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Abstract: Acoustic methods have been widely used to detect water leaks in buried 9 

fluid-filled pipes, and these technologies also have the potential to locate buried pipes 10 

and cables. Relatively predictable for metal pipes, there is considerably more 11 

uncertainty with plastic pipes, as the wave propagation behaviour becomes highly 12 

coupled between the pipe wall, the contained fluid and surrounding medium. Based 13 

on the fully three-dimensional effect of the surrounding soil, pipe equations for n=0 14 

axisymmetric wave motion are derived for a buried, fluid-filled pipe. The 15 

characteristics of propagation and attenuation are analyzed for two n=0 waves, the 16 

s=1 wave and s=2 wave, which correspond to a predominantly fluid-borne wave and a 17 

compressional wave predominantly in the shell, respectively. At the pipe/soil interface, 18 

two extreme cases may be considered in order to investigate the effects of shear 19 

coupling: the “slip” condition representing lubricated contact; and the “no slip” 20 

condition representing compact contact. Here, the “slip” case is considered, for which, 21 

at low frequencies, analytical expressions can be derived for the two wavenumbers, 22 

corresponding to the s=1 and s=2 waves. These are both then compared with the 23 

situations in which there is no surrounding soil and in which the pipe is surrounded by 24 
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fluid only, which cannot support shear. It is found that the predominant effect of shear 1 

at the pipe/soil interface is to add stiffness along with damping due to radiation. For 2 

the fluid-dominated wave, this causes the wavespeed to increase and increases the 3 

wave attenuation. For the shell-dominated wave there is little effect on the wavespeed 4 

but a marked increase in wave attenuation. Comparison with experimental 5 

measurements confirm the theoretical findings. 6 
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1. Introduction 1 

Water leakage from buried pipes is a subject of increasing concern because of 2 

decreasing water supplies and the deterioration of old pipework. Since the loss of 3 

large amounts of water through leak pipework system is both environmentally and 4 

economically damaging, much attention has been paid to reducing water leakage over 5 

the past few years. Meanwhile, the problems associated with inaccurate location of 6 

buried pipes and cables have been very serious for many years and are getting worse 7 

as a result of increasing traffic congestion in the worldwide major urban areas. A 8 

recent UK study estimated that streetworks cost the UK £7bn in lost revenues 9 

annually; comprising £5.5bn in social costs and £1.5bn in direct damages [1]. 10 

(McMahon et al, 2005).In response to these, a large multi-centre program, Mapping 11 

the Underworld [2], is being undertaken in the UK to assess the feasibility of a range 12 

of potential technologies that can be combined into a single device to accurately 13 

locate buried pipes and cables. An essential technology to be combined into the device 14 

is low-frequency vibro-acoustics, and suitable techniques for detecting buried 15 

infrastructure, in particular buried plastic water pipes, have been proposed [3] and are 16 

currently being developed [4,5]. 17 

Detection of water leaks in buried distribution pipes using acoustic methods is 18 

common practice in many countries. A leak from a water supply pipe generates noise, 19 

which can be used for leak detection and location. Among the various acoustic 20 

detection methods, the correlation technique has been proved to be effective for leak 21 

detection, which measures acoustic signals at two locations along the pipe, the leak 22 

position is then identified by the delay between the leak noise reaching each 23 

monitoring point [6]. Although the correlation technique has been successful for many 24 

years when used with metal pipes, it remains problematic when used with plastic 25 
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pipes. Relatively predictable for metal pipes, there is considerably more uncertainty in 1 

the wave propagation parameters with plastic pipes because of their flexibility and the 2 

concomitant attenuation. The wave propagation behavior becomes highly coupled 3 

between the pipe wall, the contained fluid and surrounding medium, hence the pipe 4 

may become a more effective energy radiator [7,8]. 5 

Since the correlation technique relies on the vibration characteristics of the 6 

pipework system, it is worthwhile to study these characteristics before investigating 7 

leak detection, as the propagation wavespeed of the leak signals depends on the pipe 8 

material, diameter, and pipe wall thickness [7]. The problem of vibration and wave 9 

propagation within elastic, fluid-filled pipes has been studied previously in some 10 

detail. Pinnington and Briscoe [9] give low-frequency wavenumber expressions for 11 

the axisymmetric fluid-dominated and shell-dominated waves respectively and offer 12 

physical interpretations of the results. Fuller and Fahy [10] present dispersion curves 13 

and energy distributions of free waves in thin walled cylindrical elastic shells filled 14 

with fluid. Sinha et. al. [11] present numerical dispersion results for a fluid-filled 15 

cylindrical shell and a shell surrounded by an infinite fluid. Safaai-Jazi et. al. plot 16 

dispersion curves for a cylindrical fluid core surrounded by an infinitely thick solid 17 

cladding [12], but no pipe is present. Greenspon [13,14] considers axisymmetric 18 

vibrations of both thin and thick cylindrical shells surrounded by water. 19 

However, when the pipe is surrounded by an elastic medium, little work is 20 

available in the literature, except for some work concerning the dynamic response to 21 

seismic excitation [15,16]. 22 

A theoretical model of a buried fluid-filled pipe to predict both wavespeed and 23 

attenuation has been developed and validated previously by Muggleton et al. [17]. 24 
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They investigated the axisymmetric wave propagation in a fluid-filled pipe 1 

surrounded by soil, and derived approximate wavenumber expressions for the 2 

fluid-dominated and shell-dominated waves, and later also gave some experimental 3 

results [18]. However, in their work, the shear coupling of the pipe to the surrounding 4 

soil was not properly accounted for: the soil was effectively treated as a fluid 5 

supporting two different waves, each of which exerted normal pressure on the pipe 6 

wall. Liu et al. [19] modelled a buried pipe as a thin cylindrical shell of linear 7 

homogeneous isotropic elastic material surrounded by a linear isotropic homogeneous 8 

elastic medium of infinite extent, and the forces exerted in the three orthogonal 9 

directions on the pipe wall were included. However, they only computed the natural 10 

frequencies for a simply supported pipe, and the effect of the surrounding soil on the 11 

pipe were not discussed in detail. 12 

Acoustic energy in buried water pipes generated by a leak propagates at relatively 13 

low frequencies. Hunaidi [8] has confirmed that most leak noise energy, on simulated 14 

but realistic leaks, is concentrated at frequencies below 100Hz on a plastic pipe 15 

distribution system. When the coupled dynamic system vibrates at relatively low 16 

frequencies, well below the ring frequency of the pipe, four wave types are 17 

responsible for most of the energy transfer [9,10]: three axisymmetric waves, 0n ; 18 

and the 1n  wave, related to beam bending. Of the 0n  waves, the first, termed 19 

1s , is a predominantly fluid-borne wave; the second wave, 2s  is predominantly 20 

a compressional wave in the shell; the third wave, 0s  is a torsional wave 21 

uncoupled from the fluid. 22 

This paper builds on previous work [17-19]; the work is extended here to consider 23 

the fully three-dimensional effect of the soil on a buried fluid-filled pipe. The pipe is 24 
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modelled as a thin cylindrical shell of linear homogeneous isotropic elastic material 1 

buried in an elastic medium of infinite extent. Considering the surrounding medium to 2 

exert effects on the pipe in all directions, expressions for the wavenumbers are 3 

derived for 0n  axisymmetric motion; then the propagation wavespeed and wave 4 

attenuation of the 1s  wave and 2s  wave are analyzed. At the pipe/soil 5 

interface, two extreme cases can be considered, representing the coupling extremes, in 6 

order to investigate the shear coupling: the first is termed the “slip” condition, in 7 

which there is lubricated contact between the pipe and the surrounding soil, and no 8 

accompanying shear stress; the second is termed the “no slip” condition in which 9 

compact contact between the pipe and the surrounding soil is assumed and for which 10 

there is continuity of tangential displacement across the boundary. Here, the “slip” 11 

case is considered, for which low-frequency (when there is less than one half of a 12 

fluid wavelength across the pipe diameter), analytical expressions for the s=1 and s=2 13 

wavenumbers can be derived, permitting insights to be gained into the physical 14 

mechanisms at play. These cases are then compared with the situation in which no 15 

shear wave is present in the surrounding medium, i.e. either when there is no 16 

surrounding medium or when the pipe is immersed in a fluid. In order to demonstrate 17 

the predicted behaviour, some example results for two typical soils are presented. To 18 

validate the theoretical predictions, additional example results are compared with 19 

experimental measurements made on a buried plastic pipe. 20 

The paper is organized as follows: in section 2, the equations of motion for the 21 

pipe and surrounding soil are derived; in section 3, analytic solutions are derived, and 22 

their implications discussed; section 4 presents the example results; in section 5, 23 

additional example results are compared with experimental measurements; finally, in 24 

section 6, the conclusions are presented. 25 
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2. Equations of motion 1 

2.1 Vibration of the pipe 2 

 3 

 4 

 5 

 6 

 7 

 8 
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The pipe equations for 0n  axisymmetric wave motion are derived for a buried 10 

fluid-filled pipe. The surrounding soil is regarded as an infinite elastic medium which 11 

can sustain both compressional and shear waves. A semi-infinite cylindrical shell is 12 

shown in Fig. 1: the shell displacements are u , v  and w  in the axial ( x ), 13 

circumferential ( ), and radial ( r ) directions, respectively; a and h are the pipe 14 

radius and wall thickness respectively. The contained fluid imposes a pressure ( fp ) 15 

on the pipe wall; the surrounding soil imposes both tangential and normal stresses. 16 

The following are simplified forms of Kennard‟s equations for a thin-walled shell [20], 17 

with shell bending neglected, and so are only valid below the ring frequency. 18 

Equilibrium of forces in the axial direction gives 19 

haxu rxxp /)(/    (1) 

Equilibrium of forces in the radial direction, assuming no circumferential 20 

variation, leads to 21 

   wahaaap prrf
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Figure. 1.  The co-ordinate system for a buried fluid-filled pipe 
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(note that the pressure and stresses are evaluated at ar  ), where x ,   are 1 

circumferential and axial stresses in the shell, rx , rr are stresses in the external 2 

elastic medium; 
p
 is the density of the shell material; a  and h  are the radius and 3 

thickness of the shell wall respectively ( ah  ). Hooke‟s Law for the shell gives 4 
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Where Ep and p are the elastic modulus and Poisson‟s ratio for the pipe material 5 

respectively. Combining equations (1) and (4) gives 6 
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these are the two coupled shell equations for 0n  motion. 9 

Travelling wave solutions of the form 10 
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may be used to describe the pipe displacements, where   is the angular 11 

frequency and sk  is the axial wavenumber for the s  wave. 12 
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2.2 Vibration of the contained fluid 1 

Assuming that the internal medium is a fluid, which cannot sustain shear, the 2 

internal pressure fp  can be described by a Bessel function of order zero [21]. 3 
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where the internal fluid radial wavenumber, 
r

fsk , is related to the fluid 4 

wavenumber, fk , by 5 
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2.3 Vibration of the surrounding soil 7 

The displacement vector,  trx  , , ,u , of a point in the surrounding medium 8 

satisfies the equation of motion
 
[22] (eq. A.3) 9 
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Where m, m are the Lame coefficients; m is the density of the medium;   is 10 

Hamilton differential operator;   is the dilatation which in cylindrical coordinates 11 

is given by 12 
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where ru , u  and xu  are the displacements of the soil in the r ,   and x  13 

directions, respectively. 14 

The components of the rotation about the three orthogonal directions are given by 15 

[22] (eq. 3.39) 16 
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According to Hooke‟s Law, the relationship between the stresses and the strains 1 

are given by [22] (eq. 3.41) 2 
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For axisymmetric motion, the displacement u  vanishes ( 0u ), as do 3 

variations with respect to  ( 0/   ). Thus, equations (12) and (13) become  4 
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Similar to the pipe displacements, travelling wave solutions for the surrounding 5 

medium may be assumed of the form 6 
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where both Wm and Um are functions of radius, r. Combining equations (11), 7 

(15)-(18) gives the equations of motion in the surrounding medium as [22] (eqs. 3.45, 8 

3.46) 9 
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where the surrounding medium compressional and shear radial wavenumbers, r
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Equations (19), (20) are Bessel‟s equations, so solutions of the above two 6 

equations for an external cylindrical space are 7 
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where G  and H  are function of x  and t , but are independent of r .  0H , 8 

 1H  are Hankel functions of the second kind which describe outgoing waves. 9 

Substituting for ru  and xu  from equations (17), (18) into (19), (20), give 10 
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In order to satisfy equations (21)-(24), mU and mW  must have the form [22] 11 
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where A  and C  are constants. 12 
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From equations (14), (25) and (26), the stresses in the surrounding soil can be 1 

expressed in terms of A and C as 2 
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2.4 Fully coupled equations 4 

The coefficient Pfs in equation (9) and the coefficients A , C  in equations 5 

(25)-(28) may be determined from the conditions at the pipe/internal fluid and 6 

pipe/soil interfaces respectively. 7 

2.4.1 Pipe/internal fluid interface 8 

For the fluid, at the boundary ar  , each of the s=1,2 pressure waves in the 9 

contained fluid must have a radial displacement at the shell boundary r=a which is 10 

equal to the shell displacement. Equating the radial velocity of the fluid at the shell 11 

wall to the radial velocity of the shell wall gives 12 
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Combining equations (9), (25) and (31) gives 13 
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2.4.2 Pipe/soil interface 14 

For the pipe/soil interface, we consider one extreme case, termed the “slip” case. 15 

Here the pipe and soil are considered to be in lubricated contact so that the shear 16 
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stress vanishes along the pipe surface. 1 

Equation (28) thus becomes 2 
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Furthermore, the displacements of the soil in the radial direction must match that 4 

of the shell, i.e., 5 

sm WW                                (32) 6 

Substituting equations (25), (27), (28), (30), (31) and (32), into equations (5) and 7 

(6), eliminating the constants A and C, and rearranging results in the following 8 

dispersion equation for the s waves. 9 
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 (33) 11 

where Lk  is the wavenumber of a compressional wave in the empty pipe shell 12 

wall , given by pppL Evk /)1( 222
  and fB  is the bulk modulus of the internal 13 

fluid. This is the wavenumber, or dispersion, equation. 14 

3. Analytic solutions 15 

Equation (33) is, in general, not amenable to analytic solution. However, some 16 

cases may be looked at in more detail. Since acoustic energy in buried water pipes 17 

generated by a leak propagates at relatively low frequencies [8], the behaviour of 18 

these waves at low frequencies is the focus of attention here. By using low-frequency 19 

approximations, when there is less than half a fluid wavelength across the pipe 20 
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diameter, some relatively simple wavenumber solutions may be found, enabling 1 

physical interpretations to be offered. 2 

Here, the small argument approximations for the Bessel functions 3 
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where 
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0  is the radiation impedance of the 

compressional wave in the surrounding medium, in the absence of shear [17]. 

Equation (34) allows the two s wavenumbers to be determined, 2,1s , 

corresponding to a fluid-dominated wave and an axial shell-dominated wave, 

respectively. 
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 15 

where mB  is the bulk modulus of the surrounding fluid. 1 

This is in agreement with the solution presented in [17] (equation 19), setting the 2 

shear modulus to zero. 3 

3.2  The s=1 wave 4 

The 1s  wavenumber (the predominantly fluid-borne wave) is found by 5 

assuming that 1k  is much larger than the plate compressional wavenumber Lk : i.e., 6 

the wavespeed of the 1s  wave is much slower than the plate compressional 7 

wavespeed. Setting 
22

1 Lkk   in equation (34) results in the following expression 8 

for the 1s  wave. 9 
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 Expressing k1 in this form allows most of the individual terms to be readily 12 

identified: the stiffness components of the contained fluid ( aB f /2 ) and the pipe wall 13 

(
2/ ahEp ); a pipe wall mass component ( hp 2

); and the s=1 compressional wave 14 

impedance term 12
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, are radiation terms 16 

associated with the compressional and shear waves in the surrounding medium when 17 

shear is present. 18 

At, in general, slightly lower frequencies, when the radial wavenumbers in the 19 
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surrounding medium are small compared with a pipe radius ( 1,1 11  akak r
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 given in the Appendix, may be used. Equation (36) then simplifies to 3 
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(37) 5 

Here, the radiation terms, dependent on shear, become a single shear stiffness term, 6 

2m/a. 7 

At very low frequencies, the 2
 term and the compressional wave impedance, zrad, 8 

both tend to zero, so equation (37) becomes 9 
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(38) 11 

This is also in accordance with the expression given in [16] for low frequency 12 

tube waves. 13 

For the case of no surrounding medium, equation (37) reduces to 14 
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agreeing with earlier work by Pinnington and Briscoe [9]. Comparing equations 16 

(36), (37) and (38) with equation (39), it can be seen that, at very low frequencies, the 17 

effect of the surrounding soil is to add stiffness; at slightly higher frequencies when 18 
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the compressional wave impedance term starts to contribute, there is an added mass 1 

and radiation damping effect, similar to that described in [17], largely controlled by 2 

the compressional wave. At slightly higher frequencies still, the effect of shear is 3 

more complex with both real and imaginary terms contributing. The nature of this 4 

shear contribution will be examined more fully in section 4 where example results are 5 

presented. 6 

3.3 The s=2 wave 7 

For the 2s   wave, setting 
2 2

2 fk k  in equation (34), k2 becomes 8 
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   (40) 10 

Again the individual terms can be readily identified with the radiation terms here 11 

being associated with the s=2 wave. At, in general, slightly lower frequencies, the 12 

small argument approximations for the Hankel function ratios (see Appendix) may 13 

again be used giving 14 
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(41) 16 

Again the shear radiation terms become a single shear stiffness. 17 

At very low frequencies equation (41) becomes 18 
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For the case of no surrounding medium, equation (41) reduces to 1 
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again agreeing with earlier work by Pinnington and Briscoe [9]. As for the s=1 3 

wave, it can be seen that, at very low frequencies, the effect of shear is to add stiffness. 4 

At higher frequencies, as before, mass and radiation damping are added via the 5 

compressional wave impedance, largely controlled by the compressional wave. Again 6 

at slightly higher frequencies, the effect of shear becomes complex. 7 

4. Example results 8 

In this section example results are presented for typical PVC water pipe 9 

surrounded by a medium which can sustain both compressional and shear waves. 10 

Complex wavenumbers for both the s=1 and s=2 waves are plotted as a function of 11 

frequency, where the real part gives the wave propagation speed, and the imaginary 12 

part gives the wave attenuation. Loss within the pipe wall is included, and is achieved 13 

by means of a complex modulus of elasticity. All the results are non-dimensionalized 14 

by the pipe radius, a, and plotted against the non-dimensional free field fluid 15 

wavenumber kfa. Two soils, denoted A and B, have been chosen to represent typical 16 

sandy (A) and clay or chalky (B) soils respectively [24]. Soil B also provides 17 

continuity with the previous work carried out in [17]. The various pipe and media 18 

properties are shown in Tables 1 and 2. 19 

Table 1  Pipe properties 20 

Properties Pipe 

Thickness/radius ratio  0.125 

Elastic modulus (N/m
2
) 5.0×10

9
 



 19 

Density (kg/m
3
) 2000 

Poisson's ratio 0.4 

Material loss factor 0.065 

Plate compressional wavespeed (m/s) 1725 

 1 

Table 2  Soil and fluid properties 2 

Properties Soil A Soil B Fluid 

Bulk modulus (N/m
2
) 5.3x10

7
 4.5×10

9
 2.25×10

9
 

Shear modulus (N/m
2
) 2.0x10

7
 1.8×10

8
 － 

Density (kg/m
3
) 2000 2000 1000 

Compressional wavespeed (m/s) 200 1540 1500 

Shear wavespeed (m/s) 100 300 － 

 3 

Here it should be noted that, when computing the s wavenumbers from equations 4 

(36) and (39), the radiation impedance terms, rad
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are a function of the s 6 

wavenumber so the calculation must be performed recursively. Furthermore, 7 

considering the arguments of the Hankel functions, which are derived from square 8 

root, it is important to choose the sign of the root correctly. This is a straightforward 9 

matter when the argument is purely real or purely imaginary as the sign is chosen 10 

such that the radial component of the wave in the surrounding medium either 11 

propagates outwards from the shell (real argument, homogeneous partial wave) or 12 

decays away from it (imaginary argument, inhomogeneous partial wave). When the 13 

argument is complex, the sign of the root is chosen according to whether the real or 14 



 20 

imaginary part of the argument is larger [25]. If the real part is larger, the partial wave 1 

can be considered homogeneous and must propagate away from the shell, so the 2 

positive square root is chosen; if the imaginary part is larger, the partial wave can be 3 

considered inhomogeneous and must decay away from the shell, so the negative 4 

square root is chosen. 5 

4.1 The s=1 wave 6 

Figure 2(a) shows the real part of the s=1 wavenumber for soil A. It can be seen 7 

that, as expected, without the surrounding medium, the effect of the pipe wall is to 8 

substantially increase the real part of the s=1 wavenumber from the freefield value, kf. 9 

(also shown in the figure). With a surrounding medium, but neglecting the effects of 10 

shear (treating the medium as a fluid as in [17]), the real part of the wavenumber 11 

increases yet further indicating that the effect of the „fluid‟ is one of mass loading. 12 

Once the full effects of shear are included, the real part of the wavenumber falls 13 

below the case of no surrounding medium showing that, the effect of shear is to add 14 

stiffness. Adopting the low-frequency approximations for the shear controlled 15 

radiation terms has the advantage of making the effect of shear explicit and can be 16 

seen to be valid for all the frequencies shown. However, as found previously [17], the 17 

additional effect of the surrounding medium is small compared with the effect of the 18 

shell wall. This is seen even more clearly in Figure 2(b) which presents the same 19 

results in terms of the wavespeed of the s=1 wave (inversely proportional to 20 

wavenumber), normalized by the free field wavespeed. In this figure, an additional 21 

curve has been plotted, derived from a simplified form of equation (37) in which the 22 

compressional radiation impedance term has been neglected, giving 23 
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(44) 1 

The wavespeed varies only between 34% and 36% of the freefield wavespeed 2 

regardless of the conditions external to the pipe. Furthermore, the predicted 3 

wavespeed using the simplified formulation differs by less than 0.5% of the free field 4 

value compared with the complete formulation including the full effects of shear. 5 
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 1 

(c) 2 

Figure 2 3 

Wavenumbers & wavespeed for s=1 wave, soil A 4 

(a) Real part; (b) Wavespeed; (c) Imaginary part 5 

Figure 2(c) shows the loss in dB per unit propagation distance (measured in pipe 6 

radii). This is related to the imaginary part of the wavenumber by 7 

Loss (dB/unit distance a)=20
 
 10ln

Im ka

         (45)

 8 

The s=1 wavenumbers in Figure 2(a) all correspond to wavespeeds of around 9 

500m/s suggesting that both compressional (200m/s) and shear (100m/s) waves will 10 

radiate into the surrounding medium. That radiation into the surrounding medium 11 

occurs is confirmed by the finding that the s=1 wave attenuation increases 12 

significantly in its presence. At the lower end of the frequency range considered 13 

(kfa<0.05), the attenuation can be seen to be dominated by losses within the pipe wall 14 

as there is little increase in the presence of the any surrounding medium. At higher 15 

frequencies, radiation as both compressional waves and shear waves contributes to the 16 
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attenuation. Here, adopting the low-frequency approximations for the Hankel function 1 

ratios results in an underestimation of the overall attenuation, in fact reducing it below 2 

the „no shear‟ case (fluid surround); this is due to the term 
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reducing the effect of the compressional radiation impedance, zrad1. 4 

Figure 3(a) shows the real part of the s=1 wavenumber for soil B. Here the same 5 

trends are observed as for soil A but, in this case, more pronounced: with no shear 6 

effects in the surrounding medium an added mass effect is seen; including the effects 7 

of shear adds stiffness. The effects are greater for soil B as both the shear modulus and 8 

the bulk modulus are greater than for soil A, whilst the density is unchanged. Again, 9 

adopting the low-frequency approximations for the Hankel function ratios is valid 10 

throughout the frequency range. 11 
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 1 

(b) 2 

 3 

(c) 4 

Figure 3 5 

Wavenumbers and wavespeed for s=1 wave, soil B 6 

(a) Real part; (b) Wavespeed; (c) Imaginary part 7 

Figure 3(b) shows the normalized wavespeed. Compared with soil A, there is a 8 

greater variation in the wavespeed compared with the free-field value (30%-43%) but 9 

even here the effect of the pipe wall compliance dominates. Again the difference 10 
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between using the simplified formulation and the formulation including the full 1 

effects of shear is small (less than 1.5% of the free field value) 2 

Figure 3(c) shows the loss in dB per unit propagation distance. Here, apparently 3 

surprising behaviour is observed. The presence of a surrounding medium without the 4 

effects of shear increases the attenuation. Here the s=1 wave would not be expected to 5 

radiate due to the fast speed of the compressional wave in soil B. Furthermore, 6 

including the effects of shear results in a decrease in attenuation at very low 7 

frequencies (0<kfa<0.1), not only compared with the no shear case but also compared 8 

with the case of no surrounding medium. Additional checks revealed that the losses 9 

seen here are not related to radiation but to the losses within the pipe wall itself, the 10 

differences between the different cases being a result of changes in the wavespeed of 11 

the s=1 wave and the effects of a complex elastic modulus in equation (36). The s=1 12 

wave would be expected to radiate as a shear wave and, when the results including the 13 

full effects of shear and those using the low-frequency Hankel function 14 

approximations are compared, it can be seen that it indeed does; particularly at higher 15 

frequencies (0.05<kfa<0.2), using these approximations results in a significant 16 

underestimate of the attenuation. 17 

4.2 The s=2 wave 18 

Figure 4(a) shows the real part of the s=2 wavenumber for soil A. There is no 19 

discernible difference between the „no surrounding medium‟ case and the other cases 20 

for which a surrounding medium is present. This is as expected given the stiffness of 21 

the contained fluid is large compared with both the pipe wall stiffness and the shear 22 

stiffness of the surrounding medium. Examination of Figure 4(b) depicting the 23 

attenuation shows that, unless the full shear-controlled radiation terms are included, 24 

the loss is unaffected by the surrounding medium. However, the s=2 wave would be 25 
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expected to radiate, both as a shear wave and a compressional wave and, once the full 1 

shear terms are included, this can be seen. 2 

3 
 4 

(a) 5 

 6 

(b) 7 

Figure 4 8 

Wavenumbers for s=2 wave, soil A 9 

(a) Real part; (b) Imaginary part 10 
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(b) 5 

Figure 5 6 

Wavenumbers for s=2 wave, soil B 7 

(a) Real part; (b) Imaginary part 8 
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5. Experimental measurements 1 

4.1 Background 2 

Wavenumber measurements of the axisymmetric, fluid-dominated (n=0, s=1) 3 

wave in both in vacuo and buried fluid-filled plastic pipes have been made and 4 

reported on previously [18]. For the in vacuo pipe, the measurements were found to 5 

agree well with the theory (that given in equation (39) in the present paper). For the 6 

buried pipe, it was found that the wavenumber decreased relative to the in vacuo case, 7 

suggesting that the effect of the surrounding medium was to add stiffness. However, 8 

at the time, the buried pipe theoretical model available with which to make 9 

comparisons was that given in [17]. In this model, the effects of shear were not 10 

properly accounted for: the soil was effectively treated as a fluid supporting two 11 

different waves, each of which exerted normal pressure on the pipe wall. Thus, the 12 

model predicted the soil to exert a mass-loading effect, causing the s=1 wavenumber 13 

to increase, rather than decrease. The cause of the stiffening effect seen in the 14 

experiments was, at the time, attributed to a consequence of the low temperature of 15 

the soil (the measurements were made in winter): the increase in wavespeed was 16 

thought to be due to an increase in stiffness in the pipe wall. The elastic properties of 17 

MDPE (the pipe wall material) vary with temperature, the temperature in the ground 18 

being only a few degrees centigrade at the time of making the measurements, 19 

compared with around 20 degrees in the laboratory. 20 

4.2 Experimental setup and procedure 21 

Here, the experimental results are again presented, in the light of the theory 22 

described in the current paper. As stated previously, the s=1 wave is usually the main 23 

carrier of energy therefore of most interest; furthermore, the wavspeed of the s=2 24 

wave is largely unaffected by either the contained fluid or the surrounding medium. 25 
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The details of the experimental setup and analysis can be found in [18] and are not 1 

reproduced in detail here. However, the key features are highlighted. The test rig 2 

comprised a 34m length, 180 mm OD, MDPE pipe buried at a depth of approximately 3 

1m in loose, sandy soil. Loose, sandy soil is the ideal burial material for validating the 4 

“slip” boundary condition as the sand and the pipe are not likely to adhere very well, 5 

resulting in a very low shear stress at the pipe/sand boundary. The pipe was 6 

instrumented with a number of hydrophones along its length. The pipe was excited 7 

with a modified moving-coil underwater loudspeaker mounted in a flange at one end 8 

of the pipe. The loudspeaker was excited with a stepped sine input from 30 Hz to 1 9 

kHz at 1 Hz intervals. Signals from a pair of hydrophones were analyzed in order to 10 

calculate the wavespeed of the s=1, fluid-dominated wave in the pipe. 11 

4.3 Comparison with theory 12 

The real and the imaginary components of the measured and predicted 13 

wavenumbers are shown in Figures 6a and 6b. Three predictions are included using 14 

the pipe and soil properties given in Tables 3 and 4: the theory from [17] (equation 25) 15 

in which the surrounding soil is treated as a fluid supporting two waves (using the 16 

low-temperature pipe wall modulus); the present theory incorporating the full effects 17 

of shear (using the room-temperature pipe wall modulus); and the present theory 18 

incorporating the full effects of shear (using the low-temperature pipe wall modulus). 19 

Table 3  MDPE pipe properties 20 

(figure in parentheses indicates low-temperature value) 21 

Properties Pipe 

Pipe wall mean radius (m)  84.5x10
-3

 

Pipe wall thickness (m)  11x10
-3

 

Elastic modulus (N/m
2
) 1.6 (2.0) x 10

9
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Density (kg/m
3
) 900 

Poisson's ratio 0.4 

Material loss factor 0.06 

Plate compressional wavespeed (m/s) 1455 

 1 

Table 4  Soil and fluid properties 2 

(properties of loose unsaturated sand from [26]) 3 

Properties Soil  Water 

Bulk modulus (N/m
2
) 4.0x10

7
 2.25×10

9
 

Shear modulus (N/m
2
) 1.5x10

7
 － 

Density (kg/m
3
) 1500 1000 

Compressional wavespeed (m/s) 200 1500 

Shear wavespeed (m/s) 100 － 

 4 
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 1 

(b) 2 

Figure 6 3 

Measured and predicted wavenumber for s=1wave in buried MDPE pipe 4 

(a) Real part; (b) Attenuation (dB/m) 5 
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Figure 6b also shows good agreement between the present predictions and the 1 

experimental measurements. Above 600-700Hz the measured data becomes 2 

increasingly erratic and, therefore, unreliable. As for the real part of the wavenumber, 3 

the agreement between theory and measurement is improved compared with the 4 

previous theory given in [17]. In [18] it was suggested that the most likely reason for 5 

the discrepancies between theory and experiment was the lack of the ground surface 6 

in the theoretical model. This (slightly tenuous) suggestion is no longer required as, as 7 

for the real part of the wavenumber, the measurement falls between the two present 8 

predictions. 9 

6. Conclusions 10 

In this paper, axisymmetric waves in a fluid-filled, plastic pipe, surrounded by an 11 

infinite elastic medium which can sustain both longitudinal and shear waves have 12 

been studied. At the pipe/soil interface, one of two possible extreme coupling cases 13 

has been considered: the “slip” condition, in which there is lubricated contact between 14 

the pipe and the surrounding soil, and no accompanying shear stress. 15 

Analytical expressions have been derived for two wave types: the s=1 wave which 16 

is predominantly a fluid-borne wave; and the s=2 wave which predominantly exists in 17 

the pipe wall. The real part of the wavenumbers provides information about the 18 

wavespeed of the wave, whilst the imaginary part relates to the propagation loss. 19 

These expressions permitted insights to be gained into the physical mechanisms at 20 

play. 21 

For the s=1 wave, the presence of the pipe wall significantly reduces the 22 

wavespeed from the freefield value. The effect of the surrounding soil is 23 

predominantly to add stiffness, thus slightly increasing the wavespeed, this being 24 
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provided by the effects of shear. There also may be attenuation resulting from both 1 

shear and compressional waves radiating into the surrounding medium. Compared 2 

with the effects of the compliance of the pipe wall, the effects of the surrounding 3 

medium on the wavespeed are, in general, small, whereas the effect on the wave 4 

attenuation can be considerable. Experimental measurements show good agreement 5 

with the predictions and confirm the theoretical findings; the agreement between 6 

measurement and theory is significantly improved compared with the buried pipe 7 

model presented previously. 8 

The wavespeed of the s=2 wave is largely unaffected by either the contained fluid 9 

or the surrounding medium. The attenuation, however, is increased by including the 10 

effects of shear. 11 

The findings presented here provide much needed information for the leak 12 

detection community on how current leak detection methods might be improved. 13 

Furthermore, they pave the way towards the use of more intelligent approaches to the 14 

management and, in particular the detection, of buried infrastructure. In general, it is 15 

the s=1, predominantly fluid-borne, wave which is of most relevance to leak detection, 16 

and which radiates most effectively to the ground surface. Here, it has been shown 17 

that a very simple form of the expression for the s=1 wavenumber may be used in 18 

order to accurately predict the wavespeed. The fuller formulation, also presented, is 19 

required in order to calculate the wave attenuation. 20 

Future work will address the other pipe/soil coupling extreme: the “no slip” 21 

condition in which compact contact between the pipe and the surrounding soil is 22 

assumed and for which there is continuity of tangential displacement across the 23 

boundary. 24 
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Appendix 7 

Low-frequency Bessel and Hankel function approximations 8 

In this paper, an e
it

 time dependence has been assumed. Therefore, to represent 9 

outgoing waves, decaying to zero at infinity, Hankel functions of the 2
nd

 kind have 10 

been used. At low frequencies, when the arguments of the respective Bessel and 11 

Hankel functions are much less than unity, the following approximations have been 12 

used, derived from [23]. 13 

 

 
0

0

J 2

J

r

fs

rr
fsfs

k a

k ak a
 

  
14 

 
  akak

ak
r

ds
r

ds

r

ds 1-

H

H

0

0 




 
15 

 
  akak

ak
r

rs

r

rs

r

rs 1-

H

H

1

1 



 16 

References 17 

[1] McMahon W., Burtwell M.H. and Evans M.  (2005). Minimizing Street Works 18 

Disruption: The Real Costs of Street Works to the Utility Industry and Society.  19 

UK Water Industry Research, London, UKWIR Report Number:  05/WM/12/8, 20 

ISBN: 1 84057 408 9. 21 



 35 

[2] N. Metje,  P.R. Atkins, M.J. Brennan, D.N. Chapman, H.M. Lim, J.M. 1 

Muggleton, S.R. Pennock, J. Ratcliffe, M.A. Redfern, C.D.F Rogers, A.J. Saul, 2 

Q. Shan, S. Swingler and A.M. Thomas. Mapping the underworld-state-of-the-art 3 

review. Tunnelling and Underground Space Technology, incorporating 4 

Trenchless Technology, 22 (2007), 568-586. 5 

[3] J. M. Muggleton, M. J. Brennan. The design and instrumentation of an 6 

experimental rig to investigate acoustic methods for the detection and location of 7 

underground piping systems. Applied Acoustics 69 (2008), 1101-1107 8 

[4] Royal, A.C.D., Atkins P.R., Brennan, M.J., Chapman, D.N., Chen, H., Cohn, 9 

A.G., Foo, K.Y., Goddard, K.,  Hayes, R., Hao, T., Lewin, P.L., Metje, N., 10 

Muggleton, J.M., Naji, A.,
 
 Orlando, G., Pennock, S.R.,

 
Redfern, M.A., Saul, 11 

A.J. Swingler, S.G., Wang, P. and Rogers C.D.F. Site Assessment of 12 

Multiple-Sensor Approaches for Buried Utility Detection. International Journal 13 

of Geophysics, Volume 2011, Article ID 496123doi:10.1155/2011/496123 14 

[5] J M Muggleton, M J Brennan & C D F Rogers.
. 
Point Vibration Measurements for 15 

the Detection of Shallow-Buried Objects. Tunnelling and Underground Space 16 

Technology (in press, 2012) 17 

[6] M. J. Brennan, Y. Gao, P. F. Joseph. On the relationship between time and 18 

frequency domain methods in time delay estimation for leak detection in water 19 

distribution pipes. Journal of Sound and Vibration 304 (2007), 213-223. 20 

[7] O. Hunaidi, W. T. Chu. Acoustical characteristics of leak signals in water 21 

distribution pipes. Applied Acoustics 58 (1999), 235-254. 22 



 36 

[8] O. Hunaidi, W. T. Chu, A. Wang, W. Guan. Detecting leaks in plastic water 1 

distribution pipes, Journal of the American Water Works Association 92 (2000), 2 

82-94. 3 

[9] R. J. Pinnington, A. R. Briscoe. Externally applied sensor for axisymmetric 4 

waves in a fluid-filled pipe. Journal of Sound and vibration 173 (1994), 503-516. 5 

[10] R. Fuller, F. J. Fahy. Characteristics of wave propagation and energy 6 

distributions in cylindrical elastic shells filled with fluid. Journal of Sound and 7 

vibration 81 (1982), 501-518. 8 

[11] Bikash K. Sinha, Thomas J. Plona, Sergio Kostek, and Shu‐Kong Chang. 9 

Axisymmetric wave propagation in fluid‐loaded cylindrical shells. I: Theory. 10 

Journal of the Acoustical Society of America 92, 1132 (1992) 11 

[12] A. Safaai‐Jazi, C. K. Jen, G. W. Farnell, and J. D. N. Cheeke. Analysis of liquid‐12 

core cylindrical acoustic waveguides. Journal of the Acoustical Society of 13 

America 81, 1273 (1987) 14 

[13] Joshua E. Greenspon. Vibrations of Thick and Thin Cylindrical Shells 15 

Surrounded by Water. Journal of the Acoustical Society of America 33, 1321 16 

(1961) 17 

[14] Joshua E. Greenspon. Axially Symmetric Vibrations of a Thick Cylindrical Shell 18 

in an Acoustic Medium. Journal of the Acoustical Society of America 32, 1017 19 

(1960) 20 

http://link.aip.org/link/jasman/v92/i2/p1132/s1
http://link.aip.org/link/jasman/v81/i5/p1273/s1
http://link.aip.org/link/jasman/v81/i5/p1273/s1
http://link.aip.org/link/jasman/v32/i8/p1017/s1
http://link.aip.org/link/jasman/v32/i8/p1017/s1


 37 

[15] A. N. Jette, J. G Parker. Surface displacements accompanying the propagation of 1 

acoustic waves within an underground pipe. Journal of Sound and Vibration 69 2 

(1980), 265-274. 3 

[16] J. E. White. Underground Sound: Application of Seismic Waves. Elsevier Science 4 

Ltd (July 1983), New York. 5 

[17] J. M. Muggleton, M. J. Brennan, R. J. Pinnington. Wavenumber prediction of 6 

waves in buried pipes for water leak detection. Journal of Sound and Vibration 7 

249(5) (2002), 939-954. 8 

[18] J. M. Muggleton, M. J. Brennan, P. W Linford. Axisymmetric wave propagation 9 

in fluid-filled pipes: wavenumber measurements in vacuo and buried pipes. 10 

Journal of Sound and Vibration 270(1–2) (2004), 171-90. 11 

[19] J. X. Liu, T. Y. Li, T. G. Liu, J. Yan. Vibration characteristic analysis of buried 12 

pipes using the wave propagation approach. Applied Acoustics 66 (2005), 13 

353-364. 14 

[20] A. W. Leissa. Vibrations of Shells. (1973) Washington, D.C.: Scientific and 15 

Technical Information Office, NASA. 16 

[21] P. M. Morse, K. U. Ingard. Theoretical acoustics. (1968) New York: 17 

McGraw-Hill. 18 

[22] H. Kolsky. Stresses Waves in Solids. (1952) New York, Dover publications, INC. 19 

[23] M. Abramowitz, I. A. Stegun. Handbook of Mathematical Functions. (1965) 20 

New York: Dover publications. 21 

http://openlibrary.org/search/subjects?q=New%20York


 38 

[24] R.J. Pinnington. Feasibility study to investigate the detection of objects buried in 1 

the ground. ISVR Contract Report 96/05. (1996), Southampton University. 2 

[25] B. Pavlakovic Leaky guided ultrasonic waves in NDT Ph.D. Thesis (1998), 3 

London University. 4 

[26] J.M. Head, F.M. Jardine, Ground borne vibrations arising from piling, CIRIA 5 

Technical Note 142, 1992. 6 


