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Abstract: Network coding (NC) compresses two traffic flows with the aid of low-complexity algebraic operations, hence holds
the potential of significantly improving both the efficiency of wireless two-way relaying, where each receiver is collocated with a
transmitter and hence has prior knowledge of the message intended for the distant receiver. In this contribution, network coded
modulation (NCM) is proposed for jointly performing NC and modulation. As in classic coded modulation, the Euclidean
distance between the symbols is maximised, hence the symbol error probability is minimised. Specifically, the authors first
propose set-partitioning-based NCM as an universal concept which can be combined with arbitrary constellations. Then the
authors conceive practical phase-shift keying/quadrature amplitude modulation (PSK/QAM) NCM schemes, referred to as
network coded PSK/QAM, based on modulo addition of the normalised phase/amplitude. To achieve a spatial diversity gain
at a low complexity, a NC oriented maximum ratio combining scheme is proposed for combining the network coded signal
and the original signal of the source. An adaptive NCM is also proposed to maximise the throughput while guaranteeing a
target BEPQ1 . Both theoretical performance analysis and simulations demonstrate that the proposed NCM can achieve at least 3
dB signal-to-noise ratio gain and two times diversity gain.

1 Introduction

Network coding (NC) has emerged as a promising solution
for future communication networks. The underlying core
idea behind NC is the linear combination and compression
of various traffic flows with the aid of algebraic operations
at intermediate nodes, such as routers or relay stations.
These network coded flows will be decoded at their
destination nodes (DNs) by jointly processing multiple
input flows arriving from different paths and/or by
exploiting some prior knowledge. This ingenious
methodology allows a multicasting network to approach its
maximum-flow capacity bound [1] and hence to support
high-speed multimedia applications. By exploiting the
broadcast nature of wireless downlink (DL) environments,
NC may also attain a substantial power and bandwidth
efficiency gain in unicast wireless transmissions.
In the past decade, the theory and application of NC has

attracted extensive investigations. The initial design
objective was that of approaching the maximum-flow
capacity bound of multicasting wired networks [1]. In an
effort to formulate its unified theory, linear space-based and
algebraic frameworks were proposed for single-source
multicasting described by a general graph model [2, 3]. In
contrast to wired networks, where NC relies on the global
network topology, wireless networks are capable of flexibly
applying NC for achieving substantial throughput gains for

unicast flows. Of particular practical interest is the two-way
relay-aided (TWR) sub-network topology, which relies on
bi-directional/duplex relaying. To the best of our
knowledge, Wu et al. [4] was the first NC-contribution on
the practical subject of simultaneous information exchange
between two unicast flows. Explicitly, the relay node (RN)
computes the XOR of the two bits received from two
distant nodes, and then broadcasts the XORed output bits,
which can be decoded at a node by simply XORing the
received bit with the bit which was originally transmitted
from this node. Assuming the transmission of unbiased
random bits, a 50% potential energy and bandwidth
reduction may be achieved at the relay. To broaden the
application of wireless NC, Katti et al. [5] considered
another related sub-network topology, which was referred to
as X-relaying.
Motivated by its dramatic gain, wireless NC has been

extensively studied throughout the past decade. In
particular, wireless NC can be categorised into two
scenarios, namely the three-timeslot TWR, where the two
source nodes (SNs) transmit in two different timeslots to
avoid the mutual interference [4, 5], and the two-timeslot
TWR, where both of the two sources transmit
simultaneously, hence superimposing the two signals in air.
The two-timeslot TWR was studied by Zhang et al. [6] and
Popovski and Yomo. [6, 7], who proposed physical layer
NC, also referred to as amplify-and-forward bi-directional
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relaying, where the relay forwards a noisy version of the
superimposed signal. To avoid forwarding the noise
contribution, Koike-Akino et al. [8] proposed a
denoise-and-forward protocol for two-timeslot TWR. By
contrast, the three-timeslot TWR, also known as
decode-and-forward (DF) TWR, results in 30% bandwidth
efficiency loss compared to the two-timeslot TWR.
However, it holds the promise of achieving higher diversity
gain, broader applications and higher energy efficiency of
RN, which will be realised in this paper. For three-timeslot
TWR, it is critical to design NC of DL broadcast phase. In
the symmetric case, where the rates of bi-directional flows
are the same, the relay may simply calculate the bit-by-bit
XORQ1 of each pair of bits and then maps the resultant NC
bits to the transmitted symbols. However, asymmetric TWR
is more practical, since the two-way traffic flows may have
different symbol rates. Furthermore, the different link
qualities and BER requirements of the two links may result
in different channel coding rates and modulation
constellations. In these asymmetric scenarios it is
suboptimal to use conventional bit-level NC, such as the
separate XOR addition and successive modulation. Hence,
the efficient mapping of bits to symbols in the DL
broadcast phase of three-timeslot TWR has been
extensively studied [9–19]. The DL capacity of asymmetric
DF-TWR was investigated in [9, 10]. More practically, NC
was jointly designed with superposition coding [11], with
physical layer coding [12], lattice coding [13] and with
symbol level coding [14] to improve the asymmetric TWR.
Most recently, the joint design of NC and modulation,
which was also referred to as network coded modulation
(NCM), has been investigated in [15–19], whereas a
DF-based NC scheme was proposed in [20], where the
bit-to-symbol mapping was optimised using a numerical
search. Furthermore, a symbol-based physical-layer
NC arrangement was proposed for a two-way relay channel
in [21].
Against this background, we proposed a

maximum-Euclidean-distance (ED) NCM for asymmetric
DF-TWR, which may also rely on maximum ratio
combining (MRC) detection. More specifically, although
the XOR/modulo addition of non-binary symbol indices is
indeed invertible and hence has no decoding ambiguity [9],
the ED of legitimate symbols is usually not maximised. Our
novel contribution is that the ED of legitimate symbols is
maximised by jointly designing of NC and modulation. For
arbitrary constellations, universal NCM is proposed based
on the classic set partitioning technique of Ungerboeck
originally conceived for maximising the minimum ED of
the symbols in Trellis coded modulation (TCM) designed
for point-to-point channels [22]. We will demonstrate that
for phase-shift keying/quadrature amplitude modulation
(PSK/QAM), practical NCM can be realised by the
strikingly low-complexity modulo addition of the
normalised phase/amplitude. Each receiver then decodes a
rotated/circularly shifted PSK/QAM constellation.
Furthermore, a low-complexity NC oriented MRC method
is desired for combining the independent fading links
originating from the RN and SN at the DN. However, the
conventional MRC cannot be involved for combining the
network coded and the original source symbols received at
the destination (DN), because the symbols carried by the
NC signal and the original source symbols are entirely
different. Motivated by this, we then further propose the
NC-MRC philosophy so as to combine the NC signal and
the overheard original source signal at the DN. It is

demonstrated that by invoking the proposed MRC
conceived for NCM, the three-timeslot TWR becomes
capable of achieving a full cooperative diversity gain of 2,
thereby efficiently combating deep fades, because the DN is
allowed to overhear the signals received from a distant SN.
By contrast, the diversity order of two-timeslot TWR is
upper bounded by 1 because of the half-duplex constraint.
Furthermore, NCM is applicable to the X-relaying topology
[5, 19], whereas two-timeslot TWR is not, because the
concurrent transmission of two sources will cause severe
mutual interference at both destinations. In this case, neither
of the two destinations may obtain the prior knowledge
required for network decoding by listening to its nearby
source. Finally, NCM has a higher energy efficiency than
the two-timeslot TWR, because NCM maximises the
minimum ED. Note that the RN carrying two-way traffic
consumes more energy and hence it becomes the bottleneck
in energy constrained networks. Hence, it is critical to
increase the energy efficiency of the RN. Based on the
above arguments it may be concluded that NCM holds the
promise of a wealth of near future applications.
The rest of this paper is organised as follows. Section 2

presents our system model. Section 3 describes the
proposed universal maximum-ED NCM-based on set
partitioning, which is applicable for arbitrary constellations.
Section 4 proposes a more practical network coded PSK/
QAM regime and provides both its (symbol error rate) SER
analysis as well as its MRC detection and adaptive
formulation. Section 5 compared NCM with various
existing TWR schemes to demonstrate its performance gain.
Our concluding remarks and further research ideas are
provided in Section 6.

2 System model

Consider a TWR network, where a common RN transmits to
DNs DN1 and DN2, each having a prior knowledge of the
message intended for the other. Fig. 1a shows a
bidirectional relaying network, where DN1 and DN2 also
act as source nodes SN1 and SN2. Fig. 1b shows an
X-relaying network [5, 19], where DN1 and DN2 may
decode the signals sent by their source nodes SN1 and SN2,
respectively. [In practice Q2, a destination, for example, DN1

may fail to decode the signal from its neighbour source
SN1. In this case, NC cannot be adopted. Therefore NC for
X-relaying is usually implemented in an opportunistic way

Fig. 1 System model
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[5]. In this paper, we only focus on the scenario where
destinations have successfully decoded the signal received
from its neighbour sources.] Throughout this paper, we let
k = 3− i. Let Wi, i = 1, 2 denote the message of SNk

intended for DNi. Thus, when we refer to DNi, this receiver
has the knowledge of Wk intended for DNk. The data rate of
the message Wi of SNk is denoted by Ri. Without loss of
generality, let us assume the message having the lower data
rate of the two SNs to be W1 and the message having the
higher data rate to be W2. Thus, we have R1 ≤ R2

throughout this paper.
In TWR, the RN will transmit a single symbol, denoted by

X, which simultaneously carries the messages to the two DNs.
In each symbol duration Ts, R1Ts bits of W1 and R2Ts bits of
W2 are jointly mapped to a symbol X chosen from a set X ,
which is also referred to as the constellation. In practice, an
integer number of bits is mapped to each symbol, that is,
we have RiTs [ N. Conventionally, a constellation that
carries RiTs bits/symbol must have Mi = 2RiTs legitimate
symbols. For R1≤ R2, we have (M2/M1) [ N. In this
context, the equivalent baseband signal received at the
coherent receiver of DNi is represented by

Yi = hiX + Zi (1)

Note that SN1 and SN2 transmit in two different timeslots. In
this case, DNi is capable of overhearing the signal X o

i
transmitted by SNk, which is presented by

Y o
i = giX

o
i + Zo

i (2)

In (1) and (2), Zi and Z
o
i represent the additive white Gaussian

noise (AWGN) at DNi, with a noise variance of N0, that is, we
have Zi � CN (0, N0) and Zo

i � CN (0, N0). The fading
channel coefficients spanning from the RN and SNk to DNi

are denoted by hi and gi, respectively. RNi are assumed to
have the perfect channel state information (CSI) of hi and gi.
Assume that SNk and RN have the same transmission

power. Then the energy per symbol can be denoted by
Es := E X| |2= E X o

i

∣∣ ∣∣2. Thus, the transmitter-side
signal-to-noise ratio (SNR) is given by γ = (2Es/N0).

3 Set partitioning based-NCM

In this section, we introduce an universal NCM method based
on adapting the classic set partitioning philosophy, which is

referred to as SP-NCM. Given a modulation constellation,
X , our aim is to maximise the minimum distance of
legitimate symbols for the receivers of both DN1 and DN2.
To convey R2Ts bits per symbol, X must consist of M2

symbols. Let X firstly be partitioned into (M2/M1)
interlaced subsets, each consisting of M1 symbols having
the maximum possible symbol distances, that is, we have
X = ⋃M2/M1−1

n=0 X (n), X (n) > X (l) = Ø, for n≠ l. Let us
label the symbols in the set X (n) as {X(n)[0], …, X(n)[M1 −
1]}. Then the RN’s transmitter will map both messages W1

and W2 into a single symbol X using the following
SP-NCM algorithm (see Fig. 2).
Note that the legitimate symbols of message W1 are always

chosen from a subset X (n), where the minimum ED is
maximised. Embedding the message W2 only determines
which particular subsets to choose and hence affects how to
select X within X (n). As a result, the minimum ED of M1

legitimate symbols of the message W1 is still maximised
even after embedding W2. Furthermore, the constellation X
consisting of only M2 symbols is the minimum symbol set
required for representing the message W2. Accordingly, the
minimum ED of the message W2 is naturally maximised.
The receiver of DN1 is capable of accurately inferring the

subset X (n) and the index m2 by carrying out Steps 1 and 2
of the SP-NCM algorithm based on its prior knowledge of
W2. Then, the minimum distance criterion may be adopted
for estimating X [m̂1 + m2 modM1] from X (n), where the
‘hat’ ^ stands for the estimated value of a parameter. The
decoding algorithm for Ŵ1 is summarised as shown in Fig. 3.
For DN2, its receiver has to firstly estimate the transmitted

symbol X (n̂)[m1 + m̂2 modM1] from X using the minimum
distance criterion. Then DN2 can decode its desired
message Ŵ2 based on its prior knowledge of m1. The
decoding algorithm of this receiver is presented as shown in
Fig. 4.
As mentioned in the above, the legitimate symbols for the

receiver of DN1 always form a subset X (n), in which the
minimum ED has been maximised. Therefore the SER at
the receiver of DN1 is minimised. Unfortunately, the
universal SER analysis of SP-NCM remains a challenge. To
shed light on its performance, below a SER upper bound is
presented. Note that based on the prior knowledge of Wk,
there is a bijective mapping between Wi and the legitimate
symbols of the receiver at DNi. As a result, a symbol
detection error occurs at DN1 or DN2 if and only if
X (n)[m̂1] or X [m̂] is incorrectly estimated. Let the
minimum ED of the symbols in X (n) and X be denoted by

Fig. 2 Algorithm 1 set partitioning-based NCM

Fig. 3 Algorithm 2 decoding algorithm for Ŵ1
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2d1 and 2d2, respectively. Based on Chapter 5.2 of [23], the
SERs at DNi can be upper bounded by

Pi , Mi − 1
( )

Q

��������
|hi|2d2i
N0/2

√⎛
⎝

⎞
⎠

The following example proposes SP-NCM using a PAM-like
constellation, where the symbols are chosen from the real
axis. Let us commence from a zero-mean M1-ary PAM
constellation subset X0 having a minimum ED of 2d1. Then
X (n) is obtained by the shifting operation as

X (n) = X0 + d2 2n− M2

M1
− 1

( )[ ]
,

n = 0, . . . ,
M2

M1
− 1, where d2 ≤

M1

M2
d1

In this case, X (n) > X (l) = Ø, for n≠ l, and therefore,
X = ⋃M2/M1−1

n=0 X (n) has M2 elements. From algebraic
theory, we have X = X0 ⊕ V, where⊕ denotes the internal
direct sum of two sets, and

V = d2 2n− M2

M1
− 1

( )[ ]
, n = 0, . . . ,

M2

M1
− 1

{ }

Note that X (n) is a shifted version of a M1-ary PAM with the
minimum ED of 2d1. The SER of DN1’s receiver is

P1 =
2 M1 − 1
( )

M1
Q

��������
|h1|2d21
N0/2

√⎛
⎝

⎞
⎠

Proakis [24]. By observing that d2≤ (M1/M2)d1, we conclude
that the minimum ED of X is 2d2. Since we have X # R, its
SER is upper bounded by the SER ofM2-ary PAM having the
minimum ED of 2d2, that is, we have

P2 ≤
2 M2 − 1
( )

M2
Q

��������
|h2|2d22
N0/2

√⎛
⎝

⎞
⎠

Recalling that X = X 0 ⊕ V, we have
E{X 2} = E{X 2

0 }+ E{V 2}, where X0 [ X0 and V [ V are
both uniformly distributed random variables with zero
means. Therefore

Es =
M 2

1 − 1

3
d21 +

M−2
1 M2

2 − 1

3
d22

To provide further insights, let us consider DF analogue NC
(DF-ANC), where X = X1 + X2 and Xi is chosen from a
Mi-PAM constellation having a minimum symbol distance

2di. It may be readily seen that for DF-ANC, we have

Es =
M 2

1 − 1

3
d21 +

M2
2 − 1

3
d22

Fig. 5 compares the d21 and d22 tradeoffs of SP-NCM and
DF-ANC. Clearly, given the same Es, SP-NCM achieves a
higher minimum ED and a lower SER.

4 Network coded PSK/QAM

In this section, we propose and analyse NCM designed for
widely used PSK/QAM constellations, also referred to as
NC-PSK/QAM, which may be interpreted as an
instantiation of the unified SP-NCM concept. Specifically,
maximum-ED NCM can be realised by the strikingly
low-complexity modulo addition of the normalised phase/
amplitude. Based on the NC-PSK/QAM design, a new NC
oriented MRC is conceived, which is capable of combining
the network coded signal received from the RN and the
uncoded signal overheard from SNk. An adaptive NCM is
also proposed to maximise the throughput whereas
guaranteeing a target BER.

4.1 NC-PSK and NC-QAM

In NC-PSK, the RN’s transmitted symbol X is chosen from a
M2-ary PSK constellation through two steps. Firstly, RiTs bits
of the message Wi of SNi will be mapped to a symbol chosen
from a normalised Mi-ary PSK constellation having
Mi = 2RiTs symbols, which are represented by

Fig. 4 Algorithm 3 decoding algorithm for Ŵ2

Fig. 5 Comparison of the minimum distance of SP-NCM and
DF-ANC
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X i = cos ui + j sin ui:ui [ Qi

{ }
, where we have

Qi = 0,
2p

Mi
, . . . ,

2(Mi − 1)p
Mi

{ }

Any bit-to-symbol mapping methods, such as Gray coding or
even classic TCM, can be adopted. Given the phase θ1 and θ2,
the RN’s transmitter generates an NC-PSK symbol given by

X = ���
Es

√
cos u+ j sin u
( )

(3)

where the symbol’s phase is given by

u = u1 + u2 mod 2p (4)

Note that Θi represents a finite group with respect to mod 2π
addition, and the phase-set, Θ1 is a subset of Θ2 because of
(M2/M1) [ N. As a result, the group formed by the
resultant phase is exactly Θ2. It can be seen from (3) and
(4) that the originally transmitted symbol of SNk is rotated
by an angle of θk at the RN, before its transmission to both
DN1 and DN2.
Let us now turn our attention to the decoding algorithm of

NC-PSK. To minimise the SER, the classic maximum a
posteriori probability (MAP) detection rule is applied at
both DN’s receivers. Since the SNi-data-dependent message
Wk is also known at the receiver of DNi, this receiver
knows the rotation angel θk. Given the prior knowledge of
θk, the receiver of DNi will detect its desired symbol as

ûi = argmax
ûi[Qi

Pr hi
���
Es

√
cos ûi + uk

( )[{

+ j sin ûi + uk
( )]∣∣Yi, hi, uk}

= argmax
ûi[Qi

arg h−1
i Yi exp juk

( )− ûi
∥∥ ∥∥

(5)

where arg(z) denotes the phase angle of a complex number z.
Equation (5) shows the minimum distance criterion for
NC-PSK. Given this formulation, we may infer the decision
region of NC-PSK required for the decision variable h−1

i Yi
at the receiver of DNi, as shown in Fig. 6, which can be
obtained upon rotating the decision region of conventional

Mi-ary PSK by the above-mentioned angle θk. This implies
that the detection complexity of NC-PSK is the same as
that of classic PSK. Intuitively, the proposed NC-PSK may
be inerpreted as a realisation of SP-NCM, when the
constellation is PSK. Therefore the optimality of set
partitioning guarantees the optimality of NC-PSK, in terms
of both ED and SER. Moreover, when BPSK and QPSK
are adopted, the constellation mapping of NC-PSK becomes
equivalent to that of the scheme proposed in [20]. More
particularly, Chen et al. [20] optimised the labelling for
maximising the minimum distance within the constellation
subset of MPSK, which was carried out with the aid of a
numerical search. As stated by Chen et al. [20], this
numerical search may impose a high complexity, when the
constellations size is large. By contrast, we proposed a
unified framework for NCM using set partitioning, which
can be applied to arbitrary constellations. For practical
constellations, such as MPSK, we exploited the
constellation’s algebraic structure for constructing the
optimal NCM methods and found the associated
closed-form solutions, rather than carrying out a numerical
search. Furthermore, exploiting the beneficial algebraic
structure of the constellations also allowed us to propose
low-complexity decoding methods and to carry out the
relevant SER analysis, which was not possible based on a
numerical search.
Having conceived the transceiver scheme of NC-PSK, let

us now study its SER performance. Recall from the above
discussions that both the constellation and decision regions
of NC-PSK are rotated versions of conventional Mi-ary
PSK having a symbol energy of Es. Intuitively, given the
same symbol distances and decision rules, NC-PSK and
conventional Mi-ary PSK should have the same SER. In
particular, the average SER is equal to the SER conditioned
on θi = 0 and θk = 0 for reasons of symmetry. As a result,
we have

Pi = Pr {ûi = 0|ui = 0, uk = 0}

= 2 Pr arg
��������������
Es + <e[Zi]2

√
+ jℑm[Zi]

[ ]∣∣∣∣
∣∣∣∣ ≥ p

Mi

{ }

From [24], we can arrive at the SER expression Pi at the
receiver of DNi as

Pi ≃ 1+ I {Mi.2}

( )
Q

���
gi

√
sin

p

Mi

( )
(6)

which is conditioned on the receiver-side SNR denoted by
γi = |hi|

2γ. Equation (6) implies the optimality of NC-PSK,
which achieves the same SER at the receiver of the DN, as
if the RN exclusively transmitted to a single receiver only.
This SER property of NC-PSK is also recognised in parallel
to the capacity property of NC in [9, 10], suggesting that
both the RN–DN1 and RN–DN2 links are capable of
approaching their own single-link capacity.
Let us now extend our attention to QAM, where NC-QAM

is implemented in two steps per symbol duration. Note that
the in-phase (I ) and quadrature (Q) components of
rectangular M-QAM may be regarded as a pair of���
M

√
-PAM signals [23]. As a result, in this work, we

present NC-QAM as a set of two parallel NC-PAM
schemes. First, RiTs bits of the message Wi will be mapped
to a symbol from the set of Mi-ary PAM constellationFig. 6 Decision regions for NC-PSK, M1 = 2, M2 = 4
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points, which is formulated as

X i = 2
���
Mi

√
aIi + jaQi

( )
− ���

Mi

√ − 1
( )

(1+ j):aIi , a
Q
i [ Ai

{ }
,

where Ai = 0,
1���
Mi

√ , . . . ,

���
Mi

√ − 1���
Mi

√
{ }

Given the normalised amplitudes aI1, a
Q
1

( )
and aI2, a

Q
2

( )
, the

RN’s transmitter will generate the NC-QAM symbol as

X = d 2
����
M2

√
aI + jaQ
( )− ����

M2

√ − 1
( )

(1+ j)
[ ]

(7)

where the normalised amplitude is given by

aI = aI1 + aI2 mod 1 (8)

aQ = aQ1 + aQ2 mod 1 (9)

and d =
��������������������
(3Es)/2(M2 − 1)
( )√

denotes half of the symbol

distance in QAM, given an energy of Es per symbol. When
NC-QAM is adopted, the symbol to be transmitted to DNk

will be circularly shifted by an amplitude of

2
����
M2

√
aIk + jaQk

( )
d at the RN.

Again, the receiver of DNi knows aIk + jaQk

( )
a priori and

hence it will detect the symbol from a circularly shiftedMi-ary
QAM constellation. Therefore both the detection methods and
the SER analysis of conventional QAM can be borrowed for
NC-QAM. The MAP detection method of NC-QAM at DNi is
formulated as follows

âi = argmax
âIi ,â

Q
i [Ai

Pr hid 2M2 âIi + aIkmod1
( )[[{

+ j âQi + aQk mod1
( )]

− ����
M2

√ − 1
( )

(1+ j)
]∣∣∣Yi, hi, ak}

= argmax
âIi ,â

Q
i [Ai

h−1
i Yi +

����
M2

√ − 1
( )

(1+ j)d

2d
����
M2

√
∥∥∥∥∥

− aIk − jaQk + I
âIi≥1−aI

k

{ } + jI
âQi ≥1−aQ

k

{ } − âIi − jâQi

∥∥∥∥∥
(10)

which is essentially the minimum distance criterion conceived
for NC-QAM. Fig. 7 shows the decision region of an I/Q
component of NC-QAM for the decision variable h−1

i Yi,
which is a circularly shifted version of that of conventional
QAM.
Next, let us derive the SER of NC-QAM. Intuitively, the

SER of a circularly shifted Mi-ary QAM constellation is
identical to that of the original Mi-ary QAM for the same
minimum symbol distance. By recalling (7)–(9) and that
aIi , a

Q
i [ Ai, we have d1 =

����
M2

√
/

����
M1

√( )
d and d2 = d. Let

us insert d1 and d2 into

Pi =
4

���
Mi

√ − 1
( )

���
Mi

√ Q

��������
|hi|2d2i
N0/2

√⎛
⎝

⎞
⎠

and introduce the M1 and M2-dependent coefficient
li = 1−M−1

i /1−M−1
2

( )
. We may thus arrive at the

unified SER expressions of NC-QAM, given by

Pi =
4

���
Mi

√ − 1
( )

���
Mi

√ Q

��������
1.5ligi
Mi − 1

√( )
(11)

which is also conditioned on γi = |hi|
2γ.

Note that λ2 = 1. Accordingly, NC-QAM is capable of
achieving a SER at the higher-rate receiver of DN2 as if the
RN transmitted exclusively to this single receiver only. For
DN1, however, the coefficient is λ1 ≤ 1, which implies
imposing an SNR loss that remains constant across the
entire SNR range. The reason for this SNR loss at the
receiver of DN1 can be stated as follows. As QAM is
regarded as a pair of PAM, we may simply focus our
discussion on the I component. Given aI2, the legitimate
symbols at the receiver of DN1 have a non-zero mean of

d 2
����
M2

√
aI2mod

1����
M1

√
( )

+ 1−
����
M2

√
����
M1

√
[ ]

In contrast to the classic zero-mean
����
M1

√ −ary PAM, the DC
bias of such a circularly shifted

����
M1

√ −ary PAM constellation
will cost some extra energy, which therefore results in the
above-mentioned SNR loss. Fortunately, the SNR loss of
DN1, λ1, is an increasing function of M2, but a deceasing
function of M1. Specifically, it is lower bounded by

l1 =
1−M−1

1

1−M−1
2

. 1− 1

M1
= 3

4

In other words, the modest SNR loss imposed by NC-QAM
will be < 1.25 dB. Furthermore, this lower bound also
implies that the SNR loss becomes negligible, when M1 is
large. As a result, the proposed NC-QAM becomes capable
of approximately maximising the EDs of the legitimate
symbols at both DN1 and DN2. This implies the
near-optimality of NC-QAM. Recall the example of

Fig. 7 Decision regions for I/Q component of NC-QAM,����
M1

√ = 2,
����
M2

√ = 4

www.ietdl.org

6 IET Commun., pp. 1–11
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-com.2012.0819

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790



SP-NCM in Section 3, which can be reduced to NC-PAM for

d1 =
����
M2

√
����
M1

√
�����������

3Es

2(M2 − 1)

√
and d2 =

��������
3Es

M2 − 1

√

Based on the set-partitioning argument, we may conclude that
the ED of legitimate symbols in NC-QAM has been
maximised.

4.2 Average SER of Rayleigh fading channels and
NC-MRC

The TWR concept essentially relies on the wireless
environment, since its broadcasting nature facilitates NC.
However, the hostile fading effects may severely degrade
the attainable transmission reliability. In this subsection, we
conceive from the average SER analysis of NC-PSK/QAM
in Rayleigh fading channels. We propose a low-complexity
scheme for combining the NCM signal received from the
RN and the original signal overheard from the SN so as to
achieve a spatial diversity gain.
Recall that the above SER results of (6) and (11) represent

the SER conditioned on a given receiver-side SNR of γi =
|hi|

2γ. Let us then rewrite the conditional SER Pi(γi) as a
function of γi. Intuitively, the average SER is then
formulated as

kPil =
∫1
0
Pi(gi)

1

�gi
exp

gi
�gi

( )
dgi

for Rayleigh fading channels, where the average receiver-side
SNR is gi = |hi|2g. It is seen from (6) that the average SER of
NC-PSK is identical to that of classic Mi-PSK. From Eq.
(8.113) of [25], we have

kPilPSK = Mi − 1

Mi

1− Mici(�gi)

(Mi − 1)p

p

2
+ tan−1 ci(�gi) cot

p

Mi

( )[ ]{ }
(12)

where

ci(�gi) =
��������������������
�gi sin

2 p/Mi

( )
1+ �gi sin

2 p/Mi

( )
√

For NC-QAM, however, one should take into account the
coefficient λi. From Eq. (8.106) of [25] [For convenience,
we use its high-SNR approximation throughout this paper.],
the average SER of NC-QAM can then be formulated as

kPilQAM = 2
���
Mi

√ − 1
( )

���
Mi

√ 1−
�������������������

1.5li�gi
Mi − 1+ 1.5li�gi

√( )
(13)

From (12) and (13), the diversity orders of both NC-PSK and

NC-QAM are obtained as lim�gi	1 logkPil/ log �gi
( ) = 1. In

other words, the average SER decreases slowly upon
increasing the SNR, simply because of the effects of deep
fading. To overcome this impediment, we combine the
signals received from the independently fading paths so as
to achieve some spatial diversity gain. In the topology
considered, there are two independent paths, one arriving
from the RN and the other from SNk. In conventional
one-way relaying, the DN may readily combine the two
signals received from the SN and RN, because the signals
transmitted by the RN are simply amplified versions of the
SN’s signals. When NC or NCM is employed at the RN,
however, the NC signal and the original signal transmitted
by the SN tend to be totally different. This renders the
conventional MRC scheme inapplicable to TWR.
Fortunately, by carefully observing the relationship of the

NC-PSK/QAM and the classic PSK/QAM, we may
conceive a NC-MRC scheme for combining the NC signal
received from the RN and the original signal overheard
from SNk. To do this, let us first derive the minimum
distance criterion for NC-PSK/QAM from the MAP
criterion. Let X o

i (Wi) and X(W1, W2) represent the mapping
from the messages Wi to the signals X o

i and X. In this context

Ŵi = argmax
Wi

Pr X o
i (Wi), X (W1, W2)|Y o

i , Yi
{ }

(14)

= argmax
Wi

Pr Y o
i , Yi|X o

i (Wi), X (W1, W2)
{ }

(15)

= argmax
Wi

Pr Y o
i , Yi|X o

i (Wi), Jk X o
i (Wi)

( ){ }
(16)

where Ξk(Xi
o) represents a deterministic mapping.

Specifically, we have Jk (X
o
i ) = X o

i exp (− juk ) for
NC-PSK and (see equation at the bottom of the page)

for NC-QAM. Given this deterministic relationship between
X o
i and X, the conditional probability in (16) may be

simplified to Ŵi = argmaxWi
Pr Yi, Y

o
i |X o

i (Wi)
{ }

. Therefore
the transmitted symbol X̂ o

i is estimated as

X̂ o
i = argmax

X o
i

Pr gX o
i + Zo

i , hiJk(X
o
i )+ Zi|X o

i

{ }
(17)

= argmin
X o
i

Y o
i − gX o

i

∥∥ ∥∥2+ Yi − hiJk X o
i

( )∥∥ ∥∥2 (18)

For NC-PSK, the above minimum distance decision criterion
may be simplified to [In the following derivation, we shall
also include the derivation of the conventional MRC
scheme [24]. In particular,

argmin
x

y− hx
∥∥ ∥∥2 = argmin

x
x| |2−x

h∗y
( )∗
h‖ ‖2 − x∗

h∗y
h‖ ‖2

= argmin
x

h∗

h‖ ‖2y− x

∥∥∥∥
∥∥∥∥

Jk(X
o
i ) = d 2

����
M2

√ <e(X o
i )+ di

���
Mi

√ − 1
( )

2di
���
Mi

√ + aIkmod1

( )[{

+ j
ℑm(X o

i )+ di
���
Mi

√ − 1
( )

2di
���
Mi

√ + aQk mod1

( )
− ����

M2

√ − 1
( )

(1+ j)

}[
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where * represents the conjugate complex operation. It is also
worth noting that based on the above derivation the attainable
SNR gain of MRC, which is ||h||2(E|x|2/N0/2).] becomes

ûi = argmin
ûi[Qi

Y o
i − gi

���
Es

√
exp −jûi

( )∥∥∥ ∥∥∥2

+ Yi − hi
���
Es

√
exp −j ûi + uk

( )[ ]∥∥∥ ∥∥∥2
= argmin

ûi[Qi

Y o
i − gi

���
Es

√
exp −jûi

( )∥∥∥ ∥∥∥2

+ Yi exp juk − hi
���
Es

√
exp −jûi

( )∥∥∥ ∥∥∥2
= argmin

ûi[Qi

arg YMRC
PSK − ûi

∥∥ ∥∥

where the NC-MRC’s decision variable is given by

YMRC
PSK = g∗i Y

o
i + h∗i Yi exp juk (19)

Equation (19) combines the original signal received from the
SN and the appropriately rotated NC signal received from the
RN, which carries the original symbol. Given the NC-MRC
scheme’s decision variable of YMRC

PSK , the decoding
complexity is seen to be the same as that of classic Mi-ary
PSK.
Observing that E|Yi exp jθk|

2 = Es, we arrive at the
equivalent SNR of the NC-MRC decoder for NC-PSK
given by γi = (|hi|

2 + |gi|
2)γ. In other words, the SNR is

improved by a factor of |gi|
2γ, which is an explicit benefit

of NC-MRC. This also implies that the energy of the signal
overheard from SNk is fully exploited. In this case, the SER
conditioned on the channel gains hi and gi is given by

Pi� 1+ I{Mi.2}

( )
Q

����������������
|hi|2 + |gi|2
( )

g
√

sin
p

Mi

( )

From Eq. (9.15) of [25], we arrive at the average SER of
NC-PSK relying on MRC as follows

kPil
MRC
PSK

= 1

p

∫ (Mi−1)p/Mi( )
0

sin4 f

sin2 f+ hi|hi|2�g
( )

sin2 f+ hi|gi|2�g
( ) df

(20)

where ηi = sin2(π/Mi).
Next, let us simplify the minimum distance criterion of

NC-QAM to that of MRC aided NC-QAM. For
convenience, let us introduce the short-hand

gi = g

��������
M2 − 1

Mi − 1

√
= gl−1/2

i

����
M2

Mi

√

Similarly, based on (18), we have

âi = argmin
âi[Ai

YMRC
QAM − âi

∥∥∥ ∥∥∥ (21)

where the NC-MRC’s decision variable is given by (see (22))

where m âi, ak
( ) = I

âIi≥1−aI
k

{ } + jI
âQi ≥1−aQ

k

{ } − aIk − jaQk .

Equation (22) combines the original signal received from
the SN and the circularly shifted version of the NC signal
received from the RN. The decoding complexity of the
NC-MRC’s output variable YMRC

QAM is equal to that of Mi-ary
QAM. Clearly, the equivalent SNR of the Mi-ary QAM

decoder is gi = |hi|2 + l−1
i gi

∣∣ ∣∣2( )
g. As a result, the SER

conditioned on hi and gi is expressed as

Pi =
4

���
Mi

√ − 1
( )

���
Mi

√ Q

�����������������������
1.5 li|hi|2 + gi

∣∣ ∣∣2( )
g

Mi − 1

√√√√
⎛
⎜⎝

⎞
⎟⎠

which shows that the energy of the overheard signal is fully
exploited in order to bring about an additional SNR gain of
|gi|

2γ. From Eq. (9.15) of [25], the average SER of
NC-QAM relying on NC-MRC may be formulated as

kPil
MRC
QAM = 4

���
Mi

√ − 1
( )
p

���
Mi

√
×

∫(p/2)
0

sin4 f

sin2 f+ kili|hi|2�g
( )

sin2 f+ ki|gi|2�g
( ) df (23)

where κi = (1.5/(Mi − 1)).
More importantly, (20) and (23) allow us to analyse the

diversity gain of NC-MRC. In particular, it may be readily
shown that

lim
�g	1

logkPil
MRC
PSK

log �g
= lim

�gi	1
logkPil

MRC
QAM

log �g
= 2

that is, the diversity order of NC-PSK/QAM relying on
NC-MRC is 2. Clearly, the proposed NC-MRC achieves the
maximum diversity order of 2 by combining the RN’s NC
signal and the SN’s signal arriving from two independently
fading paths. It is worth noting that this cannot be achieved
for two-timeslot TWR, where the two SNs transmit to the
RN simultaneously. For the bi-directional relaying scenario
of Fig. 1a, this is simply because of the half duplex
constraint, which forbids for the DN to receive from the
channel, when it transmits. For X-relaying shown in
Fig. 1b, this is because the concurrent transmission of two
SNs will inflict severe mutual interference upon the DN. By
contrast, the three-timeslot TWR regime has a lower
spectral efficiency, but it is capable of achieving a
cooperative diversity gain of 2, which is highly desirable in
a severely fading wireless environment.

YMRC
QAM =

����
l−1
i

√
g∗Yo

i + h∗i Yi − d(1+ j) gi
∣∣ ∣∣2 ������������

M2/liMi

( )√
+ hi

∣∣ ∣∣2( )
+ 2d

����
M2

√
hi
∣∣ ∣∣2m âi, ak

( )
2d

����
M2

√
l−1
i gi

∣∣ ∣∣2+ hi
∣∣ ∣∣2( ) + 1

2
(1+ j) (22)
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4.3 Adaptive NCM

In this subsection, an adaptive NCM scheme is proposed for
maximising the data rates of two-way links under certain BER
constraints. Recalling the similarity of the SER formulas
between NC-PSK/QAM and conventional PSK/QAM, we
may conceive the adaptive NCM from conventional
adaptive modulation [26, 27]. Conventional adaptive PSK
will map the transmitter’s data to a symbol from 2n-ary

PSK, when the receiver-side SNR is gPSK [ g(n)PSK, g
(n+1)
PSK

[ ]
,

where g(n)PSK , n = 1, 2 . . . denotes the minimum SNR
required for 2n-ary PSK to meet the target BER. Since the
SER expression (6) of NC-PSK is exactly the same as that
of PSK, the modulation order Mi of the RN-DNi link can
be chosen in the same way. In particular, we have Mi = 2n

for gi = hi
∣∣ ∣∣2g [ g(n)PSK, g

(n+1)
PSK

[ )
. When NC-MRC is

adopted, the receiver side SNR is increased to γi = (|hi|
2 +

|gi|
2)γ. In this case, however, SNk and RN should use the

same Mi-PSK constellation so that DNi may efficiently
combine the two signals. To meet the target BER at the
RN, the modulation order Mi of SNk should not be higher

than 2n, when huk
∣∣ ∣∣2g , g(n+1)

PSK , where huk denotes the
channel’s coefficient spanning from SNk to RN. As a result,

Mi = 2n for min hi
∣∣ ∣∣2+ gi

∣∣ ∣∣2( )
g, huk

∣∣ ∣∣2g{ }
[ g(n)PSK, g

(n+1)
PSK

[ )
.

Next, let us conceive adaptive NC-QAM from
conventional adaptive QAM, which maps the transmitter’s
data to a symbol from 22n-ary QAM, [Here we focus on
square QAM. The more general rectangular QAM scheme
may be viewed as two parrel NC-PAM signals, which can
be adapted individually.] when the receiver side SNR obeys

gQAM [ g(n)QAM, g
(n+1)
QAM

[ )
, where g(n)QAM, n = 0, 1, . . . denotes

the minimum SNR required for 22n-ary QAM to meet the
target BER. [The specific value of g(n)QAM for n < 4 can be
found in Table 1 of [27].] Note from (11) that NC-QAM
has a SNR loss of λi. Hence, the modulation order Mi of
the RN–DNi link can be chosen as Mi = 22n for

gi = hi
∣∣ ∣∣2g [ l−1

i g(n)QAM, l
−1
i g(n+1)

QAM

[ )
. Since we have λ2 = 1,

the SNR threshold for the RN–DN2 link is the same as that
of the conventional adaptive QAM. Similarly, when
NC-MRC is adopted, we have Mi = 22n for

min li hi
∣∣ ∣∣2+ gi

∣∣ ∣∣2( )
g, huk

∣∣ ∣∣2g{ }
[ g(n)QAM, g

(n+1)
QAM

[ )
.

The adaptive NCM scheme may achieve a higher average
throughput, which is presented by

�Ri =
∑N
n=1

n F g(n+1)
PSK

( )
− F g(n)PSK

( )[ ]

for adaptive NC-PSK and
�Ri =

∑N
n=1 2n F g(n+1)

QAM

( )
− F g(n)QAM

( )[ ]
for adaptive

NC-QAM, where F(x) denotes the cumulative distribution
function (c.d.f.) of the equivalent receiver side SNR, which
is, respectively, obtained by |hi|

2γ for NC-PSK,
min {(|hi|2 + |gi|2)g, |huk |2g} for MRC-aided NC-PSK, λi|
hi|

2γ for NC-QAM, and min {(li|hi|2 + |gi|2)g, |huk |2g} for
MRC-aided NC-QAM. More specifically,

F(x) = 1− e− x/|hi|2g
( )

for NC-PSK and

F(x) = 1− e− x/li|hi|2g
( )

for NC-QAM. For MRC-aided

NC-PSK and NC-QAM, we have

F(x) = 1− hi
∣∣ ∣∣2e− x/ hi| |2g

( )
− gi

∣∣ ∣∣2e− x/ gi| |2g
( )

gi
∣∣ ∣∣2 − hi

∣∣ ∣∣2
⎛
⎜⎜⎝

⎞
⎟⎟⎠

× 1− e
− x/ hui| |2g
( )( )

and

F(x) = 1− li hi
∣∣ ∣∣2e− x/li hi| |2g

( )
− gi

∣∣ ∣∣2e− x/ gi| |2g
( )

gi
∣∣ ∣∣2 − li hi

∣∣ ∣∣2
⎛
⎜⎜⎝

⎞
⎟⎟⎠

× 1− e
− x/ hui| |2g
( )( )

respectively, [|hi|2 = |gi|2 and li|hi|2 = |gi|2 are assumed
for NC-PSK and NC-QAM, respectively.]

5 Numerical results

In this section, a range of representative numerical results are
presented for validating our theoretical analysis. Furthermore,
NCM is compared with benchmark schemes for
demonstrating its potential. Specifically, we invoke the
so-called index-modulo based NC and analogue NC as
benchmark schemes. The index-modulo-based NC maps the
two messages intended for DN1 and DN2 to the symbol
index 0≤m1≤M1 − 1 and 0≤m2≤M2 − 1. Then the
output NC symbol is obtained by X[m1 +m2modM2]. In
analogue NC, RN broadcasts a symbol given by
X = a hu2X1 + hu1X2 + ZR

( )
, which is an amplified version

of the signal received from two concurrently transmitting
SNs [In the following, we also assume the variance of the
noise process ZR at the RN receiver to be zero so as to
formulate a SER lower bound of analogue NC. Let us
assume that |hu1| = |hu2| = 1 for AWGN channels.].
Let us focus on the AWGN channels first, where it is

assumed that hi = 1 for i = 1, 2. Figs. 8 and 9 present the
SER of NC-PSK where M1 = 2 and M2 = 4, and NC-QAM
where M1 = 16 and M2 = 64, respectively. In both of figures,
the theoretical and simulation results match well with each
other. In particular, NC-PSK can achieve the same SER as
if the RN transmitted exclusively to the single DN using
PSK at the same bit rate and the same SNR, since having
two receivers does not require an increased transmit power.
This verifies the optimality of NCM for PSK constellations.
As discussed in Section 4.1, NC-QAM may impose a
modest SNR loss compared to classic one-way transmission
at the receiver of DN1. Quantitatively, for M1 = 16, the SNR
loss of DN1 is < 0.21 dB, which is negligible in practice. In
this figure, we also compared NC-PSK with the benchmark
schemes to demonstrate its performance gain. In particular,
NC-PSK is capable of achieving at least 3 dB SNR gain
over the index-modulo-based NC at the RN–DN1 link
having lower data rate. NC-QAM achieves at least 5.7 dB
SNR gain over the index-modulo-based NC at the RN–DN1

link. These are both due to the fact that the minimum ED
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of legitimate symbols for DN1 is maximised. Furthermore,
both NC-SPK and NC-QAM achieve at least 3 dB SNR
gain over analogue NC at the receivers of both DN1 and
DN2 even though the uplink noise power at the RN’s
receiver is negligible. This is because the energy of symbol
X is equally shared between X1 and X2 in analogue NC.
Next, let us turn our attention to fading channels, where we

assumed that |hi|2 = |gi|2 = 1. Fig. 10 presents the average
SER of NC-PSK both with and without NC-MRC. Again,
the theoretical SER analysis is confirmed by the simulation
results. Note that the slope of the average SER curves
relying on NC-MRC is 2, whereas that without NC-MRC is
only 1. This figure also shows that the benchmark scheme,
for example, the analogue NC [For Rayleigh channels, the
lower bound is formulated by assuming the variance of the
noise process ZR at the RN receiver to be zero and
|hu1| = |hu2| = 1.] relying on PSK achieves a diversity order
of 1. Thus, it can be concluded that NC-MRC is capable of
attaining a beneficial diversity gain of 2 for NC-PSK. It is
worth noting that although NC-MRC is beneficial, it cannot
be invoked in two-timeslot-based NC schemes, where SN1

and SN2 transmit simultaneously during the first timeslot.

Owing to the ubiqitous half-duplex constraint, DN1 and
DN2 are unable to directly receive any signal from each
other. As a result, the diversity order of two-timeslot-based
NC schemes is essentially bounded by 1. In other words,
although two-timeslot NC schemes achieve a spectral
efficiency gain of 33% over our three-timeslot NC scheme,
they suffer from a poorer reliability than MRC aided NCM.
Furthermore, because of its higher diversity gain, NC-MRC
aided NC-PSK is also capable of achieving a significant
SNR gain over two-timeslot NC schemes using PSK
constellations in the high-SNR, that is, low-SER region.
Quantitatively, at the average SER of 10− 2, NC-MRC
achieves at least 8.5 dB SNR gain over TWR operating
without NC-MRC, such as analogue NC using PSK
constellations.
Finally, the average SER of NC-QAM operating both with

and without NC-MRC is presented in Fig. 11, where the
theoretical and numerical results match well with each
other. Observe that NC-MRC achieves a diversity gain of 2
over other QAM-based TWR operating without MRC, such
as analogue NC using QAM constellations. This beneficial
diversity gain results in a substantial SNR-gain of 9.7 dB,

Fig. 10 Average SER of NC-PSK with and without NC-MRC,
index-modulo-based NC and analogue NC

Fig. 11 Average SER of NC-QAM with and without NC-MRC,
index-modulo-based NC, and analogue NC

Fig. 8 SER of NC-PSK, index-modulo-based NC and analogue
NC, conditioned on hi = 1

Fig. 9 SER of NC-QAM, Index-modulo-based NC and analogue
NC, conditioned on hi = 1
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as shown in Fig. 11. In conclusion, NCM achieves a
significant SNR gain over the index-modulo-based NC and
analogue NC schemes having the same constellations in
AWGN channels, whereas NC-MRC, which can only be
applied in three-timeslot based NC, is capable of achieving
both a significant diversity gain and an SNR gain over the
two-timeslot benchmark NC, that is, the analogue NC in
Rayleigh fading channels.

6 Conclusions and future research

In this paper, practical NCM schemes were proposed for
asymmetric DF-TWR, where the symbol rate of two traffic
flows can be different. For arbitrary constellation, we
proposed a set-partitioning technique for universal NCM,
which maximises the ED of legitimate symbols for both
receivers. More practically, based on the modulo addition of
the normalised symbol phase/amplitude, we conceived
NC-PSK/QAM, which is based on the appropriately rotated
or circularly-shifted classic PSK/QAM symbols. This
relationship allows us to borrow the SER analysis method
of classic PSK/QAM for deriving the SER of NC-PSK/
QAM. NC-PSK is capable of achieving a SER at both
receivers, as if the RN transmitted exclusively to a single
receiver only. Based on the relationship between NC-PSK/
QAM and classic PSK/QAM, a new MRC was proposed
for combining the NC signal received from the RN and the
original signal overheard from the SN at the DN. The
NC-MRC scheme is capable of achieving the maximum
cooperative diversity gain of 2 by exploiting the pair of
independently fading paths from the SN and RN, thereby
achieving a substantial performance gain over the TWR
operating without MRC. Furthermore, the adaptive NCM is
also proposed in order to maximise the throughput of both
time-varying RN−DN1 and RN −DN2 links, whereas
guaranteeing a target BER. As to future research, it is
possible to extend NCM for it to become compatible with
existing physical layer techniques such as channel coding.
Another important future direction is to extend the
methodology of NCM to analogue NC using only
two-timeslot per transmission.
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