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Abstract

We analyze a legislative bargaining game over an ideological and a distributive issue. Legislators
are privately informed about their ideological positions. Communication takes place before a
proposal is offered and majority rule voting determines the outcome. We compare the outcome
of the “bundled bargaining” game in which the legislators negotiate over both issues together
to that of the “separate bargaining” game in which the legislators negotiate over the issues one
at a time. Although bundled bargaining allows the proposer to use transfers as an instrument
for compromise on the ideological issue, we identify two disadvantages of bundled bargaining
under asymmetric information: (i) risk of losing the surplus (failure to reach agreement on ide-
ology results in the dissipation of the surplus under bundled bargaining, but not under separate
bargaining); (ii) informational loss (the legislators may convey less information in the bundled
bargaining game). Even when there is no risk of losing the surplus, the informational loss from

bundling can be sufficiently large that it makes the proposer worse off.



1 Introduction

Legislative policy-making typically involves bargaining over multiple issues. In some cases, the
issues are not easily separable, so they are decided together. In others there does not seem to
be an obvious link between the issues. For example, in the recent health care legislation in the
U.S., whether to provide public funding for abortion or not was an issue that seems orthogonal
to other provisions in the bill such as whether to ban denial of insurance coverage due to
pre-existing conditions. Yet at some point, the passage of the entire health care bill hinged
on the abortion language.! One benefit of bundling unrelated issues in bargaining is that it
provides more opportunities for legislators to reach compromise. Indeed, in an environment of
complete information, Jackson and Moselle (2002) show that negotiating over multiple issues
simultaneously is better than negotiating over them separately. However, in practice, legislators
often have private information about their preferences. Is bundled bargaining still better than
separate bargaining under asymmetric information?

To tackle this question, we introduce a bargaining model over a distributive and an ideolog-
ical issue where the legislators are privately informed about their positions on a unidimensional
ideological spectrum, and communication takes place before a proposal is offered. Specifically,
in our model (1) three legislators bargain over an ideological and a distributive decision; (2)
one of the legislators, called the chair, is in charge of formulating the proposal; (3) each legis-
lator other than the chair is privately informed about his own preferences; (4) legislators send
costless messages (cheap talk) to the chair before a proposal is offered; (5) majority rule voting
determines whether the proposal is implemented. In what we call the “bundled bargaining”
game, the chair makes a proposal on the ideological dimension and the distributive dimension
simultaneously, and the two dimensions are accepted or rejected together. By contrast, in the
“separate bargaining” game, the chair makes one proposal on only the ideological dimension and
another on only the distributive dimension, and each proposal is voted on separately. Unlike
in the bundled bargaining game, it is possible in this game that a proposal on one dimension
passes while the proposal on the other dimension fails to pass.

Since each legislator’s ideological position is his private information, the chair is unsure about
what is the optimal policy to propose and how much private benefit she has to offer to a legislator

to gain his support for a policy decision. But if the legislators’ communication is informative,

See e.g., http://www.npr.org/templates/story/story.php? storyld=125004701.



then the chair can use their messages to make inferences about the legislators’ ideological
positions (which we call their types). We show that under some conditions, equilibrium messages
from the legislators may convey limited information and dispel some uncertainty about their
preferences. In particular, in the bundled bargaining game, a legislator can signal whether
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he will “cooperate,” “compromise” or “fight,” depending on how close his position is to the
chair’s. If either legislator signals his willingness to cooperate, the chair responds by proposing
her ideal policy without giving out any private benefit. If both legislators make tough demands
by sending the “fight” message, the chair gives up on the ideological issue and extracts the
whole surplus in the distributive dimension. Otherwise, she proposes a compromise policy
somewhere in between the status quo and her ideal and gives out some private benefit. Only
the proposal induced by a “compromise” message may fail to pass in equilibrium whereas the
proposals induced by the “cooperate” or “fight” messages always pass.

In a separate bargaining game, the chair is unable to use private benefits to reach compro-
mise on ideological decisions, so she captures the entire surplus on the distributive dimension.
But her proposal on the ideological dimension may still depend on the legislators’s messages.
We show that legislators can signal whether they will “cooperate” or “compromise.” Similar
to the bundled bargaining game, if either legislator signals willingness to cooperate, the chair
responds by proposing her ideal policy. If both legislators send the “compromise” message, then
the chair proposes a compromise policy somewhere in between the status quo and her ideal.

Why is it that the legislators may convey their intention to “fight” in the bundled bargaining
game whereas they do not do so in the separate bargaining game? To understand this, note
that in the bundled bargaining game, reaching an agreement may result in a social surplus. In
particular, if the size of the cake to be divided in the distributive dimension is strictly positive,
then proposing the status quo ideological policy along with allocating the entire cake to the
chair results in a different outcome from the status quo in which all the legislators, including the
chair, receive no cake. Indeed, in the special case when the size of the cake to be divided is zero,
the proposal made in response to the “fight” message in the bundled bargaining game is just
the status quo with no transfers, and an equilibrium in which “cooperate”, “compromise” and
“fight” messages are sent is outcome equivalent to an equilibrium in which only “cooperate”
and “compromise” messages are sent.

Bundled bargaining affords the proposer the flexibility of using private benefits to gain

support on policy reforms. As a result, it is always better for the proposer to bundle issues



under complete information. However, we identify two disadvantages of bundled bargaining
under asymmetric information.

One disadvantage of bundling under asymmetric information is the risk of losing the surplus.
In our model, when the legislators bargain over the ideological and the distributive issues
separately, the agreement on the distributive dimension is always reached, so when the proposal
on the ideological dimension fails, no surplus is lost. In contrast, if the two issues are bundled,
then failure to reach agreement on the ideological dimension results in the dissipation of the
surplus on the distributive dimension.

The second disadvantage of bundling the issues is the informational loss, which arises even
when there is no risk of losing the surplus. Specifically, we show that when the size of the
surplus is zero, less information may be transmitted in equilibrium when the two dimensions are
bundled than when they are separated, in the sense that if an informative equilibrium exists in
the bundled bargaining game, then an informative equilibrium exists in the separate bargaining
game, but the converse is not true. Intuitively, once side payments become a possibility, it
might be too tempting for a legislator to declare that his position is not especially close to the
chair’s in the hope that the chair will respond with a more attractive deal. This incentive to
distort one’s message may result in less information transmitted in equilibrium.

This result suggests that it might be better to negotiate over different issues separately
rather than to bundle them in one bill, even though bundled bargaining allows the chair to
exploit differences in the other legislators’ trade-offs between the two dimensions and use private
benefits as an instrument to make deals on policy changes that she wants to implement. We
show that the overall welfare comparison can go either way. In particular, even when the size
of the cake to be divided is zero, informational loss alone can be sufficiently costly that the
chair is worse off by bundling the two issues. If we interpret bundling as the possibility of using
pork barrel spending to gain support on policy reform, our finding points out another potential
harm of pork barrel spending.

In a related paper, Chen and Eraslan (2012) show that bundling is always beneficial when
each legislator’s position on a unidimensional ideological spectrum is publicly known, but his
ideological intensity, that is, the weight he places on the ideological dimension relative to the
distributive dimension, is his private information. This is because when the uncertainty is about
ideological intensity, both disadvantages of bundled bargaining disappear. First, in the bundled

bargaining game, the chair can replicate the optimal proposals in the separate bargaining game



without the risk of losing the surplus. Second, there is no informational loss from bundling the
two issues because no useful information is transmitted in the separate bargaining game where
information about ideological intensity is irrelevant.

Before turning to the description of our model, we briefly discuss other related literature.
Starting with the seminal work of Baron and Ferejohn (1989), legislative bargaining models
have become a staple of political economy and have been used in numerous applications. Like
our paper, some papers in the literature include an ideological dimension and a distributive di-
mension (see, for example, Austen-Smith and Banks (1988), Banks and Duggan (2000), Jackson
and Moselle (2002), and Diermeier and Merlo (2004)), but all of these are models of complete
information, and except for Jackson and Moselle (2002), do not consider separate bargaining. In
Jackson and Moselle (2002), even though the ideological and distributive issues may be consid-
ered separately, all equilibria involve proposals and approval of both dimensions simultaneously.
Since there is complete information in their model, there is no possibility of informational loss
from bundling. Furthermore, agreement is reached immediately in equilibrium, and there is no
loss of surplus. Because of the usefulness of the distributive dimension as an instrument for
compromise, in equilibrium the ideological issue is not divorced from distributive issue.

Under incomplete information, it is no longer clear that bundled bargaining is always ben-
eficial. For example, Harstad (2007) shows that side payments may be harmful because they
increase conflicts of interest and incentives to signal by rejecting offers. This is different from
the reason for side payments to be harmful in our model ,which is the informational loss. An-
other related paper is Chakraborty and Harbaugh (2003), which analyzes a bilateral bargaining
game over two cakes. One of the players has private information over the relative weights he
gives to the cakes and he sends a message to the other player before the other player makes
an offer. In Chakraborty and Harbaugh (2003), like in our model, separate bargaining has the
advantage that break-down in one dimension does not affect the other. But in their model no
information is transmitted in a separate bargaining game whereas an informative equilibrium
may exist in the bundled bargaining game. So the adverse effect of bundling on information
transmission does not arise in their model. Consequently in their model whether the proposer
prefers bundling or separating depends on the importance of information gains relative to the
risk of losing both cakes.

Our paper is also related to the literature on cheap talk and bargaining (see, Gilligan and

Krehbiel (1987, 1989), Farrell and Gibbons (1989), Matthews (1989), Matthews and Postlewaite



(1989), and Krishna and Morgan (2001)). Among these papers, the most closely related to
ours is Matthews (1989), which models presidential veto threats as cheap talk in a bilateral
bargaining game over a unidimensional policy and assumes that the president’s position is his
private information, but there are a number of important differences between his model and
ours. The main difference between his model and our separate bargaining game is that Matthews
(1989) considers only bilateral bargaining whereas we consider multi-lateral bargaining. More
importantly, Matthews (1989) does not address the question of bundled bargaining versus
separate bargaining since the two players in his model bargain over a single ideological decision
whereas in our bundled bargaining game, multiple players bargain over a distributive dimension
in addition to an ideological dimension.

In the next section we describe our model. We discuss some examples to illustrate the
intuition behind our main results in Section 3. We begin the formal analysis in Sections 4 by
considering the game with only one legislator (other than the chair) and then move on to the

game with two legislators in Section 5. We conclude in Section 6.

2 Model

Three legislators play a three-stage game to collectively decide on an outcome that consists of an
ideological component and a distributive component. For example, the legislators decide on the
level of environmental regulation and the distribution of government spending across districts.
Legislator 0 makes the proposal.? From now on we simply refer to legislator 0 as the chair, and
use the term legislator to refer to the other two players. Let z = (y; ) where y is an ideological
decision and x = (z9,x1,x2) is a distributive decision. The set of feasible ideological decisions
is Y = R, and the set of feasible distributions is X = {z € R3: Z?:o x; < c,xp > 0,29 > 0}
where x; denotes the private benefit of player ¢« and ¢ > 0 is the size of the surplus available
for division. Note that it is possible that zo < 0, that is, even when ¢ = 0, the chair can use
transfers to move policy. Although there is no upper bound on the transfers the chair can make,
in equilibrium she makes finite transfers under our assumptions on preferences. For ¢ = 1,2, we

say that proposal (y; ) includes legislator i if x; > 0 and ezcludes legislator i if 2; = 0.3 The

2We use “she” as the pronoun for the proposer and “he” as the pronoun for legislators 1 and 2.
3In the remainder of the paper, when we use ¢ and j to index the legislators, we sometimes omit the quantifiers

i=1,20r j =1,2. When we refer to both legislator ¢ and legislator j, we implicitly assume j # i.



status quo allocation is s = (§;2) where § € Y and & = (0,0,0).*
The payoff of each player i« = 0,1,2 depends on the ideological decision and his/her pri-
vate benefit. We assume that the players’ preferences are separable over the two dimensions.

Specifically, player ¢ has a quasi-linear von Neumann-Morgenstern utility function given by
u; (2,0i,9:;) = x; + 0;v (v, 9i)

where z = (y; x) is the outcome, ; € Y is player i’s ideal point (ideological position), and 6; > 0
is the weight that player ¢ places on his/her payoff from the ideological decision relative to the
distributive decision. The marginal rate of substitution, (Ou;/dy)/(0u;/0x;) = 6;(0v/0y),
measures player i’s preference for ideology relative to private benefit.

Legislator ¢ = 1, 2 privately observes the realization of g;, called his type, a random variable
with distribution function F;. We also use t; to denote the type of legislator i. The set of
possible types of legislator ¢ is T; = [t;, %] C Ry. We assume that F; is continuous and has full
support on T;, and the legislators’ types are independently distributed. Although ; is legislator
i’s private information, its distribution and other aspects of his payoff function, including 6;,
are common knowledge. In the remainder of the paper, 6; is fixed and we use u;(z,t;) to denote
legislator i’s payoff from outcome z when his type is ;.

For simplicity we assume the chair’s preferences are commonly known. Without loss of
generality, assume ¢ < ¢, which means that the chair would like to move the policy to the left
of the status quo. To simplify notation, we write ug (z) = xo + 0pv (v, 9o) as the chair’s payoff
from z.

We make the following assumptions on v: (1) v is twice differentiable; (2) for any ¢; € T;,
v11 (y,9:i) < 0 for all y € Y (which implies that v is concave in y), and §; maximizes v (-, 9;);

(3) v12 > 0, i.e., v is supermodular in (y,§;).”

Note that the commonly used quadratic-loss
function, v (y,9;) = — (y — gji)2, satisfies all of these assumptions. To avoid triviality, we assume
that v (g,%;) > v (yo,t;) so that some type of legislator i prefers the status quo policy 7 to the

chair’s ideal gjg.

“The assumption that & = (0,0,0), together with the definition of X, implies that the total surplus for
reaching an agreement is non-negative, legislator 1’s and legislator 2’s status quo private benefits are the same,

and the chair’s proposal cannot offer private benefits lower than his status quo to either legislator 1 or 2.
°In Matthews (1989), only single-crossing property is needed to guarantee that a more rightist type prefers

a more rightist policy. Once we allow a distributive dimension, supermodularity is needed to guarantee this

(Lemma 1).



The bargaining game has three stages. In stage one, each legislator ¢ = 1,2 observes his
type t; and sends a message simultaneously to the chair.’ In stage two, the chair observes the
messages and makes a proposal in Y x X. In stage three, the players vote on the proposal under
majority rule. Without loss of generality we assume that the chair votes for the proposal. So
a proposal passes if at least one of legislators 1 and 2 votes for it. Otherwise, the status quo s
prevails. (Here we describe the bundled bargaining game. In the separate bargaining game, in
stage two, the chair observes the messages and makes one proposal in Y and another proposal
in X, and in stage three, the players vote on each of the two proposals under majority rule.
We omit a full description of the extensive form and the equilibrium conditions in the separate
bargaining game since they are analogous to the ones in the bundled bargaining game.)

The set of allowed messages for legislator 7, denoted by M;, is a finite set that has more than
two elements. The messages have no literal meanings (we discuss their equilibrium meanings
later); they are also “cheap talk” since they do not affect the players’ payoffs directly. The
assumption that M; is finite rules out the possibility of separating equilibria, but we show that
separating equilibria are not possible even if M;’s are infinite.

A strategy for legislator i consists of a message rule in the first stage and an acceptance rule
in the third stage. A message rule u; : 1T; — M; specifies the message legislator i sends as a
function of his type. An acceptance rule ; : Y x X x T; — {0, 1} specifies how legislator i votes
as a function of his type: type t; accepts a proposal z if v;(z, ;) = 1 and rejects it if v;(z, ;) = 0.7
The strategy set for legislator i consists of pairs of measurable functions (p;, ;) satisfying these
properties. The chair’s strategy set consists of all proposal rules 7w : My x My — Y x X where
m(my, mg) is the proposal she offers when receiving (mq,ms).

Fix a strategy profile (u,~y, 7). Say that a message profile m = (m1, mg) induces proposal
z if w(m) = z. Proposal z is elicited by type t; if it is induced by m with m; = p; (¢;) and
{tj : p;(t;) = m;} # 0. If z is induced by m, then, legislator ¢ is pivotal with respect to z if
7v; (2,t5) = 0 for all ¢; such that pu; (t;) = m; and non-pivotal with respect to z otherwise.

To define an equilibrium for this game, let 8;(z|m;) denote the chair’s probabilistic belief

5The message can be either private or public. Since condition (E1) in the upcoming definition of equilibrium
requires that each legislator votes for a proposal if and only if he prefers that proposal to the status quo, our

results do not depend on whether the messages are private or public.
"Technically a legislator’s acceptance rule can depend on his message. However, condition (E1) in the up-

coming definition of equilibrium says that legislator ¢ accepts a proposal if and only if he prefers it to the status

quo, independent of the message he sent. As such, we suppress the dependence of ~; on m;.



that legislator ¢ votes to accept proposal z conditional on sending message m;. Given the

strategy (u;,;) of legislator ¢, §; is derived by Bayes’ rule whenever possible. That is,

Bizlmi) = / 7i(o 1) dFs (1) / dFi(t;)
{tizpi(t)=m;} {ti:pi(ti)=m;}
if f{tiiuz‘(ti):mi} dF;(t:) > 0.

Definition. An equilibrium is a strategy profile (u,~, ) such that the following conditions hold
foralli #0,t; €T, ye Y,z € X and m € My x My:

(E1) ~vi(z,ti) =1 if ui(z,t;) > ui(s,t;), and v;(z,t;) = 0 otherwise.
(E2) m(m) € argmax,icy « x uo(2")B(2'|m) + uo(s) (1 — B(2'|m)), where
B(Z'Im) =1— (1= pi(Z'[m1)) (1 = Ba(z'|m2))
18 the conditional probability that 2’ is accepted.

(E3) If pi (ti) = ms, then m; € argmax,, Vi(m;,t;) where

onist) = [ T oy (0) 5) s (i 1) 1)

T;

+ (1 — "}/j (71' (mg,uj (tj)) ,tj)) max{ui (7T (mg,,uj (tj)) ,ti) , Ug (S,ti)}] dFj (tj) .

Condition (E1) requires each legislator to accept a proposal if and only if he prefers it to the
status quo.® Condition (E2) requires that equilibrium proposals maximize the chair’s payoff
and that her belief is consistent with Bayes’ rule. Condition (E3) requires that a legislator
elicits only his most preferred distribution of proposals, incorporating the acceptance rules.

For expositional simplicity, from now on we assume that in equilibrium, if 5 (z|m) = 0, then
7 (m) # z, i.e., if a proposal is rejected with probability 1, then the chair does not propose it.”

Say that a proposal z is elicited in the equilibrium (u,~,m) if there exists (t1,t2) € T1 X Th

such that z = 7w(u1(t1), pe(t2)). For any fixed strategy profile (p,~y, 7), the outcome for (¢1,t2) is

8Condition (E1) strengthens the requirement of Perfect Bayesian Equilibrium (PBE) and is the only differ-
ence between our equilibrium solution concept and PBE. In particular, (E1) rules out the (weakly dominated)
acceptance rule of accepting any proposal because a legislator expects that the other legislator accepts any

proposal.

9This is not a restrictive assumption if ¢ > 0 because the chair strictly prefers the proposal (;c,0,0) (which
is accepted with probability 1) to the status quo, so z is not a best response. If ¢ = 0, however, it is possible

that z is a best response, but not a unique one (for example, s is another best response).



m(p1(t1), pa(te)) if at least one of legislators 1 and 2 accepts m(p1(t1), pa(t2)), and the outcome
for (t1,t2) is s if both legislators 1 and 2 reject m(u1 (1), u2(t2)). Say that two equilibria are
outcome equivalent if they generate the same outcome for almost all type profiles.

A babbling equilibrium is an equilibrium (u,~,7) in which p; (¢;) = p; (¢)) for all ¢;,t, € T;,
i = 1,2, ie., all types of legislator 7 send the same message, and 7 (m) = m(m') for all
m,m’ € My x My, i.e., the chair responds to all message profiles with the same proposal. As is

standard in cheap-talk models, a babbling equilibrium always exists.

3 Examples

Before we conduct the formal analysis, we discuss some simple examples to illustrate the advan-
tages and disadvantages of bundled bargaining compared to separate bargaining. For simplicity,
the examples in this section involves only one legislator (legislator 1) other than the chair and
a proposal needs legislator 1’s vote to pass. As we show in Section 5, the same logic holds when
there are two legislators other than the chair.

We start by showing that in the benchmark case of complete information, bundled bargain-
ing is always beneficial to the chair. One useful piece of notation is e(¢;), the policy closest to
the chair’s ideal such that legislator 1 whose ideal is 7 is willing to accept without any transfer.

Recall that gy < ¢ so that the chair wants to move the policy to the left of the status quo.

Formally, e(§1) = min{y > go : v(y,91) = v(7,91)}-

Example 1 (Complete information: bundled bargaining is better for the chair).

Suppose § =0, Go = —1, u; (2,9;) = x; — (y — §i)* fori=0,1.

In the separate bargaining game, the chair proposes to give no transfer to legislator 1 on
the distributive dimension and proposes e(g;) on the ideological dimension, and both proposals
pass. To find e(71), note that legislator 1 with an ideal of ; is indifferent between the status
quo policy § = 0 and the policy 2¢;. In addition, e(g) is to the right of gy and to the left of 7.
Hence, e(y1) = min{0, max{2y;, —1}} in this example.

Now consider the bundled bargaining game. Under the quadratic-loss utility function,
straightforward calculation shows that the optimal proposal, as a function of legislator 1’s
ideal 77, must satisfy

Ooto + 0191
Oo + 01

14+

y(91) = max{go, min{ ye(91)}} = max{—1, min{ ve(@)}}



z1(91) = 01[v(, 1) — v(y(91), 91)] = [y(G1) — 201]y (1)
Since the chair can always propose (e(41);¢,0) in the bundled bargaining game and have it
accepted, the chair is clearly better off in the bundled bargaining game than in the separate
bargaining game. When y(¢1) # e(41), the chair’s optimal proposal under bundled bargaining
is not (e(91);¢,0) and she is strictly better off in the bundled bargaining game. This happens

when 71; I < e(j) and §o < e(41), which holds when ¢ is in an intermediate range, as Figure
1 illustrates. Intuitively, if legislator 1’s position is sufficiently far from the chair’s, then it is
too costly to move the policy closer to the chair’s ideal by compensating legislator 1 on the
distributive dimension; and if legislator 1’s position is sufficiently close to the chair’s, then
the chair can achieve a policy reform close enough to her ideal without giving legislator 1 any
transfer, again making the no-transfer proposal (e(71); ¢,0) optimal. So the flexibility of trading
private benefits for policy compromises provided by bundled bargaining is especially valuable

when legislator 1 holds a position neither too close nor too far from the chair’s.

y
-1+,
2
bundlinglis strictly better
e(3)
f—'H 1
. w/ y|

Figure 1: Complete information — the chair benefits from bundled bargaining

Although the chair benefits from bundled bargaining under complete information because
of the flexibility afforded by bundling the issues, two other forces come into effect under asym-
metric information, both of which make bundling less attractive. The first is the risk of losing

the surplus under bundled bargaining since a proposal may fail to pass in equilibrium under
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asymmetric information. The second, and the more subtle, force is the informational loss that
may result from bundled bargaining. The following examples illustrate these two disadvantages

of bundled bargaining.

Example 2 (Asymmetric information: risk of losing the surplus from bundled bar-
gaining)' S'LLppOS@ g = 0; QO = _1; ¢ = 17 Uj (Z)gi) = Ty — (y_gl)2 fOT'i = 071 and Ql
(equivalently, t1) is uniformly distributed on [—0.4,1].

Straightforward calculation shows that no information is transmitted in the unique equilib-
rium outcome in either the separate bargaining game or the bundled bargaining game.

In the separate bargaining game, the chair proposes y = —0.18 on the ideological dimension
and legislator 1 accepts y if and only if t; < —0.36 in equilibrium.!® The chair’s expected
equilibrium payoff on the ideological dimension is —0.91. On the distributive dimension, the
chair proposes (xg, 1) = (¢,0) = (1,0), and this proposal is accepted by all types of legislator 1.
Overall, the expected equilibrium payoff for the chair is equal to 0.09 in the separate bargaining
game.

In the uninformative equilibrium of the bundled bargaining game, the chair’s optimal pro-
posal is equal to (7;¢,0) = (0;1,0) and it is accepted by all types of legislator 1. The expected
equilibrium payoff for the chair is equal to 0 in the bundled bargaining game, lower than her
equilibrium payoff in the separate bargaining game.

Intuitively, since the surplus c dissipates when a proposal fails to pass in the bundled bar-
gaining game, and the chair faces high uncertainty regarding legislator 1’s ideological position,
she “plays it safe” by making a proposal that is accepted by all types of legislator 1. In this
example, this proposal involves the status quo policy and no private benefit for legislator 1. In
the separate bargaining game, on the other hand, the surplus does not dissipate even if agree-
ment breaks down on the ideological dimension. This makes it optimal for the chair to propose
a compromise policy ¥y = —0.18 instead of maintaining the status quo policy. Although this
proposal is rejected with positive probability by legislator 1 (when ¢; > —0.36), the chair still
receives the surplus c since the distributive dimension is shielded from the failure of agreement
on the ideological dimension.

Another, perhaps less obvious, disadvantage of bundling is the informational loss that may

result from bargaining the two dimensions together. This matters even if there is no risk of

10The numbers in our examples are rounded to the second decimal.
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“losing the cake.” To illustrate, suppose ¢ = 0, so that failure to reach agreement does not

result in the dissipation of private benefits.

Example 3 (Asymmetric information: informational loss from bundled bargaining).
Suppose § =0, go = —1, c =0, w; (2,4;) = z; — 6; (y — Qi)2 for 1 =0,1 with 61, = 1. Suppose
also that 1 (equivalently, t1) is uniformly distributed on [—1,1].

Consider first the separate bargaining game (which is equivalent to the game in which the
chair is not allowed to make any transfers). Independent of the value of 6y, the following
informative equilibrium exists. Legislator 1 plays the following message rule: puq(t;) = mi if
t; € [-1,-0.57) and pa(t2) = m? if t; € [~0.57,1]. The chair responds to the message mi by
proposing his ideal policy ggp = —1 and it is accepted by all types in [—1,—0.57]. The chair
responds to the message m? by proposing a compromise policy y = —0.14, and it is accepted
by legislator 1 if ¢; € [—0.57,—0.07) and rejected by legislator 1 if ¢; € (—0.07,1]. The chair’s
expected payoff in the size-two equilibrium in the separate bargaining game is equal to —0.456.

Now consider the bundled bargaining game, that is, the chair can make transfers to legislator
1 in order to reach agreement on ideological decisions. If g is sufficiently high, i.e., the chair
is intensely ideological, then informative equilibria fail to exist. For example, suppose 6y = 4.
Then no informative equilibrium exists in the bundled bargaining game. To see why, suppose
that legislator 1 uses the same message rule as in the separate bargaining game: pi(t1) = m}
if 4 € [~1,-0.57] and pa(t2) = m? if t; € [~0.57,1]. Then, if the chair receives m{, she
responds by proposing y = §p and making no transfer. If the chair receives m3, she responds
by proposing y = —0.6 and making a transfer of 1.56 to legislator 1. But given the chair’s
responses, all types of legislator 1 would send m?, and therefore this is not an equilibrium.
Intuitively, because legislator 1 is tempted to pose a tough stance in order to extract a better
deal from the chair, it is impossible for his messages to be informative in equilibrium.

What are the welfare implications of the informational loss from bundled bargaining? Al-
though the flexibility afforded by transfers makes the chair better off when the information she
has is fized, the informational loss from bundling can be sufficiently high that the chair would
be better off if she can commit not to use transfers. Indeed, in the above example where 6y = 4,
the chair’s equilibrium payoff in the bundled bargaining game is equal to —2.2, lower than her
expected payoff in the informative equilibrium in the separate bargaining game (—1.8). Of

course, if the chair places a sufficiently high weight on the ideological dimension relative to the
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distributive dimension, then the gain from using transfers to make deals on ideological policies
outweighs the informational loss from bundled bargaining. To see this, consider the limit case
as #y goes to oo, that is, the chair cares about only the ideological decision, not the distributive
decision. In the bundled bargaining game, the chair would optimally propose y = g9 and make
a transfer large enough that all types of legislator 1 accepts her proposal. This is clearly better
than what the chair can achieve without using transfers.

In the rest of the paper, we characterize equilibria and generalize these examples. In partic-
ular, in Proposition 3, we show that more information is transmitted in the separate bargaining
game in the sense that if an informative equilibrium exists in the bundled bargaining game,
then it exists in the separate bargaining game, but the converse is not true. We also show that

the results are robust when there are two senders.

4 One sender

We start by analyzing a simple game with only one sender and then analyze the game with two
senders. The modifications of strategies and equilibria are straightforward and omitted. To
characterize equilibria, we establish the following lemma, which follows from supermodularity
of v in (y, ;). It says that between two proposals with different ideological components, if a
type prefers the proposal with a more rightist (leftist) policy, then any type to the right (left)
also prefers the proposal with the more rightist (leftist) policy. (All proofs are in the appendix.)

Lemma 1. Consider z = (y;x) and 2’ = (y/;2") with y' > y. (i) If u; (2',t;) > u; (2,t;), then

wi (2, 85) > wi (2,t) fort, > t;. (i) If u; (2, ;) < w; (2, ), then u; (2',t)) < u; (2,t)) fort, <t;.

When there is only one sender and he is privately informed about his ideological position,
our model is similar to that in Matthews (1989). The difference is that the players in our model
bargain over a distributive dimension as well as an ideological dimension whereas in Matthews
(1989) they bargain over only an ideological dimension.

Let the size of an equilibrium be the number of proposals elicited in it. Matthews (Propo-
sition 2) shows that an equilibrium has at most size two. We have a similar result which says
that an equilibrium has at most size three. (Abusing notation, in our discussion of the one-
sender model, we use x to denote the division of surplus between the chair and legislator 1. So

z=(y;2) wherex € X = {x € R? : xg + 21 < ¢, 21 > 0}.)
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Proposition 1. (i) An equilibrium has at most size three. (i) If z = (y;x) is elicited in
equilibrium, then y < g. If y = g, then x = (¢,0). (iii) If z = (y;x) and 2’ = (y';2') are elicited

in equilibrium with y <y’ < g, then z = (Jo; ¢, 0).

To understand Proposition 1, note first that the chair never proposes a policy to the right of
g because (7; ¢, 0) is accepted with probability 1 (part (ii)). The key step in establishing that an
equilibrium has at most size three is part (iii), which says that at most one proposal elicited in
equilibrium involves a compromise policy y € (9o, 7). To see why this holds, suppose z = (y;x)
and 2/ = (y';2') are elicited in equilibrium, with y,3’" € (g0,7) and y < 3. Then some types of
legislator 1 prefer z to 2/, some types prefer 2’ to z and a certain type ¢; is indifferent between
2" and z and strictly prefer z and 2’ to the status quo s. Lemma 1 implies that more rightist
types prefer more rightist policies. It follows that any type to the left of ¢; strictly prefers z
to s and no type to the right of #; elicits z and accepts it. Hence, when the chair receives the
message to which she is supposed to respond by proposing z, she knows that legislator 1’s type
is such that he strictly prefers z to s. If z # (go;¢,0) (the proposal that gives the chair the
highest possible payoff), there exists another proposal that makes the chair strictly better off if
she proposes it instead of z. Hence z = (o; ¢,0) and it follows that an equilibrium has at most
size three.

The intuition for our Proposition 1 is similar to the intuition for Proposition 2 in Matthews
(1989). But why is it that a size-three equilibrium may exist in our model whereas in Matthews
(1989), an equilibrium has at most size two? To clarify the difference, note that in our model,
reaching an agreement may result in a social surplus c. In particular, if ¢ > 0, proposing (g; ¢, 0)
and having it passed results in a different outcome from the status quo, (g;0,0). Indeed, in
the special case when ¢ = 0, (7;¢,0) is the same as the status quo and a size-three equilibrium
is outcome equivalent to a size-two equilibrium, similar to Matthews (1989).!! Note, however,
that even when ¢ = 0, our model is still different from Matthews (1989) since the chair can use

transfers.!?

"To see this, start from a size-three equilibrium in which types t1 < 74 elicit (fo;c,0), types t1 € (71, 71%)
elicit (y;z) with y € (go,¥) and types t1 > 71~ elicit (J;¢,0). Now construct a size-two equilibrium that is the
same as the size-three equilibrium except that instead of eliciting (g; ¢, 0), types t1 > 71" elicit (y;x) and reject

it. This results in the same outcome as the size-three equilibrium when ¢ = 0.

2For example, suppose § = 0, Jo = —1, ¢ = 0, u; (2,%:) = @i — (y — gji)2 for # = 0,1 and %1 is uniformly
distributed on [—2, 2]. If transfers are allowed, as in our model, then there exists an equilibrium in which legislator

1 sends m} if g1 < 1/5 and mf if §1 > 1/5 and the chair responds to mi by (—%; —%, 2%) and to m? by (0;0,0).
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Next, we characterize equilibria of different sizes and provide existence conditions. We
omit the characterization of size-one equilibria because it is similar to the uncertain ideological

intensity case discussed earlier.

4.1 Size-one equilibria

Any size-one equilibrium is outcome equivalent to a babbling equilibrium, so we focus on bab-
bling equilibrium here. Recall that in a babbling equilibrium, pq (¢1) = p (¢)) for all ¢4, ¢} € T}
and 7 (m) = 2 for all m € M.

To find 2/, first note that the chair would never offer any 2z = (y;z) with y > §. Next, by
Lemma 1, for any z = (y;z) with y < ¢ if uy (2,t1) > uq (s, 1), then uy (2,t1) > uy (s,t1) for all
t1 < 71 and therefore z is always accepted; if ui(z,t;) < ui(s,t;), then uy (2,¢1) < uy (s,t1) for
all t; > t; and therefore 2 is always rejected; if ug (2,t1) < uy (s,t1) and wuy(z,8y) > ui(s,ty),
then there exists a t; € Y7 such that w; (z,£1) = uj (s,t1) and the proposal is accepted with
probability F (t1).

For any z = (y;z) with y < g, let 71 (z) denote the rightmost type who is willing to accept
z if z is accepted with positive probability and set 71 (z) to t; if z is accepted with probability

0. Formally

() max{t; € T1 1 uy (z,t1) > ui(s,t1)}  if ui(z,t;) > ui(s,ty),
71 (2) =
t otherwise.

For 2’ to be the proposal elicited in a babbling equilibrium, it must satisfy
2" € argmaxug (2) Fy (11 (2)) +uo () [1 — Fy (11 (2))].
z

Equivalently, we can formulate the chair’s problem as choosing the rightmost type who is willing

to accept her proposal. Let ¢} be the rightmost type willing to accept z’. Then

tll S argtmax Uy (tl) Fy (tl) + ug (8) (1 - RN (tl)) , (1)

where

Uo(t1) = maxuo(z) = (¢ — 1) + bov(y, o)
subject to 1 > 0 and x1 + 61v(y,t1) > 61v(y,t1). That is, Up(t1) is the value function when
the chair negotiates with a single legislator whose ideal point is ¢;. A sufficient condition for ¢}

to be unique is that the objective function is concave or that it is strictly increasing.

Clearly, this cannot happen if transfers are not allowed.

15



4.2 Size-two equilibria

By parts (ii) and (iii) of Proposition 1, we can categorize size-two equilibria in terms of the set
of elicited proposals and there are two kinds of size-two equilibria.

(1) Consider a size-two equilibrium in which the elicited proposals are (go;¢c,0) and (y;x)
with y € (9o, y]. (This includes the possibility that y = g, in which case z = (¢,0).) Call this a
“cooperate-or-compromise” equilibrium.

In this equilibrium, there exists a type 77 indifferent between (go; ¢, 0) and (y; ). By Lemma
1, any type t1 < 71 strictly prefers (go; ¢, 0) to (y;x) and therefore elicits (go;c,0) and accepts
it. Similarly, any type t; > 74 strictly prefers (y;x) to (go;¢,0). If (y;2) = (g;¢,0), then any
type t1 > 71 elicits (y; ) and accepts it in this equilibrium. If y < g, then there exists a 77 < t;
such that type 7 is indifferent between (y; ) and the status quo s.'3 Types t1 € (75, 71*] elicit
(y;z) and accept it. If 7/* < 1, then for any type t; € (7, 11], he prefers s to both (go; ¢, 0)
and (y;z) and would reject either proposal when it is elicited. It seems implausible, however,
that a legislator would elicit a proposal that is not his most preferred, even if he were planning
a rejection. If there were any probability that he might not carry out a planned rejection, then
the legislator should safely elicit only his most preferred elicitable proposal. This implies that
types t1 € (77, 11] should elicit (y;x) and reject it. And it follows that the types who elicit
the same proposal forms an interval. (In the rest of our discussion of the one-sender game, we
assume that in equilibrium, a legislator elicits only his most preferred proposal.)

Let h (t},t]) be the set of feasible proposals that are optimal for the chair when she knows
that legislator 1’s type is in the interval [}, t{]. A “cooperate-or-compromise” equilibrium exists
if and only if u; ((go;¢,0),t5) = w1 (2,t}) for some type tj € Ty such that z € h(¢],t1) and
z # (§o; ¢, 0).1

(2) Consider a size-two equilibrium in which the elicited proposals are (y; z) with y € [go, 7)
and (7;¢,0). Call this a “compromise-or-fight” equilibrium.

In this equilibrium, there exists a type 7 indifferent between (y;z) and (7;¢,0). Any
type t1 < 714 strictly prefers (y;z) to (9;¢,0) and therefore elicits (y; ) and accepts it. Any
type t; > 71 strictly prefers (g;¢,0) to (y;x) and therefore elicits (7;¢,0) and accepts it. A

“compromise-or-fight” equilibrium exists if and only if there is some type t] € T3 such that

13Such a type exists, since otherwise the proposal (y; z) is not optimal for the chair.
14To see why the conditions are sufficient, let 1 (t1) = mi if t1 < 5, pu1 (t1) = miifts > 5, 7 (mi) = (Jo; ¢, 0),

m(m?) = z. and 7 (m1) € {m (mi) ,m (mi)} for m1 # mi, mi. This is an equilibrium profile.
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(7;¢,0) € h(t],t1) and h(t,t7) # {(7;¢,0)}.1> Note that a “compromise-or-fight” equilibrium
is outcome equivalent to a babbling equilibrium if and only if ¢ = 0.

The chair is clearly better off in a size-two equilibrium than in a size-one equilibrium because
she benefits from more information transmission. The comparison is less clear-cut, however, for
legislator 1, just like in Matthews (1989). For example, suppose we have a size-one equilibrium
with elicited proposal (y;x) and a size-two equilibrium with elicited proposals (go;¢,0) and
(y';2") where §p < y < y'. Then, more extreme (either more to the left or more to the right)
types of legislator 1 prefer the size-two equilibrium but the moderate types prefer the size-one

equilibrium. The ex ante expected payoff of legislator 1 can go either way.

4.3 Size-three equilibria

The following proposition characterizes size-three equilibria.

Proposition 2. In a size-three equilibrium, the elicited proposals are (yo;c,0), (y;z) with
y € (90,y) and 1 > 0, and (y;¢,0). There exist T and 7" > 1 such that if t; < 77,
type t1 elicits (Yo; ¢, 0) and accepts it; if 7 < t1 < 171, type t1 elicits (y; x) with y € (Yo, y) and

accepts it; if t1 > 11, type t1 elicits (§;¢,0) and accepts it.

Suppose the types who elicit the same proposal send the same message, and suppose m}

induces (7o; ¢,0), m? induces (y; ¥) with y € (fo, 7) and m3 induces (7; ¢,0). We can interpret mi
as the “cooperate” message, m3 as the “compromise” message and m$ as the “fight” message.
When his ideology is sufficiently aligned with the chair’s, legislator 1 sends m} to signal his
willingness to vote for the chair’s ideal policy and the chair responds by proposing her ideal
without giving legislator 1 any private benefit. When legislator 1’s ideology is somewhat aligned
with the chair’s, he sends m? and the chair responds with a compromise policy and (potentially)
gives legislator 1 some private benefit. Lastly, when legislator 1 holds an ideological position
distant from the chair’s, he sends the message m$ to signal a tough stance on policy change.
The chair responds to it by making no policy change and giving out no private benefit.

As to existence, we can construct a size-three equilibrium from a size-two equilibrium, under

certain conditions. Consider a size-two equilibrium with elicited proposals (go;¢c,0) and (y;z)

15To see why the conditions are sufficient, let w1 (t1) = miif t; < 5, w (t1) = m3ifty >t 7w (m%) = z for
some z € h(t;,t7) \ {(7;¢,0)}, 7 (m]) = (§;¢,0) and 7 (m1) € {m (m1),m (m?)} for m1 # mi,mi. This is an

equilibrium profile.
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where y € (9o,7). Suppose the proposal (y;z) is rejected with positive probability. If there
exists an £ > 0 such that (7;¢,0) € h(t1,t1) for t; > t; — e (i.e., (§;¢,0) is an optimal proposal
for the chair when she believes t¢; is sufficiently high), then a size-three equilibrium exists. To
construct it, let 71 be the type indifferent between (go;¢,0) and (y;x) and find 71* € (77,11)
such that (7;¢,0) € h (71*,t1) and type 77 is indifferent between the status quo and (y; ) (since
(y; x) is rejected with positive probability in the size-two equilibrium, 7* exists). Consider the

following strategy profile: py (t1) = mi if t; < 7, w1 (t1) = m? if 7 < t1 < 7%, py (t1) = m3

ifty > 7 (m%) = (9o;¢,0), (m%) = (y;z), 7 (mi’) = (9;¢,0). This generates a size-three
equilibrium. Every type of legislator 1 is indifferent between the original size-two equilibrium
and the constructed size-three equilibrium. When ¢ > 0, the chair is strictly better off in
the size-three equilibrium because for ¢; > 7*, the outcome in the size-two equilibrium is
s = (7;0,0) whereas in the size-three equilibrium it is (7; ¢, 0).

Similarly, we can construct a size-three equilibrium from a size-two equilibrium with elicited
proposals (7;¢,0) and (y;z) where y € (9o, ), under certain conditions. Suppose types who
elicit (y; z) accept it in the size-two equilibrium. If u;((g0;¢,0) ;) > ui1((y; x) ,t;) (which im-
plies that there exists t; > ¢; such that u;((go;¢,0),¢1) = ui1((y; ) ,t1)), then we can construct a
size-three equilibrium as follows. Let 77 be the type such that uy ((9o;¢,0),75) = w1 ((y; ), 77)
and let 7{* be the type such that u; ((y;x),77*) = w1 (s,77"). Consider the following strategy
profile: py (t1) = miif t1 < 75, () = m? if 7 < t1 < 7%, (b)) = m if 1 > 7%,
s (m%) = (90;¢,0), (m%) = (y;z), 7 (m‘rf) = (9;¢,0). This generates a size-three equilib-
rium. If t; > 77, legislator 1 is indifferent between the original size-two equilibrium and the
constructed size-three equilibrium, but if ¢; < 7, legislator 1’s payoft is strictly higher in the

size-three equilibrium. The chair is strictly better off in the size-three equilibrium, which is

more informative than the size-two equilibrium.

4.4 Bundled bargaining versus separate bargaining

In the bundled bargaining game considered so far, the chair makes a proposal on an ideolog-
ical dimension and a distributive dimension, and the two dimensions are accepted or rejected
together. An interesting question arises as to whether the chair is better off bundling the two
dimensions together or negotiating them separately. Unlike in the bundled bargaining game, it
is possible in the separate bargaining game that a proposal on one dimension passes while the

proposal on the other dimension fails to pass. Note that in the separate bargaining game, we
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have a simple ultimatum game on the distributive dimension, and the chair proposes (¢, 0) and
legislator 1 accepts it in equilibrium. On the ideological dimension, we have a game identical
to that considered in Matthews (1989).

One advantage of bundling the ideological and the distributive dimensions together is that
it affords the legislators the flexibility of trading private benefits for policy compromises. This
is illustrated in Example 1 with complete information. Moreover, in a related paper, Chen
and Eraslan (2012) show that if the legislators’ ideological positions are known, but the weight
they place on the ideological decision relative to the distributive decision is private information,
then it always benefits the chair to bundle the two dimensions together. But as we show in
the discussion that follows, when the legislators’ ideological positions are private information,
bundling has two potential disadvantages.

The first disadvantage is that by bundling the two dimensions together, the legislators risk
losing the surplus c if negotiation breaks down whereas no such risk exists if they bargain over
the distributive dimension separately, as seen in Example 2.

Another disadvantage of bundling is the informational loss from bargaining the two dimen-
sions together, which is relevant even if there is no risk of losing the surplus. Specifically,
suppose ¢ = 0, so that failure to pass a proposal does not result in the dissipation of private
benefits. In this case, we can interpret bundled bargaining as (the possibility of) using side
payments to gain support on an ideological decision and separate bargaining as the unavailabil-
ity of side payments (or, the chair commits not to use private benefit in exchange for support
of ideological decisions).

Say that an equilibrium is informative if it is not outcome equivalent to a size-one equilib-
rium. The next proposition says that less information may be transmitted in equilibrium when
the two dimensions are bundled than when they are separated, in the sense that if an infor-
mative size-two equilibrium exists in the bundled bargaining game, then such an equilibrium

exists in the separate bargaining game, but the converse is not true.

Proposition 3. Suppose ¢ = 0. (i) If an informative size-two equilibrium exists in the bundled
bargaining game, then an informative size-two equilibrium exists in the separate bargaining
game. (1) If an informative size-two equilibrium exists in the separate bargaining game, an

informative size-two equilibrium may not exist in the bundled bargaining game.

As seen in Example 3, the informational loss from bundled bargaining can be significant
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enough to make it better for the chair to bargain the two dimensions separately.

5 Two senders

Now suppose there are two senders, legislator 1 and legislator 2. As is common in the cheap-
talk literature, we focus on equilibria in which legislator i’s message rule has the following
partitional form: p; (t;) = m¥ if t; € (7F,7FF!

IRE}

] (k=1,..,K;) where t, = 7} < 72 < .. <
TZ-K"H = t;, mf € M; and mf #* mfl for k # k’. Additionally, we only consider equilibria in
which adjacent intervals of types elicit different distributions of proposals, i.e., if K; > 2, then
for k=1,..,K; — 1, m(mf,m;) # ﬂ(mfﬂ,mj) for at least one m; that is sent by some type t;.
This loses no generality because if it is violated and types in some adjacent intervals elicit the
same distribution of proposals, then the equilibrium is outcome equivalent to another in which
types in these adjacent intervals send the same message.

We call K; the size of legislator i’s message rule. If K; = 1, legislator ¢ “babbles” and

conveys no information about his type; if K; > 1, however, then legislator ¢ conveys some

information about his type.

5.1 Equilibrium characterization

In the following proposition, we characterize “simple equilibria.” These are equilibria in which
any two proposals made by the chair are independent of legislator j’s messages if for each of
these proposals, either legislator j rejects it with probability 1, or legislator ¢ accepts it with

probability 1. That is, 7(m;, m;) = m(m;,mj) if for each of m(m;, m;) and 7(m;, m), either

J
(i) every type of legislator i who sends m; accepts it, or (ii) every type of legislator j who
send m; (respectively m’) rejects m(m;, m;) (respectively m(m;, m})). We find the refinement
of simple equilibrium reasonable because if legislator i accepts a proposal with probability 1
(so that legislator j is not pivotal), or if legislator j rejects a proposal with probability 1,
then the chair’s optimal proposal depends only on her belief about legislator ¢’s type, which is

independent of legislator j’s message. Note that if the chair’s optimal proposal is unique, then

the requirement of simple equilibrium is automatically satisfied.

Proposition 4. Fiz a simple equilibrium (u,~y, 7). A message rule for any legislator i has at

most size three, i.e., K; < 3. For a size-three message rule p; (), (m},mj) induces (Jo; ¢, 0,0)
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for all m; sent in equilibrium; (m?,mj) induces a compromise proposal with y € (4o,y) if

mj € {mf,mg’}, and (mf’,mi’) induces (;¢,0,0).

As in the one-sender case, we can interpret mz1 as the “cooperate” message, mf as the
“compromise” message and m? as the “fight” message. Legislator ¢ sends m} only when his
ideology is sufficiently aligned with the chair’s. With the assurance of this cooperative ally,
the chair proposes her ideal policy without giving out any private benefit. By contrast, when
legislator i holds a position distant from the chair’s, he send m? to signal a tough stance on
policy change. If both legislators send the “fight” message, the chair realizes that their positions
are too far from her own and the best proposal is to make no policy change and give out no
private benefit. Finally, when a legislator holds a position somewhat aligned with the chair’s,
he sends a “compromise” message and the chair responds with a policy in between the status
quo and her own ideal unless the other legislator indicates willingness to cooperate.

The intuition for Proposition 4 is similar to that for Proposition 1 in the one-sender case,
with the appropriate modifications. The crucial step is that for either legislator 1 or 2, only
one message sent in equilibrium induces proposals that involve compromise policies y € (9o, 3).
More precisely, if mf’ induces a proposal with policy y € (0,9), then any proposal induced by
mf; where k, < k; must be (7o;¢,0,0), the proposal that gives the chair the highest possible
payoff. Together with the observation that k; = K; if a message mfl either induces (g;¢,0,0)
or a proposal rejected by legislator i, it follows that a message rule has at most size three.

Since the message rule for each legislator has a size of up to three, there are many different
types of equilibria. Instead of enumerating all of them, in what follows, we provide an extended
example that illustrates what different equilibria look like. We first keep one legislator’s message
uninformative (K; = 1) and vary the size of the other legislator’s message rule (1 < K; < 3).

We then characterize an equilibrium in which both legislators’ messages are informative.

Example 4. Suppose § =0, 5o = —1, c=1, u; (2,t;) = x; — (y — g]l-)z and §; (equivalently, t;)
is uniformly distributed on [—2,2] fori=1,2.

Fix K9 = 1, i.e, legislator 2 babbles. To lighten notation, assume that any type of legislator
2 sends mso.

Suppose K; = 1. Calculation shows that the chair’s optimal proposal is (g;¢,0,0) =
(0;1,0,0). Intuitively, when both legislators babble, the chair faces a high degree of uncer-

tainty about the legislators’ positions and therefore chooses to make the safe proposal that
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maintains the status quo policy and makes no transfers.
Suppose K1 = 2, i.e., uy (t1) = mi ifty <72, uy (1) = m? if t; > 72, Calculation shows that

T (m%,mg) = (§;¢,0,0) = (0;1,0,0), independent of the cutoff 72. Corresponding to different
cutoffs 72, there are many equilibria in which legislator 1’s message rule has size two. For
instance, let 77 = —%, T (m%,mg) =(-1;1,0,0) , (m%,mg) = (0;1,0,0), 6 which generates
an equilibrium in which no compromise policy y € (o, %) is ever proposed. There is also a
continuum of equilibria in which a compromise policy is proposed in response to the message
2

profile (m%, mg). This happens when 72 is in an intermediate range. For example, let 73 = %,

T (m%,mg) = (—%; %, 2%,0) and 7 (m%,mg) = (0;1,0,0), which generates an equilibrium in
which a compromise policy y = —% is proposed in response to (m%,mg). As to the players’

welfare, the chair is clearly better off when K7 = 2 than when K7 = 1 because more information
is transmitted when K7 = 2. Legislator 1 is also better off in the equilibrium with K; = 2. In
particular, when t; < 72, legislator 1 is strictly better off (i.e., when his position is close enough
to the chair’s position, legislator 1 is better off conveying that information to the chair). The
uninformative legislator 2, on the other hand, is worse off in the equilibrium with K; = 2.

Suppose K1 = 3, i.e., 1 (t1) =miif t; <72,y (01) =miif 72 <t1 < 77 and py (1) = m3

if t1 > 3. As shown in Proposition 4, (m%,mg) induces (9o; ¢, 0,0), (m%,mg) induces (y; x)
with y € (fo,) and (m},ms2) induces (§;¢,0,0). There is again a continuum of equilib-
ria. We can construct an equilibrium with K7 = 3 from an equilibrium with K; = 2. For

example, consider the equilibrium in the previous paragraph with K; = 2 and the elicited

proposals (—%; %,785,0) and (0;1,0,0). Now let 72 = —%, = %, 0 (m%,mg) =(-1;1,0,0),

T (m%,mg) = (—%; %, %,0) and 7 (m:{’,mg) = (0;1,0,0). Comparing this equilibrium with

K7 = 3 to the equilibrium with K; = 2 from which it was constructed, the chair is better off
in the equilibrium with K7 = 3 because more information is transmitted. Legislator 1 is also
better off conveying more information about his type. In particular, when his position is closely
aligned with the chair’s (t; < 74 = —%), legislator 1 is strictly better off, but legislator 2 is
worse off in the equilibrium with K7 = 3.

There are also equilibria in which both legislators’ messages are informative. To illustrate,
consider the following strategy profile with K1 = Ky = 3. Legislator ¢’s message rule is

wi(ti) = mlif t; € [th,72], wi(t;) = m? if t € (77, 77] and p; (t;) = m$ if (72, 7}] where

7 170 K3 101

16For this equilibrium and others, we assume that for any message profile m off the equilibrium path, (m) is

equal to one of the proposals on the equilibrium path.

22



T, =-2< 7'12 < TZ~3 < Ti4 = 2. The chair’s strategy is as follows: if m; = mz1 for either i = 1 or 2,
propose (—1;1,0,0); if m; = m3 for both i = 1,2, propose (0;1,0,0); if my = m? and mg = m3,
propose (y';zf, 1 — x},0); if m; = m3 and mg = m3, propose (v';x),0,1 — zf); if m; = m? for
both i = 1,2, propose (y";z{,1 — z{,0) with probability 3 and propose (y";z{,0,1 — z{) with
probability %.17 Using the indifference conditions of type 72 and type 77 and conditions for the
chair’s proposals to be optimal, we find that 72 = —0.80, 73 = 0.54, v/ = —0.23, z{, = 0.70, " =
—0.45, z( = 0.87.

In this equilibrium, if at least one of the legislators signals his willingness to cooperate by
sending message m%, then the chair proposes her ideal gy and hands out no private benefit.
Because legislator i’s ideal is in [}, 72] = [~2, —0.80], he is willing to accept the chair’s ideal
policy even without receiving any private benefit, and this proposal passes with probability 1.

If both legislators act tough and send the “fight” message m?, then the chair proposes the
status quo policy g and still hands out no private benefit. Since both legislators’ ideal points
are too distant from the chair’s, it is too costly (i.e., the private benefits needed in exchange
for their votes are too large) for it to be optimal for the chair to try to make any policy change.
This proposal also passes with probability 1.

If legislator ¢ signals willingness to compromise by sending m? while legislator j sends the
fight message m?, then the chair tries to gain the vote from legislator ¢ while giving up on
legislator j. She proposes a compromise policy (y' = —0.23) and gives some private benefit
only to legislator ¢ (2} = 0.30 and x; = 0). The proposal is rejected by legislator j, but is
accepted by legislator .

Perhaps the most interesting case is when both legislators signal willingness to compromise
by sending m?. In the equilibrium we constructed, it is equally costly (in expectation) for the
chair to win the vote of either legislator. So she randomizes with equal probability between two
proposals that involve the same policy (y” = —0.45) and the same private benefit for herself
(g = 0.87), but differ with respect to which legislator receives some private benefit. Compared
with the case in which only one legislator signals willingness to compromise while the other

shows a tough stand, here the compromise policy is even closer to the chair’s ideal and the

"Notice that we have not allowed randomization for the chair so far. Since the players are symmetric in this
example, we allow randomization over who to include in the proposal when the chair is indifferent. Allowing
this kind of randomization does not affect our general results. For example, for the proof of Proposition 4, the
crucial step is part (ii) of Lemma 2. It can be easily verified that it still holds even if we allow randomization

over which legislator to include in a proposal.
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private benefit that the chair gives out is also smaller. Intuitively, since the chair needs only
one vote to have a proposal passed when both legislators signal willingness to compromise, they
create competition between themselves and therefore the chair’s optimal proposal involves less
ideological compromise and less distributive concession. Interestingly, the legislator who gets no
private benefit still votes for the proposal with positive probability in equilibrium. To see this,
suppose z; > 0 and 27/ = 0. Then legislator i votes for the proposal if 27 +0;v(y", ;) > 0;v(7,t:),
ie., if t; € [—0.80,—0.08] and legislator j votes for the proposal if 6,;v(y",t;) > 0;v(y, t;), i.e., if
t; € [—0.80,—0.22]. So both legislators accept the proposal with positive probability, although
the probability that legislator j accepts the proposal is lower compared to legislator i. Note
that this proposal is rejected with positive probability in equilibrium.

To compare this equilibrium in which both legislators’ message rules are informative with
the babbling equilibrium, note that since the chair always benefits from more information
transmission, her expected payoff is higher in the informative equilibrium. Both legislators 1
and 2 also have higher expected payoffs in the informative equilibrium (—2.66) than they do in

the babbling equilibrium (—2.67), so they also benefit from more information transmission.!®

5.2 Disadvantages of bundled bargaining

As our analysis of the one-sender game in Section 4.4 shows, although bundling the ideological
and the distributive dimensions affords the legislators the flexibility of trading private benefits
for policy compromises, bundling has some disadvantages as well, making it sometimes better
to negotiate the two dimensions separately. Although general propositions are hard to derive,
in what follows, we show that the results regarding the disadvantages of bundled bargaining
are robust when we extend the model to two senders.

Recall that if ¢ > 0, i.e., a positive surplus is created when the players reach agreement,
then the players risk losing the surplus c if negotiation breaks down in the bundled bargaining
game whereas they incur no such risk if they bargain over the different dimensions separately.
To illustrate this in the two-sender game, suppose the parameters are the same as in Example
4, where we analyzed the “bundled bargaining” game. Now consider the alternative “sepa-
rate bargaining” game in which the chair, after receiving the legislators’ messages, makes one

proposal on the ideological dimension and another on the distributive dimension. Then the

18We do not have a general result regarding the welfare comparison of legislators 1 and 2 across equilibria, but

given what we know from the one-sender case, suspect that it is not clear cut.
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legislators vote on each proposal and majority rule determines whether the proposal passes in
each dimension. In this separate bargaining game, the chair proposes (¢, 0,0) on the distributive
dimension and the proposal passes. As to the ideological dimension, the following informative
equilibrium exists:'® Both legislators 1 and 2 play the message rule such that u; (¢;) = m} if
t € [=2,72], ui(t;) = m? if t € (77,2] where 72 = —0.81. The chair proposes y = g if at
least one legislator sends m} and a compromise policy y = —0.62 if both legislators send m?
Legislator ¢ votes for the compromise policy if and only if ¢; < —0.31. Calculation shows that
the chair’s expected equilibrium payoff (0.64) in the separate bargaining game is higher than
her expected payoff (0.56) in the equilibrium of the bundled bargaining game described earlier
with K1 = K9 = 3. The reduction of payoff from bundling comes from the dissipation of private
benefits when the legislators fail to reach an agreement, which happens when both legislators
send m? but vote against the chair’s proposal. Although failure to reach an agreement also
happens even if the legislators negotiate the ideological dimension separately, the distributive
dimension is shielded from such failure.

Even if ¢ = 0 and there is no risk of losing any surplus from bundled bargaining, separate
bargaining can still be better than bundled bargaining because of the informational loss resulting
from bundling. To illustrate, suppose ¢ = 0 but keep all the other parameters the same as in
Example 4. As shown in the previous paragraph, if no side payments are allowed, then there
exists an informative equilibrium in which the legislators send mi1 if ¢; is below Tiz and send ml2
if ¢; is above Tf. As in the game with one sender, when side payments are allowed, however, this
is no longer an equilibrium strategy if the chair places a relatively low weight on the distributive
dimension. Because of this informational loss, the chair’s equilibrium payoff may be lower in the
bundled bargaining game where side payments are allowed. So, when the information about the
players’ uncertain ideological positions is sufficiently valuable, the chair may optimally choose to
commit not to use transfers to make deals on policy change in order to extract more information

from communication.

19 The separate bargaining game on the ideological dimension is similar to Matthews (1989), only with three
players instead of two. We can modify the argument provided in Matthews (1989) to show that each legislator’s

message rule has at most size two. Since the analysis does not provide much new insight, we omit the details.
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6 Concluding remarks

In this paper, we develop a model of legislative bargaining over an ideological issue and a
distributive issue in which legislators are privately informed about their preferences. Legislators
can potentially convey information about their preferences through cheap talk before a bill is
proposed. In contrast to a perfect information environment, we show that it might be better
to bargain over the two issues separately rather than together since bundling may result in
significant informational loss. Thus our results point out another potential harm of pork barrel
spending that was previously overlooked.

In our model we assumed a one-shot process with monopoly agenda control in a similar
spirit to closed rule in Gilligan and Krehbiel (1987, 1989). One extension is to allow the
chair to make additional proposals when the initial proposal is rejected. With discounting, we
conjecture that costly delay allows the legislators to signal their types by rejecting proposals,
so there could be additional information revelation over time. As in our model, we expect
that bundling the two issues would result in informational loss in this setup. Another possible
extension is to change the monopoly agenda control assumption, and consider a Baron-Ferejohn

type bargaining protocol. We leave this extension for future work.
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Appendix

Proof of Lemma 1. Suppose u; (2',t1) > u; (z,¢1). Then x} + 0,0 (v, t1) > z; + 6;v (y, 1), ie.,
0; (v (y,t1) —v(y,t1)) > x; — . Since v (-,-) is supermodular in (y,t1), if #; > t;, then
v(y,t)) — vy, ty) > v(y,t1) — v(y,t1), which implies that 6; (v (y/,t}) —v(y,t})) >
0; (v(y,t1) —v(y,t1)) > z; — ;. Hence u; (2/,t]) > w;(z,t)) for t| > t;. A similar argu-

ment proves the second part of the claim. ]

Proof of Proposition 1. Part (i) follows from parts (ii) and (iii), so it suffices to prove parts (ii)
and (iii).

Part (ii): Since the proposal (7;c¢,0) is accepted with probability 1, v (y, %) reaches its
maximum at y = go, and v1; < 0, any proposal with y > ¢ is not optimal for the chair. Hence,
if z is elicited in equilibrium, then it satisfies y < §. Suppose y = g, but « # (¢,0). Then z; > 0
and legislator 1 accepts z. But there exists another proposal 2/ = (7;2’) with 0 < z} < x1 such
that legislator 1 still accepts z’. Since the chair strictly prefers 2’ to z, this is a contradiction.

To prove part (iii), suppose both z = (y;z) and 2’ = (y/;2') are elicited in equilibrium with
y <y’ < §. We next show that z = (o;¢,0). Since both z and 2’ are elicited in equilibrium,
there exists a type, t;, who is indifferent between z and 2z’. By Lemma 1, any type t; > t;
strictly prefers 2/ to z and hence does not elicit z, and any type t; < t; strictly prefers z to 2/
and hence does not elicit 2’. So only types t; > #; elicit 2. Since 2’ is elicited in equilibrium and
therefore accepted by some types that elicit it, there exists a type tJ{ > 11 such that u(2/, tD >
ul(s,t];). Since 3’ < 7, it follows from Lemma 1 that u (z/,fl) > u (3,51). Together with
Uy (z,t]) = (z’,fl) and Lemma 1, this implies that uy (2,t1) > uy (2/,¢1) > g (s, 1) for any
t1 < 1.

Suppose z # (go;¢,0). Consider the following two possibilities: (i) Suppose x; > 0. Since
up (z,t1) > uy (s,t1) for any ¢ < #1, and u; is continuous in x1 for any ¢1, there exists € € (0, z1)
such that for any z{ > 21 — e > 0, the proposal (y;c — 27, ) is accepted by any type t; < #;.
Since ug (y; ¢ — xf,2) > ug (2), z is not optimal for the chair, a contradiction. (ii) Suppose
y # Jo. Since Yo < Y, Yo < Y1, v(y, yi) reaches its maximum at y = g;, and v1; < 0, we must
have y > fjo. Since uy (2,t1) > uq (s,t1) for any t; < #1, it follows that if y > o, there exists
e € (0,y — go) such that for any y" € (go,y — ), the proposal (y”;x) is accepted by any type
t1 < 1. Since ug (y"; ) > uo (2), z is not optimal for the chair, a contradiction.

Given parts (ii) and (iii), it follows that an equilibrium has at most size three. O

28



Proof of Proposition 2. Proposition 1 implies that there are at most three proposals elicited in
equilibrium: (go;¢,0), (g;¢,0) and (y;c — x1,x1) with y € (%o, 7). Moreover, Lemma 1 implies
that there exist a 7{° and a 7{* with 7" < 71" such that among the elicitable proposals, type t;
strictly prefers (yo;c,0) if t1 < 74, type t; strictly prefers (y;c —x1,z1) if 7 < t1 < 77" and
type t; strictly prefers (g;¢,0) if t1 > 7*. Hence, if t; < 77, type t; elicits (go; ¢, 0) and accept
it; if 74 < t1 < 7%, type t1 elicits (y;c — x1,x1) and accepts it and if ¢; > 77, type t; elicits

y;c,0) and accepts it. O
(75 c, p

Proof of Proposition 3. Part (i): Recall that h(t},t]) is the set of optimal proposals for the
chair in the bundled bargaining game when she knows that ¢ € [t],t]].

Since ¢ = 0, if an informative size-two equilibrium exists in the bundled bargaining game,
there exists a type 71 such that u1((90;0,0), 7)) = u1 (2, 77) where 2’ = (v/;2") € h(r{,11) with
y' > go. Since x) > 0, it follows that v(go, ) > v(y/, 77).

For any a € T1, let g(a) be the set of optimal proposals on the ideological dimension for the
chair when she knows that ¢; € [a, 1], with the constraint that z1 = 0.

For any z = (y; —z1,21) € Z, let k(z) be the rightmost type in |77, 71] willing to accept z
if some type in [7],91] is willing to accept z and let k(z) = 7{ otherwise. Also, let W (y,x1) =
(=1 + 0(y, 50)) A + v(§ §o)(1 — A) where A = (F(k(2)) — Fy(r}))/(Fi(B1) — Fi(r)). That
is, W(y,x1) is the chair’s expected payoff by proposing z when t; € [r7,#1]. Since (y';2') €
h({,t1), it follows that ¢ € arg max, ¢y W (y, x}). Also, by the definition of g, we have g(77) =
arg max,cy W(y,0).

Note that

ow? 0A

dydxy  dy

Since %—‘; has the same sign as 6’5—5), and a’;—gj) > 0 for any y < g, it follows that a‘z‘g; <0

for y < §. Standard results from monotone comparative statics (see, for example, Milgrom
and Shannon 1994, Theorem 4) imply that there exists a yi € g(1y) such that yt >4/, As
shown earlier, v(§o, 75) > v(y/, 7). Since y! > ¢/ > o and v is strictly concave in y, it follows
that v(go, 77) > v(y',7F) > v(y',7}). By Proposition 3 (page 358) in Matthews (1989), an
informative size-two equilibrium exists in the separate bargaining game.

Part (ii): Example 3 shows that part (ii) is true. O

Proof of Proposition 4. To prove the proposition we establish the following lemmas.
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Lemma 2. Fizx a simple equilibrium (u,~y, 7). Suppose z = (y;x) with y < ¢ is induced by

(mlfl,mgz) and accepted with positive probability by legislator i. Then, fori=1,2, (i) type Tiki

of legislator i strictly prefers z to the status quo. (ii) if k; > 2, then W(mf"_l,mj) = (%0;¢,0,0)

K.
for any m; € {m},mjg, ey T 1.

Proof. Part (i): Suppose to the contrary that type Tiki weakly prefers s to z. Since y < ¢, by

Lemma 1, if ¢; > Tiki, then type t; strictly prefer s to z and hence rejects (y;x). Since mfl is
sent by t; € (Tiki, lei+1], this contradicts the assumption that (y;x) is accepted by legislator i

with positive probability.

Part (ii): Suppose to the contrary that ﬂ(mffl,mj) # (90;¢,0,0) for at least one m; €

{mjl, m?, - mJKj }. Among these proposals find one that gives type Tfi the highest payoff, and

denote it by 2/ = (¢/;2’). Consider the following two cases.

(a) Suppose type Tfi weakly prefers (go;c,0,0) to (y';2'). Since y < ¢, zf > 0, and
vn(y,Tfi) < 0, it follows that type Tfi weakly prefers (go;¢,0,0) to s. By Lemma 1, for
any type t; < Tiki, legislator i strictly prefers (go;c,0,0) to s and therefore accepts it. Since

(90;¢,0,0) gives the chair the highest possible payoff, her optimal response to any m with

k._
m; =m;"

! must be (90;¢,0,0), a contradiction.
(b) Suppose type Tf" strictly prefers (y';2’) to (%0;¢,0,0). Then (y';2') is the proposal

k;

among those induced by m; ~! that gives type Tz-ki the highest payoff. Since type Tz-ki is indifferent

between sending mfl and mfi_l, and (mfl, m;) induces a proposal that type Tfi accepts for at

_1, m;) also induces a proposal that type

least one m; sent in equilibrium, it follows that (mf’
Tfi accepts for at least one m; sent in equilibrium. Hence type Tz-ki prefers (y';2') to s. By
Lemma 1, any type t; < 7F strictly prefers (y';2') to s. Since (v';2") # (fo; ¢, 0,0), there exists
another proposal (y";2") with either gy < y” < v’ or 2/ < ! such that legislator ¢ with ¢; < 7F

strictly prefers (y”;z”) to s and hence accepts it. Since the chair strictly prefers (y”;2") to

(y'52"), (y';2) is not a best response, a contradiction. O

Let k; be the maximum k € K; such that m(m¥,m;) # (7;c,0,0) for some m; € {m;, m?, ey mJKJ}

and legislator ¢ accepts ﬂ(mf, m;j) with positive probability.

Since we assume that adjacent intervals of types induce different distributions of proposals,

Lemma 2 implies that k; < 2 since for any mj € {mjl, m?, - mfj }, the message profile (m%, m;)

with k < k; induces (go; ¢, 0, 0).
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Lemma 3. Fiz a simple equilibrium (u,~y,m). Let m; € {m},m?, ,mJKJ} Suppose (mF,m;)
either induces (y;¢,0,0) or induces a proposal that is rejected by legislator i with probability 1

in (u,y,m). Then k = K;.

Proof. Suppose to the contrary that k < K;. Let (y;x) be a proposal induced by (mf“,mj)
for some m; € {mjl-,mg, ,mJK’} and suppose (y;z) is accepted by legislator i with positive

probability. If y < ¢, then by Lemma 2, (mf,mj) induces (o; ¢, 0,0) for any m; sent in equi-

librium, a contradiction. Hence (y;z) = (¥;¢,0,0), which implies that a proposal induced
k+1

by m;"" must either be (g;¢,0,0) or rejected by legislator i. Note that in a simple equilib-
k+1

rium, if 7(m¥,m;) and 7(m; ', m;) are both rejected by legislator i with probability 1, then
k+1

i

k

i

+

m(mF,m;) = n(mf*t m;). Hence messages m¥ and mf™ induce the same distribution of

proposals, a contradiction. ]

Lemma 3 implies that there is at most one message mf sent in equilibrium with k& > k;.
Since k; < 2, the maximum number of equilibrium messages for legislator 7 is 3, i.e., K; < 3.

The rest of Proposition 4 also follows from Lemma 2 and Lemma 3. 0
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