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Abstract
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 syngas non-premixed impinging jet flames were studied using three-dimensional direct numerical simulation (DNS) and flamelet generated manifolds (FGM) based on detailed chemical kinetics. The computational domain employed has a size of 4 jet nozzle diameters in the streamwise direction and 12 jet nozzle diameters in the cross-streamwise direction. The results presented in this study were performed using a uniform Cartesian grid with 
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 points.  The Reynolds number used was
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=

, based on the reference quantities. The spatial discretisation was carried out using a sixth-order accurate compact finite difference scheme and the discretised equations were time-advanced using a third-order accurate fully explicit compact-storage Runge-Kutta scheme. Results show that the ratio of 
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 and 
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 in the syngas mixture significantly affects the flame characteristics including the near-wall flame structure. The high diffusivity of 
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syngas flame leads to form weaker vortices and a thicker flame. In contrast, 
[image: image13.wmf]CO-rich

syngas flame leads to form a thinner flame with strong wrinkles. Moreover, the DNS results suggest that the preferential diffusion influences the local flame structure for the simulated low Reynolds number 
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 flame. 
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1. Introduction

Coal is one of the most abundant natural resources, providing around a 29.6% of the world’s total energy up from 26% ten years ago [1]. For example, China itself consumed 48.2% of the world’s coal and accounted for nearly two-thirds of the global consumption growth. Over the years, various investigations have been focused on coal combustion such as fluidized-bed combustion [2], co-firing of coal and biomass [3], development of coal combustion technology in response to environmental challenges [4], as well as achieving improvements in the efficiency of pulverised coal combustion [4]. However, as one of the unclean fuels, coal use accounts for a significant proportion of greenhouse gas emissions in a global level with the world’s 2,300 coal-fired power stations contributing approximately 40% to all man-made emissions [5]. Although there is an urge to move to alternative energy sources, coal will still provide approximately 30% of the marketed energy [6] in the near future and there are challenges in utilising coal in a cleaner manner. Making coal power systems cleaner and more efficient contributes to the United Nations Kyoto Protocol of reducing carbon emissions [7].
Development of clean coal technology would allow continued use of coal without substantial emissions of greenhouse gases such as 
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 [8]. Beyond that, it contributes to the balance between energy supply and demand, a strategic and necessary choice for realising the coordinated development of energy, environment and economy [9]. Such clean coal energy conversion technologies can rely on the combustion of gasified coal, referred to as synthesis gas or syngas, which is mainly a mixture of hydrogen (
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) and carbon monoxide (
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) [10]. Coal is the predominant source of gasifier feedstock, supplying 55% of syngas worldwide in 2007 [11]. There is a considerable interest to produce 
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 from coal gasification processes and its consumption is expected to increase dramatically in the near future [12]. For example, in recent years significant progress has been made in the development of integrated gasification combined cycle (IGCC) technology to employ hydrogen and syngas fuels in gas turbines together with the potential for 
[image: image19.wmf]2
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 capture for cleaner electric power production [13]. This integration of energy conversion processes provides more complete utilization of energy resources, offering high efficiencies and ultra-low pollution levels [14]. Ultimately IGCC systems will be capable of reaching efficiencies of 60% with near-zero pollution. The unique advantages of IGCC systems have led to potential applications of gasification technologies in industry because gasification is the only technology that offers both upstream (feedstock flexibility) and downstream (product flexibility) advantages. Because they operate at higher efficiency levels than conventional fossil-fueled power plants, IGCC systems emit less CO2 per unit of energy. They are also well suited for the application of future technologies to capture and sequester CO2 [15]. Investigations of 
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 and syngas production from various other applications including gas-to-liquid and biomass are also reported in the literature [16-17]. 
Unlike direct coal combustion, hydrogen combustion produces virtually no pollution or greenhouse gases while syngas produces much less emissions [10]. Therefore ongoing development of hydrogen and syngas combustion technology as an appropriate type of future energy source is playing an increasingly important role in the clean energy strategy. Particularly there is a growing interest in the combustion of hydrogen-enriched synthesis gas. There is a fair amount of experimental based research focused on the combustion of both nonpremixed and premixed syngas applications in the past. Among them, investigations such as the scalar structure of 
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CO/H/N

nonpremixed flames [18], laminar flame speeds of 
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 premixed flames [19], effects of nitrogen dilution on flame stability of syngas mixtures [20], and global turbulent consumption speed of syngas 
[image: image23.wmf]2
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 mixtures [21] are notable. However, there are still lots of fundamental issues related to hydrogen and syngas combustion such as the effects of the high diffusivity of hydrogen-enriched fuels, especially the preferential diffusion, as well as the fuel variability of syngas fuels on the flame dynamics that have not been fully understood.

In recent decades, computational combustion has made remarkable advances due to its ability to deal with wide range of scales, complexity and almost unlimited access to data [22]. Direct numerical simulation (DNS), in which the complete spectrum of scales is resolved, is evolving as an extremely valuable computational tool from which much can be learned [23]. Early investigations include comprehensive simulations in two dimensions [24], as well as three-dimensional DNS of turbulent non-premixed flames including finite rate chemistry and heat release effects, e.g. [25]. Since then various DNS studies of non-premixed combustion have been performed to investigate a wide range of fundamental issues such as turbulence/chemistry interaction, flame stabilisation, local extinction and auto-ignition etc., e.g., the effects of flow strain on a hydrogen-air triple flame [26], scalar intermittency of CO/H2 planer jet flame [27], flame stabilisation and structure of lifted hydrogen jet flame [28]. DNS studies of flame-wall interactions with one-step and multi-step chemical kinetics have been reported in the last two decades. For example, two-dimensional DNS of head-on quenching (HOQ) in a pseudo-turbulent reactive boundary layer [29] and three-dimensional HOQ of premixed propagating flame in constant density turbulent channel flow [30], side-wall effects on flame dynamics [31], one-dimensional simulation of hydrogen combustion interacting with an inert wall [32], three-dimensional DNS of sidewall quenching for v-shaped premixed flame [33] and turbulent flame-wall interaction using three-dimensional DNS and detailed chemical kinetics [34] were carried out. However, a complete understanding on certain aspects of the flame dynamics such as effects of fuel variability and preferential diffusion is still not available.
Since the next generation combustion system is rapidly shifting towards hydrogen and syngas fuels, there are a number of issues which need further investigations. For example, higher diffusivity and reactivity of hydrogen-enriched syngas combustion should lead to unconventional operating conditions, mixed-mode and therefore undiscovered turbulent-chemistry regimes. Furthermore, the application of hydrogen-enriched syngas to both internal and gas turbine combustion can likely develop undesirable flame flashback phenomenon, in which the flame propagates into the burner. Therefore, there is a growing interest in high fidelity simulation techniques that could capture the fundamental fine scale turbulence-chemistry interactions, and especially flame dynamics with respect to fuel variability. For example, thermo-diffusive effects such as differences in the relative rates of mass diffusion with respect to syngas fuel variability may result in complex interactions that are not well understood. Also the effect of preferential diffusion, which depends on the amount of hydrogen in the syngas fuel mixture, is likely to further affect the flame dynamic behaviour. If the turbulence level is very low this effect may become significant in hydrogen-enriched syngas flames. The present investigation has two objectives: (1) to study the effects of fuel variability and flame dynamics of 
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 fuels, (2) to investigate the effect of preferential diffusion on hydrogen flame. Here we employed the DNS technique along with flamelet-generated manifold (FGM) approach. The detailed chemical kinetics has been employed through the FGM method [35], which not only uses complex chemistry, but also takes the most important transport processes into account. An impinging jet including buoyancy has been selected as the flow configuration to investigate, which not only provides details of flame dynamics in the primary jet shear layer but also information on the near-wall combustion which is a challenging topic that needs further investigations. In the following, the methods used in this study are presented first, including the governing equations, flame chemistry, and the numerical methods. The results and discussions are presented subsequently, mainly in terms of instantaneous flame characteristics. Finally conclusions are drawn.
2. DNS Governing Equations 

In the present study, the three-dimensional unsteady compressible conservation equations of mass, momentum, energy, mixture fraction and transport equation for the progress variable in their original dimensional form are solved, which can be given as: 
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In Equations (1-6), 
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 stands for time, 
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 is the velocity components in the 
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 direction, 
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 stands for total energy per unit mass, 
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 stands for pressure, 
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 stands for heat conductivity, 
[image: image37.wmf]P

C

 stands for specific heat at constant pressure, 
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 stands for dynamic viscosity,
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 is the ratio of specific heats, 
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ω

 is the source term of the progress variable, 
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is the density, subscript 
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 stands for the ambient respectively. Here the superscript * stands for dimensional quantities. 

Viscous effects are represented by the stress tensor 
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. The heat flux is given by
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In general, the transport coefficients are complicated functions of temperature and chemical composition of the mixture. In the FGM approach, the transport coefficients 
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 and 
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 are stored in the FGM data table. Assuming unity Lewis number, the diffusion coefficient for 
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and 
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are given by
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where 
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C

 is the specific heat capacity at constant pressure. In this study, the governing equations are solved in terms of their non-dimensional form. A set of dimensionless variables are defined in terms of the dimensional counterparts by the relations given in Table 1, where the superscript * stands for the reference quantities which has been omitted for brevity when subscript 0 is used. Major reference quantities used in the normalisation are 
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jet nozzle diameter, 
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u-

the maximum velocity of the fuel jet at the source on the inlet plane, 
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0

g=9.81ms

, 
[image: image54.wmf]0

T-

the ambient temperature, 
[image: image55.wmf]0

ρ-

fuel density at the ambient temperature, 
[image: image56.wmf]0

μ-

fuel viscosity at the ambient temperature, 
[image: image57.wmf]0

λ-

fuel thermal conductivity at the ambient temperature and 
[image: image58.wmf]p0

C-

fuel specific heat at constant pressure and at the ambient temperature. 
According to the aforementioned reference quantities, the final normalised governing equations can be written as follows:
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Here 
[image: image65.wmf]M, Pr, Fr

 and 
[image: image66.wmf]Re

 represent Mach number, Prandtl number, Froude number and Reynolds number respectively.

3. Chemistry and Flamelet-Generated Manifolds
To investigate the effects of fuel variability, the flame chemistry must be realistically represented in order to accurately predict the chemical heat release and the concentrations of the chemical species of the syngas combustion. However, it is computationally expensive to incorporate a detailed chemical mechanism into DNS due to the large computer memory and CPU requirements. Therefore several reduction chemistry mechanisms have been developed and applied for large scale numerical calculations. For example, the systematic reduction technique [36], the intrinsic low dimensional manifolds technique [37], and the computational singular perturbation method [38] have been applied as reduction chemistry mechanisms for numerical simulations. However, these reduction techniques were mainly developed using chemistry only and do not take the transport process into account. This can be identified as a drawback particularly in low temperature regions of the flame where both chemistry and transport are important [39]. In this work, the flame chemistry of 
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 and two syngas mixtures is represented by databases generated by using the FGM technique [35], accounting for both chemical and transport processes using the laminar flamelet concept [40]. The FGM databases were produced from steady counter-flow diffusion flamelets by using detailed chemistry [41] and transport models including preferential diffusion effects. In this way, the chemically reacting flow can be computed with the essential chemistry and transport processes taken into account without incurring significant computational expenses. 

The detailed 
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 kinetic model [41] incorporates the thermodynamic, kinetic, and species transport properties related to high temperature 
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 and 
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 oxidation, consisting of 14 species and 30 reactions. Table 2 shows the detailed reaction mechanism of gaseous 
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 combustion, while the complete details of the rate expressions of each reaction and optimisation approach can be found in [41]. In the present study, three FGM databases have been generated for the 
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 and two 
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 systems based on counter-flow non-premixed flamelets. For 
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combustion, the mass fraction of 
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 was selected as the progress variable, while for 
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 combustion, summation of the mass fractions of  
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, 
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 and 
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 (
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) was selected as the progress variable. The database contains the variables as functions of the mixture fraction 
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 and the progress variable 
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 such that (the superscript * for all these dimensional quantities has been dropped for brevity):
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In equations (15-20), 
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 stand for gas constant and enthalpy. The flame temperature is obtained by linearising the enthalpy around the state on the manifold, which leads to an explicit expression. The calorific equation of state reads
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with
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Here 
[image: image92.wmf]η

 represents temperature. Since heat capacity 
[image: image93.wmf]p

C

 is in general not a constant, but a function of temperature and mixture composition, the temperature 
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 has to be determined in an iterative way. To simplify this, the enthalpy 
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 is linearised around the state on the manifold such that
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Substitution into (21) gives 
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It leads to an explicit expression for temperature:
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The heat capacity 
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 and the term 
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 are stored in the FGM table. 

Table 3 shows the three computational cases performed in this study with the fuel compositions given, while Fig. 1 shows the non-premixed manifolds for three flames H, HCO and COH, which result from the one-dimensional flamelet calculations and which serve as the input for the three-dimensional (3D) DNS for variables: source term of the progress variable 
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, ratio of specific heats 
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, specific heat at constant pressure 
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, and thermal conductivity 
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 as a function of equidistant mixture fraction (PSI) and progress variable (PV). For the hydrogen flame H, the resolution of the manifolds is 301 points in the mixture fraction direction and 101 points in the progress variable direction. For the syngas flames HCO and COH, the resolution of the manifolds is 201 points in the mixture fraction direction and 201 points in the progress variable direction where more points have been considered for the progress variable because of the more complex fuel compositions than pure hydrogen. The points in mixture fraction direction are distributed equidistantly in PSI space where PSI = Z / [Z + a(1-Z)] with a = Zst / (1 – Zst). This results in a high resolution in the region with the highest activity near Zst = 0.028 for flame H, 0.124 for flame HCO, and 0.220 for COH flame respectively, with Zst represents the stoichiometric mixture fraction. Bilinear interpolation is employed when this manifold is accessed in the DNS to return values of above noted dependent variables for the local values of mixture fraction and progress variable.
4. Numerical Approach 

4.1 Discretisation 

In the present work, three non-premixed impinging jets with different fuel mixtures have been simulated using DNS with the flame chemistry represented by the tabulated FGM approach. The time dependent Navier-Stokes equations in the Cartesian coordinate system have been solved in their non-dimensional form. The computational domain employed has a size of four jet nozzle diameters in the streamwise direction and twelve jet nozzle diameters in the cross-streamwise directions. The results presented in this study were performed using a uniform Cartesian grid with 
[image: image105.wmf]200×600×600

 points resulting 72 million nodes. To avoid the prohibitively high computational costs of DNS of fully turbulent flows, the Reynolds number used (Re=2000) was relatively low with a Froude number of Fr=1.0, based on the reference quantities used. Since the results were tested as almost grid-independent, the grid points used are considered to be sufficient to resolve the energy spectra. The Prandtl number 
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 and the specific heat 
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 vary according to the FGM table.

The discretisation of the governing equations includes the high-order numerical schemes for both spatial discretisation and time advancement. The spatial derivates in all three directions are solved using a sixth-order accurate compact finite difference (Padé) scheme [42]. The finite difference scheme allows flexibility in the specification of boundary conditions for minimal loss of accuracy relative to spectral methods. The scheme uses sixth-order at inner points, fourth-order next to the boundary points, and third-order at the boundary. The Padé  3/4/6 scheme is arranged in a way that the sixth-order accuracy is achieved at the inner points by a compact finite differencing. For a general variable 
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 at grid point 
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direction, the first and second derivatives can be written in the following form:
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In Equations (26)-(27), 
[image: image113.wmf]Δη

 is the cell size in the 
[image: image114.wmf]x-

direction and cell sizes are uniform in all three directions. Further details of the Padé 3/4/6 scheme can be found in reference [42]. Solutions for the spatial discretised equations are obtained by solving the tridiagonal system of equations. The spatial discretised equations are advanced in time using a fully explicit low-storage third-order Runge-Kutta scheme [43]. The time step was limited by the Courant number for stability and a chemical restraint.

4.2 Physical problem and boundary conditions 

The computational domain contains an inlet and an impinging wall boundary in the streamwise direction where the buoyancy force acts. The set of equations listed above were solved with a parallel DNS code and computations were carried out using 600 processors in the UK high-end computer HECToR. Fig. 2 shows the geometry of the impinging configuration considered here and the dimensions of the computational box used. Since the main focus of the study was on the effects of fuel variability and preferential diffusion, a relatively small domain in the streamwise direction 
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 was selected to ensure that important physical effects can be examined with affordable computational costs. At the inlet, the mean streamwise velocity was specified using a hyperbolic tangent profile 
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 stands for the radial direction of the round jet, originating from the centre of the inlet domain 
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 and the initial momentum thickness 
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 was chosen to be 10% of the jet radius. At the inflow, the flow was specified using the Navier-Stokes characteristic boundary conditions (NSCBC) [44] with the temperature treated as a soft variable (temperature was allowed to fluctuate according to the characteristic waves at the boundary). External unsteady disturbances were artificially added for all three velocity components at the inlet in sinusoidal form such that 
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, which were added to the mean velocity profile. Here we assigned the value 
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 and the non-dimensional frequency of the unsteady disturbance 
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. In this study, the relatively large disturbance was used to enhance the development of instability in the computational domain, which is rather small in the streamwise direction, while the frequency of the perturbation was chosen to trigger the unstable mode of the jet. The non-slip wall boundary condition is applied at the solid wall, which is assumed to be at the ambient temperature and impermeable to mass. At the impinging wall boundary, the mixture fraction is assumed zero-gradient corresponding to the impermeability, while the progress variable for chemistry is taken as zero at the wall boundary. The simple wall boundary condition was employed to facilitate the investigation of the effects of fuel variability and preferential diffusion on the flame dynamics, which are the main objectives of this research. More realistic wall boundary conditions will be considered in subsequent studies. To further analyse the wall boundary conditions, especially for the reaction progress variable, we intend to use FGM employing a modified source term of the progress variable as a function of mixture fraction, progress variable and enthalpy to account for possible wall heat losses in future studies. This will address the effect of heat loss on the source term as this effect can be important for the calculation of the heat fluxes through the wall at more realistic conditions.
5. Results and Discussion 

In the present section results from DNS of pure 
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H

 and 
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 syngas flames are presented. The intention was to study the effects of fuel variability and preferential diffusion on the flame dynamics of nonpremixed flames; accordingly the instantaneous results at stages when the flow is fully developed are discussed. For brevity, only sample instantaneous results at selected time instances are shown. However, it is worth noting that the trends discussed in the following sub-sections are consistent, which was also observed from the results at other time instances. The results will be discussed under two sub-sections: flame dynamics of hydrogen-enriched combustion including pure hydrogen and syngas flames and influence of preferential diffusion on hydrogen combustion.
5.1 Flame dynamics of hydrogen-enriched combustion
This section presents DNS results of flames corresponding to hydrogen (flame H) and two different syngas fuel mixtures (flames HCO and COH) in an impinging jet flame configuration. For the two 
[image: image126.wmf]2
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syngas mixtures, the compositions were taken from the BP syngas datasheet with the maximum percentage of H2 and CO in each case. The fuel compositions, stoichiometric mixture fraction and maximum flame temperature values are shown in Table 3. 

Fig. 3 shows series of cross-sectional instantaneous velocity vector fields together with sample streamline traces of flames H, HCO and COH at t=12 and 16. In the reacting flow fields, complex vortical structures dominate the mixing and entrainment process, which will affect the distributions of mixture fraction, progress variable and flame temperature. In Fig. 3, the hydrogen flame H exhibits a buoyancy-induced vortical structure in the shear layers (region 1) at the primary jet stream, while the structure becomes slightly different with the addition of CO, where the development of large vortical structure in the HCO flame seems to lag behind in comparison with that of the flame H. For the 
[image: image127.wmf]CO-rich

flame COH, the evolution of the large vortex in the primary jet stream lags further behind. In the wall jet stream, all three flames show a head vortex ring which is the large structure at the far side in the wall jet region (region 2). In all three flames, large vortical structures dominate the flow field, which will affect the distributions of other flow variables such as temperature. These large vortical structures or vortex puffs [31] in the primary jet stream are associated with the buoyancy instability, which is known to trigger the flickering or puffing phenomenon. It can be observed that the velocity puff in the near field moves downstream with respect to time. In the reacting flow field, the large vortical structures are convected by the momentum of the primary jet stream as well as by the momentum of the secondary wall jet. Vortical structures are also observed in the wall jet region, which dominate the entrainment process and thus affect the near-wall flow and flame structures. It is also important to note the structural change taking place in region 3 where the flame touches the wall nearby. Although no clear vortex is exhibited in region 3 near the stagnation point, a weak vortical structure tends to form in the flame COH at t=16. Since the near-wall vortex forms as a result of external skin friction that acts on the thin layer of the fluid attached to the wall, the viscosity difference in this 
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but 
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fuel compared with the other two cases might play a role in the vortex formation in the wall jet region. 

Snapshots of the instantaneous mixture fraction at three different time instances obtained from the DNS are shown in Fig. 4. The mixture fraction is the most important variable to represent the mixing in non-premixed combustion, where mixture fraction based models appear to offer an effective description of the fuel/air mixing that is vital to the flame chemistry. As seen in Figs. 4(H1) and (H2), the mixture fraction of hydrogen flame H shows the development of both outer and inner vortical structures and their downward movement with respect to time. The asymmetric behaviour of the mixture fraction is also apparent at t=16 and the mixture fraction distribution shifts more towards one direction when the flame reaches the impinging wall. It can be seen that the buoyancy has a direct impact on the vortex topology of the impinging jet by leading to the formation of large outer vortical structures in the shear layer of the primary jet stream, while vortical structures on the inner side of the shear layer of the primary jet stream are also visible. Compared with the pure 
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 flame H, time evolution of the 
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 but 
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 flame HCO exhibits different behaviour especially in the primary jet region. This can be directly attributed to the fuel variability as increasing the 
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concentration changes the chemical and transport properties of the fuel mixture fraction. In Fig. 4, it is also noticed that the 
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flame HCO and 
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flame COH developed slightly slower than the pure hydrogen flame H, as indicated by the different locations of the large vortical structures in the primary jet streams. 
Fig. 5 shows the instantaneous progress variable distributions of flames H, HCO and COH at t=12 and 16. The progress variable is the most representative variable to describe the progress of the chemical reaction towards chemical equilibrium. The most important trend shown in Fig. 5 is that the three flames seem to have different thicknesses, where the pure hydrogen flame H appears thicker than the two syngas flames. This can be explained by the high diffusivity of the hydrogen flame. Another interesting observation from Fig. 5 is that the progress variable distribution of all flames shows inner and outer vortical structures near the flame surface. The development of the inner vortical structures arises as a consequence of the growth of the inertial shear instability, while the formation of the outer vortical structures is due to buoyancy effects. In addition, fuel variability also influences the development of these structures. In consistency with other results, the evolution of vortical structures in the 
[image: image136.wmf]2
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 syngas mixture flames HCO and COH lags behind in comparison with that of the pure hydrogen flame. In Fig.5, the progress variable displays asymmetric structures due to external perturbation applied at the inlet. From the results shown, it can be concluded that jet momentum inertia, buoyancy and fuel variability all have an impact on the vortical structures in the flame, where buoyancy leads to the formation of large outer vortical structures in the primary jet stream and jet inertia leads to the formation of inner structures while fuel variability affects the vortex topology including the speed of vortex transport.
Fig. 6 shows the contours of instantaneous temperature in the middle cross-sectional plane of flames H, HCO and COH at t=12 and 16 respectively. It is observed that the pure hydrogen flame H has the maximum temperature of T=8.5 (2490K) and this flame is much wider than other two 
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syngas flames. This observation clearly indicates the influence of high diffusivity and reactivity of hydrogen compared to the 
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syngas fuels. Furthermore, it is important to note that the experimental measurements of turbulent non-premixed hydrogen enriched flames showed a maximum flame temperature [18, 45] in the range observed in the present pure hydrogen flame H and 
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flame HCO1. Although no directly comparable experimental data is available, the temperatures of the numerically simulated flames seem to be in line with the experimental data. It is also noticed that in the middle of the domain there is no chemical reaction taking place near the jet centreline where the fuel is unmixed with the oxidiser. In non-premixed flames, combustion occurs in a thin layer in the vicinity of the stoichiometric surface of the mixtures and diffusion plays a major role in the localised fuel/air mixing, which in turn controls the combustion heat release in the reaction zone. Accordingly the flame may be thicker if the fuel has a higher diffusivity and the local flow gradients become smaller, which is indeed the case for the pure 
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 flame H. The flame HCO also exhibits a thick flame, but is slightly thinner than the pure hydrogen flame H. In addition, the maximum flame temperature of flame HCO is 8.3 (2430K) which is slightly lower than pure hydrogen flame H. It is interesting to note that the flame become increasingly thinner and more wrinkled for 
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and 
[image: image142.wmf]CO-rich

mixture, which is clearly seen for flame COH. The maximum flame temperature also displays a drop for the 
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flame (T=8.0=2344K). In addition, the contour plots of all three flames show that close to the wall, a thermal boundary layer exists which is highly dynamic with large spatial change in temperature affected by the fuel variability. In the syngas flames, the combination of different fuel mixtures and buoyancy lead to different heat release patterns and thus different wall heat transfer characteristics. Fig. 6 clearly shows the significance of the effects of fuel variability on the near-wall heat transfer characteristics, which can be important to the design of combustors for hydrogen-enriched combustion. However, the DNS did not consider heterogeneous surface chemistry, which can affect the wall heat transfer related to the wall material and the near-wall combustion characteristics. The dynamic nature of the near-wall flame can be important for practical applications of hydrogen-enriched combustion. Detailed discussion of the near-wall fluid flow, heat transfer and combustion phenomenon requires simulations at higher Reynolds numbers and more in-depth data analysis of the DNS results, which will be presented in subsequent efforts. Further analysis of mean wall heat flux as well as the variations of the instantaneous heat fluxes including surface chemistry effects should provide vital information on near-wall heat transfer for practical applications of hydrogen and syngas combustion.
In general, the present results indicate the differences in the combustion characteristics between pure hydrogen and 
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syngas mixtures in practical applications. Particularly, as seen from the present results the significant change of flame characteristics with fuel compositions for the syngas burning indicates that the combustion of hydrogen-enriched fuels can be vastly different from that of the traditional hydrocarbon fuels.  Since 
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 syngas flames have faster flame speeds than hydrocarbon flames, 
[image: image146.wmf]2

H-rich

flames allow oxidation with less heat transfer to the surroundings. This might improve thermal efficiencies when syngas is used in practical applications. In addition, efficiencies of 
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 flames can also be improved because of small gas quenching distance of 
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 which allows fuel to burn more completely. Although variations in the 
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ratio have little effect on the maximum flame temperature, they may have a major impact on flame thickness, flammability limits and flame extinction. Therefore further extensive investigations are necessary when designing practical combustors to burn 
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and 
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syngas fuels that have been traditionally used for hydrocarbon combustion. A thorough understanding on the effects of fuel variability may lead to optimisation of the H2/CO ratio for improved combustion performance of syngas in practical applications.
5.2 Influence of preferential diffusion on hydrogen combustion

When 
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H

 is present in appreciable quantities in the fuel stream, preferential diffusion (non-unity Lewis number effects) may be an important phenomenon due to the high diffusivity of 
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H

 especially for the low Reynolds number flow investigated. Therefore, the objective of this section is to examine the influence of preferential diffusion on the hydrogen flame H or more in particular, to look into the extent to which the inclusion of a non-unity Lewis number of a detailed transport equation affects the local flame temperature of pure 
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 flame H. For this purpose, a modified transport equation for the reaction progress variable which accounts for the non-unity Lewis number has been considered. To obtain an understanding of the effect of preferential diffusion on the flame structure, results have been compared for simulations with and without additional modelling term for the non-unity Lewis number in the transport equation of the reaction progress variable. The direct comparison between the two allows an appreciation of the influence of preferential diffusion on the hydrogen flame.
Assuming unity Lewis numbers, the diffusion coefficient for the progress variable is given by
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In order to include the non-unity Lewis number effects (preferential diffusion effects), the transport equation for the reaction progress variable is extended with an additional diffusion term:
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Here the additional term which accounts non-unity Lewis number (preferential diffusion) is given by 
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The additional diffusion coefficient accounting for the non-unity Lewis number 
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is stored in the FGM table. The modified transport equation for the reaction progress variable describes the instantaneous local structure of the flame sheet, accounting for non-equilibrium by flame stretching and preferential diffusion.  According to the aforementioned reference quantities, the final normalised extended transport equation for the reaction progress variable can be written as follows:
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Here 
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represents Schmidt number and defined in Table 1.  

The instantaneous fields of cross-streamwise reaction progress variable and temperature from simulations with and without preferential diffusion at two axial locations x=2.0, 3.6 at t=16 are shown in Figs. 7 and 8. From these two figures, it is evident that the reaction progress variable distribution is wider when the preferential diffusion is taken into account than the distribution when this has been neglected. When the preferential diffusion is considered, the flame seems to have developed more wrinkled structures on the inner side of the flame compared with the corresponding plots without preferential diffusion as shown in the progress variable contours. It seems that the strength of the inner vortical structures weakens in the flame without preferential diffusion. This is consistent with an earlier study [46] which shows that the development of inner and outer vortical structures arises more strongly as a consequence of the preferential diffusion term, which plays an important role in the low Reynolds number turbulent flame. 

Apart from the influence on the reaction progress variable, the preferential diffusion also has an influence on the flame temperature distribution as shown in Figs. 7 and 8. Preferential diffusion is mainly associated with high diffusivity of 
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 and accounted for through the non-unity Lewis number. Consequently, the temperature distribution varies considerably when preferential diffusion is considered in the simulation with larger area of high temperature zones compared with results without preferential diffusion. The Lewis numbers (
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, the ratio of thermal to mass diffusivity) of most species are close to unity. In hydrogen-enriched combustion, the high 
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 content significantly reduces the flame’s Lewis number because pure hydrogen has a Lewis number
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. Thus, there is a faster diffusion of reactants towards the reaction zone compared to its loss of thermal energy through conduction back to the fresh reactants for the flame. Therefore the preferential diffusion owing to the higher diffusivity of 
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H

 modifies the flame structure for the hydrogen-enriched combustion, which is an important factor at relatively low speed reacting flow fields where diffusion plays a dominant role in the local flame structures. When preferential diffusion is included, the reaction progress variable and flame temperature distribute wider in the domain and thus modify the heat release pattern compared with the corresponding distributions when the preferential diffusion is neglected. 

6. Conclusions 
Non-premixed pure hydrogen and 
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 syngas flames have been simulated using direct numerical simulation with a complete chemical scheme incorporated into the flamelet generated manifold chemistry. Comparisons were discussed under two sections: flame dynamics and influence of preferential diffusion. It has been found that the high diffusivity of 
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 in 
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flames tends to form a thicker flame compared with 
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flames but the 
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syngas flame exhibits a thinner flame. It has been found that the fuel variability plays an important role in the formation of the vortical structures in the flow fields and the unsteady flow separation from the wall leads to variations in the instantaneous thermal boundary layer thickness. In addition, the vortical structures in the hydrogen flame evolve faster than those in the syngas flames. Buoyancy acts as an oscillator in the flow field and leads to the formation of self-sustained large vortical structures, while jet inertia and fuel variability also affect the vortex topology. Vortex deformation occurs at the wall jet region due to the vortex-wall interaction. The comparisons of the flame structures with and without additional model term in the reaction progress variable demonstrate the importance of preferential diffusion which has a strong impact on the distribution of maximum flame temperature. When preferential diffusion is accounted for, wider distributions of high temperature are observed compared to corresponding distributions without preferential diffusion. 

More investigations on DNS of flame/wall interactions of hydrogen-enriched combustion, as well as detailed investigation on the effects of preferential diffusion on near-wall combustion are still required. This will not only provide details about maximum wall heat flux distributions but also supply vital design guidelines for the next generation combustors for clean combustion, bearing in mind that near-wall heat transfer determines the thermal loading of the combustor walls. The effects of preferential diffusion on the near-wall heat and mass transfer processes need to be better understood. Further investigations on DNS at high Reynolds number syngas impinging jets would be of great interest, in particular with the inclusion of surface chemistry effects. 
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Figure Captions 

Fig.1. Flamelet generated manifolds (FGM) for (a) source term of the progress variable 
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, (b) ratio of specific heats 
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, (c) specific heat at constant pressure 
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, and (d) thermal conductivity
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of flames H, HCO and COH.
Fig.2. Geometry of the impinging flame with dimensions of 4 jet nozzle diameters in the streamwise direction and 12 jet diameters in the cross-streamwise directions.
Fig.3. Instantaneous velocity vector fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).

Fig.4. Instantaneous mixture fraction fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).

Fig.5. Instantaneous progress variable fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).

Fig.6. Instantaneous temperature fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).

Fig.7. Instantaneous cross-streamwise progress variable (Y) and temperature (T) of flame H (a) with and (b) without preferential diffusion at the axial location x=2.0 at t=16.

Fig.8. Instantaneous cross-streamwise progress variable (Y) and temperature (T) of flame H (a) with and (b) without preferential diffusion at the axial location x=3.6 at t=16.

Tables

Table 1:  Definition of dimensionless variables.

Table 2:  The detailed 
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 oxidation mechanism and the associated rate parameters [41].

Table 3: Composition of the syngas fuels, stoichiometric mixture fraction and maximum flame temperature. 

Table 1:
Definition of dimensionless variables 
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Table 2:
The detailed 
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 oxidation mechanism and the associated rate parameters [41].
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Table 3:

Composition of the syngas fuels, stoichiometric mixture fraction and maximum flame temperature. 

	Case 
	Flame H
	Flame HCO
	Flame COH

	H2 %
	100
	70.3
	33.4

	CO %
	0
	29.7
	66.6

	Stoichiometric Mixture Fraction
	0.028
	0.124
	0.220

	Maximum Flame Temperature
	8.5 (2490K)
	8.3 (2430K)
	8.0 (2344K)
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	Fig.1. Flamelet generated manifolds (FGM) for (a) source term of the progress variable 
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 of flames H, HCO and COH.
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	Fig.2. Geometry of the impinging flame with dimensions of 4 jet nozzle diameters in the streamwise direction and 12 jet diameters in the cross-streamwise directions.
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	Fig.3. Instantaneous velocity vector fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).
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	Fig.4. Instantaneous mixture fraction fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).
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	Fig.5. Instantaneous progress variable fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).
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	Fig.6. Instantaneous temperature fields of flames H, HCO and COH at t=12 (H1, HCO1, COH1) and t=16 (H2, HCO2, COH2).
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	Fig.7. Instantaneous cross-streamwise progress variable (Y) and temperature (T) of flame H (a) with and (b) without preferential diffusion at the axial location x=2.0 at t=16.
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	Fig.8. Instantaneous cross-streamwise progress variable (Y) and temperature (T) of flame H (a) with and (b) without preferential diffusion at the axial location x=3.6 at t=16.
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