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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

ENRICHED COALGEBRAIC MODAL LOGIC

by Toby Wilkinson

We formalise the notion of enriched coalgebraic modal logic, and determine conditions
on the category V (over which we enrich), that allow an enriched logical connection to
be extended to a framework for enriched coalgebraic modal logic. Our framework uses
V-functors L: A — A and T: X — X, where L determines the modalities of the resulting

modal logics, and T" determines the coalgebras that provide the semantics.

We introduce the V-category Mod(A, ) of models for an L-algebra (A, «), and show
that the forgetful V-functor from Mod(A, ) to X creates conical colimits.

The concepts of bisimulation, simulation, and behavioural metrics (behavioural approxi-
mations), are generalised to a notion of behavioural questions that can be asked of pairs
of states in a model. These behavioural questions are shown to arise through choos-
ing the category V to be constructed through enrichment over a commutative unital
quantale (@, ®, I) in the style of Lawvere (1973).

Corresponding generalisations of logical equivalence and expressivity are also introduced,
and expressivity of an L-algebra (A, ) is shown to have an abstract category theoretic
characterisation in terms of the existence of a so-called behavioural skeleton in the
category Mod (A4, ).

In the resulting framework every model carries the means to compare the behaviour of
its states, and we argue that this implies a class of systems is not fully defined until it

is specified how states are to be compared or related.
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The category of Q)-categories.
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The behavioural skeleton of the L-algebra (A4, «).
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Chapter 1
Introduction

The field of coalgebraic modal logic is now well-established in computer science, with a
history dating back some 15 to 20 years. For the uninitiated, coalgebraic modal logic
is the study of modal logics with semantics given by coalgebras. The coalgebras have a
dynamic, “one-step” like nature, are represent generalised notions of transition system.
It is these transitions that provide the “meaning” for the modalities of a modal logic.
The key strength of coalgebraic modal logic is that it lends itself to an abstract way of
working, that both clarifies what is really going on, and readily generalises to incorporate
new ideas in a systematic way. This high level of abstraction means that the key building

blocks of our framework can be summarised in the following diagram.

s
LCA/\XST

\Y%

Here A, V, and X are categories, and L, P, S,T,U and V are functors. The basic idea is
that the left-hand side is where the logics live, the right-hand side is where the coalgebras
live, and the rest is plumbing that links everything together in the right way. To be a
little bit more specific, the modal logics will be algebras for the functor L, or L-algebras,
and the coalgebras will be coalgebras for the functor 7', or T-coalgebras. The functors
P and S form what is called a logical connection, which is simply a dual adjunction
with a logical interpretation, and this links the modal logics to the coalgebras. Of the
remaining components, the category V represents a base, or common level of structure
that we want the other categories to share, and indeed the entire diagram is enriched
over V. Finally, the functors U and V are forgetful functors that ensure the objects of

A and X can be regarded as objects of V with extra structure.

The above picture has started to take shape in recent years (Kupke et al., 2004b; Klin,
2007; Jacobs and Sokolova, 2010; Kurz and Velebil, 2011), though the development has
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been rather piecemeal, and a comprehensive unifying framework is still lacking. Some
attempts have been made to start to rectify this, but much work is still to be done. Our

work aims to make some progress towards this goal.

Some of the key issues that still need to be addressed include:

1. There needs to be a systematic treatment of the set of truth values of a logic, as
it is increasingly clear that bivalent logics are no longer sufficient. For example, in
probabilistic systems the probabilities are often only known approximately, and in
such circumstances bivalent logics tend to not be robust to perturbations in the

values of these probabilities (Desharnais et al., 2004).

2. There needs to be a systematic treatment of the different notions of behavioural
comparability - bisimulation, simulation, approximation (behavioural metrics) - so
that the relationships between them are made clear, and that a framework is in
place to experiment with new notions, and the connection with the choice of truth

values can be explored.

3. There needs to be a systematic treatment of semantic consequence and proof sys-
tems, as proof is the essence of logic. For example different notions of semantic
consequence can be defined that are either local/global and either frame/model
based, and this relates to the notions of satisfaction and validity. Therefore as va-
lidity corresponds to quantification over valuations, any framework will need to be
able to handle propositional variables, their valuations, and axioms in a systematic

fashion.

4. There needs to be an abstract presentation of the essence of what coalgebraic modal
logic is, devoid of all computer science specific terminology, in order to facilitate

the adoption of these ideas by other branches of the sciences and mathematics.

The first of these issues is addressed by what is known as a logical connection (Kurz
and Velebil, 2011), and is increasingly becoming a standard foundation for work on
coalgebraic modal logic. It is also formulated, as we have seen above, using the abstract

mathematics of category theory, and so goes some way to addressing the fourth issue.

The second and third issues have received rather less treatment in the literature. We
focus mostly on the issue of behavioural comparability, but our work also provides a
foundation upon which future work can tackle the issue of propositional variables and
axioms. Our approach is to exploit the power of enriched category theory, and we build
upon the foundations laid in Kurz and Velebil (2011), and generalise our own work in
Wilkinson (2012b) and Wilkinson (2012a).
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1.1 Key Contributions

The key contributions of this thesis are as follows:

Fibrations to lift categories: In Chapter 2 we introduce the notion of the initial
lift of an ordinary functor to a V-functor as an initial lift along the 2-functor
(=)o: V=CAT — CAT that sends a V-category to its underlying ordinary cate-
gory. Such a lift not only generates a V-functor, but the source category is lifted
to a V-category. This lifted V-category is more useful than the usual notion of
the free V-category over an ordinary category, and we make extensive use of it
in Chapter 4, where it is used to define the enriched analogues of the standard

categories of algebras and coalgebras for a functor.

Models for L-algebras: In Chapter 4 we introduce the V-category of models for an
L-algebra. This allows the clean handling of arbitrary modal logics, and thus
propositional variables and axioms, and is a key building block towards our treat-

ment of expressivity.

Behavioural questions: In Chapter 5 we show that the choice of the category V over
which we enrich determines the type of behavioural comparisons that we can per-
form - bisimulation, simulation, behavioural metrics etc. Further, we show that
these notions of behavioural comparability, or behavioural questions, can be gener-
alised by enriching over symmetric monoidal closed categories constructed through
enrichment over a commutative unital quantale. This then also induces a gener-
alised notion of logical equivalence, and a generalised notion of what it means for
a modal logic to be expressive with respect to the chosen notion of behavioural
comparison. Together this shows that enrichment is a vital part of the general
framework of coalgebraic modal logic. Moreover, it also provides a persuasive ar-
gument that a class of systems is not fully defined until it is specified how they
are to be compared or related, and in our framework each model incorporates a

preorder, metric, or some generalisation, for this purpose.

Behavioural skeletons: In Chapter 6 we present a systematic approach to analysing
the expressivity of an L-algebra for its category of models with respect to the
type of behavioural question given by the choice made for V. This approach is
a categorical one, and proceeds by examining the structure of the category of
models. We introduce a structure called a behavioural skeleton, and show that
the category of models for an L-algebra has such a structure if and only if the
L-algebra is expressive. We also introduce parametric behavioural skeletons, and
show how the parametricity can be exploited to provide a powerful tool for proving

expressivity and the existence of final models.
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1.2 Synopsis
A brief overview of the structure of this thesis is as follows:

Chapter 2 The structure we require of the category V (over which we enrich) is defined,
and the categories of preordered sets and generalised metric spaces are presented
as our leading examples (along with the category Set). We also introduce the
concept of the initial lift of an ordinary functor to a V-functor, and prove two

theorems that we shall make extensive use of in Chapter 4.

Chapter 3 The enriched logical connections of Kurz and Velebil (2011) are discussed
in the context of our assumptions on V, and their logical content made explicit.
Numerous examples are also demonstrated that reappear throughout subsequent

chapters.

Chapter 4 The notions of algebras and coalgebras for a functor are lifted from the
ordinary category theory level to the V-category level. Coalgebraic modal logic
in the V-category setting is then introduced, and the category of models for an
L-algebra defined. Finally, the forgetful functors from both the category of T-
coalgebras to the base category X, and the category of models of an L-algebra to

X, are shown to create conical colimits.

Chapter 5 Bisimulation, simulation, and behavioural approximation (metrics) are gen-
eralised to a general notion of behavioural questions that can be asked of pairs of
states. These are shown to arise from different choices of a commutative unital
quantale. A generalised notion of logical equivalence is also introduced, along with

a generalised notion of what it means for an L-algebra to be expressive.

There is also a brief discussion raising the question of the nature of the relationship
between the choice of commutative unital quantale, and the choice of truth values

for the logics.

Chapter 6 A purely category theoretic characterisation of expressivity is proven in
terms of the existence of a behavioural skeleton for the category of models for
an L-algebra. Here a behavioural skeleton is a collection of models with certain
properties for which cospans must exist, and for every other model, there must be

a model in the skeleton via which it factors.

Parametric behavioural skeletons are also introduced as a tool for proving expres-
sivity, and the cases of expressivity with respect to bisimulation and simulation
are explored using the internal models of Wilkinson (2012b) and the R-models of
Wilkinson (2012a).

Chapter 7 A summary of our work is presented, and possible future developments

outlined.



Chapter 2

Preliminaries

Before we can begin to look at coalgebraic modal logic in an enriched setting, we need
to spend some time explaining what we mean by an enriched setting, and give some

indication as to why this might be a good thing to do.

We shall also need to introduce a key technical concept that underpins a lot of our future
development. This is the notion of the initial lift of an ordinary functor to an enriched

functor, and the subsequent lifting of an ordinary category to an enriched category.

A brief outline of this chapter is as follows:

Section 2.1 The category V is introduced. This is the category that we enrich over.
In addition to the usual properties that are required of V (symmetric monoidal
closed, complete and cocomplete), we also require some additional ones. These are

stated and explained.

Section 2.2 The category of preordered sets is shown to satisfy the requirements we
need of V.

Section 2.3 The category of generalised metric spaces, which can be thought of as
generalising the category of preorders, is also shown to meet the requirements we
need of V.

Section 2.4 Initial lifts of ordinary functors are introduced, and two theorems proven.
These provide a mechanism by which we can construct V-categories from ordinary
categories that have the properties that we require, and will be key technical tools

in the development of Chapter 4.

Section 2.5 Previous work by other authors using enrichment for coalgebras, and the

possible connection between their work and domain theory, is discussed.
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2.1 The Category V

As already mentioned, we shall be working in an enriched setting. What this means is
that we shall be using categories that are enriched over some other category. In ordinary
category theory this is the category Set, but we shall generalise this to a category V.
This idea goes back many decades, and it is well known that such a category V must at
a minimum carry the structure of a monoidal category, but we shall require that V has

more structure than this.

Essentially what enriched category theory aims to do, is take the definitions and theorems
of ordinary category theory, and wherever there is a hom-set, replace it with an object
from the category V. We aim to use this to pervasively sprinkle extra structure on these
hom-sets. This extra structure will be fixed by specifying a particular category V, and
will be chosen depending upon the way we decide to compare the behaviour of states of

coalgebras (Chapter 5).

For those readers who are unfamiliar with enriched category theory, Appendix C contains
all the definitions and results we use (and a few others), but possibly the best starting
point is the monograph by Kelly (Kelly, 1982).

In order to proceed we must make some basic assumptions about the category V. These

assumptions will hold throughout what follows.

Assumption 1.
1. The category V = (V,,®,I) is symmetric monoidal closed (Appendix B).

2. The underlying category V, is locally small, so there is a symmetric monoidal

closed functor (Definition B.15) that extends the representable functor
elem|—| =V,(I,—): V, — Set,

which we assume to be faithful (Definition A.7), making V, concrete over Set
(Definition A.9).

3. The functor elem|—| is strong monoidal (Definition B.14), so there is a natural

isomorphism

e/lgr/nxyz elem|X ® Y| = elem|X| x elem|Y|.

4. The underlying category V, is complete and cocomplete.

5. The functor elem|—| is a fibration (Definition A.5).
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That V is symmetric monoidal closed means that V-categories have sufficient structure to
be able to do “category theory” - specifically we have a Yoneda Lemma (Appendix C.7).
It also means V is itself a V-category (Appendix C.3), where each hom-object V(A, B)
is given by the internal-hom [A, B].

The functor elem|—| is what is traditionally (Kelly, 1982) denoted as V/, but we shall
use V for something else (Chapter 3). It assigns to each object of V, its set of elements

(Definition B.3), and by Proposition B.11 there is an isomorphism
elem|[X,Y]| 2 V,(X,Y),

which means that we can freely interchange morphisms in V, and elements of the cor-

responding internal-hom, and indeed we often blur the distinction.

The fact that we assume elem|—| is faithful, and thus that V, is concrete over Set
(Definition A.9), means that we can regard the objects of V as sets with some kind of
structure. It also means by Proposition C.43, that ordinary natural transformations
between the underlying functors F,, G, of a pair of V-functors F,G: C — D, lift to

V-natural transformations between F' and G.

The natural isomorphism elem|X ® Y| = elem|X| x elem|Y| means that we can think
of elements of X ® Y as consisting of a pair of elements, one from X, and one from Y
(Definition B.15). This will be important in Section 3.4. Moreover, given a pair of V-
categories B and C, this extends to an isomorphism (B ® C), = B, xC, (Corollary C.15).

The underlying category V, is required to be complete so that functor categories exist
(Definition C.84), and cocomplete so that free V-categories exist (Definition C.89). Both
of these are prerequisites for the definition of conical colimits (Definition C.95), which

we need in Chapter 6.

Finally, we require elem|—| to be a fibration, as this will provide the mechanism by

which we perform the initial lift of ordinary functors (Section 2.4).

The category Set trivially satisfies the conditions of Assumption 1, but if that was the
only example of interest, there would be no need to employ the machinery of enriched
category theory. In order to illustrate our approach we shall therefore consider two
additional examples in Section 2.2 and Section 2.3, and as we shall see in Section 2.5,
these relate to previous work by other authors on coalgebras. Moreover, in Chapter 5,
we shall see that they are both special cases of a more general class of categories, and

that these are important for the study of the behaviours of coalgebras.
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2.2 Preordered Sets

The first example of a category satisfying Assumption 1 that we shall consider is that

of preordered sets.

Recall the category Preord of preordered sets and monotone functions, the objects of
Preord are pairs consisting of a set, and a preorder relation on that set. Similarly,
the categories Pos (partially ordered sets), Setoid (setoids), and DiscSetoid (discrete
setoids), have for objects, pairs consisting of a set, and respectively, a partial order,
equivalence relation, or the equality relation, on that set. In Levy (2011) these examples

are collectively known as the preordered sets.

We can consider these examples together by means of the following definition (Wilkinson,
2012a), where by a relation of “type R”, we mean either a preorder, partial order,
equivalence relation, or equality. The type is fixed, and every object in the category

Setp (defined below) must have a relation of that type.

Definition 2.1. The category Setp has for objects pairs (X, Rx), consisting of a set
X, and a binary relation Rx of type R on X. The morphisms are the R-preserving
functions, i.e. f: (X, Rx) — (Y, Ry) is a morphism, if and only if, for all z,2’ € X

rRxx’ = f(z)Ry f(z').

To be explicit we have the following four cases:

1. If R is the type preorder, then Setp is Preord.
2. If R is the type partial order, then Setg is Pos.

3. If R is the type equivalence relation, then Setp is Setoid.

o

. If R is the type equality, then Setp is DiscSetoid.

The category DiscSetoid is obviously isomorphic to Set, and we shall use them inter-

changeably.

For the category Setg to be useful for our purposes, Setr must satisfy the conditions
of Assumption 1. It is easy to verify that the forgetful from Setr to Set creates limits

and colimits. Specifically, we have the following basic limits and colimits.

Products: the product of (X, Rx) and (Y, Ry) is given by (X X Y, Rxxy), where

(x,9)Rxxy(2',y) & zRx2’ and yRyv' .
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Coproducts: the coproduct of (X, Rx) and (Y, Ry) is given by (X +Y, Rx4y), where

wRxw' : ifw,w e€X
wRxiyw < S wRyw' : ifw,w €Y
1 : otherwise.

Equalisers: the equaliser of f, g: (X, Rx) — (Y, Ry)isgivenbye: (E,Rg) — (X, Rx),
where

E={zeX|f(zx)=g(x)}

and
rRpx’ < xRxx'.

Coequalisers: the coequaliser of f,g: (X, Rx) — (Y, Ry) is given by
a: (Y, Ry) = (Q, Rq),

where Q =Y/ ~, and ~ is the smallest equivalence relation such that for all x € X

we have f(z) ~ g(z). The relation Rg is given by

qlRold'] & forally ~q, and ¢ ~ ¢, yRyy .
Q

Final Object: the final object is (1, R1), where 1 is the singleton set, and Ry = 1 x 1.
Initial Object: the initial object is (0, Rg), where both 0 and Rg are the empty set.
It should be clear that small products and coproducts also exist, and thus we can deduce
the following proposition.

Proposition 2.2. The category Setgr is complete and cocomplete.

It is also easy to verify that binary products and the final object form the tensor and
unit of a symmetric monoidal category. To make Setp also closed we need internal-

hom objects [(X, Rx), (Y, Ry)], such that [(Y, Ry),—] is right adjoint to — x (Y, Ry)

(Definition B.9). These are given as follows:

Internal-hom: the internal-hom of (X, Rx) and (Y, Ry) is given by the set of all R-

preserving functions from X to Y carrying the relation

TRi(x,Rx),(v,Ry )9 & Yo € X, f(x)Ryg(x).
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Unit: the unit of the adjunction — x (Y, Ry) 4 [(Y, Ry ), —] is given by

dix.ry): (X, Rx) = [(Y, Ry), (X, Rx) x (Y, Ry)]
xXr fm: (Y, Ry) — (X,Rx) X (Y, Ry),

where f,(y) = (z,y).

Counit: the counit of the adjunction — x (Y, Ry) 4 [(Y, Ry ), —] is given by

€(Z,Ry)": [(Y,Ry),(Z,Rz)] x (Y,Ry) — (Z,Rz)
(9: (Y,Ry) = (Z,Rz),y) — 9(y).

Thus we have the following proposition.

Proposition 2.3. The category Setgr is symmetric monoidal closed.

Finally, the symmetric monoidal closed functor elem|—| (Definition B.15) is easily seen
to be faithful, and strong monoidal (Definition B.14). It is also a fibration (Defini-

tion A.5), as for any function f: X — Y, if Y carries the relation Ry, then we can

define a relation Rx on X by
rRxx' & f(x)Ry f(2).

This is easily shown to be universal in the sense required of an initial lift.
Therefore putting everything together we can deduce:

Proposition 2.4. The category Setr satisfies all the conditions of Assumption 1.

2.3 Generalised Metric Spaces

The second category that we shall be interested in enriching over is the category of
generalised metric spaces (Lawvere, 1973). Generalised metric spaces differ from the
usual notion of a metric space in three ways:

1. distinct points can have zero distance between them,

2. the distance between two points can be oo,

3. the distance between two points need not be symmetric.

The category of generalised metric spaces is defined as follows.
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Definition 2.5. The category GMet of generalised metric spaces, has for objects pairs

(X,dx), consisting of a set X, and a function dx: X x X — [0, 00], that satisfies:

1. dx(z,x) =0 for all x € X,
2. dx(x,z) <dx(z,y) +dx(y, z) for all z,y,z € X.

The morphisms are the non-expansive functions, i.e. f: (X,dx) — (Y,dy) is a mor-

phism, if and only if, for all z,2’ € X

dy (f(z), f(2')) < dx(x,2").

It is easy to see that preorders can be regarded as generalised metric spaces, and there
is a full and faithful embedding of Setr in GMet given by

0 : ifzRxy
oo : otherwise.

We require that GMet be both complete and cocomplete, and it is easy to verify that
the forgetful from GMet to Set creates limits and colimits. Specifically, we have the

following basic limits and colimits.

Products: the product of (X,dx) and (Y,dy) is given by (X x Y,dxxy), where
dXXY((xv y)7 (mla y/)) = max(dx(x, 1:/)7 dY(% y/))
Coproducts: the coproduct of (X,dx) and (Y, dy) is given by (X +Y,dx+y), where

dx(w,w') : ifw,w' € X
dxiy(w,w') = ¢ dy(w,w') : ifw,w €Y

00 : otherwise.

Equalisers: the equaliser of f,g: (X,dx) — (Y,dy) is given by e: (E,dg) — (X,dx),
where

E={zeX|[f(x)=9g()}

and
dg(z,2') = dx(z,2).
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Coequalisers: the coequaliser of f,g: (X,dx) — (Y, dy) is given by

¢: (Yidy) = (Q,dg),

where @ =Y/ ~, and ~ is the smallest equivalence relation such that for all z € X
we have f(x) ~ g(z). The metric dg is given by

do([yl: ly']) = inf dy(u, ).

u~NY
U/Ny/

Final Object: the final object is (1,dy), where 1 is the singleton set, and dy (x, *) = 0.

Initial Object: the initial object is (0, dp), where 0 is the empty set.

Since we allow distances to be infinite, small products also exist, and as all small limits
and colimits can be constructed from combinations of the above, we therefore have the

following proposition.

Proposition 2.6. The category GMet is complete and cocomplete.

We also require that GMet be symmetric monoidal closed, and for this we need a tensor
and a unit. The obvious first choice would be to take product as the tensor, and the
final object as the unit, and this indeed yields a symmetric monoidal category, but it
is not closed, as in general the counits do not exist as the underlying functions are not

non-expansive. So instead we define the tensor as follows.

Definition 2.7. The tensor product (X, dx)®(Y, dy) of the generalised metric spaces
(X,dx) and (Y,dy) is given by (X x Y,dxgy), where

dxoy((z,y), (@,y) = dx(z,2") + dv (y,9).

It is easy to verify that tensor product and the final object form the tensor and unit of a
symmetric monoidal category. To make GMet also closed we need internal-hom objects
[(X,dx), (Y,dy)], such that [(Y,dy), —] is right adjoint to — ® (Y, dy) (Definition B.9).

These are given as follows:

Internal-hom: the internal-hom of (X,dx) and (Y, dy) is given by the set of all non-

expansive functions from X to Y carrying the metric

di(x.dx),(V.dy) (> 9) = Sup dy (f(x),g(x)).
re
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Unit: the unit of the adjunction — ® (Y,dy) 4 [(Y,dy), —] is given by

k(X,dX): (X, dX) — [(Y, dy), (X, d)() & (Y, dy)]
€T — f;c: (K dy) — (X, dx) (=) (Y,dy),

where f,(y) = (z,y).

Counit: the counit of the adjunction — ® (Y,dy) 4 [(Y,dy), —] is given by

€(Z,dz) - (Y. dy),(Z,dz)]® (Y.dy) — (Z,dz)
(9: (Y,dy) = (Z,dz),y) — g(y)-

Thus we have the following proposition.

Proposition 2.8. The category GMet is symmetric monoidal closed.

Finally, the symmetric monoidal closed functor elem|—| (Definition B.15) is easily seen
to be faithful, and strong monoidal (Definition B.14). It is also a fibration (Defini-
tion A.5), as for any function f: X — Y, if Y carries the metric dy, then we can define

a metric dy on X by

dx (z,2) = dy (f(z), f(z)).

This is easily shown to be universal in the sense required of an initial lift.
Therefore putting everything together we can deduce:

Proposition 2.9. The category GMet satisfies all the conditions of Assumption 1.

2.4 Initial Lifts of Ordinary Functors

In Chapter 4 we shall frequently find ourselves in the following situation. We have a
V-category D, and an ordinary functor F': C — D, to the underlying category of D,
and we would like to find a V-category C and a V-functor F': C — D, such that the

underlying ordinary functor of F is F.

Now since we are assuming V, is cocomplete, the free V-category Cy exists (Defini-
tion C.89), but often this is not the solution we are looking for. The problem is that,
whilst the hom-objects of Cy are indeed objects in V,, they are the wrong ones. What
we mean by this is that since elem|—| is faithful, V, is concrete over Set, so the hom-
objects of a V-category are sets with some additional structure, and it is this additional
structure that we are interested in. Specifically, for any given hom-set in C,, it may be
possible to put on that set, any one of many different structures of the type specified

by the category V. So our problem becomes one of choosing the optimal such structure.
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The free V-category approach finds one extreme such solution, but usually we will be
looking for a better one. But what do we mean by better? The answer is that we want

it to have the following universal property.

Definition 2.10. Given a V-category D and an ordinary functor F': C — D,, then an
initial lift of F is a V-functor F': C — I, such that the underlying category of C is C,
and the underlying functor of F is F'. Moreover, it is also required that for any V-functor

G: B — D, and any ordinary functor H: B, — C, such that

C r D,

Go
B,
there exists a unique V-functor H: B — C,, such that
C _r D
H G
B

and the underlying ordinary functor of H is H.

Remark 2.11. For readers who are familiar with such things, this is simply an initial
lift along the 2-functor (—),: V—CAT — CAT (Kelly, 1982, Section 1.3) that sends a

V-category to its underlying ordinary category.

So the question is how do we perform the initial lift of F'?7 The key here is that for the
ordinary functor F': C — ID,, for objects A and B in C, we have the morphism

Fap: C(A,B) = D,(F(A), F(B))

in Set. However, D,(F(A), F(B)) is defined to be elem|D(F(A), F(B))|, so we really
have
Fusp: C(A,B) — elem|D(F(A), F(B))|.

Now the V-functor we are looking for would yield
Fap: C(A B) — D(F(A), F(B))

in V,, so what we would like to do is perform the initial lift of Fs p along elem|—|
(Definition A.1). If we can do this in a coherent fashion for all objects A and B in C,
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such that the lifted morphisms define a V-functor, then we will have constructed the

initial lift of F' that we are looking for.

Before proceeding any further we need to address a notational issue, and make explicit

a result that we use in several places.

Firstly, in any V-category C, we shall occasionally denote by e composition in the
underlying ordinary category C,, to distinguish it from composition in V,. This aids
clarity in the treatment of hom-functors (Section C.5) for example, where we write things
like

C(A,f)ou= feu.

Secondly, from the definition of the symmetric monoidal closed functor elem|—| (Defini-
tion B.15), and the definition of composition in the underlying category of a V-category

(Definition C.10) we have the following proposition.

Proposition 2.12. Given the conditions of Assumption 1, and a V-category C, then

the following diagram commutes.

*A.B.C

Co(B,C) x Cy(A, B) Co(A4,0)

elemc(p 0),c(a,B) Slom|Ma p.c

elem|C(B,C) ® C(A, B)|
We are now ready to show that the conditions of Assumption 1 are sufficient to be able
to construct the desired initial liftings of ordinary functors. The proof is quite long, as a

result of the number of properties that must be proved, but hopefully Example 2.1 and
Example 2.2 will show that the idea is actually quite simple.

Theorem 2.13. Given the conditions of Assumption 1, a V-category D, and an ordinary
functor F: C — D,, then

1. there is an initial lift F: C — D of F,

2. the V-category C is unique up to isomorphism.
Proof. The proof proceeds as follows:

1. Define the objects and hom-objects of the V-category C:

C has the same objects as C, and for any pair of objects A, B in C, and the function

Fyp: C(A,B) — elem|D(F(A), F(B))|,
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since elem|—| is a fibration, this has an elem|—|-initial lift

Fap: C(A, B) = D(F(A), F(B)),

and by Corollary A.3, this is unique up to a unique isomorphism, so we can define

the C hom-object C(4, B) = C(A, B).

. Define the composition law for the V-category C:

We need to define a composition law

MA,B,C3 (C(B,C) ®C(A, B) — (C(A,C).

If we consider the following diagram,

C(B,C) .A,B,C C(A C)
xC(A, B) ’
\ /
elem C@
=C(4, B)
Fp.cxFap elem‘F]g70®F,47B‘i Fac

elem|g|

D(F(B), F(C))
®D(F(A), F(B))

elem‘MF(A),F(BM
D,(F(B), F(C))

XDO(F(A)7F<B)) ®F(A),F(B),F(C) DO(F(A), F(C))

IR

then the outer perimeter commutes since F' is a functor. Here e is composition in

the ordinary categories C and D,. Further, since
elem|— ® —| = elem|—| x elem|—|,

the left-hand quadrilateral commutes, and since D, is the underlying ordinary
category of D, by Proposition 2.12 the bottom triangle commutes. So if we define

the following morphism in V,
9= Mpa) rB)rc)° (FBc®Fap),
and the function h = e4 g c o = in Set, we see that we must have

elem|g| = Facoh.
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Thus by the universal property of the elem|—|-initial lift F4 ¢, there exists a

unique morphism

f:C(B,C)® C(A, B) - C(4,C)

such that g = F4 ¢ o f, and elem|f| = h.

We take f to be our composition law M4 g c.

3. Define the identity elements of the V-category C:

To define an identity element j4: I — C(A, A), we observe that since
elem‘(C(A, A)‘ = C(4, A),

we can take the identity morphism 14 € C(A, A).

4. Show that this data defines a V-category:

For this collection of data to define the V-category C we require that the diagrams
of Definition C.1 commute. That they do can be seen by following the following
procedure. Formulate the diagram in V, and apply elem|—|. Then using that
elem|—| is strong monoidal, C is an ordinary category, and Proposition 2.12, ob-
serve that the image of the diagram in Set must commute. Finally, since elem|—|

is faithful, the diagram in V, must commute.

5. Show that the 4 p form a V-functor:

We need to show that the F4 g form a V-functor F:C — D. The object map
of F is the same as that of F, so what is left is to show that the diagrams of

Definition C.3 commute. The identity diagram is trivial, so we are left with

Mg, B,c =

C(B,C)® C(A, B) C(A,0)
fB,C®FA,B FA,C
D(F(B),F(C)) @ D(F(A), F(B)) D(F(A), F(C))

Mp(a),7(8),7(0)
but this clearly commutes by the construction of M4 g ¢ above.

6. Show that I has the universal property of an initial lift (step 1):

Suppose that there is a V-functor G: B — D, and an ordinary functor H: B, — C,
such that

C r D,

Go
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We want to construct a V-functor H: B — C such that

C F D

H
B

and the underlying ordinary functor of H is H. To do this we define the object
map of H to be that of H, and then to define the action on hom-objects we proceed

as follows. For every pair of objects A, B € obj|B| we can consider the diagram

C(H(A), H(B)) — =225 (FH(A), FH(B))
Ha B p
BO(A, B)

where elem|G 4 g| = G, 4 p by Definition C.11, and so by the universal property

of the elem|—|-initial lift

Fray,us): C(H(A), H(B)) = D(FH(A), FH(B)),

there is a unique morphism H4 p: B(A, B) — C(H(A), H(B)) such that

COH(A), H(B)) — %5 p(RH(A), FH(B))
Ha,p GaA.B
B(A, B)

and elem‘HAB‘ = H, p. The morphism H 4 p will define the action ﬁA,B of the
V-functor H on the hom-object B(A, B).

7. Show that F has the universal property of an initial lift (step 2):

What remains is to show that the H we have constructed actually is a V-functor.
To do this we must show that the diagrams of Definition C.3 commute. Once again

the identity diagram is trivial, and so we are left with the following diagram.
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Ma B,c

B(B,C) ® B(A, B)

C(H(B), H(C)) @ C(H(A), H(B))

My (4),0(B),H(C)

To show that this commutes we apply the functor elem|—| to produce its image in
Set. This can be shown to commute using a combination of the fact that elem|—|
is strong monoidal, Proposition 2.12, and that H is an ordinary functor. Finally,

since elem|—| is faithful, the above diagram in V, commutes.

O

To get a feel for how initial lifts work, we shall consider the category Meas of measurable
spaces and measurable functions. We would like to make Meas into a Setg-category,

and a GMet-category.
First we consider adding preorders to the objects of Meas and enriching over Setp.
Example 2.1. The ordinary category Measg has the following data:
1. objects are triples (X,Xx, Rx), where (X,Xx) is a measurable space, and Rx is
a relation of type R on X,
2. morphisms are measurable functions that are R-preserving.
There is an obvious forgetful ordinary functor U: Measr — Setpr, and Setp is also a

Set r-category, so by Proposition 2.4 and Theorem 2.13, U lifts to a Setgr-functor, and
Measg, lifts to a Setg-category.

The initial lift has ordered the hom-objects of Measy pointwise, i.e. for any pair of
morphisms f,g: (X,Xx, Rx) = (Y, Xy, Ry),

fRg < for all x € X we have f(x)Ryg(x).

This is precisely what one would do, if one were to define Measg as a Setg-category

directly.

For the other example we repeat the above, but instead add generalised metrics to the

objects of Meas and enrich over GMet.
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Example 2.2. The ordinary category GMeas has the following data:
1. objects are triples (X, ¥ x,dx), where (X,YXx) is a measurable space, and dx is a
generalised metric on X,
2. morphisms are measurable functions that are non-expansive.
There is an obvious forgetful ordinary functor U: GMeas — GMet, and GMet is also

a GMet-category, so by Proposition 2.9 and Theorem 2.13, U lifts to a GMet-functor,
and GMeas lifts to a GMet-category.

The initial lift has given the hom-objects a generalised metric defined pointwise, i.e. for

any pair of morphisms f,g: (X, Xx,dx) = (Y, Xy, dy),

d(f,g) = sup dy (f(z), g(x)).

This is precisely what one would do, if one were to define GMeas as a GMet-category

directly.

In Chapter 4 we shall also need the ability to lift colimits in an ordinary category, to
conical colimits (Definition C.95) in the V-category for which the ordinary category
is the underlying category. Obviously this is a bit imprecise, as an ordinary category
may be the underlying category for more than one V-category, but here we mean the
V-category constructed via the initial lift of an ordinary functor through the invocation
of Theorem 2.13.

Theorem 2.14. Given the conditions of Assumption 1, and the following:

1. a V-functor F': C — D that is the initial lift of an ordinary functor F,: C, — Dy,
2. a small ordinary category J, and a diagram D: J — C,,
3. the ordinary functor F,: C, — D, creates colimits for D (Definition A.25),

4. there is a conical colimit of F,D in D,

then the V-functor F': C — D creates conical colimits for D (Definition C.99).

Proof. The proof proceeds as follows:
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1. Construct the V-functors D and A7:

For the small ordinary category J we can construct the free V-category Jy (Defini-
tion C.89), which is itself small, and by Proposition C.90 and Proposition C.91, the
functor categories [Jv, C] and [Jy, V] exist, and moreover there are the following

isomorphisms of categories

[JVv (C]O = [Jv CO]
[JVav]o = [J,Vo]7

that pair the V-functor D: Jyv — C with D, and the V-functor A;: Jy — V with
the diagonal functor Ar: J — V,, that maps every object in J to I, and every

morphism in J to 1.

2. Construct the underlying colimit of F,D in D,:

By assumption there is a conical colimit (colimp(F,D),7) of F,D in D (Defini-
tion C.95), that is defined by the V-natural isomorphsim (in B)

D(colimp (F,D), B) = Iy, V](A;,D(FD(-), B)),
and that has the unit

v: A = D(FD(-), colimp(F,D)).

This means there is a corresponding colimit in the underlying category D,, where
by the isomorphism [Jy, V], 2 [J, V,], there is a colimit (colimp, (F,D),v) of F,D
in D,, with

colimp, (F,D) = colimp(F,D),

and the unit
v: A = D(F,D(—),colimp, (F,D)),

has the same components as the unit 7 of the colimit in ID. There is then an

isomorphism
Dy (colimp, (F,D), B) = [J,V,|(Ar,D(F,D(—), B),),

V-natural in B.

3. Construct the colimit of D in C,:

Since by assumption F, creates colimits for D (Definition A.25), there exists a
colimit (colimc, (D), u) for D in C,, defined by

(CO(COhm(Co (D)7 A) = [J, Vo] (AL C(D(_)7 A)0)7
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and with unit
p: Ay = C(D(—), colimg, (D))o,

where

F,(colime, (D)) = colimp, (F,D)
FO(/’LJ) =vry.

. Choose a candidate for the conical colimit of D in C:

We need to choose a candidate for the conical colimit of D in C, but by the
isomorphism [Jy, V], 2 [J, V,], the obvious choice is (colimg(D), z), where

colimg (D) = colimg, (D),
and the unit & is given by the V-natural transformation
7i: A; = C(D(-), colimg(D)),

that has the same components as the unit p of the colimit in C,. To show that

this is a colimit of D in C we must show that there is an isomorphism
C(colime(D), A) = Iy, VI(Ar, C(D(-), A)),

V-natural in A (Definition C.95).

. Construct a morphism f: C(colimg(D), A) — [Jv, V](A7, C(D(-), A)):

We know that the functor category [Jv, V] exists, therefore we can consider the

following diagram

C(colimg (D), A) ——— [Ty, V](A;,C(D(-), A))
C(ms,A) Ey
C(D(I), 4) ———ro> [1,C(D(), 4)]

where the family of V-natural morphisms E; is the counit of the functor category
[Jv, VI(A;,C(D(-), A)) (Definition C.84).

Then since i¢p sy 4) s V-natural in J (Section C.6), the family of morphisms

icp(),a) © Clig, A)

is clearly V-natural in J, and so by the universal property of the end (Defini-

tion C.82), there exists a unique morphism f such that the diagram commutes.
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6. Show that the underlying function of f is the bijection of the colimit of D in C,:

The underlying function of f is given by
elem|f]| : C,(colimc(D), A) — [Jv, V]o(Ar, C(D(-), A)),

and from the diagram above, the outer perimeter of the following diagram com-

mutes
elem P
Cy(colimg (D i [Jv, V]o(Ar, C(D(-), A))
Co(ps,A) A], elem|E ;|
Co(D(J), A) Co(D(J), A)
leo(D(9),4)

where elem‘iC(E(J)A)’ = lc,(p(J),4), and elem|C(fz;, A)| = C,(p1s, A) by Propo-
sition C.36.

To show that the rest of the diagram commutes, we recall that the colimit of D in

C, exists, and is defined by the bijection
CO(COHmCo (D)v A) = [Ja VO] (Ar, C(D(—), A)o),

that sends each mediating morphism to the corresponding cocone, and we also have
the isomorphism of functor categories [Jv, V], = [J, V,]. Thus the “pentagon” via
[J,V,](Ar,C(D(-), A),) says, that for each mediating morphism, the “arms” of
the corresponding cocone, are given by the corresponding arm of the colimiting

cocone composed with the mediating morphism.

Then since Ej is a mono-source (Definition A.16), and representable functors
preserve mono-sources (Proposition A.17), we have that elem|f| is given by the

composition of isomorphisms

o) (a3

3, Vo (Ar, C(D(=), A)o) —

C,(colimg(D), A) —— [Jv, V]o(Ar, C(D(~-), A)).

7. Construct a morphism g: [Jv, V](A;,C(D(—), A)) — C(colimg (D), A):

We have one direction of the isomorphism we are trying to construct, and we now

need to find an inverse to the morphism f.

To do this we note that by Section C.6, for the functor F', we have that F_ 4 is

V-natural in the first argument

F_4: C(—, A) = D(F(=),F(A): C =V,
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and thus has the underlying ordinary natural transformation
(F-4)o: C(—,A)o = D(Fy(—),F(A))o: C, = V,.

Note that (F_ 4), is not the same as F,,_ 4 (Remark C.44), indeed, the components
of F_ 4 and (F_ 4), are exactly the same.

From this, by Proposition C.88, we have the V-natural transformation
Fpyat C(D(—),A) = D(FD(-),F(A): Iv =V,

and by the isomorphism [Jv, V], = [J, V,], this is paired with the ordinary natural

transformation

Fpy,a: C(D(=), A)o = D(F,D(-), F(A))o: I = V.

Using this, and the fact that F|, creates colimits, we have the following commuting

diagram.

IR

Coy(colime, (D), A) [J, Vo] (A, C(D(—), A)o)

FOcolimCO(D),A [J,Vo](A[,FD(,LA)

Dy (Fy(colimg, (D)), Fp(A))

~ [Javo](ALD(FoD(_)aFO(A))O)

Now, since we have an isomorphism of categories [Jv, V], = [J, V,], and the functors

defining this isomorphism must preserve composition, we also have

o

[J, Vo] (A7, C(D(-), A)o) [Jv, V]o(Ar,C(D(-), A))
[JvVO](AlvFD(f),A) [JVvV]O(EvFB(,),A)

[vao](ALD(FOD(_)v FO(A))O) [JVvv]o(Ea D<Fﬁ(_)7 F(A)))

(a3

and thus

IR

C,(colimg, (D), A) [Jv, V]o(Ar, C(D(-), A))

FOcolimCO(D),A [J\UV]O(EvFB(f)YA)

]D)O(FO(CO]‘im(Co (D))7 FO(A)) [JVvv]o(Ea D(Fﬁ(_)v F(A)))

o
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So if we consider the following diagram of hom-objects in the corresponding V-

categories

C(colime (D), A) . [Jv, VI(Ar, C(D(-), A))
Feolime(D),A B, VI(AL,Fp_y, 4)

D(F(colime (D)), F(A))

= v, VI(A1,D(FD(-), F(A)))

where Fiolime(p),a is the elem|—|-initial lift of Focolime, (p),a, then by the universal
property of Figlime(D),A (Definition A.1), there is a unique morphism g making the

diagram commute.

8. Show that f and g define a V-natural isomorphism:

We must show that f and g are inverses, and define an isomorphism. Suppose
go f = h, then elem|g| o elem|f| = elem|h|, but elem|f| and elem|g| are given
by composites of the defining isomorphism of the colimit of D in C,, and the
isomorphism of categories [Jv, V], = [J, Vo], thus elem|h| = I¢,(colime, (D),4)- But

elem|—| is a functor, and faithful, therefore h = 1¢(colime (D), A)-

Similarly fog = 1[JV7V] (A7,C(D(=),A)) therefore f and g define the isomorphism

C(colime (D), A) = [Jy, V](A7, C(D(-), A)).

To finish the proof that this is the colimit of D in C, we must show that this
isomorphism is V-natural in A. But this follows immediately from the fact that the

underlying isomorphism is natural in A and elem|—| is faithful (Proposition C.43).

9. Show that F' creates conical colimits for D:

Finally, to show that F' creates conical colimits for D (Definition C.99) we observe
that by construction
F(colimg (D)) = colimp(F,D),

and

F(py) = Fo(py) =vy =7y,

thus the unit & of the colimit of D in C is mapped to the unit 7 of the colimit of F, D
in D, and the uniqueness of such a V-natural transformation in C follows from the
fact that for every ordinary natural transformation Ay = C(D(—), colimc, (D))o,
there can be at most one V-natural transformation with the same components, and

w1 is the unique such ordinary natural transformation, since F,, creates colimits.
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2.5 Discussion

In Section 2.2 and Section 2.3 we identified two categories that, in addition to the
category Set, satisfied the conditions of Assumption 1. But why did we pick those two

examples? There are two answers to this question.

The first answer is that previous authors have looked at coalgebras enriched over various
categories of preorders, partial orders, or metric spaces, for example Turi and Rutten
(1998); Worrell (2000a); Balan and Kurz (2011); Bilkova et al. (2011). So this provides

a link between our general approach and previous work in the literature.

The second answer is that both order-theoretic and metric-theoretic approaches have
been taken to domain theory, and these have been shown, taking the lead from Lawvere
(1973), to be related (Rutten, 1996; Wagner, 1997; Bonsangue et al., 1998). Moreover,
in Balan and Kurz (2011) the authors explicitly state that they regard the categories
Preord and Pos as a natural bridge between coalgebras and domain theory, and we

would suggest that this extends to include metric spaces too.

Finally, as we shall see in Chapter 5, preorders and metric spaces are subsumed by the

notion of a category enriched over a commutative unital quantale (Wagner, 1997).



Chapter 3
Logical Connections

At the heart of our work is the notion of a logical connection. The term itself was
probably first coined in Pavlovic et al. (2006), but the idea in its most basic form goes
back at least as far as Abramsky (1991).

A logical connection is a dual adjunction, or possibly even a dual equivalence, between
concrete categories that arises from an object that “resides” in both categories. This
object is the set of truth values for a logic - the base logic. The objects of one category
are therefore logics (typically in algebraic form) of this base type, and the objects of the
other category provide the semantics of these logics. The dual adjunction ties everything

together in a consistent fashion.

A seminal paper on concrete dual adjunctions was the work of Porst and Tholen (1991),
wherein the notion of a dualising object is formalised (see also Johnstone (1982, VI.4)).
Recently in Kurz and Velebil (2011) these ideas have been extended to an enriched
category theory setting, where the logics are also many-sorted. We shall adopt the

enriched setting, but restrict ourselves to single sorted logics.

A brief outline of this chapter is as follows:

Section 3.1 The basic building blocks of a logical connection are described (V-categories
A and X, V-functors U and V, and a V-dual adjunction P =4 S), and their key

properties summarised.

Section 3.2 The forgetful V-functors U and V are discussed, and some auxiliary defi-

nitions made that will be needed in later sections.

Section 3.3 The V-dual adjunction P -4 S is used to define the truth objects of the

logical connection, and explicit forms for the unit and counit are derived.

Section 3.4 The logical interpretation of the V-dual adjunction is given, and valuations,

theory maps, and satisfaction maps are defined.

27
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Section 3.5 A brief summary of the concept of a dualising object, and how they induce

V-dual adjunctions is presented.

Section 3.6 A collection of both bivalent and fuzzy examples are developed, with en-

richment over both preorders and generalised metric spaces.

Section 3.7 A brief review of the use of logical connections in the coalgebra literature

is given.

3.1 Overview

First we shall give an overview of the basic ingredients of a logical connection, specifically
an enriched logical connection. Here we follow Kurz and Velebil (2011), but restrict to

a single-sorted setting.

The basic idea is that we have the following non-commuting diagram of categories and

functors.
S
S
P
U 174
\Y
Here:

1. V is a symmetric monoidal closed category that satisfies Assumption 1.
2. A and X are concrete V-categories (Definition C.25).

3. U and V are faithful and representable V-functors (Definition C.19 and Defini-
tion C.60).

4. P and S are contravariant V-functors that form a V-dual adjunction (Defini-
tion C.75).

Spelling out in a little more detail what we mean by the above:

1. The category V is thought of as representing a kind of base-level structure that we

want to be pervasive throughout the other categories and functors.

2. The objects of A and X will be thought of as base algebras and state spaces
respectively. Though it must be remembered that we mean this in a very general
way. Examples for A include Boolean algebras and distributive lattices, and for

X, sets and measurable spaces - see Section 3.6.
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3. The functors U and V are forgetful functors that map algebras and state spaces

to some common substrate - the category V representing the base-level structure.

4. The contravariant functors P and S will be thought of as mapping a state space to
an algebra of generalised predicates (over that space), and an algebra to a space

of generalised theories (of that algebra).

In Section 2.1 we discussed the category V, now we shall examine the other ingredients

of our framework.

The V-Categories A and X

The categories A and X are enriched over V (Definition C.1), and since V is concrete

over Set, the hom-objects of A and X are sets with some kind of structure.

The objects of A are to represent logics of the type represented by A, but typically in
algebraic form. As concrete examples we could consider Boolean algebras, distributive
lattices, or meet semilattices, but here we do not restrict ourselves to any particular

choice.

The objects of X are to represent state spaces, or sets of processes, possibly with some
kind of structure, for example a topology or a sigma algebra. Again we do not restrict

ourselves here to any specific choices.

The V-Functors U and V

The forgetful functors U and V' are faithful (Definition C.19), and so the categories A
and X are concrete over V (Definition C.25). The categories A and X can therefore
be thought to consist of V objects, possibly with some additional structure, and with
hom-objects given by sets of morphisms that may possibly preserve (or reflect) some, or

all, of this additional structure. Moreover, the hom-objects are themselves V objects.

The functors U and V are also representable (Definition C.60), with representing objects
Ap and X, and since we will typically find the categories A and X to be categories of
base algebras and state spaces, the representing objects Ag and Xy will correspond to

the free base algebra over one generator, and the singleton state space respectively.

The V-Dual Adjunction P 4 S !

The V-dual adjunction (Definition C.75) provides the semantics for the base logics. The

contravariant V-functor P maps a state space X to an algebra (of type A) of predicates

'Here and elsewhere: this symbol is reserved for the case where P is left adjoint and § is right adjoint,
but in the case of contravariant functors note Remark A.45.
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on X. Note, by predicate, we could mean something more general than simply a subset
of X, for example a fuzzy subset. Dually, the contravariant V-functor .S maps a base logic
to its set of possible theories, and assigns it whatever additional structure is required
to make the set an X object. Again, by theory, we could mean something more general
than a logically consistent set of formulae, for example with a fuzzy logic it would be a

logically consistent fuzzy set of formulae.

For every V-dual adjunction there is a V-natural isomorphism (Proposition C.76)
A(A, P(X)) 2 X(X, S(A)).

On the left, the elements of A(A, P(X)) are called valuations (Definition 3.15). They
assign to each formula of A a predicate on X. On the right, the elements of X(X, S(A))
are called theory maps (Definition 3.15). They assign to each state of X a theory of A.

The dual adjunction then pairs valuations with theory maps in a consistent way.

3.2 The V-Functors U and V

In this section we shall explore some of the consequences of making the forgetful V-

functors U and V representable, but first we shall formally state this as an assumption.

Assumption 2. We extend Assumption 1 (page 6) as follows:

6. There are faithful (Definition C.19), representable (Definition C.60), V-functors

1

Ux~A(dy,—): A—>V
V 2 X(Xo,—): X > V.

The first observation that we can make is that the underlying ordinary functors U, and
Vo (Definition C.11) of the V-functors U and V can be composed with elem|—|

U, elem|—|

Vo Set

Ao

Vv, elem|—|

XO Vo Set .

The combined actions on the hom-sets of A, and X, are then seen to be

Uoa,B elem|—|y 4y y(p)

Ay,(A,B) —=V,(U(A),U(B

Set(elem|U(A)|,elem|U(B)|)

Vox,y elem|—|y (x v (v)

X(X,Y) —=V,(V(X), V(Y

Set(elem|V(X)|,elem|V(Y)]).
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Now U and V are faithful (Definition C.19), so Us g and Vxy are monomorphisms in
Vo, and since elem|—| is representable it preserves monomorphisms (Proposition A.12),

and so

Uoa,p = elem|Uy p|

Voxy = elem|Vx y|

are injective. Thus since elem|—| is also faithful, the categories A and X are concrete
over V (Definition C.25), and the underlying categories A, and X, are concrete over Set
(Definition A.9).

The V-functors U and V are also representable, which means that for any object A in
A, and any object X in X,

elem|U(A)| =2 A,(Ao, A)
elem|V(X)| = X, (X, X),

and by Proposition C.36 we have

12

(AOa _)A,B

elem|—|; ) y(p) © Uoa, = Ao
XO(X07_)X,Y>

I

elem|—|yx) v(y)© Vox,y
and thus elem|U,(—)| and elem|V,(—)| are both faithful and representable.

Now faithful ordinary functors reflect monomorphisms and epimorphisms, and repre-
sentable ordinary functors preserve monomorphisms (Proposition A.12 and Proposi-

tion A.14), so we have

Injecty, 4,3y = monos in A,(4, B)

Surjecty, (4,5 € epis in A (A, B),

where Injecty (4 py is the class of morphisms in A,(A, B) with injective underlying

functions, and Surjecty, 4 py those with surjective underlying functions. Similarly,

Injectx, (x,yy = monos in X,(X,Y)

Surjecty, (x,y) € epis in X,(X,Y),

where Injecty (xy) is the class of morphisms in Xo(X,Y) with injective underlying

functions, and Surjecty (x y) those with surjective underlying functions.

In subsequent sections in this chapter we shall need to manipulate expressions involving
the V-functors U and V. In particular, for a morphism f € A,(A, B), and an element
a € elem|U(A)|, we shall be interested in reversing the order of evaluation in expressions
of the form U(f)(a), and similarly for V.
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For the functor U, the morphism Ua g has the transpose UI1 p under the adjunction
—®U(A) 4[U(A), —], such that the following diagram commutes.

A(A,B)®U(A)

Ul 5
Ua,B®1y(a) ’

[U(A),U(B)] @ U(A) —; 75 U(B)

Now since the functor U is representable, by Proposition C.64, the morphism Uy p is

given by the composite

UA,B - [§A7 gél] o A(A()v _)A,Ba

where =24 and =g are the isomorphisms of the representation. Then by Definition C.32,

and the V-naturality of 2, we have the following proposition.

Proposition 3.1. Given the conditions of Assumption 2, the transpose ULB of Ua.B
under the adjunction — @ U(A) 4 [U(A),—] is given by

~—1

Magy,a,B =

1 R
A(A,B) @ U(A) 7% A(A, B) ® A(Ag, A) A(Ag, B) —2~U(B),

and for f € Ay(A, B), and a € elem|U(A)|, we have

U(f)(a) =Ul go(f®a)olrt =25 (f e =a(a)).

Here M4, 4. is the composition law of A (Definition C.1).
We also have a dual proposition for the functor V.

Proposition 3.2. Given the conditions of Assumption 2, the transpose V;(Y of Vxy
under the adjunction —® V(X) 4 [V(X), —]| is given by

—1
Ix(x,v)®=x Mx,,x,y =y
—_—

X(X,Y) ® X(Xop, X) X(Xo,Y) —=V(Y),

X(X,Y)® V(X)
and for f € Xo(X,Y), and x € elem|V(X)|, we have

V(f)(z)=Viyo(f®a) ol == (f e 2x()).

Next we note that using Proposition B.12, and the symmetry ¢ of V, (Definition B.6),

there is a natural isomorphism

[U(A), [A(A, B),U(B)]] = [A(4, B), [U(A), U(B)]].
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Specifically, if we take U4 p, this gives a morphism ¢4 p such that the following diagram

commutes.

CU(A),A(A,B)

U(A) ® A(A, B)

$A,B®1a4,B) ULB

[A(A,B),U(B)] ® A(A, B) U(B)

€A(A,B),U(B)

Moreover, since Us, g and cpy(4),4(4,p) are both V-natural in A and B, by Section C.6,

so is ¢4, p. Therefore we make the following definition.

Definition 3.3. Given the conditions of Assumption 2, we define a V-natural transfor-

mation

¢A,B: U(A) — [A(A7B)v U(B)],

where the component ¢4 p is defined to have the transpose QSL p under the adjunction
—®A(A,B) 4[A(A, B), —] given by

¢Z,B = UI&,B © CU(A),A(A,B)>

and for all A, B € obj|A|, a € elem|U(A)|, and f € A,(A, B), we have

¢a.p(a)(f) =U(f)(a).

The V-natural transformation ¢ thus provides the reordering of evaluation under U that

we shall need later.

Similarly for the natural isomorphism
[V(X), [ X(X,Y), V(Y]] = [X(X,Y), [V(X), V(Y)]]

we make the following definition.

Definition 3.4. Given the conditions of Assumption 2, we define a V-natural transfor-

mation

Yxy: V(X) = [X(X,Y), V(Y)],

where the component 1 x y is defined to have the transpose w;( y under the adjunction
- X(X,Y) 4 [X(X,Y), —] given by

@c,y = V)Tc,y ° CY(X),X(X,Y)>

and for all X,Y € obj|X|, z € elem|V(X)|, and f € X,(X,Y), we have

Yxy (@) (f) =V (f)(z).
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To derive explicit expressions for the components of ¢ and ¥ we start with the fol-
lowing diagram, which commutes by the definition of the hom-functor A(—, B) (Defini-
tion C.34), and naturality of ¢ and e.

CU(A),A(A,B)

U(A)® A(A, B)

A(A,B) @ U(A)

ZA®1y(a,B) 1aa,B)®=a

CA(Aq,A),A(A,B)

A(Ag, A) ® A(A, B) A(A, B) ® A(A, A)

A(—,B) 4g,4®@14(4,B) Mag,A,B

[A(A’ B)’ A(AO’ B)] ® A(A’ B) €A(A,B),A(Ag,B) A(AO’ B)
[A(A,B), 25" |®14(a,5) gt
[A(A, B),U(B)] ® A(A, B) U(B)

€A(A,B),U(B)

The righthand column is the transpose of U4, g given by Proposition 3.1, and the lefthand

column therefore gives an explicit expression for ¢4 p.

Proposition 3.5. Given the conditions of Assumption 2, the component ¢ p of the

V-natural transformation
¢A7B: U(A) — [A(Av B)v U(B)]a
s given by

[A(A,B),=5"]
[A(A, B), A(Ao, B)] ——[A(4, B),U(B)].

A(_7B)AO,A

U(A) —2= A(Ag, A)

Similarly we have the corresponding result for 1.

Proposition 3.6. Given the conditions of Assumption 2, the component Vxy of the

V-natural transformation
wX,Y: V<X> - [X(X7Y)7 V(Y)]7
s given by

X(_vy)Xo,X [X(X’Y)ug}_/l]

V(X) — X(Xo. X)

[X(Xv Y)7X(X07Y)]

X(X,Y), V(Y)].
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3.3 The V-Dual Adjunction P 4 S

We now spell out in more detail the V-dual adjunction P 4 S, and in particular we
examine the precise form the unit and counit take as this will be useful later on. We
follow the line taken in Porst and Tholen (1991, Section 1-B), but generalise to our

enriched setting.

Firstly we need to make precise the assumptions we are making.

Assumption 3. We extend Assumption 2 (page 30) as follows:

7. There is a V-dual adjunction (Definition C.75)
p,o: P45 A—-X
satisfying the triangular equations

PoopP=1p
SpocS=lg,

and this yields (Proposition C.76) a V-natural isomorphism
P4 x: A(A, P(X)) =X(X,S(A4)).
We shall use the notation f° for the dual adjunct (Definition A.46) of
feh(A P(X)),
and ¢f for the dual adjunct of

g € Xo(X,S5(4)).

The images under P and S of the representing objects Ag and Xy of the functors U
and V will play a vital role, and as we shall see in Section 3.4, they have a specific
logical interpretation. We therefore make the following definition, and postpone the

explanation of the name “truth object” until later.

Definition 3.7. Given the conditions of Assumption 3, the images under P and S of
Xo and Ap we call the truth objects of A and X (respectively), and denote them as

follows:
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The truth objects 24 and Qx define contravariant representable V-functors (Defini-
tion C.61) as given by the following proposition, which is a direct enrichment of Porst
and Tholen (1991, Proposition 1.2).

Proposition 3.8. Given the conditions of Assumption 3, the following hold:

1. The contravariant V-functors UP: X — V and VS: A — V are representable

functors, where the representing objects are the corresponding truth objects

UP = X(—, Q)
VS = A(—, Q).

2. The truth objects Qp and Qx have the same underlying V object up to isomorphism,
i.e. there exists a V-isomorphism 7: U(Qp) =V (Qx).

Proof. For any object A in A we have

A(A, Q) = A(A, P(Xo)) = X(Xo, S(4)) = VS(A),
and thus V.S =2 A(—,Qy).
Similarly, for any object X in X we have

X(X, Qx) = X(X, 5(A0)) = A(Ao, P(X)) = UP(X),
and thus UP = X(—, Qx).
For the second part of the proposition, we have

V(Qx) =VS(Ag) = A(Ap, Q) 2 U(Qa).
O]

Now, as noted in Porst and Tholen (1991, Remark 1.3), there is a special case where

the isomorphisms of Proposition 3.8 are actually equalities. In such a case we use the

following terminology.

Definition 3.9. Given the conditions of Assumption 3, if

VS = A(—, Q)
UP =X(—,0%),

then the dual adjunction is said to be strictly represented by (Qa, (x).
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It turns out that with very little loss of generality we can always assume that we have

a strict representation.

In Porst and Tholen (1991, Remark 1.3) it is noted that if the functors (ordinary functors
in their case) U and V are uniquely transportable (Definition A.11), then we can always
assume that the dual adjunction is strictly represented. This is also the case in our

enriched setting.

To see this we first recall that if the V-functor U is uniquely transportable (Defini-
tion C.28), then for every X object X, and every V,-isomorphism

feV,(UP(X),X(X, %)),
there exists a unique Ax in A such that U(Ax) = X(X, Qx), and an A,-isomorphism
fx € Ao(P(X), Ax),

such that U(fx) = f. Thus we can define a contravariant V-functor P': X — A by
P'(X) = Ax, and for every pair of objects X and Y in X, the morphism

Pyy: X(X,Y) = A(P(Y), P'(X))

is given by PS(,Y = A(f;l, fx)oPxy.
Moreover, if we consider the isomorphism

f = (I)AO,X o gp(X)Z UP(X) — X(X, Qx),

the construction of the functor P’ ensures that the outer perimeter of the following

diagram commutes.

[0}]
A(Ag, P(X)) o X(X, S(40))
A(Ao,fx) Py x
~p(x) A(Ap, P'(X)) =
=pr(x)
UP(X) UP'(X)

U(fx)
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We can then define the V-natural isomorphisms

q)on,X = ®A0,X OA(AOMJC)?l)
~orx) = A(Ao, fx) 0 Zpix) o U(fx1),

and since all morphisms above are isomorphisms, the rest of the diagram commutes, and

in particular

~/ _ (I)/_l
—P(X) T FAyX"

Similarly, we can define a contravariant V-functor S’: A — X, and it is easy to see
that P’ and S’ form a V-dual adjunction ®', and that this dual adjunction is strictly
represented by (Qa,x). Moreover, the action of the representable functors U and V

on the images of objects under P’ and S’ gives

o, UP' = A(Ag, P'(-))

'y, VS = X(Xo,5(—)).

As unique transportability of U and V is a relatively mild condition, with minimal loss

of generality we may assume that every dual adjunction is strictly represented.

Assumption 4. We extend Assumption 3 (page 35) as follows:

8. The V-dual adjunction p,o: P 4 .5: A — X is strictly represented by (4, 2x),

meaning

VS =A(—,Q)
UP = X(—, ),

and

o, UP=A(Ag, P(—))
D x,: VS =X(Xo,5(—)).

Under this additional assumption, it is easy to explicitly write down the isomorphism

between the underlying V objects of the truth objects of A and X from Proposition 3.8.

Proposition 3.10. Given the conditions of Assumption 4, then the V-isomorphism
7: U(Qy) =V (Qx)

s given by

a1
T = (I)AO,XO‘
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Proof. We have that
U(Qy) = UP(Xp) = X(Xo, 2x) = X(Xo, S(Ao)),

and also that
V(Qx) = VS(Ag) = A(Ap, Q) = A(Ap, P(Xp)),

hence since

P a9,x0: A(Ap, P(Xo)) = X(Xo, S(A0)),
we can deduce T = 11);01 Xo- O
What we aim to do next is to give an explicit statement of the action of the unit and
counit of the dual adjunction. It will turn out that the way to do this is to use the

functors U and V to translate the problem to the category V, as all morphisms in A,

and X, can be thought of as having an underlying V, morphism.
First we need the following pair of lemmas.

Lemma 3.11. Given the conditions of Assumption 4, for all objects A in A, the follow-

ing diagram commutes.

U(pa)

U(A) UPS(A)
:A =
A(Ap, A) S X(S(A), Q%)
Proof. By Proposition C.64, U(p4) is given by
~ A(Ao.pa) 5
U(A) ——2 = A(Ag, A) — 2222 A(Ay, PS(A) — =2 - UPS(A),

but %EE(A): P 4,5(4), and by Proposition C.81 we have

A(Ao,pa)
- s

A(Ap, A) A(Ao, PS(A))

D 4,,54)
Sag,A 0

so the result follows. O
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Lemma 3.12. Given the conditions of Assumption 4, for all objects A in A, the follow-

ing diagram commutes.

Say,A0%P4 x,

A(Ao, A) ® A(A, Q) X(S(A), %) @ X(Xo, S(A))

CA(Ag,A),A(A,Qy)

A(A, QA) & A(AQ, A) Mx,s(4),0x
Mag,a,9,
A(Ap, Q) Taoe X(Xo, )

Proof. From the action of the contravariant V-functor S on composites (Definition C.3

and Definition C.7), and the naturality of M, the following diagram commutes.

May,a,0,0Ca(40,4),A(4,9,)

A(Ap, A) ® A(A, Q) A(Ao, M)

S40,A854,0, Sa0.2

X(S(A4), Qx) ® X(SP(Xp), S(A))

X(SP(Xo), 2x)

Msp(xg),s(4),0x

lx(s(a),05) ©X(0xy,S(4)) X(ox,2x)

X(5(4), 2x) @ X(Xo, 5(4)) X(Xo, 2x)

Mxq,5(4),0%
Finally, by Proposition C.76, we have
Dax, = X(0x,,5(A)) o San,
a9, x0 = X(UXO’ QX) ° SAO,QA’

and the result follows. O

The main result of this section shows that we can evaluate the unit and counit by
repeated application of the functors U and V. Use is made of the V-natural transfor-
mations ¢ (Definition 3.3) and ¢ (Definition 3.4) to reorder evaluation under U and
V.

This result is an extension of Porst and Tholen (1991, Proposition 1.4) to our enriched

setting.
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Theorem 3.13. Given the conditions of Assumption 4, for all objects A in A, the

following diagram commutes.

a0,

U(A) [A(A4,Q4), U(Q24)]

U(pA) [A(Ang)ﬂ—]

UPS(A) —=X(5(4), Ox)

[A(Av QA)? V(QX)]

VS(A)»QX
Dually, for all objects X in X, the following diagram commutes.

Yx,0x

V(X)

[X(X7 QX)7 V(QX)]

V(JX) [X(ngx)v’ril]

VSP(X)—= A(P(X), Q) [X(X, Qx),U(Q4)]

Up(x),9,

Proof. We shall only prove the first case (for p4), but the second follows in a similar

fashion.

We shall proceed by writing f = [A(A4,Q4),T]0odaq, and g = Vga) 0, 0=0U(pa), and
then prove that f = ¢g. To do this we will consider the transposes f1 and ¢ of f and ¢
under the adjunction — @ A(A, Q) 4 [A(A4,Q4), —]. If we can show that fT = g7, then

the bijection between morphisms and their transposes will force f = g.

The transpose of f is given by Definition 3.3, Proposition 3.1, and the naturality of ¢

and e, as
U(4) ® A(A, Q) il V(Qy)
= 4®1aca,0,) .
A(Ag, A) @ A(A,Qy) U(Q4)
CA(Ag,A),A(A,Q,) 25;
A(A,Qn) ® A(Ag, A) A(Ao, Q)

Mag, a0,



42 Chapter 3 Logical Connections

and by Proposition 3.2, and the fact that ®4 x,: A(A,Qy) = VS(4) = X(Xo, S(A4)),

the transpose of g is given by

U(A) ® A4, Q) o V()
U(pa)®laca,ny) =
UPS(A) @ A(A,Qp) X (X0, )
=®1a(4,0,) Mxo,5(4),9%

X(5(4), ) © A(4,Q4) X(5(4),x) ® X(Xo, 5(A))

Ix(s(4),05)©®Aa,xo

Now the first thing we observe is that by Proposition 3.10 we have 7 = @Z; X, and also
géi: Dayx, =7 ' and 25;: @Z;XO = 7. The rest of the proof follows by applying
—®A(A,Q4) to Lemma 3.11, and then using Lemma 3.12. O

Finally, by Definition 3.3 and Definition 3.4, we have this simple corollary. It shows that
the unit and counit of the dual adjunction are given by the evaluation of morphisms to

the truth objects of A and X, modulo the isomorphism 7.

Corollary 3.14. Given the conditions of Assumption 4, for the unit and counit of the

dual adjunction we have

V({U(pa)(a))(s) = 7(U(s)(a))
UV (ox)())(u) = 7 (V(u)(2)),

\]

for a € elem|U(A)|, z € elem|V(X)|, s € Ay(A4,Qn), and u € X,(X, Ox).

3.4 The Logical Interpretation

So far we have described the dual adjunction framework in which we operate purely in
mathematical terms. However we intend to give this framework a logical interpretation.
The key idea is that the state spaces of X contain states x, and the algebras of A contain
formulas a, and we want to be able to take a pair (x,a) and assign a truth value to the
formula @ in the state . These truth values we will take from the truth objects Q24 and
Qx.

There is an alternative way of looking at assigning a logical interpretation. If our logics

are bivalent (only two truth values), then we could instead assign to each formula a
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the set of all states in which a is true. This would be a predicate on the state space.
Conversely, for each state we could assign the set of all formulae that are true in that

state.

Intuitively these different ways of assigning a logical interpretation ought to be equiv-
alent, and we shall show that this is indeed the case, and that this arises from the

symmetric monoidal closed structure of V.

It should be made clear though, that our approach does not depend upon the use of

bivalent logics. Our results are parametric in the truth objects 24 and Qx.

We start with the second approach above.

Definition 3.15. Given the conditions of Assumption 4, for any object A in A, and

any object X in X, we call any morphism

f e ho(A, P(X))
a valuation, and any morphism

feXo(X,5(4))
a theory map.

The categories A, and X, are concrete over Set, since U, V, and elem|—| are faithful
(Section 3.2), and thus the objects A and X are sets with some additional structure. A
valuation then corresponds to a function mapping each formula to a predicate (set of
states that satisfies it), and a theory map corresponds to a function mapping each state
to a theory (set of formulae satisfied by that state). Though as already mentioned in
Section 3.1, our notions of predicate and theory can be more general than mere sets,
and our logics need not be restricted to the usual two truth values (true and false).
For example, in Section 3.6 predicates include subsets, upsets of preorders, and fuzzy

subsets, and theories include filters, prime filters, and ultrafilters.

Now since we have a dual adjunction P - S, valuations and theory maps come in
pairs. But does this pairing make sense from a logical perspective, and what about the
first method of assigning a logical interpretation described above? In other words, do
valuations and theory maps assign truth values to states and formulae in a consistent

fashion?

Moreover, in the above definition of valuations and theory maps, the set of truth values
is implicit in the logical connection. Can we be more explicit about which values are

being assigned to which formulae in which states?

We aim to answer these questions by exploiting the symmetric monoidal closed structure

of the category V. Specifically, we aim to show that the following diagram commutes,



44 Chapter 3 Logical Connections

where top left are valuations, top right theory maps, and at the bottom the underlying

functions that assign truth values to pairs of states and formulae.

A(A, P(X)) ax X(X, S(A))
Ua,p(x) Vx,s(4)
[U(A),UP(X)] [V(X),VS5(A)]
[U(A), X(X, Qx)] [V(X),A(A, Q)]
[U(4). Vi ] V() Ua )
[U(A4), [V(X), V(2x)]] [V(X),[U(A), U(Qn)]]
PU(A)LY (X), V() PV (X).0(A).U(2)

[U(A) ® V(X), V()]

[V(X) @ U(A),U(Q)]

1 _
[ (ay,vix) ™

To make the task more manageable we write

1

1= Pyayvxovie © [U(A), Vel o Ua pix)

)

v =0y oo © VD Uag,] o Vi sia,
then the above diagram becomes the following one.

Pa,x

A(A, P(X)) : X(X,5(4))
n v (3.1)
[U(A) ® V(X), V(Qx)] [V(X)®@U(A), U(Q4)]

—1 —
v tay v ™)

Then using Proposition 3.1 and Proposition 3.2, the fact that =px)= @Z;}X, and the
definition of p~! from Proposition B.12, it is reasonably straightforward to show that
the transpose u! of 4 under the adjunction — ® (U(A) ® V(X)) 4 [U(A) @ V(X), -] is
given by the following diagram.
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A(A, P(X)) ® (U(A) ® V(X)) “! V()
Laca,p(x)@(Za®=x)

A(A,P(X)) ® (A(Ag, A) ® X(Xo, X))
G4, P(X)) (A9 A) X(X0.X) X(Xo, 2x)
(A(A, P(X)) ® A(Ap, A)) ® X(Xp, X)

Mx,x,0x

May,a,Px)®1x(x(,X)

A(Ap, P(X)) ® X(Xo, X) X(X, 2x) ® X(Xo, X)

P40, x®lx(xg,X)

Similarly, under the adjunction —® (V(X)® U(A)) 4 [V(X)®U(A)), —]|, the transpose

vt of v is given by

X(X, S(A) ® (V(X) @ U(A)) Gl U(Qa)
Ix(x,5(4) ®(Zx®=4)

X(X, S(4)) ® (X(Xo, X) @ A(Ag, A))

X A(Ao, Q)

OK(X,5(A)),X(X0,X),A(Ag,A)

(X(X,5(4)) @ X(Xo, X)) @ A(Ao, A)

Mag,a,0,

Mx,,x,5(4)®1a(ag,4)

X(Xo,5(A4)) ® A(Ao, A) A(A, Q) ® A(Ag, A)

-1
P4, x0®1a(A0,4)

We can therefore replace commutativity of diagram (3.1) in g and v, with commutativity

of a diagram in u! and v, as given by the following proposition.
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Proposition 3.16. Given the conditions of Assumption 4, for all objects A in A, and
all objects X in X,

b4, x

A(A, P(X)) : X(X,5(4))
u v (3.2)
[U(4) ® V(X), V(Qx)] [V(X) @ U(A), U(Q4)]

1 _
v tay v ™)

commutes, if and only if,

A(A, P(X)) P4, x®cy(ay,v(x) X(X,S(A))
®UA) @ V(X)) V(X))o U(A))
ul ot (3.3)
V(Qx) = U(Q4)
commautes.
Proof. Consider the following diagram.
A(A, P(X)) D4, xQcy(a),v(x) X(X, S(A))
®UA) @ V(X)) V(X)) U(A))
K /
BR1y(A)ev(X) V(Qx) . U(Q4) v®ly(x)oU(A)
%fixwmx) W(X)@U%
[U(A) ® V(X), V()] [V(X)®@U(A),U(2)]
®U(A) ® V(X)) [0 ¢ay,v (xy ™ 1®CU ),V (x) @(V(X)®U(A))

The triangles on the left and right commute by the definitions of u! and vf, and the
bottom quadrilateral commutes by the naturality of e. So the diagram as a whole

commutes if and only if the top quadrilateral commutes, which is seen to be (3.3).

Now if (3.2) commutes, applying the functor — ® (U(A) ® V(X)) to it, and then using
the naturality of ¢, means the outer perimeter of the above diagram commutes, which
in turn means that (3.3) must commute. Conversely, if (3.3) commutes, then the above
diagram commutes, and by the uniqueness of transposes, this means that (3.2) must

commute. O
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So using Proposition 3.16, and the definitions of pf and vf, we have to show that the

following diagram commutes.

A(A, P(X)) ®a, X BCU(A),V () X(X, S(A))
R(U(A) @ V(X)) V(X))o U(A))
Laa,p(x) @(Fa®=x) Ix(x,5(4))@(=x®224)

A(A, P(X))  ®ax®caaga)x(x.X) X(X, S(A))

T4, P(X)),A(Ag,A) E(X0 . X) GX(X,5(4)),K(X0,X) A(Ag, A)
(A(A, P(X)) ® (A(Ap, 4)) (X(X, S(A)) © (X(Xo, X))
®X(X0,X) ®A(A0,A)
Magy,4,P(x)®1x(x(,X) Mx,,x,5(4)®1a(44,4)
A(Ap, P(X)) ® X(Xo, X) X(Xo,S(A)) ® A(Ag, A)

P40, X ®Lx(xg,X) © 5y ®Lacag,4)
X(X, Qx) @ X(Xo, X) A(A,Qy) @ A(Ao, A)
Mx,x,0x Mag, a0,

X(Xo, 2x) — A(Aog, Q)

(bAo,XO

T 1
V(Qx) — U(Qy)

The top square of this diagram commutes by the naturality of ¢, and the bottom square
commutes by Proposition 3.10, so we are left to show that the middle part of the diagram
commutes. This looks strange and complicated, but in actual fact is something quite

straightforward and well known in ordinary category theory.
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If we consider the underlying ordinary dual adjunction P, 4 S, (Proposition C.70), and
using the notation f° to represent the dual adjunct of f: A — P,(X), and f* to represent
the dual adjunct of f: X — S,(A) (Proposition A.48), then for all f € A,(A4, P,(X)),
a € Ay(Ap, A), and z € X,(Xp, X), by Proposition A.51 we have

(S(a)o f?ow)f = P(x) o (S(a) o f)F
(@) o (f)oa

()0 foa.

P
P

This is what the middle part of the above diagram shows, except at the V-category
level. To complete the proof therefore, we must show how the ordinary category theory
result implies the commutativity of the diagram in V,. To do this we first apply the
functor elem|—| to map the V, diagram to the underlying one in Set. Then we use the
fact that elem|—| is strong monoidal, and Proposition 2.12, to show that the underlying
diagram commutes because of the above underlying dual adjunction result. Finally,

since elem|—| is faithful, this means that the diagram in V, must commute.

Thus since U and V' are both faithful, every valuation or theory map corresponds to a
distinct morphism of the form U(A) ® V(X) — U(Qa) or V(X) @ U(A) — V(2x), and
since elem|—| is strong monoidal, these morphisms are binary maps (each element of

U(A) ® V(X) is a pair (a,x)).
Summarising all this we have the following theorem.

Theorem 3.17. Given the conditions of Assumption 4, and any objects A in A and
X in X, then for any valuation f € A (A, P(X)), and its dual adjunct theory map
f* € X,(X,S(A)), we have

for all a € elem|U(A)| and = € elem|V(X)|. Also, representing each f, and f°, is a

distinct satisfaction map

Fr:UA) @ V(X) = V(Qx)
a®@x = V(U(f)(a))(x)

Fp: V(X) @ U(A) = U(Q)
r®a = U(V(f)(2))(a),

and moreover we have that

':f =TO ':fb o CU(A),V(X)'
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What this theorem shows, is that as stated at the start of this section, valuations and
theory maps correspond to the possibly more intuitive notion of taking a pair consisting
of a formula and a state, and assigning a truth value to that pair - the truth status of

that formula in that state.

However, at the level of the satisfaction maps (the category V,), the algebraic properties
of the logical connectives of objects in A, or the topologies or other structure of objects
in X, have been forgotten (by the functors U and V'). Thus not every possible choice of
map U(A) @ V(X) = U(Qu) or V(X)® U(A) — V(Qx) corresponds to a valuation or
theory map.

Usually in the literature when a map of the form F: U(A) ® V(X) — V(Qx) is defined,
it is done so inductively on the structure of the formula a, but this is needed precisely
because this information is not present at the level of the category V,. At the level of
the category A, this structure is built in, and all morphisms must preserve it. Thus val-
uations, or dually theory maps, are a mathematically cleaner way to give the semantics

of a base logic in A.

3.5 Dualising Objects

In the previous sections we have examined the properties of a logical connection, but
now we want to concentrate on finding logical connections. In the next section we
shall produce a collection of example logical connections that will be used in subsequent
chapters. To do this we will require a technical tool, and that is what we shall cover in

this section.

The technical tool we shall use is what we shall call a dualising object. This is not a
new idea (for example see Johnstone (1982, VI.4)), and we shall only present a brief
summary of the material in Porst and Tholen (1991); Kurz and Velebil (2011), wherein

a dualising object is known as a schizophrenic object.

To formulate the notion of a dualising object we shall need the concept of an F-initial
lift, where here F': C — V is a V-functor. In Chapter 2 we introduced the idea of
the initial lift of an ordinary functor along the functor elem|—|: V, — Set to create
a V-functor (Definition 2.10), here we lift families of morphisms in V, to families of

morphisms in C,. This concept will only be used in the remainder of this chapter.

Our approach is to present material from Kurz and Velebil (2011), but restricted to the
single sorted case. We do this because we are only working in a single sorted framework,

but this also has the effect of significantly simplifying the presentation.
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Definition 3.18. Given a V-functor F': C — V we have the following definitions:
1. An F-structured source is a morphism
AW = [Z,F(C))

in V,.

2. An F-lift of A is a morphism
AW = C(Z,0)

in V, such that the diagram

>

w

commutes.

3. An F-initial lift of \ is an F-lift A such that

C(C,7) — o@D e, o))
Forz WFer o]
[F(C"), Z] (W, [F(C), F(C)]]

homy (F(C"),\)

is a pullback in V, for all C’ € obj|C]|.
Here, homc(C’, \) is defined such that

homg(C', A)(f)(w) = Aw) e f,

for f € C,(C',Z), and w € elem|W|.
Similarly, homy(F(C"), \) is defined such that

homy (F(C"), A)(g)(w) = Mw) o g,
for g € Vo(F(C"), Z), and w € elem|W|.

An F-structured source can be thought of as a family of V, morphisms from Z to F(C)
indexed by W. An F-lift of A is then a W-indexed family of C, morphisms from Z to
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C. Here Z is an object of C such that F(Z) = Z. It can be thought of as somehow
putting the additional structure of a C object onto an underlying V object, such that

each V, morphism A(w) = Fy o (A(w)).

An F-initial lift is then an optimal choice of Z, one such that for any V, morphism
h: F(C") — Z, for some object C' of C, and any W-indexed family of morphisms
pu(w) € Co(C’, C), such that for all w € elem|W|,

Foro(p(w)) = A(w) o h,
there exists a unique C, morphism h: ¢’ — Z, such that for all w € elem|W|,
(w) = Xw) o,

and

Using the above, in conjunction with the definitions of ¢ and % from Definition 3.3 and

Definition 3.4, we can define a dualising object as follows.

Definition 3.19. Given the conditions of Assumption 2, a triple (4, Qx, 7), consisting
of an object 4 in A, an object Qx in X, and an isomorphism 7: U(Qy) — V(Q2x) in
Vo, is called a dualising object if the following hold:

1. For every A in A, the V-structured source

ba,0, [A(A,Q4),7]

pa: U(A) [A(A, Qn), U(Q4)] [A(A, Q4), V()]
has a V-initial lift

na: UA) = X(S(A), Ox).
2. For every X in X, the U-structured source

Vx.0x [X(X,0x),7 1]

vx: V(X)

X(X, Qx), V(Qx)] [X(X, Qx), U(Q4)]

has a U-initial lift
vx: V(X) = AP(X), Q).

In the above definition we have used the suggestive notation of S(A) and P(X) for the
initial lifts of A(A4,Qs) and X(X,Qx). This is in anticipation of the following result,
which is Kurz and Velebil (2011, Theorem 4.16), and which we state without proof.

Theorem 3.20. Given the conditions of Assumption 2, every dualising object (Qa, Qx, T)
induces a V-dual adjunction P = S: A — X strictly represented by (Qp, Qx).



52 Chapter 3 Logical Connections

3.6 Examples

In this section we shall establish a collection of different logical connections that we shall
build upon in subsequent chapters. These examples are by no means exhaustive, and
indeed, in the case of enrichment over Set (i.e. ordinary category theory), there are

many examples to be found in the literature (Section 3.7).

It should also be noted that these examples derive from those of Jacobs and Sokolova

(2010), but extended and enriched where appropriate.

The logical connections to follow will be built from a common collection of components,
and we shall consider three cases: enrichment over Set, enrichment over Setp (Defini-
tion 2.1), and enrichment over GMet (Definition 2.5).

The categories MSL, DL, and BA consist, respectively, of meet semilattices with top,
distributive lattices with top, and Boolean algebras. As defined they are ordinary cat-
egories, but each object A (of any of these categories) can be given a natural order:
a <b< a=aAb, and so can be thought of as a set with a preorder, or a partial order.
Alternatively, using the equality relation on A, A can be thought of as a set with an
equivalence relation, or equality relation. It is not hard to see that the morphisms of

MSL, DL, and BA preserve these order relations, and are themselves ordered pointwise.

Definition 3.21. The categories MSL, DL, and BA are enriched over Setg, with each
object A carrying the relation R4 defined as follows:

1. if the type R represents preorders or partial orders,
aRAb< a=aAb,
2. if the type R represents equivalence relations or equality,

aRAb< a=0b.

The hom-objects are ordered pointwise, i.e. for f,g: A — B,

fRg < for all a € A we have f(a)Rpg(a).

Similarly, objects of the categories MSL, DL, and BA can be given a generalised metric
in a natural way, and once again the morphisms preserve the metrics, and can themselves

be given a metric.
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Definition 3.22. The categories MSL, DL, and BA are enriched over GMet, with
each object A carrying the generalised metric d4 defined by

0 cifa=aANd
da(a,b) =

oo : otherwise.

The generalised metric on each hom-object is defined for f,g: A — B as

d(f,g) = sup dg(f(a),g(a)).

The categories MSL, DL, and BA form our base logics, and give us respectively:
conjunction and true; conjunction, disjunction, and true; and conjunction, disjunction,
negation, true, and false. To this we need to add a set of truth values. We shall consider
two cases. The first is the usual case of bivalent logic, where truth values come from the
set 2 = {0,1}. The second is the case of fuzzy logic, where truth values are taken from
the unit interval [0, 1].

These sets of truth values need to be given preorders and metrics in the case of enrich-

ment over Setr or GMet.
In the case of bivalent logics we make the following definition.

Definition 3.23. The set 2 = {0,1}, as an object in Setp, is defined to have the

following preorder relation:

1. if the type R represents preorders or partial orders,
Ry ={(0,0),(0,1),(1,1)},
2. if the type R represents equivalence relations or equality,
Ry ={(0,0), (1, 1)},
and as an object in GMet, is defined to have the generalised metric given by

0 : if (a,b) € {(0,0),(0,1),(1,1)}

oo : otherwise.

dz(a, b) =

Similarly, in the case of fuzzy logics we make the following definition.
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Definition 3.24. The unit interval [0, 1], as an object in Setp, is defined to have the

following preorder relation:

1. if the type R represents preorders or partial orders,

xR[O,l]y < x <y,

2. if the type R represents equivalence relations or equality,

TRy <z =y,

and as an object in GMet, is defined to have the generalised metric given by

y—x = ifx<y
dpo,1)(2,y) = _
00 : otherwise.

The truth set 2 needs to be given an algebraic structure in order to make it into an
object in the categories MSL, DL, and BA.

Definition 3.25. For each of the categories MSL, DL, and BA, the set 2 = {0, 1} has
the corresponding subset of the following operations:

1. T=1,

2. a A'b=min(a,b),

3. a Vb= max(a,b),

4. ma=1-—a.
The truth set [0, 1] however, can only be made into an object in the categories MSL
and DL, and not into a Boolean algebra, since a V —a = T is not valid in fuzzy logic.

Note, here we are defining what in Lukasiewicz logic are known as weak conjunction and

disjunction.

Definition 3.26. For each of the categories MSL and DL, the unit interval [0, 1] has

the corresponding subset of the following operations:

1. T=1,

2. z Ay = min(z,y),

3. xVy=max(z,y).
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For state spaces we will use the categories Set, Setr, GMet, and Meas, the category
of measurable spaces. These are all ordinary categories, but Setp and GMet are also
enriched over themselves, and from Example 2.1 and Example 2.2, we also have the

Set p-category Measp, and the GMet-category GMeas.

The truth sets 2 and [0, 1] can be made into objects of Meas, Measy and GMeas by

giving them sigma algebra structures. For our purposes the following choices suffice.

Definition 3.27. The set 2 carries the sigma algebra defined by

Yo = {@, {0}7 {1}7 2}7

and the unit interval [0, 1] carries the sigma algebra given by the Borel sets of [0, 1].

We shall now introduce some terminology that will make our work easier.

Definition 3.28.

1. A morphism u € Set(X,2) defines a subset of X.
2. A morphism u € Set(X, [0, 1]) defines a fuzzy subset of X.

3. A morphism u € Setr(X,2) defines a right R-closed subset of X.

In detail this corresponds to:

if x € wand xRxy then y € u.

4. A morphism u € Setr(X, [0, 1]) defines a right R-closed fuzzy subset of X.

In detail this corresponds to:

if xRxy then u(z) < u(y).

5. A morphism v € GMet (X, 2) defines a right d-closed subset of X.

In detail this corresponds to:

if € wand dx(z,y) < oo then y € u.

6. A morphism u € GMet(X, [0, 1]) defines a right d-closed fuzzy subset of X.

In detail this corresponds to:

if dx(z,y) < oo then u(z) < u(y).

A right R-closed subset is the generalisation of an upset (Davey and Priestley, 2002).

Moreover, because {1} € 32, a morphism u € Meas(X, 2) is a measurable subset of
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X, and this combines in the obvious way with the notions of right R-closed, and right

d-closed, in the categories Measy and GMeas.

We can use similar terminology on the algebra side, starting with standard definitions
from order theory (Davey and Priestley, 2002), and then introducing their obvious fuzzy

analogues.

Definition 3.29.

1. A morphism s € MSL(A, 2) defines a filter of A.

In detail this corresponds to:

s is an upset, and if a,b € s then a A b € s.

2. A morphism s € DL(A, 2) defines a prime filter of A.

In detail this corresponds to:

s is a filter, and if a V b € s then either a € s or b € s.

3. A morphism s € BA(A, 2) defines a ultrafilter of A.

In detail this corresponds to:

s is a filter, and for all a € A, either a € s or —a € s.

4. A morphism s € MSL(A4, [0,1]) defines a fuzzy filter of A.

In detail this corresponds to:

s is a fuzzy upset, and s(a A b) = min(s(a), s(b)).

5. A morphism s € DL(A, [0,1]) defines a fuzzy prime filter of A.

In detail this corresponds to:

s is a fuzzy filter, and s(a V b) = max(s(a), s(b)).

Now we know from Definition 3.21 and Definition 3.22 that the categories MISL, DL,
and BA can be enriched over Setr and GMet, and that this introduces the notions of
right R-closed sets and right d-closed sets. However, in these cases this adds nothing
new. Thus when talking about the various flavours of filters, we shall not use the right

R-closed and right d-closed terminology.

So far we have described the different categories that we shall use to form our examples,

and we have also described two different sets of truth values, 2 and [0, 1], and how to
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make these sets into objects of the chosen categories. Next we need to define the forgetful
functors U and V.

Definition 3.30.

1. For the categories MSL, DL, and BA, and the three cases of enrichment over
Set, Setr, and GMet, the functor U is the obvious forgetful functor that takes

each object and simply forgets some of the structure.

This definition of U is obviously faithful, and it is also representable, with the
representing object being the free algebra over one generator in the respective
category MSL, DL, or BA.

2. For the categories Setr and GMet, since we are taking them to be enriched over

themselves, for the forgetful functor V' we simply take the identity functor.

The functor V is then representable, with the representing object in each case
being the corresponding final object, which is the singleton 1 (with additional

structure).

3. For the categories Meas, Measr, and GMeas, since we consider them to be
enriched over Set, Setr, and GMet respectively, we define the forgetful functor

V to simply forget the sigma algebra associated with each object.

The functor V is clearly faithful, and is representable, with the representing object
in each case being the corresponding final object, which is the singleton 1 (with

additional structure).

We are now ready to construct a series of logical connections from the different compo-
nents described above. To do this, the main technical tool we shall use is Theorem 3.20,

which requires that we establish the existence of initial lifts of certain morphisms.

To use Theorem 3.20 we must first find for each example of a logical connection a triple
(Qa,Q%,7). In our examples we intend Q2 and Qx to be 2 or [0,1] with the appro-
priate additional structures given by Definition 3.23, Definition 3.24, Definition 3.25,

Definition 3.26, and Definition 3.27. This means in all our examples the isomorphism
7: U(Q) — V(Qx)

will be the identity.

Finally, the underlying functions of the unit and counit in each example are given by
Corollary 3.14.
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Bivalent Logical Connections

Example 3.1 (Bivalent MSL, DL, or BA, and Set enriched over Set).

1. The morphism

assigns to each a € U(A), the set of filters/prime filters/ultrafilters of A that
contain a. Since V is the identity functor, the V -initial lift

g U(A) — Set(S(A),2)
assigns to each a the corresponding subset of S(A), where

S(A) = A(A, 2).

2. The morphism
vx: V(X) — [Set(X,2),U(2)]

assigns to each x € V(X), the set of subsets of X that contain x. The U-initial
lift
vx: V(X)— A(P(X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P(X), where
UP(X) = Set(X,2),

and P(X) is defined to be Set(X,2) with the relevant subset of the following op-
erations:

T: T is defined to be the set X,

Az for u,v € P(X) define u Nv=unNwv (set intersection),

Vi for u,v € P(X) defineuVv=uUv (set union),

—: foru € P(X) define ~u = u (set complement in X ).

3. The unit is given by
pala) = {s € S(A) | a € s},

and the counit by
ox(x)={ue P(X)|z€u}.
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Example 3.2 (Bivalent MSL, DL, or BA, and Setp enriched over Setp).

1. The morphism
pa: U(A) — [A(A,2),V(2)]

assigns to each a € U(A), the right R-closed set of filters/prime filters/ultrafilters
of A that contain a. Since V is the identity functor, the V -initial lift

fia: U(4) = Seta(S(4),2)
assigns to each a the corresponding right R-closed subset of S(A), where
S(A) =A(A,2).

Here S(A) is ordered by inclusion if the type R represents preorders or partial

orders, and by equality if the type R represents equivalence relations or equality.

2. The morphism
vx: V(X)— [Setr(X,2),U(2)]

assigns to each x € V(X), the right R-closed set of right R-closed subsets of X
that contain x. The U-initial lift
vx: V(X)— A(P(X),2)
assigns to each x the corresponding filter/prime filter/ultrafilter of P(X), where
UP(X) = Setr(X,2),
and P(X) is defined to be Setr(X,2) with the relevant subset of the following
operations:

T: T is defined to be the set X,

Az for u,v € P(X) define u Nv=uNwv (set intersection),

Vi for u,v € P(X) defineuVuv=uUv (set union),

—: foru € P(X) define ~u = u® (set complement in X ).

Note: for u right R-closed, —u is only right R-closed if the type R represents

equivalence relations or equality. Thus only in these cases do we have a logical

connection between BA and Setp.

3. The unit is given by
pala) ={s € S(A) |a€ s},

and the counit by
ox(z) ={ue P(X) |z € u}.
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Example 3.3 (Bivalent MSL or DL, and GMet enriched over GMet).
1. The morphism

assigns to each a € U(A), the right d-closed set of filters/prime filters of A that
contain a. Since V is the identity functor, the V -initial lift

4 UA) - GMet(S(A),2)
assigns to each a the corresponding right d-closed subset of S(A), where
S(A) =A(A,2).

Here S(A) has the metric d(s,s’) =0, if s C s, and d(s,s’) = oo otherwise.

2. The morphism
vx: V(X) — [GMet(X,2),U(2)]

assigns to each x € V(X), the right d-closed set of right d-closed subsets of X that
contain x. The U-initial lift

vyx: V(X)— A(P(X),2)
assigns to each x the corresponding filter/prime filter of P(X), where
UP(X) = GMet(X, 2),

and P(X) is defined to be GMet(X,2) with the relevant subset of the following
operations:

T: T is defined to be the set X,

Az for u,v € P(X) define u Av=unNuv (set intersection),

Vi for u,v € P(X) defineuVuv=uUv (set union).

3. The unit is given by
pa(a) = {s € S(4) |a e s},

and the counit by
ox(x) ={ue P(X) |z €u}.
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Example 3.4 (Bivalent MSL, DL, or BA, and Meas enriched over Set).

1. The morphism

assigns to each a € U(A), the set of filters/prime filters/ultrafilters of A that
contain a. The V-initial lift

ia: U(A) - Meas(S(A),2)
assigns to each a the corresponding measurable subset of S(A), where
VS(A) =A(A,2),
and S(A) is defined to be A(A,2) with the sigma algebra generated by the family

of sets ({s € S(A) | a € s})aca-

2. The morphism
vx: V(X)— [Meas(X,2),U(2)]
assigns to each x € V(X), the set of measurable subsets of X that contain x. The
U-initial lift
vx: V(X)— A(P(X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P(X), where
UP(X) = Meas(X,2),

and P(X) is defined to be Meas(X,2) with the relevant subset of the following
operations:

T: T is defined to be the set X,

Az for u,v € P(X) define u Nv=uNwv (set intersection),

Vi foru,v € P(X) defineuVv=uUv (set union),

—: foru € P(X) define —u = u® (set complement in X ).

3. The unit is given by
pala) = {5 € S(4) | a € s},

and the counit by
ox(x) ={ue P(X)|z€u}.
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Example 3.5 (Bivalent MSL, DL, or BA, and Measp, enriched over Setp).

1. The morphism

assigns to each a € U(A), the right R-closed set of filters/prime filters/ultrafilters
of A that contain a. The V -initial lift

Zia: U(A) — Measgr(S(A),2)
assigns to each a the corresponding right R-closed measurable subset of S(A), where
VS(A) = A(4,2),

and S(A) is defined to be A(A,2) with the sigma algebra generated by the family
of sets ({s € S(A) | a € $})aca, and ordered by inclusion if the type R represents
preorders or partial orders, and by equality if the type R represents equivalence

relations or equality.

2. The morphism
vx: V(X)— [Measg(X,2),U(2)]

assigns to each x € V(X), the right R-closed set of right R-closed measurable
subsets of X that contain x. The U-initial lift

vx: V(X)— A(P(X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P(X), where
UP(X) = Measg(X,2),

and P(X) is defined to be Measg(X,2) with the relevant subset of the following

operations:

T: T is defined to be the set X,

Az for u,v € P(X) define u Nv=uNwv (set intersection),

Vi foru,v € P(X) defineuVv=uUv (set union),

—: foru € P(X) define ~u = u® (set complement in X ).

Note: for u right R-closed, —u is only right R-closed if the type R represents

equivalence relations or equality. Thus only in these cases do we have a logical

connection between BA and Measg.

3. The unit is given by
pa(a) = {s € S(4) |aesh,
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and the counit by
ox(x)={ue P(X)|z€u}.

Example 3.6 (Bivalent MSL or DL, and GMeas enriched over GMet).
1. The morphism

assigns to each a € U(A), the right d-closed set of filters/prime filters of A that
contain a. The V -initial lift

fa: U(A) - GMeas(S(A),2)
assigns to each a the corresponding right d-closed measurable subset of S(A), where
VS(A) =A(A,2),

and S(A) is defined to be A(A,2) with the sigma algebra generated by the family
of sets ({s € S(A) | a € $})aca, and with the metric d(s,s’) =0, if s C &', and

d(s,s") = oo otherwise.

2. The morphism
vxy: V(X)— [GMeas(X,2),U(2)]

assigns to each x € V(X), the right d-closed set of right d-closed measurable subsets
of X that contain x. The U-initial lift

vx: V(X)— A(P(X),2)
assigns to each x the corresponding filter/prime filter of P(X), where
UP(X)= GMeas(X,2),

and P(X) is defined to be GMeas(X,2) with the relevant subset of the following
operations:

T: T is defined to be the set X,

At for u,v € P(X) define u Nv=uNwv (set intersection),

Vi foru,v € P(X) defineuwVv=uUv (set union).

3. The unit is given by
pa(a) = {s € S(4) | a e sh,

and the counit by
ox(z) ={ue P(X) |z € u}.
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Fuzzy Logical Connections

Example 3.7 (Fuzzy MSL or DL, and Set enriched over Set).

1. The morphism
HA: U(A) — [A(Av [07 1])7 V([()’ 1])]

assigns to each a € U(A), the fuzzy set u, of fuzzy filters/fuzzy prime filters s
(of A), such that u(s) = s(a). Since V is the identity functor, the V -initial lift

assigns to each a the corresponding fuzzy subset of S(A), where

S(A) = A(A,[0,1)).
2. The morphism
vx: V(X) — [Set(X,]0,1]),U([0,1])]

assigns to each x € V(X), the fuzzy set s, of fuzzy subsets u (of X ), such that
s(u) = u(x). The U-initial lift

vx: V(X) - A(P(X)a [07 1])
assigns to each x the corresponding fuzzy filter/fuzzy prime filter of P(X), where
UP(X) = Set(X, 0, 1]),

and P(X) is defined to be Set(X,[0,1]) with the relevant subset of the following

operations:

T: T is defined by T(x) =1,
Az for u,v € P(X) define (u Av)(z) = min(u(x),v(x)),
Vi for u,v € P(X) define (uVv)(zr) = max(u(x),v(x)).

3. The unit is given by

and the counit by
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Example 3.8 (Fuzzy MSL or DL, and Setp enriched over Setpg).
1. The morphism

assigns to each a € U(A), the right R-closed fuzzy set u, of fuzzy filters/fuzzy
prime filters s (of A), such that u(s) = s(a). Since V is the identity functor, the
V -initial lift

ia: U(A) = Set(S(4), 0,1])

assigns to each a the corresponding right R-closed fuzzy subset of S(A), where
S(A) = A4, [0, 1]).

Here S(A) is ordered pointwise if the type R represents preorders or partial orders,

and by equality if the type R represents equivalence relations or equality.

2. The morphism
Vx: V(X) - [SetR(Xa [07 1])7 U([()? 1])]

assigns to each x € V(X), the right R-closed fuzzy set s, of right R-closed fuzzy
subsets u (of X ), such that s(u) = u(x). The U-initial lift

vx: V(X) = A(P(X),]0,1])
assigns to each x the corresponding fuzzy filter/fuzzy prime filter of P(X), where
UP(X) = Setr(X,[0,1]),

and P(X) is defined to be Setr(X, [0, 1]) with the relevant subset of the following

operations:

T: T is defined by T(x) =1,
Az for u,v € P(X) define (u Av)(z) = min(u(x),v(x)),
Vi for u,v € P(X) define (uVv)(zr) = max(u(x),v(x)).

3. The unit is given by

and the counit by
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Example 3.9 (Fuzzy MSL or DL, and GMet enriched over GMet).
1. The morphism

assigns to each a € U(A), the right d-closed fuzzy set u, of fuzzy filters/fuzzy prime
filters s (of A), such that u(s) = s(a). Since V is the identity functor, the V -initial
lift

4 UA) - GMet(S(A),[0,1])

assigns to each a the corresponding right d-closed fuzzy subset of S(A), where
S(A) = A4, [0, 1]).

Here S(A) has the generalised metric d(s,s') = 0, if s(a) < §'(a) for all a € A,

and d(s,s") = oo otherwise.

2. The morphism
vx: V(X) — [GMet(X,|0,1]),U([0,1])]

assigns to each x € V(X), the right d-closed fuzzy set s, of right d-closed fuzzy
subsets u (of X ), such that s(u) = u(x). The U-initial lift

vx: V(X) = A(P(X),]0,1])
assigns to each x the corresponding fuzzy filter/fuzzy prime filter of P(X), where
UP(X) = GMet(X,[0,1]),

and P(X) is defined to be GMet(X, [0, 1]) with the relevant subset of the following

operations:

T: T is defined by T(x) =1,
Az for u,v € P(X) define (u Av)(z) = min(u(x),v(x)),
Vi for u,v € P(X) define (uVv)(zr) = max(u(x),v(x)).

3. The unit is given by

and the counit by
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3.7 Discussion

Logical connections are rapidly becoming the standard base for formulating coalgebraic
modal logic, however to date most work has been done using ordinary dual adjunctions,
for example Kurz and Pattinson (2002, 2005); Kupke et al. (2004b); Bonsangue and
Kurz (2005, 2006); Kurz (2006); Pavlovic et al. (2006); Kurz and Rosicky (2007, 2012);
Klin (2007); Kurz and Petrigan (2008); Jacobs and Sokolova (2010), although there are
undoubtedly many others.

Many of the above authors worked with simple examples of dual adjunctions between
BA and Set, but others considered state spaces with some kind of topology. Kurz
and Pattinson (2002, 2005) considered the topology induced by observation of only a
finite number of transition steps, and Kupke et al. (2004b) looked at coalgebras on Stone
spaces (compact, totally disconnected, Hausdorff spaces), as by the Stone Representation
Theorem, BA is dual to Stone (Stone Duality). The work of Bonsangue and Kurz (2005,
2006) then applied the generalisations of Stone Duality of Johnstone (1982), to look at
coalgebras on general categories of topological spaces, and modal logics constructed from

(dually equivalent) categories of lattices.

Other general classes of dual adjunctions have been investigated. In Kurz and Rosicky
(2007, 2012); Kurz and Petrisan (2008) the logical connections employed arise from base
categories that are constructed from two different completions of a common category

with finite limits and colimits.

Recently some work has begun that utilises logical connections enriched over Preord
and Pos to extend coalgebraic modal logic (Kapulkin et al., 2010, 2012; Bilkova et al.,
2011), but no one as far as we are aware has attempted to do coalgebraic modal logic

enriched over anything else, for example metric spaces.

Finally, the duality between real C*-algebras and compact Hausdorff spaces has been
used to investigate Markov Processes (Mislove et al., 2004), although the authors did not
make use of coalgebras, nor modal logic. However, other authors have treated Markov
Processes coalgebraically (Jacobs and Sokolova, 2010), although in this case the logical

connection used was between MSL and Meas.






Chapter 4
Coalgebraic Modal Logics

In Chapter 3 we described the concept of a logical connection. This forms the static
base of our framework. What we mean by this, is that the formulae are given meaning
by way of generalised predicates on a state space, but there is no notion of transition
from one state to another. We shall address this in this chapter by adding dynamics to
our state spaces in the form of coalgebras, and we shall add modalities to our logics to

capture, or model, the dynamics introduced by these coalgebras.

A brief outline of this chapter is as follows:

Section 4.1 The standard notion of an algebra or coalgebra for a functor is extended to
the enriched setting, and the V-categories Alg(L) and CoAlg(T") defined through

the initial lifts of the relevant forgetful functors.

Section 4.2 Abstract and concrete coalgebraic modal logics are discussed, where the
latter constitute presentations of the former, and the abstract modal logics are

given by L-algebras.

Section 4.3 The semantics of coalgebraic modal logics are given, and the V-category
Mod(A4, «) of models for an L-algebra (A, «) is defined.

Section 4.4 The forgetful functors that define CoAlg(7T) and Mod(A, «) via initial

lifts are shown to create conical colimits.

Section 4.5 A brief summary of some of the related work in the coalgebraic modal
logic literature is given, including issues of soundness and completeness that we
do not pursue in our work. Alternatives to coalgebraic modal logic, such as Moss’

coalgebraic logic, and various coequational logics are also briefly mentioned.

69
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4.1 Algebras and Coalgebras for a Functor

We start by recalling the standard definitions of algebras and coalgebras for an ordinary
functor, and extend them in an obvious way to the case of a V-functor. It should be
readily apparent that since algebras and coalgebras for a functor are pairs of carrier
objects and morphisms to/from the carrier, that the correct definition will be at the

level of the underlying category.

Definition 4.1. Given a V-functor L: A — A, an algebra for L, or an L-algebra, is
a pair (A, a), where A is an object in A, and a € A,(L(A), A).

L-algebras form an ordinary category.

Definition 4.2. The ordinary category Alg(L), has L-algebras as objects, and a mor-
phism f: (A,a) — (B, () is given by an f € A,(A, B) such that the following diagram

commutes in A,.

L) — (B
o B8
A B
f

Similarly we have coalgebras for a functor.

Definition 4.3. Given a V-functor 7': X — X, a coalgebra for T, or a T-coalgebra,
is a pair (X,~), where X is an object in X, and v € X,(X,T(X)).

T-coalgebras form an ordinary category.

Definition 4.4. The ordinary category CoAlg(T), has T-coalgebras as objects, and
a morphism f: (X,v) — (Y,0) is given by an f € X,(X,Y) such that the following

diagram commutes in X,.

X ! v
Y 1)
T(X) = T(Y)

The obvious question to ask at this point is, do L-algebras and T-coalgebras form V-

categories?

Well, since V, is cocomplete, by Definition C.89 every locally small ordinary category

yields a free V-category with the same objects. So the answer is clearly yes. However,
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the hom-objects of such a free V-category are given as copowers of . What this means
is, that in the case of enrichment over preordered sets (Definition 2.1), the hom-objects
have the discrete preorder. Now this is perfectly valid, but we know that L-algebra and
T-coalgebra morphisms form a subset of the morphisms between the carrier objects, and
that these morphisms are ordered. So intuitively we should be able to simply restrict
the relevant orders when constructing the hom-objects of the V-categories Alg(L) and
CoAlg(T). Specifically, the hom-object Alg(L)((A4,«), (B, )) would be the hom-set
Alg(L),((A,a), (B, B)) supplied with the largest preorder consistent with the preorder
on B. In other words, the restriction of the preorder on A(A, B) to the subset of
morphisms that are L-algebra morphisms from (4, «) to (B, ).

To formalise this intuition we shall form the initial lifts (Definition 2.10) of the relevant

forgetful functors.
Definition 4.5. Given a V-functor L: A — A, there is a forgetful (faithful) functor
Unig(r),: Alg(L)o — A,

(A,a) — A
f:(4,a) > (B,8)— f: A— B.

Definition 4.6. Given a V-functor 7: X — X, there is a forgetful (faithful) functor

UCoAlg(T)O : COA]g(T)O - X,
(X,7) = X
Fo(X,7) > (V,8) 5 [ X =Y.

Now invoking Theorem 2.13, we can form the initial lifts of the ordinary functors Upjg(z,),

and UcoAlg(T),, and since elem|—| is faithful, by Proposition C.21 so are the initial lifts.

Proposition 4.7. Given the conditions of Assumption 4, the forgetful ordinary functors

Ualg(r), and Uconrg(r), have initial lifts

Ualg(r), : Alg(L)o — A
Ucoalg(t),: CoAlg(T), — X,

where the V-functors Uaig(r), and Ucoalg(T), are faithful, and the V-categories Alg(L),

and CoAlg(T), are unique up to isomorphism.

We take these initial lifts to be the definitions of the V-categories of L-algebras and

T-coalgebras that we are looking for.
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Definition 4.8. Given the conditions of Assumption 4, the V-categories Alg(L) and
CoAlg(T), and the forgetful V-functors

UAlg(L) : Alg(L) — A
UCoAlg(T) : CoAlg(T) — X,

are the initial lifts of the forgetful functors Uayg(r), and Ucoalg(T),-

L-Algebra Examples

As mentioned in the introduction to this chapter, and more properly discussed in Sec-
tion 4.2, the L-algebras are intended to represent base logics (objects in the category
A) that have been augmented with additional modal operators (introduced by the V-
functor L). This means we are intending that there exist L-algebras that are in fact
the Lindenbaum-Tarski algebras (term algebras) of the modal logics. This in turn im-
plies that the functor L often has a special form. Specifically, it is often of the form
L = FgMUp (Kupke et al., 2004b; Jacobs and Sokolova, 2010). Here Ug: A — B is a
forgetful functor from the category A to a category B, where the objects of B are algebras
with only a subset of the operations of the corresponding algebras of A. For example
UmsL: BA — MSL. The functor Fg: B — A is then the left adjoint to Up, and creates
the free A algebras over B objects. Finally, the functor Mp: B — B is typically of the
form

My(-) = ] (=)

AEAR

where Ap is a set of modalities A of arity ar(\) € N.

What is going on here, is that each L-algebra (A,«) is required to have a function
Aa: AN 5 A for each of the modalities A € Ag. However, they need not be required to
preserve all the structure of A (which is an object of A). For example, when constructing
the category of modal algebras MLA, one adds to each Boolean algebra a modality (] that
is required to preserve finite meets but not joins (Kupke et al., 2004b, Definition 3.1).
Thus the forgetful functor Up is chosen to forget the structure of A that A\ does not
preserve, A is then defined as a morphism in the category B (the structure that it must

preserve), and then the functor F creates the free A object over the result.

Now, since Fp is the left adjoint to Up it preserves colimits, so we can write L as

L(=) = [] Fe(Us(-)*W,

AEAR

and if modalities are required that preserve two different substructures of the objects of

A, we can introduce separate categories B and C and define L as
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L(=) = ] Fs(=)"M + ] FeUe(-)™™.

AEAR AEAC
This obviously generalises further, but we shall only look at examples where the modali-

ties all preserve the same structure, moreover, our modalities will all be unary operators.

This means our functor L will be of the form

L(=) = [ FsUs(-).

AEAR

For our examples we shall look at enrichment over Set (ordinary category theory),
Setr (Definition 2.1), and GMet (Definition 2.5). We shall primarily be concerned
with adding modalities of the form () or [I] for some [ € ¥, or L, for some r € QN [0, 1].
Here ¥ is some set of labels, and (l)a has an intended reading of “can make a transition
with label [ to a state where a is true”, [lJa has the intended reading “every transition
with label [ leads to a state where a is true”, and L,a has the intended reading “in the

next step a is true with probability at least r”.

The examples when enriching over Set are well known, for example see Jacobs and
Sokolova (2010).

Example 4.1 (Adding O to BA enriched over Set). This is the classic example of
adding the U operator to propositional logic to yield the basic modal logic. The algebras

of the basic modal logic are the modal algebras MA. For this we use the adjunction
Fyvst - UmstL: BA — 1\/.[8]—_47

and define L = FyvstUmst, giving Alg(L) = MA. The basic modal logic is usually the
starting point for modal logics with semantics given by Kripke frames (Blackburn et al.,
2001).

Example 4.2 (Adding [I] to BA enriched over Set). This is a variant of Example 4.1,

and we take the same adjunction
Fyvst - UmstL: BA — 1\/.[SL7

but we define
L(=) = || FusuUmsc(-).
lex
The category Alg(L) is then isomorphic to the category of Boolean algebras each with
a set of finite meet preserving operators [l] index by [ € . These logics have found use
characterising bisimulation of Labelled Transition Systems (Hennessy and Milner, 1980,
1985).
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Example 4.3 (Adding L, to MSL enriched over Set). Using the adjunction
Fset 7 Uset: MSL — Set,

we define
L(—) = H FSetUSet(_)-
reQn[o,1]
The category Alg(L) is then isomorphic to the category of meet semilattices (with top)
each with a set of operators L, indexed by r € QN [0,1]. These logics have found use

characterising bisimulation of Markov Chains (Larsen and Skou, 1991).

The examples in the case of enrichment over Setp are straightforward variations of the
last two examples above. The first appeared in Wilkinson (2012a), and the second is

new.

Example 4.4 (Adding (I) to MSL enriched over Setg). This is a variant of Exam-
ple 4.2, but without negation, and we add the modalities (I) rather than [l]. The cate-

gories are also enriched over Setg, and we make use of the fact that MSL is naturally
so (Definition 3.21).

We take the adjunction
Fsety 1 Usety: MSL — Setp,

where Fgetp, (X, Rx) is the usual free meet semilattice F'(X) over the set of variables X,
and the relation Rp(xy is given by [z]Rp(x)ly] & vRxy, for x,y € X. The functor L is
then defined by
L(=) = [ ] FsetnUsetn(-)-
lex

The category Alg(L) is isomorphic to the category of meet semilattices (with top) each
with a set of operators (l) indexed by | € X. These logics have found use characterising
simulation of Labelled Transition Systems (van Glabbeek, 2001).

Example 4.5 (Adding L, to DL enriched over Setg). This is a variant of Example 4.3,
but with joins and enriched over Setr. Here we use the fact that each object of the
category DL has a natural order relation (Definition 3.21).

We take the adjunction
Fget;, 1 Usety: DL — Setp,

where Fget, (X, Rx) is the usual free distributive lattice F'(X) over the set of variables
X, and the relation Rp(x) is given by [z]Rpx)ly] < zRxy, for x,y € X. The functor
L is then defined by

L(-)= [ FsetnUsetn(-).
reQn[o,1]
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The category Alg(L) is isomorphic to the category of distributive lattices (with top)
each with a set of operators L, indexed by r € QN [0,1]. These logics have found use

characterising simulation of Markov Chains (Desharnais et al., 2003).

Finally, since Setr can be embedded in GMet (Section 2.3), enrichment over GMet

yields examples that correspond to those above. These are both new results.

Example 4.6 (Adding (I) to MSL enriched over GMet). This is a variant of Exam-
ple 4.4, but enriched over GMet. Here we use the fact that the objects of the category
MSL have a natural metric (Definition 3.22).

We take the adjunction
Fomet 1 UaMet : MSL — GMet,

where Famet (X, dx) is the usual free meet semilattice F(X) over the set of variables X,
and the metric dp(x) is given by dpx)([z], [y]) = dx (v, y), for x,y € X. The functor L
is then defined by

L(-)= H FaMetUcMmet (—)-
lex

The category Alg(L) is isomorphic to the category of meet semilattices (with top) each
with a set of operators (l) indexed by l € X. These are the same logics as Example 4.4,

but equipped with a metric rather than an order relation.

Example 4.7 (Adding L, to DL enriched over GMet). This is a variant of Exam-
ple 4.5, but enriched over GMet. Here we use the fact that the objects of the category
DL have a natural metric (Definition 3.22).

We take the adjunction
Fomet 1 UgMet : DL — GMet,

where FaMmet (X, dx) is the usual free distributive lattice F'(X) over the set of variables
X, and the metric dp(x) is given by dpx)([z], [y]) = dx (z,y), forz,y € X. The functor
L is then defined by
L(-)= ][] FometUcmet(-):
r€QNI0,1]
The category Alg(L) is isomorphic to the category of distributive lattices (with top)
each with a set of operators L, indexed by r € QN [0,1]. These are the same logics as

Ezxample 4.5, but equipped with a metric rather than an order relation.
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T-Coalgebra Examples

There are many examples of T-coalgebras in the literature, especially in the case of
enrichment over Set (ordinary category theory), but other authors have also looked
at coalgebras in an enriched setting, though not in the full generality above (Turi and
Rutten, 1998; Worrell, 2000a; Balan and Kurz, 2011; Bilkova et al., 2011).

We shall now introduce a number of examples of T-coalgebras, and the most obvious
place to start, is the well-known coalgebraic formulation of Kripke frames (Blackburn
et al., 2001).

Example 4.8 (Powerset on Set enriched over Set). The functor T is defined as

and for any function f: X =Y, the action of T on f is the function

T(f): P(X)— P(Y)
ur— {f(x) |z € u}.

The powerset functor corresponds to unbounded non-determinism, but we could make
an entirely analogous definition for the finite powerset functor, which would correspond
to finite branching non-determinism. In fact, this applies to the other examples below

that incorporate the powerset functor.

The next step is to consider the powerset functor in the cases of enrichment over Setg
and GMet. The first case appeared in Wilkinson (2012a), and the second is the analo-
gous result for GMet.

Example 4.9 (Powerset on Setpr enriched over Setgr). The functor T is defined as
T(X,Rx) = (P(X), Rp(x))s
where assuming the type R represents preorders,
uRpxyv < Vo € udy € v. xRyy,
and for any function f: (X, Rx) — (Y, Ry), the action of T on f is the function

T(f): P(X) = P(Y)
u— {f(z) |z € u}.

The preorder Rp(x) is the one-sided counterpart of the Egli-Milner order used in the
study of powerdomains (Plotkin, 1976).
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Example 4.10 (Powerset on GMet enriched over GMet). The functor T is defined as
T(X,dx) = (P(X),dp(x)),

where
dpx (1, v) = sup <inf dx (. y>) ,

xeu \YEV

and for any function f: (X,dx) — (Y,dy), the action of T on f is the function

T(f): P(X)—= P(Y)

The metric dp(x) is the one-sided counterpart of the Hausdorff distance (Rutten, 1998).

The particular choice of preorder or metric in these two extensions to the standard
powerset example, corresponds to how we intend to compare behaviours of states. This

will be explored in detail in Section 5.1.

We can also have finite powerset versions of these examples, where the preorder and

metric remain unchanged.

It should also be noted that T-coalgebra structure maps v: (X, Rx) — T(X, Rx) and
v: (X,dx) — T(X,dx) must be R-preserving, or non-expansive, respectively. This
might seem like a strong constraint, but it is not. This is because we are free to give
any set X the discrete order or metric, and if we do so, we place no restrictions on the

possible choices of v. Again this will be explained in Section 5.1.

From the powerset functor we can model Labelled Transition Systems (LTSs). Below
we shall look at unbounded branching LTSs, but using the finite powerset functor we

could also describe finite branching L'T'Ss.

We proceed by taking a set of labels X, and giving it the preorder

IRl 1=1,
and the metric
0 cifl=10
ds(1,1") =
oo : otherwise.

Now using this set of labels, and the definitions of products in Setg (Section 2.2), and

GMet (Section 2.3), we can model Labelled Transition Systems as follows.
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Example 4.11 (LTS enriched over Set). The functor T is defined as
T(X)=PExX),
and for any function f: X =Y, the action of T on f is the function

T(f): PExX)—=>P(XEXY)
w= {(l () [ (I, 2) € u}.

Example 4.12 (LTS enriched over Setg). The functor T is defined as
T(X7 RX) = (P(E X X)’RP(ZXX))’
where assuming the type R represents preorders,

uRpmyxyv < V(l,r) €u I, 2") €v. (I, x)Rexx(I',2))
e V(,z) eud(l',2") €v.l=1"and zRxa’,

and for any function f: (X, Rx) — (Y, Ry), the action of T on f is the function
T(f): PExX)—=>P(XEXxY)
w= {(l, f(2) [ (I, ) € u}.
Example 4.13 (LTS enriched over GMet). The functor T is defined as
T(X,dx) = (P(X x X),dpsxx)),

where

dp(sxx)(u,v) = sup < inf dng((l,x),(l',a:/)))
(La)eu \(',z")€v

= sup <( inf max(dg(l,l’),dx(x,x’))>,

(Lz)euw \(',z")Ev

and for any function f: (X,dx) — (Y,dy), the action of T on f is the function

T(f): P(Ex X) = P(XExY)
w= {( () [ (1, 2) € u}.

Once again the preorder Rp(sx x) and metric dp (s x) govern how the behaviour of states
will be compared, and constrain the choice of possible T-coalgebra structure maps. For
example, for v: (X, Rx) — T(X, Rx), if zRxy, then since morphisms in Setr must
be R-preserving, we must have ’y(x)Rp(EX X)’y(y). Looking at the above definition we

then see that this means that x must be simulated by y (using the standard notion
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of simulation for LTSs (van Glabbeek, 2001)). It will turn out that dpsyx) allows
us to talk of approximations of LTSs, and both of these will be discussed in detail in
Section 5.1.

The above examples have covered the basics of non-determinism, the other main class
of transition systems in computer science are the probabilistic transition systems. The
simplest examples we can consider are coalgebras for the finite subprobability distribu-
tion functor D: Set — Set (de Vink and Rutten, 1999; Jacobs and Sokolova, 2010),

which is defined as
D(X) = {¢: X — [0,1] [ supp(¢) is finite and 3 _ o(x) < 1}.

Here, ¢ is a subprobability distribution (total probability may be less than 1), with finite
support, i.e. supp(¢) = {z € X | ¢(x) # 0} is finite. Each distribution ¢: X — [0, 1]

extends to a function

¢: P(X) —[0,1]
u > (),

and for any function f: X — Y, the action of D on f is given by

D(f)(¢)(y) = o(f {y}]).

Example 4.14 (Distribution functor on Set enriched over Set). The functor T is
defined as

zef{y}]

For the cases of enrichment over Setp and GMet we need to give the interval [0, 1] a
preorder and a metric, as we wish to compare probabilities. For this we take the usual

linear order on [0, 1], and the metric given, as in Definition 3.24, by

y—x = ifx<y
d[o,l](%y):

00 : otherwise.

Using this we then have the following two examples, where the first is related to standard
notions of simulation for Markov Chains (Desharnais et al., 2003), and the second is

suggested as a plausible metric analogue.
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Example 4.15 (Distribution functor on Setg enriched over Setg). The functor T is
defined as
T(X,Rx) = (D(X), Rp(x))s

where assuming the type R represents preorders,
¢Rp(xy¥ < VYu C X (u right R-closed = ¢(u) < ¥(u)),
and for any function f: (X, Rx) — (Y, Ry), the action of T on f is given by

TH@) )= DY )

zef{y}]

The preorder Rp(x corresponds to the definition of a simulation relation for Markov
Chains (Desharnais et al., 2003).

Example 4.16 (Distribution functor on GMet enriched over GMet). The functor T
is defined as
T(X,dx) = (D(X),dp(x))

where

dp(x) (¢, %) = sup dpo,1(#(u), P (u)),

and for any function f: (X,dx) — (Y,dy), the action of T on f is given by

T = > o).
zef~1[{y}]

The metric dp(x) does not to our knowledge appear in the literature, but is a possible
analogue of the preorder Rp(x from the example above. It represents a notion of distance
between distributions that compares, not the value of the distributions at individual states,
but the value on sets of states that are closed under finite distance (recall the definition
of right d-closed from Definition 3.28).

The probabilistic examples above are Markov Chains with discrete probability distribu-
tions. Markov Processes are a continuous generalisation of Markov Chains formulated
using measurable spaces. The standard way to do this coalgebraically is via the Giry
functor G: Meas — Meas (de Vink and Rutten, 1999; Panangaden, 1999; Jacobs and
Sokolova, 2010). This is defined as

G(X,Tx) = (G(X),3g(x));

where
G(X)={¢: Xx — [0,1] | ¢ a subprobability measure},
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and Yg(x is the sigma algebra on G(X) generated by sets of the form

{¢ € G(X) [ ¢(M) =1},

for M € Xx, and r € QN [0,1]. A subprobability measure ¢ must satisfy ¢()) = 0, and

¢ <Uz Mi) B Zz o),

for countable unions of pairwise disjoint M; € > x.

For every measurable function f: (X,Xx) — (Y,Xy), there is an inverse function
f~1: ¥y — Xx, and the action of G on f is defined by

G(f): G(X) = G(Y)
¢ o fh.
Example 4.17 (Giry functor on Meas enriched over Set). The functor T is defined as
T(Xv EX) = (g(X)v EQ(X))a

and for any measurable function f: (X,Xx) — (Y, Xy), the action of T on f is given
by
T(f): 6(X)—=gG(Y)
¢ o fh.

To enrich over Setrp and GMet we extend the definition of the Giry functor to the
categories Measp (Example 2.1) and GMeas (Example 2.2).

Example 4.18 (Giry functor on Measp enriched over Setg). The functor T is defined

as
T(X,Xx, Rx) = (G(X), Eg(x), Rg(x))

where assuming the type R represents preorders,

¢Rgxyh & VM € Xx (M right R-closed = ¢(M) < (M),

and for any measurable function f: (X,¥x,Rx) — (Y, Xy, Ry), the action of T on f
s given by
T(f): 6(X) = G(Y)
b pofL.

The preorder Rg(x) corresponds to the definition of a simulation relation for Markov
Processes (Desharnais et al., 20083).
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Example 4.19 (Giry functor on GMeas enriched over GMet). The functor T is
defined as
T(X,Xx,dx) = (G(X), EQ(X)7 dQ(X))’

where

dg(x)(9,¢) = Sup do,11(¢(M), (M),
X
right d-closed

and for any measurable function f: (X,Xx,dx) — (Y, Xy, dy), the action of T on f is
given by

T(f):9(X) —=4g(Y)
¢ pofh

The metric dg(x is the generalisation to Markov Processes of the metric from Ezam-
ple 4.16.

4.2 Coalgebraic Modal Logics

In Section 3.1 we described the V-categories and functors that form the base level of our
framework - something we called a logical connection. To this we now add V-functors

L: A — Aand T: X — X as shown in the following non-commuting diagram.

S
LCA/\XOT

\%

The V-functor T" will introduce dynamics to the semantics via T-coalgebras, and the

V-functor L will extend the base logics by adding modalities.

This approach follows that of Kupke et al. (2004b); Klin (2007); Jacobs and Sokolova

(2010), and is increasingly the standard approach to formulating coalgebraic modal logic.

Recall that the V-category X represents a collection of state spaces, the V-functor T
then defines a collection of generalised transition systems on these state spaces as T-
coalgebras. Similarly, the V-category A represents a collection of base logics to which
modal operators are to be added. These are introduced via the V-functor L, and the

corresponding modal logics are the L-algebras.

The semantics of the modal logics represented by the L-algebras are given in two stages.

First the logical connection gives a semantics for the base logics in terms of the state
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spaces, and then secondly, a V-natural transformation
0: LP= PT

gives the semantics of the modal operators in terms of the transition structures intro-
duced by T' (Kupke et al., 2004a, 2005).

We summarise the assumptions underlying the above as follows.

Assumption 5. We extend Assumption 4 (page 38) as follows:
9. There is a V-functor L: A — A.
10. There is a V-functor T: X — X.

11. There is a V-natural transformation 6: LP = PT.

We shall talk more about the V-natural transformation § in Section 4.3, but first we say

more about the V-functor L.

In Bonsangue and Kurz (2006); Kurz (2006) a distinction is drawn between an abstract
modal logic and a concrete modal logic. A concrete modal logic is what a logician would
call a modal logic. It consists of a syntax of propositional variables, connectives, and
modal operators, and the terms in this syntax are related by a class of equations that

are derived from a base collection of equations called axioms.

An abstract modal logic is an L-algebra (A, «) for some V-functor L. The idea is that
we have abstracted away the particular choice of syntax of a concrete modal logic.
What matters is the collection of terms and their interrelations, not the exact choice of
primitives for a modal logic. A particular choice of primitives and axioms is called a
presentation, and a modal logic may have more than one, so why privilege one over the
others? Obviously it makes sense to do so in some situations, but for what we are doing

it makes sense to abstract all this away and hide it in the V-functor L.

In Section 4.1 we described a general process whereby a presentation of a concrete modal
logic could be turned into a V-functor L, and numerous examples were given. To go in
the other direction is to seek a presentation of a V-functor by operations and equations.

See for example Bonsangue and Kurz (2006).

One final observation is that, not only need the presentation for a given L not be
unique, but the choice of L itself need not be unique. The choice of L is often guided by
a particular presentation that one has in mind, but one also has the freedom to choose
exactly how much of the dynamical behaviour introduced by T is to be captured by the
L-algebras. One could for example decide to take the identity functor for L, and simply
not add any modalities at all. Obviously such a choice would yield logics that do not

capture all (or any!) of the behaviour in the T-coalgebras, but a less extreme example
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may be to only attempt to capture some of the behaviour. This would be an engineering

choice, guided by practical considerations.

4.3 Models for L-Algebras

As promised in Section 4.2, in this section we shall aim to explain, and then explore, the
action of the V-natural transformation §: LP = PT from Assumption 5. In essence all
that d does is provide the semantics of the modal operators implicit in the V-functor L,

but using it we can make an elegant definition of the notion of a model for an L-algebra.

Recall from Definition 3.15 the definition of a valuation f € A,(A, P(X)). Now since
under Assumption 5 the ordinary category A, is concrete over Set (Section 3.2), f has

an underlying function that maps formulae in A to predicates on X.

Intuitively therefore, in order to give semantics to an L-algebra (A, «), we need to find
an f € A,(A, P(X)) that also respects the additional structure (modal operators and
axioms) that L adds to A. In other words we want f to be an L-algebra morphism, but
between which L-algebras? Well obviously the domain must be (A, ), but what about

the codomain? For that we should construct an L-algebra with the carrier object P(X).

So how do we do this? First we note that the modalities introduced by L are intended
to capture the dynamics introduced by T, so we pick a T-coalgebra (X, ). Now

f)/ € XO(X7 T(X))7
so under the V-functor P we have
P(y) € A(PT(X), P(X)),

so if we had a morphism g € A,(LP(X), PT(X)), we could take the composite to give
an L-algebra. This is precisely what the V-natural transformation é: LP = PT gives.

Summarising the above, we can follow the approach in the literature (see for example
Bonsangue and Kurz (2006); Kurz (2006)), and make the following definition.

Definition 4.9. Given the conditions of Assumption 5, there is an ordinary functor

P,: CoAlg(T), — Alg(L),
(X,7) = (P(X), P(v) o 0x)
fo(X,7) = (2.€) = P(f): P(Z,6) = P(X,7).
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Now the above definition is standard for coalgebraic modal logic in an ordinary category
theory setting, but we are working in an enriched setting, so can we lift P, to a V-
functor? The following proposition shows that this is the case, and relies upon the

universal property of the construction of Alg(L).

Proposition 4.10. Given the conditions of Assumption 5, there exits a unique V-
functor
P: CoAlg(T) — Alg(L)

with the underlying ordinary functor P,.

Proof. The V-category Alg(L) is defined via the initial lift (Definition 2.10) of the
forgetful ordinary functor Upig(r),: Alg(L)o — A, (Definition 4.8), and since we have

Ucoalg(T)

CoAlg(T) X—F A

Y

and by the definition of P, the following diagram commutes

CoAlg(T), P Alg(L),
Ucoalg(T)o Ualg(L)o
X, _ Ao

then there exists a unique V-functor
P: CoAlg(T) — Alg(L)

with the underlying ordinary functor P,. O

We are now ready to define a valuation for an L-algebra. The definition mirrors that
of Definition 3.15, and is a direct generalisation to the enriched setting of the usual

approach in the literature (see for example Bonsangue and Kurz (2006); Kurz (2006)).

Definition 4.11. Given the conditions of Assumption 5, for any L-algebra (A, a), and

any T-coalgebra (X, ), a valuation is any

f € Alg(L)o((A,a), P(X,7)).

At this point we should unpack this definition to see what it means in practice. To do

this we shall look at the case of an L-algebra corresponding to a concrete modal logic.

Given a presentation for L (Section 4.2), the free L-algebras are the Lindenbaum-Tarski

algebras for the corresponding concrete modal logics. Specifically, for a logic £ given by a
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syntax of propositional variables, connectives, and modal operators, and a proof system
that induces a derivability relation I' - ¢ for ¢ € £ and I' C £, the Lindenbaum-Tarski

algebra of £ is an L-algebra with the carrier set £/~, where

Y& oEYand Pt ¢

is an equivalence relation since the base logics of A are represented by algebras. If £ has
an — operator, then the proof system is usually such that ¢ ~ ¢ < F ¢ <+ 1. To define
the necessary operations on £/~ to make it an L-algebra, the proof system of £ must
satisfy certain constraints in order that ~ is a congruence. For example, for a modality

A the proof system should have a rule

¢ = [No [Ny,

or, F ¢ < ¥ = F [N¢ + [A¢ (Kupke et al., 2004a), for then we can define

where [¢] ./~ is an equivalence class of £ under ~, and [A]./~ is the operation on L/~
for the modality A. Finally, we can define [¢]z/~ < [{]z/~ < ¢ F 9.

If the proof system contains no axioms beyond those required to make £/~ into an
L-algebra, then the Lindenbaum-Tarski algebra of £ is the free L-algebra over the
set of propositional variables of £, and if £ has no propositional variables, then the

Lindenbaum-Tarski algebra is the initial L-algebra.

If now we write |A| = elem|U(A)| for the underlying set of an object A in A, then for a
T-coalgebra (X, ) the underlying set of P(X,) is | P(X)|, and we can define a function

[+ L)=— |P(X)],

and this gives
[-]f = foq: £L—|P(X)],

where q: £ — L/~ is the quotient map of ~. The valuation given by f is the unique
L-algebra homomorphism that extends the function f, and indeed, the function f need
only be given for the equivalence classes [p|/~, where p is a propositional variable, as
the extension to £/~ follows by induction. In the case of the initial L-algebra, since

there are no variables, f is unique, and we simply write [—] for [—].

From the above, somewhat informal discussion, we can see that our definition of a
valuation captures the concrete notion of assigning a predicate on X to each formula of
a logic. Though, it should be noted, that the formulas of £/~ are in fact equivalence
classes of terms in £. We shall sometimes blur this distinction, and use a valuation f,

and the function [—], interchangeably.
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So now that we know how to define a valuation for an L-algebra via the V-natural
transformation §: LP = PT, how do we find 67 The answer is that we can construct §

from predicate liftings.

Given a concrete presentation of L in terms of a specific set of modal operators, then
the V-natural transformation §: LP = PT corresponds to a set of predicate liftings
(Jacobs, 2000; Pattinson, 2001, 2003; Kurz and Pattinson, 2002, 2005; Schroder, 2008).

For a modality A in a set of modal operators Ag, if the arity ar(A) € N, the general form
of the predicate lifting for A is a so called polyadic predicate lifting (Schroder, 2008),

which is a V-natural transformation of the form
Ax: (UgP(X))™N - UpPT(X).
Here Ap is as defined in Section 4.1, and L is given by

L(-) = ] FeUs(-)™™.

AEAR

Using the unit of the adjunction Fg 4 Ug: A — B, we have

n(U]BP(X))ar(A)

(UpP(X))™ UsFp(Us (X)) ™

Ug (A
)\X ]B( X)

UsPT(X)

and the coproduct then gives

Fi(Us (X)) : [Tren, F(UpP (X)W
M reay
PT(X)
from which we see that we can take dx to be given by

x = Nylrens-

By way of illustrating this, we shall consider four variants of Hennessy-Milner logic for
Labelled Transition Systems. For a set of labels ¥, the standard formulation of Hennessy-

Milner logic (Hennessy and Milner, 1980, 1985) is given by the following syntax:

Li12¢u=tt|p|dAd]|—¢|[l]¢ wherel € X and p € Var.
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The first variant we shall consider is the standard bivalent formulation of Hennessy-
Milner logic, as used to characterise bisimulation of Labelled Transition Systems (Hen-
nessy and Milner, 1980, 1985).

Example 4.20 (Bivalent logic for bisimulation of LTSs). The logical connection is the
dual adjunction between BA and Set from Fxample 3.1, to which we add the functor L
from Ezample 4.2 which adds the modal operators [l], and the functor T(X) = P(X x X)

from Exzample 4.11.

The predicate liftings for the modalities are then the family of natural transformations

[lx: UmsLP(X) — UmstPP(S x X)
T—PEXX)
u—{wePExX)|V{l',z) ew, I'=1=x € u}
uAv = [l]x(uw)N[l]x(v),

giving ([ is the equivalence class in LP(X) of an element of the I copy of P(X))

Sx: LP(X) — PT(X)
T—PExX)
[w] = {wePExX)|V(l,z) ew, I'=1= € u}
[t ] A for,] = 0x ([wr ]) M6 ([vis])

=lw] = dx ([w])"

So for the L-algebra given by the Lindenbaum-Tarski algebra of L1, a T-coalgebra (X, ),
and a function f: Var — |P(X)|, there is a unique function [—]; given by

[15: £1 — |P(X)]

tt— X
p f(p)
o {ze X |V, ,2')ey(x), ' =1=12"€[¢]s}
oAy = o] N [¥]y
—¢ =[]

As a variant of this we can look at a fuzzy version of Hennessy-Milner logic, again aimed
at bisimulation of Labelled Transition Systems. However, since ¢ V —¢ = tt is not valid
in fuzzy logic (Definition 3.26), we can no longer use Boolean algebras as our starting
point. We could at this point investigate the use of MV-algebras, which provide an

algebraic semantics of many-valued logics (Chang, 1958, 1959), but instead, since this
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is purely for illustrative purposes, we drop negation from our logic:
Lodpu=tt|p|opAN¢]|[l]¢p wherel e X and p € Var.

Example 4.21 (Fuzzy logic for bisimulation of LTSs). The logical connection is the
dual adjunction between MSL and Set from Ezxample 3.7, to which we add the functor
L = [1;es (=) which adds the modal operators [l], and the functor T(X) = P(X x X)
from Exzample 4.11.

The predicate liftings for the modalities are then the family of natural transformations

[l]x: P(X)— PP(X x X)
T—PEXxX)
ur A P(Ex X) —[0,1]

w— inf u(x)
(l’w/z>l€w
=

uAv = [lx(u)A[l]lx(v),
giving ([w] is the equivalence class in LP(X) of an element of the '™ copy of P(X))

5x: LP(X) — PT(X)
T—PEXxX)
[w] = X: P(Ex X) —[0,1]

w— inf wu(z)
(l’,/fv)lew
U=

[ut, ] A Toi,] = 0x ([ugy ]) A dx ([vi,])-

So for the L-algebra given by the Lindenbaum-Tarski algebra of L2, a T-coalgebra (X, ),
and a function f: Var — |P(X)|, there is a unique function [—]; given by

[=1s: L2 — [P(X))]
tt— X

p— f(p)
[l — X: X —[0,1]

z+— inf x
.2 ex(a) l¢15(=)

oA = [o]r NIy

The semantics of the propositional variables, true, and conjunction are standard from
fuzzy logic. For the modal operator [I| we see that at each z € X, the fuzzy degree

of [l]¢ is the smallest fuzzy degree of ¢ that is directly accessible from z. In the case
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where the fuzzy degrees for ¢ are restricted to 0 or 1 for all x € X, the semantics of [I]¢

coincides with that from the bivalent case (Example 4.20).

We now look at bivalent and fuzzy variants of Hennessy-Milner logic for simulation. For
this we shall enrich over the category Setp for the case where the type R is preorders.

The reasons for doing so will be explained in Section 5.1.

The syntax of our logic will be the following standard formulation (van Glabbeek, 2001)
L3d>¢u=tt|p|opANd|(l)¢p wherel e X and p € Var.

Example 4.22 (Bivalent logic for simulation of LTSs). The logical connection is the dual
adjunction between MSL and Setg from Example 3.2 with the type R set to preorders.
To this we add the functor L from Example 4.4, which adds the modal operators (1), and
the functor

T(X,Rx) = (P(X x X), Rp(sxx))
from Example 4.12.

The predicate liftings for the modalities are then the family of natural transformations

(D(x,Rx) " Usetr P(X, Rx) = Usetr, P(P(X X X), Rp(sxx))
urs {w e P(Ex X) | 3(l',2) €ew, I' =1 and z € u},

where u, and the set it is mapped to, are both right R-closed (upsets). This gives

5(X,RX): LP(X, Rx) — PT(X, Rx)
T—PEXX)
[w] = {weP(ExX)|3(',x) ew, I'=1 and x € u}

[ur, ] A Joi,] = 0x ([, ]) N Ox ([v,])-

So for the L-algebra given by the Lindenbaum-Tarski algebra of L3, a T-coalgebra
((X,Rx),7v), and a function f: Var — |P(X,Rx)|, there is a unique function [—]
given by

[=1s: £5 = |P(X, Rx)|

tt— X
p+ f(p)
o {zeX|3(,2)ey(x), '=1and 2’ € [¢]s}
oAy = [8]y N [Y]y-

Again, for all ¢ € L3, the set [¢]; is right R-closed. What this means is, if x satisfies
¢, and y simulates x, then y satisfies ¢.
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Example 4.23 (Fuzzy logic for simulation of LTSs). The logical connection is the dual
adjunction between MSL and Setgr from Example 3.8 with the type R set to preorders.
To this we add the functor L from Example 4.4, which adds the modal operators (1), and
the functor

T(X, Rx) = (P(S X X), Rpsx)

from Example 4.12.

The predicate liftings for the modalities are then the family of natural transformations

(1) (x,Rx): Usetr P(X, Rx) = Usetz P(P(X x X), Rp(nxx))
W A P(E X X) = [0,1]

w— sup u(z),
(l’,/z)Ew
U=l

where u, and the fuzzy set it is mapped to, are both right R-closed (fuzzy upsets). This

gives

5(X,RX): LP(X, Rx) — PT()(7 Rx)
T—PExX)
[w] = A: P(Xx X)—[0,1]

wi— sup u(z)
(l’,lz)Ew
V=l

[ug, ] A [uiy ] = dx ([, ]) A 0x ([o,])-

So for the L-algebra given by the Lindenbaum-Tarski algebra of L3, a T-coalgebra
((X,Rx),7), and a function f: Var — |P(X,Rx)|, there is a unique function [—]¢
given by
[=]s: £3 = [P(X, Rx)|
tt— X
p— f(p)
(Do — A+ X —[0,1]
x> sup  [¢]y(a’)

(l’yzl’/)flv(z)
o AP = (9] AY]y-
Again, for all ¢ € L3, the fuzzy set [¢] is right R-closed. What this means is, if ¢ is

true to a particular degree at x, and y simulates x, then ¢ is true to at least the same

degree at y.
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Once again the semantics of the propositional variables, true, and conjunction are stan-
dard from fuzzy logic. For the modal operator (I) we see that at each x € X, the fuzzy
degree of (I)¢ is the largest fuzzy degree of ¢ that is directly accessible from x. Again,
in the case where the fuzzy degrees for ¢ are restricted to 0 or 1 for all x € X, the

semantics of (I)¢ coincides with that from the bivalent case (Example 4.22).

Returning to our discussion of the coalgebraic semantics of L-algebras, we see that we
can regard the whole of the coalgebraic modal logic project as a massive generalisation
of Kripke semantics for modal logic (Blackburn et al., 2001). Now in Kripke semantics
the concepts of frame, valuation, and model are introduced, where a model is a pair con-
sisting of a frame and a valuation. Above we have generalised the notion of a valuation

to our enriched coalgebraic framework, so what of frames and models?

Definition 4.12. Given the conditions of Assumption 5, for any L-algebra (A, «), any
T-coalgebra (X, ), and any valuation

fe Alg(L)o((4; ), P(X, 7)),

the pair ((X,7), f) is called a model for (A, ).

Clearly, if (A, «) is the initial L-algebra, then for every T-coalgebra (X,~) the unique
morphism !: (A, a) — P(X,~) makes the pair ((X,7),!) a model for (A,«). Similarly,
for a free L-algebra (A, «) given by the Lindenbaum-Tarski algebra for some logic £, for
every T-coalgebra (X, ~), the valuation f given by the function f: £/~— |P(X)| makes
the pair ((X,~), f) a model for (A, ). However, if (A, «) is an arbitrary L-algebra, then

it may be the case for some T-coalgebras that no valuation exists.

Following the conventions of Kripke semantics (Blackburn et al., 2001) we could now
call a T-coalgebra a frame, but we have no need for this extra terminology. Moreover,
in Kripke semantics frames are intimately related to the notion of validity, a topic that
we will not pursue in this thesis. Therefore we shall restrict ourselves to talking about

models.

Remark 4.13. Validity, like satisfaction, is about the truth of a formula, either at an
individual state, or at all states in a T-coalgebra. The distinction is that for validity
we quantify over all valuations of the propositional variables. What we mean by truth
though, is implicitly a bivalent concept. Or at least in the general case, appears to
require the existence of a largest truth value - for example, a formula ¢ is valid in fuzzy
logic if ¢ has the truth value 1 under all valuations of the propositional variables of ¢

(Chang, 1958). This is not something that we assume (see Section 5.3).

The alert reader may have noticed that when we extended the definition of a valuation
from the base level (Definition 3.15) to that of L-algebras (Definition 4.11) we made no

mention of theory maps. This is something we shall address next.
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If we unpack Definition 4.11 we see that we require that the following diagram commutes

in A,.
L(f)

L(A) LP(X)
dx
a PT(X)
\LP(’Y)
A 7 P(X)

Now, as observed in Pavlovic et al. (2006, Theorem 1(b)), the logical connection allows

every such diagram in A, to be redrawn in X, as

fb

X S(A)
S(a)

v SL(A)
%

T(X TS(A
(X) ——TS(4)

and moreover, this relationship is a bijection. Here f? is the transpose of f under the
logical connection, and 6*: T'S = SL is defined following Klin (2007) as follows.

Definition 4.14. Given the conditions of Assumption 5, define the V-natural transfor-
mation §*: TS = SL by
8 =SLpod’s,

where p is the unit of the logical connection, and ” is the transpose of § under the

logical connection.

Note that the transpose 6”: T = SLP of 6: LP = PT is constructed at the level of the
underlying categories, where for all f € X,(Y, X), there is a bijection between diagrams

on the left, and diagrams on the right.

A, — Xo
LP(X) ox PT(X) T(Y) s SLP(Y)
LP(f) PI(f) T(f) SLP(f)
LP(Y) PT(Y) T(X) SLP(X)

dy 8%
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This defines an ordinary natural transformation 6°, and then since elem|—| is faithful,

by Proposition C.43, this lifts to a V-natural transformation &°.

Using this we can now extended the definition of a theory map from the base level
(Definition 3.15) to that of L-algebras and T-coalgebras.

Definition 4.15. Given the conditions of Assumption 5, for any L-algebra (A, a), and
any T-coalgebra (X,~), a theory map is any

f e Xo(X,5(4)),

such that the following commutes

X S(A)
S(a)
2l SL(A)
o4
T(X) ——TS(4)

Remark 4.16. If the L-algebra (A, «) is a free L-algebra, and therefore the Lindenbaum-
Tarski algebra for some concrete modal logic £, then for any = in X, the theory f(x) will
typically be a filter/prime filter /ultrafilter of A, where the formulae of A are in actual
fact equivalence classes of terms from £. The union | f(x) then gives the set of terms

of L satisfied at x, and is logically consistent with respect to the proof system of L.

It must be emphasised that the bijection between valuations and theory maps at the base
level, provided by the logical connection, lifts to a bijection at the level of L-algebras

and T-coalgebras.

Proposition 4.17. Given the conditions of Assumption 5, for any L-algebra (A, ),
and any T-coalgebra (X, ), there is a bijection between valuations and theory maps that

1s the restriction of the bijection
Ao(A, P(X)) = Xo(X, 5(A))

given by the logical connection.

This bijection between valuations and theory maps means that the definition of a model
from Definition 4.12 can be reformulated in terms of a theory map, and moreover, for

each L-algebra we can construct a category of such models.
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Definition 4.18. Given the conditions of Assumption 5, for any L-algebra (A, «), the
ordinary category Mod(A, «), has objects given by pairs

(X,7), f),

where (X, ) is a T-coalgebra, and f € X,(X,S(A)) is a theory map, and morphisms

g9: (X1,m), f1) = ((X2,72), f2),

given by g € CoAlg(T),((X1,71), (X2,72)) such that f; = fy0g.

In the above definition, the requirement on model morphisms that f; = fo o g arises
from the fact that theory maps need not be unique. In simple terms, we have to ensure
that any propositional variables are given interpretations in the two models that are

compatible with the T-coalgebra morphism.

In Doberkat (2009) a similar definition of a category of models for an L-algebra is made,
however this is done in terms of diagrams in A, i.e. pairs of T-coalgebras and valuations.
In following chapters we prefer to work in X,, but as already noted above, the logical

connection allows us to move freely backwards and forwards between the two definitions.

Like in Section 4.1, we intend to perform an initial lift of the forgetful functor of the
ordinary category Mod(A, «),, in order to create a V-category. To do this we need
to define a forgetful functor from Mod (A4, a), to the underlying category of some V-

category. There is an obvious choice for this.

Definition 4.19. Given the conditions of Assumption 5, for any L-algebra (A, «), there
is a forgetful (faithful) functor

UMod(4,q), - Mod(4, a), — CoAlg(T),

(X7), ) = (X,7)
g: (X1,m), f1) = (X2,72), f2) = g1 (X1,7m) = (Xa,72).

Using Theorem 2.13, and that elem|—| is faithful, by Proposition C.21 so is the initial

lift, and so we have the following proposition.

Proposition 4.20. Given the conditions of Assumption 5, the forgetful ordinary functor

UMod(A,a), has the initial lift

UMod(A,a)o : MOd(A, a)o — COAlg(T)

where the V-functor Untod(a,a), 5 faithful, and the V-category Mod(A, a), is unique up

to isomorphism.



96 Chapter 4 Coalgebraic Modal Logics

We take this initial lift to be the definition of the V-category of models for the L-algebra
(A, ).

Definition 4.21. Given the conditions of Assumption 5, the V-category Mod(A4, «),
and the forgetful V-functor

UMod(4,0): Mod(4, a) — CoAlg(T),

are the initial lift of the forgetful functor Untoa(a,a),-

Of course, when defining the category Mod(A, o) we could have considered the obvious
forgetful ordinary functor from Mod(A, ), to X,. But it is easy to see that this is just
the composite Ucoalg(T),UMod(4,a),, and by Proposition A.2, its initial lift is just the
composite Ucoealg(T)UMod(4,a) UP to a unique isomorphism. Hence we can use either

forgetful functor, and everything is consistent.

Remark 4.22. If the L-algebra (A, «) is the initial L-algebra, then it is easy to see that
Mod(A4, a), = CoAlg(T),, and using both the initial lifts of Untod(a,qa), and the above
forgetful ordinary functor from Mod(A, o), to X,, this lifts to Mod (A, a) = CoAlg(T).

4.4 Colimits in CoAlg(T) and Mod(A, «)

In Chapter 6 we shall see that one of the most important aspects of the structure of the
category Mod(A, «) is the presence, or otherwise, of colimits. To be more precise, we
shall be interested in what are known as conical colimits. In enriched category theory
the notion of colimits is generalised to what are variously known as indexed, or weighted,
colimits (Definition C.93). The conical colimits (Definition C.95) are then a special case,
and correspond, as their name suggests, to the usual ordinary category theory notion of

colimits based upon cocones.

In this section we shall prove that the forgetful functors Ucealg(r): CoAlg(T) — X and
Ucoalg(T)UMod(4,a): Mod(A,a) — X create small conical colimits (Definition C.99),
and the main technical tool we shall use is Theorem 2.14, which relies in an essential

way upon the fact that these forgetful functors are initial lifts.
In the proofs that follow, we shall use the following notation:
1. J will be a small ordinary category that specifies the type, or shape, of colimit we
are dealing with.

2. A¢ denotes the diagonal functor Ag: J — C, that sends every object of J to C,

and every morphism of J to 1¢.
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3. Ay denotes the natural transformation Ay: Ay = Ap:J — C,, for which the
component (Af); = f: A — B, for all objects J in J.

First we extend to the enriched setting the well known result (see for example Rutten
(2000) for the case in Set) that the forgetful functor Uceaig(r),: CoAlg(T), — X,

creates small colimits.

Theorem 4.23. Given the conditions of Assumption 5, the forgetful V-functor
UCoAlg(T): COAlg(T) — X

creates small conical colimits.

Proof. Consider a small ordinary category J and a functor D: J — CoAlg(T),, and
suppose that X has conical colimits of shape J. Then we have that Ugoaig(r), D has a
colimit (colimx, (Ucoalg(t), D), ¢), where the unit ¢ is the ordinary natural transfor-

mation

¢: A1 = X(Uconrg(r),D(—), COlimXo(UCoAlg(T)OD))03 J—V,,

the components of which are the cocone

¢ Uconrg(r),D(J) — colimyx, (Ucoaig(r),D):

in the ordinary category X,. We shall therefore view the unit ¢ as the following natural

transformation

¢: Ucoalg(1),D = Acolimy, (Ucoargry, D) J = Xo-

In order to simplify what comes next, we shall define the following ordinary natural
transformation

YD Ucoalg(T), P = ToUcoalg(r),D: J — Xo,
the component vyp (s of which, is the structure map of the T-coalgebra indexed by J.
Next we need to show that Ucoaig(r),: CoAlg(T), — X, creates colimits of shape J.

We proceed as follows:

1. Put a T-coalgebra structure map on colimx, (Ucoalg(r), D):

T¢ ovp: Ucoalg(r), D = AT(COtho(UCoAlg(T)OD)) is a cocone for Ucoalg(r),D;
therefore there exists a unique

x: colimx, (Ucoalg(r), D) — T'(colimx, (Ucoalg(r), D))
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that gives a natural transformation

Ay: ACOlimXO(UCoAlg(T)OD) = AT(COtho(UCoAIg(T)OD))

such that Tpoyp = Ay o¢. This yields a T-coalgebra (colimx, (Ucoalg(r), P)s X)

and the ¢; become T-coalgebra morphisms.
. Construct a cocone for D from (colimx, (Ucoalg(r), D) X):

We have a natural transformation

0: D= A(colimxo( ] — COAlg(T)O,

Ucoalg(T)oD)sX)
where Ucoalg(t),0 = ¢, and this is a cocone for D.

. For another cocone of D construct a unique mediating morphism between the

carrier objects:

If we consider any other cocone ((Z,§), ¥: D = A(z¢)) for D, then we clearly
have that

(Z, Ucomrg(r),¥: Ucoalg(r),D = D7)

is a cocone of Ucoalg(1), D, and thus there exists a unique
p: colimx, (Ucoalg(r), D) — Z,
giving a natural transformation

AWE Acohmxo( = Az:J—X,,

Ucoalg(), D)
such that UCOAlg(T)onZ) = A,U« o ¢

. Show that the mediating morphism is a T-coalgebra morphism:

The 15 are T-coalgebra morphisms which means that

A¢ o Uconlg(r),¥: Ucoag(),D = Ar(z)

ToUcoAlg(1)o? © 7D Ucoalg(r), D = Ar(z)

represent the same cocone for Ucoalg(r),D- Further, we have that

AE © UCoAlg(T)oq/} = Af o A,u o= A&ou o,

and also that

ToUcoAlg(T)o? © 7D = Apuy 0 T'¢ o vp = Ap(yy 0 Ay 0 ¢ = Ap(y)oy © ¢-
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So by the universal property of the colimit (colimx,(Ucoalg(r), D), ¢), We have
Eop = T(u)ox. Thus p is a T-coalgebra morphism, and we have a natural

transformation

AMZ A(Colimxo (Ucoalg(T)oD).X) = A(Z,{): J— COAIg(T)O

Therefore ¥ = A, 00, and

((COIimXo(UCOAlg(T)DD)7X): 0: D= A(colimxo(UC,:,Alg(T)OD),X))

is a colimit of D.

5. Deduce that Ugoag(T), creates colimits of shape J:

It is clear that ((colimx,(Ucoailg(r), D), X), ) is the unique cocone for D that is
mapped by Ucealg(T), to the colimit (colimx, (Ucoaig(r), D) ¢) of Ucoalg(r),D-

Thus we can conclude that Ugoalg(r), creates colimits of shape J.

Finally by Theorem 2.14, we can deduce that the forgetful V-functor
UCoAlg(T): COAlg(T) — X

creates small conical colimits. O

The case for the composite forgetful functor Ucealg(7)Umod(4,a): Mod(4,a) — X
follows in a similar fashion, with the additional detail that a theory map must be con-

structed for the colimit.

Theorem 4.24. Given the conditions of Assumption 5, the forgetful V-functor
UcoAlg(T)UMod(4,a): Mod (A, a) — X

creates small conical colimits.

Proof. Consider a small ordinary category J and a functor D: J — Mod(A4, a),, and sup-
pose that X has conical colimits of shape J. Then we have that Uceaig(T), UMod(4,a), D
has a colimit (colimx, (Ucoalg(T),UMod(4,a),P); ¢), where the unit ¢ is the ordinary

natural transformation
¢: Ar = X(Ucoalg(1), UMod(4,a), D(—); colimx, (Ucoalg(r), UMod(4,a), D)), I = Vo,
the components of which are the cocone

¢7: UcoAlg(T),UMod(4,a), D(J) = colimx, (Ucoalg(T), UMod(A,a), D)
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in the ordinary category X,. We shall therefore view the unit ¢ as the following natural

transformation

¢: Ucoalg(T),UMod(4.0), D = Acolims, (Ucoaig(r),Untod(a,ar, D) I — Ko

In order to simplify what comes next, we shall define the following ordinary natural

transformation

YD Ucoalg(T)oUMod(4,0), P = ToUcoAlg(T). UMod(A,0), D J — Xo,
the component vp (s of which, is the structure map of the T-coalgebra indexed by J,
and the ordinary natural transformation
Ip: Ucoalg(T),UMod(4,0), D = Ag(a): J = X,
the component fp(y) of which, is the theory map of the T-coalgebra indexed by .J.

Next we need to show that Ucoalg(7), UMod(4,a), : Mod(A, a), — X, creates colimits
of shape J. We proceed as follows:

1. Use the functor Ugealg(T), to construct a colimiting T-coalgebra on
colimyx, (UcoAlg(T), UMod(4,a), D)

By Theorem 4.23 there is a unique 7T-coalgebra

x: colimx, (UcoAlg(T), UMod(4,a), D) — T'(colimx, (Ucoalg(r), UMod(4,a), D))

making the ¢; into T-coalgebra morphisms, and thus a natural transformation

9: UMOd(A,O{)OD = A(colimxo (UCoAlg(T)oUMod(A,a)oD)7X): "]] — COAlg(T)O)
such that
((colimx, (Ucoalg(1), UMod(4,0),D)s X), 0)
is the colimit of Unjod(4,a),D- Furthermore, Ucoalg(T),0 = ¢-

2. Construct a morphism g from colimx, (Ucoalg(1), UMod(4,a), ) to S(A):

The theory maps associated with the diagram D define a natural transformation

fp: UCoAlg(T)OUMod(A,a)OD = AS(A) that is a cocone for UCoAlg(T)DUMod(A,a)DD'
Therefore there exists a unique morphism

g: COlimXo(UCOAlg(T)oUMod(A,a)oD) — S(A)
giving a natural transformation
Ay A

colimy, (Ucoatg(ry, Unod(A.ay, D) = Ls(a): I = Xo,
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such that fp = Ay o0 ¢.

3. Show that g is a theory map:

The natural transformations

As(a) © fD: Ucoalg(T),UMod(4,a), D = Asr(a)

Ass oTfpovp: Ucoalg(T),UMod(A,0), D = Asr(a)

are cocones for Ugoalg(T),UMod(4,a),D- Indeed, they represent the same cocone,

and we have

AS(oz,) ofp= AS(c«) o Ag °o¢p= AS(oz)og o ¢,
and
Agy 0T fpoyp = Agy 0 ApgyoTooqp
= Agy 0 Apg 0 A0
= AéZOT(g)oX o ¢.
The universal property of the colimit (colimx,(Ucoalg(1),UMod(4,a), D), ¢) then

yields S(a) o g = 0% o T(g) o x. Thus g is a theory map and

((colimx, (Ucoalg(), UMod(4,a), D): X), 9)

is a model in Mod (A4, «),, and since fp = A, o ¢, the ¢ are model morphisms.

4. Construct a cocone for D from ((colimx, (Ucoalg(1), UMod(4,a), D), X)s 9):

We have a natural transformation

7: D= A((colimxo ), 9)" J— MOd(A,Oé)O,

(Ucoalg(T)o UMod(4,a) D)X
where Upniod(4,a),7 = ¢, and this is a cocone for D.

5. For another cocone of D construct a unique mediating morphism between the

T-coalgebras:

If we consider any other cocone (((Z,€),h), ¥: D = Ayze)n)) for D, then we
clearly have that ((Z,€), Umod(4,0),%: UMod(4,0), D = A(ze)) is a cocone for
UMod(A,a), D, and thus there exists a unique

p: (colimx, (Ucoalg(r), UMod(4,0),P)s X) = (Z,6),
giving a natural transformation
= Az¢): J — CoAlg(T),,

AVE A(Colimxo (Ucoalg(T)o UMod(4,a)0 D)5 X)

such that Unjod(a,a),¥ = Ap o 0.
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6. Show that the mediating morphism is a model morphism:

In choosing the cocone (((Z,€),h), ¥: D = A(z¢),n) we are imposing the con-

straint

Ip = Ap o Ucoalg(T), UMod(4,0), ¥
as this is required for the 17 to be morphisms in Mod(4, «),. Now
Ucoalg(T), UMod(4,0), ¥ = AUgoaig(ry i © ¢

SO

fp=Ap0 AUcoAlg(T)oM ° ¢,
and by the uniqueness of g, we therefore have
g = hoUcoalg(T), -

This means that p is also a morphism in Mod(A4, a),, and thus we now have a

natural transformation

Apt A((colims, (Ucoatg(ry, Untoa(a.ays D))g) = Dz, I = Mod(4, a)o,

and with this ¢ = A, o 7. This completes the proof that the cocone

(((colimyx, (Ucoag(T), UMod(4,0), D), X), 9), T)
is a colimit of D.

Deduce that Ugoalg(T),UMod(4,a), CTeates colimits of shape J:

It is clear that (((colimx, (Ucoalg(r),UMod(4,a), ) X)>9), T) is the unique cocone
for D that is mapped by Ucoalg(T), UMod(4,q), tO the colimit

(colimx, (UcoAlg(T), UMod(4,a), P)s @)

of Ucoalg(T),D- Thus we can conclude that Ugoaig(r), UMod(4,q), Creates colimits
of shape J.

Finally by Theorem 2.14, we can deduce that the forgetful V-functor

Ucoalg(T)UMod(A,a): Mod(4,a) = X

creates small conical colimits. O
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4.5 Discussion

In this chapter we have formalised a general notion of enriched coalgebraic modal logic.
This extends previous work, both in the extensive literature on coalgebraic modal logic
in ordinary category theory, and the more recent work of Kapulkin et al. (2010, 2012);

Bilkova et al. (2011), where the enrichment is over Preord and Pos.

We also provide a framework for the study of the modal logic counterpart to the work of
Turi and Rutten (1998); Worrell (2000a); Balan and Kurz (2011) on coalgebras enriched
over various categories of preorders, partial orders, or metric spaces. Moreover, we
have extended the systematic study of models for a modal logic that we introduced in
Wilkinson (2012b) to the enriched setting.

There is however something missing from the presentation of coalgebraic modal logics
in this chapter, and indeed in this thesis - our modal logics could be more accurately
described as coalgebraic modal languages, as we make no mention of proof systems.
Indeed, when we are working with abstract modal logics (L-algebras for a general functor
L), we do not even have a syntax. However, if there is a presentation for L (Section 4.2),
then the free L-algebras are the Lindenbaum-Tarski algebras for concrete modal logics
(Section 4.3), and the presentation also gives a proof system. Various authors have
looked at such proof systems, and attempted to tackle the question of completeness of

modal logics with coalgebraic semantics.

A common technique is to use induction along the terminal sequence (Worrell, 1999,
2005) in conjunction with predicate liftings. In Pattinson (2003) the weak completeness
of a local consequence relation is investigated for Set coalgebras and modal logics that
extend the propositional logics in BA, and in Kupke et al. (2004a) the results are
extended to weak completeness for coalgebras on a general category (though still with
modal logics built upon BA). The work of Kupke et al. (2004a) also makes use of the
algebraic semantics of Alg(L), and the fact that the modal proof system is equivalent

to equational logic.

The algebraic semantics approach to completeness is well known from Kripke semantics,
where the key result is known as the Jénsson-Tarski Theorem (a good introduction
can be found in Blackburn et al. (2001, Chapter 5)). Various authors have produced
coalgebraic versions of the Jénsson-Tarski Theorem (Jacobs, 2001; Kupke et al., 2005;
Kurz and Rosicky, 2012). In simple terms a T-coalgebra structure is constructed on
S(A) by defining a morphism h: SL(A) — T'S(A) such that ho &% = 1pg(4), and this
yields a weak completeness result, though the results of Kurz and Rosicky (2012) are

more general, and yield a strong completeness result for a global consequence relation.

In contrast to the approach via algebraic semantics, in Schroder and Pattinson (2009),

strong completeness is shown for modal logics built on BA and coalgebras on Set, for
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a local consequence relation based on models. This result requires that the functor T

satisfies certain conditions.

The axioms of coalgebraic modal logics have also been studied, and it has been found
that they can be grouped into those that are rank 1 (have precisely one level of nesting

of the modal operators), and those that are not.

In Schréder (2007) it was shown that for any functor T on Set, that CoAlg(T") could be
axiomatised by a weakly complete rank 1 modal logic built upon BA. Then in Schroder
and Pattinson (2007b) it was shown that every rank 1 modal logic built upon BA has
a sound and strongly complete coalgebraic semantics with respect to CoAlg(T), for
a specially constructed functor T' on Set. Some work has also been done to look at
modal logics that include axioms that are not rank 1 (Pattinson and Schroder, 2008;
Schroder and Pattinson, 2009). In Pattinson and Schroder (2008), for an arbitrary
collection of additional non rank 1 axioms (called frame conditions), the full subcategory
of CoAlg(T) is considered where in each T-coalgebra these additional axioms are valid.
Such a category is similar in spirit to our category of models, in that both incorporate
the idea that going beyond the initial L-algebra requires a corresponding restriction in
the T-coalgebras that should be considered. However, their work is again built upon BA
and Set, and uses the notion of validity, which we avoid (Remark 4.13). Our definition of
Mod(A, «) on the other hand works at the level of abstract L-algebras, and is therefore
in that respect more general. Fundamentally however, the approaches are different; we

work with models, and their approach is more analogous to Kripke frames.

There has also been work to generalise theorems from the Kripke semantics of modal
logic (Blackburn et al., 2001) to the coalgebraic setting. In Kupke et al. (2005) the
“bisimulation somewhere else” theorem, and in Kurz and Rosicky (2007) the Goldblatt-
Thomason Theorem, are recast into the framework of coalgebras on Set, and modal

logics built upon BA.

Finally, it should be noted that a special type of modal logic has been studied as a logic
for coalgebras. Prior to the work by Kurz on coalgebraic modal logic (Kurz, 2001), Moss
introduced coalgebraic logic (Moss, 1999), which is a special type of modal logic where
the syntax is derived from the functor 7' (that specifies the coalgebras). Many researchers
continue to work on Moss’ logic, and recent work (Kupke et al., 2008, 2012) has shown
that it too can be given by a functor L and thus incorporated into our framework, but

we shall not discuss it further in this thesis.

Other alternatives to coalgebraic modal logics are the so called coequational logics (Kurz,
2000; Rutten, 2000; Kurz and Rosicky, 2002, 2005; Awodey and Hughes, 2003; Adamek,
2005; Schwencke, 2008). This line of work was inspired by Birkhoff’s variety and com-
pleteness theorems of universal algebra, and various notions of coequation have been
introduced, along with logics to reason about them. A very general notion of a pred-

icate that is invariant under bisimulation has also been defined, arising from the idea
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that this captures the essence of modal logic, and these are found to have the same
expressive power as coequations (Kurz and Rosicky, 2002, 2005). As these logics con-
stitute a very different approach to the one we follow, we shall not mention them again

in the remainder of this thesis.






Chapter 5
Behavioural Questions

In the previous chapters we have created a logical connection framework based upon a
dual adjunction enriched over a symmetric monoidal closed category V, and shown how
to extend this framework to incorporate algebras and coalgebras for V-functors defined

on the two base categories A and X.

Now we shall explore how we can compare the behaviour of states of coalgebras, and in

doing so we shall make clear the role the category V plays in these comparisons.

A brief outline of this chapter is as follows:

Section 5.1 The T-coalgebra examples from Section 4.1 are discussed and the role of

the preorders and generalised metrics explained.

Section 5.2 The idea of what a general notion of behavioural question for a pair of
states might be is examined, and it is proposed that the answers should form a
commutative unital quantale. From this general notions of behavioural and logical
adjacency are defined, as well as a general definition of what it means for an

L-algebra to be expressive.

Section 5.3 It is observed that each choice of quantale yields a candidate for the set
of truth values of the logical connection. In the case of generalised metric spaces

this suggests that real-valued logics may be the “correct” choice.

Section 5.4 Previous approaches to bisimulation, simulation, and behavioural metrics

are compared to our approach.

5.1 Bisimulation, Simulation, and Approximation

In Section 4.1 we gave numerous examples of T-coalgebras for enrichment over Set,

Setr, and GMet. We shall now look at those examples in more detail.

107
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First of all we shall look at the examples where we enrich over Set. These are the familiar

examples that anyone with exposure to coalgebras are likely to be familiar with.

The first example is the powerset functor on Set (Example 4.8), which we then extend to
Labelled Transition Systems (Example 4.11). The other two examples are probabilistic,
corresponding to Markov Chains (Example 4.14), and Markov Processes (Example 4.17).

The key point to note is that, given a set X (or a measurable space (X, X x) in the case
of Markov Processes), there are no constraints on the choice of T-coalgebra structure
map v: X — T(X), other than that v must be a function (a measurable function for
v: (X, ¥x) - T(X,Xx)).

Now we know from Section 2.2 that the category Set is isomorphic to the category Setr
if the type R represents equality. In other words, every set can be considered to have
the discrete preorder, where two states are related if and only if they are equal. We can
therefore think of v as being constrained to preserve equality. In this sense, the equality
relation Rx is required to be a bisimulation on X under -, as every state is bisimilar to
itself.

Next we consider the examples where we enriched over Setp, but with the type R chosen
to be preorders. For the powerset functor (Example 4.9), given a preorder (X, Rx),
and z,y € X, our choice of T-coalgebra structure map 7: (X,Rx) — T(X,Rx) is

constrained by the requirement that v be R-preserving, and therefore must satisfy
rRxy = V2’ € y(x) Iy € v(y). 2’ Rxv/.
Similarly, for Labelled Transition Systems (Example 4.12), v is required to satisfy
rRxy = V(,2') € v(z) 3(',y') € v(y). L =1"and 2’ Rxy'.

This means that the preorder Ry is required to be a Labelled Transition System simu-
lation on X for v (van Glabbeek, 2001).

The two probabilistic examples, of Markov Chains (Example 4.15), and Markov Pro-

cesses (Example 4.18), are similar to the above, with v required to satisfy
xRxy = Vu C X (u right R-closed = v(z)(u) < v(y)(u)),

and
xRxy = VM € ¥x (M right R-closed = ~(x)(M) < v(y)(M)),

respectively. In these cases the preorder Ry is required to be a Markov Chain or Markov

Process simulation (Desharnais et al., 2003).

The remaining examples were enriched over GMet. Like the case for enrichment over

Set i, additional constraints are placed on the choice of a T-coalgebra structure map .
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Specifically, for the powerset functor (Example 4.10), 7 is required to satisfy

dX(l',y) > sup < inf dX(x/ayl)> )
z'ey(z) \V' €YW)

and for Labelled Transition Systems (Example 4.13), 7 is required to satisfy

dx(z,y) > sup < inf  max(ds(l,1'),dx (2, y’))> )
(L evy(z) \Wy)ev(y)

Here the generalised metric dx is required to be an approximate, or quantitive, simula-

tion metric on X for v. What this means, is that for every transition that x can make y

can match it, and in doing so, y moves to a successor state that is at least as close to the

successor state of x, as y was to x. This is related to the notion of branching distance
in de Alfaro et al. (2004).

The final two examples are Markov Chains (Example 4.16), where ~ is required to satisfy

dx(z,y) > sup dpo,1) (v () (), v(y)(u)),

right d-closed

and Markov Processes (Example 4.19), where ~ is required to satisfy

dx(z,y) > Sup djo) (Y(2) (M), y(y)(M)).
right d-closed
These two conditions again require dx to be an approximate simulation metric, though
whether they correctly capture what is required of such approximate simulations is
uncertain. The work of Desharnais et al. (2004) on metrics for Markov Processes takes
a different approach, and conflates the approximation of the Markov Processes, with the
valuations of the corresponding real-valued logic. Also in de Vink and Rutten (1999) an
ultrametric is defined which differs from the generalised metric of Example 4.19, but is

used to study probabilistic bisimulation, not approximate simulation.

Since the analysis of Markov Processes is not our main concern, we shall not pursue
the question of how best to augment the Distribution functor and the Giry functor for

enrichment over GMet.

In all the discussion above we have alternated between saying that a particular constraint
is placed on the choice of a T-coalgebra structure map -, and that a corresponding
constraint is placed upon the preorder Rx, or metric dx, that a state space X carries.

This is no accident.

Traditionally when transition systems have been discussed, a class of transition systems
is defined, and only afterwards is the corresponding notion of bisimulation or simulation
specified. Thus it is common to find many different types of bisimulation defined for

a given type of transition system. Our approach is different. We first appropriately
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choose the category V over which we enrich, depending upon whether we are interested
in bisimulation, simulation, approximate simulation, or possibly some other notion of
behavioural comparability. Then we choose our functor T such that it simultaneously
defines both the transition structure, and how states are to be compared. In other words,
our view is that a transition system type is not fully defined until it is specified how
to compare the behaviour of states. This idea is consistent with the spirit of category
theory, where the relationships between objects are considered as important, if not more

so, than the structure of the objects themselves.

In the remainder of this chapter we shall formalise the idea that through enriching over
different choices of the category V, we can endow our coalgebras with different notions
of behavioural comparability. In doing so, we shall take an idea from Worrell (2000a)
and Worrell (2000b), and adapt it to our framework.

5.2 Behavioural Questions

In the previous section we saw how enriching over the categories Set, Setr, and GMet,
could lead to different notions of what it meant to compare the behaviour of states:
bisimulation, simulation, and approximate simulation. But are these the only ways in
which the behaviour of states can be compared? Given a pair of states, what might we
want to say about the behaviour of one with respect to the behaviour of the other? Or

put another way, what behavioural questions can we ask of this pair of states?

Obviously, this is all rather vague and open ended, so we need to make things more
concrete. The first thing we can say is that we have seen that the choice of category
over which we enrich appears to play a big part. The second is that Lawvere observed
that preorders and generalised metric spaces were in actual fact categories enriched over

2 and [0, oo] respectively (Lawvere, 1973). Let us look at this in more detail.

Every preorder or generalised metric space consists of a pair (X, gx), where X is a set,
gx: X x X — @ is a function, and @ is either 2 or [0, co] respectively. So if X is the
underlying set of the carrier object of some coalgebra, then the sets 2 and [0, co] can be
thought of as the set of possible answers to questions that can be asked of two states of
that coalgebra. Specifically, given states z,y € X, then ¢x(z,y) € @Q is the answer to
the question asked of x and y. For example, if the question was “do x and y have the
same behaviour?” we would expect the answer yes (1) or no (0), whereas if the question
was “how close is the behaviour of y to that of 7”7 we would expect the answer to lie

in the interval [0, o).

It would seem therefore that we should consider other possible choices for the set ). But

which ones? Do we have a free hand, or are there constraints on what we can choose?
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Looking at the examples of preorders and generalised metric spaces, we note that the
functions between preorders are required to be order preserving, and the functions be-
tween metric spaces are required to be non-expansive. This means that in these two
cases the set () carries an order, and any coalgebra morphism must respect that order.
In particular, if there is a chain of coalgebra morphisms leading from an arbitrary coal-
gebra (X, ) to the final coalgebra, then for x,y € X, the chain of “answers” should be
seen to monotonically approach the answer given by the final coalgebra, and that this

answer is the definitive answer.

This property is an appealing one, as it extends the notion of final coalgebra semantics
to say that, not only is the behaviour of a state given by its image in the final coalgebra,
but if we want to compare the behaviour of two states, we should do this by comparing
their images in the final coalgebra. Moreover, as we move along a chain of coalgebra

morphisms our answers can only improve.

There are two final properties of preorders and generalised metric spaces that we have not
discussed. Specifically, reflexivity and transitivity for preorders, and dx(z,z) = 0 and
the triangle inequality for metrics. Famously, Lawvere observed that these correspond
to the existence of identities, and composition of morphisms, thus making preorders and
generalised metric spaces into categories (Lawvere, 1973). But what does this mean in

our context?

The existence of identities corresponds to the fact that we always know that a state
has the same behaviour as itself. Again this is a desirable property. Composition of
morphisms is more difficult to understand. It would seem that if we have a coalgebra
(X,7), and states z,y,z € X, and we know how the behaviour of y compares to z,
and how the behaviour of z compares to y, then composition allows us to compute an
estimate, or bound, for how the behaviour of z compares to x. It is hard to imagine
that having this capability would ever be a problem, but equally, it is not clear why
we should always desire this property. However, as we shall see in Proposition 5.7, this

property turns out to be vital.

To summarise, we should choose a set () and supply it with an order relation and
sufficient additional structure that pairs (X, ¢x) are in fact categories, and morphisms
f:(X,qx) — (Y, qy) should be functions f: X — Y that respect the order of (). Then
following Lawvere (1973), for a pair (X, ¢x), the value ¢x(z,y) € @ is the hom-object
of x and y, making (X, ¢x) a category enriched over Q.

To do this we will require that ) have at the bare minimum the structure of a monoidal
category, with a tensor ®, and a unit I. In fact, in order to satisfy the conditions
of Assumption 1, we require that @@ be a commutative unital quantale (Wagner, 1997;
Worrell, 2000a). The reasons for this will be explained in due course, but first we start

with a definition.
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Definition 5.1. A quantale (Q, ®) is a complete lattice Q with an associative operation

®, such that ® preserves all joins:

a®\/b¢=\/(a®bi)

el el
\/bz‘®a: \/(bi®a).
i€l i€l

If in addition ® is commutative, then (@, ®) is a commutative quantale, and if there
exists I € @, such that for all a € Q,

I®a=a=a®1,

then (Q,®,I) is a unital quantale.

Now any lattice is a partial order, with
a<bsa=aANbsaVb=h,

and it is well-known that partial orders are categories. So we can ask what the additional

structure of a commutative unital quantale means from a category theory perspective.

Firstly let us look at the operation ®. Take a, b, c € @) such that a < b, then
c@b=c®(aVb)=(c®a)V(c®b),

thus c® a < c®b. Similarly, a ® ¢ < b® ¢, and it is easy to see that ® is a functor,
and since by assumption it is commutative and associative, together with I, this makes

(Q,®,I) into a symmetric monoidal category.

Now if we consider the functors a ® — and — ® a, from the definition of a quantale these
preserve joins, but in a partial order joins are colimits, indeed the only colimits. Thus
by the Adjoint Functor Theorem for partial orders, there exist right adjoints to a ® —
and — ® a, which we shall denote [a, —];, and [a, —|g respectively, such that

<la,cp e a®b<c

However, ® is commutative, and @ is a partial order, thus [a, c|r = [a, c|g.

Putting this all together, and noting that left adjoints preserve colimits, and meets and

joins are limits and colimits (respectively) in a partial order, we have the following result.

Proposition 5.2. A partial order is a symmetric monoidal closed category that is both

complete and cocomplete, if and only if, it is a commutative unital quantale.
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A commutative unital quantale (Q,®,I) therefore has all the structure necessary to
define categories enriched over Q (Wagner, 1997; Worrell, 2000a).

Definition 5.3. Given a commutative unital quantale (Q, ®, I), a Q-category is a pair
(X, qx), where X is a set, and ¢x is a function gx : X x X — @ called the hom-functor,
such that the following hold:

Reflexivity: I < gx(z,z) for all x € X,

Transitivity: ¢x(z,y) ® ¢x(y,2) < ¢x(z, z) for all x,y,z € X.

A Q-functor f: (X,qx) — (Y, qy) is a function f: X — Y such that for all z,2' € X

ax(z,2") < qv (f(z), f(2")).

(Q-categories can be thought of as generalisations of preorders or generalised metric
spaces in the spirit of Lawvere (1973), and the condition on Q-functors is the general-
isation of the order preserving or non-expanding properties of the morphisms between

preorders or generalised metric spaces.

Now just like the case of Setr (Definition 2.1) and GMet (Definition 2.5), we are

interested in the category of all Q-categories.

Definition 5.4. Given a commutative unital quantale (Q,®,I), the category Q—Cat
has for objects Q)-categories, and for morphisms Q-functors.

As ultimately we want to enrich over Q—Cat, we would like Q—Cat to satisfy the

conditions of Assumption 1.

The first property of ~Cat that we require, is that ~Cat is complete and cocomplete.

This can be seen to follow from the fact that @) is a complete lattice.

Products: the product of (X, gx) and (Y, qy) is given by (X x Y, ¢xxy), where
qXXY((x7 y); (x/7 y/)) = qX(xv x/) A QY(.% y,)
Coproducts: the coproduct of (X, ¢x) and (Y, qy) is given by (X + Y, ¢x+y), where

gx (w,w’) : ifw,w e€X
ax+y(w,w') = gy (w,w’)  : ifw,w €Y

1 : otherwise.
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Equalisers: the equaliser of f,g: (X,qx) — (Y, qy) is given by e: (F,qgp) — (X, qx),
where

E={zeX|f(x)=9g()}

and

QE(x, xl) - (JX(% x/)'
Coequalisers: the coequaliser of f,g: (X,qx) — (Y, qy) is given by
h: (Y>dY) — (HvdH)a

where H =Y/ ~, and ~ is the smallest equivalence relation such that for all z € X

we have f(z) ~ g(z). The hom-functor ¢y is given by

ar(W). W) =V av(w).

u~Y

W ~oy!

Final Object: the final object is (1, ¢1), where 1 is the singleton set, and g1 (x,*) = T.

Initial Object: the initial object is (0, go), where 0 is the empty set.

Since @ is a complete lattice, small products also exist, as do small coproducts, and so

we have the following proposition.

Proposition 5.5. The category Q—Cat is complete and cocomplete.

We also require that ~Cat be symmetric monoidal closed, and for this we need a tensor
and a unit. We define the tensor as follows. Note, this defines a functor since ® is a

functor on Q.

Definition 5.6. Given a commutative unital quantale (Q,®,I), the tensor product
(X,qx) ® (Y,qy) of the Q-categories (X,qx) and (Y, qy) is given by (X X Y, q¢xgyv),

where

axey ((z,y), (@) = ax(z,2") @ qv (y,9),

and the unit @Q-category is the singleton set (1,qr) with g7 (*,*) = I.

Note that in general the unit )-category is not the final Q)-category.

It is easy to verify that tensor product and the unit @Q)-category form the tensor and unit
of a symmetric monoidal category. To make ()—Cat also closed we need internal-hom
objects [(X,qx), (Y, qy)], such that [(Y,qy),—] is right adjoint to — ® (Y, qy) (Defini-

tion B.9). These are given as follows:
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Internal-hom: the internal-hom of (X, ¢x) and (Y,qy) is given by the set of all Q-
functors from (X, ¢x) to (Y, qy) with the hom-functor

Gxao.var)(H9) = N\ o (f(2),9(x)).

rzeX

Unit: the unit of the adjunction — ® (Y, qy) - [(Y, gy ), —] is given by

dix.gx): (Xsax) = [(Yiay), (X, qx) ® (Y, gy)]
= for (Yigy) = (X, qx) @ (Y, qv),

where f2(y) = (2,y).

Counit: the counit of the adjunction — ® (Y, qy) 4 [(Y, gy ), —] is given by

ezar): [(Ysay),(Z,q2)]® (Y,qv) — (Z,qz)
(9: Yiay) = (Z,92),y) = g(y)-

To show that these do indeed make (Q~Cat closed, we are required to use that () is both
closed and complete, and also make use of all the defining properties of Q-categories
and Q-functors (thus explaining why we said at the beginning of this section that it was
vital that each pair (X, gx) was a category). This gives the following proposition, which
also appears as Wagner (1997, Proposition 1.14) and Worrell (2000b, Definition 4.3.8).

Proposition 5.7. The category Q—Cat is symmetric monoidal closed.
In Wagner (1997) it is remarked that Q—Cat is Cartesian closed if and only if @ is a
complete Heyting algebra with ® given by meet.

Finally, the symmetric monoidal closed functor elem|—| (Definition B.15) is easily seen
to be faithful, and strong monoidal (Definition B.14). It is also a fibration (Defini-
tion A.5), as for any function f: X — Y, if Y carries the hom-functor gy, then we can

define a hom-functor ¢gx on X by

QX(xwr,) = QY(f($)7 f(l‘,))
This is easily shown to be universal in the sense required of an initial lift.
Therefore putting everything together we can deduce:

Proposition 5.8. The category Q—Cat satisfies all the conditions of Assumption 1.

The above results show, that based on the assumption that one should enrich over

a category with a structure analogous to Preord or GMet, that in order to satisfy
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the basic assumptions on V, we used to develop logical connections (Chapter 3) and

coalgebraic modal logic (Chapter 4), we require that () be a commutative unital quantale.

The eagle-eyed reader will have spotted though, that for the category Setg, the objects
satisfy additional axioms beyond those of a Q-category in the cases where the type R
does not represent preorders. For example, in the case of equivalence relations we require
symmetry in addition to reflexivity and transitivity. Thus in the general case we are

forced to consider full subcategories of ()—Cat.

Definition 5.9. Given a commutative unital quantale (@, ®, I'), we shall use the nota-
tion Vgcat for any full subcategory of Q—Cat that satisfies the conditions of Assump-

tion 1.

To show that our generalisation genuinely subsumes bisimulation, simulation, and ap-
proximate simulation, we should be able to recreate the categories Set, Setr, and GMet

via instances of ()—Cat for appropriate choices of Q).

Example 5.1. If we take Q to be the set 2 with the usual order, and take ® to be meet,
and I to be 1, then Q—Cat is the category Preord, and for each of the four choices of
the type R, the category Setgr (and thus Set) is a full subcategory of Q—Cat.

Example 5.2. If we take Q to be the set [0,00] with the opposite order, and take ® to
be +, and I to be 0, then Q—Cat is the category GMet.

Note, Set cannot be recovered from 2 with the discrete order, as 2 is not then complete.

The above examples show that we can recreate all of our previously discussed notions
of behavioural comparability through an appropriate choice of a commutative unital
quantale, but do we get anything more? Can we find new ways of comparing the

behaviour of states, new behavioural questions that we can ask?

The following simple example from Wagner (1997) is a possibility.

Example 5.3. If we have a commutative monoid (M,+,0), then we can take Q to be
P(M), the powerset of M, with the order given by inclusion, meet and join given by

intersection and union, and take ® to be defined by
u@v={m+n|meunc v},

and I to be {0}. Then Q—Cat is the category WDGraph,,; of weighted directed graphs
(X, ex), where the weights are elements of M, every vertex has a self-loop of weight 0,
and to compose edges we add the weights. Here ex assigns the set of edges to every
ordered pair of points. Note, between any ordered pair of points there can be multiple

edges, but only one with each weight. The morphisms of WDGraph,, are functions
f: X =Y such that

ex(z,2') Cey(f(z), f(2)).
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We can try out WDGraph;,; to see what it might give us, by defining the powerset
functor on WDGraph,,.

Example 5.4 (Powerset on WDGraph,, enriched over WDGraph,,). The functor
T is defined as
T(X,ex) = (P(X),epx));

where

€p(X) (ua U) = ﬂ GX(JJ, y)a
TEU
yev

and for any function f: (X,ex) — (Y,ey), the action of T on f is the function

T(f): P(X) = PY)
u— {f(z) | z € u}.

To see what this might actually mean we need to consider what happens to a T-coalgebra

v: (X,ex) = T(X,ex). The structure map ~ is required to satisfy

ex(z,y) € [ ex(@.y),

2/ ev(z)

y'ev(y)
which says that for any pair of states x and y, the smallest common set of edge weights
between every possible successor of x, and every possible successor of y, must contain
the set of edge weights between x and y. So if we regard the set of edges from x to y
as signifying some set of properties that y has with respects to x, then when x and y
transition to successor states, the successor of y must have at least the same properties

with respect to the successor of x, as y had to x.

In this example there is no observable behaviour, so it is not obvious that the set of
properties that y has with respect to x has anything to do with behaviour. However,
we can extend this example to Labelled Transition Systems by taking a set of labels X,
and defining ex(1,1') = M if | =1', and ex(l,1') = () otherwise.

Example 5.5 (LTS enriched over WDGraph,,). The functor T is defined as
T(Xa GX) = (P(E X X)’e'P(EXX))a

where

ep(EXX)(U,U) = ﬂ eZXX((lax)a(l/7$/))

(l,z)eu
(t,z")ev

= () (es(LV)nex(z,2)),

(l,z)eu
(V,a")ev
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and for any function f: (X,ex) — (Y,ey), the action of T on f is the function

T(f): P(Ex X) = P(XEXY)
w={(, f(@)) | (I, 2) € u}.

Now when we consider a T-coalgebra, we find that the structure map v must satisfy

ex(@C () (es@U)Next@,y)).

(l,z")ev(z)
W, y") e (y)

This has the same constraint as in the simple powerset case, but in addition, for every
transition that x can make with label [, ¥ must also be able to make a transition with

label [ that preserves the set of properties that y has with respect to x.

In this formulation of Labelled Transition Systems we chose a particular graph ey on
the set of labels ¥ that only distinguished whether two labels were equal, but this is
obviously not the only choice we could have made. This particular choice was made to
force y to have to be able to match the label chosen by x, but if there was some kind
of relationship between the different labels, where I’ had a particular set of properties
(from M) with respect to [, then the choices y would have to be able to make to follow
x would be different. Specifically, y would have to be able to choose a transition (I’; )
such that both the set of properties that I’ had with respect to [, and the set of properties
that 9’ had with respect to 2/, contained the set of properties that y had with respect

to x.

It is clear from the above that we can define many different notions of behavioural
comparability, or behavioural questions, but we still have not addressed how to compare

states from different T-coalgebras.

In actual fact we are not really interested in comparing states from completely arbitrary
T-coalgebras, but rather from T-coalgebras that are models for some L-algebra, since

our interest is in coalgebraic modal logic.

First we instantiate our running assumptions by fixing the category V to be of the form

Vacat for some commutative unital quantale Q.

Assumption 6. We extend Assumption 5 (page 83) as follows:

12. We fix the category V to be Vgcat (Definition 5.9), where (Q, ®,I) is a commu-

tative unital quantale.

Now we are finally ready to write down precisely what we mean when we talk of com-

paring the behaviour of two states.
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Definition 5.10. Given the conditions of Assumption 6, for any two models X, X5
in Mod(A, «), and any two states x1 € X1, x9 € Xo, if there exists in Mod(A4, «), a

cospan

X1 i>X3<f72X2,

then we say x2 has a behavioural adjacency bound of

axs(f1(z1), fa(z2))

with respect to x.

Here the model morphisms f; and fo are T-coalgebra morphisms, and thus transport
states z1 and xo bisimilarly to the model X3 where their images fi(x1) and fa(z2) are
compared. The resulting answer gx,(fi(x1), f2(z2)) is a lower bound to the definitive
answer (given by the final model), since for any morphism f3 € Mod(A4, a),(X3, X4),
the answer gx,(f3 o fi(z1), f3o fa(x2)) is at least as good, and possibly better, as f3 has
an underlying @-functor (Definition 5.3).

In the concrete examples of enrichment over the categories Set, Setr, and GMet,

Definition 5.10 takes on the following familiar forms.

Example 5.6 (Enrichment over Set). In this case qx(x,y) simply determines if v =y
(Example 5.1), and so we therefore look for a cospan where the model morphisms f1 and

f2 identify x1 and xzo. We then say x1 and x2 are behaviourally equivalent (Kurz, 2000).

Example 5.7 (Enrichment over Setg). In this case qx(x,y) determines membership in

the relation Rx (Example 5.1), and so we therefore look for cospans where

fi(@1) Rx fow2).
In Wilkinson (2012a) x1 and x2 are then said to be behaviourally R-related.

There are actually four cases to consider depending upon the type R:

1. If R is the type preorder, then we have simulation.

2. If R is the type partial order, then we have simulation where mutual simulation

implies bisimulation.
3. If R is the type equivalence relation, then we have mutual simulation.
4. If R is the type equality, then we have bisimulation.

Example 5.8 (Enrichment over GMet). In this case qx(x,y) is the metric dx(z,y)
(Example 5.2), and so we say that xo is at most dx,(fi(z1), fa(x2)) from x1, or zo

approzimately simulates x1 to within at least the accuracy dx,(fi(z1), f2(x2)).
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We now need to consider the logical counterpart to Definition 5.10. Given a pair of
models in Mod(A4, a), and a state from each model, we want to compare the logical
theories of these two states. Now, the logical theory for each state is an element of

S(A), so we should use gg(4) to compare the theories.

Definition 5.11. Given the conditions of Assumption 6, for any two models X7, X5 in
Mod(A4, a), and any two states x; € X;, x9 € Xo, we say z2 has a logical adjacency
of

as(a)(f1(x1), fa(x2))

with respect to x;, where fi; and f> are the theory maps of X; and X5 respectively.

Note here, unlike in Definition 5.10, we do not have a lower bound on the logical adja-
cency, but the actual definitive value. This is because for each model the theory map is

part of the definition, and therefore unique.

To understand this definition we should look at some examples. Now we know by
Assumption 6 that V.S(A) = A(A,Qy), and that Uaq, : A(A,Qy) — [U(A),U(Q4)],
and since the Vgcat functors U and V' are forgetful functors, we typically find that
ds(4) 1s the same as q((4),v(q,)- Thus in many cases

QS(A)(37 S/) = /\ QQA(S(Q)7 S/(a))'

acA

Example 5.9 (Example 3.1). In this example qg(a)(s,s’) tests for equality of the filter-
s/prime filters/ultrafilters s and s'. This is the usual notion of logical equivalence (Kurz,
2001).

Example 5.10 (Example 3.2). In this example qg(a(s,s’) tests for inclusion of the
filter/prime filter s in s, or in the case that the type R is equality, it reverts to the
example above. This example captures the notion that two states may be logically R-
related of Wilkinson (2012a,).

Example 5.11 (Example 3.9). In this ezample qga)(s, ') is given by the metric

dga)(s,s') = sup dpo,1)(s(a), s'(a)),
ac

which gives the distance between the fuzzy filters/fuzzy prime filters s and s'.
The following result is a simple consequence of the fact that the theory maps of models

are morphisms in X, and have underlying morphisms in Vgcat, which are Q-functors
(Definition 5.3).
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Proposition 5.12. Given the conditions of Assumption 6, for any two models X1, Xo
in Mod(A, «), and any two states x1 € X1, o € Xo, if x2 has a behavioural adjacency

bound of b with respect to x1, then

b < gs(ay(fi(z1), fa(22)),

where qg(a)(f1(21), fa(w2)) is the logical adjacency of x2 with respect to x1, and f1 and
fo are the theory maps of X1 and Xo respectively.

If it is possible to find a cospan in Mod (A4, a), such that the inequality of Proposi-
tion 5.12 can be made into equality, then the L-algebra (A, «) is said to be expressive
for Mod(A, a).

Definition 5.13. Given the conditions of Assumption 6, an L-algebra (A, «) is expres-
sive for Mod(A, «), if for any two models X7, X5 in Mod(A, ), and any two states
x1 € X1, 2 € X, there exists in Mod(A4, «), a cospan

g1 g2
X1 —— X3 <— Xy,

such that
ax5(91(21), 92(22)) = qs(a)(f1(21), f2(22)),

where f; and fo are the theory maps of X; and X» respectively.

This definition is slightly stronger than the standard cospan based definition of expres-
sivity for bisimulation, and the definition of expressivity for simulation in Wilkinson
(2012a). The difference is that in these two cases if 21 and z2 are not logically equiva-
lent (not logically R-related) i.e. fi (xl)% f2(x2), then there is no requirement that
there exist a cospan such that gi(x1)Rx;g2(x2). However the above definition requires
this. In practice this is not a problem, since if X has coproducts, then by Theorem 4.24,

so does Mod(A4, «), and thus such a cospan always exists.

In the case of approximate simulation however, we need to take into account the full range
of values that the metric can take, and we want the distance between the behaviours of
two states to equal the distance between their logical theories. This forces the above,

slightly stronger, definition.

5.3 Behavioural Questions and Truth Values

The definition of expressivity of an L-algebra (A, a) for its category of models Mod (A4, «)
with respect to Vgcat (Definition 5.13) makes use of the Q-category structure on S(A),

the collection of theories of (A, «). Moreover, as already noted in the previous section,
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s(4) 1s often given by

QS(A)(87 S/) = /\ QQA(S(G), S/(CL)),

a€A

where g, is the Q-category structure on the truth object Q4.

An obvious question then is how do we choose a set of truth values? Specifically, should

it relate in some way to ), and if so, how?

The first observation we can make is that since (Q, ®, I) is a commutative unital quan-
tale, it is a symmetric monoidal closed category (Proposition 5.2), and thus it enriches
over itself (Section C.3).

Proposition 5.14. If (Q,®,1) is a commutative unital quantale, then Q is itself a
Q-category, with qg(a,b) = [a,b].

In the case of the examples that have motivated our study, we get the following.

Example 5.12 (Example 5.1). If we take Q to be the set 2 with the usual order, and
take ® to be meet, and I to be 1, then

1 : ifa<b
[a7 b] =
0 : otherwise.

Example 5.13 (Example 5.2). If we take Q to be the set [0, 00| with the opposite order,
and take ® to be +, and I to be 0, then

b—a : ifa<b
[a7 b] =
0 . otherwise.

So in the case of enrichment over Setg, and with the type R representing preorders
or partial orders, we find that (2,gz2) is the same as the truth object in our bivalent
examples (Definition 3.23). However, in the case of enrichment over Set, (2, ¢z2) is not
an object in the full subcategory of Q—Cat that is Set, and indeed in our bivalent
examples we have taken the truth object to be 2 with the discrete order. Finally, in the
case of enrichment over GMet, none of our examples have taken the interval [0, cc] as

the set of truth values.

So does this mean that the choice of @ has nothing to do with the choice of truth
values? Not necessarily. In Example 4.20 and Example 4.21 we enrich over Set and
take the truth object to be 2 or [0, 1] respectively. In both cases the set of truth values
is just a set, i.e. carries the discrete order. However, whilst constructing the predicate
liftings and the natural transformation §: LP = PT we make explicit use of the fact
that both 2 and [0, 1] have meets given by the usual orders. Similarly, in Example 4.22
and Example 4.23 we use the joins of 2 and [0, 1].
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So it would appear that the truth values get used in at least two different ways. Firstly
in the construction of the logical connection, and then secondly in the definition of the
predicate liftings and the natural transformation 6: LP = PT. In the latter case the
set of truth values may carry additional structure not required to define the logical
connection, and this may be the structure of a lattice, or even a commutative unital

quantale.

Also, in several of our examples we have used fuzzy logics with truth values taken
from [0, 1] purely for illustrative purposes, but are there ever compelling reasons to do
so? Starting with Kozen (1981, 1985) and then Panangaden (1999); Desharnais et al.
(2004); van Breugel et al. (2005), it has been argued that probabilistic systems should
be modelled with a logic of real-valued functions taking their values in the interval [0, 1].
One of the motivations for doing so, is that bivalent logics are not robust to small changes
in the probabilities, and so “close” approximations to a probabilistic system may have

radically different logical theories.

However, Example 5.13 above suggests that to study approximations we perhaps should
use a logic with truth values from [0, co], though perhaps this should be just thought of
as a rescaling of the interval [0,1]? Having said that, in Mislove et al. (2004) Markov
Processes are studied using a duality between real C*-algebras and compact Hausdorff
spaces where the duality arises from the set R, so it is far from clear what the correct

approach should be.

In general therefore, at this stage it is unclear what the correct choice of truth values
should be, nor how they should relate to the choice of category Vgcat. Further study
of examples along the lines of the real-valued logics for Markov Processes may provide

clues as to what the correct approach, if such a general approach exists, should be.

5.4 Discussion

In the literature there have been many different approaches to bisimulation and simu-
lation for coalgebras, but essentially they can be split into two distinct groups - those

that use spans, and those that use cospans. Our work falls squarely in the latter camp.

The first approaches, starting with Aczel and Mendler (1989) !, were interested in bisim-
ulation and were span based. The aim was to construct a relation R C X x Y, the bisim-
ulation, on the carriers X and Y of a pair of coalgebras. This approach was subsequently
generalised to that of a relation lifting, first through the use of fibrations (Jacobs, 1995;
Hermida and Jacobs, 1998; Klin, 2005), and then via relators (Rutten, 1998).

!Note that in the same paper, Aczel and Mendler also introduce a notion of (pre)congruence, which
is essentially a cospan approach (Kurz, 2000, Section 1.2).
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In the relator approach of Rutten (1998) a functor 7" on Set extends to a unique functor
on Rel ?, the relator, if and only if T preserves weak pullbacks (Carboni et al., 1991).
This condition on 7' is also required (in general) to construct an Aczel-Mendler style
bisimulation (Aczel and Mendler, 1989).

The relator approach was then generalised in two different ways. Firstly, relators were
applied to simulation and metric bisimulation through generalising relations to the en-
riched equivalent - bimodules (Rutten, 1998; Turi and Rutten, 1998; Worrell, 2000a,b).
Here in the case of the approach by Worrell, the functor 7" on (Q—Cat is extended to a
graph homomorphism 2 on the corresponding category of bimodules, and this is a lax
functor 4, if and only if T' preserves Q-embeddings (Definition 6.1) (Worrell, 2000a, The-
orem 4.5). Then using the graph homomorphism extending 7', a notion of a T-simulation
is defined, and if the extension of T is a lax functor, the composition of T-simulations

is also a T-simulation.

In the approach to bisimulation of Rutten (1998) the extension of T' to Rel is fixed, so
the second generalisation was to take a separate relator I' on Rel that was not derived
from T (Hughes and Jacobs, 2004; Cirstea, 2006; Levy, 2011). This then allows the
notion of a I'-simulation for T-coalgebras to be defined, and for different choices of T,

this yields different notions of simulation.

The strength of the span based approach is that when one thinks about the states of two
coalgebras, and one wants to compare the behaviours of pairs of states, one’s intuitive
response is to think of constructing a relation on the two sets of states. The weakness
though of this approach, is that not only does one have to find the relation, but to show
that it is the relation one is looking for, one has to put a coalgebra structure on it.
In general, if we desire that such a relation be transitive, and this is indeed what we
expect for standard notions of bisimulation or simulation, this can only be done if T’
preserves weak pullbacks (Rutten, 1998), or some generalisation of this in the enriched
case (Worrell, 2000a; Bilkova et al., 2011).

The alternative approach to bisimulation using cospans originated in the PhD thesis
of Kurz (Kurz, 2000), and has the key advantage that it does not need the functor T’
to preserve weak pullbacks. The two are easily seen to be equivalent in most cases.
Specifically, if the category X has pushouts, then any span based bisimulation yields a
cospan based bisimulation, and if X has weak pullbacks and T preserves them, then any

cospan based bisimulation yields a span based bisimulation.

This removal of the requirement that T preserves weak pullbacks has practical conse-

quences. For example, in Danos et al. (2006) it is shown that the cospan approach

2There are two formulations of the category Rel that appear in the coalgebra literature: the first has
sets as objects and binary relations as morphisms, and the second has binary relations as objects and
pairs of relation preserving functions as morphisms.

3A mapping of objects and morphisms that need not preserve composition and identities.

*17(x) < T(1x) for all objects X, and T(f) oT(g) < T(f og) for all composable morphisms f and g.
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greatly simplifies the analysis of Markov Process viewed as coalgebras for the Giry func-
tor (Example 4.17) which does not preserve weak pullbacks. Moreover, the authors point
out that in their earlier work (Desharnais et al., 2002) the proofs made explicit use of
cospans, but that at the time they regarded them as merely an intermediate step towards
the construction of an appropriate span. Also, the cospan approach greatly extended
their results to general measurable spaces, whereas the original work was restricted to

analytic spaces by the preservation of weak pullbacks requirement.

In a similar vein, whilst the approach of Worrell (2000a) is nominally span based through
the use of bimodules and the desire to construct simulation relations (or their generali-
sations), in the detailed proofs explicit use is made of the collage of a bimodule, which
is a cospan. Indeed, this is contrasted (Worrell, 2000a, Section 4) with the span based
approach underlying the corresponding result in Carboni et al. (1991) which forms the
basis of Rutten (1998). However, once again, in order that the required relation be
transitive, we require that the composite of T-simulations be a T-simulation, and this
means that the functor 7" must preserve (Q-embeddings. We side step this requirement by
working with an explicit cospan based notion of simulation and bisimulation. Also, our
work greatly extends that of Worrell by enriching over Q—Cat, which means the objects
of the category X upon which T is defined, can also carry additional structure (sigma
algebras for example). Whereas in Worrell (2000a) and Worrell (2000b) the functor T°

is constrained to act directly on (Q—Cat.

Recently (Kapulkin et al., 2010, 2012) the cospan approach has been extended to simula-
tion through enriching over Pos and looking at cospans to the final coalgebra. This work
also relates to that of Levy (Levy, 2011), who takes a relator approach to simulation,
but links it to final coalgebras over the categories we subsumed into Setp, though he
does not work in an enriched setting. Our work extends this to general cospans, not just
those to the final coalgebra, and to other notions of behavioural comparability beyond
bisimulation and simulation. We also work with models, and not just with coalgebras.
This means we also have a generalised notion of logical comparability, and our notions
of behavioural comparability correctly handle propositional variables (cf. the definition
of bisimulation in Blackburn et al. (2001)), so we can work with arbitrary L-algebras,

not just the initial one.

Finally, we can give the following slightly more detailed account, taken from our earlier
work Wilkinson (2012a), of how our approach to simulation relates to the more standard

relator based approach mentioned above.

For any functor F': Set — Set, an F-relator is defined as a functor I': Rel — Rel
that satisfies certain additional properties, and then using this, it is standard to define

a notion of I'-simulation for F-coalgebras. Now, associated with F' and I' is a functor
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T: Preord — Preord (Hughes and Jacobs, 2004, Lemma 5.5) (Levy, 2011, Defini-
tion 11) given by
T(X, Rx) = (F(X),I'(Rx)),

and under certain conditions (Hughes and Jacobs, 2004, Theorem 9.4) the final T-
coalgebra is the final F-coalgebra with the preorder given by the I'-similarity relation.
This final T-coalgebra characterises I'-similarity of F-coalgebras as every set carries
a discrete preorder (equality). Thus for every F-coalgebra there is a corresponding
T-coalgebra, and given two F'-coalgebras, the I'-similarity relation on those two F-
coalgebras is given by the preorder on the images of states under the corresponding

unique cospan of morphisms to the final T-coalgebra (Cirstea, 2006, Remark 21).

Now in our general framework, for the initial L-algebra, every T-coalgebra has a unique
theory map making it a model. Therefore if there exists a final T-coalgebra, it is a model,
and moreover every other model factors uniquely via it. It is thus the final model Z. So

for any cospan of models

X1L>X3<LX2

such that fi(x1) Rx, f2(x2), there exists a unique model morphism ¢g: X3 — Z, and this
gives g o fi(z1) Rz g o fa(x2). So if T is given by an F-relator as above, our notion of

similarity coincides with I'-similarity.

Our notion of simulation can thus be seen as taking the F-relator notion of simulation
and extending it to arbitrary cospans in Mod(A, «),, not just those with the final 7-
coalgebra as the target, and also to an arbitrary functor 7', rather than one arising from

a functor F' on Set and an F'-relator I'.



Chapter 6
Expressivity

In Chapter 5 we introduced a generalised notion of what it means for an L-algebra
(A, @) to be expressive for its category of models Mod(A, «) (Definition 5.13). In this
chapter we shall show that whether (A, «) is expressive can be characterised by the
structure of the category Mod(A, «), and we shall explore how this may be used to

prove expressivity.

A brief outline of this chapter is as follows:

Section 6.1 The concept of a behavioural skeleton is introduced, and a theorem proved
that says that an L-algebra (A, «) is expressive if and only if Mod(A, «) has a

behavioural skeleton.

Section 6.2 Parametric behavioural skeletons are introduced as a flexible tool for prov-
ing expressivity, and a result proved that shows that through the careful choice of
a factorisation system for X,, expressivity of an L-algebra (A4, «) follows from a

condition on ¢%. Conditions are also given for the existence of final models.

Section 6.3 The specific case of expressivity with respect to bisimulation is examined
using the internal models of Wilkinson (2012b).

Section 6.4 The specific case of expressivity with respect to simulation is examined
using the R-models of Wilkinson (2012a).

Section 6.5 A brief discussion of different approaches for proving expressivity from the

literature is given.

6.1 Behavioural Skeletons

In Wilkinson (2012b) we introduced the notion of an internal model, and in Wilkinson

(2012a) we extended this notion to an R-model, and showed how these two notions can
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be used to give a characterisation of expressivity, that in the former cases is with respect
to bisimulation, and in the latter with respect to simulation. These two cases correspond

to enrichment over Set and Setp respectively.

In this section we shall generalise still further to the case of enrichment over Vgcag
(Definition 5.9). We shall proceed by defining the abstract notion of a behavioural
skeleton, and then show how they can be used to give a characterisation of expressivity.

First though we need to define a piece of terminology we will make use of later.

Definition 6.1. Given the conditions of Assumption 6, a morphism

fr(X,ax) = (Yyqv)

in Vocag is said to be @Q-preserving if

ax(z,2') = qv (f(2), f(2)),

and a morphism in X,, is -preserving if its underlying morphism in Vgcat is. A model
((X,7), f) in Mod(A, «) is said to be Q-preserving if its theory map is Q-preserving,
and a model morphism

h: ((X7’Y),f) — ((ng)ag)

is said to be @-preserving if the morphism hA: X — Y in X, is. If in addition a Q-
preserving morphism also has an injective underlying function, then it is said to be a
(-embedding.

Note by Section 3.2, Q-embeddings are precisely those morphism of Vgcat or X, that
are monomorphisms and Q-preserving.

Definition 6.2. Given the conditions of Assumption 6, the (unique up to isomorphism)
skeleton (Definition C.31) of the full subcategory (Definition C.22) of Q-preserving mod-
els of Mod(A4, ) is a behavioural skeleton of Mod(A, «), and denoted BSkel(A, «),
if it has the following properties:

1. For every model X in Mod(A4, «), there exists a model Y in BSkel(A4, a), and a
morphism f: X — Iggkel(4,a)(Y) in Mod(4, a),. Here the functor

IBSkel(A,a) : BSkel(A, Oé) — MOd(A, Oé)
is the inclusion functor. We say that X factors via Y.
2. For every pair of models X; and X5 in BSkel(A, a) there exists a cospan

X, fi Xs f2 X,

in BSkel(A4, a),.
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It is relatively easy to prove that the existence of a behavioural skeleton ensures that an

L-algebra is expressive for its models (Definition 5.13).

Proposition 6.3. Given the conditions of Assumption 6, if Mod(A,«) has a be-
havioural skeleton BSkel(A, «), then (A, «) is expressive for Mod(A, «).

Proof. Take any pair of models X; and X5 in Mod(A, ). These factor via the models
Y7 and Y, in BSkel(A, «), and there also exists a model Y3 in BSkel(A, o) such that
there exists a cospan Y7 — Y3 < Y5. Thus both X; and X5 factor via Y3.

Spelling this out in more detail, the models ((X1,71), f1) and ((X2,72), f2) factor via
the model ((Y3,(3),h3) by way of T-coalgebra morphisms g;: (X1,71) — (Y3,(3) and
92: (X2,72) = (¥3,(3), such that f1 = hzo g and f2 = h3 o go.

Now if we consider two states x1 € X7 and xo € X9, then since hs is Q)-preserving, we

have

qsa)(f1(x1), f2(z2)) = g5(a)(h3 0 g1(x1), h3 © g2(x2))
= qvs(91(21), g2(22))

as required. O

We are interested in conditions where the converse is true, i.e. under which conditions

is the existence of a behavioural skeleton necessary for expressivity?

To answer this we need to think a bit about what the definition of a behavioural skeleton
actually says, and how it relates to expressivity. Expressivity says that any pair of states
can be mapped bisimilarly to a model where their behavioural adjacency is equal to their
logical adjacency. So if we could bisimilarly map any two states to a QQ-preserving model
we would be done. But is it realistic to expect (J-preserving models to exist, and is it
reasonable to expect that any state, in any model, can be mapped bisimilarly to a state

in a Q-preserving model?

It turns out that the key question is whether a given model factors via a Q-preserving
model, for if that is the case, then provided the category X has binary coproducts, and
thus by Theorem 4.24, Mod(A, «) also has binary coproducts, any two states, no matter

which models they are in, can be bisimilarly mapped to a )-preserving model.

This constraint that X should have binary coproducts is very mild, however in the rare
cases where X does not have binary coproducts, it should be noted that this is only a
sufficient condition anyway, it may not be a necessary one. If binary coproducts exist
they provide an easy way to generate the required cospan in Mod(A, «),, but it is not

necessarily the case that all such cospans derive from coproducts in X.
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So how do we determine whether a given model factors via a Q-preserving model? More

precisely, does expressivity require that this be the case?

One way to answer this is to take a model, and then look at the image of its theory
map. If we could put a T-coalgebra structure map on the image (assumed to carry a
restriction of gg(4)), such that the surjective function from the carrier of the model to
the theory map image is a T-coalgebra morphism, then we would have constructed such

a factorisation via a ()-preserving model.

However, in the case of logics that are expressive for simulation, the above procedure
is often found to be too aggressive. For example, in the case of simulation of Labelled
Transition Systems (Example 4.12), the logic that is usually chosen (tt | A | (I)) is
unable to distinguish mutually similar states that are not bisimilar. Thus two states in
a model can have the same theory, i.e. be identified by the theory map in S(A), but not
be bisimilar (Example 6.4). Therefore attempting to put a T-coalgebra structure map
on the image of the theory map, as above, will fail, as the resulting surjective function

could not be a T-coalgebra morphism as it will identify states that are not bisimilar.

[43

The way to proceed therefore is to “work from the other direction”. For each model
we look to create its smallest bisimilar quotient, in other words, we identify all pairs of
bisimilar states. We do this by looking at factorisations of model morphisms, and by
assuming the existence of a factorisation system in Mod(A4, a),, not X,, we ensure that

all the operations we perform result in another model.

Ultimately we shall relate the factorisation system on Mod(A, a), to more primitive

notions, but for the purposes of the next few results we make the following assumptions.

Assumption 7. We extend Assumption 6 (page 118) as follows:
13. The category Mod(A, «) has small pushouts.
14. The category Mod(A, o), has a factorisation system (£, M) (Definition A.18).
15. M is a subclass of those morphisms in Mod (A4, a), that are Q-preserving.

16. E is a subclass of those morphisms in Mod(A4, ), with surjective underlying

functions.

17. The category Mod(A, o), is E-cowellpowered (Definition A.21).

Note that there is a forgetful functor
VUcoalg(T)UMod(4,0): Mod(A, ) = Vgcat,

and since the underlying functor is also faithful (Proposition C.20), it can be composed

with elem|—| to yield a faithful functor to Set. Then since faithful functors reflect
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monomorphisms and epimorphisms (Proposition A.12 and Proposition A.14), we have

Injectyrod(a,e), & monos in Mod(4, @),

Surjectyiod(a,a), S €pis in Mod(4, @),

where Injectyroq(a ), 18 the class of morphisms in Mod (4, a), with injective underlying

functions, and Surjectyoq(a,a), those with surjective underlying functions.
Using the above assumptions we can show that for an expressive logic, every model must
factor via a Q-preserving model.

Theorem 6.4. Given the conditions of Assumption 7, if the L-algebra (A, «) is ex-
pressive for Mod(A, «), then every model in Mod(A,«) factors via a model that is

Q-preserving.

Proof. We proceed as follows:

1. All model morphisms have an (E, M )-factorisation:

Since Mod(A4, a), has a factorisation system (E, M), any model morphism

g: (X,7), f) = (X",9), f)

factors via a model ((I,(), f' om), where g = moe, and

e: ((X77)7f) — ((I,C),f’om)

isin F, and
m: ((1,€), f om) — ((X',7), f)
isin M.
2. Take the pushout of the E-quotient objects of ((X,7), f):
Given a model ((X,7), f), since Mod (A4, a), is E-cowellpowered, the collection of
equivalence classes of E-quotient objects is indexed by a set J, and we can therefore
take the pushout of a representative from each equivalence class [ _ e;> ((L;,¢5), f5),

which by Theorem 4.24, we can write as ((H<ej> 1;,¢), 1) for some ¢ and ff. This

gives the following diagram
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where any g: ((X,7), f) = (X','), f) factors via a representative of one of the

equivalence classes.

3. Construct a model epimorphism h: ((X,7), f) — ((]_[<6j> 1;,0), f1):

By the definition of a pushout there is a morphism h = p; oe; for all j € J
in Mod(A, a),. To show that this is an epimorphism we use the fact that the
forgetful functor Ucoalg(r), UMod(4,a), : MOd(A, a), — X, reflects epimorphisms
(Proposition A.14). Given any parallel pair of morphisms v and v in Mod(A4, a),,
where for the underlying morphisms u, v: H<ej> Ij; =Y, ifuoh = wvoh, then
uopjoe; = vop;oe; but since e; is an epimorphism, we must therefore have
uop; =vop;=qj, as in the following diagram

€j

X

I;

Y

H<6]'> IJ ﬁ

Clearly the g; form a cocone for the pushout, so by the universal property of the

pushout v = v, and thus h is an epimorphism.

4. Show h,p; € E for all j € J:

If we take the (E, M)-factorisation of h in Mod(A4, «), given by e and m, then
by the diagonalisation property of the factorisation system, there exists a unique

Mod(A, a), morphism p; for each j € J such that the following diagram commutes

€j

X

I m H<6j> I
Once again the p; form a cocone for the pushout, so there exists a unique morphism

n: Ij — I
<e;j>

in Mod(A4, «), such that p; = nop;. Now trivially 17 o e = e, and also

NOMOEe=1n0mo;0e; =1N0pjoe; =[j0e; =E¢,
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so since e is an epimorphism, we must have 7 o m = 1;. Similarly, we have

i1, _1;0h=h, and
€j
monoh:monopjoej:moujoej :pjoej:h,

and since h is also an epimorphism, we must have mon = 1]_[< I From this we
¢

deduce that m is an isomorphism, and therefore h € E, and so by Proposition A.20,

p; € E forall j € J.

5. Show that the theory map fT is Q-preserving:

Since ]_[<ej> I; has an underlying set we can pick a pair of states wy, ws € H<€j> I;.
Now since h € F is a surjective function, there exists states x1,xs € X such that
w1 = h(z1) and we = h(ze). Thus

qs(a)(f(21), f(z2)) = qsay(fT(wr), fT(w2)),
and by expressivity there must exist a model morphism
9: (X,7), £) = (X',9), f)

such that
ax:(9(z1), 9(22)) = qsa) (f1 (wr), fT(w2)),

and therefore a j € J such that
ax:(mj o ej(w1),mj o ej(x2)) = qsca)y(fT(w1), fT(w2)).
However, since m; € M, we have that m; is QQ-preserving, therefore
ar, (ej(z1), €5 (22)) = qs(a)(f1 (wr), fT(w2)).
Thus since p; has an underlying Q-functor
A, 1 (Pi 0 €j(@1),pj 0 €j(22)) = as(a) (T (wr), /T (w2)),
but fT also has an underlying Q-functor and Q is a partial order, so
ql.,. (w1, w2) = gs(a) (T (wn), fH(w2)),

from which we deduce that f! is Q-preserving.
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As already alluded to, given the above result, with the additional assumption that
coproducts of models exist, it is easy to show that cospans of Q-preserving models also

exist.

Assumption 8. We extend Assumption 7 (page 130) as follows:

18. The category Mod(A, «) has binary coproducts.

The following easy result is a direct consequence of Theorem 6.4.

Corollary 6.5. Given the conditions of Assumption 8, if the L-algebra (A, «) is expres-
siwve for Mod (A, «), then for every pair of Q-preserving models, there exists a cospan of

Q-preserving models in Mod(A, a),.

Proof. Given two @-preserving models X; and X5, by assumption their coproduct exists,
and by Theorem 6.4 the coproduct factors via a @-preserving model, say X3, and this

induces an obvious cospan between X; and Xo. ]

From Proposition 6.3, Theorem 6.4, and Corollary 6.5, we obtain our main expressivity

result - an abstract, category theoretic, characterisation of expressivity.

Theorem 6.6. Given the conditions of Assumption 8, an L-algebra (A, «) is expressive
for Mod(A, a), if and only if, Mod(A, «) has a behavioural skeleton BSkel(A, a).

The conditions of Assumption 8 are precisely those required to prove our characterisation
result (Theorem 6.6), and may appear slightly strange, or awkward to use. However, it
is possible to show that they follow from appropriate conditions on the category X and
the functor T'. Essentially what is required is that X has enough colimits, and that X,
has a proper factorisation system (Definition A.19), the monomorphisms of which are

preserved by T'.

Assumption 9. We extend Assumption 6 (page 118) as follows:
13. The category X has small conical colimits.
14. The category X, has a factorisation system (F, M) (Definition A.18).
15. M is a subclass of those morphisms in X, that are )-embeddings.
16. FE is a subclass of those morphisms in X, with surjective underlying functions.
17. The category X, is E-cowellpowered (Definition A.21).

18. T preserves M, ie. m € M = T(m) € M.
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Using these assumptions Theorem 6.6 can be restated as follows. Here it should be
noted that, even though the morphisms in the class M of the factorisation system are
(Q-embeddings, the models in the behavioural skeleton need only be Q-preserving. This
is because the factorisation system in X, is not directly used to construct the models of

the behavioural skeleton, but rather to induce the factorisation system of Mod (A, «),.

Corollary 6.7. Given the conditions of Assumption 9, an L-algebra (A, «) is expressive
for Mod(A, ), if and only if, Mod(A, «) has a behavioural skeleton BSkel(A, a).

Proof. We have to show that the premises of Theorem 6.6 hold. Firstly we observe that
by Theorem 4.24, Mod(A4, «) has small conical colimits.

To show that the factorisation system of X, lifts to Mod(A, «), we note that in Jacobs
and Sokolova (2010) it is observed that if 17" preserves M, and the members of M are
monomorphisms, then the factorisation system of X, lifts to CoAlg(T),, and it is easy
to see that this extends to Mod(A4, a),.

Finally, since the morphisms in E are epimorphisms, given a span in Mod(A, ), where
the underlying morphisms are in F, there is an isomorphism between the two so defined
E-quotient objects in Mod(A, «),, if and only if, there is an isomorphism between the

underlying E-quotient objects in X,. Therefore Mod(A4, «), is E-cowellpowered. O

Remark 6.8. The lifting of a factorisation system for X, to the category CoAlg(T),
(as in the above proof) is also examined in Kurz (2000, Section 1.3), and this follows
previous work on the application of factorisation systems to the study of categories of

algebras, for example see Addmek et al. (1990).

6.2 Parametric and Strong Behavioural Skeletons

So far we have looked at behavioural skeletons BSkel(A, o) where the objects are Q-
preserving models of Mod(A, «), and seen that under certain mild assumptions on the
category X, that BSkel(A, ) characterises expressivity of (A, «). However, it turns out
in practice that often we want to work with models that have additional properties be-
yond being @Q-preserving. We therefore introduce the notion of a parametric behavioural
skeleton, where the parametricity is in the subclass of models of Mod(A, ) that define

the subcategory for which we take the skeleton.

Definition 6.9. Given the conditions of Assumption 6, and a subclass M of the mod-
els of Mod(A, «) that are Q-preserving, then the skeleton of the full subcategory of
Mod(A, «) given by M is a parametric behavioural skeleton of Mod(A4, «), and
denoted PBSkely; (A4, a), if it has the following properties:
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1. For every model X in Mod(A, «), there exists a model Y in PBSkely; (A, ), and
a morphism f: X — IpBskel,;(4,0)(Y) in Mod(A, a),. Here the functor

IPBSkelM(A,a) : PBSkelM (A, OL) — MOd(A, Oé)

is the inclusion functor. We say that X factors via Y.

2. For every pair of models X; and X5 in PBSkely; (A, ) there exists a cospan

X, fi Xs f2 X,

in PBSkely; (A, a),.

If in addition the theory map of every model in M is a monomorphism, then the category
PBSkely/ (A, a) is said to be a strong behavioural skeleton of Mod(A4, «).

The first thing to note, is that in the proof of Proposition 6.3, no assumption was made
that BSkel(A, «) contained a representative from all equivalence classes of isomorphic

Q-preserving models, thus the result also holds for parametric behavioural skeletons.

Proposition 6.10. Given the conditions of Assumption 6, if Mod (A, «) has a para-
metric behavioural skeleton PBSkely (A, «), for some class M, then (A, «) is expressive
for Mod (A, «).

Theorem 6.4 on the other hand, clearly does not hold in general for parametric be-
havioural skeletons, as expressivity is only strong enough to force the existence of a
Q-preserving model, it cannot impose any additional structure that might be required
of some arbitrary subclass M of @-preserving models. For example, if the carriers of
our T-coalgebras had a topology, and the Q-preserving models were those with contin-
uous injective theory maps, and the subclass M consisted of models with theory maps
that were topological embeddings, then expressivity is only strong enough to construct
a model with a continuous injective theory map, and in general this need not be a

topological embedding.

So what use are parametric behavioural skeletons, if they only characterise expressivity
when M is the class of all Q-preserving models of Mod(A, a)? Well, Proposition 6.10
says that if a class M can be found such that PBSkel,/(A, ) is a parametric behavioural
skeleton of Mod(A, «), then (A, a) is expressive for Mod (A, ). To find such a class
M, one is primarily faced with the task of showing that every model factors via a model
in M, and this is often easier if the models of M have additional properties (see for

example Example 6.3).

To proceed we shall consider the class M to be defined to consist of those models with

theory maps taken from a subclass of the @Q-preserving morphisms of X, that we shall
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also refer to as M. It should be noted though, that not every morphism in M need be
the theory map of a model. For example it may not have the target S(A).

We now choose M to be a subclass of the Q-preserving morphisms of X, such that there
exists a class E of morphisms in X,, and together (E, M) is a factorisation system for
X,. Typically the morphisms of M will also be monomorphisms to ensure the unique
diagonalisation property of the factorisation system, but at this stage we do not require

this, so we do not assume it.

Assumption 10. We extend Assumption 6 (page 118) as follows:
13. The category X, has a factorisation system (E, M) (Definition A.18).

14. M is a subclass of those morphisms in X, that are Q-preserving.

Under these assumptions we find, given a particular technical condition involving M, T,

and 0% (Definition 4.14), that models factor via models with theory maps in M.

Proposition 6.11. Given the conditions of Assumption 10, if
meM= 50T (m)e M,

then every model in Mod(A, «) factors via a model whose theory map is in M.

Proof. Consider a model ((X,~), f) in Mod(A4, «). Then by the factorisation system
there exists e € E and m € M such that f = m o e, and by the definition of a model,

the perimeter of the following diagram commutes

X = > 1
e
T(e)oy /C/ S(a)om
e
T(I SL(A
( ) &% oT () ( )

Then by assumption 6% o T'(m) € M, so by the diagonalisation property of the factori-

sation system, there exists a unique (: I — T'(I) making the diagram commute.

Thus ((1,¢),m) is a model in Mod(A, «) with theory map m € M, and e is the model
morphism by which ((X,~), f) factors via ((1, (), m). O

Now that we have conditions that yield @Q-preserving models (possibly with additional
properties) via which other models factor, we also need cospans of such models in order
to create a parametric behavioural skeleton. This is easy to do, and we use the same

technique that we used for Corollary 6.5.
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Assumption 11. We extend Assumption 10 (page 137) as follows:

15. The category X has binary coproducts.

With this additional assumption we get the expressivity result we are looking for.

Corollary 6.12. Given the conditions of Assumption 11, if
me M= §,0T(m) € M,

then the models of Mod(A, «) with theory maps in M, define a parametric behavioural
skeleton PBSkely/(A, «), and (A, «) is expressive for Mod(A, «).

Proof. By Proposition 6.11 every model in Mod(A, «) factors via a model with a theory
map in M, and following our slight abuse of notation, we also use M to describe the class
of models with theory maps in M. Then since X has binary coproducts, by Theorem 4.24
the coproduct of every pair of models in M exists, and by Proposition 6.11 again, factors

via a model in M. Thus we have cospans of models in M.

Hence the full subcategory of Mod(A, a) given by the models in M defines a parametric
behavioural skeleton PBSkely/(A, «), and so by Proposition 6.10, we have that (A4, «)
is expressive for Mod(A4, a). O

This result is a generalisation of Wilkinson (2012b, Corollary 35), which in turn closely
follows Klin (2007, Theorem 4.2) and Jacobs and Sokolova (2010, Theorem 4).

To apply Corollary 6.12 one typically uses the fact that M is closed under composition
(Proposition A.20), and splits the condition

meM=§0T(m)eM

into m € M = T(m) € M, and 6% € M. The former is often very easy to show, and
guides the choice of M, and the latter is often quite difficult, and is where the bulk of

the work lies.

In many cases though, Corollary 6.12 is not applicable. This is because the unique diag-
onalisation property of the factorisation system (F, M) typically forces the morphisms
of M to have injective underlying functions, and as discussed in Section 6.1, this is some-
times too strong a condition to ask of the theory maps of the models of a behavioural

skeleton. In this case what is likely to happen is that ¢% fails to be in M (Example 6.4).

As well as providing a tool for proving expressivity, parametric behavioural skeletons

also provide a way of showing that final models exist.
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Assumption 12. We extend Assumption 6 (page 118) as follows:
13. M is a subclass of those morphisms in X, that are ()-preserving.
14. The category X, is M-wellpowered (Definition A.21).

15. The category X has small coproducts.

Proposition 6.13. Given the conditions of Assumption 12, if Mod (A, ) has a strong
parametric behavioural skeleton PBSkelys(A, «), then Mod(A4, «), has a final object.

Proof. Since X, is M-wellpowered, PBSkel (A, ) is small, and thus by Theorem 4.24,
the coproduct of all objects in PBSkel,/(A, ) exists as an object in Mod(A, ). But
then since every object in Mod(A, «) factors via an object in PBSkel/(A, a), so does
the coproduct. Call this object Z. For any other object in PBSkely; (A, a), the inclusion
morphism in the coproduct composes with the factoring morphism from the coproduct

to Z, to give a morphism to Z.

Now given any object in Mod (A, «) it will factor via an object in PBSkely (A, «),
and thus also via Z, and since PBSkely; (A, a) is strong, the theory map of Z is a
monomorphism, and so the morphism to Z will be unique. Therefore Z is a final object
in Mod(A4, a),. O

If in Proposition 6.13 the parametric behavioural skeleton PBSkel,/(A, ) is not strong,
then the above proof only allows us to infer that Mod(A, «), has a weakly final object.
However, in some cases it actually has a final object. For example in the case of finitely
branching Labelled Transition Systems there is a final coalgebra, and it is a model for
the initial algebra of the logic given by (tt | A | (I)), however the theory map is not

injective, as non-bisimilar states can have the same theory under this logic.

6.3 Bisimulation via Internal Models

As we have seen, if we are interested in bisimulation we should enrich over the cate-
gory Set, and the @-preserving models will then be those with injective theory maps.
Also from Section 3.2 we know that the monomorphisms in X, are precisely those with
injective underlying functions. Therefore we should look to construct a parametric be-
havioural skeleton from a subclass of the models with theory maps that are monomor-

phisms. In Wilkinson (2012b) such models were called internal models.
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Definition 6.14. Given a class M of monomorphisms in X,, we define the category
IntMod)/ (A4, «) of internal models of (A, «) to be the full subcategory of Mod (A4, «)

where the theory maps are in M, and write
IntMod,y (A,e) - IntMod (A, a) — Mod(A, a)

for the corresponding inclusion functor.

We parameterise by the class M as we hope to apply Corollary 6.12, and this is typically
done by requiring that the members of M are preserved by 1. In Example 4.17 the Giry
functor does not preserve all monomorphisms, but does preserve a particular subclass

of them, and we shall exploit this in Example 6.3.

Internal models can be thought of as a generalisation of the canonical models of Kripke
semantics (Blackburn et al., 2001). A canonical model is a model of a modal logic
constructed from the syntax itself. The idea is that when trying to prove completeness,
by the way the canonical model is constructed from the syntax, for every formula that

is not derivable, one can find a state that witnesses that the formula is not valid.

In such a canonical model the possible worlds are the theories of the logic. In our setup
S(A) is the collection of all possible theories of (A, a), so an obvious question is when
can we construct a model from S(A), i.e. when can we put a T-coalgebra structure on
S(A) such that it becomes a model for (A, a)?

In general this cannot be done. However in Schroder and Pattinson (2009) (following
Jacobs (2001); Kupke et al. (2005); Kurz and Rosicky (2012) - see also Section 4.5),
for the standard logical connection between BA and Set (Example 3.1), conditions are
given for the existence of a (not necessarily unique) model with carrier set S(A). From

this they derive a strong completeness result.

Internal models extend this idea, and are models built over subsets of S(A), moreover,
if there is a largest internal model, then it can be regarded as the canonical model (in
the Kripke sense). However, if the carrier set of the largest internal model is a strict

subset of S(A), it may fail to yield any kind of completeness result.

Our present interest in internal models is not with regards completeness though, for
we have made no mention of proof systems etc., but rather as a means to address

expressivity by way of Corollary 6.12.

In Section 4.3 we looked at the standard bivalent formulation of Hennessy-Milner logic
for Labelled Transition systems (Example 4.20), and a fuzzy variant from which we
removed negation (Example 4.21). We shall now proceed to investigate the expressivity

of these two logics.
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Example 6.1 (Bivalent logic for bisimulation of LTSs). Continuing Example 4.20 we
observe that the category Set can be given the factorisation system (E,M), where E
1s the class of all surjective functions, and M 1is the class of all injective functions.

Moreover, the functor T(X) = P(X x X) preserves injective functions.

So if for an L-algebra (A, o) 8% is injective, then by Corollary 6.12, (A, a) is expressive

for bisimulation of those Labelled Transition Systems that are models for (A, ).

From the definition of & (Definition 4.14), we see that 0% = S(dg(a) © Lpa) © org(a);

and from the counit of the logical connection (Example 3.1)

54 (v) = {lai] € L(A) | v € (d54) © Lpa)([ai])},

and so from the unit of the logical connection and the form of dg(ay from Ezample 4.20,
we finally have

() = {[a)] € L(A) | V(I';s) € v,I' =1 and a € s}.

To show that &% is injective we consider v,v' € TS(A) such that v # v'. We need to
show that there exists a formula a € A, and a label | € X, such that (without loss of
generality) there exists an ultrafilter s € BA(A,2), with (I,s) € v and a € s, but for all
(I',s") €', either " #1 or a & s.

In the case of finitely branching Labelled Transition Systems (finite powerset functor),
using the fact that all s € BA(A, 2) are ultrafilters, it is indeed possible to find an [a;] to
distinguish 0% (v) and §% (V") (Jacobs and Sokolova, 2010, Theorem 9). However, in the
case of unbounded non-determinisim, since our logic only has finite conjunctions, this is

not possible.

Hence we can deduce that Hennessy-Milner logic is expressive for bisimulation of finitely
branching Labelled Transition Systems (Hennessy and Milner, 1980, 1985).

Example 6.2 (Fuzzy logic for bisimulation of LTSs). Continuing Example 4.21 we
observe that, as in Example 6.1, the category Set can be given the factorisation system
(E, M), where E is the class of all surjective functions, and M is the class of all injective

functions, and the functor T(X) = P(X x X) preserves the injective functions.

This time we find that

54 (v)([ar]) = (85(a) © Lpa)([ai])(v),

and this means
() ([a]) = inf s(a).

V,s)ev
=1



142 Chapter 6 Expressivity

In this case 0% is unlikely to be injective, even in the finitely branching case, since the
property we relied upon in Example 6.1 was that the s were ultrafilters. In other words,
for all a € A, either a € s or —a € s, and this allowed us to assert the existence of
the element of A we required. We have no equivalent property in our formulation of the
fuzzy case. However this should not be surprising, as whilst we were forced to discard
aV —a = tt as this is not valid in fuzzy logic, we took the stronger action of discarding
negation completely (Example 4.21). We had no justification for doing this other than

expediency.

There are many other examples in the literature that are directly ammenable to the inter-
nal models approach to proving expressivity for bisimulation. A good source of examples
can be found in Jacobs and Sokolova (2010), and we shall briefly cover one of them. The
significance of this example is that it illustrates why the category IntMod (A, «) is

parameterised by the class of morphisms M.

Example 6.3 (Bivalent logic for bisimulation of Markov Processes). Markov Processes
are given by coalgebras for the Giry functor on measurable spaces (Example 4.17). For
the logic we take the logical connection between MSL and Meas (Example 3.4), and
add modalities of the form L., indexed by r € QN [0,1] (Example 4.3).

To apply Corollary 6.12, first we note that since sigma algebras are closed under in-
tersection Meas is topological over Set (Adamek et al., 1990, Definition 21.1), so by
Addamek et al. (1990, Theorem 21.16) Meas is cocomplete.

Then in Jacobs and Sokolova (2010, Section 3.1) it is observed that morphisms with
surjective underlying functions, and morphisms with injective underlying functions and
surjective inverse image functions, form a factorisation system (E, M) for Meas. More-

over, the Giry functor G is observed to preserve M.

For the modalities given in Example 4.3 there is a natural choice for the natural trans-
formation &, and in Jacobs and Sokolova (2010, Theorem 17) it is shown that 6* is

componentwise in M.

Thus Corollary 6.12 allows us to conclude that the logic given by the syntax
pu=tt|pANG| Lrdp wherer € QN[0,1]

is expressive for bisimulation of Markov Processes (Desharnais et al., 2002).

6.4 Simulation via R-Models

In the previous section we looked at using internal models to prove expressivity for

bisimulation. If on the other hand we are interested in simulation, then instead we must
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enrich over the category Setp for some choice of the type R. This corresponds to taking
Q@ to be 2, the two element set with the usual order (Example 5.1). The Q-preserving
models will then be those with R-reflecting theory maps, and in Wilkinson (2012a) such

models were called R-models.

Definition 6.15. The category R—Mod(A4, ) of R-models of (A, «) is the full sub-
category of Mod(A, a) where the theory maps are R-reflecting. A function f: X — Y
is R-reflecting, if for all z,y € X, if f(z)Ry f(y) then xRxy. We write

IR—Mod(A,a) : R—MOd(A, a) — MOd(A, a)

for the corresponding inclusion functor.

To demonstrate the use of R-models we shall continue the study of simulation for La-

belled Transition Systems from Example 4.22 and Example 4.23.

First we recall that, as mentioned in Section 6.1 already, for Labelled Transition Systems,
mutual simulation does not imply bisimulation. In other words, given states x and y,
it may be the case that x simulates y, and y simulates x, but this does not mean that
z and y need be bisimilar. Thus we should not expect the R-reflecting models to have
injective theory maps, and this probably precludes the use, a la Proposition 6.11, of
a factorisation system in X, to show that all models factor via an R-reflecting model
(the unique diagonalisation property of a factorisation system (E, M) typically forces

the morphisms of M to be monomorphisms).
In this example we shall therefore proceed differently (Wilkinson, 2012a).

Example 6.4 (Bivalent logic for simulation of LTSs). We recall from Example 4.22 that
we have a logical connection given by the dual adjunction between MSL and Setr from
Example 3.2, with the type R set to preorders. To this we have added the functor L from
Ezxample 4.4, which adds the modal operators (l), and the functor

T(X,Rx) = (P2 x X), Rp(sxx))
from Example 4.12. This then yielded

6(X,Rx): LP(X, RX) — PT(X, Rx)
T—PExX)
[w] = {weP(Xx X)|3(l',x) ew, I'=1 and x € u}

[, ] A Tor,] = 6 ([, ]) 0 x ([vi,]),
and from this, following a similar line of reasoning as for Fxample 6.1, we get

() = {[a)] € L(A) | (', 5) € v,I' =1 and a € s}.
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To proceed we shall consider the following commuting diagram

f
/—\
(X, Rx) (I,Rp) S(L3)
\LS(&)
v ¢ SL(£3)
-
T(X, Rx) — ) 7(1, Rp) —"™ 75(cy)
\_/
()

where we first choose (((X, Rx),7), f) to be any model of the logic
Lsspu=tt|ploAg|(l)p wherel e andp e Var,

and then construct (((I, Ry),¢), m) such that it is an R-model for the L-algebra (L3, ).
Here, in a slight abuse of notation, L3 refers both to the logic and its Lindenbaum-Tarski
algebra. We can do this as there is an obvious bijection between filters/ultrafilters of a

logic, and the corresponding filters/ultrafilters of its Lindenbaum-Tarski algebra.

In actual fact, we now choose to restrict ourselves to finitely branching Labelled Tran-
sition Systems (the finite powerset functor), for then we can use the result from Exam-
ple 6.1 that Hennessy-Milner logic (L3 with negation) is expressive for bisimulation of

finitely branching Labelled Transition Systems.

Specifically, using a functor Ugisc: Setgr — Setpr that assigns to every object the discrete
preorder (in other words, forgets the current preorder), any model (X, Rx),~), f) can
be quotiented via a surjective T-coalgebra morphism e: (X,v) — (I,(), where I is a
subset of the ultrafilters of Hennessy-Milner logic. There is then an obvious function
m: I — UgiscS(L3) that maps an ultrafilter in Hennessy-Milner logic to the correspond-
ing filter in L3 by throwing out all the formulae that contain negation, and moreover,
Ugise(f) = moe. The way to think of this, is that a filter in Ls lists all the possible
future things a state in a transition system can do, and an ultrafilter in Hennessy-Milner

logic explicitly adds all the things it cannot do.

Now S(L3) is ordered by inclusion, and it is easy to see that I can be given a preorder Ry
such that e is R-preserving, and m is both R-preserving and R-reflecting. Specifically,

we can order the ultrafilters of I by the inclusion order on their negation free subsets.

Further, since e is surjective, ((I,Ugisc(C)), Udisc(m)) is a model for L3. What remains to
be shown is that ¢ preserves the preorder Ry, for if that is the case, then (((I, Rr),(), m)
is an R-model for L3. It is easily seen that this is the case if T preserves R-reflecting

morphisms, and &}, is R-reflecting. The former is not very hard to show, so what



Chapter 6 Expressivity 145

remains is to show that 67 is R-reflecting. In fact we shall show this for an arbitrary
L-algebra (A, ).

To do this suppose URTS(A)U', then
vRrgay' < 3(1,s) € v. V(l,s") € v’ either 1 # 1 or sRg(a)s'.

Now, our plan is to find an [a;] € L(A) such that a € s, and for all (I',s") € V', either
1#£1U, oradgs.

The first case to consider is if there is no (I';s') € v’ such that | =1, for then we can
take a = T. If that is not the case, then there is a finite set of pairs (1,s') € v’ such that
sRs(a)s'. Now sRgays' means s € ', so it is possible to find an element of s that is not
in any of the s’ (do it pairwise and then take the meet - we can do this as v' is finite).
Therefore 6% (v) € 6% (v'), which means 6% (v)Ksr4)0%4 V'), and thus &% is R-reflecting.

We have thus shown that every model for L3 factors via an R-model. Further, since Setgr
has coproducts, by Theorem 4.2/ the coproduct of any pair of R-models, as models, exists,
and since any model factors via an R-model, this yields a cospan of R-models. Therefore
the R-models of L3 form a parametric behavioural skeleton, and so by Proposition 6.10,
the logic L3 is expressive for simulation of finitely branching Labelled Transition Systems
(van Glabbeek, 2001).

Note, it is easy to see that 0% 1is not injective, since if v and v' differ only in that for
some s € S(A), we have (I,s) € v and (I,s) ¢ V', but there exists an s’ € S(A) such that
s C &', and both (1,s") € v and (I,s") € V', then clearly 6% (v) = &% (V).

Thus an attempt to use the factorisation system of Example 6.1 to invoke Corollary 6.12

would have failed.

The fuzzy logic version is less interesting, but only because we have not properly con-

sidered the role of negation.

Example 6.5 (Fuzzy logic for simulation of LTSs). Ezample 4.23 is similar to Exam-
ple 4.22, however, the failure to have a corresponding expressivity result in the bisimu-

lation case (Example 6.2), means we cannot repeat the procedure of Example 6.4.

This is not to say that an expressivity result cannot be proven in the fuzzy case, but only
that our decision to remove negation from the logic in Example 4.21, without properly
considering what to put in its place, means that we do not have the tools we need to
hand.
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6.5 Discussion

As we have seen, expressivity of a modal logic can be characterised by the existence
of a particular structure to the category of its models. However, as we have also seen,
determining the existence of this structure can be far from easy. For expressivity with
respect to bisimulation, the existence of a factorisation system for the category X, can
prove very useful (Corollary 6.12), but in the case of simulation, this is often not the

case (Example 6.4).

However what Example 6.4 does show, is that proving expressivity for bisimulation may
be a stepping-stone to proving expressivity for simulation, or expressivity for some other
form of behavioural comparability. This is consistent with the proof of Theorem 6.4,
where a Q)-preserving model is constructed by “quotienting out” bisimilar states. The
question then is how to turn this into a general technique for proving expressivity, and

more work needs to be done to understand this.

The first step is probably to look at existing expressivity proofs in the literature, es-
pecially those not formulated in terms of coalgebras, and try to recast them into our
framework - for example the simulation result for Markov Processes of Desharnais et al.

(2003), or the approximation results for Markov Processes of Desharnais et al. (2004).

There is also a body of work in the literature (Klin, 2005, 2007; Schréder, 2008), where
given certain conditions, any functor T" admits a modal logic that is expressive for all T-
coalgebras. This is typically phrased in terms of the existence of a collection of polyadic
modalities and their corresponding predicate liftings, but from this we can construct
a functor L and a natural transformation §: LP = PT. This approach is different in
spirit from the approach taken in this chapter. Here the authors prove the existence of
an expressive logic, whereas our approach is to try to establish whether a given logic is
expressive. Finally, the above results only work for bisimulation, however recent work
has started to extend this to simulation as well (Kapulkin et al., 2010, 2012).
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Conclusions and Future Work

In this thesis we have presented our contribution towards a framework for the systematic
study of coalgebraic modal logic, where we have particularly emphasised the role that

enrichment should play in this framework.
The main technical conclusions from our work are as follows:
1. Enrichment is an essential part of the framework of coalgebraic modal logic, and

it controls the choice of behavioural questions that a modal logic is intended to

capture.

2. The choice of behavioural questions is limited only by our imagination, as it is

determined by the choice of a commutative unital quantale.

3. Expressivity of an L-algebra is determined by the structure of its category of
models. This then provides an avenue by which powerful tools of category theory

like factorisation systems, can be brought to bear when trying to prove expressivity.

However, the main conclusion that we feel should be drawn, is that category theory is
the natural language in which to frame modal logic. As a consequence, we feel it will
prove fruitful to further investigate which ready-made tools in the mathematical toolbox

of category theory can be applied to the study of modal logic.

7.1 Future Work

Many-Sorted Logics

The first possible extension to our work would be to look at the full many-sorted enriched

logical connections of Kurz and Velebil (2011), and try to extend this to many-sorted

147
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coalgebraic modal logic. Some work has already been done on many-sorted coalgebraic
modal logics, but not as far as we are aware in an enriched setting - for example Jacobs
(2001); Schroder and Pattinson (2007a); Kurz and Petrisan (2008). We would therefore

look to combine these approaches with the work presented in this thesis.

Traces

It may not have escaped the observant reader that there is one class of behavioural

comparisons that we have not mentioned - traces.

The first thing we can say is that besides asking whether two states have the same trace
(or set of traces in the case of non-determinism), we can also ask if one trace is a prefix
of another, or ask the distance between two traces, if there is a metric on the set of labels
say. Therefore we can ask of pairs of traces all the same sorts of questions we can ask of
pairs of states - “Are they equal?”, “Is one greater than the other?”, “How far apart are
they?”. So perhaps we can handle traces directly in our framework by treating them as

the “states” to be compared, and not the actual states themselves?

The coalgebraic approach to finite traces (Hasuo et al., 2007) replaces our functor T
with the composite functor TF and a distributive law A: FT = TF, here T is in
actual fact a monad and represents the branching type, and F' represents the transition
type. Then the initial F-algebra (the elements of which are the finite traces) lifts to a
final F-coalgebra, where F is the lifting of F to the Kleisli category K/(T) of T, and
any TF-coalgebra corresponds to a F-coalgebra. Thus for any TF-coalgebra there is
a unique F-coalgebra morphism between the corresponding F-coalgebra and the final
F-coalgebra. This is called the finite trace map of the T F-coalgebra (Hasuo et al., 2007).

This suggests that perhaps we should simply try to instantiate the category X in our
framework with the Kleisli category for T, however in the case of infinite traces the
situation is more complicated. In this case one uses the final F-coalgebra (the elements
of which are the maximal, possibly infinite traces), but in general this does not lead
to a final F-coalgebra in K¢(T), and the resulting trace map is an op-lax F-coalgebra
morphism (Cirstea, 2010). Lax and op-lax F-coalgebra morphisms also appear in Hasuo

(2006, 2010), where they are related to forward and backward simulations respectively.

Finally, the path based modal logics that are typically used when reasoning about infinite
traces are 2-sorted - there are formulae that represent states, and formulae that represent
paths (Cirstea, 2010). Therefore a full treatment of traces and path based modal logics

is likely to require a many-sorted variant of our framework.
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Modularity

Various authors have looked at modularity of coalgebras and coalgebraic modal log-
ics, for example Cirstea (2006) and Cirstea and Pattinson (2007), and in Kurz and
Petrigan (2008) it is shown that even if the resulting composite logic is single-sorted, a
many-sorted logic is required during the construction of this composite logic from the
component logics. Some work has also been done to explore the decidability of such

modularly defined coalgebraic modal logics (Schroder and Pattinson, 2007a).

More generally, in a monoidal category the tensor ® is often regarded as °

‘parallel com-
position”, and some authors take the view that composition should be regarded as a
colimit (Goguen, 1991). We therefore propose investigating how our framework could
be extended to incorporate some of these ideas. For example, we could assume that the
categories A and X are also monoidal categories (in addition to V), and that the functors

U,V,P,S,L and T are monoidal functors.

There is also the dual notion of forgetting, or hiding, parts of a system’s structure -
putting the lid on the box so we cannot see the internal workings. This introduces
the notion of 7 transitions - transitions that we cannot observe - and weak bisimulation,
something that as far as the author is aware, has not been given a satisfactory coalgebraic

treatment.

Approximations of Probabilistic Systems

In Section 5.3 we discussed several papers on Probabilistic PDL and approximations of
Markov Processes, and we believe that translating this work to our framework would
form an interesting case study, and help to clarify some of the questions raised in Sec-
tion 5.3.

General Proof Method for Expressivity

As was discussed in Section 6.5, we are currently lacking a general method for proving

expressivity in cases other than bisimulation. This warrants further investigation.

Proof Systems, Soundness, and Completeness

Finally, as discussed in Section 4.5, a coalgebraic modal logic can be given a proof sys-
tem, and then questions of soundness and completeness arise. Our systematic approach
to handling models of coalgebraic modal logics may provide tools for answering these

questions.






Appendix A

Category Theory

This chapter is not intended to cover the basics of category theory, for that the reader
is advised to try any of the many very good books on the subject, for example Adamek
et al. (1990) or Mac Lane (1997). Instead this chapter summarises some of the more

advanced topics we use in the rest of the text.

A.1 Initial Lifts and Fibrations

Definition A.1. Given a functor F': C — D, and a morphism f: D — F(C) in D, then
an F-initial 1ift of f is a morphism f: D — C in C such that F(f) = f, and for any
other pair of morphisms g: B — C in C, and h: F(B) — D in D such that

D f

F(C)

F(g)

F(B)
there exists a unique morphism h’: B — D such that
f

D C

hl

and F(h') = h.
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Proposition A.2. Given a functor F': C — D, the following commuting diagram in D

B
h g
f
wl A F(C)
h' g
B

and the F-initial lifts f: A — C, and g: B — C, then
W' =M oh,

and
W=1g < K" =1p.

Proof. The morphisms h, h”, and h” clearly exist by the universal property of the F-
initial lifts f and g. That A" = R/ o h follows from the uniqueness property associated
with the F-initial lift of g.

Now if i/ = 15, since h” = F(R”), we must have h" = 15. Conversely, if b/ = 1p, then

clearly 15 is a possible choice for R, and by uniqueness, it is the only one. ]

If in Proposition A.2, A = B, and k' and A" equal 14, but f and § remain distinct

F-initial liftings, then h and h/ define an isomorphism between A and B.

Corollary A.3. Given a functor F': C — D, F-initial liftings are unique up to a unique

isomorphism.

Definition A.4. Given a functor F': C — D, a morphism f: B — C in C is cartesian,
if for all pairs of morphisms g: A — C in C, and h: F(A) — F(B) in D such that

F(g)
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there exists a unique morphism h’': A — B such that

f

B C

h/

and F(h') = h.

Definition A.5. A functor F': C — D is called a fibration if for every C' € obj|C|,
and every morphism f: D — F(C) in D, there exists a cartesian morphism f': D' — C
in C, such that F(f") = f.

We have the following trivial proposition.

Proposition A.6. A functor F: C — D is a fibration, if and only if, every morphism
f: D — F(C) in D has an F-initial lifting.

A.2 Concrete Categories

For many categories A the objects can be viewed as sets with some additional structure,
and the morphisms as functions that preserve that structure. Thus by considering A
simply as a category we lose this additional information. The way to retain access to

this additional information is through a construction known as a concrete category.
The material in this section is taken from Addmek et al. (1990).

First we need a few preliminary definitions.

Definition A.7 (Addmek et al. (1990), Definition 3.27). Let F': A — B be a functor.

1. F is called an embedding provided that F is injective on morphisms.

2. F is called faithful provided that all the hom-set restrictions
Faar: A(A,A) — B(F(A), F(A))

are injective.
3. F is called full provided that all hom-set restrictions are surjective.

4. F is called amnestic provided that an A-isomorphism f is an identity whenever
F(f) is an identity.
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Remark A.8 (Addmek et al. (1990), Remark 3.28). Notice that a functor is:

1. an embedding if and only if it is faithful and injective on objects,

2. an isomorphism if and only if it is full, faithful, and bijective on objects.

Now that the preliminaries are out of the way we can provide the general definition of

a concrete category.

Definition A.9 (Adamek et al. (1990), Definition 5.1).

1. Let X be a category. A concrete category over X is a pair (A,U), where A
is a category and U: A — X is a faithful functor. Sometimes U is called the
forgetful (or underlying) functor of the concrete category and X is called the

base category for (A, U).
2. A concrete category over Set is called a construct.

Remark A.10. For a pair of categories A and X there may be more than one choice of

faithful functor U: A — X giving a concrete category over X.

Definition A.11 (Addmek et al. (1990), Definition 5.28). A concrete category (A, U)
over X is said to be (uniquely) transportable provided that for every A-object A and
every X-isomorphism f: U(A) — X there exists a (unique) A-object B with U(B) = X
such that f: A — B is an A-isomorphism.

In the category Set, monomorphisms are injective functions, and epimorphisms are

surjective functions. This leads to the following results.

Proposition A.12 (Addmek et al. (1990), Proposition 7.37).

1. Every representable functor preserves monomorphisms, i.e., if F': A — Set 1is
representable and if f is a monomorphism in A, then F(f) is a monomorphism in

Set (i.e., an injective function).

2. Every faithful functor reflects monomorphisms, i.e., if F: A — B is faithful and

F(f) is a B-monomorphism, then f is an A-monomorphism.

Corollary A.13 (Adamek et al. (1990), Corollary 7.38). In any construct all morphisms
with injective underlying functions are monomorphisms. When the underlying functor is
representable, the monomorphisms are precisely the morphisms with injective underlying

functions.

Proposition A.14 (Adamek et al. (1990), Proposition 7.44). Every faithful functor

reflects epimorphisms.
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Corollary A.15 (Adamek et al. (1990), Corollary 7.45). In any construct all morphisms

with surjective underlying functions are epimorphisms.

We shall also need the following generalisations of some of the above results.

Definition A.16 (Adamek et al. (1990), Definition 10.5). A pair (A, (f;)r), consisting
of an object A, and a family of morphisms f;: A — A; indexed by some class I, is called
a mono-source, if for any pair of morphisms r,s: B — A, if for = f;0s for all 4, then

r = S.

Proposition A.17 (Adamek et al. (1990), Definition 10.7). Representable functors
preserve mono-sources (i.e., if G: A — Set is a representable functor, and (A, (fi)r) is

a mono-source in A, then (G(A),(G(fi))r) is a mono-source in Set).

A.3 Factorisation Systems

Often we need to be able to factorise morphisms. The standard approach to this is via

a factorisation system (Adamek et al., 1990).

Definition A.18. In a category C, a pair (E, M) of classes of morphisms is called a

factorisation system for C, if the following hold:

1. If e € E, and h an isomorphism in C, then if h o e exists, hoe € E.
2. If m € M, and h an isomorphism in C, then if m o h exists, moh € M.

3. C has (E, M)-factorisations; i.e. every morphism f in C factors as f = moe,
with m € M and e € E.

4. C has the unique (E, M)-diagonalisation property; i.e. every commuting
square in C, with e € F and m € M, has a unique diagonal d such that the
following commutes

A—+=B
/
A
k

Definition A.19. In a category C a factorisation system (F, M) is called proper, if E

is a subclass of the epimorphisms of C, and if M is a subclass of the monomorphisms of

C.

The classes F and M of a factorisation system are closed under composition. We for-
malise this in the following proposition, which is a statement of parts of Adamek et al.
(1990, Propositions 14.6, 14.9).
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Proposition A.20. Let C be a category with a factorisation system (E,M).

1. Fach of E and M is closed under composition.
2. If foge M and f € M, then g € M.
3. If foge Eandg € E, then f € E.
A class of monomorphisms defines a notion of subobject in a category, and it is often

important that for every object in a category its collection of subobjects is a set. The
following definitions are standard (Adamek et al., 1990).

Definition A.21. Given a class M of monomorphisms in a category C we define the
following:
1. An M-subobject of an object A in C is a pair (S, m), where m: S — A is in M.

2. Two M-subobjects (S,m) and (S’,m’) of A are isomorphic if there exists an

isomorphism h: S — S’ such that m = m’ o h.

3. C is M-wellpowered if no object in C has a proper class of pairwise non-
isomorphic M-subobjects. Here by pairwise non-isomorphic we mean that any

pair of distinct subobjects are non-isomorphic.

Dually, for a class E of epimorphisms we can define an F-quotient object of an object
A as a pair (e,Q), where e: A — @ is in E. The obvious dual notion to C being

M-wellpowered is that C is E-cowellpowered.

A.4 Preservation and Creation of Limits and Colimits

The following definitions are standard (Adamek et al., 1990).
Definition A.22. Given a functor F': C — D, let J denote any small category, and
D: J — C any functor, then we say that:

1. F preserves limits of D, if and only if, (L,¢;)jey is a limit of D implies

(FL,F(¢j))jey is a limit of F'D.

2. I preserves limits of type J, if and only if, I’ preserves limits of D for all
D:J— C.

3. F preserves limits, or is continuous, if and only if, F' preserves limits of type

J for all small categories J.
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Definition A.23. Given a functor F': C — D, let J denote any small category, and
D: J — C any functor, then we say that:

1. F creates limits of D, if and only if, (L, ¢;) ey is a limit of F.D implies there
exists a unique cone (L', ¢})je; of D such that F(L',¢})jer = (L, ¢;)jer, and

moreover, (L, ¢);ey is a limit of D.
2. F creates limits of type J, if and only if, F' creates limits of D for all D: J — C.

3. F creates limits, if and only if, F' creates limits of type J for all small categories

J.

Definition A.24. Given a functor F': C — D, let J denote any small category, and
D: J — C any functor, then we say that:

1. F preserves colimits of D, if and only if, (L, $;) ey is a colimit of D implies
(FL,F(¢;))jey is a colimit of FD.

2. F preserves colimits of type J, if and only if, F' preserves colimits of D for all
D:J—C.

3. F preserves colimits, or is cocontinuous, if and only if, F' preserves colimits

of type J for all small categories J.

Definition A.25. Given a functor F': C — D, let J denote any small category, and
D: J — C any functor, then we say that:

1. F creates colimits of D, if and only if, (L, ;) ey is a colimit of FD implies
there exists a unique cocone (L', ¢})jey of D such that F(L', ¢})jer = (L, #;)jer,

and moreover, (L, ¢/);ey is a colimit of D.

2. F creates colimits of type J, if and only if, F' creates colimits of D for all
D:J—C.

3. F creates colimits, if and only if, F' creates colimits of type J for all small

categories J.

A.5 Natural Transformations in Several Variables

The notion of a natural transformation between two functors is well known, but it is
usually only presented in its most basic form, where the components are only indexed
by a single variable. However the definition can be readily extended to a many variable

form.

Recall the definition from Mac Lane (1997, I1.3) of the product of two categories.
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Definition A.26. Given two categories B and C, the product of B and C is a category
B x C with the following data:

1. obj|B x C| = obj|B| x obj|C| i.e. objects in B x C are pairs consisting of an object

from B and an object from C.

2. A morphism (B,C) — (B',C") is a pair (f, g) of arrows f: B — B and g: C — (',

and composition of two morphisms

(B,C) (f,9) (B',C") (f",9") (B",C")

is defined by the composites in B and C as

(f' 9o (f,9)=(f"of.d og)
Remark A.27. If we construct the product B°? x C, then the objects are still pairs from
B and C, but a morphism (f,g): (B,C) — (B’,C") is given by the pair f: B’ — B and
g: C — (', and the composite

(B, C) (fvg) (B/,C/) (f/mq/) (B,/, C//)

is defined as

(f ) o (f,9)=(fof g 0og).

Since B x C is a category, we can define functors F,G: B x C — D, and natural trans-
formations a: F' = G, with components a(p ¢y for every object (B,C) € obj|B x C|.
However, we can also consider naturality in B or C separately. The proposition below
shows that naturality can be examined variable-by-variable.

Definition A.28. Given a pair of functors F,G: B x C — D, a collection of morphisms
apc: F(B,C) — G(B,C), one for every pair (B,C) € obj|B x C|, is natural in
B, if for each C' € obj|C|, the components ap ¢ for all B € obj|B| define a natural

transformation

a_c: F(—-,C)= G(-,0).
Similarly for a natural in C.

Proposition A.29 (Mac Lane (1997), I1.3 Proposition 2). Given a pair of functors
F,G:B x C — D, a collection of morphisms apc: F(B,C) — G(B,C) is a natural
transformation «: F = G, if and only if, « is natural in B for each C € obj|C|, and
natural in C for each B € obj|B|.

A.6 Dinatural Transformations

The material in this section comes from Mac Lane (1997, IX.4).
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Definition A.30. Given a pair of functors F,G: C°? x C — D, we define a dinatural
transformation a: F = G as a collection of components ac: F(C,C) — G(C,C), one
for each C' € obj|C]|, such that for all morphisms f: C' — C’ in C the following diagram

commutes
F(C,C) ———=G(C,0)
F(f,y* W)
F(C',C) G(C,C")
Fm /(f,l;)
F(C',C) G(c, ¢
Ozcl

Now noting Remark A.27, we could consider any natural transformation 7: F' = G for
functors F,G: C°? x C — D. Then for any morphism f: C' — C’ we have the following

commuting cube

G(l /7f)
G(C',C) c G(c',c"
Tc!,c
/ G(f1e) Af
F(C',0) F(C',C) G(fler)
F(1cr.f)
F(fvlC/)
F(f1c) G(C,C) el(eNed)
TC,C G(lc’f)
F(C,C) F(C,C)

F(lc,f)

from which we see that the following two paths from opposing corners F(C’,C) and
G(C,C") commute

F(C,0)— 2% q(c,0)

F(f10) W)
F(C',0) G(C. ")
Fm 4:/)
F(C,C") lelteXed
ool

Thus 7 defines a dinatural transformation o, where the component ac = 7¢c.

Not every dinatural transformation arises from an ordinary natural transformation
though.
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In addition to the general definition of a dinatural transformation, it makes sense to
consider several common special cases where F' and G are “dummy” in one or more

variables.

1. If both F' and G are dummy in the first variable, then « is simply a natural

transformation between functors from C to D.

2. If both F' and G are dummy in the second variable, then « is simply a natural
transformation between functors from C°P to D, and this can be thought of as a

natural transformation between contravariant functors from C to D.

3. If F' is dummy in the first variable and G dummy in the second variable then the

following must commute

F(C) —2—=G(0)

F(f) G(f)

F(C) G(C)

Oécl
which is a natural transformation between a covariant F' and a contravariant G.

4. If F is dummy in the second variable and G dummy in the first variable then the

following must commute

F(C) s G(C)

F(f) G(f)

F(C) G(C)

Oéc/
which is a natural transformation between a contravariant ' and a covariant G.

5. If F' is dummy in both variables then the following must commute

D ae G(C,0)

agr G(1lo,f)
! ! !
G(C',C") — i G(c, ")

and « is called an extranatural transformation from D to G.



Appendix A Category Theory 161

6. If G is dummy in both variables then the following must commute

F(c,c) D | per oy
F(flc) agr
F(C,C) - D

and « is called an extranatural transformation from F to D.
Extranatural transformations occur in combinations with ordinary natural transforma-
tions, so we make the following general definition.

Definition A.31. Given a pair of functors
F:CPxCxA—B G:AxD?xD—B
we define a natural transformation «: F' = G as a collection of components
acap: F(C,C,A) = G(A,D,D),

one for each triple of objects (C, A, D) € obj|C x A x D|, such that the following hold:

1. for C' and D fixed, ac,— p is natural (in the ordinary sense) in A,
2. for A and D fixed, a_ 4 p is extranatural in C,
3. for C and A fixed, a¢ 4,— is extranatural in D.

Remark A.32. Any of the categories A, C, and D can be replaced by a product of
several categories, and in each case naturality in a product argument may be replaced
by naturality in each argument of the tuple (that makes up the product argument)
where the others are fixed. The ordinary natural transformation case is covered by

Definition A.28 and Proposition A.29, but the extranatural case is analogous.

A.7 Adjunctions

A very powerful idea in category theory is that of an adjunction. Here we summarise
the basic idea (and results) as typically given for pairs of covariant functors (Mac Lane,
1997), and then in the next section, present the corresponding results for pairs of con-

travariant functors - a so called dual adjunction, or “adjunction on the right”.
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Definition A.33. Given a pair of categories C and D, an adjunction from C to D is

given by a triple (F, G, ®), where F' and G are covariant functors as follows

and
®cp: D(F(C),D) = C(C,G(D))

is a natural isomorphism. We write F' 4 G, or (F' 4 G, ®) if we want to be explicit about
the choice of ®.

Definition A.34. Given an adjunction (F' 4 G, ®), we say that F' is the left adjoint
of G, and G is the right adjoint of F. Further, we say <I>E’1D(f): F(C) — D is the
left adjunct of f: C — G(D), and ®c p(g): C — G(D) is the right adjunct of
g: F(C)— D.

Adjunctions have lots of interesting properties, many of which are themselves sufficient

to define the concept of an adjunction. We start with the following.

Definition A.35. Given an adjunction (F' 4 G, ®), the unit is a natural transformation
n: 1l¢ = GF given by
no = ®cre) (1)),

and the counit is a natural transformation €: F'G = 1p given by
-1
€D = ¢’G(D),D(lG(D))‘

The next three propositions correspond to Mac Lane (1997, IV.1 Theorem 1).

Proposition A.36. Given an adjunction (F' 4 G, ®) then:
1. The right adjunct of any g: F(C) — D is given by
®c,p(g) = G(g) ome-
2. The left adjunct of any f: C — G(D) is given by

Oo'p(f) =epo F(f).
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Proposition A.37. Given an adjunction (F 4 G, ®) then the following hold:

1. ne is a universal morphism from C to G, i.e. any other morphism f: C — G(D)
from C to G factors as

f=G(g)enc,
for a unique g: F(C) — D (the left adjunct of f).

2. ep 1is a universal morphism from F to D i.e. any other morphism g: F(C) — D
from F' to D factors as

g=epoF(f),
for a unique f: C — G(D) (the right adjunct of g).
Proposition A.38. Given an adjunction (F 4 G, ®) then the following hold:

GeonG = 1g
eFoFn=I1p.

The following proposition, giving left and right adjuncts for composite morphisms, fol-

lows from the naturality of ®.

Proposition A.39. Given an adjunction (F 4 G,®), and morphisms f: C — G(D),
g: F(C)—= D, h: C" = C and k: D — D', then the following hold:

dcp(kog)=G(k)oPcp(g)
®c,p(go F(h)) = cp(g)oh

op(foh) = b()oFUw
Ol (G(k) o f) = ko ®ghy(f).

The following theorem collects together the different alternative definitions of an ad-

junction, and is very useful when trying to construct an adjunction.

Theorem A.40 (Mac Lane (1997), IV.1 Theorem 2). Any adjunction (F 4 G,®) is
completely determined by any of the following:

1. Functors F, G, and a natural transformation n: 1¢ = GF, such that each nc is
universal from C' to G. Then ® is defined by ®c p(g9) = G(g) o nc.

2. The functor G, and for each C in C, an object Dr in D, and a universal morphism
nc: C — G(Dp) from C to G. Then the functor F has object mapping F(C) =
Dp, and is defined on morphisms h: C — C’, by GF(h) ong = ncr o h.

3. Functors F, G, and a natural transformation €: FG = 1p, such that each ep is
universal from F to D. Then ®~1 is defined by ®;(f) = ep o F(f).
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4. The functor F', and for each D in D, an object Cq in C, and a universal morphism
ep: F(Cg) = D from F to D. Then the functor G has object mapping G(D) =
Cq, and is defined on morphisms k: D — D', by koep = ep o FG(k).

5. Functors F, G, and natural transformations n: 1c = GF and €: FG = 1p, such
that Ge onG = 1g and eF o Fnp = 1p. Then ® is defined by ®c p(g9) = G(g) o nc,
and ®~1 by CI)E}D(f) =epo F(f).

The next theorem is the very useful result that left adjoints preserve colimits (Defini-
tion A.24), and right adjoints preserve limits (Definition A.22).

Theorem A.41 (Mac Lane (1997), V.5 Theorem 1). Given an adjunction (F 4G, ®),
and functors S: 1 — C and T: J — D, then:

1. If S has the colimiting cone 7: S = A(C) in C, where A is the diagonal functor
A: C — Cl, then FS has the colimiting cone Fr: FS = FA(C) in D.

2. If T has the limiting cone 7: A(D) = T in D, where A is the diagonal functor
A:D — D, then GT has the limiting cone Gr: GA(D) = GT in C.

If both the unit and counit of an adjunction are natural isomorphisms, then we can

make the following stronger definition.

Definition A.42. Given an adjunction (F 4 G, ®), if the unit n: 1¢c = GF, and
counit £: F'G = 1p, are both natural isomorphisms, then (F' 4 G, ®) is an equivalence
between C and D.

A.8 Dual Adjunctions

In the definition of an adjunction the two functors are covariant, however it is often the
case that we have a similar situation, except that the two functors are contravariant.
This will lead to the definition of what is known as a dual adjunction, or an “adjunction
on the right” (Mac Lane, 1997, IV.2).

First though it should be noted, that if we are given a pair of contravariant functors as

follows
A X

\_/
P

then we can take the opposite of one of the categories and replace the two functors with

their covariant equivalents



Appendix A Category Theory 165

Then using Definition A.33 we can write (P* 4 5%, ®), where ® is the natural transfor-
mation ®: A?(P*(—),—) = X(—,5*(—)). Thus we can make the following definition.

Definition A.43. Given a pair of categories A and X, a dual adjunction from A to

X is given by a triple (P, S, ®), where P and S are contravariant functors as follows

and
Py x: A4, P(X)) = X(X,S5(4))

is a natural isomorphism. We write P .S, or (P .5, ®) if we want to be explicit about
the choice of .

Unlike the covariant case, for dual adjunctions we have the following result.

Proposition A.44. For dual adjunctions the following holds

(PH4S,®) < (SHP,d71)

Proof. By Definition A.43 we have (P - S, ®) corresponds to a natural isomorphism
Py x:A(A, P(X)) = X(X,5(A)), and (S 4 P, ¥) corresponds to a natural isomorphism
Uxa: X(X,5(A)) = A(A, P(X)), but clearly @Z}X is a suitable choice for Wx 4 (or
Ul for @4 x), and thus we have (P 4.5, ®) & (S P, &), O

Remark A.45. As a result of Proposition A.44, dual adjunctions do not have the concept

of a left or right adjoint. In this respect they are symmetric.

Definition A.46. Given a dual adjunction (P -5, ®), we say ®4 x(f): X — S(A) is
the dual adjunct of f: A — P(X), and @Z}X(g): — P(X) is the dual adjunct of
g: X — S(A). We write f° for ®4 x(f), and g* for @}}A(g), and note (f°)f = f and
(9*) =g.

Following Definition A.35, for a dual adjunction we can also define the unit and counit.
Once again, as a result of Proposition A.44 there is no real distinction between which
is which, though they remain distinct natural transformations. We adopt the following

convention.

Definition A.47. Given a dual adjunction (P - S, ®), the unit is a natural transfor-
mation p: 14 = PS given by

PA = q)ggA),A(lS(A)))
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and the counit is a natural transformation o: 1x = SP given by

ox = ®px)x(1px))-

Dual adjunctions have an analogue to Proposition A.36 as follows.

Proposition A.48. Given a dual adjunction (P - S, ®) then:

1. The dual adjunct of any f: A — P(X) is given by
fr=5(f)oox.

2. The dual adjunct of any g: X — S(A) is given by
g = P(g) © pa.

And an analogue to Proposition A.37.

Proposition A.49. Given a dual adjunction (P - S, ®) then the following hold:

1. pa is a universal morphism from A to P, i.e. any other morphism f: A — P(X)
from A to P factors as
[= P(fb) O PA,

for a unique f’: X — S(A) (the dual adjunct of f).

2. ox is a universal morphism from X to S, i.e. any other morphism g: X — S(A)
from X to S factors as
9= S(gﬁ) 00X,

for a unique g*: A — P(X) (the dual adjunct of g).

And also an analogue to Proposition A.38.
Proposition A.50. Given a dual adjunction (P =S, ®) then the following hold:
PoopP =1p

SpoagS =1g.

And an analogue to Proposition A.39.
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Proposition A.51. Given a dual adjunction (P - S, ®), and morphisms f: A — P(X),
g: X = S(A), h: AY - A and k: X' — X, then the following hold:

(foh) =S8(h)of
(P(k)o f) =f ok

(gok)* = P(k) o g
(S(h)og) =g'oh

Just as in Theorem A .40, there is a theorem that collects together the different alterna-
tive definitions of a dual adjunction, and is very useful when trying to construct a dual

adjunction.

Theorem A.52. Any dual adjunction (P = S, ®) is completely determined by any of
the following:

1. Contravariant functors P, S, and a natural transformation p: 14 = PS, such that

each pa is universal from A to P. Then ®~! is defined by d);(ylA(g) = P(g)opa.

2. The contravariant functor P, and for each A in A, an object Xg in X, and a
universal morphism ps: A — P(Xg) from A to P. Then the contravariant functor
S has object mapping S(A) = Xg, and is defined on morphisms h: A — A, by
PS(h)opa=pa oh.

3. Contravariant functors P, S, and a natural transformation o: 1x = SP, such that
each ox is universal from X to S. Then ® is defined by ®a x(f) = S(f)cox.

4. The contravariant functor S, and for each X in X, an object Ap in A, and a
universal morphismox: X — S(Ap) from X to S. Then the contravariant functor
P has object mapping P(X) = Ap, and is defined on morphisms k: X — X', by
SP(k)oox =ox:ok.

5. Contravariant functors P, S, and natural transformations p: 14 = PS and
o0: 1x = SP, such that Po o pP = 1p and SpocS = 1g. Then ® is defined by

4 x(f) =9(f)oox, and &~ by &', (9) = P(g) 0 pa.

Theorem A.41 states that left adjoints preserve colimits, and right adjoints preserve
limits. For a dual adjunction we make no distinction between left and right adjoints,
and since the functors P and S are contravariant, we have that both P and S map

colimits to limits.
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Theorem A.53. Given a dual adjunction (P 4 S, ®), and functors F: 1 — A and
G:J =X, then:

1. If F has the colimiting cone 7: F = A(A) in A, where A is the diagonal functor
A: A — Al then SF has the limiting cone St: SA(A) = SF in X.

2. If G has the colimiting cone 7: G = A(X) in X, where A is the diagonal functor
A: X — X! then PG has the limiting cone PT: PA(X) = PG in A.

Following Definition A.42, if both the unit and counit of a dual adjunction are natural

isomorphisms then we can make the following stronger definition.

Definition A.54. Given a dual adjunction (P - S, ®), if the unit p: 1, = PS, and
counit o: 1x = SP, are both natural isomorphisms, then (P -4 S, ®) is a dual equiva-

lence between A and X.
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Monoidal Categories

The idea of a monoidal category is that we make abstract some of the properties of the
category Set that are found to be so useful in mathematics. In this way we can make it
explicit when we use these properties, and moreover, we can prove results that only use

these properties, and thus that will hold for categories other than Set.

The following definition is standard material, see for example Mac Lane (1997, VIIL.1)
or Kelly (1982, Section 1.1).

Definition B.1. A monoidal category V = (V,,®,I,a,l,r) has the following data:

1. a category V,,
2. a functor ®: V, x V, — V, called the tensor product,
3. an object I of V, called the unit,

4. a natural isomorphism
axyz: (X®Y)®Z XY ®2)

called the associator,

5. natural isomorphisms

Ix: IT®@X =X
rx: X®I—-X

called the left unitor and right unitor,

169
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such that the following diagrams commute

WeX)o(YeZ)

AW QX,Y,Z AW, X,YQZ

((W®X)®Y)®Z W®(X®(Y®Z))
aw,x,y®lz lw®ax,y,z
WeXeY)eZ pr— We(XY)® Z)
(X ®Y ey X®(I®Y)
rx®ly 1xQly
XY

Remark B.2. In Mac Lane (1997) an additional axiom is required, specifically that
l; = ry, but this can be shown to follow from the other axioms (Eilenberg and Kelly,

1966, 1T Proposition 1.1), and so most authors do not make it part of the definition.

There is a famous result, a coherence theorem (Mac Lane, 1997, VIL.2), that says every
diagram of natural transformations formed from ®, I, 1_, the natural transformations

a, I, r, and their inverses, commutes.

Like in the case of the category Set, we frequently would like to talk about the elements
of and object in a monoidal category. The following definition has been found to be the
best statement of this notion, as the subsequent proposition generalises the fact that in

Set two functions f,g: X — Y are equal if they are the same on all elements of X.

Definition B.3. Given a monoidal category V, if V, is locally small, we can define the
representable functor
elem|—| =V,(I,—): V, — Set,

and for any object X of V,, we say f is an element of X, if and only if, f € elem|X],
ie. f: I — X.

Proposition B.4. For a monoidal category V, with V, locally small, if elem|—| is
faithful, then a pair of morphisms f,g € V,(A, B) are equal, if and only if they are the

same on all elements of A.

We also frequently want to think of an element of the tensor of two objects X and Y
to consist of a pair of elements, one from X, and one from Y. We can do this if the

canonical natural transformation below is a natural isomorphism.
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Proposition B.5. For a monoidal category V, with V, locally small, there exits a

canonical natural transformation
elem|X| x elem|Y| — elem|X ® Y|
natural in X and Y, given by

f®g XovY.

So far we have only captured the structure of Set that corresponds to the formation
of the cartesian product of sets. Another important property is that of a symmetry
(Mac Lane, 1997; Kelly, 1982).

Definition B.6. Given a monoidal category V, a symmetry is a natural isomorphism

cxy: X ®Y =Y ® X such that the following diagrams commute

Xoy —2 Jvex
Cy, X
lxgy
XY
® (Y ®2)
(X®Y)® YoZ)oX
cx,y®lz ay,z, X
Y oX)® ®(Z®X)
m %
®(X®2)
I9X X Xol
Ix X
X

Remark B.7. A monoidal category may have more than one symmetry.

Definition B.8. A monoidal category with a symmetry is called a symmetric monoidal

category.
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Once again, there is a coherence theorem (Mac Lane, 1997, XI.1) for symmetric monoidal

categories.

The final bit of structure that Set possesses that we require, is the existence of function
spaces - given two sets X and Y, the collection of all functions from X to Y is also a set,
and this set has certain properties. To do this we define what we mean for a symmetric
monoidal category to be closed (Mac Lane, 1997; Kelly, 1982).

Definition B.9. A symmetric monoidal category V is closed if for every object Y in
V, the functor — ® Y has a right adjoint [Y, —|, where [—, —]: V, x V, — V, is a functor

called the internal-hom, and the unit and counit are denoted

dX7y: X — [Y,X@Y]
ey,z: [Y,Z]@Y—)Z

with e called evaluation.

Proposition B.10 (Kelly (1982), Section 1.8). Given a symmetric monoidal closed

category V, for every object Y in V,, the morphisms

dX7y: X — [Y,X@Y]
ey,z: [Y,Z]@Y—)Z

are natural in X and Z, and extranatural in 'Y .

For a symmetric monoidal closed category V, where V, is locally small, we have that
VO(X ® Y7 Z) = VO(Xa [Yv Z])a

and thus
Vo(X,Y) = Vo(I ® X,Y) = V(I [X,Y]) = elem]|[X, Y]],
which corresponds to the following diagram

1

-
X X I®X
f
I ! f®lx
Y 7 X, Y]® X

where for f € elem|[X,Y]|, fT is the transpose of f under the adjunction —®X - [X, —],
and ff = ff ol)_(l.

We can summarise this in the following important proposition.
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Proposition B.11 (Kelly (1982), Section 1.5). Given a symmetric monoidal closed
category V, with YV, locally small, for every pairs of objects X and'Y in V,, we have a

natural isomorphism

elem|[X,Y]| 2 V,(X,Y)
f— fJr ol)_(1
(golx)t g

where —t and —% denote the transposes (in the two directions respectively) under the
adjunction — @ X 4 [X, —].

This bijection between the morphisms from X to Y and the elements of [X, Y], means
that for f: X =Y, g: Y — Z, and g*: I — [Y, Z], the following commutes

X Y
I I
Tex— "% rey g
o1
def gty
Y,Z|®Y Z

ey,z
and we see that
gof=eyvzol(gt® f)oly'

In particular, if f is an element y: I — Y of Y, we write g(y) for g oy, and we see that

gt can be regarded as actually being g, and e then evaluates g at y.

For this interpretation to make sense, we need e to also capture associativity of evalua-

tion, but that is precisely what the extranaturality of e from Proposition B.10 guarantees.

Often we will blur the distinction between elements of elem|[X,Y]| and elements of
Vo(X,Y), and use them interchangeably.
The following natural isomorphisms appear frequently, and are very useful.

Proposition B.12 (Kelly (1982), Section 1.5). Given a symmetric monoidal closed

category V, for every object X in 'V, there is a natural isomorphism
ix: X —[I,X]

given by ix = riZ and z';(l = 1?I,Z] o T[}}Z], where T and I are transposes under the

adjunction —® X 4 [X, —].
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Also, for all objects X, Y, and Z inV,, there is a natural isomorphism
pxyz: (X @Y, Z] = [X,[Y, Z]]

given by

pxyv.z = ((exev.z © axeyv,z,xy)H),

where the inner I is the transpose under — Y =Y, —], and the outer { is the transpose
under — @ X 4 [X, ], and

1 1 t
Pxy,z = (ex,[y,z} °© a[X,[Y,Z]],X,Y) ’

where the inner 1 is the transpose under — Y =Y, —], and the outer i is the transpose
under —@ (X ®Y)4[X®Y,—|.

Further, the following commutes

X, Y. Z]| @ (X ®Y)

-1
a[){W7 Wj@y

(X, Y. 2o X) @Y XY, Zl@(X®Y)
8x,[Y,Z]®1Yl J/BX(@Y,Z
[Y, Z] QRY o7 7

There is also the concept of a functor between monoidal categories that preserves the
monoidal structure (Mac Lane, 1997; Eilenberg and Kelly, 1966).

Definition B.13. Given a pair of symmetric monoidal closed categories V and V' a
symmetric monoidal closed functor F: V — V' has the following data:

1. a functor F: V, — V/,

2. a natural transformation F: F(=) ® F(-) = F(- ® —),

3. a natural transformation F': F([—, —]) = [F(=), F(-)],

4. a moprhism FO: I' — F(I),
such that all the following diagrams commute.
l/

F(X)

I'® F(X)

FOQ'1p(x) F(lpx)) Lpx)® F° F(rpcx))

F(I)®' F(X)
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(F(X)® F(Y)) & F(Z) “r00.r P F(X)® (F(Y)® F(Z))
Fx,y®1lp(z) 1p(x)® Fy,z
F(X®Y)® F(Z) F(X)®' F(Y ® Z)

Fxgy,z Fxyez
F(X®Y)® 2) i F(X® (Y ®Z))

F(X)& F(Y) BCTON F(Y)® F(X)

Fry Fr.x
FX@Y) = F(Y © X)

P px), PO PO — 91 ()
Fo Frx Flincx) [P0, Lp x|
F(I) ——— F(X.X) P, X))~ [F(1). F(X)]
F([Y. 2)) ) F((IX. Y], [X. 2])
Fyz Fix,v},1x,2]
[F(Y), F(Z)] [F(X,Y]), F([X, Z])]
FO) T, (29 e Fx.z)

[F(X), FY)I', [F(X), F(2)]']

[FX,Y’l[F(X),F(Z)]/]

= [F(X,Y), [F(X), F(2)]'T
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F(X®Y,Z]) Hexrz) F([X,[Y, Z]])
Fxov,z Fx [v,2)
[F(X oY), F(Z) [F(X), F([Y, Z])]
[Fx,y 1rz)) [Lrx) Py, z)f
[F(X) & F(Y), F(2)] [F(X), [F(Y), F(2)]"

Pr(x),F(Y),F(2)

There are also various strengthenings of a symmetric monoidal closed functor (Mac Lane,
1997, X1.2), the terminology can be somewhat confusing however. We make the follow-

ing, possibly non-standard, definitions, as they are the appropriate ones for our needs.

Definition B.14. A symmetric monoidal closed functor (F, F,F, FY) is:

1. a strong monoidal functor if F and F° are isomorphisms,
2. a strong closed functor if F and F° are isomorphisms,

3. a strong monoidal closed functor if F, F and F° are isomorphisms.

If in the above, the isomorphisms are strengthened further to identities, then we have a
strict monoidal functor, strict closed functor, or strict monoidal closed functor

respectively.

For a symmetric monoidal closed functor (F, F,FF Y), it is possible to define Fina

canonical way in terms of F as a transpose under the adjunction —®' F(X) - [F(X), —]'.
F
F(X.Y)) ' F(X) —""— F([X,Y]® X)

Fx,y®1p(x) Flex,y)

[F(X), F(Y)) @ F(X)

F(Y)

€p(x),F(v)

As the category Set was our prototype symmetric monoidal closed category, we can
extend the functor elem|—| : V, — Set to a symmetric monoidal closed functor (Eilen-
berg and Kelly, 1966, 1.3, Prop 3.11), (Eilenberg and Kelly, 1966, I1.8, Prop 8.1), and
(Eilenberg and Kelly, 1966, I11.1, Prop 1.3).
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Definition B.15. Given a symmetric monoidal closed category V, if V, is locally small,

we define a symmetric monoidal closed functor elem|—|: V — Set as follows:

1. take Definition B.3 and define

elem|—| =V,(I,—),

2. take Proposition B.5 and define

e/lér/nxy: elem|X| x elem|Y| — elem|X ® Y|

(f.9) = (f®g)olfl,
3. define the natural transformation
eTe?an: elem|[X,Y]| — Set(elem|X|,elem|Y)

as the transpose of

—
elemx y| x elem|eX,y|

elem|[X,Y]| x elem|X| elem|[X,Y] ® X|

elem|Y|

under the adjunction — x elem|X| 4 Set(elem|X|, —),

4. define the morphism

elem’: {x} — elem|]|

* = 1.






Appendix C

Enriched Category Theory

In its most simple terms, enriched category theory can be thought of as ordinary category
theory where the hom-sets have additional structure, for example morphisms can be
ordered pointwise. However, this is not the fully story. What is really going on in
enriched category theory, is that those properties of the category Set that are implicitly
assumed in ordinary category theory (hom-sets etc), are made explicit through the use

of a symmetric monoidal closed category (Definition B.9).

We will denote this symmetric monoidal closed category V, and in addition, throughout

we shall assume that V, is both complete and cocomplete, and V,, is locally small.

The material in this chapter closely follows that in the first few chapters of Kelly (1982),

but with occasional reference to the original material summarised therein.

C.1 Enriched Categories

Definition C.1. A V-category C has the following data:

1. a collection of objects obj|C|,
2. for each pair A, B € obj|C| a hom-object C(A, B) in V,,

3. for each triple A, B,C € obj|C| a composition law

Mapc: C(B,C)®C(A,B) = C(A,0C),

4. for every A € obj|C| an identity element

ja: I — (C(A,A),

179
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subject to the following diagrams commuting

ac(c,D),C(B,0),C(A,B)

(C(C,D) ® C(B,C)) ® C(A, B) C(C, D) ® (C(B, C) ® C(A, B))
Mp,c,p®lc(a,B) le(e,py®Ma,B,c
C(B, D) ® C(4, B) C(C, D) ® C(A,C)
Ma,B,D Ma,c,p
C(A, D)

Ma,B,B Ma,A,B
C(B.B) ® C(A, B) C(4, B) C(4, B) ® C(A, 4)
JiB®lc(a,B) lca,B)®ja
l(C(A,B) TC(A,B)
1©C(A,B) C(A,B)® I

The idea is that a morphism between objects A and B in a V-category C, is an element
(Definition B.3) of the hom-object C(A, B). The first diagram then ensures that com-
position of morphisms is associative, and the second diagram ensures that the identity

elements really are identities under composition.

Proposition C.2 (Kelly (1982), Section 1.8). In any V-category C, the composition law
Mapc: C(B,C)®C(A,B) — C(A4,0),
is natural in A and C, and extranatural in B, and the identity elements
ja: I — C(A4,A),
are extranatural in A.

Now that we have defined enriched categories we can proceed to define enriched functors

between them.

Definition C.3. A V-functor I': C — D is defined as:

1. an object function F': obj|C| — obj|D],

2. for every pair A, B € obj|C| there is a morphism

Fap: C(A,B) = D(F(A), F(B))
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subject to the following diagrams commuting

Ma,B,c

C(B,C)®C(A, B) C(A,C)

Fp,c®Fa,B Fac

D(F(B), F(C)) @ D(F(A), F(B)) D(F(A), F(C))

Mp(a),F(B),F(C)

C(A, A)
I/ Fa A
D(F(A4), F(A))

This definition is the obvious one to make, where the first diagram ensures that the
image of the composite of a pair of morphisms, is the composite of their images, and the

second diagram ensures that image of an identity is an identity.

Similarly we can define enriched natural transformations. Initially we shall only consider
the enriched version of an ordinary natural transformation, though subsequently (Sec-

tion C.6) we shall extend this to enriched extranatural transformations (Section A.6).

Definition C.4. A V-natural transformation o: F' = G: C — D is defined as an

obj|C| indexed family of components
as: I - D(F(A),G(A))

such that the following diagram commutes

T®C(4, B) 222 _n(F(B),G(B)) © D(F(A), F(B))

Ig(a,B) Mp(a),r(B),G(B)
C(A, B) D(F(A),G(B))

TC(A,B) Mp(4),G(4),G(B)

C(A, B) © I —5———>D(G(4), G(B)) © D(F(4), G(4))

We can also define the enriched analogue of composition of natural transformations.
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Definition C.5. The vertical composite 5 o a of the pair a: FF = G: C — D and
B: G = H:C — D has the component (o «a)4 given by

I (Foa)a D(F(A), H(A))

It Mp(a),G(A),H(A)

16 I ————=D(G(4), H(4)) ® D(F(4), G(A))

The composite of a: F'= G: C — D and H: D — E has the component (Ha)4 given
by

Hpa),6(4)

I 22> D(F(A), G(A)) E(HF(A), HG(A)),

and the composite of F': C — D and a: G = H: D — E has the component (aF')4
given by ap(4).
The enriched equivalent of the notion of the product of two ordinary categories (Defini-
tion A.26), is that of the tensor product of two V-categories.
Definition C.6. Given two V-categories B and C the tensor product of B and C is a
V-category B ® C with the following data:

1. obj|B®C| = obj|B| x obj|C]| i.e. objects in B& C are pairs consisting of an object

from B and an object from C.

2. For each pair of pairs (B, C), (B’,C") € obj|B ® C| the hom-object
(B ® (C)((B7 C)? (B/7 Cl)) = B(Bv B/) ® (C(C) C/)7

and the composition law

(B & C)((B', "), (B",C"))

®(B® C)((B,C),(B,C") — (B®C)((B,C),(B",C"))

M(B,C),(B’,C’),(B”,C”) .

is given by

(B ® (C)((Blu Cl)7 (B”a C”)) M(B,C),(B’,C’),(B”,C”)
2B C)((B,0),(B,C)

B(B, B") ® C(C,C")

MB,B’,B”®MC,C’,C”

(B(B',B") @ B(B,B'))
®(C(C, ")y v C(C,C"))
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where m: (WRX)®(Y®Z)=2(WRY)® (X ®Z) is defined in terms of a and c.
3. For each object (B, C) € obj|B @ C| the identity element
j(B,C) I — (IB ® C)((Ba 0)7 (B7 C))
is given by the composite

-1
I

[o1—"2%¢ _B(B,B)C(C,0).

This definition is quite general, but if the functor elem|—| is a strong monoidal functor,

then the natural transformation (Definition B.15)
e/l_E\t_l’;lX’yt elem|X| x elem|Y| — elem|X ® Y|

is a natural isomorphism. This means that the elements of (B® C)((B,C), (B’,C")) are
pairs of elements from B(B, B") and C(C,C"), and composition is then the direct gener-

alisation of composition for the product of ordinary categories given in Definition A.26.

Another basic construct that can be defined is that of an opposite V-category, and from

this we can defined contravariant V-functors.
Definition C.7. Given a V-category C we can define the opposite V-category C°P by
the following data:

1. obj|C°?| = obj|C|.

2. For each pair (A, B) € obj|C°| the hom-object C°?(A, B) = C(B, A), and the

composition law
MA,B,C: (COP(B,C) & (COP(A,B) — (COP(A, C)

is the composite

€c(C,B),C(B,A) Me, B, a
_—

C(C,B) ® C(B, A) C(B,A) ® C(C, B) C(C, A).

3. For each object A € obj|CP| the identity element
ja: I — CP(A, A)

is given by that from C.

Definition C.8. A V-functor F': C°? — D is called a contravariant V-functor from

C to D, and a V-functor F: B® C — D is a V-functor of two variables.
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We now have the definitions we need to handle enriched natural transformations of

several variables, and state an enriched version of Proposition A.29.

Proposition C.9 (Kelly (1982), Section 1.4). Given a pair of V-functors
FG:BeC—D,
a collection of morphisms
apc: I —D(F(B,C),G(B,C))

is a V-natural transformation «: F = G, if and only if, o is V-natural in B for each
C € obj|C|, and V-natural in C' for each B € obj|B|.

C.2 Underlying Ordinary Categories

Recall from Definition B.3 that for every monoidal category V there is a notion of

element, and a functor
elem|—| =V,(I,—): V, — Set,

that gives the set of elements of any object of V,. We can use this to define for every

V-category C, an underlying ordinary category C,.
Definition C.10. For any V-category C the underlying category C, (an ordinary
category) has the following data:

1. The same objects as C, i.e. obj|C,| = obj|C]|.

2. For any pair A, B € obj|C,| we define the hom-set
Co(A, B) = elem|C(A, B)|,

i.e. for any element f € elem|C(A, B)| given by f: I — C(A, B), there is a
morphism f: A — B in C,.

3. For any pair f: A — B and g: B — C of morphisms in C,, the composite g e f is
defined by the element

e 9o f Ma B,c

I®l

C(B,C) ® C(A, B) C(4,0).

4. For every A € obj|C,| the identity morphism is given by the identity element

ja: I — C(A,A).
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To see that this actually is a category, observe that associativity of composition follows

from the following diagram

I

it

I®I

% Lol
ar,1,1
IeI)eI I®(I®I)
(h@g)®f h&(g®f)
(C(C, D) © C(B,C)) & C(4, B) ———————=C(C, D) & (C(B,C) © C(4, B)
Mp,c,p®lc(a,B) le(o,p)®Ma,B,c
C(B,D)® C(A, B) C(C,D)® C(A,QC)

Ma,B,D Ma,c,D

4

C(A,D)
and the unit laws from

Ma.B,B Ma,A,B

C(B, B) ® C(A, B) C(A, B) ® C(A, A)

iB®lc(a,B) f 1ca,By®ja
lca, By TC(A,B)

I1®C(A,

1ref

I®l
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If every V-category has an underlying ordinary category, then it makes sense to ask if

every V-functor has an underlying ordinary functor. This turns out to be the case.

Definition C.11. For any V-functor F': C — D the underlying functor F,: C, — D,

(an ordinary functor) is defined as follows:
1. F, has the same object function as F, i.e. F,(A) = F(A).
2. For any pair A, B € obj|C,| the function
Fous: Co(A, B) - Dy(F(A), F(B))
is given by
elem|Fy | : elem|C(A, B)| — elem|D(F(A), F(B))|,
where for f € C,(A4, B), we write F((f) € Do(F(A), F(B)) for the composite

f . c(a,B)—An

D(F(A), F(B)),
and then since elem|—| is the hom-functor V,(I, —), we have

Foag(f) =elem|Fap|(f) = Fapof=F(f)

To see that this actually is a functor, observe that preservation of composition follows

from the diagram

it af Ma,B,c
LTI C(B,C) ® C(A, B) C(4,0)
Fp c®Fa B Fa,c
F(9)®F(f)
D(F(B), F(C)) ® D(F(A), F(B)) D(F(4), F(C))

MFp(a),F(B),F(C)

and preservation of identities is simply

from Definition C.3.
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It should be noted though, that whilst every V-functor has a unique underlying ordinary
functor, unless elem|—| is faithful, two V-functors can have the same underlying ordinary

functor.

Since every V-functor has an underlying ordinary functor we can define an ordinary

natural transformation underlying every V-natural transformation.

Definition C.12. For any V-natural transformation a: F' = G: C — D the underly-
ing natural transformation «,: F, = G,: C, — D, (an ordinary natural transfor-

mation) has the component a,4: Fy(A) — Go(A) given by the element

aa: I — D(F(A),G(A)).

That this indeed gives an ordinary natural transformation follows from the following

diagram
Tel—Y%1 _ roc, B~ p(F(B),G(B)) ® D(F(A), F(B))
it Ieta,B) Mp(a),F(B),G(B)
I ! C(A, B) D(F(A), G(B))
it TC(A.B) Mp(4),G(4),G(B)
181 ———C(4,B) & I ———D(G(4),G(B)) € D(F(4),G(4))

In the converse direction, given V-functors F,G: C — D, and an ordinary natural trans-
formation «,: F, = G,: C, — D, in the underlying categories, then «, lifts to a
V-natural transformation a: F = G: C — D, if

Vo(C(A, B), D(F(A),G(B)))

elem|—|c4 By, p(F(a),c(B))

Set(Co(4, B),Do(F(A4), G(B)))

is injective. For then the right-hand “hexagon” in the above diagram commutes if the

outer perimeter commutes. Thus we have the following proposition.

Proposition C.13. Given V-functors F,G: C — D, if the functor elem|—| is faithful,
then every ordinary natural transformation a,: F, = G,: C, — D, lifts to a V-natural

transformation a: F = G: C — D.
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For the tensor product of a pair of V-categories we need to be careful. It is easy to see
that (B ® C), and B, x C, must have the same objects, but they do not necessarily have

the same morphisms.

For any V-category C, the underlying hom-sets C,(A, B) = elem|C(A, B)|, so using

Definition B.15, we have the following result.

Proposition C.14 (Kelly (1982), Section 1.4). Given two V-categories B and C, the

natural transformation
J(;r/nx’y: elem|X| x elem|Y| — elem|X ® Y|

given by

=1
g Iel—1% _xgv

yields a canonical functor
H:B, xC, = (B C),.

Furthermore, for a V-functor F': B ® C — D, the partial functors of the composite

ordinary functor

B, x C, A (B ® C),

are precisely F(A, —), and F(—, B),.
Corollary C.15. Given two V-categories B and C, if the functor elem|—| is a strong
monoidal functor, then the natural transformation

e/lgr/nxyy: elem|X| x elem|Y| — elem|X ® Y|

given by

l
g Iol—1% _xgv

is a natural isomorphism, and the category B, x C, is isomorphic to the category
(B®C),.

For the opposite category of any V-category C, the underlying ordinary category is given
by the opposite category of C,.

Proposition C.16 (Kelly (1982), Section 1.4). For any V-category C

(COP)O = ((CO)OP-
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C.3 V is Enriched over Itself

Since V is a symmetric monoidal closed category, it carries sufficient structure to be able
to construct a V-category with the same objects as V,, and who’s hom-objects have the

same elements as the hom-sets of V,. The key to doing this are the internal hom-objects.
In a slight abuse of notation we also call this V-category V.

Definition C.17. We define the V-category \Y% by the following data:

1. V has the same objects as V,, i.e. obj|V| = obj|V,|.
2. For every pair A, B € obj|V| the hom-object V(A, B) = [A, B].

3. For all A, B,C € obj|V| the composition law
MA,B,C: [Ba C] ® [Av B] — [A7 C]

is given by the transpose under the adjunction — ® A - [A, —] of the composite
morphism ML p.c defined by

T
MABC

([B,C]®[A,B])® A — C

a[B,C],[A,B],A €B,C

[B,Cl® ([A,B]® A) [B,C|® B

1B,c1®€4,B

4. For every A € obj|V| the identity element j4: I — [A, A] is given by the transpose
under the adjunction — ® A 4 [A, —] of the morphism l4: [ ® A — A.

The above V-category V we actually want to call V, so why are we justified in doing
so? Well the underlying category V, of V has the same objects as V,, and by Proposi-
tion B.11,

Vo(A, B) = elem|[A, B]| 2 V,(A, B).
This therefore yields the following proposition.
Proposition C.18 (Kelly (1982), Section 1.6). For the V-category V, the underlying

category VO, 1s isomorphic to the category V,.

We henceforth identify V, and V,, and simply refer to V as V.
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C.4 Subcategories and Concrete V-categories

The material in this section does not follow Kelly (1982), but the definitions are reason-

ably obvious extensions of the corresponding notions from ordinary category theory.

We can define an enriched analogue of faithful functors (Definition A.7).

Definition C.19. Let F': C — D be a V-functor.

1. F is full, if for all A, B € obj|C|, F4 p is an epimorphism in V.
2. F is faithful, if for all A, B € obj|C|, F4 p is a monomorphism in V.
3. Fis fully faithful, if for all A, B € obj|C|, F4 p is an isomorphism in V,.
Note that in V, it is in general not the case that bimorphisms are isomorphisms, therefore

unlike the case in ordinary category theory, a V-functor that is both full and faithful, is

not necessarily fully faithful.

Now since elem|—| is representable, by Proposition A.12 it preserves monomorphisms,

and since all functors preserve isomorphisms, we have the following result.

Proposition C.20. Given a V-functor F: C — D we have the following:

1. If F is faithful, then the underlying ordinary functor ¥, is faithful.

2. If F' is fully faithful, then the underlying ordinary functor ¥, is full and faithful.

If in addition elem|—| is faithful, then by Proposition A.12 and Proposition A.14, we

have the following result.
Proposition C.21. Given a V-functor F: C — D, if elem|—| is faithful, we have the
following:

1. If the underlying ordinary functor F, is full, then F' is full.

2. If the underlying ordinary functor ¥, is faithful, then F is faithful.

Note that faithfulness of elem|—| is not enough to lift a full and faithful F, to a fully
faithful F'.

Using the above definitions we can define the notion of a subcategory for V-categories.

Definition C.22. Given a V-category C, a subcategory B of C is a V-category B,
where the objects of B are a subclass of the objects of C, and where there exists a
faithful V-functor I: B — C called the inclusion functor, that is the identity on
objects. If I is fully faithful, then B is a full subcategory of C.
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Proposition C.20 then immediately gives the following.

Proposition C.23. Given V-categories B and C then the following hold:

1. If B is a subcategory of C, then B, is a subcategory of C,.

2. If B is a full subcategory of C, then B, is a full subcategory of C,.

Conversely, by Proposition C.21 we have a partial dual result.

Proposition C.24. Given V-categories B and C, if elem|—| is faithful, and if B, is a
subcategory of C,, then B is a subcategory of C.

Note again, faithfulness of elem|—| is not enough to ensure a full subcategory at the

underlying ordinary category level, lifts to a full subcategory at the enriched level.

Just like in ordinary category theory (Definition A.9), the notion of a faithful functor

captures what it means for one category to be concrete over another.

Definition C.25. Let D be a V-category. A concrete V-category over D is a pair
(C,U), where C is a V-category and U: C — D is a faithful V-functor. Sometimes U
is called the forgetful (or underlying) V-functor of the concrete V-category and D is
called the base V-category for (C,U).

Since the underlying functors of faithful V-functors are faithful, we have the following

results.

Proposition C.26. Given a V-category D, if (C,U) is concrete over D, then (C,,U,)

is concrete over D,.

Proposition C.27. Given a V-category D and a V functor U: C — D, if elem|—| is
faithful, and if (C,,U,) is concrete over Dy, then (C,U) is concrete over D.

We also have an enriched version of unique transportability (Definition A.11).

Definition C.28. A concrete category (C,U) over D is (uniquely) transportable, if
for every isomorphism f € D,(U(C), D), there exists a (unique) C’ € obj|C| such that
U(C') =D and f: C — (' is an isomorphism in C,.

It is easy to see that this corresponds to unique transportability of (C,, U,) over D,, and
if elem|—| is faithful we have the converse result.

Proposition C.29. Given a V-category D, if the concrete category (C,U) over D is
(uniquely) transportable, then (C,,U,) is (uniquely) transportable.
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Proposition C.30. Given a V-category D and a V-functor U: C — D, if elem|—| is
faithful, and if the concrete category (Co,U,) over D, is (uniquely) transportable, then
(C,U) is (uniquely) transportable.

Finally, we can define what we mean by the skeleton of a V-category.

Definition C.31. A skeleton of a V-category C is any full subcategory B such that

each object of C is isomorphic to exactly one object of B.

C.5 Hom-Functors

One of the most useful tools in ordinary category theory are hom-functors, as from these
we can develop the notion of a representable functor. Enriched category theory is no

different in this respect.
We start with the definition of a covariant hom-functor.

Definition C.32. Given a V-category C, and an object A in C, we can define a co-

variant hom-functor C(4,—): C — V, as follows:

1. For any B € obj|C]| the action of C(A, —) on B is given by C(A, B).

2. For any pair B,C € obj|C| the morphism
C(A,—)B,c: C(B,C) = [C(A,B),C(A,C)]
is the transpose of M4 p ¢ under the adjunction —® A 4[4, —].

Now for f € elem|C(B, C)| = C,(B,C) we can form the following diagram
I ®C(A,B)

f®lc(a,m)

C(B,C)®C(A, B)

Ma,B.c
C(A,-)B,c®lca,B)

[C(A,B),C(A,C)]® C(A, B) C(A, Q)

€C(A,B),C(A,C)

and using C(A, —)p,c o f = C(A, f) (Definition C.11), and Proposition B.11, we have

the following result.
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Proposition C.33 (Kelly (1982), Section 1.6). Given a V-category C, and the covari-
ant hom-functor C(A, —), then for any f € elem|C(B,C)| = C,(B,C), the morphsim
C(A, f) is given by

—1

le(a, b I®lca,B) Ma Bc

C(A, B) I ®C(A,B) C(B,C)® C(A,B)

C(A,C).

Similarly we can define a contravariant hom-functor.

Definition C.34. Given a V-category C, and an object C' in C, we can define a con-

travariant hom-functor C(—,C): C — V, as follows:

1. For any A € obj|C| the action of C(—,C) on A is given by C(A4,C).
2. For any pair A, B € obj|C| the morphism
C(—,C)a,B: C(A,B) = [C(B,C),C(A,C)]
is the transpose of Ma p ¢ © cc(a,B),c(B,c) under the adjunction —® A 4[4, —].
Now for f € elem|C(A, B)| = C,(A, B) we can form the following diagram

[ ®C(B,C)

I®le(,0)

€C(A,B),C(B,0)

C(A, B) ® C(B,C) C(B,C) ® C(A, B)

C(=,C)a,B®1¢(B,0) Ma,B,c

[C(B,C),C(A,C)]®C(B,C)

C(A,0)
€C(A,B),C(A,C)
and using C(—,C)ap o f = C(f,C) (Definition C.11), Proposition B.11, and Defini-

tion B.6, we have the following result.

Proposition C.35 (Kelly (1982), Section 1.6). Given a V-category C, and the con-
travariant hom-functor C(—,C), then for any f € elem|C(A, B)| = C,(A, B), the
morphsim C(f,C) is given by

-1
Tc(B,0) les,0)®f Ma,B,c
-

C(B,0) —29 _¢(B,0)® I C(B,C) ® C(A, B)

C(4,0).
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It therefore follows from Proposition C.33 and Proposition C.35 that the following dia-

grams commute.

-1

l ®1 M
C(4, B) —* 1o (B, 0) L2548 (B, ) @ C(A, B) —APC . ¢4, 0)
u 171Qu s
I I®I
it
Cl 1 ®f M
C(B,0)—29 . ¢(B,0)® I —29"". C(B,C) ® C(A, B) — 2% . C(A,0)
u u®1y of
I — I®1
Tr

In both cases it should be observed that the lower path from I to C(A,C') correspond
to the composites f e u and u e f (in the underlying category C,) respectively, which

gives the following commuting diagrams.

C(A,f) C(1,0)

C(A, B) C(4,0) C(B,0) C(A,0)

Now it should be noted that for the covariant hom-functor C(A,—): C — V, that the
underlying functor C(A, —),: C, — V, is not the same as the ordinary hom-functor
Co(A,—): C, — Set. Specifically we have

C(A, —)opc: Co(B,C) = Vo(C(4A, B),C(4,C))
f—C(A, f): C(A,B) - C(A,QC)

Co(A, —)p.c: Co(B,C) — Set(Co(A, B), Co(A, C))
F i Co(A, f): Co(A, B) = Co(A, C).

However, since elem|—| is the ordinary hom-functor V,(I, —) (Definition B.3), we have
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elem|C(A, f)| : elem|C(A, B)| — elem|C(A, C)|
ur— C(A, f)ou

where the composition C(A4, f) ow is in V,. But as shown above, C(A, f)ou = f e u,
and since elem|C(A, B)| = C,(A, B) (Definition C.10), we have

elem|C(A4, f)| : C,(A,B) — C,(A,C)

ur— feu

but this is just the definition of C,(A, f).
The contravariant case proceeds similarly, and we have the following proposition.

Proposition C.36. Given a V-category C, then for all A, B,C € obj|C]|

Co(A, —) = elem|C(A, —),|
Co(—,C) = elem|C(—,C),|,

with

Co(A, =)B,c = elem|—|c4 pycac) © C(A, =)op c

Co(—=,C)a,p = elem|—|¢p oy c(a,0) © C(—=,Clog p-

C.6 Extranatural Transformations

As is the case in ordinary category theory (Section A.6) there is a more general notion
of naturality in enriched category theory than that of basic V-natural transformations
(Definition C.4).

We start by using the hom-functors of the previous section to redraw the commutativity

diagram from the definition of a V-natural transformation a: F' = G: C — D as follows.

Ga,B D(F(A),ap)

D(G(A), G(B)) 3o s@mr

It is this diagram that we shall proceed to generalise.
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Definition C.37. Given a V-functor F': C°? @ C — D we define an extranatural

transformation from D to F' by an obj|C| indexed collection of components
as: D — F(AA)

in D,, such that the following diagram commutes

F(A,—)a,B

C(A, B) D(F(A, A), F(A, B))

F(—,B)a,B D(aa,F(A,B))

D(F(B,B),F(A,B)) D(D, F(A, B))

D(ap,F(A,B))

Similarly we have a dual notion.

Definition C.38. Given a V-functor F': C? @ C — D we define an extranatural

transformation from F' to D by an obj|C| indexed collection of components
ap: F (A, A) — D
in D,, such that the following diagram commutes

F(Bv_)A,B

C(A, B) D(F(B,A),F(B,B))

F(—,A)a,B D(F(B,A),ap)

D(F(B,A),F(A,A)) D(F(B,A),D)

D(F(B,A),ax)

Like the case for V-natural transformations (Definition C.5), we can define the composi-
tion of a V-extranatural transformation with a V-functor to yield another V-extranatural

transformation.

Definition C.39. Given the V-functors F': C?  C - D, G: D - E, and H: B — C,
the composite of the V-extranatural transformation ag: D — F(A, A) and G, has the

component (Ga) 4 given by
G(aa): G(D) - GF(A,A),
and the composite with H, has the component (aH )4 given by

agay: D — F(H(A), H(A)).
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Dually, the composite of the V-extranatural transformation 54: F(A, A) — D and G,
has the component (Gf) 4 given by

and the composite with H, has the component (5H )4 given by

Bray: F(H(A),H(A)) = D.

Using the tensor product of two V-categories we can handle V-extranatural transforma-
tions of several variables, and extend the V-natural transformation result of Proposi-
tion C.9.

Proposition C.40 (Kelly (1982), Section 1.7). Given a V-functor
F:BeC)”?® (BxC)—D,

a collection of morphisms
apc: K = F(B,C,B,C)

is V-extranatural in (B, C), if and only if, o is V-extranatural in B for each C € obj|C]|,

and V-extranatural in C for each B € obj|B|.

It is not usually necessary to make an explicit distinction between V-naturality and
V-extranaturality, and indeed, in line with the ordinary category theory case (Defini-

tion A.31), both can be combined into a general notion of V-natural transformation.

Definition C.41. Given a pair of V-functors
F:C?C®A—DB G:AD?®D —B
we define a V-natural transformation «: F = G as a collection of components
acap: F(C,C,A) - G(A,D, D),

one for each triple of objects (C, A, D) € obj|C x A x D|, such that the following hold:

1. for C' and D fixed, ac,— p is V-natural (in the ordinary sense) in A,
2. for A and D fixed, a_ 4 p is V-extranatural in C,
3. for C and A fixed, ac 4 — is V-extranatural in D.

Remark C.42. Any of the V-categories A, C, and D can be replaced by a tensor product
of several V-categories, and in each case V-naturality in a tensor product argument may

be replaced by V-naturality in each argument of the tuple (that makes up the tensor
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product argument) where the others are fixed. The ordinary V-natural transformation

case is covered by Proposition C.9, and the V-extranatural case by Proposition C.40.

Proposition C.13 also extends to cover this expanded notion of V-natural transformation.

Proposition C.43. Given a pair of V-functors
F:C?C®A—DB G:AD?®D —B
if the functor elem|—| is faithful, then every ordinary natural transformation
a,: F, = G,

lifts to a V-natural transformation a: F = G.

We have come across many such V-natural transformations so far, without realising
(Kelly, 1982, Section 1.8):

1. For a V-category C, the composition law and identity elements
Mapc:C(B,C)®C(A,B) — C(A,C)
ja: I — C(AA)
are V-natural in every variable.

2. For a V-functor F': C — D, the family of morphisms
Fap: C(A,B) — D(F(A),F(B))
are V-natural in A and B.
3. For the V-category V, the unit and counit
dxy: Y = [V, X ®Y]
eyvz: Y, Z)QY = Z
are V-natural in every variable, and the isomorphisms
ix: X — [I,X]
pxy,z: (X @Y, Z] = [X,[Y, Z]]

are also V-natural in every variable.
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Remark C.44. The case of the V-functor F': C — D is worth further discussion. The V-
natural transformation F4 _ has the underlying ordinary natural transformation (Fa _),,

which is not the same as F,4 _, as can be seen if we spell out the signatures

(Fa_)o: C(A, =)o = D(F(A), F(=))o: Co — V,
Fya_: Co(A, =) = Dy(F(A), F(=)): C, — Set.

Proposition C.45 (Kelly (1982), Section 1.8(m)). A family of morphisms
fpaBEecr: F(D,D,A,B)® G(E,E,A,C) — H(F,F,B,C)

1s V-natural in any of its variables, if and only if, the corresponding transpose
fhappcr: F(D.D,A B)—[G(E,E,AC),H(F,F,B,C)|

18 SO.

C.7 The Yoneda Lemma

We now state (without proof) from Kelly (1982, Section 1.9) a weak form of the Yoneda
Lemma for V-categories. It is a weak form because the isomorphism is a bijection of

sets, not an isomorphism of V, objects.

Lemma C.46 (Yoneda (weak form)). Given a covariant V-functor F: C — V, and
K € obj|C|, if we write V—mat(C(K, —), F) for the set of all V-natural transformations

from the hom-functor C(K,—) to F, then we have an isomorphism
V—nat(C(K,—), F) ¥ elem|F(K)|,

where any o: C(K,—) = F is mapped to n: I — F(K) given by

I— % L CKK)—5 . P(K),
and any n: I — F(K) is mapped to a: C(K,—) = F given by

Fic.a [0, F(A)] i1

[, F(A)]

C(K,A) [F(K), F(A)] F(A).

Though not in Kelly (1982), there is also a contravariant form of the Yoneda Lemma.
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Lemma C.47 (Contravariant Yoneda (weak form)). Given a contravariant V-functor
F:C—YV, and K € obj|C|, if we write V—nat(C(—, K), F') for the set of all V-natural

transformations from the hom-functor C(—, K) to F, then we have an isomorphism
V—nat(C(—, K), F) = elem|F(K)|,

where any o: C(—, K) = F is mapped to n: I — F(K) given by

I— 7% L CKK)—% - P(K),
and any n: I — F(K) is mapped to a: C(—, K) = F given by

Fa i

C(A, K)

[F(K), F(A)]

F(A).

We shall also need the following special cases. See Kelly (1982, Section 1.9) for the first,

the others are simple variants.

Proposition C.48.

1. Given the covariant V-functors F: C — D, and G: D — C, for all C € obj|C]|,

there exists a bijection
{O[C,*: ]D)(F(C)a 7) = (C(Cv G(i))} = {7703 C— GF(C)}v

such that for every V-natural transformation ac,—, there is a unique nc, V-natural

in C, given by the image of 1p(c) under
elem|ag, ()| : Do(F(C), F(C)) - Co(C.GF(C).

and for every ng, V-natural in C, there is a unique V-natural transformation ac —,

where the component ac, 4 is given by

Gpcy,a C(nc,G(A))
-

D(F(C), A)

C(GF(C)), G(4)) C(C, G(A)).

2. Given the covariant V-functors F: C — D, and G: D — C, for all D € obj|D|,

there exists a bijection
{a_p: C(=,G(D)) = D(F(-),D)} = {np: FG(D) — D},

such that for every V-natural transformation o_ p, there is a unique np, V-natural

in D, given by the image of 1g(p) under

elem|ag(p) p| : Co(G(D),G(D)) = Do(FG(D), D),
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and for every np, V-natural in D, there is a unique V-natural transformation

a_ p, where the component oy p is given by

Fa6(p) D(F(A),1D)
—_—

C(4,G(D))

D(F(A), FG(D)) D(F(A), D).

3. Given the contravariant V-functors F: C — D, and G: D — C, for all C' € obj|C]|,

there exists a bijection
{a_c: D(— F(C)) = C(C,G(-))} ={nc: C — GF(C)},

such that for every V-natural transformation a_ ¢, there is a unique nc, V-natural

in C, given by the image of 1p(c) under
elem|aF(C),C} : DO(F(C)vF(C)) - (CO(Cv GF(C))a

and for every nc, V-natural in C, there is a unique V-natural transformation a_ ¢,

where the component ay o 1s given by

Gar) (nc,G(A))

C(GF(C), G(A)) —

D(A, F(C)) C(C,G(A)).

4. Given the contravariant V-functors F: C — D, and G: D — C, for all D € obj|D|,

there exists a bijection
{ap_-: C(G(D),—) = D(F(-),D)} = {np: FG(D) — D},

such that for every V-natural transformation ap —, there is a unique np, V-natural

in D, giwen by the image of 1g(p) under
elem|ap ¢ (p)| : Co(G(D), G(D)) = Dy(FG(D), D),

and for every np, V-natural in D, there is a unique V-natural transformation

ap,—, where the component ap 4 s given by

Fao(py,a

C(G(D), A) D(F(A), FG(D))

C.8 Universal Elements and Universal Morphisms

The material in this section follows that of Mac Lane (1997, 111.1-2), adapted to the

enriched setting.
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We start with the idea of a universal element. This is an idea that possibly finds its
true home in enriched category theory, as it is in this setting that we have formalised

the notion of element.

Definition C.49. For a covariant V-functor F': C — V, a universal element of ' is a
pair (A, u), where A € obj|C|, and u € elem|F'(A)| (i.e. u: I — F(A)), such that for all
pairs (B, f), with B € obj|C| and f € elem|F(B)|, there exists a unique f’ € C,(A4, B)
with F(f')eu = f.

Vv, Co

I u F(A) A
; F(f') I

F(B) B

We can also define universal morphisms to or from a V-functor. These will be familiar
to any student of ordinary category theory, and since formally we don’t have morphisms
in a V-category, the correct place to define them is in the corresponding underlying
categories. However, as we shall see in Proposition C.59, since universal morphisms are

defined at the level of the underlying categories, they are really too weak a concept.

Definition C.50. For a covariant V-functor £': C — I, and an object D in I, a pair
(A, u), where A € obj|C|, and u € D,(D, F(A)), is a universal morphism from D to
F, if for all B € obj|C| and f € D,(D, F(B)), there exists a unique f' € C,(A, B) with
F(f'Yeu=f.

D, C,

D = F(A) A
; F(f") f

F(B) B

The dual definition is a universal morphism from a functor.

Definition C.51. For a covariant V-functor F': C — D, and an object D in D, a pair
(B,u), where B € obj|C|, and u € D,(F(B), D), is a universal morphism from F
to D, if for all A € obj|C| and f € D,(F(A), D), there exists a unique [’ € C,(A, B)
with ue F(f') = f.
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D, C,
F(A) A

() / Iz
F(B) D B

Now we know from Section C.5 on hom-functors, that if F': C — D is covariant, then

for f’ € C,(A, B) we have the following bijection of diagrams

D, Vo
D = F(A) I = D(D, F(A))
; F(f) = ; D(D,F(f"))
F(B) D(D, F(B))
and similarly
D, Vo
F(A) I = D(F(B), D)
! f ’
F(f) \ = ; D(F(f),D)
F(B) m D D(F(A), D)

This then leads us to the following propositions.

Proposition C.52. For a covariant V-functor F: C — D, a pair (A,u: D — F(A)) is

a universal morphism from D to F, if and only if, (A,u: I — D(D, F(A))) is a universal
element of D(D, F(—)).

Proposition C.53. For a covariant V-functor F': C — D, a pair (B,u: F(B) — D)
is a universal morphism from F to D, if and only if, (B,u: I — D(F(B),D)) is a
universal element of D(F(—), D).

As usual there are contravariant versions of universal elements and universal morphisms.
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Definition C.54. For a contravariant V-functor F': C — V, a universal element of
F is a pair (A,u), where A € obj|C|, and u € elem|F(A)| (i.e. u: I — F(A)), such

that for all pairs (B, f), with B € obj|C| and f € elem|F(B)|, there exists a unique
1€ Cy(B,A) with F(f')eu=f.

VO (CO

I v F(A) A
; F(f) y

F(B) B

Definition C.55. For a contravariant V-functor F': C — I, and an object D in D, a
pair (A, u), where A € obj|C|, and u € D,(D, F(A)), is a universal morphism from

D to F, if for all B € obj|C| and f € D,(D, F(B)), there exists a unique f’ € C,(B, A)
with F(f")eu=f.

D, Co
D u F(A) A
; F(f) r
F(B) B

Definition C.56. For a contravariant V-functor F': C — I, and an object D in D, a
pair (B, u), where B € obj|C|, and u € D,(F(B), D), is a universal morphism from

F to D, if for all A € obj|C| and f € D,(F(A), D), there exists a unique f’ € C,(B, A)
with uw e F(f') = f.

D, c,
F(A) A

) ! Iz
F(B) D B
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Just like in the covariant case, universal elements and universal morphisms are essentially

the same thing.

Proposition C.57. For a contravariant V-functor F: C — D, a pair (A,u: D — F(A))
is a universal morphism from D to F, if and only if, (A,u: I — D(D,F(A))) is a
universal element of D(D, F(—)).

Proposition C.58. For a contravariant V-functor F': C — D, a pair (B,u: F(B) — D)
is a universal morphism from F to D, if and only if, (B,u: I — D(F(B),D)) is a
universal element of D(F(—), D).

For a covariant V-functor F': C — D, the Yoneda Lemma (Proposition C.48), when
applied to the functor D(D, F(—)), gives a bijection between V-natural transformations
of the form ap: C(A4, B) — D(D, F(B)), and morphisms u: D — F(A).

So given a morphism w: D — F(A), by Proposition C.48, we have that
ap = D(U,F(B)) o FA,B,

and so if u is universal from D to F', elem|ag|: C,(A, B) — D,(D, F(B)) is a bijection

of hom-sets.

Conversely, if ap is a natural isomorphism, then for any f: D — F(B), there is a unique
f'+ A — B such that ag(f’) = f. So by the naturality of o, we have f = F(f")ea4(14),
but by Yoneda, u = as(14), and so f = F(f’) e u. Thus w is universal from D to F.

We can follow a similar argument for the other cases in Proposition C.48, and this yields

the following proposition, which is essentially Mac Lane (1997, I11.2 Proposition 1).

Proposition C.59.

1. Given a covariant V-functor F: C — D, and A € obj|C| and D € obj|D|, then

there is a bijection between natural isomorphisms of the form
ap: Co(A,B) — D,(D, F(B)),

and morphisms u: D — F(A) that are universal from D to F.

2. Given a covariant V-functor F': C — D, and A € obj|C| and D € obj|D|, then

there is a bijection between natural isomorphisms of the form
ap: Co(B,A) —» D,(F(B), D),

and morphisms u: F(A) — D that are universal from F to D.
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3. Given a contravariant V-functor F: C — D, and A € obj|C| and D € obj|D|,

then there is a bijection between natural isomorphisms of the form
ap: Co(B,A) = D,(D, F(B)),

and morphisms u: D — F(A) that are universal from D to F.

4. Given a contravariant V-functor F: C — D, and A € obj|C| and D € obj|D|,

then there is a bijection between natural isomorphisms of the form
ap: C,(A,B) - D,(F(B), D),

and morphisms u: F(A) — D that are universal from F to D.

C.9 Representable Functors

Just like in ordinary category theory, from the definition of an enriched hom-functor we

can define what it means for a V-functor to be representable.

Definition C.60. A covariant V-functor F': C — V is representable, if there exists
K € obj|C|, and a V-natural isomorphism

a:C(K,—)=F:C—V.

The pair (K, «) is a representation of F', and the corresponding element n: I — F(K)
given by the Yoneda Lemma is called the unit of the representation.

Definition C.61. A contravariant V-functor F': C — V is representable, if there

exists K € obj|C|, and a V-natural isomorphism
a:C(—,K)=F:C—V.

The pair (K, «) is a representation of F', and the corresponding element n: I — F(K)

given by the Yoneda Lemma is called the counit of the representation.

Suppose we have two representations (K, «) and (K',a’) for a covariant V-functor F.
Then clearly since o and ' are isomorphisms, for all A € obj|C|, there exists an isomor-
phism between C(K, A) and C(K’, A). Now by the Yoneda Lemma (Proposition C.48),
this means there exists a unique k: K’ — K in C,, such that the isomorphism between
C(K,A) and C(K', A) is

C(k, A): C(K, A) — C(K', A).

Moreover, it is clear that C(k, A) is an isomorphism if and only if k is, which yields the

following proposition.
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Proposition C.62 (Kelly (1982), Section 1.10). A representation (K, «) of a covariant
V-functor F: C — V is unique up to isomorphism, i.e. given another representation
(K',d), there exists a unique isomorphism k: K' — K, such that for all A € obj|C]|,
ag=aoyoC(k,A).

Similarly for a contravariant V-functor.

Proposition C.63. A representation (K,«) of a contravariant V-functor F: C — V
is unique up to isomorphism, i.e. given another representation (K', '), there exists a
unique isomorphism k: K — K', such that for all A € obj|C|, asa = /4 0o C(A, k).

Given a representation (K, «) for a contravariant V-functor F': C — V| it is straightfor-

ward to show that the following diagram commutes.

(4, B) e [F(B), F(A)]

Igea,B) Mp(B),c(B,K),F(A)
I ®C(A, B) [C(B, K), F(A)] ® [F(B),C(B, K)]
Mc(B,K),c(A,K),F(A)

TIGC(A,B) ®L[F(B),C(B,K)]
A K) F(A B. K A K

(I&C(A,B)) &I ([C(A,K), F(A)] ® [C(B, K),C(4, K)])
(A®C(—,K)a,5)®ag" ®[F(B),C(B, K)]

A similar diagram can be constructed for the covariant case, and together they yield the

following propositions.

Proposition C.64. Given a covariant V-functor F': C — V, and a representation
(K, a), for any f € Co(A, B),

F(f)=apoC(K,f)oa,"

Proposition C.65. Given a contravariant V-functor F': C — V, and a representation
(K, a), for any f € Co(A, B),

F(f)=aasoC(f,K)oag

Suppose we have a covariant V-functor F': C — V, and a representation C(K,—) = F.
Now we know from Proposition B.12, that for all X € obj|V|, we have X = [I, X], so

C(K,—)2FI[I,F(-)]
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Similarly, if F' is contravariant, we have

C(—, K) = F 21, F(-).

Proposition C.59 then says that there exists a unique morphism u: I — F(K) that is

universal from I to F' (the unit or counit of the representation to be precise).

We can summarise this as the following proposition, that can be seen to be one direction
of Mac Lane (1997, I11.2 Proposition 2).

Proposition C.66. Given a V-functor F: C — V, for every representation (K, ),

there exists a unique morphism w: I — F(K) that is universal from I to F.

Remark C.67. It should be noted that Proposition C.66 is one directional, unlike Mac Lane
(1997, II1.2 Proposition 2), where each universal morphism from I to F yields a repre-
sentation. The reason for this is simple, universal morphisms are defined at the level of
the underlying categories, and can only induce bijections of hom-sets, not isomorphisms

in V of hom-objects.

C.10 Adjunctions

We continue our enrichment of ordinary category theory notions by looking at adjunc-

tions.

Definition C.68. A V-adjunction n,¢: F 4 G: D — C, between covariant V-functors
F: C — D (the left adjoint), and G: D — C (the right adjoint), consists of V-natural
transformations n: 1 = GF (the unit), and €: FG = 1 (the counit), satisfying the

triangular equations

eFoFn=1p
GeonG = 1g.

Now it is well known in ordinary category theory that an adjunction corresponds to a
bijection of hom-sets (Definition A.33), so we can consider a V-natural transformation
of the form

®cp: D(F(C),D) — C(C,G(D)).

By the Yoneda Lemma (Proposition C.48), ¢ p = C(nc, G(D)) o Gp(c),p for a unique
nc: C — GF(C), V-natural in C, and similarly for V¢ p: C(C,G(D)) — D(F(C), D),
we have that Vo p = D(F(C),ep) o Fogpy for a unique ep: FG(D) — D, V-natural
in D.
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We would like ®¢ p to be an isomorphism with W p its inverse, so we want

Ve po®ep=lpre),n)

®cpoV¥op = lewcapy:

Setting D = F(C') into the first equation, and considering the action on 1 F(C)s We Iecover
the first of the triangular equations. Similarly, setting C' = G(D) in the second equation

recovers the second triangular equation.
Thus we have established the following result.

Proposition C.69 (Kelly (1969), Proposition 3.1). There is a bijection between V-
adjunctions
n,e: F4G: D — C,

and V-natural isomorphisms
®c,p: D(F(C), D) = C(C,G(D)),
where

®c,p = C(nc, G(D)) o Gr(c).p
o' =D(F(C),ep) o Foa)-

From the definition of the underlying ordinary natural transformation of a V-natural
transformation (Definition C.12), it is clear that any V-adjunction n,e: F 4G: D — C
has an underlying ordinary adjunction 7,,&,: F, 4 Go: D, — C,, and that the corre-
sponding isomorphism of hom-sets is elem|®¢ p| : D, (F(C), D) = C,(C,G(D)).

Proposition C.70 (Kelly (1982), Section 1.11). Given a V-adjunction
n,e: F4G: D — C,
there is an underlying ordinary adjunction
Nos€o: Fop 1 Go: Dy, — C,.
Moreover, for the isomorphism of hom-objects
®¢,p: D(F(C), D) = C(C,G(D)),
the corresponding isomorphism of hom-sets is

elem|®c p| : D, (F(C), D) = C,(C,G(D)).
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If elem|—| is faithful, the existence of an ordinary adjunction between the ordinary func-
tors underlying a pair of V-functors, is enough to guarantee a V-adjunction. Faithfulness
of elem|—| ensures that the unit and the counit are V-natural (Proposition C.43), and
since a V-natural transformation and its underlying ordinary natural transformation

have the same components, the triangular equations hold automatically.

Proposition C.71. Given covariant V-functors F: C — D and G: D — C such that
the underlying ordinary functors form an ordinary adjunction n,,€,: Fo 4 Go: Dy — C,,
then if the functor elem|—| is faithful, this lifts to a V-adjunction n,e: F 4G: D — C.

From Proposition C.69 it is clear that their is a tight relationship between V-adjunctions
and representable V-functors, and this can be made precise as follows.
Proposition C.72 (Kelly (1982), Section 1.11).
1. A covariant V-functor G: D — C has a left adjoint exactly when each C(C,G(—))
s representable.
2. A covariant V-functor F': C — D has a right adjoint exactly when each D(F(—), D)
is representable.
The notion of a V-adjunction can be strengthen to that of an equivalence of V-categories.

Definition C.73 (Kelly (1982), Section 1.11). Given a V-adjunction
n,e: F4G: D — C,

if the unit n and counit € are V-natural isomorphisms, then n,e: FF 4 G: D — C is an
equivalence between C and D.
The following result is often useful in computations involving V-adjunctions.

Proposition C.74 (Kelly (1969), Proposition 3.2). Given a V-adjunction
n,e: F4G: D — C,

then for all C,C" € obj|C|, and all D, D’ € obj|D|, the morphisms Fc cr and Gp pr are
given by

C(Cmer) D(ep,D)

c(c, ) C(C,GF(C")) D(D, D) D(FG(D), D')

-1
‘bc,F(cQ ®a(p).p

FC,C’ GD,D’

D(F(C), F(C")) C(G(D),G(D))
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For contravariant functors we can develop a dual formulation of the above, though in this

case we lose the obvious distinction between the left and right adjoints (Remark A.45).

Definition C.75. A V-dual adjunction n,e: G 4 F': C — D, between contravariant
V-functors F': C — D, and G: D — C, consists of V-natural transformations n: 1 = GF
(the unit), and £: 1 = F'G (the counit), satisfying the triangular equations

FnoeF =1p
Ge onG = 1g.

Proposition C.76. There is a bijection between V-dual adjunctions
n,e: GHAF: C— D,
and V-natural isomorphisms
®c,p: C(C,G(D)) =D(D, F(C)),
where

o p = D(?‘:Da F(C)) ° FQG(D)
¢c'p = Clne, G(D)) o Gp pc)-

Proposition C.77. Given a V-dual adjunction
n,e: GH4F: C— D,
there is an underlying ordinary dual adjunction
Nos€o: Go 1 Fo: Co — Dy
Moreover, for the isomorphism of hom-objects
®o,p: C(C,G(D)) =D(D, F(C)),
the corresponding isomorphism of hom-sets is
elem|®c p|: Co(C,G(D)) = Dy(D, F(C)).

Proposition C.78. Given contravariant V-functors F: C = D and G: D — C such that
the underlying functors form an ordinary dual adjunction n,,€0: Go 1 Fy: C, — D, then
if the functor elem|—| is faithful, this lifts to a V-dual adjunction n,e: G 4 F: C — D.

Since there is no real distinction between the left and right adjoints in a dual adjunction,

Proposition C.72 collapses to the following.
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Proposition C.79. A contravariant V-functor F: C — D has a dual adjoint exactly
when each D(D, F(—)) is representable.

Definition C.80. Given a V-dual adjunction
n,e: GH4F: C— D,

if the unit 7 and counit € are V-natural isomorphisms, then n,e: G 4 F: C - D is a

dual equivalence between C and D.

Proposition C.81. Given a V-dual adjunction
n,e: GH4F: C— D,

then for all C,C" € obj|C|, and all D, D’ € obj|D|, the morphisms Fc cr and Gp pr are
given by

c(c, )~ cc arc) D(D, D'y —20) _pyp, FG(D'Y)
FC’C/ @c,F(c/) GD,D/ @a:D,)’D
D(F(C"), F(C)) C(G(D),G(D))

C.11 Functor Categories

In order to develop the notion of limits and colimits for V-categories, we need the concept
of a functor category, but before we can define these, we need to define the concept of

an end.

Definition C.82 (Kelly (1982), Section 2.1). Given a V-functor F': C? @ C — V, if

there exists a V-natural family of morphisms
A K — F(A,A),

such that for every V-natural ag: X — F(A, A) there exists a unique f: X — K such
that g = Mg o f, then the pair (K, \) is called the end of F', and we write

/A F(A, A)

for K, and A is called the counit of the end.

Now, since we are assuming that V, is complete, we have the following result which

ensures the existence of ends if C is small.
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Proposition C.83 (Kelly (1982), Section 2.1). If the V-category C is small, then for
all V-functors F': C? @ C — 'V, the end

A /F(A,A)—>F(A,A)
A
exists.

Using the notion of an end we define functor categories as follows.

Definition C.84 (Kelly (1982), Section 2.2). Given the V-categories C and D, the
functor category [C,D] has the following data:

1. The objects of [C,D] are the V-functors F': C — D.
2. For every pair F, G € obj|[C, D]|, the hom-object [C,D](F,G) is given by the end
C.DIF.G) = [ DIF(A).GA),

with the counit
Ea= Earc: [CD|(F,G) = D(F(A), G(A)).
3. For all F,G, H € obj|[C,D]|, the composition law
Mpc m: [C,D|(G,H) ® [C,D|(F,G) — [C,D|(F, H)

is given by the universal property of F 4 r p, such that

Mp.c,H

[C,D|(G,H) ® [C,D|(F,G) [C,D|(F,H)

Eac,H®EA F G EarH

D(G(A), H(A)) ® D(F(A), G(A))

D(F(A), H(A))

Mpay,a(a),H(A)

4. For every F' € obj|[C, D]|, the identity element jr is given by the universal property
of E4 Frr, such that

Earr(ir) = jr)-
If the V-category C is small, then by Proposition C.83, the hom-objects all exist, and
thus so does the functor category [C,D].

Proposition C.85 (Kelly (1982), Section 2.2). Given the V-categories C and D, if C

is small, then the functor category [C,D] exists.
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The hom-set [C,D],(F,G) of the underlying category [C,D],, corresponding to the V-
functors F,G: C — D, is the set of V-natural transformations a: F = G.

The E4 pg form a V-functor E4: [C,D] — DD as given by the following definition.
Definition C.86 (Kelly (1982), Section 2.2). Given the V-categories C and D, if the

functor category [C, D] exists, then the family of morphisms
Earc: [C,D|(F,G) — D(F(A),G(A))
defines for all A € obj|C|, a V-functor called evaluation at A
E4: [C,D] — D,
where E4(F) = F(A), and for every pair F,G € obj|[C,D]|, B4 rac(a) = aa.

Given a V-functor F': C — D it straightforward to define a V-functor from [B,C] to
[B, D], that corresponds to post-composition with F'.

Proposition C.87. Given a V-category B and a V-functor F: C — D, if the functor
categories B, C] and [B,D] exist, then we can define a V-functor

F:[B,C] — [B,D),
where F(G) = FG, and for all G, H € obj|[B,C]|,

(F)oc.pr: [B,Clo(G, H) — [B,D],(FG, FH)

a— Fa.

Similarly for pre-composition with F'.

Proposition C.88. Given a V-category D and a V-functor F: B — C, if the functor
categories [C,D] and [B, D] exist, then we can define a V-functor

F:[C,D] - [B,D],
where F(G) = GF, and for all G, H € obj|[C, D],

(Fog.i* [C,D]o(G, H) — [B,D],(GF,HF)

a— of.

C.12 Free V-Categories

Since we are assuming that V, is cocomplete, it has small coproducts, so the functor
elem|—| has a left adjoint [[_I: Set — V,, sending the set E to the coproduct [[, I
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of E copies of I. Moreover, since V,, is closed, ® preserves colimits, so

[T, eI, 7=11, (I@HFI>
=11, (I, 1)
gHExFI'

From this we are able to define for every ordinary category LL, the free V-category over
L. This has the same objects as L, but “promotes” the hom-sets of L to objects in V,

using the above left adjoint to elem|—|.

Definition C.89 (Kelly (1982), Section 2.5). Given a locally small ordinary category
L, the V-category Ly is called the free V-category on L, and has the following data:

1. The objects of Ly are precisely the same as those of L, i.e. obj|Ly| = obj|Ll|.

2. For every pair A, B € obj|Ly/|, the hom-object Ly (A, B) is given by

Lv(A,B) =[]

L(A,B)
3. For all pair A, B, C € obj|Ly/|, the composition law
MA,B,C3 Lv(B7 C') & Lv(A, B) — ]Lv(A, C)

is given by

Ma,B,c

ooy @ Uian ! Hoace !

1%

Husoysnian !
where [], I is [[_ I acting on composition in L.

4. For every A € obj|Ly]|, the identity element j4 is given by

J
I - Iigaa !

1%

I, 1
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Using the above definition of a free V-category, it is also possible to lift an ordinary
functor F': . — C,, where C, is the underlying category of a C-catgeory, to a V-functor

F: Ly — C. Similarly, ordinary natural transformations can be lifted too.

Proposition C.90 (Kelly (1982), Section 2.5). Given a locally small ordinary category
L, there is an ordinary functor ¢ : L — (Ly), defined by:

1. On objects ¢ is the identity.

2. For every pair A, B € obj|L|, the morphism ¥4 p: L(A, B) — elem‘HL(AB) 1| is

defined in the obvious way.
Given a V-category C, then the following are true:

1. If F: L — C, is an ordinary functor, then there exists a V-functor
F: Ly — (C,

such that (F), 01 = F. Moreover, F is defined as follows:

(a) F(A) = F(A), for any A € obj{Ly],
(b) for every pair A, B € obj|Ly|, the morphism

Fap: [[ I-C(F(A),F(B))
(A,B)

is the transpose of Fap: L(A,B) — C,(F(A), F(B)) under the adjunction
[I_1 -elem|—|:V, — Set.

2. If a: F = G: L — C, is an ordinary natural transformation, then there exists a
V-natural transformation
a: F=G: Ly —C,

such that (@), = .. Moreover, the component aiy is ag € Co(F(A),G(A)).

If the ordinary category L is small, then since Ly has precisely the same objects as L, it
too must be small, and hence by Proposition C.85, the functor category [Ly, C] exists.
The objects of the underlying ordinary category [Ly, C|, are the V-functors from Ly to
C, and the construction of Proposition C.90 yields a bijection between them and the
ordinary functors from L to C,. Moreover, this extends to an isomorphism of ordinary

categories.

Proposition C.91 (Kelly (1982), Section 2.5). Given a small ordinary category L, and
a V-category C, then Ly is a small V-category, and [Ly,C] exists. Moreover,

[Ly,Cl, = [L,C,)].
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C.13 Limits and Colimits

Enriched category theory has a more general notion of limits and colimits than is stan-
dard in ordinary category theory. These are the so called indexed, or weighted, limits
and colimits. The standard “cone” based limits and colimits of ordinary category theory
then acquire the name conical limits and colimits. It turns out, though we shall not dis-
cuss this further, that in ordinary category theory all indexed limits can be constructed
from conical limits, and similarly for colimits. However, in the general enriched case this

is no longer true.

Definition C.92 (Kelly (1982), Section 3.1). Given the covariant V-functor F': K — V
and the covariant V-functor G: K — C, if the contravariant V-functor H: C — V given
by

H(A) = [K,V](F,C(4,G(-)))

is defined for all A, and has a representation

with counit
p: F=CH{F,G},G(—)),

then the representation ({F,G},p) is called the limit of G indexed by F. The V-
functor F' is called the indexing type, and the V-functor G is called the diagram in
C of type F.

Definition C.93 (Kelly (1982), Section 3.1). Given the contravariant V-functor F': K —
V and the covariant V-functor G: K — C, if the covariant V-functor H: C — V given
by

H(A) = [K,V](F,C(G(-), A))

is defined for all A, and has a representation

with unit
p: F=C(G(-), F Q)

then the representation (F x G, u) is called the colimit of G indexed by F. The
V-functor F' is called the indexing type, and the V-functor G is called the diagram
in C of type F.

Conical limits and colimits correspond to the special case where the diagrams are given
by an ordinary category J, and all “cone” vertices have the same weight or index. We do

this by defining the diagonal functor Ay: J — V, that maps every object of J to I, and
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every morphism of J to 1;. Then by Proposition C.90, Ay and the diagram G: J — C,
are paired with V-functors Ar: Jy — V and G: Jy — C, for which we take the indexed

limits and colimits.

Definition C.94 (Kelly (1982), Section 3.8). Given a V-category C, a locally small
ordinary category J, and an ordinary functor G: J — C,, then the limit ({A;, G}, p), if
it exists, of G: Jy — C indexed by Ar: Jy — V, is called the conical limit in C of G,

and we write

giving the representation
C(A,limc(G)) = [y, V](A7, C(A,G(-))).
The counit
p: Ap = C(lime(G), G(—))

has components
wy: lime(G) — G(J),

which give the limiting cone of G in C,,.

Definition C.95 (Kelly (1982), Section 3.8). Given a V-category C, a locally small
ordinary category J, and an ordinary functor G: J — C,, then the colimit (A * G, p),
if it exists, of G: Jy — C indexed by A;: Jy — V, is called the conical colimit in C

of G, and we write
colimg(G) = Af * G,

giving the representation
C(colimg(G), A) = Iy, V](Ar,C(G(-), A)).
The unit
p: Ay = C(G(-), colimg(G))

has components
wy: G(J) = colime(G),

which give the colimiting cocone of G in C,.

Just like in ordinary category theory, V-functors can be said to preserve and create limits

and colimits.

Given a V-functor H: C — D, then for V-functors F: K — V and G: K — C, any
V-natural transformation

a: F=C(AG(-)),
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yields a V-natural transformation
B: F = D(H(A), HG(-)),

given by 8 = H 4 g()yoa. Thus the limit ({F, G}, 1) of G indexed by F', can be mapped
to the pair (H({F,G}), Hipay,q(—) © #). Similarly, if F' is contravariant, the colimit
(F x G, p) of G indexed by F', can be mapped to the pair (H(F * G), Hg(—) pq © 1t)-

Using this we can define what is meant by preservation and creation of limits and colimits

in the enriched setting.

Definition C.96. Given the covariant V-functor F': K — V, and the V-functors
G:K —- C, and H: C — D, then H preserves limits of G indexed by F, if for
any limit ({F, G}, 1) of G indexed by F, we have that (H({F,G}), H{pq),q—) o 1) is a
limit of HG indexed by F.

Definition C.97. Given the contravariant V-functor F': K — V, and the V-functors
G:K—C, and H: C — D, then H preserves colimits of G indexed by F', if for any
colimit (F'x G, u) of G indexed by F, we have that (H(F *G), Hg(_) p«q © 1) is a colimit
of HG indexed by F'.

Definition C.98. Given the covariant V-functor F': K — V, and the V-functors
G: K — C, and H: C — D, then H creates limits of G indexed by F, if for any
limit ({F, HG}, 1) of HG indexed by F, there exists a unique pair (A, v), where v is a
V-natural transformation

v: F = C(A,G(—)),

and such that H(A) = {F, HG}, Hyg)ov = 1, and (A4,v) is a limit of G indexed by
F.

Definition C.99. Given the contravariant V-functor F': K — V, and the V-functors
G:K — C, and H: C — D, then H creates colimits of G indexed by F, if for any
colimit (F'x HG, u) of HG indexed by F, there exists a unique pair (A, v), where v is a
V-natural transformation

v F = C(G(-), A),

and such that H(A) = F * HG, Hg—)aov = p, and (A4,v) is a colimit of G indexed
by F.
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