flows, in particular, is a computational chal-
lenge due to the time-step size used to accurately simulate the flow dynamics and the
duration time of the simulation. This point motivates the need to assess the benefits
and limitations in using low-order models for the prediction of non-linear unsteady
aerodynamic loads. A two-dimensional aerofoil is the test case used in this chapter.
While retaining complex flow features due to shock-induced phenomena, the time re-
quired for the unsteady time-domain simulations is drastically reduced when compared
to three-dimensional cases. It is assumed that any consideration on the readiness of the
mathematical models can be transferred to the analysis of more complex geometries.
Future studies will be performed to demonstrate this point. Low-order mathematical
models are used as computationally efficient approximations in place of the non-linear
system of equations governing the flow physics. However, the success of a low-order
model depends on appropriate information to be generated using unsteady time-domain
calculations. The cost for the generation of suitable aerodynamic data and for the se-
lection of appropriate training inputs will be considered.

The chapter continues with a description of the test case and various reduced models
are formulated. Model predictions are then compared to the time-accurate solution for

a manoeuvre dominated by significant non-linearities. Conclusions are then given.

5.2 Two-Dimensional Case

5.2.1 Numerical Setup

Unsteady time-domain viscous calculations were computed using the PMB and Cobalt
(see Section 2.5.4]) solvers. For the PMB solver, a refinement study was performed by
the author to test that solutions presented were independent of the grid used. Three sets
of grids were generated. In all cases, the two-dimensional domain extends fifty chords
from the solid wall to the farfield. The coarsest grid had a total number of 50142 points,
with 293 nodes on the aerofoil, and 61 in the normal direction. The wake behind the
aerofoil was discretized using 59 points in the streamwise direction. A medium grid
consisted of 96660 grid points, 377 nodes were distributed on the aerofoil, 90 points were
used in the normal direction and 80 along the streamwise direction for the wake. The
finest grid was obtained with a total of 125460 grid points. The grids were clustered at
the aerofoil surface and the non-dimensional distance y* of the first grid point off the
wall is less than unity. A time-step refinement study was also performed in combination

with each grid using various numbers of time steps per oscillatory cycle, from 16 up
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to 1024. Tests verified that convergent solutions were obtained on the medium grid,
Fig. and that 128 time steps per cycle were adequate for temporal accuracy.
The viscous grid for use with Cobalt has a rectangular computational domain with
the aerofoil geometry centrally located. The farfield is located twenty chords from the
solid wall. The unstructured mesh shown in Fig. has prisms in the boundary
layer and tetrahedra elsewhere. This grid has been used in previous work, and further

considerations on refinement studies can be found in Ref. [52].
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Figure 5.1: Viscous grids used for the NACA 0012 aerofoil

5.2.2 Validation

Numerical simulations were compared to experimental data of Landon [173] for the
AGARD CT?2 test case. The corresponding flow conditions are summarized in Table[5.1]
In this case, the Mach number is lower than for the AGARD CT5 case (see Table [A.T]).
The reason to consider the CT2 case for validation is that the aerofoil is forced to
oscillate at higher angles of attack, where viscous contributions are more important.
Figure conveys predictions and measurements of the normal force and pitching
moment coefficient. The k& —w turbulence model was used for the PMB results, whereas
the Spalart-Allmaras was used in combination with Cobalt. In all cases, the flow was
assumed fully turbulent. There are some variations in the numerical results, which
are more evident for the moment case. This is likely because of the use of different
turbulence models. Preliminary tests were made with PMB to assess the effects of
grid resolution and turbulence modelling on the numerical solutions. It was found that
varying the turbulence closures had a larger impact on the solutions than changing the
grid resolution. However, the evaluation of differences between numerical simulations
is not the objective of this work, which is instead on evaluating the readiness of reduced

models.
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Parameter Value

M 0.6
(&7} 3.16°
aa 4.59°

k 0.0811
Re 4.8 x 10°

Table 5.1: Description of the AGARD CT2 conditions for the NACA 0012 aerofoil [173]

[m] Exp Data F [m] Exp Data
Lo Ve 0.04
08k Cobalt g

Cobalt

0.6
04

02

2 4 2 4
AoA [deg] AoA [deg]

(a) Normal force coefficient (b) Pitching moment coefficient

Figure 5.2: NACA 0012: predictions of unsteady time-accurate viscous solutions (M =
0.6, g = 3.16°, a4 = 4.59°, k = 0.0811, and Re = 4.8 x 10%); experimental data from
Landon [173]

5.2.3 Large Amplitude Manoeuvre

The training data for the generation of reduced models were obtained before the ma-
noeuvre to be predicted was made. A pitching case was considered around zero degrees
angle of attack, oy = 0.0°, at Mach number of 0.764 and reduced frequency k& = 0.10.
A Reynolds number of 3 million was assumed. The oscillatory amplitude, a4, was taken
to vary between 0° and 10°, and represents the independent parameter of the problem.
These conditions correspond to a popular modelling case described in the literature,
see for example Refs. [17,186], but experimental data are not available. Once reduced
models were constructed, the test case used to compare the model predictions to the
time-accurate solution was defined. Results presented are for an oscillatory amplitude

of 8.5°.
Shown in Figs. [5.3(a)| and [5.3(b)|is the normal force and pitching moment dynamic

dependence computed using a time-accurate solution, which is the reference solution for
the reduced models. The initial transient was removed from the numerical solutions,
and two arrows indicate the time evolution. The flow on the upper surface of the

aerofoil is dominated by a shock which moves downstream for increasing angles. The
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shock wave becomes stronger and interacts with the boundary layer. The boundary
layer immediately after the shock separates, and this condition is shown in Fig. as
the separation becomes visible. At the largest angle of attack, there is a large separated
area extending from the shock to the trailing edge, Fig. During the downstroke
motion, the flow reattaches and the same pattern is repeated on the opposite side of
the aerofoil. It was found that changes in sign of the instantaneous value of C,,, during

the oscillatory motion are related to the appearance/disappearance of flow separation.
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Figure 5.3: NACA 0012: unsteady time-accurate viscous solutions for the manoeuvre to be
predicted (M = 0.764, ap = 0.0°, a4 = 8.5°, k = 0.0811, and Re = 3.0 x 10°); in (c) and
(d), pressure contour

5.3 Model Formulation

Various low-order models are now introduced. For a description of the aerodynamic

model based on aerodynamic derivatives, which represents the reference formulation
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used in flight dynamics, the reader is referred to Section

5.3.1 Volterra Series

The Volterra theory is well-known in the theory of non-linear systems [187], and it has
been applied to systems involving transonic aerodynamics [188]. A brief overview on

the applications of the Volterra theory can be found in Section [[.2.4]

For convenience, denote each aerodynamic coefficient, y = C; for: = L, D, m. The
output of a continuous-time, casual, time-invariant, fading memory system in response

to an input, z (t), is formulated as

y(@t) = U (z(t) = Z H; (= (1)) (5.1)

The output response, y (t), is modeled using the p-th order Volterra series. The term
H; represents the i-th order Volterra operator, which is defined as an -fold convolution

between the input, x (t), and the i-th order Volterra kernel, H;.

)

Hi(az(t)):/ / Hi(t —m,t =7, ...t —7) [[ 2(m)drn  (5.2)

n=1

For incompressible flow, unsteady aerodynamic loads are often expressed as a func-
tion of the angle of attack and its time derivatives [189]. Based on this consideration,
the single-input Volterra model in Eq. (5.1)) may be inadequate even for the represen-
tation of loads in the linear aerodynamic regime. For oscillations about the pitch axis,

the relevant external inputs are

x(t) = (a(t), a(t), a(t)) (5.3)
A multi-input Volterra series is then formulated as

y(t) = Oz (), 22 (t), ..., am () = > HP (5.4)

i=1

The term H" is the multi-input Volterra operator defined as a mP-fold summation of

p-fold convolution integrals between the inputs and the p-th order multi-input Volterra
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kernels [58]. The output response up to second order is rewritten as
m

TCE

j=1"-

Z Z / / H;”’x” (t =71, t—m)xj (11) xj, (T2) dridm2 + O (|x|3)

ji=1je=1""

t
HY (t—7)zj (1) dr +

(5.5)

Note that the superscripts in Eq. (5.5]) identify to which inputs the kernel corresponds.

1% wwhich correlates the inputs

Consider, for example, the second-order kernel Hzmj
xj, and x;,. Note that the second and higher-order kernels are symmetric with respect

Ty, Tj T, Ti
to the arguments, H,”'""7% = H,”3""7t.

The identification of the Volterra kernels is performed using an unsteady time-
domain simulation as the source of the data. The CFD solution is discrete in time, and
the time-step is indicated by At*. Denote z[n] = x (n At*) = z (t). The discrete-time
representation of Eq. (5.5 is

yln] =D x> H [n — K, [k] +
j=1 k=0

Z Z y Z Z H;‘jlijg [n — ki, n — ko] zj, [k1] zj, [ko] + O (|x|3)

j1=1j2=1 k1 =0ks=0
(5.6)

The identification of discrete-time Volterra kernels involves the resolution of an
overdetermined system. Values of aerodynamic coefficients and the time-history of
the motion variables are known from the CFD simulation used as training input. Let
y = (y[0], y[1], ..., y[n])* denote each aerodynamic load computed using CFD, and
let A contain the permutations of input parameters relevant to the unsteady motion.

Equation (5.6]) can be recast in the form
y =Ab (5.7)

where the vector b contains the unknown Volterra kernels. The matrix A is in general
non-square, with more rows than columns. Several numerical methods are available to
solve least squares problems, e.g., direct inversion of AT A, Gauss elimination, Moore-
Penrose generalized inverse approach and the QR factorization. However, the Moore-
Penrose approach and the QR factorization are more accurate than the Gaussian elim-
ination and the direct inversion solutions. The cost of the QR factorization is O (n2),
and the Moore-Penrose inversion involves O (n3) operations. Note that computational

resources attributable to the identification of the Volterra kernels grow exponentially
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with order. Increasing the order of the Volterra series introduces a requirement for a
training manoeuvre of sufficient duration. A remedy to this is the use of a simplified

form of the kernel parametric structure. Following, for example, Ref. [59]

H;jl’ij""’mjp [n _ k17 n — ]{)27 e, — kp] =0 (58)
for k1 # ko # ... # kp

all off-diagonal terms of the kernel are set to zero. Note that the above form of the
Volterra series, with an attendant loss of generality, was not used for the results pre-
sented.

The Volterra kernels are first identified from Eq. (5.7) solving for b, with y and
A being known for a training manoeuvre. The matrix A is then recomputed for a
novel manoeuvre, and the low-order model in Eq. (5.7) is used to predict the resulting

unsteady aerodynamic loads in place of the full-order system.

5.3.2 Surrogate-Based Recurrence-Framework

The set of non-linear equations describing the CFD system can be interpreted as a
general representation of a non-linear time-invariant discrete-time dynamical system.
The state vector consists of the conservative variables, W, and its size is proportional
to the number of grid points. In this study, the aerodynamic loads form the vector of
outputs, which are not only a function of the instantaneous values of the inputs, but
also a function of the time history of the inputs.

To generate a computationally efficient approximation of the unsteady aerodynamic
loads without solving the expensive CFD equations, the form of a dynamical system is
assumed [17]. When the state vector of the full-order system is finite in dimension, the

following non-linear system is equivalent to the unsteady CFD equations
y(t) = @(x(t), x(t — At), ..., x(t — mAl),y(t — At), ...,y (t — nAt)) (5.9)

where x takes the form of Eq. (53]). The function ® maps the inputs to the outputs.
The terms m and n represent the number of previous values of the external inputs
and outputs, respectively, influencing the output at the current time instant. These
parameters account for time-history effects and phase-lag in the flow development.
Central to the generation of the reduced-order model is the computation of the
function ®. Without a closed-form analytical expression, a numerical approximation
of @ is constructed using a number of CFD solutions. For the pitching aerofoil case,
see Eq. (216), any motion can be expressed as function of three parameters, e.g., oy,
a4, and k. These independent variables form a parameter space, which represents the
envelope of all possible flow conditions in which the aerofoil configuration is expected

to operate. To generate a consistent set of unsteady aerodynamic loads in response
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to a given aerofoil motion time history, the training cases at which CFD solutions are
calculated should be representative of the expected flow conditions. Several design of
experiment methods are available in the literature. A description of the kriging-based
framework used in this study is detailed in Ref. [81]. Let N7 be the number of training
cases at which CFD solutions are available. Each training case consists of different

combinations of the independent parameters,
x; = (i (t), é; (t), d;(t)) for i=1,..., Ny (5.10)

and the corresponding aerodynamic loads are indicated by y; (t). The approximation
of the function ® is obtained by interpolating the sampled data in the form of an in-
put/output relationship. Several interpolation methods are available in the literature,
and two of these have been used in the present study. Kriging interpolation is a com-
mon choice, see Section 23] but for increasing number of independent parameters the
problem can result to be ill-conditioned. An alternative approach is the multi-linear
interpolation technique, see Appendix [C] which is in general faster than the kriging

interpolation.

5.3.3 Indicial Function

The buildup in the aerodynamic loads in response to a unit step in one of the inputs
can be evaluated by convolution. Let H (¢) indicate the Heaviside step function, or the

unit step function, defined as

1.0 for ¢t >0

H(t) = 5.11
®) { 0.0 for t <0 ( )
The unit response, or indicial admittance, is denoted by A (¢). Assuming a linear
relationship between the forcing function and the output, the airloads are defined as
the convolution or Durhamel’s superposition [190] of the indicial response with the
derivative of the forcing function, f ().
t
df(r
y(t) = f(0) A(t) + / %A(t — 7)dr (5.12)
0
This model can approximate any finite-memory, time-invariant, single input/single out-
put and continuous linear system [191]. The indicial response functions are used as a
fundamental approach to represent the unsteady aerodynamic loads [37,38]. Let Cj,
and Cj, be the time response in the unsteady aerodynamic loads due to a step change

in the angle of attack, «, and angular velocity, ¢. If these functions are known, then
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the unsteady airloads at time ¢ can be obtained as

da(T)

t t
Ci(t):Cio+/ 702 (t—T) dT+/
0 dr 0

for i = L,D, and m

dq(7)

(A
dr 4

(t —7) dr (5.13)

These models approximate the unsteady lift and pitching-moment in the linear regimes
of the flight envelope. For non-linear aerodynamics, the indicial response is computed
at several values of the angle of attack, and this adds a considerable computational
cost to the construction of the model. Linear indicial functions were used in the results
presented. Further details on linear indicial aerodynamics can be found in Appendix[B]
where the calculation of the indicial response to a step change in any motion param-
eter and for the penetration into an arbitrary gust field are also discussed. Being a
mathematical concept, experimental measurements of the step response are practically
non-existent, and a modification to an existing CFD code is required for a correct de-
termination of the indicial response. The author implemented a new functionality in
the University of Liverpool PMB solver to calculate the indicial response to motion

inputs and gust perturbations. More details are given in Appendix [Bl

5.3.4 Radial Basis Function

In this approach, the unsteady aerodynamic loads are approximated by learning an
input-output mapping from a set of training data [192].The reconstructed state space
model is presented in Eq. (5.9]). The term & is a vector-valued non-linear function that
maps the inputs to the output. The terms m and n are integers representing the past
values in the output and input, respectively. The mapping function, @, is learned by
a Radial Basis Function Neural Network (RBFNN). The remaining problem is how to
choose n = m such that the reconstructed model accurately represents the state-space
model. For the results presented, the value of n is selected using ”trial and error”
attempts. Design of experiments are often used to select Np combinations of these
variables for training purposes. However, such an approach often needs a large value
of Nt to cover the important regimes of the regressor space of the input variables.
Ghoreyshi et al. [192] reduced the number of manoeuvre simulations using the design

of new training manoeuvres. This approach was also used in this study.

5.4 Numerical Results

The model based on aerodynamic derivatives, the Volterra model, and the surrogate-
based recurrence-framework model were generated using the PMB solver. The genera-

tion of models based on the indicial and radial basis function was made with Cobalt.
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Predictions are compared to the time-accurate solution of the CFD solver used to create
the model.

5.4.1 Model based on Aerodynamic Derivatives

Dynamic derivatives are illustrated in the upper part of Fig. 54 at the reduced fre-
quency of the manoeuvre to be simulated, & = 0.10, and for several values of the
oscillatory amplitude, a4. Values of amplitude of the forced motion are 0.1°, 0.5°,
3.0°, and 5.0°. The force data, shown in Fig. are negative for small values of the
angle of attack, and become positive for larger values. The change in sign is observed
to occur between 2° and 4° in all cases. At the lower and higher ends of the angle of
attack range dynamic derivatives are similar in value independently of the amplitude
a 4. This is attributed to the flow features at these conditions. For a small mean
angle of attack, the flow is attached and the shock motion is the dominant non-linear
effect. For a larger mean value, the flow is likely to be separated, and the separation
is now the dominant effect. The largest differences in the results presented are found
at intermediate values of the mean angle of attack, where shock-induced separation is
observed. The damping-in-pitch, shown in Fig. is negative throughout the angle
of attack range. However, for the small amplitude case, dynamic derivatives have an
erratic behaviour and show an increase in damping about a mean angle of 2°.

Based on this comparison, dynamic derivatives present a dependence on the oscil-
latory amplitude of the forced motion. For smaller amplitudes, spikes are found at
median values of the angle of attack, whereas for the larger amplitude case, a contin-
uous decrease/increase is noted. This is further investigated in Fig. (.4l where results
for the smallest and largest values of the oscillatory amplitude are presented for several
values of the reduced frequency (k = 0.05, 0.10, and 0.15). For the smallest amplitude
(g = 0.1°), a change in sign in the force damping derivative shown in Fig. [5.4(c)|
is noted between 2° and 4°. The force data largely depend on the reduced frequency
at small values of the mean angle of attack. In fact, increasing the reduced frequency
primarily affects the mean slope of the force data (not shown), with a negligible ef-
fect on the hysteresis. At larger values of the angle of attack, the values are positive
and similar for all reduced frequencies. In the case of the damping-in-pitch, shown in
Fig. the results computed for various values of the reduced frequency are simi-
lar. Next, the aerodynamic derivatives for the case in which the aerofoil oscillates with
pitch amplitude of 5.0° are presented in Figs. [5.4(e)| and [5.4(f)l For the force data, a

continuous increase is seen throughout the angle of attack range, whereas the moment

data continuously decrease.

The aerodynamic information presented above were used in combination with the
non-linear quasi-steady aerodynamic model in Eq. (2.2]) to predict the unsteady loads

for the manoeuvre selected. The dynamic dependence of the force and moment coef-
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Figure 5.4: Dynamic derivatives for the NACA 0012 aerofoil (M = 0.764 and oy = 0.0°); in
(a)-(b), k = 0.10 and several values of amplitude; in (¢)-(d), asa = 0.1° and several values of
reduced frequency; in (e)-(d), aa = 5.0° and several values of reduced frequency
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ficients shown in the upper part of Fig. were computed using aerodynamic data
estimated at the same reduced frequency of the manoeuvre, & = 0.10. In this case, the
scatter indicates variations attributed to varying the amplitude of the forced motion.
A cross-over point is detected in the force dynamic dependence at an angle of attack
of about 3°, however not observed in the time-accurate solution. However, the model
provides misleading results, and the agreement is poor for both force and moment data
throughout the oscillatory cycle. The unsteady responses in the remaining figures il-
lustrate the effects of varying the oscillatory amplitude at which dynamic derivatives
were estimated. The results were obtained, respectively, for an amplitude of 0.1° and

5.0°. In both cases, the scatter is representative of variations attributable to reduced

frequency effects. For the smallest amplitude case, see Figs|5.5(c)land [5.5(d)}, the agree-

ment is poor and the force data exhibit a large dependence on the reduced frequency.

Increasing the oscillatory amplitude has a positive effect of moving the model predic-

tions closer to the reference solution, see Figs |5.5(e)| and |5.5(f)} Reduced frequency

effects are moderate in this case but in all cases predictions are not representative of

the time-accurate solution.

While for a two-dimensional aerofoil a systematic study on the dependencies of dy-
namic derivatives can be made, results demonstrate that the model predictions may be
misleading. A point to consider is that aerodynamic data obtained from forced motions
at a small amplitude do not necessarily provide a better agreement to the unsteady CFD
solution than using aerodynamic information obtained for a larger amplitude case. In
fact, the solution computed for a small amplitude is similar to a time-linearized solu-
tion which capture the flow behaviour near the point at which the calculation is done.
This is in general inadequate for studies of flight dynamics because the aircraft may
experience large excursions from the reference point. Performing a forced motion at a
larger amplitude exposes the flow to some non-linearities, and this may improve some-
what the predictions. These observations are in agreement with the conclusions given

in Chapter Ml where the predictive limitations of a linearized technique were discussed.

5.4.2 Volterra Series

For the identification of the Volterra kernels, a training case was run at the reduced
frequency of the manoeuvre to be simulated. The oscillatory amplitude, being an
independent parameter, was varied linearly from 0° up to 10°, and back to 0°. The
duration time of the training data was equivalent to six periods. Kernels up to third
order were retained in the model. However, not all kernels need to be identified because
the resulting aerodynamic loads, for a symmetric aerofoil forced to oscillate around zero

degrees mean angle of attack, are odd functions of the angle of attack change. For the
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Figure 5.5: Non-linear mathematical model and unsteady CFD for a large amplitude ma-
noeuvre (M = 0.764, agp = 0.0°, ag = 8.5°, and k = 0.10); in (a)-(b), dependence on the
oscillatory amplitude at reduced frequency k& = 0.10; in (c)-(d), dependence on the reduced
frequency at oscillatory amplitude a4 = 0.1°; in (e)-(f), dependence on the reduced frequency
at oscillatory amplitude a4 = 5.0°

138 of P13



flow conditions considered in this chapter, the following kernels were retained

oy HY
Hy“ Hé”‘ | o ) (5.14)
ng,a,a H?t)x,a,a ng,a,a H?t)x,a,a

The term k& in Eq. (5.6) approximates time-history effects. For the kernel H{', k = 3,
whereas for the remaining first order kernels it was set to 2. For the second order kernel
relating the angle of attack to its time derivative, k = 1. The value k = 0 was set for
all of the order kernels shown in Eq. 5141

Figure compares the aerodynamic coefficients from the time-accurate solution
and from the Volterra model. For the force data, the model predicts a virtually linear
response despite kernels up to third order were retained. While there are differences
for the moment coefficient, the model prediction provides a reasonable approximation
to the reference solution. The value of & for each kernel was optimum in the sense that,

for a given model, the error norm was minimized.
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Figure 5.6: NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764,
ag = 0.0°, ay = 8.5° and k = 0.10); "Model” refers to the discrete-time multi-input Volterra
model

For the case presented, the Volterra model was found to perform better than the
model based on aerodynamic derivatives. The robustness of the model is however a cru-
cial question which needs further investigations. A key point in the model identification
is the selection of an appropriate training motion. In general, a suitable training ma-
noeuvre is designed to allow sufficient representative data to create a low-order model
with predictive capabilities within a desired parameter space. Previous research focused
on training manoeuvres development [51,57], but it was argued that an appropriate

manoeuvre used to predict stability and control characteristics is not primarily given
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by its frequency content or power density spectra [52]. As the low-order model is used
to predict the aerodynamic behaviour within certain flight and control states, a suffi-
cient coverage of the parameter space should be realized by the design manoeuvre to
be effective. The downside of this consideration is the likely non-physical nature of the
training input used for generation of the Volterra model, which limits the applicability

of the model to numerical simulations.

5.4.3 Surrogate-Based Recurrence-Framework

Shown in Fig. [5.7]is the time evolution of the aerodynamic coefficients for several values
of the oscillatory amplitude. The parameter space, in this case, is one-dimensional and
varies between 0° and 10° with a step increment of 0.25°. The response surfaces were
obtained using 10 CFD solutions, and the remainder of the parameter space was filled
out with the use of kriging interpolation. A first CFD calculation was made for the
largest value of the amplitude, and successive calculations were sampled according
to the RMS criterion. The trivial solution corresponding to a null amplitude with
no aerofoil motion was not run, and to avoid extrapolation, aerodynamic coeflficients
were set to zero. Increasing variations in the aerodynamic coefficients for increasing
oscillatory amplitude are noted. However, the degree of non-linearity of the unsteady
loads with respect to the applied sinusoidal motion is not attainable from the surface

responses.

(a) Normal force coefficient (b) Pitching moment coefficient

Figure 5.7: Response surfaces of the time evolution of aerodynamic coefficients throughout
the parameter space of oscillatory amplitude, aq (M = 0.764, oy = 0.0°, and k& = 0.10); the
solid curve indicates the solution at an amplitude of 5 deg

To demonstrate the appearance of non-linearities, Fig. (.8 conveys the dynamic
dependence of the aerodynamic coefficients as a function of the instantaneous angle

of attack. For clarity, curves are plotted for a one-degree increment in the oscillatory
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amplitude. Linear behaviour is found in the force data up to 6°, whereas for larger
amplitude values the loops become distorted from the shape of an ellipse. Note also
that, in contrast with other results, the force loop for an oscillatory amplitude of 8° has
a vanishing hysteresis and this is likely to impact the model prediction when reducing
the number of training cases, as shown below. For the moment dynamic dependence,
a localized non-linearity at both ends of the amplitude range is first noted, which is
similar in shape to that computed for the AGARD CT5 conditions in Fig. The
upswing and downswing curves intersect each other for values of amplitude between
5° and 7°, and for larger values the cross-over points disappear. These features are

indicative of a flow around an aerofoil which experiences various physical conditions.
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Figure 5.8: Aerodynamic coefficients dynamic dependence for several value of oscillatory
amplitude (M = 0.764, a9y = 0.0°, and & = 0.10); curves are plotted every one-degree
increment in amplitude

Figure 5.9 compares the dynamic dependencies obtained using the time-accurate
solution and the predictive model. Models were created retaining various numbers of
training cases. For the model based on 10 training cases, predictions are virtually
identical to the unsteady solution. The dependence of the solution when varying the
values of m and n appearing in Eq. (0.9) was first investigated. The value of n was
found to have the largest effect on the solution and, for a given value of m, predictions
degraded for m < n in all cases. For the results presented, m = 4 and n = 2
proved adequate to approximate time-history effects. Next, a new model was generated
recursively by removing the last training case included in the existing model. As shown
in figure, a model created using 5 training cases is a good approximation to the reference
solution. It can be argued, however, that the quality of the prediction depends on the
location of sample points within the parameter space. In this case, three samples

were located at the minimum, median and maximum values of the amplitude, and the
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remaining two points were in the lower- and upper-half of the parameter range. For
a more objective evaluation of the model predictions, a model was created using the
three samples at the minimum, median and maximum values of the amplitude. The
sample at zero amplitude has little or no effect on the prediction, being the furthest
from the amplitude at which the manoeuvre is simulated. For the moment case, the
model reproduces well the time-accurate solution. Differences in the force data are
seen during part of the cycle and are indicative of the appearance of non-linearities
for amplitudes larger than 5° (see Fig. B.8). A consideration is that the validity of a
predictive model, without any physical mechanism governing the flow development, is
limited to the training dataset used to create it. Because the input data are reformatted

when creating the prediction, the amount of information is critical.

- CFD I CFD
| -eeeeeees Model, 10 01f --------- Model, 10
— — — - Model, 5 /} | ———- Model, 5
r Model, 3 S L . Model, 3
.

05

0.05f

-0.05

L r L
10 10

0 0
AoA [deg] A0A [deg]

(a) Normal force coefficient (b) Pitching moment coefficient

Figure 5.9: Model predictions and unsteady CFD for a large amplitude manoeuvre (M =
0.764, ag = 0.0°, vy = 8.5°, and k = 0.10); ”Model” refers to the surrogate-based recurrence-
framework

Good predictions presented above should be confirmed by results for a higher-
dimensional problem. The extension to include the dependencies on the reduced fre-

quency and mean angle of attack is an interesting option.

5.4.4 Indicial Function and Radial Basis Function

The indicial responses of the aerofoil for a step change in angle of the attack and for a
step change in pitch rate are shown in Fig. The lift responses have an initial peak
followed by a falling trend, see for example Appendix [Bl This can be explained based
on the energy of the acoustic wave system created by the initial perturbation [190].
The initial peak becomes smaller as the Mach number increases. It was found that the
translation of the grid (angle of attack response) has larger effects on the lift changes

compared with rotating the grid. Note that the pitching moment has a negative peak
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as the grid starts to move. The computational cost for each response is around the cost

of 10 steady-state calculations.
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Figure 5.10: NACA 0012: indicial responses of pitching moment coefficient to step change in
angle of attack and in pitch rate (M = 0.764 and Re = 3.0 x 10°)

The design of a new manoeuvre allows a reduction in the number of training motions.
The training manoeuvre used in this study is a spiral manoeuvre which consists of a
sweep in the amplitude

a(t) = agt” sin(2kt") (5.15)

The spiral motion eliminates the need for repeating motions for different values of
amplitude. However, for reduced frequency effects, the motion with different values of
k needs to be considered. In this study, a spiral motion was defined starting from zero
degrees angle of attack at a reduced frequency of 0.10. The simulation was run for 35
oscillatory cycles. For RBFNN training, the amount of calculated data was reduced
on the order of thousands using an interpolation scheme. This allows a faster network
training and avoids any out-of-memory error. The reduced spiral data were rearranged
according to Eq. (59) and then the network performance was tested for different values
of n. Results showed that using n = 2 and n = 4 is sufficient for modelling the lift

and the pitching moment, respectively.

A reduced model based on indicial functions was created using Eq. (5.9). The
networks were also trained using training data in the same form. The validity of the
models was tested for the manoeuvre to be simulated. Figure B.11] conveys the non-
linear results for the large amplitude pitch oscillation. The results show that the model
based on indicial functions provides misleading results because the model formulation
stems from the concept of linearity. On the other hand, the RBFNN predicts the overall

trend of the pitching moment.
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Figure 5.11: NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764,
ap = 0.0°, s = 85° k = 0.10, and Re = 3.0 x 10%); in (a), "Model” refers to the linear
indicial functions, and in (b) to radial basis functions

5.5 Model Evaluation

For a thorough evaluation of the reduced models, relevant aspects are the accuracy
in the predictions and the cost for model generation. To quantify the error between

the time-accurate solution and the model prediction, the following error norm was

introduced
1SS |y — yrem [i]]
E=< =l - x 100 (5.16)
Ymaz — Ymin

which represents the average error in the models relative to the range of the reference
solution. The term N is the total number of time-steps used in the CFD simulation, and
the superscripts c¢fd and rom indicate the full- and the reduced-order models, respec-
tively. The cost for model generation was normalized by the cost for the simulation of
three oscillatory cycles. Table[(.2]summarizes the errors in the moment predictions and
the cost for the models considered. Similar conclusions were found when considering
the error norm in the force coefficient.

For the conventional model, aerodynamic data were computed at seven values of
the angle of attack, and each calculation was run for three oscillatory cycles. The error
is representative of the mean value of the predictions, shown in Fig. and it does
not account for the variations to changes in reduced frequency. It is found that the
conventional model has the largest error in the predictions and is the most expensive to
generate. The accuracy and the cost of the model based on linear indicial functions are
similar to the values obtained for the conventional model. Improved predictions were

achieved by the three remaining models. While similar in accuracy, the cost for the
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Error, C;,, Cost

DynDer 23.3 7
Volterra 7.8 2
SBRF 5.4 2
LIF 18.3 5
RBFNN 7.7 6

Table 5.2: Error norm in the model predictions of pitching moment coefficient and related
cost for model generation

generation of the Volterra model was lower than for the generation of the model based
on radial basis functions trained with neural networks. For the conditions presented,
the surrogate-based recurrence-framework model resulted in the smallest error at a
favourable cost. As explained above, for the surrogate-based recurrence-framework

model the trivial solution corresponding to a null amplitude was not run.

5.6 Conclusions

Previous work demonstrated that the conventional model formulation of aerodynamic
loads based on aerodynamic derivatives may experience a loss in accuracy for flow
conditions of practical interest. The present chapter addresses the demand to explore
alternative reduced-model formulations for the prediction of non-linear unsteady air-
loads. To allow a fast turn-around time of the investigations, the test case is the NACA
0012 aerofoil. The purpose of considering a pitching aerofoil at transonic conditions is
to establish the effectiveness of the reduced-order models in a non-linear regime of the
flow envelope. The non-linearities are attributable to shock motion and shock-induced
separation.

Several modelling formulations were presented. A non-linear model based on aero-
dynamic derivatives, a multi-input discrete-time Volterra model, a surrogate-based
recurrence-framework model, linear indicial functions and radial basis functions trained
with neural networks were considered. To assess the predictions, reduced models were
compared to unsteady time-domain CFD simulations for oscillatory pitching motions.
The model based on aerodynamic derivatives exhibited large deviations from the refer-
ence solution. While retaining higher order Volterra kernels, the multi-input discrete-
time model achieved a reasonable agreement. For the flow conditions presented, the loss
of accuracy shown for the model based on indicial functions was expected. The remain-
ing two models, e.g., surrogate-based recurrence-framework and radial basis functions
trained with neural networks, achieved a good agreement with the CFD solution. The
point to highlight is that these models, while providing good approximations for both
force and moment data, were generated with no more computational resources than re-

quired for the conventional model. The application to more complex geometries should
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verify these conclusions. The generation of a stability and control database will then

be considered to assess the readiness of the reduced-models.
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Chapter 6

Conclusions and Outlook

In this thesis, the exploitation of computational fluid dynamics (CFD) for the gener-
ation of flight simulation models was investigated. A tabular model based on aerody-
namic derivatives was considered because commonly used by flight dynamicists. CFD
was used as source of the aerodynamic information. In the model formulation, steady-
state predictions are supplemented using dynamic derivatives to account for the aircraft
motion. While the calculation of steady-state dependencies by a CFD solver is made in
a routine manner, the numerical simulation of dynamic derivatives is a computationally
expensive task. These terms are obtained in small-amplitude oscillatory tests, which
involve the accurate prediction of the flow development around a moving airframe.
Dynamic derivatives computed using unsteady time-domain calculations were in
agreement with available experimental data for two configurations. For a generic fighter
model, a systematic study on the investigation of the dependencies of dynamic deriva-
tives was presented. For a transonic cruiser wind tunnel model, a database of static
and dynamic dependencies was created. In the presence of aerodynamic non-linearities,
mainly due to three dimensional separated flow and concentrated vortices, dynamic
derivatives were found to depend on motion and flow parameters. These dependen-
cies are not reconcilable with the model formulation, which is based on a Taylor series
expansion. However, as the sensitivity of dynamic derivatives on parameters inves-
tigated fell into well defined bands, it was considered reasonable that it is only the
general behaviour of these bands, rather than small and often irregular variations in
the individual curves, that may be of practical interest for flight dynamics simulations.
An approach to evaluate the sensitivity of the non-linear flight simulation model
to variations in dynamic derivatives was introduced. The model predictions compared
best to the time-accurate solution when aerodynamic information was estimated at
the same frequency as the manoeuvre being simulated. This, however, introduces the
question on how to determine the frequencies of interest prior to the manoeuvre being
executed. For the transonic cruiser wind tunnel model, the model predictions for a

large amplitude manoeuvre in the presence of flow separation were found misleading
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and must be carefully interpreted. It was recognized that the non-linear formulation
based on stability derivatives is instantaneous, that is, aerodynamic coeflicients are
only a function of the current time. The formulation is then not adequate in the
case aerodynamic loads are dependent on the flow history and past motion. It was
shown that, in these conditions, large amplitude data cannot be extrapolated from
small amplitude tests and cannot be represented accurately by stability derivatives.

As the calculation of dynamic derivatives is the most expensive task, various reduced
models for the fast computation of these terms were investigated. Reduced models were
based on the manipulation of the full-order model to reduce the cost of calculations. The
underlying idea is to exploit the periodicity of the aerodynamic system for oscillatory
motions to significantly decrease the computational cost of unsteady time-accurate
simulations. In fact, a time-domain calculation supports a continuum of frequencies
up to the frequency limits given by the temporal and spatial resolution. It is therefore
worthwhile to consider a frequency-domain formulation to obtain a good estimate of
the derivatives at reduced cost.

A linearized solution of the unsteady problem, with an attendant loss of generality,
was found inadequate to provide good predictions for the parameters at which dynamic
derivatives are required. The reason is that a linearized solution captures the flow
behaviour near the point at which the calculation is done, and the extrapolation of these
information in presence of non-linearities may be misleading. It was recognized that this
method is inadequate for studies of flight dynamics because the aircraft may experience
large excursions from the reference point. These considerations were corroborated by
additional findings, as explained below.

A harmonic balance technique, which approximate the flow solution in a Fourier
series sense, retains a more general validity. While resolving a small subset of fre-
quencies typically restricted to include one Fourier mode at the frequency at which
dynamic derivatives are desired, the harmonic balance technique achieved good predic-
tions of dynamic derivatives at a fraction of the cost for solving the original unsteady
problems. Investigations demonstrated that a reduced model is not intended to simply
augment static calculations, but rather complement and replace the static steady-state
flow solver for flight and configuration conditions in which stability characteristics are
desired. One single calculation with the two methods investigated provides both static
and dynamic derivative information at an equivalent cost of few steady-state runs.
Two- and three-dimensional test cases in the transonic regime were analyzed.

While the application of reduced models was successful for the fast computation
of dynamic derivatives, the range of test cases considered exposed the limitations and
shortcomings of the conventional model used by flight dynamicists. The limitations
are due to the neglect of time history and unsteady effects, and other assumptions
on dynamic derivatives. To address the need for models of more realism to be used

in flight dynamics, enabling the aircraft design for extended flight envelopes, various
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reduced models based on system identification methods were assessed. To allow a fast
turn-around time of the investigations, a two-dimensional aerofoil is the test case. It
was assumed that any consideration on the readiness of the models can be transferred
to the analysis of more complex geometries. Tests on aircraft gemetries should verify
this point. For the flow conditions considered, the dynamic shock motion and the
shock-induced separation were the sources of strong non-linearities in the unsteady
aerodynamic loads.

In addition to the conventional model, four model formulations were described.
Compared to the unsteady time-domain results, the model based on aerodynamic
derivatives was the least accurate. Dependencies of aerodynamic information were
investigated for several parameters. It was recognized that aerodynamic data obtained
from forced motions at a small amplitude do not necessarily provide a better agree-
ment to the unsteady CFD solution than using aerodynamic information obtained for
a larger amplitude case. The solution computed for a small amplitude is similar to a
time-linearized solution which capture the flow behaviour near the point at which the
calculation is done. This is in general inadequate for studies of flight dynamics because
the aircraft may experience large excursions from the reference point. Performing a
forced motion at a larger amplitude exposes the flow to some non-linearities, and this
may improve somewhat the predictions.

While requiring similar computational resources than needed for the conventional
model, improved predictions were achieved using the remaining non-linear models inves-
tigated. These results should be extended to more complex configurations and applied
to the routine generation of aerodynamic models. There is, however, the question of
appropriate training data to be generated, and the issue of model robustness. The
development of reduced models based on the manipulation of the full-order residual is
an appealing option, which is currently investigated by the author for flexible aircraft
control design. The application of this methodology is a research question.

A framework for the automated generation of tabular aerodynamic data using CFD
was described. Applications to the areas of flight handling qualities, stability and con-
trol characteristics and manoeuvring aircraft were considered for six test cases. Em-
phasis on the crucial question of how to keep down the computational cost incurred to
generate the aerodynamic database was addressed. The framework presented is based
on a kriging-based surrogate model. The kriging model is used as a multi-dimensional
interpolation to efficiently predict aerodynamic information at untried flight conditions
from a set of initial calculations. The number and location of computed flight condi-
tions and the fidelity of the data are fundamental aspects for a robust and accurate
kriging-based aerodynamic model. Many low-fidelity computationally cheap estimates
are typically augmented by a few high-quality data, which are made available at a later
time during the design refinement. Data fusion combines the two datasets into one

single database, which is more accurate than the two databases separately.
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During the design process, the aircraft geometry iteratively changes as undesired
characteristics are discovered and in order to screen alternative configurations. An at-
tractive feature of the framework presented is the flexibility offered in such cases. It
was demonstrated that an existing high-quality database, for a given aircraft geome-
try being iteratively modified, can be updated to be representative of the incremented
geometry at the cost of a few high-fidelity calculations. This is illustrative of the role
played by CFD simulations and the potential impact that high-fidelity analyses might
have to reduce overall costs and design cycle time. Two criteria to automate the selec-
tion of candidate sample points to strengthen and verify the readiness of the surrogate
model were used. However, they can capture only global non-linear features. This
motivates the need to address further research at the development of a methodology to
efficiently identify local minima/maxima and changes in curvature in the aerodynamic

loads.

The major computational cost is the computation of CFD analyses at points in
non-linear regions of the flight envelope. Once constructed, the surrogate-based model
is used in place of the expensive simulation process to calculate, at a negligible cost, the
aerodynamic loads at any flight point. The tabular model is consistent with a non-linear
quasi-steady representation of the aerodynamics and can be used in real-time to fly an
aircraft through the database. This gives the opportunity to establish the limitations
of the tabular model due to the neglect of time history and unsteady effects, and to

assess other limitations related to sampling and assumptions on dynamic derivatives.

The simulation of manoeuvring aircraft involves costly time-accurate analyses,
which were confronted with solutions obtained from the tabular data for several ma-
noeuvres and different model configurations. It was recognized that the tabular solution
was adequate in representing time histories of the forces and moments in benign con-
ditions. In these cases, the inclusion of dynamic stability derivatives had a significant
impact in improving the correlation to the reference solution. However, simplifying as-
sumptions pertaining to the flow physics restrict the validity of the tabular model, and

there is a demand for more advanced model formulations for non-linear aerodynamics.

Future work will evaluate the benefits and limitations of reduced-order models for
complex configurations. The routine use of these aerodynamic models for manoeuvring
aircraft will be investigated and compared to the unsteady time-domain CFD simulation

or experimental data.

To briefly summarize, the main points of the work presented in this thesis are

1. exploitation of CEFD for the generation of flight simulation models; physics-based
simulations can now be used early in the aircraft design process for extended
flight envelopes; a range of applications demonstrated the potential of CFD to

reduce overall design cycle costs and time
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2. different strategies to create CFD-derived simulation models across the flight en-
velope were assessed, ranging from a hierarchy of aerodynamic models to reduced-
order modelling; the limitations and shortcomings of the conventional model

based on aerodynamic stability derivatives were investigated

3. the level of accuracy and sensitivity of various flight simulation models compared
to unsteady CFD solution were evaluated; predictions using the conventional
model were found misleading when considering conditions of practical interest; the
development of robust CFD-based reduced models applicable to transonic speeds

and high angles of attack is a research question currently under investigation.
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Appendix A

Applications to Flight Dynamics

Six test cases are now presented. Each case study is briefly described and then emphasis
is put on table generation and on the application of the aerodynamic database. The
details of each study are given in associated references. The point of the discussion here
is to illustrate that a variety of applications have been investigated using the framework
described in Section 2.3l The first four testcases focus on the prediction of stability and
control characteristics, and the last two on some aspects of flight dynamics. Of interest,
Appendix [A.5] shows that the inclusion of dynamic derivatives may be important in

replaying manoeuvres at high angular rates.

A.1 Transonic CRuiser Model

The design of the Transonic CRuiser (TCR) model was made during the SimSAC (Sim-
ulating Aircraft Stability and Control Characteristics for Use in Conceptual Design)
project J. The final configuration includes an all-moving canard for longitudinal con-
trol. More details on the model design are given, for example, in [80,147,193]. The
mission profile is illustrated in Fig. [A.1l and shows the requirement for a design cruise
speed in the sonic speed range. The specification for a cruise Mach number of 0.97
was set to stress the shortcomings of engineering methods traditionally used in the
early design phase. A wind tunnel model was built and wind-tunnel testing for static
and dynamic conditions was performed in the wind tunnel facilities at the Central
Aerohydrodynamic Institute, TsAGI [148] (Fig. [A.2)).

Three questions were addressed. First, the availability of wind tunnel measurements
made the configuration useful to assess the level and range of validity of several aero-
dynamic models. Then, the kriging-based framework was tested for the generation of a
database of forces and moments calculated from different fidelity models and measured
from testing. To evaluate the sensitivity arising from the aerodynamics, the database of

numerical data was compared to the database of wind-tunnel data in terms of stability

Yhttp://www.simsacdesign.eul [retrieved March 19, 2012
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Figure A.1: Mission profile for the TCR configuration

(a) Canard wing on (b) Canard wing off

Figure A.2: Wind-tunnel testing of the TCR model in TsAGI [148]

and control characteristics at low speed. Finally, the use of CFD to predict the flying
characteristics in the transonic speed range was investigated.

Two aerodynamic models were considered. At the low fidelity level, the linear
potential method was used to provide computationally cheap estimates of aerodynamic
loads. CFD was employed as the high-fidelity option to better represent non-linear
compressibility effects and viscous contributions (see Fig.[A3]). Three CFD solvers were
exercised and compared to experimental data. In addition to RANS simulations, the
flow was modeled with the Euler equations in the EDGE [194] and NSMB [195] analyses,
while the PMB solver was used for the computation of dynamic stability derivatives
from forced motions (see Chap.[]). A grid was generated for each solver. Further details
on numerical modelling, static and dynamic cases can be found in [85,147,148,179].

To assess the accuracy of the computations, numerical simulations were compared
against wind tunnel measured data. The pitching moment is an interesting figure of
merit for stability and control studies, and is shown in Fig.[A.4l Low- and high-fidelity
aerodynamic models are compared to experimental data. The moment curve exhibits
several discontinuity points and a non-linear behaviour, which makes it suitable to

show the range of validity of the aerodynamic models. The low-fidelity model predicts
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(a) Flowfield visualization (b) Deflected canard wing

Figure A.3: TCR wind tunnel model; in (a), flow development computed using the PMB
solver at 18° angle of attack at low speed; in (b), canard deflections of £10° on a grid for use
with the EDGE solver

a linear moment curve with constant negative slope for all angles of attack tested and
reasonable estimates are obtained in the range +5°. A significant improvement in the
correlation to experimental data is achieved by the high-fidelity aerodynamic model.
Except for a localized deviation at twenty degrees incidence, the CFD results are within
a five percent band of the maximum value from the experimental curve up to twenty-
five degrees. At higher angles of attack, the CFD solutions are less accurate. More
details on flow mechanisms leading to observed non-linearities in the moment curve can
be found in [147]. Note that a systematic grid refinement study was not shown in any

of the mentioned references.

A factor in using a kriging-based framework is the ability to combine many computa-
tionally cheap estimates from the low-fidelity model and few high-quality information
from a limited number of expensive high-fidelity simulations. This was key for the
generation of aerodynamic data to cover a flight envelope from low speed up to tran-
sonic cruise speed. Each aerodynamic model was used in a domain which is the most

representative of its validity.

At low speed, a dataset of measured and computed aerodynamic predictions was
generated. Each dataset included two sub-tables, that is, a baseline table of static
dependencies («, M, 3) and a sub-table for the canard deflection («, M,¢). The aero-
dynamic database representative of wind tunnel testing was obtained by compiling in
tabular form the measured force and moment coefficients. Static wind tunnel testing
was performed at a nominal Mach number of 0.17 for several values of angle of attack.
The angle of attack was varied from —10° up to 40°, and the angle of sideslip up to
16°, with a step increment of 2° in both cases. The increments in aerodynamic loads

due to canard deflection were measured for deflection angles from —30° up to 10° at
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Figure A.4: Pitching moment coefficient at low speed for the TCR model; the reference point
is located at the centre of gravity given in Table [AT]

increments of 5°. A negative canard deflection indicates trailing-edge down. Kriging
interpolation was used to extract the aerodynamic quantities at any combination of

flight conditions and canard setting not included in the tabular model.

The database of aerodynamic information from computed results was generated as
follows. A low-fidelity representation of the tables was first obtained using the linear
potential method. The sampling approach in combination with the RMS criterion
filled the baseline table and the sub-table for different canard deflection angles. The
flight envelope was limited between —10° and 10° for the angle of attack, and from
0.1 up to 0.64 for the Mach number. The low-fidelity database was then incremented
by combining it with the high-fidelity aerodynamic results from RANS analyses. The
EDGE solver was used in the angle of attack range between —4° and 34°, and the
influence of canard deflection was investigated for a deflection angle of —5° and —10°.
The NSMB solver provided aerodynamic information for an angle of attack between
—5° and 30°, limiting the sideslip angle up to 5°. The influence of the canard was
computed at 5° and 10° deflection angles. The PMB solver was considered in the angle
of attack range at which measurements were performed, from —10° up to 40°. A set of
static and dynamic stability derivatives was obtained for different reduced frequencies
and several angles of attack. Data fusion was used to update the low-fidelity results

with these high-fidelity calculations.

In the absence of wind tunnel testing in the transonic speed range, one database
of computed aerodynamic loads was generated. Use of CFD was considered the only

reasonable option for accurate predictions in this range. All CFD analyses were made
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for symmetric flow, a combination of Euler and RANS models was considered and the
influence of the Mach number and canard deflection were investigated. Euler analyses
were performed using the EDGE solver. The Mach number was set to 0.65, 0.75 and
0.85 and three values of the angle of attack were considered. For all low combinations,
a canard deflection of 5° and 10° was computed. The NSMB solver performed Euler
analyses for three values of the angle of attack (—5°, 0° and 5°) and three values of
the Mach number (0.60, 0.92 and 0.97). For all combinations of these parameters, the
influence of the canard deflection was investigated for angles of —5° and 5°. RANS
calculations were made at cruise Mach number and angle of attack of —1°, 0° and 1°.
At these flight conditions, aerodynamic increments due to the canard for deflection
angles of 5° and 10° were calculated. These CFD runs were used to create the corre-
sponding high-fidelity aerodynamic database at the transonic speed range with kriging
interpolation.

The coverage of the angle of attack and Mach number space is illustrated in Fig. [A.5]
for the low- and high-fidelity aerodynamic models. The shaded area represents many
cheap solutions obtained using TORNADO in combination with the sampling approach.
The large number of CFD calculations clustering at low speed was motivated by two
needs, that is, to benchmark the results obtained using different solvers and to establish
the range of their validity. Conditions at which wind tunnel testing was performed
are not included as they would cover the CFD data at low speed. The data shown
are a fraction of the calculations computed for the complete aerodynamic database.
Including the dependencies on the angle of sideslip and deflection of the canard wing,
a total of 270 CFD calculations was performed, of which one third were solving the
Euler equations.

Flight dynamics studies require information on the mass and inertia properties of the
model, which might not be readily available even for flying configurations. Without any
other information, the CEASIOM (Computerized Environment for Aircraft Synthesis
and Integrated Optimization Methods) softwareB was used to estimate these data [196].
Reference values and predicted mass and inertia information are given in Table [ATl
The propulsion system is assumed to provide the necessary thrust during all phases of
the flight envelope.

The application of the aerodynamic databases was focused on the prediction of the
trim conditions and flight handling qualities. In the subsonic speed range, the databases
based on wind tunnel measurements and numerical results were compared in terms of
trim conditions. A decrease in trim angle of attack and canard deflection for increasing
speed was reported, with a reasonable agreement between tunnel and numerical results.
Note that the dynamic pressure was altered to extrapolate the trim conditions for the
wind tunnel dataset to higher speeds than the nominal speed at which measurements

were performed. At transonic speed and high altitude, the investigations found that a

*http://www.ceasiom.com/| [retrieved March 19, 2012]
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Figure A.5: Distribution of low- and high-fidelity calculations in the two-dimensional param-
eter space of angle of attack and Mach number; the shaded area illustrates many solutions
obtained using the linear potential method, TORNADO; CFD solutions were obtained at an
ensemble of isolated points

Parameter Value
S 488.96 m?
b 44.8m
c 11.772m
d 63.84m
Teg 38.33m
Zeg 0.0m
MTOW 208 x 103 kg
I, 15.17 x 106 kg-m?
L, 17.52 x 10° kg- m?
I. 32.10 x 10° kg- m?

Table A.1: Reference values and mass and inertia properties of the TCR aircraft model

nearly constant canard deflection was required for trim at all speeds tested except in the
vicinity of the speed of sound. The reason for this was related to the formation of shock
waves on the main wing aft of the centre of gravity, producing a pitch-down tendency.
It is worth mentioning that the trim canard deflection falls outside the range of values
at which CFD calculations were computed, and the results presented were possibly
extrapolated. Tables should be extended to confirm the results. The assessment of the

flight handling qualities indicated poor longitudinal characteristics at low speed, which
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were found acceptable in the transonic regime. With the appearance of shock waves,
the aerodynamic centre moves away from the centre of gravity. A consideration is for
the increasing value of static margin for increasing speed, and illustrates a challenge in
designing a transonic airplane.

The point of the discussion of the TCR results was to show what is now possible
with the framework described above. Although a large number of CFD calculations at
low speed was motivated by the availability of tunnel measurements, different fidelity
aerodynamic models were exercised, and predictions combined into one single database.
The generation of aerodynamic tables was key to the subsequent investigations into the
area of stability and control. It is worth noting that flight dynamics issues such as poor
flying qualities at low speed and improved flying qualities across the transonic region

were related to what was observed in physics-based simulations.

A.2 Asymmetric Aircraft Model

The purpose of the study detailed in [197] was to investigate whether drag reductions in
cruise condition can be achieved for an aircraft by selecting a three-lifting surface asym-
metric design. A conventional T-tail design based on the existing Eclipse Aerospace
500 Very Light Jet (EA500), as seen in Fig. was selected as the baseline aircraft,
and this was redesigned into a novel asymmetric configuration. Aerodynamic databases
were generated for both aircraft based on CFD simulations, and the thrust required to
achieve trim in the cruise condition was assessed for each case.

The novel configuration was designed to fullfil the same role as the baseline aircraft,
with design decisions made to ensure that any drag reduction was a result of using
three-lifting surfaces rather than from relaxing the static margin. The same mass and
inertia properties were used for both aircraft to isolate any improvement attributable
to the aerodynamics. Look-up tables were generated with the same CFD solver. The
asymmetric three-lifting surface aircraft is referred hereafter as the Z-configuration, as
opposed to the baseline configuration to indicate the original T-tail design.

The Z-configuration has a split wing, with the starboard semi-wing located low on
the fore fuselage, and the port semi-wing located high on the aft fuselage. Both semi-
wings have the same area and span but different sweep and dihedral angles. There is
no horizontal tail, and the vertical tail is canted to starboard to provide a third lifting
surface, with a dihedral angle of 35°. Figure shows an overhead view of the two
aircraft configurations. For the Z-configuration, five control surfaces were created. Two
ailerons on the outer sections and two elevators on the inner sections of each semi-wing,
and a rudder on the canted vertical tail are shown in Fig.

As the interest is around the cruise condition at the higher end of the subsonic
speed range, the flow was modeled using the Euler equations. The flow solver used for

the aerodynamic predictions was EDGE. The low-fidelity aerodynamic models were not

177 of 213



(a) EA500 Very Light Jet (b) Baseline configuration with control surfaces

Figure A.6: Baseline configuration representative of the EA500 Very Light Jet

considered in this case study. A simplified geometry representative of the EA500 was
constructed with a best-fit of the overall shape from available three-dimensional views,
and is shown in Fig. with positive deflection of control surfaces. Engine nacelles
were removed from the model. This was considered a reasonable simplification because
the emphasis here is on the comparison between two aircraft configurations using the
same aerodynamic model.

An unstructured grid for each configuration was generated. The grid for the baseline
configuration was obtained with approximately 130k nodes and 830k edges, whilst
the grid for the Z-configuration contains approximately 188k nodes and 1.1 million
edges. Grid points were clustered at the leading- and trailing-edges, and a finer spatial
resolution was used for the control surfaces. This explains the larger grid size for
the Z-configuration with controls extending throughout most of the lifting surfaces.
To automate the generation of aerodynamic tables and to work with one single grid
for each configuration, the transpiration boundary approach was used to calculate the
aerodynamic increments due to control deflection.

A flight envelope around the cruise condition was defined for the generation of the
look-up tables. The complete aerodynamic database included the effects of angle of
attack, Mach number, sideslip angle and the deflection of control surfaces. The angle
of attack varied between —4° and 10°, the Mach number between 0.20 and 0.65 and the
angle of sideslip up to 6°. The deflection of the ailerons and elevator was limited up
to 15°, while the rudder was deflected up to 20°. The run matrix included 8 separate
values for the angle of attack, 4 for the Mach number and 5 for the sideslip angle. Five
values were used for all controls. The aerodynamic dataset for the baseline configuration
included a total of 640 flow conditions for different control settings. With the inclusion

of more control surfaces, the database of the Z-configuration had a larger number of
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Figure A.7: Asymmetric three-lifting surface configuration

table entries. Aerodynamic tables for the baseline configuration were generated using
the EDGE solver as the source of the aerodynamic predictions as follows. The sampling
approach based on the RMS criterion was used for the generation of the baseline table,
and kriging interpolation was then used to interpolate the 45 sample database to the
remaining flight conditions. Three sub-tables were then generated to represent the
aerodynamic increments due to control deflections. With a general overview of the
aerodynamic loads given by the baseline table, sample points were located along the
borders of the three-parameter domain to avoid extrapolation. A median location
within the parameter space was also chosen. While a few sample points were selected,
in the parameter range examined the aerodynamic responses were expected to behave
linearly, so that the limited number of calculations was sufficient. Each sub-table
was filled out with the co-kriging approach. To verify the quality of the prediction
model, additional calculations were performed at a few random untried locations and
compared against the predicted value obtained from the tables. In all cases, predicted
values from the look-up tables matched well the actual values from simulation. A total
of 130 CFD simulations were performed for the baseline configuration to generate all
required look-up tables. For the Z-configuration, the baseline table was generated from
scratch. Sampling based on the RMS criterion was again used to populate the table.
The geometric asymmetry raises the question of how to control the aircraft with the
available control surfaces. Five sub-tables were generated using the Euler equations
to include the aerodynamic increments arising from the independent deflection of each
control surface. Co-kriging was then used to fill out the remaining entries in each
sub-table. The same approach as above for selecting sample points was used. About

two-hundred calculations were run for the Z-configuration.
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The two aircraft configurations were trimmed at cruise for straight and level flight at
a Mach number of 0.65 and an altitude of 10000 m. Mass and inertia properties of the
EA500 are available, and these were used for both configurations. The mass at cruise
condition was set to 2400 kg, and to guarantee the same static margin as that of the
baseline configuration, the centre of gravity of the Z-configuration was moved slightly
aft. For the baseline configuration, the lift, drag and pitching moment are controlled
by adjusting the angle of attack, elevator deflection and thrust. The asymmetry of
the Z-configuration results in a coupling of the longitudinal and lateral quantities. Up
to eight parameters can be varied to control the six aerodynamic forces and moments
acting on the aircraft, and these are the angles of attack and sideslip, the five control
surface deflections and the thrust. The system is overdetermined. Trim configurations
were analyzed for a sideslip angle set to zero. Several different angles of attack were
used in these configurations, with the smallest control surface deflections achieved when
the angle of attack was three degrees. This over-determined trim system was solved
whilst constraining one independent variable to zero, therefore the proposed solution
might be the optimal solution of a subset problem and not a globally optimum solution
of the original problem. A more general approach to formulate the problem involves
the solution of a control allocation problem. By defining the independent variables as
above and restricting their range as problem constraints, an optimal solution is found
minimizing an appropriate functional. The objective of the minimization problem is to
achieve the trim condition minimizing the trim drag. More details can be found, for
instance, in [198,199].

Comparison of the thrust required for trim demonstrated that the Z-configuration is
a less efficient design than the baseline configuration. The increase in drag was related
to the use of larger control surface deflections. A key issue of the novel design was
identified in a poor control authority in the lateral and directional channels. Because
the tail is canted, the rudder has a small effect on the yawing moment, but a large
impact on the pitching moment. Deflecting the rudder on the baseline configuration,
on the other hand, affects the yawing moment coefficient over ten times more than the
pitching moment coefficient.

The results presented show that the CFD-based framework can be used in a routine
basis to screen the potential/limitations of novel aircraft configurations. The key issue
here is the generality realized in a CFD simulation, and the absence of any restriction,

as in the case of traditional engineering methods, when considering new designs.

A.3 DLR-F12 Model

The DLR-F12 model represents a conventional wing-fuselage-tail configuration for a
civil passenger transport aircraft designed by the German Aerospace Center (DLR). A

wind tunnel model was built and experimental investigations were conducted in the fa-
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cilities of the German-Dutch Wind Tunnels (DNW-NWB) during the SImSAC project
(Fig. [A.8). Further information on static and dynamic investigations can be found,
for instance, in [150,178,179,200]. The need to explore the influence of using differ-
ent fidelity levels in geometry and aerodynamic modelling was assessed in a previous
work [181].

Figure A.8: Wind-tunnel testings of the DLR-F12 model in DNW-NWB [200]

Low- and high-fidelity geometric descriptions of the DLR-F12 wind tunnel model
were used in combination with several aerodynamic models. The low-fidelity configu-
ration was built to approximate the wind tunnel model using as few as one hundred
geometry parameters. With a generic aerofoil section, a simple description of the fore-
most fuselage section and approximating the wing-fuselage intersection, this geometry
is typical of the conceptual design phase. This configuration is referred hereafter as the
XML configuration. An unstructured grid was then generated for this geometry for a
solution of the Euler equations. The flow solver used was EDGE.

A multi-block structured topology was created around the wind-tunnel model geom-
etry to allow a high-fidelity representation, and the PMB solver was used to solve the
Euler and RANS equations. This configuration is referred to as the WT configuration.
A comparison of the XML and WT geometries is illustrated in Fig.

The generation of aerodynamic tables for the low- and high-fidelity aircraft ge-
ometries proved useful in highlighting the benefits of sampling and data fusion. Two
separate aerodynamic databases for the XML configuration were generated, that is,
based on DATCOM and on the EDGE solver using the FEuler equations. The tables
obtained from EDGE were created from scratch. The baseline table comprised 648 en-
tries. Sampling based on the EIF criterion was used to search for potential non-linear
aerodynamic characteristics, and kriging was used to interpolate the 65 CFD solutions
to the remaining flight conditions. Sixteen samples were then generated at random
flight conditions, and the directly calculated aerodynamic coefficients were compared
to those obtained from the baseline table. In all cases and for all coefficients, the RMS

error was small indicating that the baseline table reproduced well the aerodynamic
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(a) XML, mesh overview ) XML, nose close up ) XML, fairings close up

o S

(d) WT, mesh overview ) WT, nose close up ) WT, fairings close up

(g) XML, tail close up

(h) WT, tail close up

Figure A.9: Different fidelity geometry representations of the DLR-F12 model; XML and WT
indicate, respectively, the low- and high-fidelity configurations; the elevator is highlighted in the
XML geometry and the WT geometry has been mirrored to facilitate the geometry comparison
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characteristics of the underlying XML configuration [181]. The table describing the
effect of elevator deflection on aerodynamic loads was then generated. Twelve samples
were located along the border of the three-parameter domain and in the non-linear re-
gions observed from the baseline table, such as the combination of high angle of attack
and high Mach number. The values at these samples were then used to increment the
baseline table using co-kriging. The approach used to calculate the increments due to
elevator deflection was based on the transpiration boundary conditions.

Geometry increments from the baseline XML configuration were defined to simulate
a design study. Seven parameters were originally investigated, and variations of the
wing quarter-chord sweep angle, A,, and wing area, S, are shown in Fig. [A.10l The
assumption that the flow topology does not change significantly for the incremented
geometries is key in this application. For each geometry increment, a baseline table was
produced updating the aerodynamic informations from the original XML configuration
with additional samples. For each case study, fourteen samples were chosen along the
borders of the domain to avoid extrapolation and a few at the higher values of the angle
of attack and Mach number. To guarantee that enough information was included in the
updated baseline table for the incremented geometries, sixteen additional samples were
considered at random locations within the parameter space to check that the tables
were adequate. A good accuracy was observed in all cases.

For the WT configuration, a baseline table was constructed based on a few expen-
sive viscous calculations H Twenty samples were chosen in the parameter space, and
the PMB solver was used to solve the RANS equations. With the assumption that the
WT geometry table is an increment of the XML table, co-kriging was used to update
the low-fidelity database and to generate a baseline table for the high-fidelity aerody-
namic model. To add the effects of elevator deflection on the baseline WT table, the
increments in forces and moments were considered identical to those computed for the
XML configuration.

The mass and inertia properties of the DLR-F12 full aircraft model were provided
by the DLR. Table[A.2lsummarizes the reference values, and predicted mass and inertia
properties.

The aerodynamic databases for the XML and W' configurations were used to trim
the aircraft for a range of flight speeds at an altitude of 6000m. The trim angle of
attack, trim elevator deflection and the required thrust are illustrated in Fig. [A.11l
Results obtained from look-up tables for the two configurations are compared. For the
XML configuration, the Euler predictions result in smaller elevator deflection angles
than DATCOM, which is explained by the different pitching moment curve slope for

the CFD simulations at transonic conditions. The increase in drag force results in an

3As an example, while a CFD solution on the XML configuration was obtained in one hour on
a single processor, a well converged solution solving the RANS equations on the WT configuration
required two hours on thirty-two processors.
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Figure A.10: Geometry increments to simulate a design study, featuring variation of wing
quarter-chord sweep angle, A,,, and wing area, S; the arrow points at the wing tip trailing-edge
of the baseline XML configuration, which represents the original XML design

D
——

Parameter Value
S 710.62 m?
b 80.72m
c 10.105m
Zeg 41.95m
Zeg —1.21m
mass 115.7 x 103 kg
Iy 11.828 x 103 kg-m?
Ly, 16.679 x 10% kg- m?
I.. 27.163 x 103 kg- m?

Table A.2: Reference values and mass and inertia properties of the DLR-F12 full aircraft
model

increased thrust as the flight speed increases. For the entire speed range, the Euler
results for the XML configuration are close and representative of the RANS results for
the WT configuration.

Handling qualities were also assessed. Figure [A.12] shows the short-period and
phugoid characteristics compared to ICAO (International Civil Aviation Organization)

opinion-contour graph and using a Cooper-Harper handling qualities rating scale [201].
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Figure A.11: Trim conditions for the DLR-F12 full aircraft model at an altitude of 6000 m

comparing DATCOM and Euler solutions on the XML configuration and RANS solution on
WT configuration
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The rating scale establishes a relationship between the stability and control parameters
of the airplane and the pilot’s opinion of the airplane. The Cooper-Harper handling
qualities rating scale goes from 1 to 10 with low numbers corresponding to good flying
or handling qualities. The scale is an indication of the difficulty in achieving the
desired performance that the pilot expects. Results are based on tables for the XML
configuration built using DATCOM and the EDGE solver in Euler mode, and for the
WT configuration from the PMB code solving the RANS equations. Two flight speeds,
of 200 and 300m/s, are included. For the short-period, DATCOM results are less
satisfactory and controllable compared to those found for the Euler option. This is
explained considering the very small magnitude of natural frequencies predicted using
DATCOM. For the phugoid, a large discrepancy is observed at the higher speed between
the Euler-based and DATCOM-based results. This arises from the FEuler drag and
pitching moment increases at transonic speeds. The Phugoid attributes improve with
increasing flight speed for all of the aerodynamic sources, but the DATCOM predicted
value is poor. The aircraft natural frequencies are too small when using the DATCOM

aerodynamic tables.

The impact of geometry increments on the handling qualities was then investigated.
The influence of the wing quarter-chord sweep angle, A,,, and wing area, .S, on the short-
period mode are presented in Fig. [A.13l The flight speed is 300m/s at an altitude of
6000m. While the period, T', depends largely on the pitching moment curve slope,
the time to half amplitude, T} /5, depends also on the aircraft pitch damping. The
predictions include the effect of changes in the moments of inertia and the aircraft
mass.

The results suggest that the CFD-based aerodynamic tables provide better under-
standing of the vehicle handling qualities at transonic conditions, whereas the tables
from DATCOM are misleading.

The results presented demonstrate that the CFD-based framework provides a better
understanding of the vehicle handling qualities at transonic conditions when compared
to results obtained using engineering methods. In addition, the original geometry of
the DLR-F12 model was modified to simulate the iterative process of aircraft design.
It was shown that a small number of CFD calculations is required to update existing
aerodynamic tables, and the impact of some geometric increments on predicted flight

handling qualities was assessed.

A.4 Large Transport Civil Aircraft Model

Several aerodynamic models for a large transonic civil aircraft configuration were con-
sidered in a previous work [202]. The low-fidelity aerodynamic models were derived
from DATCOM and a linear potential solver. For higher fidelity, the flow was mod-
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Figure A.12: Short-period and phugoid characteristics for the DLR-F12 full aircraft model
at an altitude of 6000 m compared to ICAO recommendations [201]
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Figure A.13: Impact of geometry increments in the short-period characteristics for the DLR-
F12 full aircraft model at an altitude of 6000 m

elled using the Euler equations. For shorthand, the configuration is referred to as the
B747-like model.

The model geometry was created to best reproduce the layout of the B747 aircraft
from available three-dimensional views, as illustrated in Fig. [A.TJ4l This simplified
geometry, which is well suited in the conceptual design, is built using around one
hundred geometric parameters and is shared between all aerodynamic sources. An
unstructured grid was generated using the open-source code SUMO H for use with
the EDGE solver. The grid, suitable to model the flow with the Euler equations,
consists of 258 thousand nodes, 1.69 million edges and 1.35 million tetrahedra elements.

The surface grid lacks detailed refinement and adopts a simple description for many

“http://larosterna.com/sumo.htnl| [retrieved March 19, 2012]
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components. Control surfaces were sized from the aircraft model. Flaps, inner and
outer ailerons on each semi-wing, an all-moving stabilizer, four-segment elevator and
two-segment rudder are illustrated in Fig. [A.15]

Figure A.14: Overlay of a three-view of a B747 aircraft model and lifting surfaces for low-
fidelity aerodynamics

(a) Overview (b) Nose close up (c) Tail close up

Figure A.15: Medium-fidelity surface geometry for the B747-like model with control surfaces

Three aerodynamic databases were created for each aerodynamic model used. To
assess accuracy in the results, aerodynamic predictions were compared to experimental
data for the B747. Flight handling qualities were also investigated for a transonic
cruise condition. The first database to be generated was representative of low-fidelity
aerodynamics based on DATCOM estimates. A database was then created using the
linear potential method. The corresponding aerodynamic database covered 2160 flight
conditions for different control settings. The Mach number varied between 0.1 and
0.9, the angle of attack between —5° and 10°. The sampling algorithm and the RMS
criterion were used to fill out the baseline table. As the dataset was used in a parallel
work for a control allocation study [198], control surfaces were independently deflected
one at a time. Tables for control surfaces deflection were created using the same
sampling approach as for the baseline table.

As most of the benefit in using CFD in Euler mode comes from a better represen-
tation of non-linear ompressibility effects, tables representative of this higher-fidelity

aerodynamics were generated from scratch for a limited flight envelope around the cruise
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speed. In total, the aerodynamic dataset included nearly ten thousand flow conditions.
The angle of attack varied between —5° and 10°, the Mach number between 0.70 and
0.95 and the angle of sideslip up to 6°. The deflection of the elevator was limited up
to 10°, while the rudder and the ailerons were deflected up to 15°. The run matrix
included 20 separate values for the angle of attack, 10 for the Mach number and 9 for
the sideslip angle. For the angular rates and control surface deflections, 15 separate
values were selected. The baseline table was created using the sampling methodology in
combination with the EIF criterion. The same approach was also used to calculate the
increments in aerodynamic loads for the deflection of the two-rudder segments. Due to
the aircraft symmetry, only positive deflections were analyzed. Figure [A.16] illustrates
the variations of aerodynamic coefficients with variations of angle of attack and deflec-
tion of the two-rudder segments. As the surfaces shown are for a Mach number of 0.9,
they represent a slice through the parameter space (a, M, d,,4). Black cubes indicate
actual CFD calculations. In the plots, eight samples were automatically selected at
different positions along the borders, mostly at the lower and higher ends of the rudder
deflection range. The location and number of samples differ for surfaces at different
Mach numbers, and sample points were observed within the surface boundaries for
some values of the Mach number. A larger number of sample calculations were placed
at the low and high Mach numbers.

Tables for other control surfaces, that is, the all-moving stabilizer, the four-elevator
segment and the ailerons, were generated from additional CFD calculations. These
sample points were distributed along the border and within the parameter space. One
example sample distribution is shown in Fig. [A.17] depicting actual CFD calculations
and the space spanned by the table for aileron deflections. Co-kriging was then used to
update the baseline table for these control deflections. A total of about one hundred
CFD calculations was used to fill out the entire aerodynamic database. Transpiration
boundary conditions was used throughout this study.

Predictions of aerodynamic loads based on different aerodynamic models were com-
pared to wind tunnel experimental data from [203,204]. The interest here is on the
cruise condition, and more details can be found in [202] for the subsonic speed range.

Fig. [A18] compares aerodynamic coefficients obtained using different fidelity aero-
dynamic models. For the lift coefficient, the Euler results show the closest correlation
to the published data. The actual values and the curve slope compare well to exper-
imental values. DATCOM shows comparable lift curve slope, with the actual values
slightly less than experimental data. However, as the Mach number increases, DAT-
COM results begin to fall away from experimental results. TORNADO results without
the compressibility correction remain constant through all Mach numbers, and the
offset from experimental data increases because of the more influential effect of com-
pressibility at higher speeds. TORNADO results with the Prandtl-Glauert similarity
role overpredict the lift-curve slope, diverging at higher Mach numbers. For the drag
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(a) Side force coefficient (b) Yaw moment coefficient

Figure A.16: Variation of aerodynamic coefficients with angle of attach and rudder deflection
at a Mach number of 0.9; the black cubes indicate sample points

Aileron Deflection [deg]

Figure A.17: Illustration of the aerodynamic table for ailerons deflection; black cubes indicate
sample points

polar, it is observed that the DATCOM result shows the best correlation with the
experimental data. This is not unexpected because DATCOM was developed using
conventional configurations and the semi-empirical methods calibrated using, amongst
others, data for the B747. The Euler results differ from the viscous experimental data
in the absence of any estimate of the drag due to friction. The linear potential results
achieve a poor agreement with other data sets. The pitching moment coefficient curve
slope is a good indicator of the aircraft static stability. A good correlation of numer-
ical data sets is achieved in terms of stability. However, the numerical values deviate
by a constant offset, which suggests discrepancies in the C, o value. This is expected
because the term is highly dependent on the aerofoil section and fuselage geometry

used in the computations. The linear potential results with compressibility correction
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Figure A.18: Variable-fidelity aerodynamic predictions compared to experimental data at
Mach number of 0.8 for the B747-like model; experimental data are from [204]

overpredicts the curve-slope, amplifying the compressibility effect on the static stabil-
ity. The Euler results achieve a good comparison with experimental data for the Mach
numbers considered. At the higher end of the angle of attack range, the trend line for
the experimental data set has non-linear behaviour, possibly caused by interactions of
the boundary-layer and shock waves.

For the flight dynamics studies to follow, reference values of the B747-like model
are summarized in Table[A.3l The mass and inertia properties were estimated, and are
given in the same table. The propulsion system was assumed to provide the necessary
thrust during all phases of the flight envelope.

Using the available aerodynamic databases, the trim conditions for the B747-like
model were computed at cruise altitude of 11000 m for several values of the Mach num-
ber. The trim angle of attack and trim elevator deflection are presented in Fig. [A.T9l

The angle of attack required for trim decreases as the Mach number increases, which
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Parameter Value

S 511.0m?
b 59.64m
c 9.0798 m
d 68.5m
Teg 29.35m
Zeg —0.69m
MTOW 367.52 x 103 kg
J . 32.158 x 10 kg- m?
L, 49.838 x 109 kg- m?
I, 77.613 x 105 kg-m?

Table A.3: Reference values and mass and inertia properties of the B747-like model
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Figure A.19: Trim conditions at transonic speed range for the B747-like model at an altitude
of 11000 m using different fidelity aerodynamic models

is not unexpected due to the corresponding higher dynamic pressure. With signif-
icant compressibility effects in the transonic regime, and with shock waves moving
downstream on the wings, the aerodynamic centre moves aft and the static margin
increases. The required elevator deflection to trim the aircraft also increases. The cor-
relation to experimental data is best for the database of forces and moments generated
using the Euler equations. This highlights the shortcomings of engineering methods in
the transonic regime, which calls for a higher-fidelity representation of the flow physics
as achieved in a CFD simulation. It also indicates that the aerodynamics computed
using CFD for the B747-like model is representative of the real aircraft model, and that
modelling the flow with the Euler equations on a simplified geometry description can
provide the designer with valuable information otherwise not predicted with low-fidelity

models.
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A.5 Standard Dynamic Model

The framework for generating manoeuvres based on the solution of a time-optimal
problem was exercised with the SDM model [23]. More details pertaining the model
configuration, block structured grid and numerical simulations were presented in Chap-
ter B2.1l To allow manoeuvring the aircraft, control surfaces were added to the com-
putational mesh. Mesh block faces were placed on the control surfaces, and the mesh
points on these faces were deflected to define the control surface mode shapes. After
the surface grid point deflections are specified, transfinite interpolation is used to dis-
tribute these deflections to the volume grid [104]. A view of the surface mesh for the
deflected control surfaces is shown in Fig. [A.20l An all-moving elevator, ailerons and

rudder were used for longitudinal and lateral-directional control.

Figure A.20: Deflected control surfaces for the SDM model

Geometry reference values were given in Table Bl Mass and inertia properties
of the SDM model are available for a free-flight model which represents a 1/72 scale
aircraft [205]. These values were scaled-up to match the dimensions of the current
computational model. The maximum total thrust force, T,, = 26.24 kN, is assumed
to cross the centre of gravity. The direction of the thrust relative to the aircraft is
assumed to remain unchanged with altitude and flight speed, and to vary linearly with
the engine throttle.

To generate the aerodynamic database of forces and moments, four sub-tables were
created, three were for the control surface deflections. The Mach number was varied be-
tween 0.1 and 0.4, and all manoeuvres were simulated in the subsonic speed range. The

angle of attack was varied between —14° and 28°, and deflection limit for all controls
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Parameter Value

Teg 991m

mass 9295.44 kg
Ix 12.874 x 103 kg-m?
Iy, 75.673 x 103 kg- m?
I, 85.552 x 103 kg- m?

Table A.4: Mass and inertia properties of the SDM model

was set to 20°. Around 6000 table entries were defined. The baseline table consisted of
156 flight conditions, and a brute force approach was considered for varying the Mach
number and angle of attack, while keeping the sideslip angle to zero. For the lateral
coefficients, a different approach was considered because all the lateral coefficients in
the created baseline table were zero. Lateral coefficients obtained using DATCOM
were used as low-fidelity data, and then co-kriging with a few Euler results was used
to generate the updated baseline table. The dependence of the longitudinal forces and
moments on other parameters was assumed to be an increment of the baseline table
and the co-kriging data fusion method was used to include these variation in a compu-
tationally efficient way. With fifteen additional samples the variation with the elevator,
ailerons and rudder was included in the tables. Samples were located at the vertices
of the parameter space and at a median value within the domain. The response of
the aerodynamic coefficients to variations in angle of attack and elevator deflection at
a Mach number of 0.4 is illustrated in Fig. [A.2I] Considering the non-linear features
shown, it can be argued that the number of sample points used was small for an ade-
quate representation of the aerodynamic loads. While static coefficients were adequate
to represent aerodynamic loads for slow manoeuvres, the simulation of faster motions
included dynamic dependencies. Dynamic derivatives were computed from forced mo-
tions, and assumed to be independent of the Mach number and to vary with the angle
of attack only. This assumption was demonstrated to be adequate in the speed range
below a Mach number of 0.5, as given for example in [85] where dynamic derivatives

from low-subsonic to high-transonic regime were compared to experimental results (see
also Chapter B.3.1]).

Aerodynamic loads for a set of manoeuvres were predicted using the tabular model
of forces and moments, and these were compared to the unsteady CFD solution, which
is the reference solution because it is time-accurate. To guarantee a realism in the
manoeuvres to be simulated, these were generated solving an optimal control problem.
The problem of moving the aircraft from the initial state to the final state is rewritten
as a control problem by minimizing a suitable cost function. Constraints are specified
for the states, describing the aircraft position and attitude, and for the controls, re-

alizing physical limitations on the use of control effectors. The resulting constrained
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Figure A.21: Response of aerodynamic coefficients to angle of attach and elevator deflection
at a Mach number of 0.4

optimization problem, with the six degrees of freedom equations of motion as a fur-
ther constraint, can be solved using standard techniques, as in [206]. In the current
framework, the DIDO codeﬁ [207] is used for the solution of the optimal problem, with
aerodynamic forces and moments obtained from the look-up tables. Technical details

can be found, for instance, in [208-210].

Two sets of manoeuvres were generated using the optimal control problem to demon-
strate, first, a good comparison between the tabular model and the CFD solution for
slow motions, and, then, to stress the limitations of the tabular model when confronted
with flows exhibiting time-history effects. A variety of manoeuvres, two of which are
illustrated in Fig. [A.22] were simulated at low rate, and the solution of the optimal
control problem was found using static tabular data. In all cases presented, the aero-
dynamic loads from the tabular model compared well with the time-accurate solution.
The assumption of quasi-steady aerodynamics describes well the flow around the mov-
ing airframe, adapting instantaneously to changes in geometry attitude and without
time-history effects influencing its development. The effect of increasing the angu-
lar rate for a given manoeuvre was then investigated. The manoeuvre was a pull-up
with time-varying angle of attack, and was simulated initially at a pitch rate as low
as 2.0°/s. Whilst for 20.0°/s the inclusion of dynamic terms shifted the static pre-
diction to match the time-accurate solution up to high angles of attack, discrepancies
were observed at the higher end of the angle of attack range when the pitch rate was
increased to 100.0°/s. Under these circumstances, significant history effects due to

vortical interactions are present as illustrated inspecting the vortex surface footprint.

http://www.elissarglobal.com/| [retrieved March 19, 2012]

195 of P13


http://www.elissarglobal.com/

\& * * Turn 90deg
v
Wing—-Over x ‘4’5

)"__
»- 4

Figure A.22: Wing-over and a 90-degree turn manoeuvres were simulated for the SDM model
in [23]

A.6 Ranger 2000 Aircraft

The framework for the replay of manoeuvres was tested for several aerobatic manoeu-
vres performed with the Ranger 2000 aircraft [183]. The influence of dynamic deriva-
tives, however, was neglected in this study. This aircraft is a mid-wing, tandem seat
military training aircraft with a turbofan engine with uninstalled thrust of 14.19kN. A
three-view representation of the Ranger 2000 aircraft is shown in Fig. [A:23] Reference
values, and mass and inertia properties are summarized in Table [AL5l Conventional

control surfaces are used.

2.32m
3.90m

1.03m
I
i
1
1
b
3.07m

10.46 m

Figure A.23: A three-view of the Ranger 2000 aircraft

A block structured grid for the PMB solver was generated at Liverpool with 14.5
million points for the half-configuration. The flow was modelled using the Euler equa-
tions. Control surfaces were included to the grid, and a grid for a full-configuration was
used for lateral manoeuvres. Deflected control surfaces are illustrated in Fig. [A.24]

The complete aerodynamic database included the effects of angle of attack, Mach
number, sideslip angle and the deflection of the three conventional control surfaces. In

total, the aerodynamic dataset covered nearly 5900 flow conditions. The angle of attack
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Parameter Value

S 15.5m?

b 10.46 m

c 1.545m

d 10.39m

MTOW 3765 kg
I 9.287 x 10 kg- m?
Ly 13.584 x 103 kg-m?
I, 21.237 x 103 kg- m?

Table A.5: Reference values and mass and inertia properties of the Ranger 2000 aircraft

(a) Surface pressure distribution (b) Deflected control surfaces

Figure A.24: Grid for the Ranger 2000 aircraft; the surface solution is obtained at o« = 6.0°
and M = 0.8

varied between —10° and 12°, the Mach number between 0.25 and 0.60 and the angle
of sideslip up to 20°. The deflection of the elevator and ailerons was limited between
—25° and 15°, while the rudder was deflected up to 17.5°. Cases for negative sideslip
angles, negative rudder and ailerons deflections were not computed due to geometric
symmetry. The run matrix included 23 separate values for the angle of attack, 8 for the
Mach number and 9 for the sideslip angle. For the control surfaces, 9 separate values

for the elevator and ailerons, and 5 for the rudder were selected.

The baseline table was created from scratch using sampling methodology based on
the EIF criterion to efficiently identify non-linearities in the aerodynamic loads. A total
of sixty-five CFD calculations was computed for the baseline table and extended to cover
the 1656 different combinations of (a, M, 3). Figure [A.25] illustrates the distribution
of sample points obtained with the EIF criterion in the three-parameter space, limited

to positive values of the sideslip angle. The figure also shows surface plots of the
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aerodynamic coefficients for variations in angle of attack and Mach number. Black
cubes indicate CFD calculations at sample points. At low speed, the lift and moment
coefficients have a linear behaviour and the drag coefficient behaves as a quadratic
function of the angle of attack. As the angle of attack increases at the higher end
of the Mach range, the shocks become stronger resulting in a backward shift of the

aerodynamic centre.

Side-Slip Angle [deg]

(c) Drag coefficient (d) Pitching moment coefficient

Figure A.25: Response of aerodynamic coefficients to angle of attach and Mach number at
zero sideslip angle; the black cubes indicate sample points

To include the aerodynamic increments due to the deflection of control surfaces,
three tables were generated for the ailerons, elevator and rudder. CFD calculations
were computed at an ensemble of chosen points, and co-kriging was used to update the
baseline table with these solutions. Figure illustrates the position of the chosen
sample points in the parameter space for the ailerons, elevator and rudder deflections
at a Mach number of 0.25. Black squares indicate actual CFD runs. Calculations

at zero deflection angles were made when creating the baseline table. Sample points
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were uniformly distributed throughout the parameter space, as seen for the ailerons
and for the rudder. A lack of samples at moderate angles of attack is observed for the
elevator, and the distribution shown is clearly inadequate to capture any non-linear
phenomena associated with the elevator deflection. As the interest in the study was
focussed on replaying manoeuvres at subsonic flow, the coverage of the two-dimensional
parameter space is poorer at higher Mach numbers. A total of 101 CFD analyses were
run to populate an aerodynamic database consisting of nearly 5900 entries. Note that
a validation of aerodynamic predictions against wind tunnel data was performed and
showed agreement between the two sources in terms of static and control aerodynamic

information.
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Figure A.26: Illustration of the aerodynamic tables for deflection of control surfaces at a
Mach number of 0.25; black squares indicate sample points

The flight test data consists of all aerodynamic forces and moments with respect
to the aircraft states, which include angle of attack, sideslip angle, Mach number,

rotational rates, acceleration rates, elevator, rudder, control and the altitude of flight.
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Various aerobatic manoeuvres were performed to demonstrate general aircraft handling
qualities. These include Barrel Rolls, Clover Leafs, Immelmann Turns, inverted flight,
Lazy Eights, Loops, and Split-S. The entry conditions and the time histories for each
manoeuvre were provided by EADS military air systems. Figure illustrates the

manoeuvres considered in reference [183].

e

oy mPese X
* Lazy Eight f Barrel Roll

*y J-’ 1‘ Immelmann Turn X
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Figure A.27: Simulation of manoeuvres for the Ranger 2000 aircraft compared to flight test
data

The time-accurate CFD solution corresponding to the time-optimal manoeuvre was
calculated, and compared to the aerodynamic forces extracted from the tabular model.
In all cases considered, the solutions from the look-up tables match the time-accurate
solutions from the replay. This can be attributed to considering benign flight conditions
which do not exhibit significant hysteresis effects, but illustrates the validity of the
CFD framework for generating aerodynamic tables and replaying manoeuvres to test

the aerodynamic database.

The framework of replaying manoeuvres using CFD was exercised with other con-
figurations, including the Standard Dynamic Model [23] and an unmanned combat air
vehicle model [211]. More details on the methodology and testcases can be found in
reference [32]. The investigations presented suggest that the tabular model is ade-
quate to represent the aerodynamics of manoeuvring aircraft in benign flow conditions.
With topological changes in the flow, the underlying assumptions of linearity and time-
invariance are not met, and a loss of accuracy can be experienced. It is worthwhile
to investigate the application of alternative mathematical models. In reference [185],
several low-order models were compared for ability to predict non-linear unsteady aero-
dynamic loads for a two-dimensional aerofoil under conditions of shock-induced sepa-
ration. The model based on aerodynamic derivatives was also included. It was claimed
that the training data plays a key role in the development of the model, and dependency

upon model parameters was observed. With a lack of robustness, low-order models are
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unlikely to replace the current model based on aerodynamic derivatives. The need for

improvements opens up large opportunities in this research area.

A.7 Conclusions

Despite possible limitations, this appendix illustrates that CFD can now be used in a

reasonably routine fashion for stability and control studies.
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Appendix B

Applications of Indicial

Aerodynamics

Extensive use of indicial aerodynamic functions in the study of manoeuvring lifting
surfaces has been made, see for example Ref. [76]. The indicial aerodynamic response
can be thought of as the aerodynamic response, as a function of time, to an instanta-
neous change in one of the conditions determining the aerodynamic properties of the
system in a steady flow. The indicial theory stems from the assumption of linearity.
This allows to compute the system response to a simple input function, and any de-
sired output can be calculated from this known response by convolution. When the
governing equations are linear, the response y (¢) to any forcing function f (¢), having
a continuous derivative, is obtained by the convolution or Duhamel’s integral

y(t) = f(0) A(t) +/0 %@A(f — 7)dr (B.1)

where A indicates the indicial response to a step change function. The integral can

also be written as

y(t) = /O ()Mt~ 7) dr (B.2)

where H is the indicial response to a unit-impulse function.

Being a mathematical concept, there are no direct means of measuring the indi-
cial aerodynamic response by experiments. However, attempts were reported to relate
experiments for oscillating flows back to the indicial response from the frequency do-
main [190]. For a compressible flow, there are no exact closed-form analytical solutions
for all time. By use of linear piston theory [212], the initial values of the indicial re-
sponse can be obtained, and the final values are given by a steady-state method. Exact
analytical expressions of the indicial response to a step change in angle of attack, a

step change in pitch rate and for the penetration into a sharp-edged gust in subsonic
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compressible flow were obtained by Lomax [213]. More recently, CFD has been used
as the source for the computation of indicial responses, and this is presented next.
Note that the identification of the aerodynamic response to a unit-impulse function
has been performed using CFD without great success [214]. This can be attributed to
the sensitivity of the response simulated to the time-step size of the unsteady simulation
and to the dependence on the amplitude of the applied impulse. It was shown that
inaccuracies in the impulse-based response degraded the prediction for any arbitrary
input obtained by convolution. Therefore, the approach based on the identification of

the unit-impulse response was not pursued in the framework presented.

B.1 Formulation

The first attempts to directly determine the indicial response by CFD were reported in
Refs. [34,215]. It was suggested that the numerical simulation of a step change in some
motion parameter was likely to present some challenges, as described below. To over-
come these issues, previous approaches used an indirect method for the determination
of the indicial response [36]. A smoothed function, continuous in time, was preferred
to a step change function because the flow is not exposed to any discontinuites. The
indicial response of the integrated loads was extracted using the Laplace transform,
but in the transformation, insights into the flow development were not attainable.

An alternative is based on the direct determination of the indicial response caused
by the step change, but this poses some questions. If the step change is applied as a
boundary condition (moving the grid), numerical oscillations may be experienced and
non-physical features in the flow observed because of the very large time derivative. A
valid consideration is that changes in one parameter may affect another input. Consider,
for example, the case of an aerofoil subject to a step change in angle of attack. Because
the aerofoil also experiences a very large pitch rate at the initial time, the indicial
response computed will be representative of the combined effects of the two parameters.
A method was suggested in Refs. [34,215]. The underlying idea of the field-velocity
approach is the equivalence between a moving aerofoil in a stationary flow, and the
moving flow over a stationary aerofoil. In this case, the step change in a motion
parameter is incorporated into the CFD solver by modification of the grid velocity
throughout the flow domain. The grid velocity is the velocity of a grid point during
the unsteady motion of the aerofoil. The step change in any input can be thought of
as a step change in grid velocity over the entire flow domain. The indicial response
to a pitch rate is computed by imposing a grid velocity that varies linearly with the
distance from the rotation axis. This avoids the need to move the mesh, and leads to
a natural decoupling of the input parameters that influence the aerofoil loading.

The PMB code was enhanced to simulate the time histories of the aerodynamic

loads to a step change in any motion parameter and to an arbitrary gust shape. The
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two direct methods described above were used to compute the response to a step change
in angle of attack. The approach based on grid motion is referred to hereafter as BCA,
whereas the field-velocity approach denoted by FVA. The latter was also used for the

gust response.

B.2 Validation

Numerical results are compared to exact closed-form expressions obtained for a flat
plate [213]. To reduce the effects of thickness, a NACA 0006 aerofoil was used.
The computational mesh for the solution of the Euler equations is similar to that
described in Chapter 3l In all cases, the unsteady simulations used five thousand
time steps for a non-dimensional time duration of thirty. Note that calculations were
repeated for a smaller time-step, with identical results obtained. It is worth noting
that the non-dimensional time used in the analytical formulation below is given by
s = 2tUy/c. This is in contrast to the convention commonly adoped in CFD, where
the non-dimensional time is defined as t* = t Uy /c.

Shown in Fig. [B.lis the indicial response of the lift coefficient for a step change in
angle of attack, Aa = 4.58°, for several values of Mach number. For all time, numerical
results obtained by grid rotation are virtually identical to results computed using the
field velocity approach. The indicial response consists of two distint regions, separated
by an intermediate overlapping area. The initial part of the response is representative
of the impulsive motion of the body, and of the resulting pressure difference between
the upper and lower surfaces where the formation of a compression and expansion wave
is observed. The effects of the initial non-circulatory loading are confined within a few
chord lengths of the distance traveled. The initial values of the indicial response are
given by linear piston theory

Cr, (0) 4

Aa M (B.3)

After the decay of initial transients, the response converges asymptotically to the
steady-state value correponding to the effective angle of attack caused by the step
change. The asymptotic value of the circulatory loading can be obtained by linearized

quasi-steady theory

. CL(s) 27
lim =
s—oo Aa 1 — M2

(B.4)

Table [B.I] summarizes analytical and numerical results of the asymptotic values of the
indical response. Increased differences for the highest Mach number are likely because of
non-linear compressibility effects captured by CFD calculations. The Wagner function

gives the indicial build-up of the circulatory part of the lift. It accounts for the influence
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Mach Quasi-Steady CFD

0.3 6.58 6.74
0.5 7.25 7.39
0.8 10.47 12.17

Table B.1: Asymptotic values of the indicial response of lift coefficient for a step change in
angle of attack, Cr(00)/Aa

of the shed wake, and is known exactly in terms of Bessel functions. For a practical

evaluation of the Duhamel integral, the Wagner function is expressed as an exponential

approximation
6(s) = 1 — Dre ™ — Bye " (B.5)

with the coefficients ®; = 0.165, &3 = 0.335, ¢1 = 0.0455, and o = 0.3 from
R. T. Jones [216]. Several approximations are available in the literature, as given
by Garrick [217] and W. P. Jones [218]. Observe that ¢ (0) = 0.5. No closed-form
analytical expressions are available in the intermediate overlapping region. However,

the similarity of the results presented in Fig. Bl with CFD calculations from Ref. [34]

is noted.

15
CFD, BCA

—_————— CFD, FVA

C, /ba [rad™]

Figure B.1: Indicial response of lift coefficient for a step change in angle of attack (Aa =
4.58°)

An exact analytical expression was obtained by Lomax [213] for a flat plate in a lin-

earized compressible flow. The expression is valid for small times, less than a chord of
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the distance traveled,

CL(s) 4 1- M oM
—=N — < < — .
Aa M(l 2 M 5) for 0= s < (B-6)

Figure [B.2] conveys a comparison between the above expression and numerical results.
The application of the analytical formulation to the highest Mach number is suspect. A

good correlation of numerical data to CFD-based simulations from Ref. [34] is observed.
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Figure B.2: Indicial response of lift coefficient for a step change in angle of attack for small
times (Aa = 4.58°); reference data are from Lomax [213]

Next, the response to a sharp-edged gust is considered. At the initial time step, the
gust front is located at the aerofoil leading-edge. For successive time steps, the gust
advances toward the aerofoil and the gust velocity is assigned to all points of the flow
domain of coordinate # < s, where T is the non-dimensional length referred to the
aerofoil semichord. A gust velocity of intensity w,/U = 0.08 was selected to induce
a net change in angle of attack identical to the previous case. The Kiissner function
gives the lift build-up for the penetration into a sharp-edged gust. Like the Wagner
function, it is known exactly in terms of Bessel functions, but for practical calculations,

it is convenient to approximate the Kiissner function using an exponential form
P(s) =1 — Upe ™% — Wye ™° (B.7)

where the coefficients ¥ = 0.5792, ¥y = 0.4208, ¢3 = 0.1393, and ¢4 = 1.802 are
taken from Ref. [219]. Note that ¥ (0) = 0. Figure [B.3] shows the lift response for the
penetration into a sharp-edged gust. The CFD-based solution was normalized by the
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asymptotic value of the lift coefficient, and was obtained at Mach number 0.20. Overall,
a good agreement is observed. For increasing Mach number, increasing differences
between CFD and the Kiissner function are expected due to compressibility effects.
Decreasing the Mach number results in the appearance of oscillations of small entity
in the numerical solution as the gust travels over the aerofoil surface, as shown in the
inset. This phenomenon has been reported in a previous study [220], and attribuited to

the convergence process as the gust moves between two adjacent grid points. For small
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Figure B.3: Indicial response of lift coeflicient for a sharp-edged gust at Mach number 0.20
normalized by its asymptotic value (w,/U = 0.08)

times, a closed-form expression was given by Lomax [213] for the penetration into a
sharp-edged gust as
Cr(s)  2s 2M

- for 0 < s <
w/U VAL T T 1+ M

(B.8)

Figure [B.4] shows the computed and analytical results for small times. At lower Mach
numbers, results are virtually identical. At the largest Mach number, differences are
attribuitable to compressibility effects not account for in the analytical formulation.
Results for a sharp-edged gust travelling at constant horizontal speed u, were also
computed. The gust can either advance toward or away from the aerofoil. This is

quantified in terms of the advance ratio

M
A= ——— B.9
M + ug/a (B9)
where a indicates the speed of sound. For a stationary gust, A = 1, and for a step
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Lomax, 1960
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Figure B.4: Indicial response of lift coefficient for a sharp-edged gust for small times (w,/U =
0.08); reference data are from Lomax [213]

change in angle of attack A approaches zero. Responses of lift coefficient for several
values of the advance ratio are shown in Fig. [B.5l Results are in agreement with those
presented in Ref. [220].
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Figure B.5: Indicial response of lift coefficient for a moving sharp-edged gust at Mach number
0.20 normalized by its asymptotic value (w,/U = 0.08); the solution for A = 1 is not plotted,
see Fig. [B.3
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B.3 Prediction

With the computation of indicial aerodynamic responses demonstrated above, the pre-
diction of the linear unsteady aerodynamic loads for any arbitrary input time history
can be achieved using Eq. (B.). For the results presented, two deterministic gust

models were considered. A sinusoidal gust is expressed as

W, (s) = % sin <15> (B.10)

Tg

and a one-minus-cosine gust function as

W, (s) = 2”—5 (1 — cos (% s>> (B.11)

for 0 < s < 27,. The term 7, indicates the gust gradient. CFD calculations were run

using the field velocity approach.

Numerical results are shown in Fig. for gusts of different wavelengths at two
values of Mach number (0.2 and 0.7). The time-accurate CFD simulation is the ref-
erence solution for two convolution models. A first convolution model was generated
from the CFD-based indicial response to a sharp-edge gust at each Mach number. A
second convolution model was constructed based on the Kiissner function. The test-
case illustrated in Fig. is for a sinusoidal gust of 10 chords at Mach number 0.2.
The convolution with the closed-form function is similar in behaviour to CFD results.
Differences are representative of those arising in the indicial response between the two
models, as seen in Fig. [B.l The CFD-based convolution response is identical to the
reference solution. This consolidates the introduced capability of the CFD solver to
simulate gust responses and the adequacy of the CFD-based indicial response to serve
as a reduced-order model for predicting linear responses to arbitrary gust inputs. The
perfect agreement also exemplifies the linearity of the problem. Figure [B.6(b)] illus-
trates the results for a one-minus-cosine gust of 25 chords. The similarity of the results
computed with the previous testcase is not unexpected because linear aerodynamics is
a dominant effect. A more challenging testcase is proposed in Fig. for a Mach
number 0.7. For compressible flows, there is an approximate exponential form of the

Kiissner function, of the form
P (s) = bo + bre ™% 4 bye 5 4 hye s (B.12)

and this was used in the corresponding convolution model. The coefficients are tabu-
lated in Ref. [221] (taken from Ref. [222]) for several values of Mach number. At Mach
number 0.7, by = 1.400, by = —0.563, b = —0.645, b3 = —0.192, 51 = 0.0542,
B2 = 0.3125, and B3 = 1.474. The increased gust intensity and the higher Mach num-
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ber cause the formation of a shock wave on the upper surface, which moves downstream
up to midchord as the aerofoil penetrates into the gust field. Then, the shock moves
toward the leading-edge and disappears. The lift coefficient dynamic dependence is not
distorted with respect to the subsonic case. The convolution model with the Kiissner
function in Eq. (B.12) has increasing differences from the CFD solution when the shock
is present, s > 15. The CFD-based indicial response was computed at Mach number
0.7 for a sharp-edge gust of intensity w,/U = 0.035. There are differences between the
CFD-based convolution model and the time-accurate solution, and this suggests that
the indicial formulation starts to loose its potential when boring into a small source of
non-linearity. In this case, the error in the CFD-based prediction is within 3% of the

maximum value of the reference solution.
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(a) Sinusoidal gust, M = 0.2 (b) One-minus-cosine gust, M = 0.2
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(¢) One-minus-cosine gust, M = 0.7

Figure B.6: Lift dynamic dependence from unsteady CFD calculations and two convolution
models in response to gust of different shapes; in (a), 7, = 10 and wy/U = 0.08; in (b),
Ty = 25 and wy/U = 0.08; and in (c), 7, = 25 and w,/U = 0.14
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B.4 Conclusions

Based on the results presented, the indicial theory applied to unsteady aerodynamic
problems is a simple but powerful predictive tool. The ability to predict the response
to an arbitary input comes at the expense of linearity, which is the major limitation of
this approach. The inclusion of the field velocity approach into an existing CFD solver
is straighforward and well suited to the determination of indicial responses and to the
simulation of gust problems. Results presented confirm this. The point to address,
however, is that the indicial approach in combination with CFD may be not attractive
when extended to non-linear cases. A computational challenge is the calculation of
indicial responses at several values of Mach number and angle of attack for a sufficient
duration time. This makes the non-linear indicial aerodynamics to loose appeal when
CFD is the source of the data. Therefore the extension to a non-linear formulation
was not pursued. Finally, note that the concept of field velocity approach is well suited
to the determination of quasi-steady dynamic derivatives. By superimposing to the
oncoming uniform flow a grid velocity which varies linearly with the distance from the
rotation axis, the derivative of the aerodynamic loads with respect to the angular rate,

e.g. Cr,, can be predicted from two steady-state runs.
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Appendix C

Multi-Linear Interpolation

Consider a regular Cartesian parameter space in d-dimensions, and denote x =
(zo, x1,..., xq—1) the point at which the evaluation of the function f : R? — R is de-
sired. The hypercube, which bounds this point, has 2¢ points, z; = (20, 215+, Zd—1);5
at which the values of the function are known. For convenience, map the bounding
hypercube to the interval [0, 1]¢. The interpolated function, f , is obtained from the

known values of f at the corners of the hypercube

2d 1

d—1 24 1
Feo~ Y f@) [[(-@-=0)= Y f@wx  (©1
0 j=0 i=0

P

where f (z;) are the ordinates to f (x) at 2¢ points, and w; is the basis function associ-
ated with the i-th corner point. The term w; (x) indicates the weight of the i-th corner
point in the computation of f (x).

Note that the computation in Eq. requires 2¢ products, each of which is itself

the product of d terms involving 2 operations. Hence, it requires O (2d+1) operations.
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