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Abstract

Estimation of the long-term health effects of air pollution is a challenging task,
especially when modelling small-area disease incidence data in an ecological study
design. The challenge comes from the unobserved underlying spatial correlation
structure in these data, which is accounted for using random effects modelled
by a globally smooth conditional autoregressive model. These smooth random
effects confound the effects of air pollution, which are also globally smooth. To
avoid this collinearity a Bayesian localised conditional autoregressive model is
developed for the random effects. This localised model is flexible spatially, in the
sense that it is not only able to model step changes in the random effects surface,
but also is able to capture areas of spatial smoothness in the study region. This
methodological development allows us to improve the estimation performance of
the covariate effects, compared to using traditional conditional auto-regressive
models. These results are established using a simulation study, and are then il-
lustrated with our motivating study on air pollution and respiratory ill health in
Greater Glasgow, Scotland in 2010. The model shows substantial health effects
of particulate matter air pollution and income deprivation, whose effects have
been consistently attenuated by the currently available globally smooth models.

Keywords: Air pollution and health, Conditional autoregressive models,
Spatial correlation.
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1 Introduction

Quantification of the health effects of air pollution is an important statistical mod-
elling problem that is of considerable public interest, and public health agencies and
Government departments are required to estimate both its financial and health impact.
For example, in the UK the Department for the Environment, Food and Rural Affairs
(DEFRA) estimate that “in 2008 air pollution in the form of anthropogenic particulate
matter (PM) alone was estimated to reduce average life expectancy in the UK by six
months. Thereby imposing an estimated equivalent health cost of £19 billion”, (DEFRA
Air Quality Subject group (2010)). These estimated effects are based on evidence from
a large number of epidemiological studies, which have quantified the impact of both
short-term and long-term exposure to air pollution. The effects of long-term exposure
are typically estimated from individual-level cohort studies such as Hoek et al. (2002),
Laden et al. (2006) and Beverland et al. (2012), but they are both expensive and time
consuming to implement. Therefore, recent increases in the availability of small-area
statistics has allowed these effects to be estimated using an ecological small-area de-
sign, with prominent examples being Jerrett et al. (2005), Maheswaran et al. (2005),
Elliott et al. (2007), Lee et al. (2009), Haining et al. (2010), Greven et al. (2011) and
Lee (2012). While these studies cannot assess the causal health effects of air pollution
due to their ecological design, they are quick and cheap to implement, and they con-
tribute to, and independently corroborate, the body of evidence about the long-term
population level impact of air pollution.

The ecological design uses a geographical association study, where the study region of
interest is partitioned into a set of non-overlapping areal units, such as counties, dis-
tricts or postal codes. The number of disease cases arising from the population living
in each areal unit is modelled, using Poisson regression, with a number of risk factors
including average air pollution concentrations, measures of socio-economic deprivation
and demography. Geographical (equivalently spatial) association is introduced into the
model by means of a spatially correlated random effect for each areal unit. These ran-
dom effects model any residual spatial correlation that may be present in the disease
data after the covariate effects have been removed, which may be caused by unmea-
sured confounding, neighbourhood effects (where individual areal unit’s behaviour is
influenced by that of neighbouring units) and grouping effects (where individual units
seem to be close to similar units). These random effects, usually not of direct interest,
are assigned a conditional autoregressive (CAR, Besag et al. (1991)) prior as part of a
hierarchical Bayesian model, for example see Wakefield (2007).

The CAR model for spatial association tends to be globally smooth, and has only
recently been shown (for example see Reich et al. (2006), Hodges and Reich (2010),
Paciorek (2010) and Hughes and Haran (2013)) to be potentially collinear with any
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covariate in the model which is also globally smooth, such as average air pollution con-
centrations. Such collinearity leads to poor estimation performance for the fixed effects
(Clayton et al. (1993)), both in terms of the estimates and their associated levels of
uncertainty. In addition, this collinearity suggests that the residual spatial correlation
is unlikely to be globally spatially smooth, as that component of the spatial variation
in the disease data will have been accounted for by the air pollution covariate. Instead,
the residual spatial correlation can be strong in some areas showing smoothness, and
can be weak in some other areas exhibiting abrupt step changes. The existing CAR
models force the random effects to exhibit a single global level of spatial smoothness
determined by geographical adjacency, and are not flexible enough to capture the com-
plex localised structure likely to be present in the residual spatial correlation.

The lack of flexibility in existing CAR models and the collinearity problems highlighted
by Hodges and Reich (2010) and others has motivated us to develop a new Localised
Conditional AutoRegressive (LCAR) prior for modelling residual spatial correlation,
which is presented in Section 3. To contain the required flexibility the LCAR prior
captures localised residual spatial correlation by allowing random effects in geograph-
ically adjacent areas to be correlated or conditionally independent, and we show that
this prior distribution can have realisations at both spatial smoothing extremes, namely
global smoothness and independence. This flexibility leads to a large increase in the
computational burden and a lack of parsimony causing problems of parameter identi-
fiability, and a critique of the limitations of the existing literature in this area is given
in Section 2.

Here we solve these problems with a novel prior elicitation method based on histor-
ical data, which is similar in spirit to power priors (see Chen and Ibrahim (2006)).
Our elicitation is based on an approximate Gaussian likelihood, and produces a set of
candidate correlation structures for the residual spatial correlation. The LCAR prior
thus combines a discrete uniform distribution on this set of candidate structures with a
modified CAR prior for the random effects, which combined with the Poisson likelihood
completes a full Bayesian hierarchical model. Inference is obtained using Markov chain
Monte Carlo (MCMC) methods, and the model allows us to simultaneously estimate
the random effects, their local spatial structure as well as the fixed effects. We conduct
a large simulation study in Section 4 to show improved parameter estimation and model
fitting when using the proposed LCAR prior distribution. The improvement, measured
by the root mean square error (RMSE), is seen to be large for the fixed effects and
somewhat substantial for model fitting. We follow up this investigation by analysing
the motivating data set for the city of Glasgow in Section 5. But, first we present the
motivating data set and discuss the background modelling and prior distributions in
Section 2.
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2 Background

2.1 Data

The study region is the health board comprising the city of Glasgow and the river
Clyde estuary, which in 2010 contained just under 1.2 million people. The region is
partitioned into n = 271 administrative units called Intermediate Geographies (IG),
which contain just over 4,000 people on average. The data used in this study are freely
available, and can be downloaded from the Scottish Neighbourhood Statistics (SNS)
database (http://www.sns.gov.uk). The response variable is the numbers of admissions
to non-psychiatric and non-obstetric hospitals in each IG in 2010 with a primary di-
agnosis of respiratory disease, which corresponds to codes J00-J99 and R09.1 of the
International Classification of Disease tenth revision. Differences in the size and demo-
graphic structure of the populations living in each IG are accounted for by computing
the expected numbers of hospital admissions using external standardisation, based on
age and sex specific respiratory disease rates for the whole study region. An exploratory
estimate of disease risk is given by the Standardised Incidence Ratio (SIR), which is
the ratio of the observed to the expected numbers of admissions. It is displayed in
the top panel of Figure 1, and shows that the risks are highest in the heavily deprived
east end of Glasgow (east of the study region) as well as along the southern bank of
the river Clyde, the latter of which flows into the sea in the west and runs south east
through the study region.

Ambient air pollution concentrations are measured at a network of locations across
Scotland, details of which are available at http://www.scottishairquality.co.uk/. How-
ever, the network is not dense at the small-area scale required by this study, so instead
we make use of modelled yearly average concentrations at a resolution of 1 kilometre
grid squares provided by the DEFRA (see http://laqm.defra.gov.uk/maps/ ). We use
concentrations for 2009 in this study rather than 2010, because it ensures that the air
pollution exposure occurred before the hospital admissions due to respiratory illnesses.
These modelled concentrations were computed using dispersion models and were then
calibrated against the available monitoring data, and further details are available from
Grice et al. (2009). They were subsequently converted to the intermediate geography
scale by computing the median value within each IG. Concentrations (in µgm−3) of
nitrogen dioxide (NO2) and particulate matter are available for this study, the latter
being measured as both PM10 (particles less than 10µm in diameter) and PM2.5 (par-
ticles less than 2.5µm in diameter). The PM10 data are displayed in the bottom panel
of Figure 1, which shows the highest concentrations are in the centre of the city of
Glasgow as expected.

A number of other covariates were considered in this study, the most important of which
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is a measure of socio-economic deprivation. The relationship between deprivation and
ill health is well known (for example see Mackenbach et al. (1997)), and in this study
we use the percentage of people living in each IG in 2009 who are defined to be income
deprived, which means they are in receipt of a combination of means tested benefits.
Other variables we also consider are measures of ethnicity (the percentage of school
children in each IG who are non-white), access to alternative forms of health care (the
average time taken to drive to a doctor’s surgery) and a measure of urbanicity (a factor
variable with 6 levels, with level one defined as urban and level six as rural).

2.2 Modelling

The study region is partitioned into n areal units A = {A1, . . . ,An}, and the vectors
of observed and expected numbers of disease cases are denoted by Y = (Y1, . . . , Yn)
and E = (E1, . . . , En) respectively. In addition, let X = (xT

1 , . . . ,x
T
n)T denote the

matrix of p covariates, where the values relating to areal unit Ak are denoted by
xT
k = (1, xk1, . . . , xkp). A Bayesian hierarchical model is typically used to model these

data, and a general specification is given by

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n,

ln(Rk) = xT

kβ + φk, (2.1)

where the disease counts are assumed to be conditionally independent given the covari-
ates and the random effects. Here β = (β0, β1, . . . , βp) denotes the vector of covariate
effects, while Rk represents disease risk in areal unit Ak. A value of Rk greater (less)
than one indicates that areal unit Ak has a higher (lower) than average disease risk, and
in terms of interpretation, Rk = 1.15 corresponds to a 15% increased risk of disease. As
previously discussed the random effects φ = (φ1, . . . , φn) capture any residual spatial
correlation present in the disease data, and are typically assigned a conditional autore-
gressive prior, which is a special case of a Gaussian Markov Random Field (GMRF).
Such models are typically specified as a set of n univariate full conditional distribu-
tions, that is as f(φk|φ−k) for k = 1, . . . , n, where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φn).
However, the Markov nature of these models means that the conditioning is only on the
random effects in geographically adjacent areal units, which induces spatial correlation
into φ. The adjacency information comes from a binary n× n neighbourhood matrix
W , where wki equals one if areal units (Ak,Ai) share a common border (denoted k ∼ i)
and is zero otherwise (denoted k � i). The intrinsic model (Besag et al. (1991), IAR)
is the simplest prior in the CAR class, and its full conditional distributions are given
by

φk|φ−k, τ 2,W ∼ N

(∑n
i=1wkiφi∑n
i=1wki

,
τ 2∑n

i=1wki

)
. (2.2)
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Figure 1: Maps displaying the spatial pattern in the standardised incidence ratio for res-
piratory disease (top panel) and the modelled yearly average concentration (in µgm−3)
of PM10 (bottom panel).
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The conditional expectation is the mean of the random effects in neighbouring areas,
while the conditional variance is inversely proportional to the number of neighbours.
The joint multivariate Gaussian distribution for φ corresponding to (2.2) has a mean
of zero but a singular precision matrix Q(W )/τ 2, where Q(W ) = diag(W1)−W , and
1 is an n dimensional vector of ones. This prior is appropriate if the residuals from the
covariate component of the model, that is ln(Y/E)−Xβ, are spatially smooth across
the entire region, because the partial correlation between (φk, φj) conditional on the
remaining random effects (denoted φ−kj) is

Corr[φk, φj|φ−kj,W ] =
wkj√

(
∑n

i=1wki)(
∑n

i=1wji)
. (2.3)

Equation (2.3) shows that all pairs of random effects relating to geographically adja-
cent areal units are partially correlated (wkj = 1), which smoothes the random effects
across geographical borders. The most common extension to the IAR model to allow
for varying levels of spatial smoothness is the BYM or convolution model (Besag et al.
(1991)), which augments the linear predictor in (2.1) with a second set of independent
Gaussian random effects with a mean of zero and a constant variance. Further alter-
natives have been proposed by Leroux et al. (1999) and Stern and Cressie (1999), but
all of these extensions have a single spatial correlation parameter (for the BYM model
it is the ratio of the two random effects variances) that controls the level of spatial
smoothing globally across the entire region. Thus these models are inappropriate for
capturing the likely localised nature of the residual spatial correlation, which may con-
tain sub-region of spatial smoothness separated by step changes.

A small number of papers have extended the class of CAR priors to account for lo-
calised spatial smoothing, the majority of which have treated W = {wkj|k ∼ j, k > j}
as a set of binary random quantities, rather than forcing them to equal one. The neigh-
bourhood matrix is always assumed to be symmetric so that changing wkj also changes
wjk, while the other elements in W relating to non-neighbouring areal units remain
fixed at zero. Equation (2.3) shows that this allows (φk, φj) corresponding to adjacent
areal units to be conditionally independent or correlated, and if wkj (and hence wjk)
is estimated as zero a boundary is said to exist between the two random effects. One
of the first models in this vein was developed by Lu et al. (2007), who proposed a lo-
gistic regression model for the elements in W , where the covariate was a non-negative
measure of the dissimilarity between areal units (Ak,Aj). Similar approaches were
proposed by Ma and Carlin (2007) and Ma et al. (2010), who replace logistic regres-
sion with a second stage CAR prior and an Ising model respectively. However, these
approaches introduce a large number of covariance parameters into the model, which
for the Glasgow data considered here has n = 271 data points and |W| = 718 spatial
correlation parameters. Therefore, full estimation of W as a set of separate unknown
parameters results in a highly overparameterised covariance model for φ, and Li et al.
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(2011) suggest that the individual elements are poorly identified from the data and are
computationally expensive to update.

A related approach was proposed by Lee and Mitchell (2012), who deterministically
model the elements ofW as a function of measures of dissimilarity and a small number
of parameters, rather than modelling each element as a separate random variable. How-
ever, their approach is designed for the related fields of disease mapping and Wombling
(Womble (1951)), whose aims are not, as they are here, to estimate the effects of an
exposure on a response. An alternative approach was suggested by Lee and Mitchell
(2013), who propose an iterative algorithm in which W is updated deterministically
based on the joint posterior distribution of the remaining model parameters. However,
their algorithm has the drawback that only an estimate of each wkj is provided, rather
than the posterior probability that wkj = 1.

3 Methodology

Our methodological approach follows the literature critiqued above, and treats the
elements in W relating to contiguous areal units as a set of binary random quantities.
As conditional autoregressive priors are a special case of an undirected graphical model
(Lauritzen (1996)), we follow the terminology in that literature and refer to W as the
set of edges, and further define any edge wkj ∈ W that is estimated as zero as being
removed. Our methodological innovation is a Localised Conditional AutoRegressive
(LCAR) prior, which comprises a joint distribution for an extended set of random
effects φ̃ and the set of edgesW , rather than the traditional approach of assuming the
latter is fixed. We decompose this joint prior distribution as f(φ̃,W) = f(φ̃|W)f(W),
and the next three sub-sections describe its two components as well as the overall
hierarchical model.

3.1 Prior distribution - f(φ̃|W)

The IAR prior given by (2.2) is an inappropriate model for φ in the context of treating
W as random, because of the possibility that all of the edges for a single areal unit
could be removed. In this case

∑n
i=1wki = 0 for some k, resulting in (2.2) having an

infinite mean and variance. Therefore we consider an extended vector of random effects
φ̃ = (φ, φ∗), where φ∗ is a global random effect that is potentially common to all areal
units and prevents any unit from having no edges. The extended (n + 1) × (n + 1)
dimensional neighbourhood matrix corresponding to φ̃ is given by

W̃ =

[
W w∗
wT
∗ 0

]
, (3.1)
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where w∗ = (w1∗, . . . , wn∗) and wk∗ = I[
∑

i∼k(1 − wki) > 0]. Here I[.] denotes an
indicator function, so that wk∗ = 1 if at least one edge relating to areal unit Ak

has been removed, otherwise wk∗ equals zero. Based on this extended neighbourhood
matrix we propose modelling φ̃ as φ̃ ∼ N(0, τ 2Q(W̃ , ε)−1), where the precision matrix
is given by

Q(W̃ , ε) = diag(W̃1)− W̃ + εI. (3.2)

The component diag(W̃1)− W̃ corresponds to the IAR model applied to the extended
random effects vector φ̃, while the addition of εI ensures the precision matrix is diago-
nally dominant and hence invertible, with ε chosen to be a small positive constant. The
requirement for Q(W̃ , ε) to be invertible comes from the need to calculate its determi-
nant when updating W , a difficulty not faced when implementing model (2.2) because
W and Q(W ) are fixed. The addition of ε to the diagonal of the precision matrix has
been suggested in this context by Lu et al. (2007). The full conditional distributions
corresponding to the LCAR model are given by:

φk|φ̃−k ∼ N

(∑n
i=1wkiφi + wk∗φ∗∑n
i=1wki + wk∗ + ε

,
τ 2∑n

i=1wki + wk∗ + ε

)
k = 1, . . . , n, (3.3)

φ∗|φ̃−∗ ∼ N

( ∑n
i=1wi∗φi∑n

i=1wi∗ + ε
,

τ 2∑n
i=1wi∗ + ε

)
.

In (3.3) the conditional expectation is a weighted average of the global random effect
φ∗ and the random effects in neighbouring areas, with the binary weights depending on
the current value of W . The conditional variance is approximately (due to ε) inversely
proportional to the number of edges remaining in the model, including the edge to
the global random effect φ∗. Removing the kjth edge from W sets wkj (and hence
wjk) equal to zero and makes (φk, φj) conditionally independent, and means that the
global random effect φ∗ is included in the conditional expectation to allow for non-
spatial smoothing. In the extreme case of all edges being retained in the model (3.3)
simplifies to the IAR model for global spatial smoothing, while if all edges are removed
the random effects are independent with mean and variance approximately (again due
to ε) equal to φ∗ and τ 2 respectively.

3.2 Prior distribution - f(W)

The dimensionality of W is NW = 1TW1/2, and as each edge is binary the sample
space has size 2NW . The simplest approach would be to assign each edge an independent
Bernoulli prior, but as described in Section two this is likely to result in W being
weakly identifiable. Therefore we treat W as a single random quantity, and propose
the following discrete uniform prior for its neighbourhood matrix representation W̃ ;
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W̃ ∼ Discrete Uniform(W̃ (0), W̃ (1), . . . , W̃ (NW )). (3.4)

The last candidate value W̃ (NW ) retains all NW edges in the model, that is wkj =
1 ∀ wkj ∈ W , and corresponds to the IAR model for global spatial smoothing. Moving
from W̃ (j) to W̃ (j−1) removes an edge fromW , which sets one additional wkj = wjk = 0.
This means that W̃ (0) contains no edges and corresponds to independent random ef-
fects. Thus the set {W̃ (j)|j = 1, . . . , NW−1} corresponds to localised spatial smoothing,
where some edges are present in the model and the corresponding random effects are
smoothed, while other edges are absent and no such smoothing is enforced. This re-
striction reduces the sample space ofW to being one-dimensional, because the possible
values (W̃ (0), W̃ (1), . . . , W̃ (NW )) have a natural ordering in terms of the number of edges
present in the model.

We propose eliciting the set of candidate values (W̃ (0), W̃ (1), . . . , W̃ (NW )) from disease
data prior to the study period, because such data are typically available and should
have a similar spatial structure to the response. Let ((Yp

1,E
p
1), . . . , (Y

p
r ,E

p
r)) denote

these vectors of observed and expected disease counts for the r time periods prior to the
study period. The general likelihood model (2.1) gives the vector of expectations for
the study data as E[Y] = E exp(Xβ+φ), which is equivalent to ln (E[Y]/E) = Xβ+φ.
Then as φ ∼ N(0, τ 2Q(W̃ , ε)−11:n), we make the approximation

φp
j = ln

[
Yp

j

Ep
j

]
≈ ln

[
Y

E

]
∼approx N(Xβ, τ 2Q(W̃ , ε)−11:n) for j = 1, . . . , r.

(3.5)
Based on this approximation the prior elicitation takes the form of an iterative algo-
rithm, which begins at W̃ (NW ) (which retains all edges in the model) and moves from
W̃ (j) to W̃ (j−1) by removing a single edge from W . The algorithm continues until it
reaches W̃ (0), where all edges have been removed. The algorithm moves from W̃ (j) to
W̃ (j−1) by computing the joint approximate Gaussian log-likelihood for (φp

1, . . . ,φ
p
r)

based on (3.5). This is given by

ln[f(φp
1, . . . ,φ

p
r|W̃ (∗))] =

r∑
j=1

ln[N(φp
j |Xβ̂, τ̂ 2Q(W̃ ∗, ε)−11:n)], (3.6)

∝ r

2
ln(|Q(W̃ ∗, ε)1:n|)−

nr

2
ln(τ̂ 2)

− 1

2τ̂ 2

r∑
j=1

(φp
j −Xβ̂)TQ(W̃ ∗, ε)1:n(φp

j −Xβ̂),

and is calculated for all matrices W̃ (∗) that differ from W̃ (j) by having one additional
edge removed. From this set of candidates W̃ (j−1) is equal to the value of W̃ (∗) that
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maximises the above log-likelihood. This prior elicitation approach removes edges from
W in sequence conditional on the current value ofW , rather than naively treating each
edge independently of the others. However, this approach requires (3.6) to be evaluated
NW(NW + 1)/2 times, which makes the approach computationally intensive. This
computational burden is reduced by estimating (β̂, τ̂ 2) by maximum likelihood, that
is, based on W̃ (j), β̂ = (XTQ(W̃ (j), ε)1:nX)−1XTQ(W̃ (j), ε)1:n( 1

n

∑r
j=1φ

p
j) and τ̂ 2 =

1
nr

∑r
j=1(φ

p
j −Xβ̂)TQ(W̃ (j), ε)1:n(φp

j −Xβ̂). In addition, to speed up the computation

of the quadratic form in (3.6), the above estimators are based on W̃ (j) rather than on
each individual W̃ (∗).

3.3 Overall model

The Bayesian hierarchical model proposed here combines the likelihood (2.1) with the
priors (3.3) and (3.4) and is given by

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n,

ln(Rk) = xT

kβ + φk, (3.7)

φ̃ ∼ N(0, τ 2Q(W̃ , ε)−1),

W̃ ∼ Discrete Uniform(W̃ (0), W̃ (1), . . . , W̃ (NW )),

βj ∼ N(0, 1000) for j = 1, . . . , p,

τ 2 ∼ Uniform(0, 1000).

Diffuse priors are specified for the regression parameters β and the variance parameter
τ 2, while ε is set equal to 0.001. A sensitivity analysis to the latter is presented in
Section four, which shows that model performance is not sensitive to this choice. Infer-
ence for this model is based on MCMC simulation, using a combination of Metropolis-
Hastings and Gibbs sampling steps. The spatial structure matrix W̃ is updated using a
Metropolis-Hastings step, where if the current value in the Markov chain is W̃ (j), then a
new value is proposed uniformly from the set (W̃ (j−q), . . . , W̃ (j−1), W̃ (j+1), . . . , W̃ (j+q)).
Here q is a tuning parameter, which controls the mixing and acceptance rates of the
update. Functions to implement model (3.7) as well the prior elicitation are available
in the statistical software R (R Development Core Team (2009)), and are provided in
the supplementary material accompanying this paper.

4 Simulation study

This section presents a simulation study comparing the relative estimation perfor-
mances of the IAR, BYM and LCAR models, with regards to both fixed effects and
fitted values.
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4.1 Data generation and study design

Simulated data are generated for the 271 Intermediate Geographies (IG) that com-
prise the Greater Glasgow and Clyde health board, which is the study region for the
motivating study outlined in Section two. Disease counts are generated from model
(2.1), where the size of the expected numbers E is varied to assess its impact on model
performance. The log risk surface is generated from a linear combination of a single
spatially smooth covariate and localised residual spatial correlation, with the former
acting as the air pollution covariate while the latter will be modelled by the random
effects. The pollution covariate is generated from a multivariate Gaussian distribution,
where the mean is equal to zero and the variance matrix is determined by a spatially
smooth Matérn correlation function. The smoothness parameter equals 2.5 and the
range parameter is chosen so that the median correlation between all pairs of areas
is 0.5. The regression coefficient for this covariate is fixed at β = 0.1, and is kept
constant for each simulated data set. In contrast, new realisations of the covariate and
the residual spatial correlation are generated for each simulated data set, to ensure the
results are not affected by the particular realisations chosen. The residual correlation
is also generated from a multivariate Gaussian distribution with a Matérn correlation
function, where localised spatial structure is induced via a piecewise constant mean.
The template for this is shown in Figure 2, and only has three distinct values {−1, 0, 1}.
These values are multiplied by a constant M to obtain the expectation, where larger
values of M lead to bigger step changes in the spatial surface.

The study is split into nine different scenarios, which comprise all pairwise combinations
of M = 0.5, 1, 1.5 and each Ek ∈ [10, 25], [50, 100], [150, 250] for k = 1, . . . , n. The
value of E specifies the underlying prevalence of the disease, while M determines the
extent to which the residual spatial correlation is locally rather than globally smooth,
with larger values of M corresponding to more prominent localised structure. Data
generated under each scenario consists of the study data and three years worth of prior
data, which is the number of prior data sets used in the Glasgow motivating study. The
residual spatial correlation for the latter is generated by adding uniform random noise
in the range [−0.1, 0.1] to the realisation generated for the real data, which illustrates
model performance in the realistic situation where the spatial patterns in the log risk
surfaces for the prior and real data are similar but not identical.

4.2 Results

Five hundred data sets are generated under each of the nine scenarios, and the results
are displayed in Figure 3. The back dots in the figure display the root mean square er-
ror (RMSE) values for all three models, for both the estimated regression parameter (β,
top row) and the fitted values (EkRk, bottom row). The vertical lines represents boot-
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Figure 2: A map showing the piecewise constant mean function (with possible values
{−1, 0, 1}) for the random effects that generate localised spatial correlation in the
simulation study.
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strapped 95% uncertainty intervals, which are based on 1000 bootstrapped samples.
The main finding from the top row of the figure is that the RMSE for the regression
parameter β is always lowest for the LCAR model proposed here, while the values for
the IAR model are always highest. This is likely to be because the spatially smooth
IAR model cannot represent the step changes present in the residual spatial correla-
tion surface, where as the LCAR model is designed to do so. The results for the BYM
model are always between these two extremes, which is unsurprising because while it
can represent different levels of spatial smoothness, it effectively has a single parame-
ter (the ratio of the two random effect variances) that controls the level of smoothing
globally rather than locally as is required here. These results suggest that choosing a
random effects model that can accurately capture the residual spatial structure is vi-
tal, as not doing so leads to vastly reduced estimation performance for the fixed effects.

In the present study the improved estimation performance for the LCAR model can
be substantial, with percentage reductions in RMSE compared with the BYM model
(the best competitor) ranging between 4.5% and 45.8%. The figure also shows that
the RMSE values from the LCAR model are mostly substantially better than those
from the other two models, as the uncertainty intervals do not overlap unless M = 0.5,
which is the case where the localised spatial structure is least prominent. In contrast,
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the greatest reductions in RMSE occur when M = 1.5, which is the scenario in which
the localised spatial structure in the residuals is most prominent. The estimation per-
formance of all three models also reduces as M increases, which is again likely to be
because the localised nature of the residual spatial correlation becomes stronger. In
contrast, changing the overall prevalence of the disease (i.e. changing E) does not ap-
pear to have a large impact on the RMSE of β, and the direction of the small changes
that are present are not consistent.

The bottom row of the figure shows that for the fitted values the LCAR model again
always exhibits the best estimation performance, with lower RMSE values than the
other three models in all cases. However, the differences are not as large as for β, with
percentage reductions ranging between 2.2% and 11.1%. In addition, the bootstrapped
uncertainty intervals in these estimates are very small, which is the reason they cannot
be seen at the scale used in Figure 3. Finally, a sensitivity analysis to the choice of
the diagonally dominant constant ε was conducted, where the middle values of M = 1
and Ek ∈ [50, 100]) were used. Values of ε = 0.0001, 0.001, 0.01 were considered, and
the results were robust to this choice.

5 Results from the Glasgow study

5.1 Modelling

Initially, a simple Poisson log-linear model including the four non-pollution covariates
was fitted to the data, and only income deprivation exhibited a significant relationship
with respiratory disease risk. The remaining three covariates were thus removed from
the model, and each of the three pollution metrics (NO2, PM2.5 and PM10) were added
to income deprivation in separate models due to their collinearity. The residuals from
these models exhibited substantial overdispersion, with estimates ranging between 3.05
and 3.10. The presence of residual spatial correlation was then assessed by performing a
two-sided permutation test based on Moran’s I statistic, which yielded highly significant
p-values ranging between 0.0001 and 0.0002 depending on the pollutant included in
the model. To alleviate these problems random effects were added to the model, and
we compare the commonly used IAR and BYM specifications with the LCAR model
proposed here. For the latter the prior elicitation was based on respiratory disease data
from 2007 to 2009, the three years prior to the study period.

5.2 Results - Model fit

Posterior inference for all models was based on 3 parallel Markov chains, with a burn-in
of 100,000 iterations, by which time convergence was assessed to have been reached,
and then run for an additional 50,000 iterations, yielding 150,000 samples in total. The
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Figure 3: Root mean square errors (RMSE) for the estimated regression parameter β
(top row) and the fitted values EkRk (bottom row). In each case the dot represents
the estimated RMSE while the black bars are bootstrapped 95% uncertainty intervals.
The models are: (a) - IAR, (b) - BYM, (c) - LCAR.
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results are displayed in Table 1, which quantifies the overall goodness of fit of the models
and the estimated covariate effects. The results described in this section relate to
models where PM10 was the pollution metric, but the results for the other pollutants are
similar. The goodness-of-fit of each model is summarised by its Deviance Information
Criterion (DIC, Spiegelhalter et al. (2002)), where a smaller value represents a better
fitting model. The table shows that the LCAR model is the best fit to the data
according to the DIC, with a value that is lower by 22.5 and 5.7 compared with the
IAR and BYM models respectively. The presence of residual spatial correlation was
then assessed using a two-sided Moran’s I permutation test (based on 10,000 random
permutations), and neither the LCAR nor the BYM models exhibited any remaining
spatial structure. In contrast, the residuals from the IAR model exhibited substantial
negative correlation, which is likely to be because the residual spatial structure from
a covariate only model is rougher than the spatially smooth random effects model.
Therefore, as the residuals from the IAR model are essentially the difference between
these two spatial surfaces, they are likely to have different signs in neighbouring areas,
resulting in negative spatial correlation.

5.3 Results - covariate effects

Table 1 also displays the estimated relationships between each covariate and the re-
sponse, where all results are presented as relative risks for an increase of one standard
deviation in each covariates value. The table shows that both particulate matter met-
rics exhibit substantial effects on respiratory disease risk, as apart from the IAR model,
the worst performing model in terms of fixed effects estimation in the simulation study,
the 95% credible intervals do not contain the null risk of one. The estimated relative
risks for PM10 across all three models range between 1.037 and 1.048 for a 1.5µgm−3

increase in the yearly average concentration, while the corresponding risks for PM2.5

range between 1.033 and 1.043 for a 1.1µgm−3 increase. The lower ends of the credible
intervals for NO2 for all three models lie on the borderline of the null risk of one, with
the IAR and BYM intervals including the null value while the interval for the LCAR
model does not. The table also shows that income deprivation has a substantial effect
on the response, with a 12.9% increase being associated with between a 32% and a 35%
increased risk of respiratory disease. Consistent attenuation of the estimated covariate
effects are observed for the IAR model compared with the other models, while the
estimates from the BYM model are also consistently slightly lower than those from the
LCAR model.

5.4 Results - localised residual spatial correlation

Figure 4 displays the posterior density for the number of edges removed from the
model, where the three grey lines are chain specific estimates while the bold black line
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Table 1: A summary of the overall fit of each model (top panel) and the estimated
covariate effects (bottom panel). The former includes the DIC and a permutation test
for residual spatial correlation using Moran’s I statistic. The latter are presented as
relative risks for a one-standard deviation increase in each covariates value (in brackets).

Model
IAR BYM LCAR

DIC (p.d) 2113.3 (164.1) 2096.5 (164.6) 2090.8 (162.1)
Moran’s I (p-value) -0.0889 (0.013) 0.0584 (0.111) -0.0240 (0.519)
Deprivation (12.9%) 1.322 (1.286, 1.360) 1.343 (1.303, 1.381) 1.345 (1.311, 1.381)
NO2 (5.0µgm−3) 1.017 (0.975, 1.061) 1.032 (0.994, 1.067) 1.034 (1.002, 1.068)
PM2.5 (1.1µgm−3) 1.033 (0.990, 1.078) 1.042 (1.009, 1.078) 1.043 (1.010, 1.074)
PM10 (1.5µgm−3) 1.037 (0.997, 1.081) 1.043 (1.007, 1.079) 1.048 (1.017, 1.080)

represents the combined density from all three Markov chains. The figure shows close
agreement between the chains, as all three give similar density estimates. There are
718 edges in total in the Greater Glasgow region, and the middle 95% of the posterior
distribution lies between 210 and 473 of these having been removed. The figure suggests
that while the posterior variability is relatively wide, there is information in the data
to estimate the number of edges to remove. Specifically, the posterior distribution
is multi-modal, with the two largest modes occurring when 245 and 375 edges are
removed. The figure also provides strong evidence that the random effects are neither
globally spatially smooth not independent, as there is no posterior mass at either end
of the range of possible values (0 or 718 edges removed).

6 Discussion

This paper has proposed a new localised conditional autoregressive (LCAR) prior for
modelling residual spatial correlation, which is flexible enough to capture either spatial
smoothness or a distinct step change in the data between adjacent areal units. This
flexibility is due to the treatment of the neighbourhood matrix W as a random quantity
to be estimated in the model, rather than assuming it is fixed based on geographical
adjacency. However, this approach requires a large number of covariance parameters
to be estimated, and the resulting lack of parsimony is overcome by using prior infor-
mation to greatly reduce the size and dimensionality of the sample space for W . The
proposed model can estimate a range of localised spatial correlation structures, as well
as patterns that are globally smooth or independent in space.

The simulation study has shown that the increased flexibility of the LCAR model re-
sults in superior estimation performance in a root measure error sense for both fixed
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Figure 4: Posterior density for the number of edges removed from the model. The
three grey lines display the estimates from the individual Markov chains, while the
bold black line displays the combined density from all three chains.
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effects and fitted values, when compared with the commonly used global smoothing
alternatives. This improvement in estimation is most prominent for covariate effects,
where the percentage reductions in RMSE ranged between 4.5% and 45.8% in the study
presented in Section four. The resulting conclusion to be drawn is that inappropriate
control for residual spatial correlation can greatly retard fixed effects estimation, mean-
ing that its careful modelling is vital even if it is not itself of direct interest.

The epidemiological study presented in this paper shows substantial evidence that
particulate air pollution is harmful to respiratory health in Greater Glasgow, with an
estimated increase in the population’s disease burden of around 4% if yearly average
concentrations increased by between 1.1 and 1.5 µgm−3. However, one must remem-
ber that this is an observational ecological study design, and the results must not be
interpreted in terms of individual level cause and effect (ecological bias). Even so, as
small-area studies are cheaper and quicker to implement than individual level cohort
studies, they form an important component of the evidence base quantifying the health
effects of long-term exposure to air pollution.

There are many avenues for future work in this area, including the extension of the
methodology to the spatio-temporal domain. In an epidemiological context the exten-
sion of the present study to the whole of the United Kingdom would be of interest to
policymakers, as it would give the UK government a national rather than a regional
picture of the extent of the air pollution problem. In addition, while the motivation for
this paper was an ecological regression problem, the methodology developed will also
be directly relevant to the fields of disease mapping (see for example Lee and Mitchell
(2012)) and Wombling (Womble (1951)), whose aims are to estimate the spatial pat-
tern in disease risk and to identify any boundaries in the estimated risk surface.
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