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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

ENRICHED COALGEBRAIC MODAL LOGIC

by Toby Wilkinson

We formalise the notion of enriched coalgebraic modal logic, and determine conditions

on the category V (over which we enrich), that allow an enriched logical connection to

be extended to a framework for enriched coalgebraic modal logic. Our framework uses

V-functors L : A→ A and T : X→ X, where L determines the modalities of the resulting

modal logics, and T determines the coalgebras that provide the semantics.

We introduce the V-category Mod(A,α) of models for an L-algebra (A,α), and show

that the forgetful V-functor from Mod(A,α) to X creates conical colimits.

The concepts of bisimulation, simulation, and behavioural metrics (behavioural approxi-

mations), are generalised to a notion of behavioural questions that can be asked of pairs

of states in a model. These behavioural questions are shown to arise through choos-

ing the category V to be constructed through enrichment over a commutative unital

quantale (Q,⊗, I) in the style of Lawvere (1973).

Corresponding generalisations of logical equivalence and expressivity are also introduced,

and expressivity of an L-algebra (A,α) is shown to have an abstract category theoretic

characterisation in terms of the existence of a so-called behavioural skeleton in the

category Mod(A,α).

In the resulting framework every model carries the means to compare the behaviour of

its states, and we argue that this implies a class of systems is not fully defined until it

is specified how states are to be compared or related.
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Nomenclature

V The symmetric monoidal closed category (Vo,⊗, I).

aX,Y,Z The associator natural isomorphism of V.

lX The left unitor natural isomorphism of V.

rX The right unitor natural isomorphism of V.

cX,Y The symmetry natural isomorphism of V.

elem|−| The representable functor Vo(I,−).

ẽlemX,Y The natural isomorphism elem|X ⊗ Y | ∼= elem|X| × elem|Y |.
MA,B,C The composition law of a V-category.

jA The identity element of an object A of a V-category.

Co The underlying ordinary category of the V-category C.

Fo The underlying ordinary functor of the V-functor F .

f • g Composition in the underlying category of a V-category.

SetR The category of preordered sets of type R.

GMet The category of generalised metric spaces.

f [ The dual adjunct of f ∈ Ao(A,P (X)) under P a S.

g] The dual adjunct of g ∈ Xo(X,S(A)) under P a S.

ΩA The truth object in A.

ΩX The truth object in X.

Alg(L) The V-category of L-algebras.

CoAlg(T ) The V-category of T -coalgebras.

Mod(A,α) The V-category of models for the L-algebra (A,α).

UAlg(L) The forgetful V-functor from Alg(L) to A.

UCoAlg(T ) The forgetful V-functor from CoAlg(T ) to X.

UMod(A,α) The forgetful V-functor from Mod(A,α) to CoAlg(T ).

Q The commutative unital quantale (Q,⊗, I).

Q−Cat The category of Q-categories.

VQ−Cat A symmetric monoidal closed full subcategory of Q−Cat.

BSkel(A,α) The behavioural skeleton of the L-algebra (A,α).

PBSkelM (A,α) The parametric behavioural skeleton of (A,α) given by M .
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Chapter 1

Introduction

The field of coalgebraic modal logic is now well-established in computer science, with a

history dating back some 15 to 20 years. For the uninitiated, coalgebraic modal logic

is the study of modal logics with semantics given by coalgebras. The coalgebras have a

dynamic, “one-step” like nature, are represent generalised notions of transition system.

It is these transitions that provide the “meaning” for the modalities of a modal logic.

The key strength of coalgebraic modal logic is that it lends itself to an abstract way of

working, that both clarifies what is really going on, and readily generalises to incorporate

new ideas in a systematic way. This high level of abstraction means that the key building

blocks of our framework can be summarised in the following diagram.

A
S

''
L

&&

U ��

X
P

gg

V��

T
xx

V

Here A, V, and X are categories, and L,P, S, T, U and V are functors. The basic idea is

that the left-hand side is where the logics live, the right-hand side is where the coalgebras

live, and the rest is plumbing that links everything together in the right way. To be a

little bit more specific, the modal logics will be algebras for the functor L, or L-algebras,

and the coalgebras will be coalgebras for the functor T , or T -coalgebras. The functors

P and S form what is called a logical connection, which is simply a dual adjunction

with a logical interpretation, and this links the modal logics to the coalgebras. Of the

remaining components, the category V represents a base, or common level of structure

that we want the other categories to share, and indeed the entire diagram is enriched

over V. Finally, the functors U and V are forgetful functors that ensure the objects of

A and X can be regarded as objects of V with extra structure.

The above picture has started to take shape in recent years (Kupke et al., 2004b; Klin,

2007; Jacobs and Sokolova, 2010; Kurz and Velebil, 2011), though the development has

1



2 Chapter 1 Introduction

been rather piecemeal, and a comprehensive unifying framework is still lacking. Some

attempts have been made to start to rectify this, but much work is still to be done. Our

work aims to make some progress towards this goal.

Some of the key issues that still need to be addressed include:

1. There needs to be a systematic treatment of the set of truth values of a logic, as

it is increasingly clear that bivalent logics are no longer sufficient. For example, in

probabilistic systems the probabilities are often only known approximately, and in

such circumstances bivalent logics tend to not be robust to perturbations in the

values of these probabilities (Desharnais et al., 2004).

2. There needs to be a systematic treatment of the different notions of behavioural

comparability - bisimulation, simulation, approximation (behavioural metrics) - so

that the relationships between them are made clear, and that a framework is in

place to experiment with new notions, and the connection with the choice of truth

values can be explored.

3. There needs to be a systematic treatment of semantic consequence and proof sys-

tems, as proof is the essence of logic. For example different notions of semantic

consequence can be defined that are either local/global and either frame/model

based, and this relates to the notions of satisfaction and validity. Therefore as va-

lidity corresponds to quantification over valuations, any framework will need to be

able to handle propositional variables, their valuations, and axioms in a systematic

fashion.

4. There needs to be an abstract presentation of the essence of what coalgebraic modal

logic is, devoid of all computer science specific terminology, in order to facilitate

the adoption of these ideas by other branches of the sciences and mathematics.

The first of these issues is addressed by what is known as a logical connection (Kurz

and Velebil, 2011), and is increasingly becoming a standard foundation for work on

coalgebraic modal logic. It is also formulated, as we have seen above, using the abstract

mathematics of category theory, and so goes some way to addressing the fourth issue.

The second and third issues have received rather less treatment in the literature. We

focus mostly on the issue of behavioural comparability, but our work also provides a

foundation upon which future work can tackle the issue of propositional variables and

axioms. Our approach is to exploit the power of enriched category theory, and we build

upon the foundations laid in Kurz and Velebil (2011), and generalise our own work in

Wilkinson (2012b) and Wilkinson (2012a).
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1.1 Key Contributions

The key contributions of this thesis are as follows:

Fibrations to lift categories: In Chapter 2 we introduce the notion of the initial

lift of an ordinary functor to a V-functor as an initial lift along the 2-functor

(−)o : V−CAT → CAT that sends a V-category to its underlying ordinary cate-

gory. Such a lift not only generates a V-functor, but the source category is lifted

to a V-category. This lifted V-category is more useful than the usual notion of

the free V-category over an ordinary category, and we make extensive use of it

in Chapter 4, where it is used to define the enriched analogues of the standard

categories of algebras and coalgebras for a functor.

Models for L-algebras: In Chapter 4 we introduce the V-category of models for an

L-algebra. This allows the clean handling of arbitrary modal logics, and thus

propositional variables and axioms, and is a key building block towards our treat-

ment of expressivity.

Behavioural questions: In Chapter 5 we show that the choice of the category V over

which we enrich determines the type of behavioural comparisons that we can per-

form - bisimulation, simulation, behavioural metrics etc. Further, we show that

these notions of behavioural comparability, or behavioural questions, can be gener-

alised by enriching over symmetric monoidal closed categories constructed through

enrichment over a commutative unital quantale. This then also induces a gener-

alised notion of logical equivalence, and a generalised notion of what it means for

a modal logic to be expressive with respect to the chosen notion of behavioural

comparison. Together this shows that enrichment is a vital part of the general

framework of coalgebraic modal logic. Moreover, it also provides a persuasive ar-

gument that a class of systems is not fully defined until it is specified how they

are to be compared or related, and in our framework each model incorporates a

preorder, metric, or some generalisation, for this purpose.

Behavioural skeletons: In Chapter 6 we present a systematic approach to analysing

the expressivity of an L-algebra for its category of models with respect to the

type of behavioural question given by the choice made for V. This approach is

a categorical one, and proceeds by examining the structure of the category of

models. We introduce a structure called a behavioural skeleton, and show that

the category of models for an L-algebra has such a structure if and only if the

L-algebra is expressive. We also introduce parametric behavioural skeletons, and

show how the parametricity can be exploited to provide a powerful tool for proving

expressivity and the existence of final models.
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1.2 Synopsis

A brief overview of the structure of this thesis is as follows:

Chapter 2 The structure we require of the category V (over which we enrich) is defined,

and the categories of preordered sets and generalised metric spaces are presented

as our leading examples (along with the category Set). We also introduce the

concept of the initial lift of an ordinary functor to a V-functor, and prove two

theorems that we shall make extensive use of in Chapter 4.

Chapter 3 The enriched logical connections of Kurz and Velebil (2011) are discussed

in the context of our assumptions on V, and their logical content made explicit.

Numerous examples are also demonstrated that reappear throughout subsequent

chapters.

Chapter 4 The notions of algebras and coalgebras for a functor are lifted from the

ordinary category theory level to the V-category level. Coalgebraic modal logic

in the V-category setting is then introduced, and the category of models for an

L-algebra defined. Finally, the forgetful functors from both the category of T -

coalgebras to the base category X, and the category of models of an L-algebra to

X, are shown to create conical colimits.

Chapter 5 Bisimulation, simulation, and behavioural approximation (metrics) are gen-

eralised to a general notion of behavioural questions that can be asked of pairs of

states. These are shown to arise from different choices of a commutative unital

quantale. A generalised notion of logical equivalence is also introduced, along with

a generalised notion of what it means for an L-algebra to be expressive.

There is also a brief discussion raising the question of the nature of the relationship

between the choice of commutative unital quantale, and the choice of truth values

for the logics.

Chapter 6 A purely category theoretic characterisation of expressivity is proven in

terms of the existence of a behavioural skeleton for the category of models for

an L-algebra. Here a behavioural skeleton is a collection of models with certain

properties for which cospans must exist, and for every other model, there must be

a model in the skeleton via which it factors.

Parametric behavioural skeletons are also introduced as a tool for proving expres-

sivity, and the cases of expressivity with respect to bisimulation and simulation

are explored using the internal models of Wilkinson (2012b) and the R-models of

Wilkinson (2012a).

Chapter 7 A summary of our work is presented, and possible future developments

outlined.



Chapter 2

Preliminaries

Before we can begin to look at coalgebraic modal logic in an enriched setting, we need

to spend some time explaining what we mean by an enriched setting, and give some

indication as to why this might be a good thing to do.

We shall also need to introduce a key technical concept that underpins a lot of our future

development. This is the notion of the initial lift of an ordinary functor to an enriched

functor, and the subsequent lifting of an ordinary category to an enriched category.

A brief outline of this chapter is as follows:

Section 2.1 The category V is introduced. This is the category that we enrich over.

In addition to the usual properties that are required of V (symmetric monoidal

closed, complete and cocomplete), we also require some additional ones. These are

stated and explained.

Section 2.2 The category of preordered sets is shown to satisfy the requirements we

need of V.

Section 2.3 The category of generalised metric spaces, which can be thought of as

generalising the category of preorders, is also shown to meet the requirements we

need of V.

Section 2.4 Initial lifts of ordinary functors are introduced, and two theorems proven.

These provide a mechanism by which we can construct V-categories from ordinary

categories that have the properties that we require, and will be key technical tools

in the development of Chapter 4.

Section 2.5 Previous work by other authors using enrichment for coalgebras, and the

possible connection between their work and domain theory, is discussed.

5



6 Chapter 2 Preliminaries

2.1 The Category V

As already mentioned, we shall be working in an enriched setting. What this means is

that we shall be using categories that are enriched over some other category. In ordinary

category theory this is the category Set, but we shall generalise this to a category V.

This idea goes back many decades, and it is well known that such a category V must at

a minimum carry the structure of a monoidal category, but we shall require that V has

more structure than this.

Essentially what enriched category theory aims to do, is take the definitions and theorems

of ordinary category theory, and wherever there is a hom-set, replace it with an object

from the category V. We aim to use this to pervasively sprinkle extra structure on these

hom-sets. This extra structure will be fixed by specifying a particular category V, and

will be chosen depending upon the way we decide to compare the behaviour of states of

coalgebras (Chapter 5).

For those readers who are unfamiliar with enriched category theory, Appendix C contains

all the definitions and results we use (and a few others), but possibly the best starting

point is the monograph by Kelly (Kelly, 1982).

In order to proceed we must make some basic assumptions about the category V. These

assumptions will hold throughout what follows.

Assumption 1.

1. The category V = (Vo,⊗, I) is symmetric monoidal closed (Appendix B).

2. The underlying category Vo is locally small, so there is a symmetric monoidal

closed functor (Definition B.15) that extends the representable functor

elem|−| = Vo(I,−) : Vo → Set,

which we assume to be faithful (Definition A.7), making Vo concrete over Set

(Definition A.9).

3. The functor elem|−| is strong monoidal (Definition B.14), so there is a natural

isomorphism

ẽlemX,Y : elem|X ⊗ Y | ∼= elem|X| × elem|Y | .

4. The underlying category Vo is complete and cocomplete.

5. The functor elem|−| is a fibration (Definition A.5).
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That V is symmetric monoidal closed means that V-categories have sufficient structure to

be able to do “category theory” - specifically we have a Yoneda Lemma (Appendix C.7).

It also means V is itself a V-category (Appendix C.3), where each hom-object V(A,B)

is given by the internal-hom [A,B].

The functor elem|−| is what is traditionally (Kelly, 1982) denoted as V , but we shall

use V for something else (Chapter 3). It assigns to each object of Vo its set of elements

(Definition B.3), and by Proposition B.11 there is an isomorphism

elem|[X,Y ]| ∼= Vo(X,Y ),

which means that we can freely interchange morphisms in Vo and elements of the cor-

responding internal-hom, and indeed we often blur the distinction.

The fact that we assume elem|−| is faithful, and thus that Vo is concrete over Set

(Definition A.9), means that we can regard the objects of V as sets with some kind of

structure. It also means by Proposition C.43, that ordinary natural transformations

between the underlying functors Fo, Go of a pair of V-functors F,G : C → D, lift to

V-natural transformations between F and G.

The natural isomorphism elem|X ⊗ Y | ∼= elem|X| × elem|Y | means that we can think

of elements of X ⊗ Y as consisting of a pair of elements, one from X, and one from Y

(Definition B.15). This will be important in Section 3.4. Moreover, given a pair of V-

categories B and C, this extends to an isomorphism (B⊗ C)o ∼= Bo×Co (Corollary C.15).

The underlying category Vo is required to be complete so that functor categories exist

(Definition C.84), and cocomplete so that free V-categories exist (Definition C.89). Both

of these are prerequisites for the definition of conical colimits (Definition C.95), which

we need in Chapter 6.

Finally, we require elem|−| to be a fibration, as this will provide the mechanism by

which we perform the initial lift of ordinary functors (Section 2.4).

The category Set trivially satisfies the conditions of Assumption 1, but if that was the

only example of interest, there would be no need to employ the machinery of enriched

category theory. In order to illustrate our approach we shall therefore consider two

additional examples in Section 2.2 and Section 2.3, and as we shall see in Section 2.5,

these relate to previous work by other authors on coalgebras. Moreover, in Chapter 5,

we shall see that they are both special cases of a more general class of categories, and

that these are important for the study of the behaviours of coalgebras.
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2.2 Preordered Sets

The first example of a category satisfying Assumption 1 that we shall consider is that

of preordered sets.

Recall the category Preord of preordered sets and monotone functions, the objects of

Preord are pairs consisting of a set, and a preorder relation on that set. Similarly,

the categories Pos (partially ordered sets), Setoid (setoids), and DiscSetoid (discrete

setoids), have for objects, pairs consisting of a set, and respectively, a partial order,

equivalence relation, or the equality relation, on that set. In Levy (2011) these examples

are collectively known as the preordered sets.

We can consider these examples together by means of the following definition (Wilkinson,

2012a), where by a relation of “type R”, we mean either a preorder, partial order,

equivalence relation, or equality. The type is fixed, and every object in the category

SetR (defined below) must have a relation of that type.

Definition 2.1. The category SetR has for objects pairs (X,RX), consisting of a set

X, and a binary relation RX of type R on X. The morphisms are the R-preserving

functions, i.e. f : (X,RX)→ (Y,RY ) is a morphism, if and only if, for all x, x′ ∈ X

xRXx
′ ⇒ f(x)RY f(x′).

To be explicit we have the following four cases:

1. If R is the type preorder, then SetR is Preord.

2. If R is the type partial order, then SetR is Pos.

3. If R is the type equivalence relation, then SetR is Setoid.

4. If R is the type equality, then SetR is DiscSetoid.

The category DiscSetoid is obviously isomorphic to Set, and we shall use them inter-

changeably.

For the category SetR to be useful for our purposes, SetR must satisfy the conditions

of Assumption 1. It is easy to verify that the forgetful from SetR to Set creates limits

and colimits. Specifically, we have the following basic limits and colimits.

Products: the product of (X,RX) and (Y,RY ) is given by (X × Y,RX×Y ), where

(x, y)RX×Y (x′, y′)⇔ xRXx
′ and yRY y

′.
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Coproducts: the coproduct of (X,RX) and (Y,RY ) is given by (X +Y,RX+Y ), where

wRX+Y w
′ ⇔


wRXw

′ : if w,w′ ∈ X

wRY w
′ : if w,w′ ∈ Y

⊥ : otherwise.

Equalisers: the equaliser of f, g : (X,RX)→ (Y,RY ) is given by e : (E,RE)→ (X,RX),

where

E = {x ∈ X | f(x) = g(x)},

and

xREx
′ ⇔ xRXx

′.

Coequalisers: the coequaliser of f, g : (X,RX)→ (Y,RY ) is given by

q : (Y,RY )→ (Q,RQ),

where Q = Y/ ∼, and ∼ is the smallest equivalence relation such that for all x ∈ X
we have f(x) ∼ g(x). The relation RQ is given by

[q]RQ[q′]⇔ for all y ∼ q, and y′ ∼ q′, yRY y′.

Final Object: the final object is (1, R1), where 1 is the singleton set, and R1 = 1×1.

Initial Object: the initial object is (0, R0), where both 0 and R0 are the empty set.

It should be clear that small products and coproducts also exist, and thus we can deduce

the following proposition.

Proposition 2.2. The category SetR is complete and cocomplete.

It is also easy to verify that binary products and the final object form the tensor and

unit of a symmetric monoidal category. To make SetR also closed we need internal-

hom objects [(X,RX), (Y,RY )], such that [(Y,RY ),−] is right adjoint to − × (Y,RY )

(Definition B.9). These are given as follows:

Internal-hom: the internal-hom of (X,RX) and (Y,RY ) is given by the set of all R-

preserving functions from X to Y carrying the relation

fR[(X,RX),(Y,RY )]g ⇔ ∀x ∈ X, f(x)RY g(x).
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Unit: the unit of the adjunction −× (Y,RY ) a [(Y,RY ),−] is given by

d(X,RX) : (X,RX)→ [(Y,RY ), (X,RX)× (Y,RY )]

x 7→ fx : (Y,RY )→ (X,RX)× (Y,RY ),

where fx(y) = (x, y).

Counit: the counit of the adjunction −× (Y,RY ) a [(Y,RY ),−] is given by

e(Z,RZ) : [(Y,RY ), (Z,RZ)]× (Y,RY )→ (Z,RZ)

(g : (Y,RY )→ (Z,RZ), y) 7→ g(y).

Thus we have the following proposition.

Proposition 2.3. The category SetR is symmetric monoidal closed.

Finally, the symmetric monoidal closed functor elem|−| (Definition B.15) is easily seen

to be faithful, and strong monoidal (Definition B.14). It is also a fibration (Defini-

tion A.5), as for any function f : X → Y , if Y carries the relation RY , then we can

define a relation RX on X by

xRXx
′ ⇔ f(x)RY f(x′).

This is easily shown to be universal in the sense required of an initial lift.

Therefore putting everything together we can deduce:

Proposition 2.4. The category SetR satisfies all the conditions of Assumption 1.

2.3 Generalised Metric Spaces

The second category that we shall be interested in enriching over is the category of

generalised metric spaces (Lawvere, 1973). Generalised metric spaces differ from the

usual notion of a metric space in three ways:

1. distinct points can have zero distance between them,

2. the distance between two points can be ∞,

3. the distance between two points need not be symmetric.

The category of generalised metric spaces is defined as follows.
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Definition 2.5. The category GMet of generalised metric spaces, has for objects pairs

(X, dX), consisting of a set X, and a function dX : X ×X → [0,∞], that satisfies:

1. dX(x, x) = 0 for all x ∈ X,

2. dX(x, z) ≤ dX(x, y) + dX(y, z) for all x, y, z ∈ X.

The morphisms are the non-expansive functions, i.e. f : (X, dX) → (Y, dY ) is a mor-

phism, if and only if, for all x, x′ ∈ X

dY (f(x), f(x′)) ≤ dX(x, x′).

It is easy to see that preorders can be regarded as generalised metric spaces, and there

is a full and faithful embedding of SetR in GMet given by

xRXy 7→ dX(x, y) =

0 : if xRXy

∞ : otherwise.

We require that GMet be both complete and cocomplete, and it is easy to verify that

the forgetful from GMet to Set creates limits and colimits. Specifically, we have the

following basic limits and colimits.

Products: the product of (X, dX) and (Y, dY ) is given by (X × Y, dX×Y ), where

dX×Y ((x, y), (x′, y′)) = max(dX(x, x′), dY (y, y′)).

Coproducts: the coproduct of (X, dX) and (Y, dY ) is given by (X + Y, dX+Y ), where

dX+Y (w,w′) =


dX(w,w′) : if w,w′ ∈ X

dY (w,w′) : if w,w′ ∈ Y

∞ : otherwise.

Equalisers: the equaliser of f, g : (X, dX)→ (Y, dY ) is given by e : (E, dE)→ (X, dX),

where

E = {x ∈ X | f(x) = g(x)},

and

dE(x, x′) = dX(x, x′).
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Coequalisers: the coequaliser of f, g : (X, dX)→ (Y, dY ) is given by

q : (Y, dY )→ (Q, dQ),

where Q = Y/ ∼, and ∼ is the smallest equivalence relation such that for all x ∈ X
we have f(x) ∼ g(x). The metric dQ is given by

dQ([y], [y′]) = inf
u∼y
u′∼y′

dY (u, u′).

Final Object: the final object is (1, d1), where 1 is the singleton set, and d1(∗, ∗) = 0.

Initial Object: the initial object is (0, d0), where 0 is the empty set.

Since we allow distances to be infinite, small products also exist, and as all small limits

and colimits can be constructed from combinations of the above, we therefore have the

following proposition.

Proposition 2.6. The category GMet is complete and cocomplete.

We also require that GMet be symmetric monoidal closed, and for this we need a tensor

and a unit. The obvious first choice would be to take product as the tensor, and the

final object as the unit, and this indeed yields a symmetric monoidal category, but it

is not closed, as in general the counits do not exist as the underlying functions are not

non-expansive. So instead we define the tensor as follows.

Definition 2.7. The tensor product (X, dX)⊗(Y, dY ) of the generalised metric spaces

(X, dX) and (Y, dY ) is given by (X × Y, dX⊗Y ), where

dX⊗Y ((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′).

It is easy to verify that tensor product and the final object form the tensor and unit of a

symmetric monoidal category. To make GMet also closed we need internal-hom objects

[(X, dX), (Y, dY )], such that [(Y, dY ),−] is right adjoint to −⊗ (Y, dY ) (Definition B.9).

These are given as follows:

Internal-hom: the internal-hom of (X, dX) and (Y, dY ) is given by the set of all non-

expansive functions from X to Y carrying the metric

d[(X,dX),(Y,dY )](f, g) = sup
x∈X

dY (f(x), g(x)).
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Unit: the unit of the adjunction −⊗ (Y, dY ) a [(Y, dY ),−] is given by

k(X,dX) : (X, dX)→ [(Y, dY ), (X, dX)⊗ (Y, dY )]

x 7→ fx : (Y, dY )→ (X, dX)⊗ (Y, dY ),

where fx(y) = (x, y).

Counit: the counit of the adjunction −⊗ (Y, dY ) a [(Y, dY ),−] is given by

e(Z,dZ) : [(Y, dY ), (Z, dZ)]⊗ (Y, dY )→ (Z, dZ)

(g : (Y, dY )→ (Z, dZ), y) 7→ g(y).

Thus we have the following proposition.

Proposition 2.8. The category GMet is symmetric monoidal closed.

Finally, the symmetric monoidal closed functor elem|−| (Definition B.15) is easily seen

to be faithful, and strong monoidal (Definition B.14). It is also a fibration (Defini-

tion A.5), as for any function f : X → Y , if Y carries the metric dY , then we can define

a metric dX on X by

dX(x, x′) = dY (f(x), f(x′)).

This is easily shown to be universal in the sense required of an initial lift.

Therefore putting everything together we can deduce:

Proposition 2.9. The category GMet satisfies all the conditions of Assumption 1.

2.4 Initial Lifts of Ordinary Functors

In Chapter 4 we shall frequently find ourselves in the following situation. We have a

V-category D, and an ordinary functor F : C → Do to the underlying category of D,

and we would like to find a V-category C and a V-functor F : C → D, such that the

underlying ordinary functor of F is F .

Now since we are assuming Vo is cocomplete, the free V-category CV exists (Defini-

tion C.89), but often this is not the solution we are looking for. The problem is that,

whilst the hom-objects of CV are indeed objects in Vo, they are the wrong ones. What

we mean by this is that since elem|−| is faithful, Vo is concrete over Set, so the hom-

objects of a V-category are sets with some additional structure, and it is this additional

structure that we are interested in. Specifically, for any given hom-set in Co, it may be

possible to put on that set, any one of many different structures of the type specified

by the category V. So our problem becomes one of choosing the optimal such structure.
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The free V-category approach finds one extreme such solution, but usually we will be

looking for a better one. But what do we mean by better? The answer is that we want

it to have the following universal property.

Definition 2.10. Given a V-category D and an ordinary functor F : C → Do, then an

initial lift of F is a V-functor F : C→ D, such that the underlying category of C is C,

and the underlying functor of F is F . Moreover, it is also required that for any V-functor

G : B→ D, and any ordinary functor H : Bo → C, such that

C F // Do

Bo

H

OO

Go

>>

there exists a unique V-functor H : B→ Co, such that

C F // D

B

H

OO

G

??

and the underlying ordinary functor of H is H.

Remark 2.11. For readers who are familiar with such things, this is simply an initial

lift along the 2-functor (−)o : V−CAT→ CAT (Kelly, 1982, Section 1.3) that sends a

V-category to its underlying ordinary category.

So the question is how do we perform the initial lift of F? The key here is that for the

ordinary functor F : C→ Do, for objects A and B in C, we have the morphism

FA,B : C(A,B)→ Do(F (A), F (B))

in Set. However, Do(F (A), F (B)) is defined to be elem|D(F (A), F (B))|, so we really

have

FA,B : C(A,B)→ elem|D(F (A), F (B))| .

Now the V-functor we are looking for would yield

FA,B : C(A,B)→ D(F (A), F (B))

in Vo, so what we would like to do is perform the initial lift of FA,B along elem|−|
(Definition A.1). If we can do this in a coherent fashion for all objects A and B in C,
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such that the lifted morphisms define a V-functor, then we will have constructed the

initial lift of F that we are looking for.

Before proceeding any further we need to address a notational issue, and make explicit

a result that we use in several places.

Firstly, in any V-category C, we shall occasionally denote by • composition in the

underlying ordinary category Co, to distinguish it from composition in Vo. This aids

clarity in the treatment of hom-functors (Section C.5) for example, where we write things

like

C(A, f) ◦ u = f • u.

Secondly, from the definition of the symmetric monoidal closed functor elem|−| (Defini-

tion B.15), and the definition of composition in the underlying category of a V-category

(Definition C.10) we have the following proposition.

Proposition 2.12. Given the conditions of Assumption 1, and a V-category C, then

the following diagram commutes.

Co(B,C)× Co(A,B)
•A,B,C //

ẽlemC(B,C),C(A,B)

��

Co(A,C)

elem|C(B,C)⊗ C(A,B)|

elem|MA,B,C |

66

We are now ready to show that the conditions of Assumption 1 are sufficient to be able

to construct the desired initial liftings of ordinary functors. The proof is quite long, as a

result of the number of properties that must be proved, but hopefully Example 2.1 and

Example 2.2 will show that the idea is actually quite simple.

Theorem 2.13. Given the conditions of Assumption 1, a V-category D, and an ordinary

functor F : C→ Do, then

1. there is an initial lift F : C→ D of F ,

2. the V-category C is unique up to isomorphism.

Proof. The proof proceeds as follows:

1. Define the objects and hom-objects of the V-category C:

C has the same objects as C, and for any pair of objects A,B in C, and the function

FA,B : C(A,B)→ elem|D(F (A), F (B))| ,
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since elem|−| is a fibration, this has an elem|−|-initial lift

FA,B : C(A,B)→ D(F (A), F (B)),

and by Corollary A.3, this is unique up to a unique isomorphism, so we can define

the C hom-object C(A,B) = C(A,B).

2. Define the composition law for the V-category C:

We need to define a composition law

MA,B,C : C(B,C)⊗ C(A,B)→ C(A,C).

If we consider the following diagram,

C(B,C)

×C(A,B)

•A,B,C //

FB,C×FA,B

��

C(A,C)

FA,C

��

elem

∣∣∣∣∣ C(B,C)

⊗C(A,B)

∣∣∣∣∣
h

55

elem|g|

��

elem|FB,C⊗FA,B|
��

∼=

hh

elem

∣∣∣∣∣ D(F (B), F (C))

⊗D(F (A), F (B))

∣∣∣∣∣
elem|MF (A),F (B),F (C)|

))

∼=

vv

Do(F (B), F (C))

×Do(F (A), F (B)) •F (A),F (B),F (C)

// Do(F (A), F (C))

then the outer perimeter commutes since F is a functor. Here • is composition in

the ordinary categories C and Do. Further, since

elem|− ⊗ −| ∼= elem|−| × elem|−| ,

the left-hand quadrilateral commutes, and since Do is the underlying ordinary

category of D, by Proposition 2.12 the bottom triangle commutes. So if we define

the following morphism in Vo

g = MF (A),F (B),F (C) ◦
(
FB,C ⊗ FA,B

)
,

and the function h = •A,B,C ◦ ∼= in Set, we see that we must have

elem|g| = FA,C ◦ h.
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Thus by the universal property of the elem|−|-initial lift FA,C , there exists a

unique morphism

f : C(B,C)⊗ C(A,B)→ C(A,C)

such that g = FA,C ◦ f , and elem|f | = h.

We take f to be our composition law MA,B,C .

3. Define the identity elements of the V-category C:

To define an identity element jA : I → C(A,A), we observe that since

elem
∣∣∣C(A,A)

∣∣∣ = C(A,A),

we can take the identity morphism 1A ∈ C(A,A).

4. Show that this data defines a V-category:

For this collection of data to define the V-category C we require that the diagrams

of Definition C.1 commute. That they do can be seen by following the following

procedure. Formulate the diagram in Vo and apply elem|−|. Then using that

elem|−| is strong monoidal, C is an ordinary category, and Proposition 2.12, ob-

serve that the image of the diagram in Set must commute. Finally, since elem|−|
is faithful, the diagram in Vo must commute.

5. Show that the FA,B form a V-functor:

We need to show that the FA,B form a V-functor F : C → D. The object map

of F is the same as that of F , so what is left is to show that the diagrams of

Definition C.3 commute. The identity diagram is trivial, so we are left with

C(B,C)⊗ C(A,B)
MA,B,C //

FB,C⊗FA,B

��

C(A,C)

FA,C

��
D(F (B), F (C))⊗ D(F (A), F (B))

MF (A),F (B),F (C)

// D(F (A), F (C))

but this clearly commutes by the construction of MA,B,C above.

6. Show that F has the universal property of an initial lift (step 1):

Suppose that there is a V-functor G : B→ D, and an ordinary functor H : Bo → C,

such that

C F // Do

Bo

H

OO

Go

>>
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We want to construct a V-functor H : B→ C such that

C F // D

B

H

OO

G

??

and the underlying ordinary functor of H is H. To do this we define the object

map of H to be that of H, and then to define the action on hom-objects we proceed

as follows. For every pair of objects A,B ∈ obj|B| we can consider the diagram

C(H(A), H(B))
FH(A),H(B) // Do(FH(A), FH(B))

Bo(A,B)

HA,B

OO

GoA,B

55

where elem|GA,B| = GoA,B by Definition C.11, and so by the universal property

of the elem|−|-initial lift

FH(A),H(B) : C(H(A), H(B))→ D(FH(A), FH(B)),

there is a unique morphism HA,B : B(A,B)→ C(H(A), H(B)) such that

C(H(A), H(B))
FH(A),H(B) // D(FH(A), FH(B))

B(A,B)

HA,B

OO

GA,B

66

and elem
∣∣HA,B

∣∣ = HA,B. The morphism HA,B will define the action HA,B of the

V-functor H on the hom-object B(A,B).

7. Show that F has the universal property of an initial lift (step 2):

What remains is to show that the H we have constructed actually is a V-functor.

To do this we must show that the diagrams of Definition C.3 commute. Once again

the identity diagram is trivial, and so we are left with the following diagram.
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B(B,C)⊗ B(A,B)
MA,B,C //

HB,C⊗HA,B

��

B(A,C)

HA,C

��
C(H(B), H(C))⊗ C(H(A), H(B))

MH(A),H(B),H(C)

// C(H(A), H(C))

To show that this commutes we apply the functor elem|−| to produce its image in

Set. This can be shown to commute using a combination of the fact that elem|−|
is strong monoidal, Proposition 2.12, and that H is an ordinary functor. Finally,

since elem|−| is faithful, the above diagram in Vo commutes.

To get a feel for how initial lifts work, we shall consider the category Meas of measurable

spaces and measurable functions. We would like to make Meas into a SetR-category,

and a GMet-category.

First we consider adding preorders to the objects of Meas and enriching over SetR.

Example 2.1. The ordinary category MeasR has the following data:

1. objects are triples (X,ΣX , RX), where (X,ΣX) is a measurable space, and RX is

a relation of type R on X,

2. morphisms are measurable functions that are R-preserving.

There is an obvious forgetful ordinary functor U : MeasR → SetR, and SetR is also a

SetR-category, so by Proposition 2.4 and Theorem 2.13, U lifts to a SetR-functor, and

MeasR lifts to a SetR-category.

The initial lift has ordered the hom-objects of MeasR pointwise, i.e. for any pair of

morphisms f, g : (X,ΣX , RX)→ (Y,ΣY , RY ),

fRg ⇔ for all x ∈ X we have f(x)RY g(x).

This is precisely what one would do, if one were to define MeasR as a SetR-category

directly.

For the other example we repeat the above, but instead add generalised metrics to the

objects of Meas and enrich over GMet.
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Example 2.2. The ordinary category GMeas has the following data:

1. objects are triples (X,ΣX , dX), where (X,ΣX) is a measurable space, and dX is a

generalised metric on X,

2. morphisms are measurable functions that are non-expansive.

There is an obvious forgetful ordinary functor U : GMeas→ GMet, and GMet is also

a GMet-category, so by Proposition 2.9 and Theorem 2.13, U lifts to a GMet-functor,

and GMeas lifts to a GMet-category.

The initial lift has given the hom-objects a generalised metric defined pointwise, i.e. for

any pair of morphisms f, g : (X,ΣX , dX)→ (Y,ΣY , dY ),

d(f, g) = sup
x∈X

dY (f(x), g(x)).

This is precisely what one would do, if one were to define GMeas as a GMet-category

directly.

In Chapter 4 we shall also need the ability to lift colimits in an ordinary category, to

conical colimits (Definition C.95) in the V-category for which the ordinary category

is the underlying category. Obviously this is a bit imprecise, as an ordinary category

may be the underlying category for more than one V-category, but here we mean the

V-category constructed via the initial lift of an ordinary functor through the invocation

of Theorem 2.13.

Theorem 2.14. Given the conditions of Assumption 1, and the following:

1. a V-functor F : C→ D that is the initial lift of an ordinary functor Fo : Co → Do,

2. a small ordinary category J, and a diagram D : J→ Co,

3. the ordinary functor Fo : Co → Do creates colimits for D (Definition A.25),

4. there is a conical colimit of FoD in D,

then the V-functor F : C→ D creates conical colimits for D (Definition C.99).

Proof. The proof proceeds as follows:
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1. Construct the V-functors D and ∆I :

For the small ordinary category J we can construct the free V-category JV (Defini-

tion C.89), which is itself small, and by Proposition C.90 and Proposition C.91, the

functor categories [JV,C] and [JV,V] exist, and moreover there are the following

isomorphisms of categories

[JV,C]o ∼= [J,Co]

[JV,V]o ∼= [J,Vo],

that pair the V-functor D : JV → C with D, and the V-functor ∆I : JV → V with

the diagonal functor ∆I : J → Vo, that maps every object in J to I, and every

morphism in J to 1I .

2. Construct the underlying colimit of FoD in Do:

By assumption there is a conical colimit (colimD(FoD), ν) of FoD in D (Defini-

tion C.95), that is defined by the V-natural isomorphsim (in B)

D(colimD(FoD), B) ∼= [JV,V](∆I ,D(FD(−), B)),

and that has the unit

ν : ∆I ⇒ D(FD(−), colimD(FoD)).

This means there is a corresponding colimit in the underlying category Do, where

by the isomorphism [JV,V]o ∼= [J,Vo], there is a colimit (colimDo(FoD), ν) of FoD

in Do, with

colimDo(FoD) = colimD(FoD),

and the unit

ν : ∆I ⇒ D(FoD(−), colimDo(FoD))o

has the same components as the unit ν of the colimit in D. There is then an

isomorphism

Do(colimDo(FoD), B) ∼= [J,Vo](∆I ,D(FoD(−), B)o),

V-natural in B.

3. Construct the colimit of D in Co:

Since by assumption Fo creates colimits for D (Definition A.25), there exists a

colimit (colimCo(D), µ) for D in Co, defined by

Co(colimCo(D), A) ∼= [J,Vo](∆I ,C(D(−), A)o),
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and with unit

µ : ∆I ⇒ C(D(−), colimCo(D))o,

where

Fo(colimCo(D)) = colimDo(FoD)

Fo(µJ) = νJ .

4. Choose a candidate for the conical colimit of D in C:

We need to choose a candidate for the conical colimit of D in C, but by the

isomorphism [JV,V]o ∼= [J,Vo], the obvious choice is (colimC(D), µ), where

colimC(D) = colimCo(D),

and the unit µ is given by the V-natural transformation

µ : ∆I ⇒ C(D(−), colimC(D)),

that has the same components as the unit µ of the colimit in Co. To show that

this is a colimit of D in C we must show that there is an isomorphism

C(colimC(D), A) ∼= [JV,V](∆I ,C(D(−), A)),

V-natural in A (Definition C.95).

5. Construct a morphism f : C(colimC(D), A)→ [JV,V](∆I ,C(D(−), A)):

We know that the functor category [JV,V] exists, therefore we can consider the

following diagram

C(colimC(D), A)
f //

C(µJ ,A)

��

[JV,V](∆I ,C(D(−), A))

EJ

��
C(D(J), A)

iC(D(J),A)

// [I,C(D(J), A)]

where the family of V-natural morphisms EJ is the counit of the functor category

[JV,V](∆I ,C(D(−), A)) (Definition C.84).

Then since iC(D(J),A) is V-natural in J (Section C.6), the family of morphisms

iC(D(J),A) ◦ C(µJ , A)

is clearly V-natural in J , and so by the universal property of the end (Defini-

tion C.82), there exists a unique morphism f such that the diagram commutes.
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6. Show that the underlying function of f is the bijection of the colimit of D in Co:

The underlying function of f is given by

elem|f | : Co(colimC(D), A)→ [JV,V]o(∆I ,C(D(−), A)),

and from the diagram above, the outer perimeter of the following diagram com-

mutes

Co(colimC(D), A)
elem|f | //

∼= **
Co(µJ ,A)

��

[JV,V]o(∆I ,C(D(−), A))

elem|EJ |

��

[J,Vo](∆I ,C(D(−), A)o)

∼=

44

Co(D(J), A)
1Co(D(J),A)

// Co(D(J), A)

where elem
∣∣∣iC(D(J),A)

∣∣∣ = 1Co(D(J),A), and elem|C(µJ , A)| = Co(µJ , A) by Propo-

sition C.36.

To show that the rest of the diagram commutes, we recall that the colimit of D in

Co exists, and is defined by the bijection

Co(colimCo(D), A) ∼= [J,Vo](∆I ,C(D(−), A)o),

that sends each mediating morphism to the corresponding cocone, and we also have

the isomorphism of functor categories [JV,V]o ∼= [J,Vo]. Thus the “pentagon” via

[J,Vo](∆I ,C(D(−), A)o) says, that for each mediating morphism, the “arms” of

the corresponding cocone, are given by the corresponding arm of the colimiting

cocone composed with the mediating morphism.

Then since EJ is a mono-source (Definition A.16), and representable functors

preserve mono-sources (Proposition A.17), we have that elem|f | is given by the

composition of isomorphisms

Co(colimC(D), A)
∼= // [J,Vo](∆I ,C(D(−), A)o)

∼= // [JV,V]o(∆I ,C(D(−), A)).

7. Construct a morphism g : [JV,V](∆I ,C(D(−), A))→ C(colimC(D), A):

We have one direction of the isomorphism we are trying to construct, and we now

need to find an inverse to the morphism f .

To do this we note that by Section C.6, for the functor F , we have that F−,A is

V-natural in the first argument

F−,A : C(−, A)⇒ D(F (−), F (A)) : C→ V,



24 Chapter 2 Preliminaries

and thus has the underlying ordinary natural transformation

(F−,A)o : C(−, A)o ⇒ D(Fo(−), F (A))o : Co → Vo.

Note that (F−,A)o is not the same as Fo−,A (Remark C.44), indeed, the components

of F−,A and (F−,A)o are exactly the same.

From this, by Proposition C.88, we have the V-natural transformation

FD(−),A : C(D(−), A)⇒ D(FD(−), F (A)) : JV → V,

and by the isomorphism [JV,V]o ∼= [J,Vo], this is paired with the ordinary natural

transformation

FD(−),A : C(D(−), A)o ⇒ D(FoD(−), F (A))o : J→ Vo.

Using this, and the fact that Fo creates colimits, we have the following commuting

diagram.

Co(colimCo(D), A)
∼= //

FocolimCo (D),A

��

[J,Vo](∆I ,C(D(−), A)o)

[J,Vo](∆I ,FD(−),A)

��
Do(Fo(colimCo(D)), Fo(A)) ∼=

// [J,Vo](∆I ,D(FoD(−), Fo(A))o)

Now, since we have an isomorphism of categories [JV,V]o ∼= [J,Vo], and the functors

defining this isomorphism must preserve composition, we also have

[J,Vo](∆I ,C(D(−), A)o)
∼= //

[J,Vo](∆I ,FD(−),A)

��

[JV,V]o(∆I ,C(D(−), A))

[JV,V]o(∆I ,FD(−),A)

��
[J,Vo](∆I ,D(FoD(−), Fo(A))o) ∼=

// [JV,V]o(∆I ,D(FD(−), F (A)))

and thus

Co(colimCo(D), A)
∼= //

FocolimCo (D),A

��

[JV,V]o(∆I ,C(D(−), A))

[JV,V]o(∆I ,FD(−),A)

��
Do(Fo(colimCo(D)), Fo(A)) ∼=

// [JV,V]o(∆I ,D(FD(−), F (A)))
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So if we consider the following diagram of hom-objects in the corresponding V-

categories

C(colimC(D), A)

FcolimC(D),A

��

[JV,V](∆I ,C(D(−), A))

[JV,V](∆I ,FD(−),A)

��

goo

D(F (colimC(D)), F (A)) ∼=
// [JV,V](∆I ,D(FD(−), F (A)))

where FcolimC(D),A is the elem|−|-initial lift of FocolimCo (D),A, then by the universal

property of FcolimC(D),A (Definition A.1), there is a unique morphism g making the

diagram commute.

8. Show that f and g define a V-natural isomorphism:

We must show that f and g are inverses, and define an isomorphism. Suppose

g ◦ f = h, then elem|g| ◦ elem|f | = elem|h|, but elem|f | and elem|g| are given

by composites of the defining isomorphism of the colimit of D in Co, and the

isomorphism of categories [JV,V]o ∼= [J,Vo], thus elem|h| = 1Co(colimCo (D),A). But

elem|−| is a functor, and faithful, therefore h = 1C(colimC(D),A).

Similarly f ◦ g = 1[JV,V](∆I ,C(D(−),A)), therefore f and g define the isomorphism

C(colimC(D), A) ∼= [JV,V](∆I ,C(D(−), A)).

To finish the proof that this is the colimit of D in C, we must show that this

isomorphism is V-natural in A. But this follows immediately from the fact that the

underlying isomorphism is natural in A and elem|−| is faithful (Proposition C.43).

9. Show that F creates conical colimits for D:

Finally, to show that F creates conical colimits for D (Definition C.99) we observe

that by construction

F (colimC(D)) = colimD(FoD),

and

F (µJ) = Fo(µJ) = νJ = νJ ,

thus the unit µ of the colimit of D in C is mapped to the unit ν of the colimit of FoD

in D, and the uniqueness of such a V-natural transformation in C follows from the

fact that for every ordinary natural transformation ∆I ⇒ C(D(−), colimCo(D))o,

there can be at most one V-natural transformation with the same components, and

µ is the unique such ordinary natural transformation, since Fo creates colimits.
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2.5 Discussion

In Section 2.2 and Section 2.3 we identified two categories that, in addition to the

category Set, satisfied the conditions of Assumption 1. But why did we pick those two

examples? There are two answers to this question.

The first answer is that previous authors have looked at coalgebras enriched over various

categories of preorders, partial orders, or metric spaces, for example Turi and Rutten

(1998); Worrell (2000a); Balan and Kurz (2011); B́ılková et al. (2011). So this provides

a link between our general approach and previous work in the literature.

The second answer is that both order-theoretic and metric-theoretic approaches have

been taken to domain theory, and these have been shown, taking the lead from Lawvere

(1973), to be related (Rutten, 1996; Wagner, 1997; Bonsangue et al., 1998). Moreover,

in Balan and Kurz (2011) the authors explicitly state that they regard the categories

Preord and Pos as a natural bridge between coalgebras and domain theory, and we

would suggest that this extends to include metric spaces too.

Finally, as we shall see in Chapter 5, preorders and metric spaces are subsumed by the

notion of a category enriched over a commutative unital quantale (Wagner, 1997).
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Logical Connections

At the heart of our work is the notion of a logical connection. The term itself was

probably first coined in Pavlovic et al. (2006), but the idea in its most basic form goes

back at least as far as Abramsky (1991).

A logical connection is a dual adjunction, or possibly even a dual equivalence, between

concrete categories that arises from an object that “resides” in both categories. This

object is the set of truth values for a logic - the base logic. The objects of one category

are therefore logics (typically in algebraic form) of this base type, and the objects of the

other category provide the semantics of these logics. The dual adjunction ties everything

together in a consistent fashion.

A seminal paper on concrete dual adjunctions was the work of Porst and Tholen (1991),

wherein the notion of a dualising object is formalised (see also Johnstone (1982, VI.4)).

Recently in Kurz and Velebil (2011) these ideas have been extended to an enriched

category theory setting, where the logics are also many-sorted. We shall adopt the

enriched setting, but restrict ourselves to single sorted logics.

A brief outline of this chapter is as follows:

Section 3.1 The basic building blocks of a logical connection are described (V-categories

A and X, V-functors U and V , and a V-dual adjunction P a S), and their key

properties summarised.

Section 3.2 The forgetful V-functors U and V are discussed, and some auxiliary defi-

nitions made that will be needed in later sections.

Section 3.3 The V-dual adjunction P a S is used to define the truth objects of the

logical connection, and explicit forms for the unit and counit are derived.

Section 3.4 The logical interpretation of the V-dual adjunction is given, and valuations,

theory maps, and satisfaction maps are defined.

27
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Section 3.5 A brief summary of the concept of a dualising object, and how they induce

V-dual adjunctions is presented.

Section 3.6 A collection of both bivalent and fuzzy examples are developed, with en-

richment over both preorders and generalised metric spaces.

Section 3.7 A brief review of the use of logical connections in the coalgebra literature

is given.

3.1 Overview

First we shall give an overview of the basic ingredients of a logical connection, specifically

an enriched logical connection. Here we follow Kurz and Velebil (2011), but restrict to

a single-sorted setting.

The basic idea is that we have the following non-commuting diagram of categories and

functors.

A

S

''

U

��

X

P

gg

V

��
V

Here:

1. V is a symmetric monoidal closed category that satisfies Assumption 1.

2. A and X are concrete V-categories (Definition C.25).

3. U and V are faithful and representable V-functors (Definition C.19 and Defini-

tion C.60).

4. P and S are contravariant V-functors that form a V-dual adjunction (Defini-

tion C.75).

Spelling out in a little more detail what we mean by the above:

1. The category V is thought of as representing a kind of base-level structure that we

want to be pervasive throughout the other categories and functors.

2. The objects of A and X will be thought of as base algebras and state spaces

respectively. Though it must be remembered that we mean this in a very general

way. Examples for A include Boolean algebras and distributive lattices, and for

X, sets and measurable spaces - see Section 3.6.



Chapter 3 Logical Connections 29

3. The functors U and V are forgetful functors that map algebras and state spaces

to some common substrate - the category V representing the base-level structure.

4. The contravariant functors P and S will be thought of as mapping a state space to

an algebra of generalised predicates (over that space), and an algebra to a space

of generalised theories (of that algebra).

In Section 2.1 we discussed the category V, now we shall examine the other ingredients

of our framework.

The V-Categories A and X

The categories A and X are enriched over V (Definition C.1), and since V is concrete

over Set, the hom-objects of A and X are sets with some kind of structure.

The objects of A are to represent logics of the type represented by A, but typically in

algebraic form. As concrete examples we could consider Boolean algebras, distributive

lattices, or meet semilattices, but here we do not restrict ourselves to any particular

choice.

The objects of X are to represent state spaces, or sets of processes, possibly with some

kind of structure, for example a topology or a sigma algebra. Again we do not restrict

ourselves here to any specific choices.

The V-Functors U and V

The forgetful functors U and V are faithful (Definition C.19), and so the categories A
and X are concrete over V (Definition C.25). The categories A and X can therefore

be thought to consist of V objects, possibly with some additional structure, and with

hom-objects given by sets of morphisms that may possibly preserve (or reflect) some, or

all, of this additional structure. Moreover, the hom-objects are themselves V objects.

The functors U and V are also representable (Definition C.60), with representing objects

A0 and X0, and since we will typically find the categories A and X to be categories of

base algebras and state spaces, the representing objects A0 and X0 will correspond to

the free base algebra over one generator, and the singleton state space respectively.

The V-Dual Adjunction P a S 1

The V-dual adjunction (Definition C.75) provides the semantics for the base logics. The

contravariant V-functor P maps a state space X to an algebra (of type A) of predicates

1Here and elsewhere: this symbol is reserved for the case where P is left adjoint and S is right adjoint,
but in the case of contravariant functors note Remark A.45.
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on X. Note, by predicate, we could mean something more general than simply a subset

of X, for example a fuzzy subset. Dually, the contravariant V-functor S maps a base logic

to its set of possible theories, and assigns it whatever additional structure is required

to make the set an X object. Again, by theory, we could mean something more general

than a logically consistent set of formulae, for example with a fuzzy logic it would be a

logically consistent fuzzy set of formulae.

For every V-dual adjunction there is a V-natural isomorphism (Proposition C.76)

A(A,P (X)) ∼= X(X,S(A)).

On the left, the elements of A(A,P (X)) are called valuations (Definition 3.15). They

assign to each formula of A a predicate on X. On the right, the elements of X(X,S(A))

are called theory maps (Definition 3.15). They assign to each state of X a theory of A.

The dual adjunction then pairs valuations with theory maps in a consistent way.

3.2 The V-Functors U and V

In this section we shall explore some of the consequences of making the forgetful V-

functors U and V representable, but first we shall formally state this as an assumption.

Assumption 2. We extend Assumption 1 (page 6) as follows:

6. There are faithful (Definition C.19), representable (Definition C.60), V-functors

U ∼= A(A0,−) : A→ V

V ∼= X(X0,−) : X→ V.

The first observation that we can make is that the underlying ordinary functors Uo and

Vo (Definition C.11) of the V-functors U and V can be composed with elem|−|

Ao
Uo // Vo

elem|−| // Set

Xo
Vo // Vo

elem|−| // Set.

The combined actions on the hom-sets of Ao and Xo are then seen to be

Ao(A,B)
UoA,B // Vo(U(A), U(B))

elem|−|U(A),U(B) // Set(elem|U(A)| , elem|U(B)|)

Xo(X,Y )
VoX,Y // Vo(V (X), V (Y ))

elem|−|V (X),V (Y ) // Set(elem|V (X)| , elem|V (Y )|).
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Now U and V are faithful (Definition C.19), so UA,B and VX,Y are monomorphisms in

Vo, and since elem|−| is representable it preserves monomorphisms (Proposition A.12),

and so

UoA,B = elem|UA,B|

VoX,Y = elem|VX,Y |

are injective. Thus since elem|−| is also faithful, the categories A and X are concrete

over V (Definition C.25), and the underlying categories Ao and Xo are concrete over Set

(Definition A.9).

The V-functors U and V are also representable, which means that for any object A in

A, and any object X in X,

elem|U(A)| ∼= Ao(A0, A)

elem|V (X)| ∼= Xo(X0, X),

and by Proposition C.36 we have

elem|−|U(A),U(B) ◦ UoA,B ∼= Ao(A0,−)A,B

elem|−|V (X),V (Y ) ◦ VoX,Y ∼= Xo(X0,−)X,Y ,

and thus elem|Uo(−)| and elem|Vo(−)| are both faithful and representable.

Now faithful ordinary functors reflect monomorphisms and epimorphisms, and repre-

sentable ordinary functors preserve monomorphisms (Proposition A.12 and Proposi-

tion A.14), so we have

InjectAo(A,B) = monos in Ao(A,B)

SurjectAo(A,B) ⊆ epis in Ao(A,B),

where InjectAo(A,B) is the class of morphisms in Ao(A,B) with injective underlying

functions, and SurjectAo(A,B) those with surjective underlying functions. Similarly,

InjectXo(X,Y ) = monos in Xo(X,Y )

SurjectXo(X,Y ) ⊆ epis in Xo(X,Y ),

where InjectXo(X,Y ) is the class of morphisms in Xo(X,Y ) with injective underlying

functions, and SurjectXo(X,Y ) those with surjective underlying functions.

In subsequent sections in this chapter we shall need to manipulate expressions involving

the V-functors U and V . In particular, for a morphism f ∈ Ao(A,B), and an element

a ∈ elem|U(A)|, we shall be interested in reversing the order of evaluation in expressions

of the form U(f)(a), and similarly for V .
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For the functor U , the morphism UA,B has the transpose U †A,B under the adjunction

−⊗ U(A) a [U(A),−], such that the following diagram commutes.

A(A,B)⊗ U(A)

U†A,B

&&

UA,B⊗1U(A)

��
[U(A), U(B)]⊗ U(A) eU(A),U(B)

// U(B)

Now since the functor U is representable, by Proposition C.64, the morphism UA,B is

given by the composite

UA,B = [∼=A,∼=−1
B ] ◦ A(A0,−)A,B,

where ∼=A and ∼=B are the isomorphisms of the representation. Then by Definition C.32,

and the V-naturality of ∼=, we have the following proposition.

Proposition 3.1. Given the conditions of Assumption 2, the transpose U †A,B of UA,B

under the adjunction −⊗ U(A) a [U(A),−] is given by

A(A,B)⊗ U(A)
1A(A,B)⊗∼=A // A(A,B)⊗ A(A0, A)

MA0,A,B // A(A0, B)
∼=−1
B // U(B),

and for f ∈ Ao(A,B), and a ∈ elem|U(A)|, we have

U(f)(a) = U †A,B ◦ (f ⊗ a) ◦ l−1
I = ∼=−1

B (f • ∼=A(a)).

Here MA0,A,B is the composition law of A (Definition C.1).

We also have a dual proposition for the functor V .

Proposition 3.2. Given the conditions of Assumption 2, the transpose V †X,Y of VX,Y

under the adjunction −⊗ V (X) a [V (X),−] is given by

X(X,Y )⊗ V (X)
1X(X,Y )⊗∼=X // X(X,Y )⊗ X(X0, X)

MX0,X,Y // X(X0, Y )
∼=−1
Y // V (Y ),

and for f ∈ Xo(X,Y ), and x ∈ elem|V (X)|, we have

V (f)(x) = V †X,Y ◦ (f ⊗ x) ◦ l−1
I = ∼=−1

Y (f • ∼=X(x)).

Next we note that using Proposition B.12, and the symmetry c of Vo (Definition B.6),

there is a natural isomorphism

[U(A), [A(A,B), U(B)]] ∼= [A(A,B), [U(A), U(B)]].
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Specifically, if we take UA,B, this gives a morphism φA,B such that the following diagram

commutes.

U(A)⊗ A(A,B)
cU(A),A(A,B) //

φA,B⊗1A(A,B)

��

A(A,B)⊗ U(A)

U†A,B

��
[A(A,B), U(B)]⊗ A(A,B) eA(A,B),U(B)

// U(B)

Moreover, since UA,B and cU(A),A(A,B) are both V-natural in A and B, by Section C.6,

so is φA,B. Therefore we make the following definition.

Definition 3.3. Given the conditions of Assumption 2, we define a V-natural transfor-

mation

φA,B : U(A)→ [A(A,B), U(B)],

where the component φA,B is defined to have the transpose φ†A,B under the adjunction

−⊗ A(A,B) a [A(A,B),−] given by

φ†A,B = U †A,B ◦ cU(A),A(A,B),

and for all A,B ∈ obj|A|, a ∈ elem|U(A)|, and f ∈ Ao(A,B), we have

φA,B(a)(f) = U(f)(a).

The V-natural transformation φ thus provides the reordering of evaluation under U that

we shall need later.

Similarly for the natural isomorphism

[V (X), [X(X,Y ), V (Y )]] ∼= [X(X,Y ), [V (X), V (Y )]]

we make the following definition.

Definition 3.4. Given the conditions of Assumption 2, we define a V-natural transfor-

mation

ψX,Y : V (X)→ [X(X,Y ), V (Y )],

where the component ψX,Y is defined to have the transpose ψ†X,Y under the adjunction

−⊗ X(X,Y ) a [X(X,Y ),−] given by

ψ†X,Y = V †X,Y ◦ cV (X),X(X,Y ),

and for all X,Y ∈ obj|X|, x ∈ elem|V (X)|, and f ∈ Xo(X,Y ), we have

ψX,Y (x)(f) = V (f)(x).
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To derive explicit expressions for the components of φ and ψ we start with the fol-

lowing diagram, which commutes by the definition of the hom-functor A(−, B) (Defini-

tion C.34), and naturality of c and e.

U(A)⊗ A(A,B)
cU(A),A(A,B) //

∼=A⊗1A(A,B)

��

A(A,B)⊗ U(A)

1A(A,B)⊗∼=A

��
A(A0, A)⊗ A(A,B)

cA(A0,A),A(A,B) //

A(−,B)A0,A
⊗1A(A,B)

��

A(A,B)⊗ A(A0, A)

MA0,A,B

��
[A(A,B),A(A0, B)]⊗ A(A,B) eA(A,B),A(A0,B)

//

[A(A,B),∼=−1
B ]⊗1A(A,B)

��

A(A0, B)

∼=−1
B

��
[A(A,B), U(B)]⊗ A(A,B) eA(A,B),U(B)

// U(B)

The righthand column is the transpose of UA,B given by Proposition 3.1, and the lefthand

column therefore gives an explicit expression for φA,B.

Proposition 3.5. Given the conditions of Assumption 2, the component φA,B of the

V-natural transformation

φA,B : U(A)→ [A(A,B), U(B)],

is given by

U(A)
∼=A // A(A0, A)

A(−,B)A0,A // [A(A,B),A(A0, B)]
[A(A,B),∼=−1

B ]
// [A(A,B), U(B)].

Similarly we have the corresponding result for ψ.

Proposition 3.6. Given the conditions of Assumption 2, the component ψX,Y of the

V-natural transformation

ψX,Y : V (X)→ [X(X,Y ), V (Y )],

is given by

V (X)
∼=X // X(X0, X)

X(−,Y )X0,X // [X(X,Y ),X(X0, Y )]
[X(X,Y ),∼=−1

Y ]
// [X(X,Y ), V (Y )].
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3.3 The V-Dual Adjunction P a S

We now spell out in more detail the V-dual adjunction P a S, and in particular we

examine the precise form the unit and counit take as this will be useful later on. We

follow the line taken in Porst and Tholen (1991, Section 1-B), but generalise to our

enriched setting.

Firstly we need to make precise the assumptions we are making.

Assumption 3. We extend Assumption 2 (page 30) as follows:

7. There is a V-dual adjunction (Definition C.75)

ρ, σ : P a S : A→ X

satisfying the triangular equations

Pσ ◦ ρP = 1P

Sρ ◦ σS = 1S ,

and this yields (Proposition C.76) a V-natural isomorphism

ΦA,X : A(A,P (X)) ∼= X(X,S(A)).

We shall use the notation f [ for the dual adjunct (Definition A.46) of

f ∈ Ao(A,P (X)),

and g] for the dual adjunct of

g ∈ Xo(X,S(A)).

The images under P and S of the representing objects A0 and X0 of the functors U

and V will play a vital role, and as we shall see in Section 3.4, they have a specific

logical interpretation. We therefore make the following definition, and postpone the

explanation of the name “truth object” until later.

Definition 3.7. Given the conditions of Assumption 3, the images under P and S of

X0 and A0 we call the truth objects of A and X (respectively), and denote them as

follows:

ΩA = P (X0)

ΩX = S(A0).
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The truth objects ΩA and ΩX define contravariant representable V-functors (Defini-

tion C.61) as given by the following proposition, which is a direct enrichment of Porst

and Tholen (1991, Proposition 1.2).

Proposition 3.8. Given the conditions of Assumption 3, the following hold:

1. The contravariant V-functors UP : X → V and V S : A → V are representable

functors, where the representing objects are the corresponding truth objects

UP ∼= X(−,ΩX)

V S ∼= A(−,ΩA).

2. The truth objects ΩA and ΩX have the same underlying V object up to isomorphism,

i.e. there exists a V-isomorphism τ : U(ΩA) ∼= V (ΩX).

Proof. For any object A in A we have

A(A,ΩA) = A(A,P (X0)) ∼= X(X0, S(A)) ∼= V S(A),

and thus V S ∼= A(−,ΩA).

Similarly, for any object X in X we have

X(X,ΩX) = X(X,S(A0)) ∼= A(A0, P (X)) ∼= UP (X),

and thus UP ∼= X(−,ΩX).

For the second part of the proposition, we have

V (ΩX) = V S(A0) ∼= A(A0,ΩA) ∼= U(ΩA).

Now, as noted in Porst and Tholen (1991, Remark 1.3), there is a special case where

the isomorphisms of Proposition 3.8 are actually equalities. In such a case we use the

following terminology.

Definition 3.9. Given the conditions of Assumption 3, if

V S = A(−,ΩA)

UP = X(−,ΩX),

then the dual adjunction is said to be strictly represented by (ΩA,ΩX).
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It turns out that with very little loss of generality we can always assume that we have

a strict representation.

In Porst and Tholen (1991, Remark 1.3) it is noted that if the functors (ordinary functors

in their case) U and V are uniquely transportable (Definition A.11), then we can always

assume that the dual adjunction is strictly represented. This is also the case in our

enriched setting.

To see this we first recall that if the V-functor U is uniquely transportable (Defini-

tion C.28), then for every X object X, and every Vo-isomorphism

f ∈ Vo(UP (X),X(X,ΩX)),

there exists a unique AX in A such that U(AX) = X(X,ΩX), and an Ao-isomorphism

fX ∈ Ao(P (X), AX),

such that U(fX) = f . Thus we can define a contravariant V-functor P ′ : X → A by

P ′(X) = AX , and for every pair of objects X and Y in X, the morphism

P ′X,Y : X(X,Y )→ A(P ′(Y ), P ′(X))

is given by P ′X,Y = A(f−1
Y , fX) ◦ PX,Y .

Moreover, if we consider the isomorphism

f = ΦA0,X ◦ ∼=P (X) : UP (X)→ X(X,ΩX),

the construction of the functor P ′ ensures that the outer perimeter of the following

diagram commutes.

A(A0, P (X))
ΦA0,X //

A(A0,fX)

##

X(X,S(A0))

=

��

A(A0, P
′(X))

Φ′A0,X

;;

UP (X)

∼=P (X)

OO

U(fX)
// UP ′(X)

∼=′
P ′(X)

cc
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We can then define the V-natural isomorphisms

Φ′A0,X = ΦA0,X ◦ A(A0, f
−1
X )

∼=′P ′(X) = A(A0, fX) ◦ ∼=P (X) ◦ U(f−1
X ),

and since all morphisms above are isomorphisms, the rest of the diagram commutes, and

in particular
∼=′P ′(X) = Φ

′−1
A0,X

.

Similarly, we can define a contravariant V-functor S′ : A → X, and it is easy to see

that P ′ and S′ form a V-dual adjunction Φ′, and that this dual adjunction is strictly

represented by (ΩA,ΩX). Moreover, the action of the representable functors U and V

on the images of objects under P ′ and S′ gives

Φ
′−1
A0,− : UP ′ ∼= A(A0, P

′(−))

Φ′−,X0
: V S′ ∼= X(X0, S

′(−)).

As unique transportability of U and V is a relatively mild condition, with minimal loss

of generality we may assume that every dual adjunction is strictly represented.

Assumption 4. We extend Assumption 3 (page 35) as follows:

8. The V-dual adjunction ρ, σ : P a S : A → X is strictly represented by (ΩA,ΩX),

meaning

V S = A(−,ΩA)

UP = X(−,ΩX),

and

Φ−1
A0,− : UP ∼= A(A0, P (−))

Φ−,X0 : V S ∼= X(X0, S(−)).

Under this additional assumption, it is easy to explicitly write down the isomorphism

between the underlying V objects of the truth objects of A and X from Proposition 3.8.

Proposition 3.10. Given the conditions of Assumption 4, then the V-isomorphism

τ : U(ΩA) ∼= V (ΩX)

is given by

τ = Φ−1
A0,X0

.
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Proof. We have that

U(ΩA) = UP (X0) = X(X0,ΩX) = X(X0, S(A0)),

and also that

V (ΩX) = V S(A0) = A(A0,ΩA) = A(A0, P (X0)),

hence since

ΦA0,X0 : A(A0, P (X0)) ∼= X(X0, S(A0)),

we can deduce τ = Φ−1
A0,X0

.

What we aim to do next is to give an explicit statement of the action of the unit and

counit of the dual adjunction. It will turn out that the way to do this is to use the

functors U and V to translate the problem to the category V, as all morphisms in Ao
and Xo can be thought of as having an underlying Vo morphism.

First we need the following pair of lemmas.

Lemma 3.11. Given the conditions of Assumption 4, for all objects A in A, the follow-

ing diagram commutes.

U(A)

∼=A

��

U(ρA) // UPS(A)

=

��
A(A0, A)

SA0,A

// X(S(A),ΩX)

Proof. By Proposition C.64, U(ρA) is given by

U(A)
∼=A // A(A0, A)

A(A0,ρA) // A(A0, PS(A))
∼=−1
PS(A) // UPS(A),

but ∼=−1
PS(A)= ΦA0,S(A), and by Proposition C.81 we have

A(A0, A)
A(A0,ρA) //

SA0,A

%%

A(A0, PS(A))

ΦA0,S(A)

��
X(S(A),ΩX)

so the result follows.
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Lemma 3.12. Given the conditions of Assumption 4, for all objects A in A, the follow-

ing diagram commutes.

A(A0, A)⊗ A(A,ΩA)
SA0,A

⊗ΦA,X0 //

cA(A0,A),A(A,ΩA)

��

X(S(A),ΩX)⊗ X(X0, S(A))

MX0,S(A),ΩX

��

A(A,ΩA)⊗ A(A0, A)

MA0,A,ΩA

��
A(A0,ΩA)

ΦA0,X0

// X(X0,ΩX)

Proof. From the action of the contravariant V-functor S on composites (Definition C.3

and Definition C.7), and the naturality of M , the following diagram commutes.

A(A0, A)⊗ A(A,ΩA)
MA0,A,ΩA◦cA(A0,A),A(A,ΩA) //

SA0,A
⊗SA,ΩA

��

A(A0,ΩA)

SA0,ΩA

��
X(S(A),ΩX)⊗ X(SP (X0), S(A))

MSP (X0),S(A),ΩX

//

1X(S(A),ΩX)⊗X(σX0
,S(A))

��

X(SP (X0),ΩX)

X(σX0
,ΩX)

��
X(S(A),ΩX)⊗ X(X0, S(A))

MX0,S(A),ΩX

// X(X0,ΩX)

Finally, by Proposition C.76, we have

ΦA,X0 = X(σX0 , S(A)) ◦ SA,ΩA

ΦA0,X0 = X(σX0 ,ΩX) ◦ SA0,ΩA ,

and the result follows.

The main result of this section shows that we can evaluate the unit and counit by

repeated application of the functors U and V . Use is made of the V-natural transfor-

mations φ (Definition 3.3) and ψ (Definition 3.4) to reorder evaluation under U and

V .

This result is an extension of Porst and Tholen (1991, Proposition 1.4) to our enriched

setting.
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Theorem 3.13. Given the conditions of Assumption 4, for all objects A in A, the

following diagram commutes.

U(A)
φA,ΩA //

U(ρA)

��

[A(A,ΩA), U(ΩA)]

[A(A,ΩA),τ ]

��
UPS(A) =

// X(S(A),ΩX)
VS(A),ΩX

// [A(A,ΩA), V (ΩX)]

Dually, for all objects X in X, the following diagram commutes.

V (X)
ψX,ΩX //

V (σX)

��

[X(X,ΩX), V (ΩX)]

[X(X,ΩX),τ−1]

��
V SP (X) =

// A(P (X),ΩA)
UP (X),ΩA

// [X(X,ΩX), U(ΩA)]

Proof. We shall only prove the first case (for ρA), but the second follows in a similar

fashion.

We shall proceed by writing f = [A(A,ΩA), τ ] ◦φA,ΩA and g = VS(A),ΩX ◦= ◦U(ρA), and

then prove that f = g. To do this we will consider the transposes f † and g† of f and g

under the adjunction −⊗ A(A,ΩA) a [A(A,ΩA),−]. If we can show that f † = g†, then

the bijection between morphisms and their transposes will force f = g.

The transpose of f is given by Definition 3.3, Proposition 3.1, and the naturality of c

and e, as

U(A)⊗ A(A,ΩA)
f† //

∼=A⊗1A(A,ΩA)

��

V (ΩX)

A(A0, A)⊗ A(A,ΩA)

cA(A0,A),A(A,ΩA)

��

U(ΩA)

τ

OO

A(A,ΩA)⊗ A(A0, A)
MA0,A,ΩA

// A(A0,ΩA)

∼=−1
ΩA

OO
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and by Proposition 3.2, and the fact that ΦA,X0 : A(A,ΩA) = V S(A) ∼= X(X0, S(A)),

the transpose of g is given by

U(A)⊗ A(A,ΩA)
g† //

U(ρA)⊗1A(A,ΩA)

��

V (ΩX)

UPS(A)⊗ A(A,ΩA)

=⊗1A(A,ΩA)

��

X(X0,ΩX)

∼=−1
ΩX

OO

X(S(A),ΩX)⊗ A(A,ΩA)
1X(S(A),ΩX)⊗ΦA,X0

// X(S(A),ΩX)⊗ X(X0, S(A))

MX0,S(A),ΩX

OO

Now the first thing we observe is that by Proposition 3.10 we have τ = Φ−1
A0,X0

, and also
∼=−1

ΩA
= ΦA0,X0 = τ−1 and ∼=−1

ΩX
= Φ−1

A0,X0
= τ . The rest of the proof follows by applying

−⊗ A(A,ΩA) to Lemma 3.11, and then using Lemma 3.12.

Finally, by Definition 3.3 and Definition 3.4, we have this simple corollary. It shows that

the unit and counit of the dual adjunction are given by the evaluation of morphisms to

the truth objects of A and X, modulo the isomorphism τ .

Corollary 3.14. Given the conditions of Assumption 4, for the unit and counit of the

dual adjunction we have

V (U(ρA)(a))(s) = τ(U(s)(a))

U(V (σX)(x))(u) = τ−1(V (u)(x)),

for a ∈ elem|U(A)|, x ∈ elem|V (X)|, s ∈ Ao(A,ΩA), and u ∈ Xo(X,ΩX).

3.4 The Logical Interpretation

So far we have described the dual adjunction framework in which we operate purely in

mathematical terms. However we intend to give this framework a logical interpretation.

The key idea is that the state spaces of X contain states x, and the algebras of A contain

formulas a, and we want to be able to take a pair (x, a) and assign a truth value to the

formula a in the state x. These truth values we will take from the truth objects ΩA and

ΩX.

There is an alternative way of looking at assigning a logical interpretation. If our logics

are bivalent (only two truth values), then we could instead assign to each formula a
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the set of all states in which a is true. This would be a predicate on the state space.

Conversely, for each state we could assign the set of all formulae that are true in that

state.

Intuitively these different ways of assigning a logical interpretation ought to be equiv-

alent, and we shall show that this is indeed the case, and that this arises from the

symmetric monoidal closed structure of V.

It should be made clear though, that our approach does not depend upon the use of

bivalent logics. Our results are parametric in the truth objects ΩA and ΩX.

We start with the second approach above.

Definition 3.15. Given the conditions of Assumption 4, for any object A in A, and

any object X in X, we call any morphism

f ∈ Ao(A,P (X))

a valuation, and any morphism

f ∈ Xo(X,S(A))

a theory map.

The categories Ao and Xo are concrete over Set, since U , V , and elem|−| are faithful

(Section 3.2), and thus the objects A and X are sets with some additional structure. A

valuation then corresponds to a function mapping each formula to a predicate (set of

states that satisfies it), and a theory map corresponds to a function mapping each state

to a theory (set of formulae satisfied by that state). Though as already mentioned in

Section 3.1, our notions of predicate and theory can be more general than mere sets,

and our logics need not be restricted to the usual two truth values (true and false).

For example, in Section 3.6 predicates include subsets, upsets of preorders, and fuzzy

subsets, and theories include filters, prime filters, and ultrafilters.

Now since we have a dual adjunction P a S, valuations and theory maps come in

pairs. But does this pairing make sense from a logical perspective, and what about the

first method of assigning a logical interpretation described above? In other words, do

valuations and theory maps assign truth values to states and formulae in a consistent

fashion?

Moreover, in the above definition of valuations and theory maps, the set of truth values

is implicit in the logical connection. Can we be more explicit about which values are

being assigned to which formulae in which states?

We aim to answer these questions by exploiting the symmetric monoidal closed structure

of the category V. Specifically, we aim to show that the following diagram commutes,
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where top left are valuations, top right theory maps, and at the bottom the underlying

functions that assign truth values to pairs of states and formulae.

A(A,P (X))
ΦA,X //

UA,P (X)

��

X(X,S(A))

VX,S(A)

��
[U(A), UP (X)]

=

��

[V (X), V S(A)]

=

��
[U(A),X(X,ΩX)]

[U(A),VX,ΩX ]

��

[V (X),A(A,ΩA)]

[V (X),UA,ΩA ]

��
[U(A), [V (X), V (ΩX)]]

p−1
U(A),V (X),V (ΩX)

��

[V (X), [U(A), U(ΩA)]]

p−1
V (X),U(A),U(ΩA)

��
[U(A)⊗ V (X), V (ΩX)]

[c−1
U(A),V (X)

,τ−1]

// [V (X)⊗ U(A), U(ΩA)]

To make the task more manageable we write

µ = p−1
U(A),V (X),V (ΩX) ◦ [U(A), VX,ΩX ] ◦ UA,P (X)

ν = p−1
V (X),U(A),U(ΩA) ◦ [V (X), UA,ΩA ] ◦ VX,S(A),

then the above diagram becomes the following one.

A(A,P (X))
ΦA,X //

µ

��

X(X,S(A))

ν

��
[U(A)⊗ V (X), V (ΩX)]

[c−1
U(A),V (X)

,τ−1]

// [V (X)⊗ U(A), U(ΩA)]

(3.1)

Then using Proposition 3.1 and Proposition 3.2, the fact that ∼=P (X)= Φ−1
A0,X

, and the

definition of p−1 from Proposition B.12, it is reasonably straightforward to show that

the transpose µ† of µ under the adjunction −⊗ (U(A)⊗ V (X)) a [U(A)⊗ V (X),−] is

given by the following diagram.
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A(A,P (X))⊗ (U(A)⊗ V (X))
µ† //

1A(A,P (X))⊗(∼=A⊗∼=X)

��

V (ΩX)

A(A,P (X))⊗ (A(A0, A)⊗ X(X0, X))

a−1
A(A,P (X)),A(A0,A),X(X0,X)

��

X(X0,ΩX)

τ

OO

(A(A,P (X))⊗ A(A0, A))⊗ X(X0, X)

MA0,A,P (X)⊗1X(X0,X)

��
A(A0, P (X))⊗ X(X0, X)

ΦA0,X
⊗1X(X0,X)

// X(X,ΩX)⊗ X(X0, X)

MX0,X,ΩX

OO

Similarly, under the adjunction −⊗ (V (X)⊗U(A)) a [V (X)⊗U(A)),−], the transpose

ν† of ν is given by

X(X,S(A))⊗ (V (X)⊗ U(A))
ν† //

1X(X,S(A))⊗(∼=X⊗∼=A)

��

U(ΩA)

X(X,S(A))⊗ (X(X0, X)⊗ A(A0, A))

a−1
X(X,S(A)),X(X0,X),A(A0,A)

��

A(A0,ΩA)

τ−1

OO

(X(X,S(A))⊗ X(X0, X))⊗ A(A0, A)

MX0,X,S(A)⊗1A(A0,A)

��
X(X0, S(A))⊗ A(A0, A)

Φ−1
A,X0

⊗1A(A0,A)

// A(A,ΩA)⊗ A(A0, A)

MA0,A,ΩA

OO

We can therefore replace commutativity of diagram (3.1) in µ and ν, with commutativity

of a diagram in µ† and ν†, as given by the following proposition.
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Proposition 3.16. Given the conditions of Assumption 4, for all objects A in A, and

all objects X in X,

A(A,P (X))
ΦA,X //

µ

��

X(X,S(A))

ν

��
[U(A)⊗ V (X), V (ΩX)]

[c−1
U(A),V (X)

,τ−1]

// [V (X)⊗ U(A), U(ΩA)]

(3.2)

commutes, if and only if,

A(A,P (X))

⊗(U(A)⊗ V (X))

ΦA,X⊗cU(A),V (X) //

µ†

��

X(X,S(A))

⊗(V (X)⊗ U(A))

ν†

��
V (ΩX)

τ−1
// U(ΩA)

(3.3)

commutes.

Proof. Consider the following diagram.

A(A,P (X))

⊗(U(A)⊗ V (X))

ΦA,X⊗cU(A),V (X) //

µ†

''
µ⊗1U(A)⊗V (X)

��

X(X,S(A))

⊗(V (X)⊗ U(A))

ν†

ww
ν⊗1V (X)⊗U(A)

��

V (ΩX)
τ−1
// U(ΩA)

[U(A)⊗ V (X), V (ΩX)]

⊗(U(A)⊗ V (X))

eU(A)⊗V (X),V (ΩX)

77

[c−1
U(A),V (X)

,τ−1]⊗cU(A),V (X)

// [V (X)⊗ U(A), U(ΩA)]

⊗(V (X)⊗ U(A))

eV (X)⊗U(A),U(ΩA)

gg

The triangles on the left and right commute by the definitions of µ† and ν†, and the

bottom quadrilateral commutes by the naturality of e. So the diagram as a whole

commutes if and only if the top quadrilateral commutes, which is seen to be (3.3).

Now if (3.2) commutes, applying the functor −⊗ (U(A)⊗ V (X)) to it, and then using

the naturality of c, means the outer perimeter of the above diagram commutes, which

in turn means that (3.3) must commute. Conversely, if (3.3) commutes, then the above

diagram commutes, and by the uniqueness of transposes, this means that (3.2) must

commute.
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So using Proposition 3.16, and the definitions of µ† and ν†, we have to show that the

following diagram commutes.

A(A,P (X))

⊗(U(A)⊗ V (X))

ΦA,X⊗cU(A),V (X) //

1A(A,P (X))⊗(∼=A⊗∼=X)

��

X(X,S(A))

⊗(V (X)⊗ U(A))

1X(X,S(A))⊗(∼=X⊗∼=A)

��

A(A,P (X))

⊗(A(A0, A)⊗ X(X0, X))

ΦA,X⊗cA(A0,A),X(X0,X)//

a−1
A(A,P (X)),A(A0,A),X(X0,X)

��

X(X,S(A))

⊗(X(X0, X)⊗ A(A0, A))

a−1
X(X,S(A)),X(X0,X),A(A0,A)

��

(A(A,P (X))⊗ (A(A0, A))

⊗X(X0, X)

MA0,A,P (X)⊗1X(X0,X)

��

(X(X,S(A))⊗ (X(X0, X))

⊗A(A0, A)

MX0,X,S(A)⊗1A(A0,A)

��
A(A0, P (X))⊗ X(X0, X)

ΦA0,X
⊗1X(X0,X)

��

X(X0, S(A))⊗ A(A0, A)

Φ−1
A,X0

⊗1A(A0,A)

��
X(X,ΩX)⊗ X(X0, X)

MX0,X,ΩX

��

A(A,ΩA)⊗ A(A0, A)

MA0,A,ΩA

��
X(X0,ΩX)

Φ−1
A0,X0

//

τ

��

A(A0,ΩA)

τ−1

��
V (ΩX)

τ−1
// U(ΩA)

The top square of this diagram commutes by the naturality of c, and the bottom square

commutes by Proposition 3.10, so we are left to show that the middle part of the diagram

commutes. This looks strange and complicated, but in actual fact is something quite

straightforward and well known in ordinary category theory.
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If we consider the underlying ordinary dual adjunction Po a So (Proposition C.70), and

using the notation f [ to represent the dual adjunct of f : A→ Po(X), and f ] to represent

the dual adjunct of f : X → So(A) (Proposition A.48), then for all f ∈ Ao(A,Po(X)),

a ∈ Ao(A0, A), and x ∈ Xo(X0, X), by Proposition A.51 we have

(S(a) ◦ f [ ◦ x)] = P (x) ◦ (S(a) ◦ f [)]

= P (x) ◦ (f [)] ◦ a

= P (x) ◦ f ◦ a.

This is what the middle part of the above diagram shows, except at the V-category

level. To complete the proof therefore, we must show how the ordinary category theory

result implies the commutativity of the diagram in Vo. To do this we first apply the

functor elem|−| to map the Vo diagram to the underlying one in Set. Then we use the

fact that elem|−| is strong monoidal, and Proposition 2.12, to show that the underlying

diagram commutes because of the above underlying dual adjunction result. Finally,

since elem|−| is faithful, this means that the diagram in Vo must commute.

Thus since U and V are both faithful, every valuation or theory map corresponds to a

distinct morphism of the form U(A)⊗ V (X)→ U(ΩA) or V (X)⊗ U(A)→ V (ΩX), and

since elem|−| is strong monoidal, these morphisms are binary maps (each element of

U(A)⊗ V (X) is a pair (a, x)).

Summarising all this we have the following theorem.

Theorem 3.17. Given the conditions of Assumption 4, and any objects A in A and

X in X, then for any valuation f ∈ Ao(A,P (X)), and its dual adjunct theory map

f [ ∈ Xo(X,S(A)), we have

V (U(f)(a))(x) = τ(U(V (f [)(x))(a))

for all a ∈ elem|U(A)| and x ∈ elem|V (X)|. Also, representing each f , and f [, is a

distinct satisfaction map

�f : U(A)⊗ V (X)→ V (ΩX)

a⊗ x 7→ V (U(f)(a))(x)

�f[ : V (X)⊗ U(A)→ U(ΩA)

x⊗ a 7→ U(V (f [)(x))(a),

and moreover we have that

�f = τ ◦ �f[ ◦ cU(A),V (X).
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What this theorem shows, is that as stated at the start of this section, valuations and

theory maps correspond to the possibly more intuitive notion of taking a pair consisting

of a formula and a state, and assigning a truth value to that pair - the truth status of

that formula in that state.

However, at the level of the satisfaction maps (the category Vo), the algebraic properties

of the logical connectives of objects in A, or the topologies or other structure of objects

in X, have been forgotten (by the functors U and V ). Thus not every possible choice of

map U(A) ⊗ V (X) → U(ΩA) or V (X) ⊗ U(A) → V (ΩX) corresponds to a valuation or

theory map.

Usually in the literature when a map of the form � : U(A)⊗ V (X)→ V (ΩX) is defined,

it is done so inductively on the structure of the formula a, but this is needed precisely

because this information is not present at the level of the category Vo. At the level of

the category Ao this structure is built in, and all morphisms must preserve it. Thus val-

uations, or dually theory maps, are a mathematically cleaner way to give the semantics

of a base logic in A.

3.5 Dualising Objects

In the previous sections we have examined the properties of a logical connection, but

now we want to concentrate on finding logical connections. In the next section we

shall produce a collection of example logical connections that will be used in subsequent

chapters. To do this we will require a technical tool, and that is what we shall cover in

this section.

The technical tool we shall use is what we shall call a dualising object. This is not a

new idea (for example see Johnstone (1982, VI.4)), and we shall only present a brief

summary of the material in Porst and Tholen (1991); Kurz and Velebil (2011), wherein

a dualising object is known as a schizophrenic object.

To formulate the notion of a dualising object we shall need the concept of an F -initial

lift, where here F : C → V is a V-functor. In Chapter 2 we introduced the idea of

the initial lift of an ordinary functor along the functor elem|−| : Vo → Set to create

a V-functor (Definition 2.10), here we lift families of morphisms in Vo to families of

morphisms in Co. This concept will only be used in the remainder of this chapter.

Our approach is to present material from Kurz and Velebil (2011), but restricted to the

single sorted case. We do this because we are only working in a single sorted framework,

but this also has the effect of significantly simplifying the presentation.
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Definition 3.18. Given a V-functor F : C→ V we have the following definitions:

1. An F -structured source is a morphism

λ : W → [Z,F (C)]

in Vo.

2. An F -lift of λ is a morphism

λ : W → C(Z,C)

in Vo such that the diagram

W
λ //

λ

""

C(Z,C)

FZ,C

��
[Z,F (C)]

commutes.

3. An F -initial lift of λ is an F -lift λ such that

C(C ′, Z)
homC(C′,λ) //

FC′,Z

��

[W,C(C ′, C)]

[W,FC′,C ]

��
[F (C ′), Z]

homV(F (C′),λ)
// [W, [F (C ′), F (C)]]

is a pullback in Vo for all C ′ ∈ obj|C|.

Here, homC(C ′, λ) is defined such that

homC(C ′, λ)(f)(w) = λ(w) • f,

for f ∈ Co(C ′, Z), and w ∈ elem|W |.

Similarly, homV(F (C ′), λ) is defined such that

homV(F (C ′), λ)(g)(w) = λ(w) ◦ g,

for g ∈ Vo(F (C ′), Z), and w ∈ elem|W |.

An F -structured source can be thought of as a family of Vo morphisms from Z to F (C)

indexed by W . An F -lift of λ is then a W -indexed family of Co morphisms from Z to
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C. Here Z is an object of C such that F (Z) = Z. It can be thought of as somehow

putting the additional structure of a C object onto an underlying V object, such that

each Vo morphism λ(w) = FZ,C(λ(w)).

An F -initial lift is then an optimal choice of Z, one such that for any Vo morphism

h : F (C ′) → Z, for some object C ′ of C, and any W -indexed family of morphisms

µ(w) ∈ Co(C ′, C), such that for all w ∈ elem|W |,

FC′,C(µ(w)) = λ(w) ◦ h,

there exists a unique Co morphism h : C ′ → Z, such that for all w ∈ elem|W |,

µ(w) = λ(w) • h,

and

FC′,Z(h) = h.

Using the above, in conjunction with the definitions of φ and ψ from Definition 3.3 and

Definition 3.4, we can define a dualising object as follows.

Definition 3.19. Given the conditions of Assumption 2, a triple (ΩA,ΩX, τ), consisting

of an object ΩA in A, an object ΩX in X, and an isomorphism τ : U(ΩA) → V (ΩX) in

Vo, is called a dualising object if the following hold:

1. For every A in A, the V -structured source

µA : U(A)
φA,ΩA // [A(A,ΩA), U(ΩA)]

[A(A,ΩA),τ ] // [A(A,ΩA), V (ΩX)]

has a V -initial lift

µA : U(A)→ X(S(A),ΩX).

2. For every X in X, the U -structured source

νX : V (X)
ψX,ΩX // [X(X,ΩX), V (ΩX)]

[X(X,ΩX),τ−1] // [X(X,ΩX), U(ΩA)]

has a U -initial lift

νX : V (X)→ A(P (X),ΩA).

In the above definition we have used the suggestive notation of S(A) and P (X) for the

initial lifts of A(A,ΩA) and X(X,ΩX). This is in anticipation of the following result,

which is Kurz and Velebil (2011, Theorem 4.16), and which we state without proof.

Theorem 3.20. Given the conditions of Assumption 2, every dualising object (ΩA,ΩX, τ)

induces a V-dual adjunction P a S : A→ X strictly represented by (ΩA,ΩX).
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3.6 Examples

In this section we shall establish a collection of different logical connections that we shall

build upon in subsequent chapters. These examples are by no means exhaustive, and

indeed, in the case of enrichment over Set (i.e. ordinary category theory), there are

many examples to be found in the literature (Section 3.7).

It should also be noted that these examples derive from those of Jacobs and Sokolova

(2010), but extended and enriched where appropriate.

The logical connections to follow will be built from a common collection of components,

and we shall consider three cases: enrichment over Set, enrichment over SetR (Defini-

tion 2.1), and enrichment over GMet (Definition 2.5).

The categories MSL, DL, and BA consist, respectively, of meet semilattices with top,

distributive lattices with top, and Boolean algebras. As defined they are ordinary cat-

egories, but each object A (of any of these categories) can be given a natural order:

a ≤ b⇔ a = a∧ b, and so can be thought of as a set with a preorder, or a partial order.

Alternatively, using the equality relation on A, A can be thought of as a set with an

equivalence relation, or equality relation. It is not hard to see that the morphisms of

MSL, DL, and BA preserve these order relations, and are themselves ordered pointwise.

Definition 3.21. The categories MSL, DL, and BA are enriched over SetR, with each

object A carrying the relation RA defined as follows:

1. if the type R represents preorders or partial orders,

aRAb⇔ a = a ∧ b,

2. if the type R represents equivalence relations or equality,

aRAb⇔ a = b.

The hom-objects are ordered pointwise, i.e. for f, g : A→ B,

fRg ⇔ for all a ∈ A we have f(a)RBg(a).

Similarly, objects of the categories MSL, DL, and BA can be given a generalised metric

in a natural way, and once again the morphisms preserve the metrics, and can themselves

be given a metric.
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Definition 3.22. The categories MSL, DL, and BA are enriched over GMet, with

each object A carrying the generalised metric dA defined by

dA(a, b) =

0 : if a = a ∧ b

∞ : otherwise.

The generalised metric on each hom-object is defined for f, g : A→ B as

d(f, g) = sup
a∈A

dB(f(a), g(a)).

The categories MSL, DL, and BA form our base logics, and give us respectively:

conjunction and true; conjunction, disjunction, and true; and conjunction, disjunction,

negation, true, and false. To this we need to add a set of truth values. We shall consider

two cases. The first is the usual case of bivalent logic, where truth values come from the

set 2 = {0, 1}. The second is the case of fuzzy logic, where truth values are taken from

the unit interval [0, 1].

These sets of truth values need to be given preorders and metrics in the case of enrich-

ment over SetR or GMet.

In the case of bivalent logics we make the following definition.

Definition 3.23. The set 2 = {0, 1}, as an object in SetR, is defined to have the

following preorder relation:

1. if the type R represents preorders or partial orders,

R2 = {(0, 0), (0, 1), (1, 1)},

2. if the type R represents equivalence relations or equality,

R2 = {(0, 0), (1, 1)},

and as an object in GMet, is defined to have the generalised metric given by

d2(a, b) =

0 : if (a, b) ∈ {(0, 0), (0, 1), (1, 1)}

∞ : otherwise.

Similarly, in the case of fuzzy logics we make the following definition.
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Definition 3.24. The unit interval [0, 1], as an object in SetR, is defined to have the

following preorder relation:

1. if the type R represents preorders or partial orders,

xR[0,1]y ⇔ x ≤ y,

2. if the type R represents equivalence relations or equality,

xR[0,1]y ⇔ x = y,

and as an object in GMet, is defined to have the generalised metric given by

d[0,1](x, y) =

y − x : if x ≤ y

∞ : otherwise.

The truth set 2 needs to be given an algebraic structure in order to make it into an

object in the categories MSL, DL, and BA.

Definition 3.25. For each of the categories MSL, DL, and BA, the set 2 = {0, 1} has

the corresponding subset of the following operations:

1. > = 1,

2. a ∧ b = min(a, b),

3. a ∨ b = max(a, b),

4. ¬a = 1− a.

The truth set [0, 1] however, can only be made into an object in the categories MSL

and DL, and not into a Boolean algebra, since a ∨ ¬a = > is not valid in fuzzy logic.

Note, here we are defining what in  Lukasiewicz logic are known as weak conjunction and

disjunction.

Definition 3.26. For each of the categories MSL and DL, the unit interval [0, 1] has

the corresponding subset of the following operations:

1. > = 1,

2. x ∧ y = min(x, y),

3. x ∨ y = max(x, y).



Chapter 3 Logical Connections 55

For state spaces we will use the categories Set, SetR, GMet, and Meas, the category

of measurable spaces. These are all ordinary categories, but SetR and GMet are also

enriched over themselves, and from Example 2.1 and Example 2.2, we also have the

SetR-category MeasR, and the GMet-category GMeas.

The truth sets 2 and [0, 1] can be made into objects of Meas, MeasR and GMeas by

giving them sigma algebra structures. For our purposes the following choices suffice.

Definition 3.27. The set 2 carries the sigma algebra defined by

Σ2 = {∅, {0}, {1},2},

and the unit interval [0, 1] carries the sigma algebra given by the Borel sets of [0, 1].

We shall now introduce some terminology that will make our work easier.

Definition 3.28.

1. A morphism u ∈ Set(X,2) defines a subset of X.

2. A morphism u ∈ Set(X, [0, 1]) defines a fuzzy subset of X.

3. A morphism u ∈ SetR(X,2) defines a right R-closed subset of X.

In detail this corresponds to:

if x ∈ u and xRXy then y ∈ u.

4. A morphism u ∈ SetR(X, [0, 1]) defines a right R-closed fuzzy subset of X.

In detail this corresponds to:

if xRXy then u(x) ≤ u(y).

5. A morphism u ∈ GMet(X,2) defines a right d-closed subset of X.

In detail this corresponds to:

if x ∈ u and dX(x, y) <∞ then y ∈ u.

6. A morphism u ∈ GMet(X, [0, 1]) defines a right d-closed fuzzy subset of X.

In detail this corresponds to:

if dX(x, y) <∞ then u(x) ≤ u(y).

A right R-closed subset is the generalisation of an upset (Davey and Priestley, 2002).

Moreover, because {1} ∈ Σ2, a morphism u ∈ Meas(X,2) is a measurable subset of
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X, and this combines in the obvious way with the notions of right R-closed, and right

d-closed, in the categories MeasR and GMeas.

We can use similar terminology on the algebra side, starting with standard definitions

from order theory (Davey and Priestley, 2002), and then introducing their obvious fuzzy

analogues.

Definition 3.29.

1. A morphism s ∈MSL(A,2) defines a filter of A.

In detail this corresponds to:

s is an upset, and if a, b ∈ s then a ∧ b ∈ s.

2. A morphism s ∈ DL(A,2) defines a prime filter of A.

In detail this corresponds to:

s is a filter, and if a ∨ b ∈ s then either a ∈ s or b ∈ s.

3. A morphism s ∈ BA(A,2) defines a ultrafilter of A.

In detail this corresponds to:

s is a filter, and for all a ∈ A, either a ∈ s or ¬a ∈ s.

4. A morphism s ∈MSL(A, [0, 1]) defines a fuzzy filter of A.

In detail this corresponds to:

s is a fuzzy upset, and s(a ∧ b) = min(s(a), s(b)).

5. A morphism s ∈ DL(A, [0, 1]) defines a fuzzy prime filter of A.

In detail this corresponds to:

s is a fuzzy filter, and s(a ∨ b) = max(s(a), s(b)).

Now we know from Definition 3.21 and Definition 3.22 that the categories MSL, DL,

and BA can be enriched over SetR and GMet, and that this introduces the notions of

right R-closed sets and right d-closed sets. However, in these cases this adds nothing

new. Thus when talking about the various flavours of filters, we shall not use the right

R-closed and right d-closed terminology.

So far we have described the different categories that we shall use to form our examples,

and we have also described two different sets of truth values, 2 and [0, 1], and how to
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make these sets into objects of the chosen categories. Next we need to define the forgetful

functors U and V .

Definition 3.30.

1. For the categories MSL, DL, and BA, and the three cases of enrichment over

Set, SetR, and GMet, the functor U is the obvious forgetful functor that takes

each object and simply forgets some of the structure.

This definition of U is obviously faithful, and it is also representable, with the

representing object being the free algebra over one generator in the respective

category MSL, DL, or BA.

2. For the categories SetR and GMet, since we are taking them to be enriched over

themselves, for the forgetful functor V we simply take the identity functor.

The functor V is then representable, with the representing object in each case

being the corresponding final object, which is the singleton 1 (with additional

structure).

3. For the categories Meas, MeasR, and GMeas, since we consider them to be

enriched over Set, SetR, and GMet respectively, we define the forgetful functor

V to simply forget the sigma algebra associated with each object.

The functor V is clearly faithful, and is representable, with the representing object

in each case being the corresponding final object, which is the singleton 1 (with

additional structure).

We are now ready to construct a series of logical connections from the different compo-

nents described above. To do this, the main technical tool we shall use is Theorem 3.20,

which requires that we establish the existence of initial lifts of certain morphisms.

To use Theorem 3.20 we must first find for each example of a logical connection a triple

(ΩA,ΩX, τ). In our examples we intend ΩA and ΩX to be 2 or [0, 1] with the appro-

priate additional structures given by Definition 3.23, Definition 3.24, Definition 3.25,

Definition 3.26, and Definition 3.27. This means in all our examples the isomorphism

τ : U(ΩA)→ V (ΩX)

will be the identity.

Finally, the underlying functions of the unit and counit in each example are given by

Corollary 3.14.
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Bivalent Logical Connections

Example 3.1 (Bivalent MSL, DL, or BA, and Set enriched over Set).

1. The morphism

µA : U(A)→ [A(A,2), V (2)]

assigns to each a ∈ U(A), the set of filters/prime filters/ultrafilters of A that

contain a. Since V is the identity functor, the V -initial lift

µA : U(A)→ Set(S(A),2)

assigns to each a the corresponding subset of S(A), where

S(A) = A(A,2).

2. The morphism

νX : V (X)→ [Set(X,2), U(2)]

assigns to each x ∈ V (X), the set of subsets of X that contain x. The U -initial

lift

νX : V (X)→ A(P (X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P (X), where

UP (X) = Set(X,2),

and P (X) is defined to be Set(X,2) with the relevant subset of the following op-

erations:

>: > is defined to be the set X,

∧: for u, v ∈ P (X) define u ∧ v = u ∩ v (set intersection),

∨: for u, v ∈ P (X) define u ∨ v = u ∪ v (set union),

¬: for u ∈ P (X) define ¬u = uc (set complement in X).

3. The unit is given by

ρA(a) = {s ∈ S(A) | a ∈ s},

and the counit by

σX(x) = {u ∈ P (X) | x ∈ u}.
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Example 3.2 (Bivalent MSL, DL, or BA, and SetR enriched over SetR).

1. The morphism

µA : U(A)→ [A(A,2), V (2)]

assigns to each a ∈ U(A), the right R-closed set of filters/prime filters/ultrafilters

of A that contain a. Since V is the identity functor, the V -initial lift

µA : U(A)→ SetR(S(A),2)

assigns to each a the corresponding right R-closed subset of S(A), where

S(A) = A(A,2).

Here S(A) is ordered by inclusion if the type R represents preorders or partial

orders, and by equality if the type R represents equivalence relations or equality.

2. The morphism

νX : V (X)→ [SetR(X,2), U(2)]

assigns to each x ∈ V (X), the right R-closed set of right R-closed subsets of X

that contain x. The U -initial lift

νX : V (X)→ A(P (X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P (X), where

UP (X) = SetR(X,2),

and P (X) is defined to be SetR(X,2) with the relevant subset of the following

operations:

>: > is defined to be the set X,

∧: for u, v ∈ P (X) define u ∧ v = u ∩ v (set intersection),

∨: for u, v ∈ P (X) define u ∨ v = u ∪ v (set union),

¬: for u ∈ P (X) define ¬u = uc (set complement in X).

Note: for u right R-closed, ¬u is only right R-closed if the type R represents

equivalence relations or equality. Thus only in these cases do we have a logical

connection between BA and SetR.

3. The unit is given by

ρA(a) = {s ∈ S(A) | a ∈ s},

and the counit by

σX(x) = {u ∈ P (X) | x ∈ u}.
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Example 3.3 (Bivalent MSL or DL, and GMet enriched over GMet).

1. The morphism

µA : U(A)→ [A(A,2), V (2)]

assigns to each a ∈ U(A), the right d-closed set of filters/prime filters of A that

contain a. Since V is the identity functor, the V -initial lift

µA : U(A)→ GMet(S(A),2)

assigns to each a the corresponding right d-closed subset of S(A), where

S(A) = A(A,2).

Here S(A) has the metric d(s, s′) = 0, if s ⊆ s′, and d(s, s′) =∞ otherwise.

2. The morphism

νX : V (X)→ [GMet(X,2), U(2)]

assigns to each x ∈ V (X), the right d-closed set of right d-closed subsets of X that

contain x. The U -initial lift

νX : V (X)→ A(P (X),2)

assigns to each x the corresponding filter/prime filter of P (X), where

UP (X) = GMet(X,2),

and P (X) is defined to be GMet(X,2) with the relevant subset of the following

operations:

>: > is defined to be the set X,

∧: for u, v ∈ P (X) define u ∧ v = u ∩ v (set intersection),

∨: for u, v ∈ P (X) define u ∨ v = u ∪ v (set union).

3. The unit is given by

ρA(a) = {s ∈ S(A) | a ∈ s},

and the counit by

σX(x) = {u ∈ P (X) | x ∈ u}.
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Example 3.4 (Bivalent MSL, DL, or BA, and Meas enriched over Set).

1. The morphism

µA : U(A)→ [A(A,2), V (2)]

assigns to each a ∈ U(A), the set of filters/prime filters/ultrafilters of A that

contain a. The V -initial lift

µA : U(A)→Meas(S(A),2)

assigns to each a the corresponding measurable subset of S(A), where

V S(A) = A(A,2),

and S(A) is defined to be A(A,2) with the sigma algebra generated by the family

of sets ({s ∈ S(A) | a ∈ s})a∈A.

2. The morphism

νX : V (X)→ [Meas(X,2), U(2)]

assigns to each x ∈ V (X), the set of measurable subsets of X that contain x. The

U -initial lift

νX : V (X)→ A(P (X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P (X), where

UP (X) = Meas(X,2),

and P (X) is defined to be Meas(X,2) with the relevant subset of the following

operations:

>: > is defined to be the set X,

∧: for u, v ∈ P (X) define u ∧ v = u ∩ v (set intersection),

∨: for u, v ∈ P (X) define u ∨ v = u ∪ v (set union),

¬: for u ∈ P (X) define ¬u = uc (set complement in X).

3. The unit is given by

ρA(a) = {s ∈ S(A) | a ∈ s},

and the counit by

σX(x) = {u ∈ P (X) | x ∈ u}.
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Example 3.5 (Bivalent MSL, DL, or BA, and MeasR enriched over SetR).

1. The morphism

µA : U(A)→ [A(A,2), V (2)]

assigns to each a ∈ U(A), the right R-closed set of filters/prime filters/ultrafilters

of A that contain a. The V -initial lift

µA : U(A)→MeasR(S(A),2)

assigns to each a the corresponding right R-closed measurable subset of S(A), where

V S(A) = A(A,2),

and S(A) is defined to be A(A,2) with the sigma algebra generated by the family

of sets ({s ∈ S(A) | a ∈ s})a∈A, and ordered by inclusion if the type R represents

preorders or partial orders, and by equality if the type R represents equivalence

relations or equality.

2. The morphism

νX : V (X)→ [MeasR(X,2), U(2)]

assigns to each x ∈ V (X), the right R-closed set of right R-closed measurable

subsets of X that contain x. The U -initial lift

νX : V (X)→ A(P (X),2)

assigns to each x the corresponding filter/prime filter/ultrafilter of P (X), where

UP (X) = MeasR(X,2),

and P (X) is defined to be MeasR(X,2) with the relevant subset of the following

operations:

>: > is defined to be the set X,

∧: for u, v ∈ P (X) define u ∧ v = u ∩ v (set intersection),

∨: for u, v ∈ P (X) define u ∨ v = u ∪ v (set union),

¬: for u ∈ P (X) define ¬u = uc (set complement in X).

Note: for u right R-closed, ¬u is only right R-closed if the type R represents

equivalence relations or equality. Thus only in these cases do we have a logical

connection between BA and MeasR.

3. The unit is given by

ρA(a) = {s ∈ S(A) | a ∈ s},
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and the counit by

σX(x) = {u ∈ P (X) | x ∈ u}.

Example 3.6 (Bivalent MSL or DL, and GMeas enriched over GMet).

1. The morphism

µA : U(A)→ [A(A,2), V (2)]

assigns to each a ∈ U(A), the right d-closed set of filters/prime filters of A that

contain a. The V -initial lift

µA : U(A)→ GMeas(S(A),2)

assigns to each a the corresponding right d-closed measurable subset of S(A), where

V S(A) = A(A,2),

and S(A) is defined to be A(A,2) with the sigma algebra generated by the family

of sets ({s ∈ S(A) | a ∈ s})a∈A, and with the metric d(s, s′) = 0, if s ⊆ s′, and

d(s, s′) =∞ otherwise.

2. The morphism

νX : V (X)→ [GMeas(X,2), U(2)]

assigns to each x ∈ V (X), the right d-closed set of right d-closed measurable subsets

of X that contain x. The U -initial lift

νX : V (X)→ A(P (X),2)

assigns to each x the corresponding filter/prime filter of P (X), where

UP (X) = GMeas(X,2),

and P (X) is defined to be GMeas(X,2) with the relevant subset of the following

operations:

>: > is defined to be the set X,

∧: for u, v ∈ P (X) define u ∧ v = u ∩ v (set intersection),

∨: for u, v ∈ P (X) define u ∨ v = u ∪ v (set union).

3. The unit is given by

ρA(a) = {s ∈ S(A) | a ∈ s},

and the counit by

σX(x) = {u ∈ P (X) | x ∈ u}.
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Fuzzy Logical Connections

Example 3.7 (Fuzzy MSL or DL, and Set enriched over Set).

1. The morphism

µA : U(A)→ [A(A, [0, 1]), V ([0, 1])]

assigns to each a ∈ U(A), the fuzzy set u, of fuzzy filters/fuzzy prime filters s

(of A), such that u(s) = s(a). Since V is the identity functor, the V -initial lift

µA : U(A)→ Set(S(A), [0, 1])

assigns to each a the corresponding fuzzy subset of S(A), where

S(A) = A(A, [0, 1]).

2. The morphism

νX : V (X)→ [Set(X, [0, 1]), U([0, 1])]

assigns to each x ∈ V (X), the fuzzy set s, of fuzzy subsets u (of X), such that

s(u) = u(x). The U -initial lift

νX : V (X)→ A(P (X), [0, 1])

assigns to each x the corresponding fuzzy filter/fuzzy prime filter of P (X), where

UP (X) = Set(X, [0, 1]),

and P (X) is defined to be Set(X, [0, 1]) with the relevant subset of the following

operations:

>: > is defined by >(x) = 1,

∧: for u, v ∈ P (X) define (u ∧ v)(x) = min(u(x), v(x)),

∨: for u, v ∈ P (X) define (u ∨ v)(x) = max(u(x), v(x)).

3. The unit is given by

ρA(a)(s) = s(a),

and the counit by

σX(x)(u) = u(x).
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Example 3.8 (Fuzzy MSL or DL, and SetR enriched over SetR).

1. The morphism

µA : U(A)→ [A(A, [0, 1]), V ([0, 1])]

assigns to each a ∈ U(A), the right R-closed fuzzy set u, of fuzzy filters/fuzzy

prime filters s (of A), such that u(s) = s(a). Since V is the identity functor, the

V -initial lift

µA : U(A)→ SetR(S(A), [0, 1])

assigns to each a the corresponding right R-closed fuzzy subset of S(A), where

S(A) = A(A, [0, 1]).

Here S(A) is ordered pointwise if the type R represents preorders or partial orders,

and by equality if the type R represents equivalence relations or equality.

2. The morphism

νX : V (X)→ [SetR(X, [0, 1]), U([0, 1])]

assigns to each x ∈ V (X), the right R-closed fuzzy set s, of right R-closed fuzzy

subsets u (of X), such that s(u) = u(x). The U -initial lift

νX : V (X)→ A(P (X), [0, 1])

assigns to each x the corresponding fuzzy filter/fuzzy prime filter of P (X), where

UP (X) = SetR(X, [0, 1]),

and P (X) is defined to be SetR(X, [0, 1]) with the relevant subset of the following

operations:

>: > is defined by >(x) = 1,

∧: for u, v ∈ P (X) define (u ∧ v)(x) = min(u(x), v(x)),

∨: for u, v ∈ P (X) define (u ∨ v)(x) = max(u(x), v(x)).

3. The unit is given by

ρA(a)(s) = s(a),

and the counit by

σX(x)(u) = u(x).
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Example 3.9 (Fuzzy MSL or DL, and GMet enriched over GMet).

1. The morphism

µA : U(A)→ [A(A, [0, 1]), V ([0, 1])]

assigns to each a ∈ U(A), the right d-closed fuzzy set u, of fuzzy filters/fuzzy prime

filters s (of A), such that u(s) = s(a). Since V is the identity functor, the V -initial

lift

µA : U(A)→ GMet(S(A), [0, 1])

assigns to each a the corresponding right d-closed fuzzy subset of S(A), where

S(A) = A(A, [0, 1]).

Here S(A) has the generalised metric d(s, s′) = 0, if s(a) ≤ s′(a) for all a ∈ A,

and d(s, s′) =∞ otherwise.

2. The morphism

νX : V (X)→ [GMet(X, [0, 1]), U([0, 1])]

assigns to each x ∈ V (X), the right d-closed fuzzy set s, of right d-closed fuzzy

subsets u (of X), such that s(u) = u(x). The U -initial lift

νX : V (X)→ A(P (X), [0, 1])

assigns to each x the corresponding fuzzy filter/fuzzy prime filter of P (X), where

UP (X) = GMet(X, [0, 1]),

and P (X) is defined to be GMet(X, [0, 1]) with the relevant subset of the following

operations:

>: > is defined by >(x) = 1,

∧: for u, v ∈ P (X) define (u ∧ v)(x) = min(u(x), v(x)),

∨: for u, v ∈ P (X) define (u ∨ v)(x) = max(u(x), v(x)).

3. The unit is given by

ρA(a)(s) = s(a),

and the counit by

σX(x)(u) = u(x).
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3.7 Discussion

Logical connections are rapidly becoming the standard base for formulating coalgebraic

modal logic, however to date most work has been done using ordinary dual adjunctions,

for example Kurz and Pattinson (2002, 2005); Kupke et al. (2004b); Bonsangue and

Kurz (2005, 2006); Kurz (2006); Pavlovic et al. (2006); Kurz and Rosický (2007, 2012);

Klin (2007); Kurz and Petrişan (2008); Jacobs and Sokolova (2010), although there are

undoubtedly many others.

Many of the above authors worked with simple examples of dual adjunctions between

BA and Set, but others considered state spaces with some kind of topology. Kurz

and Pattinson (2002, 2005) considered the topology induced by observation of only a

finite number of transition steps, and Kupke et al. (2004b) looked at coalgebras on Stone

spaces (compact, totally disconnected, Hausdorff spaces), as by the Stone Representation

Theorem, BA is dual to Stone (Stone Duality). The work of Bonsangue and Kurz (2005,

2006) then applied the generalisations of Stone Duality of Johnstone (1982), to look at

coalgebras on general categories of topological spaces, and modal logics constructed from

(dually equivalent) categories of lattices.

Other general classes of dual adjunctions have been investigated. In Kurz and Rosický

(2007, 2012); Kurz and Petrişan (2008) the logical connections employed arise from base

categories that are constructed from two different completions of a common category

with finite limits and colimits.

Recently some work has begun that utilises logical connections enriched over Preord

and Pos to extend coalgebraic modal logic (Kapulkin et al., 2010, 2012; B́ılková et al.,

2011), but no one as far as we are aware has attempted to do coalgebraic modal logic

enriched over anything else, for example metric spaces.

Finally, the duality between real C∗-algebras and compact Hausdorff spaces has been

used to investigate Markov Processes (Mislove et al., 2004), although the authors did not

make use of coalgebras, nor modal logic. However, other authors have treated Markov

Processes coalgebraically (Jacobs and Sokolova, 2010), although in this case the logical

connection used was between MSL and Meas.





Chapter 4

Coalgebraic Modal Logics

In Chapter 3 we described the concept of a logical connection. This forms the static

base of our framework. What we mean by this, is that the formulae are given meaning

by way of generalised predicates on a state space, but there is no notion of transition

from one state to another. We shall address this in this chapter by adding dynamics to

our state spaces in the form of coalgebras, and we shall add modalities to our logics to

capture, or model, the dynamics introduced by these coalgebras.

A brief outline of this chapter is as follows:

Section 4.1 The standard notion of an algebra or coalgebra for a functor is extended to

the enriched setting, and the V-categories Alg(L) and CoAlg(T ) defined through

the initial lifts of the relevant forgetful functors.

Section 4.2 Abstract and concrete coalgebraic modal logics are discussed, where the

latter constitute presentations of the former, and the abstract modal logics are

given by L-algebras.

Section 4.3 The semantics of coalgebraic modal logics are given, and the V-category

Mod(A,α) of models for an L-algebra (A,α) is defined.

Section 4.4 The forgetful functors that define CoAlg(T ) and Mod(A,α) via initial

lifts are shown to create conical colimits.

Section 4.5 A brief summary of some of the related work in the coalgebraic modal

logic literature is given, including issues of soundness and completeness that we

do not pursue in our work. Alternatives to coalgebraic modal logic, such as Moss’

coalgebraic logic, and various coequational logics are also briefly mentioned.

69
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4.1 Algebras and Coalgebras for a Functor

We start by recalling the standard definitions of algebras and coalgebras for an ordinary

functor, and extend them in an obvious way to the case of a V-functor. It should be

readily apparent that since algebras and coalgebras for a functor are pairs of carrier

objects and morphisms to/from the carrier, that the correct definition will be at the

level of the underlying category.

Definition 4.1. Given a V-functor L : A→ A, an algebra for L, or an L-algebra, is

a pair (A,α), where A is an object in A, and α ∈ Ao(L(A), A).

L-algebras form an ordinary category.

Definition 4.2. The ordinary category Alg(L)o has L-algebras as objects, and a mor-

phism f : (A,α) → (B, β) is given by an f ∈ Ao(A,B) such that the following diagram

commutes in Ao.

L(A)
L(f) //

α

��

L(B)

β

��
A

f
// B

Similarly we have coalgebras for a functor.

Definition 4.3. Given a V-functor T : X→ X, a coalgebra for T , or a T -coalgebra,

is a pair (X, γ), where X is an object in X, and γ ∈ Xo(X,T (X)).

T -coalgebras form an ordinary category.

Definition 4.4. The ordinary category CoAlg(T )o has T -coalgebras as objects, and

a morphism f : (X, γ) → (Y, δ) is given by an f ∈ Xo(X,Y ) such that the following

diagram commutes in Xo.

X
f //

γ

��

Y

δ

��
T (X)

T (f)
// T (Y )

The obvious question to ask at this point is, do L-algebras and T -coalgebras form V-

categories?

Well, since Vo is cocomplete, by Definition C.89 every locally small ordinary category

yields a free V-category with the same objects. So the answer is clearly yes. However,
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the hom-objects of such a free V-category are given as copowers of I. What this means

is, that in the case of enrichment over preordered sets (Definition 2.1), the hom-objects

have the discrete preorder. Now this is perfectly valid, but we know that L-algebra and

T -coalgebra morphisms form a subset of the morphisms between the carrier objects, and

that these morphisms are ordered. So intuitively we should be able to simply restrict

the relevant orders when constructing the hom-objects of the V-categories Alg(L) and

CoAlg(T ). Specifically, the hom-object Alg(L)((A,α), (B, β)) would be the hom-set

Alg(L)o((A,α), (B, β)) supplied with the largest preorder consistent with the preorder

on B. In other words, the restriction of the preorder on A(A,B) to the subset of

morphisms that are L-algebra morphisms from (A,α) to (B, β).

To formalise this intuition we shall form the initial lifts (Definition 2.10) of the relevant

forgetful functors.

Definition 4.5. Given a V-functor L : A→ A, there is a forgetful (faithful) functor

UAlg(L)o : Alg(L)o → Ao
(A,α) 7→ A

f : (A,α)→ (B, β) 7→ f : A→ B.

Definition 4.6. Given a V-functor T : X→ X, there is a forgetful (faithful) functor

UCoAlg(T )o : CoAlg(T )o → Xo
(X, γ) 7→ X

f : (X, γ)→ (Y, δ) 7→ f : X → Y.

Now invoking Theorem 2.13, we can form the initial lifts of the ordinary functors UAlg(L)o

and UCoAlg(T )o , and since elem|−| is faithful, by Proposition C.21 so are the initial lifts.

Proposition 4.7. Given the conditions of Assumption 4, the forgetful ordinary functors

UAlg(L)o and UCoAlg(T )o have initial lifts

UAlg(L)o : Alg(L)o → A

UCoAlg(T )o : CoAlg(T )o → X,

where the V-functors UAlg(L)o and UCoAlg(T )o are faithful, and the V-categories Alg(L)o

and CoAlg(T )o are unique up to isomorphism.

We take these initial lifts to be the definitions of the V-categories of L-algebras and

T -coalgebras that we are looking for.
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Definition 4.8. Given the conditions of Assumption 4, the V-categories Alg(L) and

CoAlg(T ), and the forgetful V-functors

UAlg(L) : Alg(L)→ A

UCoAlg(T ) : CoAlg(T )→ X,

are the initial lifts of the forgetful functors UAlg(L)o and UCoAlg(T )o .

L-Algebra Examples

As mentioned in the introduction to this chapter, and more properly discussed in Sec-

tion 4.2, the L-algebras are intended to represent base logics (objects in the category

A) that have been augmented with additional modal operators (introduced by the V-

functor L). This means we are intending that there exist L-algebras that are in fact

the Lindenbaum-Tarski algebras (term algebras) of the modal logics. This in turn im-

plies that the functor L often has a special form. Specifically, it is often of the form

L = FBMBUB (Kupke et al., 2004b; Jacobs and Sokolova, 2010). Here UB : A → B is a

forgetful functor from the category A to a category B, where the objects of B are algebras

with only a subset of the operations of the corresponding algebras of A. For example

UMSL : BA→MSL. The functor FB : B→ A is then the left adjoint to UB, and creates

the free A algebras over B objects. Finally, the functor MB : B → B is typically of the

form

MB(−) =
∐
λ∈ΛB

(−)ar(λ)

where ΛB is a set of modalities λ of arity ar(λ) ∈ N.

What is going on here, is that each L-algebra (A,α) is required to have a function

λA : Aar(λ) → A for each of the modalities λ ∈ ΛB. However, they need not be required to

preserve all the structure of A (which is an object of A). For example, when constructing

the category of modal algebras MA, one adds to each Boolean algebra a modality � that

is required to preserve finite meets but not joins (Kupke et al., 2004b, Definition 3.1).

Thus the forgetful functor UB is chosen to forget the structure of A that λ does not

preserve, λ is then defined as a morphism in the category B (the structure that it must

preserve), and then the functor FB creates the free A object over the result.

Now, since FB is the left adjoint to UB it preserves colimits, so we can write L as

L(−) =
∐
λ∈ΛB

FB(UB(−))ar(λ),

and if modalities are required that preserve two different substructures of the objects of

A, we can introduce separate categories B and C and define L as
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L(−) =
∐
λ∈ΛB

FB(UB(−))ar(λ) +
∐
λ∈ΛC

FC(UC(−))ar(λ).

This obviously generalises further, but we shall only look at examples where the modali-

ties all preserve the same structure, moreover, our modalities will all be unary operators.

This means our functor L will be of the form

L(−) =
∐
λ∈ΛB

FBUB(−).

For our examples we shall look at enrichment over Set (ordinary category theory),

SetR (Definition 2.1), and GMet (Definition 2.5). We shall primarily be concerned

with adding modalities of the form 〈l〉 or [l] for some l ∈ Σ, or Lr for some r ∈ Q∩ [0, 1].

Here Σ is some set of labels, and 〈l〉a has an intended reading of “can make a transition

with label l to a state where a is true”, [l]a has the intended reading “every transition

with label l leads to a state where a is true”, and Lra has the intended reading “in the

next step a is true with probability at least r”.

The examples when enriching over Set are well known, for example see Jacobs and

Sokolova (2010).

Example 4.1 (Adding � to BA enriched over Set). This is the classic example of

adding the � operator to propositional logic to yield the basic modal logic. The algebras

of the basic modal logic are the modal algebras MA. For this we use the adjunction

FMSL a UMSL : BA→MSL,

and define L = FMSLUMSL, giving Alg(L) ∼= MA. The basic modal logic is usually the

starting point for modal logics with semantics given by Kripke frames (Blackburn et al.,

2001).

Example 4.2 (Adding [l] to BA enriched over Set). This is a variant of Example 4.1,

and we take the same adjunction

FMSL a UMSL : BA→MSL,

but we define

L(−) =
∐
l∈Σ

FMSLUMSL(−).

The category Alg(L) is then isomorphic to the category of Boolean algebras each with

a set of finite meet preserving operators [l] index by l ∈ Σ. These logics have found use

characterising bisimulation of Labelled Transition Systems (Hennessy and Milner, 1980,

1985).
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Example 4.3 (Adding Lr to MSL enriched over Set). Using the adjunction

FSet a USet : MSL→ Set,

we define

L(−) =
∐

r∈Q∩[0,1]

FSetUSet(−).

The category Alg(L) is then isomorphic to the category of meet semilattices (with top)

each with a set of operators Lr indexed by r ∈ Q ∩ [0, 1]. These logics have found use

characterising bisimulation of Markov Chains (Larsen and Skou, 1991).

The examples in the case of enrichment over SetR are straightforward variations of the

last two examples above. The first appeared in Wilkinson (2012a), and the second is

new.

Example 4.4 (Adding 〈l〉 to MSL enriched over SetR). This is a variant of Exam-

ple 4.2, but without negation, and we add the modalities 〈l〉 rather than [l]. The cate-

gories are also enriched over SetR, and we make use of the fact that MSL is naturally

so (Definition 3.21).

We take the adjunction

FSetR a USetR : MSL→ SetR,

where FSetR(X,RX) is the usual free meet semilattice F (X) over the set of variables X,

and the relation RF (X) is given by [x]RF (X)[y]⇔ xRXy, for x, y ∈ X. The functor L is

then defined by

L(−) =
∐
l∈Σ

FSetRUSetR(−).

The category Alg(L) is isomorphic to the category of meet semilattices (with top) each

with a set of operators 〈l〉 indexed by l ∈ Σ. These logics have found use characterising

simulation of Labelled Transition Systems (van Glabbeek, 2001).

Example 4.5 (Adding Lr to DL enriched over SetR). This is a variant of Example 4.3,

but with joins and enriched over SetR. Here we use the fact that each object of the

category DL has a natural order relation (Definition 3.21).

We take the adjunction

FSetR a USetR : DL→ SetR,

where FSetR(X,RX) is the usual free distributive lattice F (X) over the set of variables

X, and the relation RF (X) is given by [x]RF (X)[y] ⇔ xRXy, for x, y ∈ X. The functor

L is then defined by

L(−) =
∐

r∈Q∩[0,1]

FSetRUSetR(−).
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The category Alg(L) is isomorphic to the category of distributive lattices (with top)

each with a set of operators Lr indexed by r ∈ Q ∩ [0, 1]. These logics have found use

characterising simulation of Markov Chains (Desharnais et al., 2003).

Finally, since SetR can be embedded in GMet (Section 2.3), enrichment over GMet

yields examples that correspond to those above. These are both new results.

Example 4.6 (Adding 〈l〉 to MSL enriched over GMet). This is a variant of Exam-

ple 4.4, but enriched over GMet. Here we use the fact that the objects of the category

MSL have a natural metric (Definition 3.22).

We take the adjunction

FGMet a UGMet : MSL→ GMet,

where FGMet(X, dX) is the usual free meet semilattice F (X) over the set of variables X,

and the metric dF (X) is given by dF (X)([x], [y]) = dX(x, y), for x, y ∈ X. The functor L

is then defined by

L(−) =
∐
l∈Σ

FGMetUGMet(−).

The category Alg(L) is isomorphic to the category of meet semilattices (with top) each

with a set of operators 〈l〉 indexed by l ∈ Σ. These are the same logics as Example 4.4,

but equipped with a metric rather than an order relation.

Example 4.7 (Adding Lr to DL enriched over GMet). This is a variant of Exam-

ple 4.5, but enriched over GMet. Here we use the fact that the objects of the category

DL have a natural metric (Definition 3.22).

We take the adjunction

FGMet a UGMet : DL→ GMet,

where FGMet(X, dX) is the usual free distributive lattice F (X) over the set of variables

X, and the metric dF (X) is given by dF (X)([x], [y]) = dX(x, y), for x, y ∈ X. The functor

L is then defined by

L(−) =
∐

r∈Q∩[0,1]

FGMetUGMet(−).

The category Alg(L) is isomorphic to the category of distributive lattices (with top)

each with a set of operators Lr indexed by r ∈ Q ∩ [0, 1]. These are the same logics as

Example 4.5, but equipped with a metric rather than an order relation.
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T -Coalgebra Examples

There are many examples of T -coalgebras in the literature, especially in the case of

enrichment over Set (ordinary category theory), but other authors have also looked

at coalgebras in an enriched setting, though not in the full generality above (Turi and

Rutten, 1998; Worrell, 2000a; Balan and Kurz, 2011; B́ılková et al., 2011).

We shall now introduce a number of examples of T -coalgebras, and the most obvious

place to start, is the well-known coalgebraic formulation of Kripke frames (Blackburn

et al., 2001).

Example 4.8 (Powerset on Set enriched over Set). The functor T is defined as

T (X) = P(X),

and for any function f : X → Y , the action of T on f is the function

T (f) : P(X)→ P(Y )

u 7→ {f(x) | x ∈ u}.

The powerset functor corresponds to unbounded non-determinism, but we could make

an entirely analogous definition for the finite powerset functor, which would correspond

to finite branching non-determinism. In fact, this applies to the other examples below

that incorporate the powerset functor.

The next step is to consider the powerset functor in the cases of enrichment over SetR

and GMet. The first case appeared in Wilkinson (2012a), and the second is the analo-

gous result for GMet.

Example 4.9 (Powerset on SetR enriched over SetR). The functor T is defined as

T (X,RX) = (P(X), RP(X)),

where assuming the type R represents preorders,

uRP(X)v ⇔ ∀x ∈ u ∃y ∈ v. xRXy,

and for any function f : (X,RX)→ (Y,RY ), the action of T on f is the function

T (f) : P(X)→ P(Y )

u 7→ {f(x) | x ∈ u}.

The preorder RP(X) is the one-sided counterpart of the Egli-Milner order used in the

study of powerdomains (Plotkin, 1976).
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Example 4.10 (Powerset on GMet enriched over GMet). The functor T is defined as

T (X, dX) = (P(X), dP(X)),

where

dP(X)(u, v) = sup
x∈u

(
inf
y∈v

dX(x, y)

)
,

and for any function f : (X, dX)→ (Y, dY ), the action of T on f is the function

T (f) : P(X)→ P(Y )

u 7→ {f(x) | x ∈ u}.

The metric dP(X) is the one-sided counterpart of the Hausdorff distance (Rutten, 1998).

The particular choice of preorder or metric in these two extensions to the standard

powerset example, corresponds to how we intend to compare behaviours of states. This

will be explored in detail in Section 5.1.

We can also have finite powerset versions of these examples, where the preorder and

metric remain unchanged.

It should also be noted that T -coalgebra structure maps γ : (X,RX) → T (X,RX) and

γ : (X, dX) → T (X, dX) must be R-preserving, or non-expansive, respectively. This

might seem like a strong constraint, but it is not. This is because we are free to give

any set X the discrete order or metric, and if we do so, we place no restrictions on the

possible choices of γ. Again this will be explained in Section 5.1.

From the powerset functor we can model Labelled Transition Systems (LTSs). Below

we shall look at unbounded branching LTSs, but using the finite powerset functor we

could also describe finite branching LTSs.

We proceed by taking a set of labels Σ, and giving it the preorder

lRΣl
′ ⇔ l = l′,

and the metric

dΣ(l, l′) =

0 : if l = l′

∞ : otherwise.

Now using this set of labels, and the definitions of products in SetR (Section 2.2), and

GMet (Section 2.3), we can model Labelled Transition Systems as follows.
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Example 4.11 (LTS enriched over Set). The functor T is defined as

T (X) = P(Σ×X),

and for any function f : X → Y , the action of T on f is the function

T (f) : P(Σ×X)→ P(Σ× Y )

u 7→ {(l, f(x)) | (l, x) ∈ u}.

Example 4.12 (LTS enriched over SetR). The functor T is defined as

T (X,RX) = (P(Σ×X), RP(Σ×X)),

where assuming the type R represents preorders,

uRP(Σ×X)v ⇔ ∀(l, x) ∈ u ∃(l′, x′) ∈ v. (l, x)RΣ×X(l′, x′)

⇔ ∀(l, x) ∈ u ∃(l′, x′) ∈ v. l = l′ and xRXx
′,

and for any function f : (X,RX)→ (Y,RY ), the action of T on f is the function

T (f) : P(Σ×X)→ P(Σ× Y )

u 7→ {(l, f(x)) | (l, x) ∈ u}.

Example 4.13 (LTS enriched over GMet). The functor T is defined as

T (X, dX) = (P(Σ×X), dP(Σ×X)),

where

dP(Σ×X)(u, v) = sup
(l,x)∈u

(
inf

(l′,x′)∈v
dΣ×X((l, x), (l′, x′))

)
= sup

(l,x)∈u

(
inf

(l′,x′)∈v
max(dΣ(l, l′), dX(x, x′))

)
,

and for any function f : (X, dX)→ (Y, dY ), the action of T on f is the function

T (f) : P(Σ×X)→ P(Σ× Y )

u 7→ {(l, f(x)) | (l, x) ∈ u}.

Once again the preorder RP(Σ×X) and metric dP(Σ×X) govern how the behaviour of states

will be compared, and constrain the choice of possible T -coalgebra structure maps. For

example, for γ : (X,RX) → T (X,RX), if xRXy, then since morphisms in SetR must

be R-preserving, we must have γ(x)RP(Σ×X)γ(y). Looking at the above definition we

then see that this means that x must be simulated by y (using the standard notion
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of simulation for LTSs (van Glabbeek, 2001)). It will turn out that dP(Σ×X) allows

us to talk of approximations of LTSs, and both of these will be discussed in detail in

Section 5.1.

The above examples have covered the basics of non-determinism, the other main class

of transition systems in computer science are the probabilistic transition systems. The

simplest examples we can consider are coalgebras for the finite subprobability distribu-

tion functor D : Set → Set (de Vink and Rutten, 1999; Jacobs and Sokolova, 2010),

which is defined as

D(X) = {φ : X → [0, 1] | supp(φ) is finite and
∑

x∈X
φ(x) ≤ 1}.

Here, φ is a subprobability distribution (total probability may be less than 1), with finite

support, i.e. supp(φ) = {x ∈ X | φ(x) 6= 0} is finite. Each distribution φ : X → [0, 1]

extends to a function

φ : P(X)→ [0, 1]

u 7→
∑
x∈u

φ(x),

and for any function f : X → Y , the action of D on f is given by

D(f)(φ)(y) = φ(f−1[{y}]).

Example 4.14 (Distribution functor on Set enriched over Set). The functor T is

defined as

T (X) = D(X),

and for any function f : X → Y , the action of T on f is given by

T (f)(φ)(y) =
∑

x∈f−1[{y}]

φ(x).

For the cases of enrichment over SetR and GMet we need to give the interval [0, 1] a

preorder and a metric, as we wish to compare probabilities. For this we take the usual

linear order on [0, 1], and the metric given, as in Definition 3.24, by

d[0,1](x, y) =

y − x : if x ≤ y

∞ : otherwise.

Using this we then have the following two examples, where the first is related to standard

notions of simulation for Markov Chains (Desharnais et al., 2003), and the second is

suggested as a plausible metric analogue.
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Example 4.15 (Distribution functor on SetR enriched over SetR). The functor T is

defined as

T (X,RX) = (D(X), RD(X)),

where assuming the type R represents preorders,

φRD(X)ψ ⇔ ∀u ⊆ X (u right R-closed⇒ φ(u) ≤ ψ(u)),

and for any function f : (X,RX)→ (Y,RY ), the action of T on f is given by

T (f)(φ)(y) =
∑

x∈f−1[{y}]

φ(x).

The preorder RD(X) corresponds to the definition of a simulation relation for Markov

Chains (Desharnais et al., 2003).

Example 4.16 (Distribution functor on GMet enriched over GMet). The functor T

is defined as

T (X, dX) = (D(X), dD(X)),

where

dD(X)(φ, ψ) = sup
u⊆X

right d-closed

d[0,1](φ(u), ψ(u)),

and for any function f : (X, dX)→ (Y, dY ), the action of T on f is given by

T (f)(φ)(y) =
∑

x∈f−1[{y}]

φ(x).

The metric dD(X) does not to our knowledge appear in the literature, but is a possible

analogue of the preorder RD(X) from the example above. It represents a notion of distance

between distributions that compares, not the value of the distributions at individual states,

but the value on sets of states that are closed under finite distance (recall the definition

of right d-closed from Definition 3.28).

The probabilistic examples above are Markov Chains with discrete probability distribu-

tions. Markov Processes are a continuous generalisation of Markov Chains formulated

using measurable spaces. The standard way to do this coalgebraically is via the Giry

functor G : Meas →Meas (de Vink and Rutten, 1999; Panangaden, 1999; Jacobs and

Sokolova, 2010). This is defined as

G(X,ΣX) = (G(X),ΣG(X)),

where

G(X) = {φ : ΣX → [0, 1] | φ a subprobability measure},
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and ΣG(X) is the sigma algebra on G(X) generated by sets of the form

{φ ∈ G(X) | φ(M) ≥ r},

for M ∈ ΣX , and r ∈ Q ∩ [0, 1]. A subprobability measure φ must satisfy φ(∅) = 0, and

φ
(⋃

i
Mi

)
=
∑

i
φ(Mi),

for countable unions of pairwise disjoint Mi ∈ ΣX .

For every measurable function f : (X,ΣX) → (Y,ΣY ), there is an inverse function

f−1 : ΣY → ΣX , and the action of G on f is defined by

G(f) : G(X)→ G(Y )

φ 7→ φ ◦ f−1.

Example 4.17 (Giry functor on Meas enriched over Set). The functor T is defined as

T (X,ΣX) = (G(X),ΣG(X)),

and for any measurable function f : (X,ΣX) → (Y,ΣY ), the action of T on f is given

by

T (f) : G(X)→ G(Y )

φ 7→ φ ◦ f−1.

To enrich over SetR and GMet we extend the definition of the Giry functor to the

categories MeasR (Example 2.1) and GMeas (Example 2.2).

Example 4.18 (Giry functor on MeasR enriched over SetR). The functor T is defined

as

T (X,ΣX , RX) = (G(X),ΣG(X), RG(X)),

where assuming the type R represents preorders,

φRG(X)ψ ⇔ ∀M ∈ ΣX (M right R-closed⇒ φ(M) ≤ ψ(M)),

and for any measurable function f : (X,ΣX , RX) → (Y,ΣY , RY ), the action of T on f

is given by

T (f) : G(X)→ G(Y )

φ 7→ φ ◦ f−1.

The preorder RG(X) corresponds to the definition of a simulation relation for Markov

Processes (Desharnais et al., 2003).
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Example 4.19 (Giry functor on GMeas enriched over GMet). The functor T is

defined as

T (X,ΣX , dX) = (G(X),ΣG(X), dG(X)),

where

dG(X)(φ, ψ) = sup
M∈ΣX

right d-closed

d[0,1](φ(M), ψ(M)),

and for any measurable function f : (X,ΣX , dX)→ (Y,ΣY , dY ), the action of T on f is

given by

T (f) : G(X)→ G(Y )

φ 7→ φ ◦ f−1.

The metric dG(X) is the generalisation to Markov Processes of the metric from Exam-

ple 4.16.

4.2 Coalgebraic Modal Logics

In Section 3.1 we described the V-categories and functors that form the base level of our

framework - something we called a logical connection. To this we now add V-functors

L : A→ A and T : X→ X as shown in the following non-commuting diagram.

A
S

''
L

&&

U ��

X
P

gg

V��

T
xx

V

The V-functor T will introduce dynamics to the semantics via T -coalgebras, and the

V-functor L will extend the base logics by adding modalities.

This approach follows that of Kupke et al. (2004b); Klin (2007); Jacobs and Sokolova

(2010), and is increasingly the standard approach to formulating coalgebraic modal logic.

Recall that the V-category X represents a collection of state spaces, the V-functor T

then defines a collection of generalised transition systems on these state spaces as T -

coalgebras. Similarly, the V-category A represents a collection of base logics to which

modal operators are to be added. These are introduced via the V-functor L, and the

corresponding modal logics are the L-algebras.

The semantics of the modal logics represented by the L-algebras are given in two stages.

First the logical connection gives a semantics for the base logics in terms of the state
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spaces, and then secondly, a V-natural transformation

δ : LP ⇒ PT

gives the semantics of the modal operators in terms of the transition structures intro-

duced by T (Kupke et al., 2004a, 2005).

We summarise the assumptions underlying the above as follows.

Assumption 5. We extend Assumption 4 (page 38) as follows:

9. There is a V-functor L : A→ A.

10. There is a V-functor T : X→ X.

11. There is a V-natural transformation δ : LP ⇒ PT .

We shall talk more about the V-natural transformation δ in Section 4.3, but first we say

more about the V-functor L.

In Bonsangue and Kurz (2006); Kurz (2006) a distinction is drawn between an abstract

modal logic and a concrete modal logic. A concrete modal logic is what a logician would

call a modal logic. It consists of a syntax of propositional variables, connectives, and

modal operators, and the terms in this syntax are related by a class of equations that

are derived from a base collection of equations called axioms.

An abstract modal logic is an L-algebra (A,α) for some V-functor L. The idea is that

we have abstracted away the particular choice of syntax of a concrete modal logic.

What matters is the collection of terms and their interrelations, not the exact choice of

primitives for a modal logic. A particular choice of primitives and axioms is called a

presentation, and a modal logic may have more than one, so why privilege one over the

others? Obviously it makes sense to do so in some situations, but for what we are doing

it makes sense to abstract all this away and hide it in the V-functor L.

In Section 4.1 we described a general process whereby a presentation of a concrete modal

logic could be turned into a V-functor L, and numerous examples were given. To go in

the other direction is to seek a presentation of a V-functor by operations and equations.

See for example Bonsangue and Kurz (2006).

One final observation is that, not only need the presentation for a given L not be

unique, but the choice of L itself need not be unique. The choice of L is often guided by

a particular presentation that one has in mind, but one also has the freedom to choose

exactly how much of the dynamical behaviour introduced by T is to be captured by the

L-algebras. One could for example decide to take the identity functor for L, and simply

not add any modalities at all. Obviously such a choice would yield logics that do not

capture all (or any!) of the behaviour in the T -coalgebras, but a less extreme example
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may be to only attempt to capture some of the behaviour. This would be an engineering

choice, guided by practical considerations.

4.3 Models for L-Algebras

As promised in Section 4.2, in this section we shall aim to explain, and then explore, the

action of the V-natural transformation δ : LP ⇒ PT from Assumption 5. In essence all

that δ does is provide the semantics of the modal operators implicit in the V-functor L,

but using it we can make an elegant definition of the notion of a model for an L-algebra.

Recall from Definition 3.15 the definition of a valuation f ∈ Ao(A,P (X)). Now since

under Assumption 5 the ordinary category Ao is concrete over Set (Section 3.2), f has

an underlying function that maps formulae in A to predicates on X.

Intuitively therefore, in order to give semantics to an L-algebra (A,α), we need to find

an f ∈ Ao(A,P (X)) that also respects the additional structure (modal operators and

axioms) that L adds to A. In other words we want f to be an L-algebra morphism, but

between which L-algebras? Well obviously the domain must be (A,α), but what about

the codomain? For that we should construct an L-algebra with the carrier object P (X).

So how do we do this? First we note that the modalities introduced by L are intended

to capture the dynamics introduced by T , so we pick a T -coalgebra (X, γ). Now

γ ∈ Xo(X,T (X)),

so under the V-functor P we have

P (γ) ∈ Ao(PT (X), P (X)),

so if we had a morphism g ∈ Ao(LP (X), PT (X)), we could take the composite to give

an L-algebra. This is precisely what the V-natural transformation δ : LP ⇒ PT gives.

Summarising the above, we can follow the approach in the literature (see for example

Bonsangue and Kurz (2006); Kurz (2006)), and make the following definition.

Definition 4.9. Given the conditions of Assumption 5, there is an ordinary functor

P̃o : CoAlg(T )o → Alg(L)o

(X, γ) 7→ (P (X), P (γ) ◦ δX)

f : (X, γ)→ (Z, ξ) 7→ P (f) : P̃ (Z, ξ)→ P̃ (X, γ).
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Now the above definition is standard for coalgebraic modal logic in an ordinary category

theory setting, but we are working in an enriched setting, so can we lift P̃o to a V-

functor? The following proposition shows that this is the case, and relies upon the

universal property of the construction of Alg(L).

Proposition 4.10. Given the conditions of Assumption 5, there exits a unique V-

functor

P̃ : CoAlg(T )→ Alg(L)

with the underlying ordinary functor P̃o.

Proof. The V-category Alg(L) is defined via the initial lift (Definition 2.10) of the

forgetful ordinary functor UAlg(L)o : Alg(L)o → Ao (Definition 4.8), and since we have

CoAlg(T )
UCoAlg(T ) // X P // A,

and by the definition of P̃o the following diagram commutes

CoAlg(T )o
P̃o //

UCoAlg(T )o

��

Alg(L)o

UAlg(L)o

��
Xo

Po
// Ao

then there exists a unique V-functor

P̃ : CoAlg(T )→ Alg(L)

with the underlying ordinary functor P̃o.

We are now ready to define a valuation for an L-algebra. The definition mirrors that

of Definition 3.15, and is a direct generalisation to the enriched setting of the usual

approach in the literature (see for example Bonsangue and Kurz (2006); Kurz (2006)).

Definition 4.11. Given the conditions of Assumption 5, for any L-algebra (A,α), and

any T -coalgebra (X, γ), a valuation is any

f ∈ Alg(L)o((A,α), P̃ (X, γ)).

At this point we should unpack this definition to see what it means in practice. To do

this we shall look at the case of an L-algebra corresponding to a concrete modal logic.

Given a presentation for L (Section 4.2), the free L-algebras are the Lindenbaum-Tarski

algebras for the corresponding concrete modal logics. Specifically, for a logic L given by a
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syntax of propositional variables, connectives, and modal operators, and a proof system

that induces a derivability relation Γ ` φ for φ ∈ L and Γ ⊆ L, the Lindenbaum-Tarski

algebra of L is an L-algebra with the carrier set L/≈, where

φ ≈ ψ ⇔ φ ` ψ and ψ ` φ

is an equivalence relation since the base logics of A are represented by algebras. If L has

an → operator, then the proof system is usually such that φ ≈ ψ ⇔ ` φ↔ ψ. To define

the necessary operations on L/≈ to make it an L-algebra, the proof system of L must

satisfy certain constraints in order that ≈ is a congruence. For example, for a modality

λ the proof system should have a rule

φ ` ψ ⇒ [λ]φ ` [λ]ψ,

or, ` φ↔ ψ ⇒ ` [λ]φ↔ [λ]ψ (Kupke et al., 2004a), for then we can define

[λ]L/≈[φ]L/≈ = [[λ]φ]L/≈,

where [φ]L/≈ is an equivalence class of L under ≈, and [λ]L/≈ is the operation on L/≈
for the modality λ. Finally, we can define [φ]L/≈ ≤ [ψ]L/≈ ⇔ φ ` ψ.

If the proof system contains no axioms beyond those required to make L/≈ into an

L-algebra, then the Lindenbaum-Tarski algebra of L is the free L-algebra over the

set of propositional variables of L, and if L has no propositional variables, then the

Lindenbaum-Tarski algebra is the initial L-algebra.

If now we write |A| = elem|U(A)| for the underlying set of an object A in A, then for a

T -coalgebra (X, γ) the underlying set of P̃ (X, γ) is |P (X)|, and we can define a function

f : L/≈→ |P (X)|,

and this gives

J−Kf = f ◦ q : L → |P (X)|,

where q : L → L/≈ is the quotient map of ≈. The valuation given by f is the unique

L-algebra homomorphism that extends the function f , and indeed, the function f need

only be given for the equivalence classes [p]L/≈, where p is a propositional variable, as

the extension to L/≈ follows by induction. In the case of the initial L-algebra, since

there are no variables, f is unique, and we simply write J−K for J−Kf .

From the above, somewhat informal discussion, we can see that our definition of a

valuation captures the concrete notion of assigning a predicate on X to each formula of

a logic. Though, it should be noted, that the formulas of L/≈ are in fact equivalence

classes of terms in L. We shall sometimes blur this distinction, and use a valuation f ,

and the function J−Kf , interchangeably.
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So now that we know how to define a valuation for an L-algebra via the V-natural

transformation δ : LP ⇒ PT , how do we find δ? The answer is that we can construct δ

from predicate liftings.

Given a concrete presentation of L in terms of a specific set of modal operators, then

the V-natural transformation δ : LP ⇒ PT corresponds to a set of predicate liftings

(Jacobs, 2000; Pattinson, 2001, 2003; Kurz and Pattinson, 2002, 2005; Schröder, 2008).

For a modality λ in a set of modal operators ΛB, if the arity ar(λ) ∈ N, the general form

of the predicate lifting for λ is a so called polyadic predicate lifting (Schröder, 2008),

which is a V-natural transformation of the form

λX : (UBP (X))ar(λ) → UBPT (X).

Here ΛB is as defined in Section 4.1, and L is given by

L(−) =
∐
λ∈ΛB

FB(UB(−))ar(λ).

Using the unit of the adjunction FB a UB : A→ B, we have

(UBP (X))ar(λ)
η

(UBP (X))ar(λ)
//

λX

((

UBFB(UBP (X))ar(λ)

UB(λ†X)

��
UBPT (X)

and the coproduct then gives

FB(UBP (X))ar(λ) ι //

λ†X

((

∐
λ∈ΛB

FB(UBP (X))ar(λ)

[λ†X ]λ∈ΛB

��
PT (X)

from which we see that we can take δX to be given by

δX = [λ†X ]λ∈ΛB .

By way of illustrating this, we shall consider four variants of Hennessy-Milner logic for

Labelled Transition Systems. For a set of labels Σ, the standard formulation of Hennessy-

Milner logic (Hennessy and Milner, 1980, 1985) is given by the following syntax:

L1 3 φ ::= tt | p | φ ∧ φ | ¬φ | [l]φ where l ∈ Σ and p ∈ Var.
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The first variant we shall consider is the standard bivalent formulation of Hennessy-

Milner logic, as used to characterise bisimulation of Labelled Transition Systems (Hen-

nessy and Milner, 1980, 1985).

Example 4.20 (Bivalent logic for bisimulation of LTSs). The logical connection is the

dual adjunction between BA and Set from Example 3.1, to which we add the functor L

from Example 4.2 which adds the modal operators [l], and the functor T (X) = P(Σ×X)

from Example 4.11.

The predicate liftings for the modalities are then the family of natural transformations

[l]X : UMSLP (X)→ UMSLPP(Σ×X)

> 7→ P(Σ×X)

u 7→ {w ∈ P(Σ×X) | ∀(l′, x) ∈ w, l′ = l⇒ x ∈ u}

u ∧ v 7→ [l]X(u) ∩ [l]X(v),

giving ([ul] is the equivalence class in LP (X) of an element of the lth copy of P (X))

δX : LP (X)→ PT (X)

> 7→ P(Σ×X)

[ul] 7→ {w ∈ P(Σ×X) | ∀(l′, x) ∈ w, l′ = l⇒ x ∈ u}

[ul1 ] ∧ [vl2 ] 7→ δX([ul1 ]) ∩ δX([vl2 ])

¬[ul] 7→ δX([ul])
c.

So for the L-algebra given by the Lindenbaum-Tarski algebra of L1, a T -coalgebra (X, γ),

and a function f : Var→ |P (X)|, there is a unique function J−Kf given by

J−Kf : L1 → |P (X)|

tt 7→ X

p 7→ f(p)

[l]φ 7→ {x ∈ X | ∀(l′, x′) ∈ γ(x), l′ = l⇒ x′ ∈ JφKf}

φ ∧ ψ 7→ JφKf ∩ JψKf

¬φ 7→ JφKcf .

As a variant of this we can look at a fuzzy version of Hennessy-Milner logic, again aimed

at bisimulation of Labelled Transition Systems. However, since φ ∨ ¬φ = tt is not valid

in fuzzy logic (Definition 3.26), we can no longer use Boolean algebras as our starting

point. We could at this point investigate the use of MV-algebras, which provide an

algebraic semantics of many-valued logics (Chang, 1958, 1959), but instead, since this
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is purely for illustrative purposes, we drop negation from our logic:

L2 3 φ ::= tt | p | φ ∧ φ | [l]φ where l ∈ Σ and p ∈ Var.

Example 4.21 (Fuzzy logic for bisimulation of LTSs). The logical connection is the

dual adjunction between MSL and Set from Example 3.7, to which we add the functor

L =
∐
l∈Σ(−) which adds the modal operators [l], and the functor T (X) = P(Σ × X)

from Example 4.11.

The predicate liftings for the modalities are then the family of natural transformations

[l]X : P (X)→ PP(Σ×X)

> 7→ P(Σ×X)

u 7→ λ : P(Σ×X)→ [0, 1]

w 7→ inf
(l′,x)∈w
l′=l

u(x)

u ∧ v 7→ [l]X(u) ∧ [l]X(v),

giving ([ul] is the equivalence class in LP (X) of an element of the lth copy of P (X))

δX : LP (X)→ PT (X)

> 7→ P(Σ×X)

[ul] 7→ λ : P(Σ×X)→ [0, 1]

w 7→ inf
(l′,x)∈w
l′=l

u(x)

[ul1 ] ∧ [vl2 ] 7→ δX([ul1 ]) ∧ δX([vl2 ]).

So for the L-algebra given by the Lindenbaum-Tarski algebra of L2, a T -coalgebra (X, γ),

and a function f : Var→ |P (X)|, there is a unique function J−Kf given by

J−Kf : L2 → |P (X)|

tt 7→ X

p 7→ f(p)

[l]φ 7→ λ : X → [0, 1]

x 7→ inf
(l′,x′)∈γ(x)

l′=l

JφKf (x′)

φ ∧ ψ 7→ JφKf ∧ JψKf .

The semantics of the propositional variables, true, and conjunction are standard from

fuzzy logic. For the modal operator [l] we see that at each x ∈ X, the fuzzy degree

of [l]φ is the smallest fuzzy degree of φ that is directly accessible from x. In the case
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where the fuzzy degrees for φ are restricted to 0 or 1 for all x ∈ X, the semantics of [l]φ

coincides with that from the bivalent case (Example 4.20).

We now look at bivalent and fuzzy variants of Hennessy-Milner logic for simulation. For

this we shall enrich over the category SetR for the case where the type R is preorders.

The reasons for doing so will be explained in Section 5.1.

The syntax of our logic will be the following standard formulation (van Glabbeek, 2001)

L3 3 φ ::= tt | p | φ ∧ φ | 〈l〉φ where l ∈ Σ and p ∈ Var.

Example 4.22 (Bivalent logic for simulation of LTSs). The logical connection is the dual

adjunction between MSL and SetR from Example 3.2 with the type R set to preorders.

To this we add the functor L from Example 4.4, which adds the modal operators 〈l〉, and

the functor

T (X,RX) = (P(Σ×X), RP(Σ×X))

from Example 4.12.

The predicate liftings for the modalities are then the family of natural transformations

〈l〉(X,RX) : USetRP (X,RX)→ USetRP (P(Σ×X), RP(Σ×X))

u 7→ {w ∈ P(Σ×X) | ∃(l′, x) ∈ w, l′ = l and x ∈ u},

where u, and the set it is mapped to, are both right R-closed (upsets). This gives

δ(X,RX) : LP (X,RX)→ PT (X,RX)

> 7→ P(Σ×X)

[ul] 7→ {w ∈ P(Σ×X) | ∃(l′, x) ∈ w, l′ = l and x ∈ u}

[ul1 ] ∧ [vl2 ] 7→ δX([ul1 ]) ∩ δX([vl2 ]).

So for the L-algebra given by the Lindenbaum-Tarski algebra of L3, a T -coalgebra

((X,RX), γ), and a function f : Var → |P (X,RX)|, there is a unique function J−Kf
given by

J−Kf : L3 → |P (X,RX)|

tt 7→ X

p 7→ f(p)

〈l〉φ 7→ {x ∈ X | ∃(l′, x′) ∈ γ(x), l′ = l and x′ ∈ JφKf}

φ ∧ ψ 7→ JφKf ∩ JψKf .

Again, for all φ ∈ L3, the set JφKf is right R-closed. What this means is, if x satisfies

φ, and y simulates x, then y satisfies φ.
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Example 4.23 (Fuzzy logic for simulation of LTSs). The logical connection is the dual

adjunction between MSL and SetR from Example 3.8 with the type R set to preorders.

To this we add the functor L from Example 4.4, which adds the modal operators 〈l〉, and

the functor

T (X,RX) = (P(Σ×X), RP(Σ×X))

from Example 4.12.

The predicate liftings for the modalities are then the family of natural transformations

〈l〉(X,RX) : USetRP (X,RX)→ USetRP (P(Σ×X), RP(Σ×X))

u 7→ λ : P(Σ×X)→ [0, 1]

w 7→ sup
(l′,x)∈w
l′=l

u(x),

where u, and the fuzzy set it is mapped to, are both right R-closed (fuzzy upsets). This

gives

δ(X,RX) : LP (X,RX)→ PT (X,RX)

> 7→ P(Σ×X)

[ul] 7→ λ : P(Σ×X)→ [0, 1]

w 7→ sup
(l′,x)∈w
l′=l

u(x)

[ul1 ] ∧ [vl2 ] 7→ δX([ul1 ]) ∧ δX([vl2 ]).

So for the L-algebra given by the Lindenbaum-Tarski algebra of L3, a T -coalgebra

((X,RX), γ), and a function f : Var → |P (X,RX)|, there is a unique function J−Kf
given by

J−Kf : L3 → |P (X,RX)|

tt 7→ X

p 7→ f(p)

〈l〉φ 7→ λ : X → [0, 1]

x 7→ sup
(l′,x′)∈γ(x)

l′=l

JφKf (x′)

φ ∧ ψ 7→ JφKf ∧ JψKf .

Again, for all φ ∈ L3, the fuzzy set JφKf is right R-closed. What this means is, if φ is

true to a particular degree at x, and y simulates x, then φ is true to at least the same

degree at y.



92 Chapter 4 Coalgebraic Modal Logics

Once again the semantics of the propositional variables, true, and conjunction are stan-

dard from fuzzy logic. For the modal operator 〈l〉 we see that at each x ∈ X, the fuzzy

degree of 〈l〉φ is the largest fuzzy degree of φ that is directly accessible from x. Again,

in the case where the fuzzy degrees for φ are restricted to 0 or 1 for all x ∈ X, the

semantics of 〈l〉φ coincides with that from the bivalent case (Example 4.22).

Returning to our discussion of the coalgebraic semantics of L-algebras, we see that we

can regard the whole of the coalgebraic modal logic project as a massive generalisation

of Kripke semantics for modal logic (Blackburn et al., 2001). Now in Kripke semantics

the concepts of frame, valuation, and model are introduced, where a model is a pair con-

sisting of a frame and a valuation. Above we have generalised the notion of a valuation

to our enriched coalgebraic framework, so what of frames and models?

Definition 4.12. Given the conditions of Assumption 5, for any L-algebra (A,α), any

T -coalgebra (X, γ), and any valuation

f ∈ Alg(L)o((A,α), P̃ (X, γ)),

the pair ((X, γ), f) is called a model for (A,α).

Clearly, if (A,α) is the initial L-algebra, then for every T -coalgebra (X, γ) the unique

morphism ! : (A,α) → P̃ (X, γ) makes the pair ((X, γ), !) a model for (A,α). Similarly,

for a free L-algebra (A,α) given by the Lindenbaum-Tarski algebra for some logic L, for

every T -coalgebra (X, γ), the valuation f given by the function f : L/≈→ |P (X)| makes

the pair ((X, γ), f) a model for (A,α). However, if (A,α) is an arbitrary L-algebra, then

it may be the case for some T -coalgebras that no valuation exists.

Following the conventions of Kripke semantics (Blackburn et al., 2001) we could now

call a T -coalgebra a frame, but we have no need for this extra terminology. Moreover,

in Kripke semantics frames are intimately related to the notion of validity, a topic that

we will not pursue in this thesis. Therefore we shall restrict ourselves to talking about

models.

Remark 4.13. Validity, like satisfaction, is about the truth of a formula, either at an

individual state, or at all states in a T -coalgebra. The distinction is that for validity

we quantify over all valuations of the propositional variables. What we mean by truth

though, is implicitly a bivalent concept. Or at least in the general case, appears to

require the existence of a largest truth value - for example, a formula φ is valid in fuzzy

logic if φ has the truth value 1 under all valuations of the propositional variables of φ

(Chang, 1958). This is not something that we assume (see Section 5.3).

The alert reader may have noticed that when we extended the definition of a valuation

from the base level (Definition 3.15) to that of L-algebras (Definition 4.11) we made no

mention of theory maps. This is something we shall address next.
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If we unpack Definition 4.11 we see that we require that the following diagram commutes

in Ao.

L(A)
L(f) //

α

��

LP (X)

δX
��

PT (X)

P (γ)

��
A

f
// P (X)

Now, as observed in Pavlovic et al. (2006, Theorem 1(b)), the logical connection allows

every such diagram in Ao to be redrawn in Xo as

X
f[ //

γ

��

S(A)

S(α)

��
SL(A)

T (X)
T (f[)

// TS(A)

δ∗A

OO

and moreover, this relationship is a bijection. Here f [ is the transpose of f under the

logical connection, and δ∗ : TS ⇒ SL is defined following Klin (2007) as follows.

Definition 4.14. Given the conditions of Assumption 5, define the V-natural transfor-

mation δ∗ : TS ⇒ SL by

δ∗ = SLρ ◦ δ[S,

where ρ is the unit of the logical connection, and δ[ is the transpose of δ under the

logical connection.

Note that the transpose δ[ : T ⇒ SLP of δ : LP ⇒ PT is constructed at the level of the

underlying categories, where for all f ∈ Xo(Y,X), there is a bijection between diagrams

on the left, and diagrams on the right.

Ao ←→ Xo

LP (X)
δX //

LP (f)

��

PT (X)

PT (f)

��

T (Y )
δ[Y //

T (f)

��

SLP (Y )

SLP (f)

��
LP (Y )

δY
// PT (Y ) T (X)

δ[X

// SLP (X)
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This defines an ordinary natural transformation δ[o, and then since elem|−| is faithful,

by Proposition C.43, this lifts to a V-natural transformation δ[.

Using this we can now extended the definition of a theory map from the base level

(Definition 3.15) to that of L-algebras and T -coalgebras.

Definition 4.15. Given the conditions of Assumption 5, for any L-algebra (A,α), and

any T -coalgebra (X, γ), a theory map is any

f ∈ Xo(X,S(A)),

such that the following commutes

X
f //

γ

��

S(A)

S(α)
��

SL(A)

T (X)
T (f)

// TS(A)

δ∗A

OO

Remark 4.16. If the L-algebra (A,α) is a free L-algebra, and therefore the Lindenbaum-

Tarski algebra for some concrete modal logic L, then for any x in X, the theory f(x) will

typically be a filter/prime filter/ultrafilter of A, where the formulae of A are in actual

fact equivalence classes of terms from L. The union
⋃
f(x) then gives the set of terms

of L satisfied at x, and is logically consistent with respect to the proof system of L.

It must be emphasised that the bijection between valuations and theory maps at the base

level, provided by the logical connection, lifts to a bijection at the level of L-algebras

and T -coalgebras.

Proposition 4.17. Given the conditions of Assumption 5, for any L-algebra (A,α),

and any T -coalgebra (X, γ), there is a bijection between valuations and theory maps that

is the restriction of the bijection

Ao(A,P (X)) ∼= Xo(X,S(A))

given by the logical connection.

This bijection between valuations and theory maps means that the definition of a model

from Definition 4.12 can be reformulated in terms of a theory map, and moreover, for

each L-algebra we can construct a category of such models.
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Definition 4.18. Given the conditions of Assumption 5, for any L-algebra (A,α), the

ordinary category Mod(A,α)o has objects given by pairs

((X, γ), f),

where (X, γ) is a T -coalgebra, and f ∈ Xo(X,S(A)) is a theory map, and morphisms

g : ((X1, γ1), f1)→ ((X2, γ2), f2),

given by g ∈ CoAlg(T )o((X1, γ1), (X2, γ2)) such that f1 = f2 ◦ g.

In the above definition, the requirement on model morphisms that f1 = f2 ◦ g arises

from the fact that theory maps need not be unique. In simple terms, we have to ensure

that any propositional variables are given interpretations in the two models that are

compatible with the T -coalgebra morphism.

In Doberkat (2009) a similar definition of a category of models for an L-algebra is made,

however this is done in terms of diagrams in Ao i.e. pairs of T -coalgebras and valuations.

In following chapters we prefer to work in Xo, but as already noted above, the logical

connection allows us to move freely backwards and forwards between the two definitions.

Like in Section 4.1, we intend to perform an initial lift of the forgetful functor of the

ordinary category Mod(A,α)o, in order to create a V-category. To do this we need

to define a forgetful functor from Mod(A,α)o to the underlying category of some V-

category. There is an obvious choice for this.

Definition 4.19. Given the conditions of Assumption 5, for any L-algebra (A,α), there

is a forgetful (faithful) functor

UMod(A,α)o : Mod(A,α)o → CoAlg(T )o

((X, γ), f) 7→ (X, γ)

g : ((X1, γ1), f1)→ ((X2, γ2), f2) 7→ g : (X1, γ1)→ (X2, γ2).

Using Theorem 2.13, and that elem|−| is faithful, by Proposition C.21 so is the initial

lift, and so we have the following proposition.

Proposition 4.20. Given the conditions of Assumption 5, the forgetful ordinary functor

UMod(A,α)o has the initial lift

UMod(A,α)o : Mod(A,α)o → CoAlg(T )

where the V-functor UMod(A,α)o is faithful, and the V-category Mod(A,α)o is unique up

to isomorphism.
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We take this initial lift to be the definition of the V-category of models for the L-algebra

(A,α).

Definition 4.21. Given the conditions of Assumption 5, the V-category Mod(A,α),

and the forgetful V-functor

UMod(A,α) : Mod(A,α)→ CoAlg(T ),

are the initial lift of the forgetful functor UMod(A,α)o .

Of course, when defining the category Mod(A,α) we could have considered the obvious

forgetful ordinary functor from Mod(A,α)o to Xo. But it is easy to see that this is just

the composite UCoAlg(T )oUMod(A,α)o , and by Proposition A.2, its initial lift is just the

composite UCoAlg(T )UMod(A,α) up to a unique isomorphism. Hence we can use either

forgetful functor, and everything is consistent.

Remark 4.22. If the L-algebra (A,α) is the initial L-algebra, then it is easy to see that

Mod(A,α)o ∼= CoAlg(T )o, and using both the initial lifts of UMod(A,α)o and the above

forgetful ordinary functor from Mod(A,α)o to Xo, this lifts to Mod(A,α) ∼= CoAlg(T ).

4.4 Colimits in CoAlg(T ) and Mod(A,α)

In Chapter 6 we shall see that one of the most important aspects of the structure of the

category Mod(A,α) is the presence, or otherwise, of colimits. To be more precise, we

shall be interested in what are known as conical colimits. In enriched category theory

the notion of colimits is generalised to what are variously known as indexed, or weighted,

colimits (Definition C.93). The conical colimits (Definition C.95) are then a special case,

and correspond, as their name suggests, to the usual ordinary category theory notion of

colimits based upon cocones.

In this section we shall prove that the forgetful functors UCoAlg(T ) : CoAlg(T )→ X and

UCoAlg(T )UMod(A,α) : Mod(A,α) → X create small conical colimits (Definition C.99),

and the main technical tool we shall use is Theorem 2.14, which relies in an essential

way upon the fact that these forgetful functors are initial lifts.

In the proofs that follow, we shall use the following notation:

1. J will be a small ordinary category that specifies the type, or shape, of colimit we

are dealing with.

2. ∆C denotes the diagonal functor ∆C : J → Co that sends every object of J to C,

and every morphism of J to 1C .
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3. ∆f denotes the natural transformation ∆f : ∆A ⇒ ∆B : J → Co, for which the

component (∆f )J = f : A→ B, for all objects J in J.

First we extend to the enriched setting the well known result (see for example Rutten

(2000) for the case in Set) that the forgetful functor UCoAlg(T )o : CoAlg(T )o → Xo
creates small colimits.

Theorem 4.23. Given the conditions of Assumption 5, the forgetful V-functor

UCoAlg(T ) : CoAlg(T )→ X

creates small conical colimits.

Proof. Consider a small ordinary category J and a functor D : J → CoAlg(T )o, and

suppose that X has conical colimits of shape J. Then we have that UCoAlg(T )oD has a

colimit (colimXo(UCoAlg(T )oD), φ), where the unit φ is the ordinary natural transfor-

mation

φ : ∆I ⇒ X
(
UCoAlg(T )oD(−), colimXo(UCoAlg(T )oD)

)
o
: J→ Vo,

the components of which are the cocone

φJ : UCoAlg(T )oD(J)→ colimXo(UCoAlg(T )oD),

in the ordinary category Xo. We shall therefore view the unit φ as the following natural

transformation

φ : UCoAlg(T )oD ⇒ ∆colimXo (UCoAlg(T )oD) : J→ Xo.

In order to simplify what comes next, we shall define the following ordinary natural

transformation

γD : UCoAlg(T )oD ⇒ ToUCoAlg(T )oD : J→ Xo,

the component γD(J) of which, is the structure map of the T -coalgebra indexed by J .

Next we need to show that UCoAlg(T )o : CoAlg(T )o → Xo creates colimits of shape J.

We proceed as follows:

1. Put a T -coalgebra structure map on colimXo(UCoAlg(T )oD):

Tφ ◦ γD : UCoAlg(T )oD ⇒ ∆T (colimXo (UCoAlg(T )oD)) is a cocone for UCoAlg(T )oD,

therefore there exists a unique

χ : colimXo(UCoAlg(T )oD)→ T (colimXo(UCoAlg(T )oD))



98 Chapter 4 Coalgebraic Modal Logics

that gives a natural transformation

∆χ : ∆colimXo (UCoAlg(T )oD) ⇒ ∆T (colimXo (UCoAlg(T )oD))

such that Tφ◦γD = ∆χ ◦φ. This yields a T -coalgebra (colimXo(UCoAlg(T )oD), χ),

and the φJ become T -coalgebra morphisms.

2. Construct a cocone for D from (colimXo(UCoAlg(T )oD), χ):

We have a natural transformation

θ : D ⇒ ∆(colimXo (UCoAlg(T )oD),χ) : J→ CoAlg(T )o,

where UCoAlg(T )oθ = φ, and this is a cocone for D.

3. For another cocone of D construct a unique mediating morphism between the

carrier objects:

If we consider any other cocone ((Z, ξ), ψ : D ⇒ ∆(Z,ξ)) for D, then we clearly

have that

(Z, UCoAlg(T )oψ : UCoAlg(T )oD ⇒4Z)

is a cocone of UCoAlg(T )oD, and thus there exists a unique

µ : colimXo(UCoAlg(T )oD)→ Z,

giving a natural transformation

∆µ : 4colimXo (UCoAlg(T )oD) ⇒ ∆Z : J→ Xo,

such that UCoAlg(T )oψ = ∆µ ◦ φ.

4. Show that the mediating morphism is a T -coalgebra morphism:

The ψJ are T -coalgebra morphisms which means that

∆ξ ◦ UCoAlg(T )oψ : UCoAlg(T )oD ⇒ ∆T (Z)

ToUCoAlg(T )oψ ◦ γD : UCoAlg(T )oD ⇒ ∆T (Z)

represent the same cocone for UCoAlg(T )oD. Further, we have that

∆ξ ◦ UCoAlg(T )oψ = ∆ξ ◦∆µ ◦ φ = ∆ξ◦µ ◦ φ,

and also that

ToUCoAlg(T )oψ ◦ γD = ∆T (µ) ◦ Tφ ◦ γD = ∆T (µ) ◦∆χ ◦ φ = ∆T (µ)◦χ ◦ φ.
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So by the universal property of the colimit (colimXo(UCoAlg(T )oD), φ), we have

ξ ◦ µ = T (µ) ◦ χ. Thus µ is a T -coalgebra morphism, and we have a natural

transformation

∆µ : ∆(colimXo (UCoAlg(T )oD),χ) ⇒ ∆(Z,ξ) : J→ CoAlg(T )o.

Therefore ψ = ∆µ ◦ θ, and(
(colimXo(UCoAlg(T )oD), χ), θ : D ⇒ ∆(colimXo (UCoAlg(T )oD),χ)

)
is a colimit of D.

5. Deduce that UCoAlg(T )o creates colimits of shape J:

It is clear that ((colimXo(UCoAlg(T )oD), χ), θ) is the unique cocone for D that is

mapped by UCoAlg(T )o to the colimit (colimXo(UCoAlg(T )oD), φ) of UCoAlg(T )oD.

Thus we can conclude that UCoAlg(T )o creates colimits of shape J.

Finally by Theorem 2.14, we can deduce that the forgetful V-functor

UCoAlg(T ) : CoAlg(T )→ X

creates small conical colimits.

The case for the composite forgetful functor UCoAlg(T )UMod(A,α) : Mod(A,α) → X
follows in a similar fashion, with the additional detail that a theory map must be con-

structed for the colimit.

Theorem 4.24. Given the conditions of Assumption 5, the forgetful V-functor

UCoAlg(T )UMod(A,α) : Mod(A,α)→ X

creates small conical colimits.

Proof. Consider a small ordinary category J and a functorD : J→Mod(A,α)o, and sup-

pose that X has conical colimits of shape J. Then we have that UCoAlg(T )oUMod(A,α)oD

has a colimit (colimXo(UCoAlg(T )oUMod(A,α)oD), φ), where the unit φ is the ordinary

natural transformation

φ : ∆I ⇒ X
(
UCoAlg(T )oUMod(A,α)oD(−), colimXo(UCoAlg(T )oUMod(A,α)oD)

)
o
: J→ Vo,

the components of which are the cocone

φJ : UCoAlg(T )oUMod(A,α)oD(J)→ colimXo(UCoAlg(T )oUMod(A,α)oD),
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in the ordinary category Xo. We shall therefore view the unit φ as the following natural

transformation

φ : UCoAlg(T )oUMod(A,α)oD ⇒ ∆colimXo (UCoAlg(T )oUMod(A,α)oD) : J→ Xo.

In order to simplify what comes next, we shall define the following ordinary natural

transformation

γD : UCoAlg(T )oUMod(A,α)oD ⇒ ToUCoAlg(T )oUMod(A,α)oD : J→ Xo,

the component γD(J) of which, is the structure map of the T -coalgebra indexed by J ,

and the ordinary natural transformation

fD : UCoAlg(T )oUMod(A,α)oD ⇒ ∆S(A) : J→ Xo,

the component fD(J) of which, is the theory map of the T -coalgebra indexed by J .

Next we need to show that UCoAlg(T )oUMod(A,α)o : Mod(A,α)o → Xo creates colimits

of shape J. We proceed as follows:

1. Use the functor UCoAlg(T )o to construct a colimiting T -coalgebra on

colimXo(UCoAlg(T )oUMod(A,α)oD):

By Theorem 4.23 there is a unique T -coalgebra

χ : colimXo(UCoAlg(T )oUMod(A,α)oD)→ T (colimXo(UCoAlg(T )oUMod(A,α)oD))

making the φJ into T -coalgebra morphisms, and thus a natural transformation

θ : UMod(A,α)oD ⇒ ∆(colimXo (UCoAlg(T )oUMod(A,α)oD),χ) : J→ CoAlg(T )o,

such that (
(colimXo(UCoAlg(T )oUMod(A,α)oD), χ), θ

)
is the colimit of UMod(A,α)oD. Furthermore, UCoAlg(T )oθ = φ.

2. Construct a morphism g from colimXo(UCoAlg(T )oUMod(A,α)oD) to S(A):

The theory maps associated with the diagram D define a natural transformation

fD : UCoAlg(T )oUMod(A,α)oD ⇒ ∆S(A) that is a cocone for UCoAlg(T )oUMod(A,α)oD.

Therefore there exists a unique morphism

g : colimXo(UCoAlg(T )oUMod(A,α)oD)→ S(A)

giving a natural transformation

∆g : ∆colimXo (UCoAlg(T )oUMod(A,α)oD) ⇒4S(A) : J→ Xo,
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such that fD = ∆g ◦ φ.

3. Show that g is a theory map:

The natural transformations

∆S(α) ◦ fD : UCoAlg(T )oUMod(A,α)oD ⇒ ∆SL(A)

∆δ∗A
◦ TfD ◦ γD : UCoAlg(T )oUMod(A,α)oD ⇒ ∆SL(A)

are cocones for UCoAlg(T )oUMod(A,α)oD. Indeed, they represent the same cocone,

and we have

∆S(α) ◦ fD = ∆S(α) ◦∆g ◦ φ = ∆S(α)◦g ◦ φ,

and

∆δ∗A
◦ TfD ◦ γD = ∆δ∗A

◦∆T (g) ◦ Tφ ◦ γD
= ∆δ∗A

◦∆T (g) ◦∆χ ◦ φ

= ∆δ∗A◦T (g)◦χ ◦ φ.

The universal property of the colimit (colimXo(UCoAlg(T )oUMod(A,α)oD), φ) then

yields S(α) ◦ g = δ∗A ◦ T (g) ◦ χ. Thus g is a theory map and

(
(colimXo(UCoAlg(T )oUMod(A,α)oD), χ), g

)
is a model in Mod(A,α)o, and since fD = ∆g ◦ φ, the φJ are model morphisms.

4. Construct a cocone for D from ((colimXo(UCoAlg(T )oUMod(A,α)oD), χ), g):

We have a natural transformation

τ : D ⇒ ∆((colimXo (UCoAlg(T )oUMod(A,α)oD),χ), g) : J→Mod(A,α)o,

where UMod(A,α)oτ = θ, and this is a cocone for D.

5. For another cocone of D construct a unique mediating morphism between the

T -coalgebras:

If we consider any other cocone (((Z, ξ), h), ψ : D ⇒ ∆((Z,ξ),h)) for D, then we

clearly have that ((Z, ξ), UMod(A,α)oψ : UMod(A,α)oD ⇒ ∆(Z,ξ)) is a cocone for

UMod(A,α)oD, and thus there exists a unique

µ : (colimXo(UCoAlg(T )oUMod(A,α)oD), χ)→ (Z, ξ),

giving a natural transformation

∆µ : ∆(colimXo (UCoAlg(T )oUMod(A,α)oD), χ) ⇒ ∆(Z,ξ) : J→ CoAlg(T )o,

such that UMod(A,α)oψ = ∆µ ◦ θ.
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6. Show that the mediating morphism is a model morphism:

In choosing the cocone (((Z, ξ), h), ψ : D ⇒ ∆((Z,ξ),h)) we are imposing the con-

straint

fD = ∆h ◦ UCoAlg(T )oUMod(A,α)oψ,

as this is required for the ψJ to be morphisms in Mod(A,α)o. Now

UCoAlg(T )oUMod(A,α)oψ = ∆UCoAlg(T )oµ
◦ φ,

so

fD = ∆h ◦∆UCoAlg(T )oµ
◦ φ,

and by the uniqueness of g, we therefore have

g = h ◦ UCoAlg(T )oµ.

This means that µ is also a morphism in Mod(A,α)o, and thus we now have a

natural transformation

∆µ : ∆((colimXo (UCoAlg(T )oUMod(A,α)oD),χ),g) ⇒ ∆((Z,ξ),h) : J→Mod(A,α)o,

and with this ψ = ∆µ ◦ τ . This completes the proof that the cocone

(
((colimXo(UCoAlg(T )oUMod(A,α)oD), χ), g), τ

)
is a colimit of D.

7. Deduce that UCoAlg(T )oUMod(A,α)o creates colimits of shape J:

It is clear that (((colimXo(UCoAlg(T )oUMod(A,α)oD), χ), g), τ) is the unique cocone

for D that is mapped by UCoAlg(T )oUMod(A,α)o to the colimit

(colimXo(UCoAlg(T )oUMod(A,α)oD), φ)

of UCoAlg(T )oD. Thus we can conclude that UCoAlg(T )oUMod(A,α)o creates colimits

of shape J.

Finally by Theorem 2.14, we can deduce that the forgetful V-functor

UCoAlg(T )UMod(A,α) : Mod(A,α)→ X

creates small conical colimits.



Chapter 4 Coalgebraic Modal Logics 103

4.5 Discussion

In this chapter we have formalised a general notion of enriched coalgebraic modal logic.

This extends previous work, both in the extensive literature on coalgebraic modal logic

in ordinary category theory, and the more recent work of Kapulkin et al. (2010, 2012);

B́ılková et al. (2011), where the enrichment is over Preord and Pos.

We also provide a framework for the study of the modal logic counterpart to the work of

Turi and Rutten (1998); Worrell (2000a); Balan and Kurz (2011) on coalgebras enriched

over various categories of preorders, partial orders, or metric spaces. Moreover, we

have extended the systematic study of models for a modal logic that we introduced in

Wilkinson (2012b) to the enriched setting.

There is however something missing from the presentation of coalgebraic modal logics

in this chapter, and indeed in this thesis - our modal logics could be more accurately

described as coalgebraic modal languages, as we make no mention of proof systems.

Indeed, when we are working with abstract modal logics (L-algebras for a general functor

L), we do not even have a syntax. However, if there is a presentation for L (Section 4.2),

then the free L-algebras are the Lindenbaum-Tarski algebras for concrete modal logics

(Section 4.3), and the presentation also gives a proof system. Various authors have

looked at such proof systems, and attempted to tackle the question of completeness of

modal logics with coalgebraic semantics.

A common technique is to use induction along the terminal sequence (Worrell, 1999,

2005) in conjunction with predicate liftings. In Pattinson (2003) the weak completeness

of a local consequence relation is investigated for Set coalgebras and modal logics that

extend the propositional logics in BA, and in Kupke et al. (2004a) the results are

extended to weak completeness for coalgebras on a general category (though still with

modal logics built upon BA). The work of Kupke et al. (2004a) also makes use of the

algebraic semantics of Alg(L), and the fact that the modal proof system is equivalent

to equational logic.

The algebraic semantics approach to completeness is well known from Kripke semantics,

where the key result is known as the Jónsson-Tarski Theorem (a good introduction

can be found in Blackburn et al. (2001, Chapter 5)). Various authors have produced

coalgebraic versions of the Jónsson-Tarski Theorem (Jacobs, 2001; Kupke et al., 2005;

Kurz and Rosický, 2012). In simple terms a T -coalgebra structure is constructed on

S(A) by defining a morphism h : SL(A) → TS(A) such that h ◦ δ∗A = 1TS(A), and this

yields a weak completeness result, though the results of Kurz and Rosický (2012) are

more general, and yield a strong completeness result for a global consequence relation.

In contrast to the approach via algebraic semantics, in Schröder and Pattinson (2009),

strong completeness is shown for modal logics built on BA and coalgebras on Set, for
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a local consequence relation based on models. This result requires that the functor T

satisfies certain conditions.

The axioms of coalgebraic modal logics have also been studied, and it has been found

that they can be grouped into those that are rank 1 (have precisely one level of nesting

of the modal operators), and those that are not.

In Schröder (2007) it was shown that for any functor T on Set, that CoAlg(T ) could be

axiomatised by a weakly complete rank 1 modal logic built upon BA. Then in Schröder

and Pattinson (2007b) it was shown that every rank 1 modal logic built upon BA has

a sound and strongly complete coalgebraic semantics with respect to CoAlg(T ), for

a specially constructed functor T on Set. Some work has also been done to look at

modal logics that include axioms that are not rank 1 (Pattinson and Schröder, 2008;

Schröder and Pattinson, 2009). In Pattinson and Schröder (2008), for an arbitrary

collection of additional non rank 1 axioms (called frame conditions), the full subcategory

of CoAlg(T ) is considered where in each T -coalgebra these additional axioms are valid.

Such a category is similar in spirit to our category of models, in that both incorporate

the idea that going beyond the initial L-algebra requires a corresponding restriction in

the T -coalgebras that should be considered. However, their work is again built upon BA

and Set, and uses the notion of validity, which we avoid (Remark 4.13). Our definition of

Mod(A,α) on the other hand works at the level of abstract L-algebras, and is therefore

in that respect more general. Fundamentally however, the approaches are different; we

work with models, and their approach is more analogous to Kripke frames.

There has also been work to generalise theorems from the Kripke semantics of modal

logic (Blackburn et al., 2001) to the coalgebraic setting. In Kupke et al. (2005) the

“bisimulation somewhere else” theorem, and in Kurz and Rosický (2007) the Goldblatt-

Thomason Theorem, are recast into the framework of coalgebras on Set, and modal

logics built upon BA.

Finally, it should be noted that a special type of modal logic has been studied as a logic

for coalgebras. Prior to the work by Kurz on coalgebraic modal logic (Kurz, 2001), Moss

introduced coalgebraic logic (Moss, 1999), which is a special type of modal logic where

the syntax is derived from the functor T (that specifies the coalgebras). Many researchers

continue to work on Moss’ logic, and recent work (Kupke et al., 2008, 2012) has shown

that it too can be given by a functor L and thus incorporated into our framework, but

we shall not discuss it further in this thesis.

Other alternatives to coalgebraic modal logics are the so called coequational logics (Kurz,

2000; Rutten, 2000; Kurz and Rosický, 2002, 2005; Awodey and Hughes, 2003; Adámek,

2005; Schwencke, 2008). This line of work was inspired by Birkhoff’s variety and com-

pleteness theorems of universal algebra, and various notions of coequation have been

introduced, along with logics to reason about them. A very general notion of a pred-

icate that is invariant under bisimulation has also been defined, arising from the idea
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that this captures the essence of modal logic, and these are found to have the same

expressive power as coequations (Kurz and Rosický, 2002, 2005). As these logics con-

stitute a very different approach to the one we follow, we shall not mention them again

in the remainder of this thesis.





Chapter 5

Behavioural Questions

In the previous chapters we have created a logical connection framework based upon a

dual adjunction enriched over a symmetric monoidal closed category V, and shown how

to extend this framework to incorporate algebras and coalgebras for V-functors defined

on the two base categories A and X.

Now we shall explore how we can compare the behaviour of states of coalgebras, and in

doing so we shall make clear the role the category V plays in these comparisons.

A brief outline of this chapter is as follows:

Section 5.1 The T -coalgebra examples from Section 4.1 are discussed and the role of

the preorders and generalised metrics explained.

Section 5.2 The idea of what a general notion of behavioural question for a pair of

states might be is examined, and it is proposed that the answers should form a

commutative unital quantale. From this general notions of behavioural and logical

adjacency are defined, as well as a general definition of what it means for an

L-algebra to be expressive.

Section 5.3 It is observed that each choice of quantale yields a candidate for the set

of truth values of the logical connection. In the case of generalised metric spaces

this suggests that real-valued logics may be the “correct” choice.

Section 5.4 Previous approaches to bisimulation, simulation, and behavioural metrics

are compared to our approach.

5.1 Bisimulation, Simulation, and Approximation

In Section 4.1 we gave numerous examples of T -coalgebras for enrichment over Set,

SetR, and GMet. We shall now look at those examples in more detail.

107
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First of all we shall look at the examples where we enrich over Set. These are the familiar

examples that anyone with exposure to coalgebras are likely to be familiar with.

The first example is the powerset functor on Set (Example 4.8), which we then extend to

Labelled Transition Systems (Example 4.11). The other two examples are probabilistic,

corresponding to Markov Chains (Example 4.14), and Markov Processes (Example 4.17).

The key point to note is that, given a set X (or a measurable space (X,ΣX) in the case

of Markov Processes), there are no constraints on the choice of T -coalgebra structure

map γ : X → T (X), other than that γ must be a function (a measurable function for

γ : (X,ΣX)→ T (X,ΣX)).

Now we know from Section 2.2 that the category Set is isomorphic to the category SetR

if the type R represents equality. In other words, every set can be considered to have

the discrete preorder, where two states are related if and only if they are equal. We can

therefore think of γ as being constrained to preserve equality. In this sense, the equality

relation RX is required to be a bisimulation on X under γ, as every state is bisimilar to

itself.

Next we consider the examples where we enriched over SetR, but with the type R chosen

to be preorders. For the powerset functor (Example 4.9), given a preorder (X,RX),

and x, y ∈ X, our choice of T -coalgebra structure map γ : (X,RX) → T (X,RX) is

constrained by the requirement that γ be R-preserving, and therefore must satisfy

xRXy ⇒ ∀x′ ∈ γ(x) ∃y′ ∈ γ(y). x′RXy
′.

Similarly, for Labelled Transition Systems (Example 4.12), γ is required to satisfy

xRXy ⇒ ∀(l, x′) ∈ γ(x) ∃(l′, y′) ∈ γ(y). l = l′ and x′RXy
′.

This means that the preorder RX is required to be a Labelled Transition System simu-

lation on X for γ (van Glabbeek, 2001).

The two probabilistic examples, of Markov Chains (Example 4.15), and Markov Pro-

cesses (Example 4.18), are similar to the above, with γ required to satisfy

xRXy ⇒ ∀u ⊆ X (u right R-closed⇒ γ(x)(u) ≤ γ(y)(u)),

and

xRXy ⇒ ∀M ∈ ΣX (M right R-closed⇒ γ(x)(M) ≤ γ(y)(M)),

respectively. In these cases the preorder RX is required to be a Markov Chain or Markov

Process simulation (Desharnais et al., 2003).

The remaining examples were enriched over GMet. Like the case for enrichment over

SetR, additional constraints are placed on the choice of a T -coalgebra structure map γ.
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Specifically, for the powerset functor (Example 4.10), γ is required to satisfy

dX(x, y) ≥ sup
x′∈γ(x)

(
inf

y′∈γ(y)
dX(x′, y′)

)
,

and for Labelled Transition Systems (Example 4.13), γ is required to satisfy

dX(x, y) ≥ sup
(l,x′)∈γ(x)

(
inf

(l′,y′)∈γ(y)
max(dΣ(l, l′), dX(x′, y′))

)
.

Here the generalised metric dX is required to be an approximate, or quantitive, simula-

tion metric on X for γ. What this means, is that for every transition that x can make y

can match it, and in doing so, y moves to a successor state that is at least as close to the

successor state of x, as y was to x. This is related to the notion of branching distance

in de Alfaro et al. (2004).

The final two examples are Markov Chains (Example 4.16), where γ is required to satisfy

dX(x, y) ≥ sup
u⊆X

right d-closed

d[0,1](γ(x)(u), γ(y)(u)),

and Markov Processes (Example 4.19), where γ is required to satisfy

dX(x, y) ≥ sup
M∈ΣX

right d-closed

d[0,1](γ(x)(M), γ(y)(M)).

These two conditions again require dX to be an approximate simulation metric, though

whether they correctly capture what is required of such approximate simulations is

uncertain. The work of Desharnais et al. (2004) on metrics for Markov Processes takes

a different approach, and conflates the approximation of the Markov Processes, with the

valuations of the corresponding real-valued logic. Also in de Vink and Rutten (1999) an

ultrametric is defined which differs from the generalised metric of Example 4.19, but is

used to study probabilistic bisimulation, not approximate simulation.

Since the analysis of Markov Processes is not our main concern, we shall not pursue

the question of how best to augment the Distribution functor and the Giry functor for

enrichment over GMet.

In all the discussion above we have alternated between saying that a particular constraint

is placed on the choice of a T -coalgebra structure map γ, and that a corresponding

constraint is placed upon the preorder RX , or metric dX , that a state space X carries.

This is no accident.

Traditionally when transition systems have been discussed, a class of transition systems

is defined, and only afterwards is the corresponding notion of bisimulation or simulation

specified. Thus it is common to find many different types of bisimulation defined for

a given type of transition system. Our approach is different. We first appropriately
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choose the category V over which we enrich, depending upon whether we are interested

in bisimulation, simulation, approximate simulation, or possibly some other notion of

behavioural comparability. Then we choose our functor T such that it simultaneously

defines both the transition structure, and how states are to be compared. In other words,

our view is that a transition system type is not fully defined until it is specified how

to compare the behaviour of states. This idea is consistent with the spirit of category

theory, where the relationships between objects are considered as important, if not more

so, than the structure of the objects themselves.

In the remainder of this chapter we shall formalise the idea that through enriching over

different choices of the category V, we can endow our coalgebras with different notions

of behavioural comparability. In doing so, we shall take an idea from Worrell (2000a)

and Worrell (2000b), and adapt it to our framework.

5.2 Behavioural Questions

In the previous section we saw how enriching over the categories Set, SetR, and GMet,

could lead to different notions of what it meant to compare the behaviour of states:

bisimulation, simulation, and approximate simulation. But are these the only ways in

which the behaviour of states can be compared? Given a pair of states, what might we

want to say about the behaviour of one with respect to the behaviour of the other? Or

put another way, what behavioural questions can we ask of this pair of states?

Obviously, this is all rather vague and open ended, so we need to make things more

concrete. The first thing we can say is that we have seen that the choice of category

over which we enrich appears to play a big part. The second is that Lawvere observed

that preorders and generalised metric spaces were in actual fact categories enriched over

2 and [0,∞] respectively (Lawvere, 1973). Let us look at this in more detail.

Every preorder or generalised metric space consists of a pair (X, qX), where X is a set,

qX : X ×X → Q is a function, and Q is either 2 or [0,∞] respectively. So if X is the

underlying set of the carrier object of some coalgebra, then the sets 2 and [0,∞] can be

thought of as the set of possible answers to questions that can be asked of two states of

that coalgebra. Specifically, given states x, y ∈ X, then qX(x, y) ∈ Q is the answer to

the question asked of x and y. For example, if the question was “do x and y have the

same behaviour?” we would expect the answer yes (1) or no (0), whereas if the question

was “how close is the behaviour of y to that of x?” we would expect the answer to lie

in the interval [0,∞].

It would seem therefore that we should consider other possible choices for the set Q. But

which ones? Do we have a free hand, or are there constraints on what we can choose?
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Looking at the examples of preorders and generalised metric spaces, we note that the

functions between preorders are required to be order preserving, and the functions be-

tween metric spaces are required to be non-expansive. This means that in these two

cases the set Q carries an order, and any coalgebra morphism must respect that order.

In particular, if there is a chain of coalgebra morphisms leading from an arbitrary coal-

gebra (X, γ) to the final coalgebra, then for x, y ∈ X, the chain of “answers” should be

seen to monotonically approach the answer given by the final coalgebra, and that this

answer is the definitive answer.

This property is an appealing one, as it extends the notion of final coalgebra semantics

to say that, not only is the behaviour of a state given by its image in the final coalgebra,

but if we want to compare the behaviour of two states, we should do this by comparing

their images in the final coalgebra. Moreover, as we move along a chain of coalgebra

morphisms our answers can only improve.

There are two final properties of preorders and generalised metric spaces that we have not

discussed. Specifically, reflexivity and transitivity for preorders, and dX(x, x) = 0 and

the triangle inequality for metrics. Famously, Lawvere observed that these correspond

to the existence of identities, and composition of morphisms, thus making preorders and

generalised metric spaces into categories (Lawvere, 1973). But what does this mean in

our context?

The existence of identities corresponds to the fact that we always know that a state

has the same behaviour as itself. Again this is a desirable property. Composition of

morphisms is more difficult to understand. It would seem that if we have a coalgebra

(X, γ), and states x, y, z ∈ X, and we know how the behaviour of y compares to x,

and how the behaviour of z compares to y, then composition allows us to compute an

estimate, or bound, for how the behaviour of z compares to x. It is hard to imagine

that having this capability would ever be a problem, but equally, it is not clear why

we should always desire this property. However, as we shall see in Proposition 5.7, this

property turns out to be vital.

To summarise, we should choose a set Q and supply it with an order relation and

sufficient additional structure that pairs (X, qX) are in fact categories, and morphisms

f : (X, qX)→ (Y, qY ) should be functions f : X → Y that respect the order of Q. Then

following Lawvere (1973), for a pair (X, qX), the value qX(x, y) ∈ Q is the hom-object

of x and y, making (X, qX) a category enriched over Q.

To do this we will require that Q have at the bare minimum the structure of a monoidal

category, with a tensor ⊗, and a unit I. In fact, in order to satisfy the conditions

of Assumption 1, we require that Q be a commutative unital quantale (Wagner, 1997;

Worrell, 2000a). The reasons for this will be explained in due course, but first we start

with a definition.
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Definition 5.1. A quantale (Q,⊗) is a complete latticeQ with an associative operation

⊗, such that ⊗ preserves all joins:

a⊗
∨
i∈I

bi =
∨
i∈I

(a⊗ bi)∨
i∈I

bi ⊗ a =
∨
i∈I

(bi ⊗ a).

If in addition ⊗ is commutative, then (Q,⊗) is a commutative quantale, and if there

exists I ∈ Q, such that for all a ∈ Q,

I ⊗ a = a = a⊗ I,

then (Q,⊗, I) is a unital quantale.

Now any lattice is a partial order, with

a ≤ b⇔ a = a ∧ b⇔ a ∨ b = b,

and it is well-known that partial orders are categories. So we can ask what the additional

structure of a commutative unital quantale means from a category theory perspective.

Firstly let us look at the operation ⊗. Take a, b, c ∈ Q such that a ≤ b, then

c⊗ b = c⊗ (a ∨ b) = (c⊗ a) ∨ (c⊗ b),

thus c ⊗ a ≤ c ⊗ b. Similarly, a ⊗ c ≤ b ⊗ c, and it is easy to see that ⊗ is a functor,

and since by assumption it is commutative and associative, together with I, this makes

(Q,⊗, I) into a symmetric monoidal category.

Now if we consider the functors a⊗− and −⊗a, from the definition of a quantale these

preserve joins, but in a partial order joins are colimits, indeed the only colimits. Thus

by the Adjoint Functor Theorem for partial orders, there exist right adjoints to a ⊗ −
and −⊗ a, which we shall denote [a,−]L and [a,−]R respectively, such that

b ≤ [a, c]L ⇔ a⊗ b ≤ c

b ≤ [a, c]R ⇔ b⊗ a ≤ c.

However, ⊗ is commutative, and Q is a partial order, thus [a, c]L = [a, c]R.

Putting this all together, and noting that left adjoints preserve colimits, and meets and

joins are limits and colimits (respectively) in a partial order, we have the following result.

Proposition 5.2. A partial order is a symmetric monoidal closed category that is both

complete and cocomplete, if and only if, it is a commutative unital quantale.



Chapter 5 Behavioural Questions 113

A commutative unital quantale (Q,⊗, I) therefore has all the structure necessary to

define categories enriched over Q (Wagner, 1997; Worrell, 2000a).

Definition 5.3. Given a commutative unital quantale (Q,⊗, I), a Q-category is a pair

(X, qX), where X is a set, and qX is a function qX : X×X → Q called the hom-functor,

such that the following hold:

Reflexivity: I ≤ qX(x, x) for all x ∈ X,

Transitivity: qX(x, y)⊗ qX(y, z) ≤ qX(x, z) for all x, y, z ∈ X.

A Q-functor f : (X, qX)→ (Y, qY ) is a function f : X → Y such that for all x, x′ ∈ X

qX(x, x′) ≤ qY (f(x), f(x′)).

Q-categories can be thought of as generalisations of preorders or generalised metric

spaces in the spirit of Lawvere (1973), and the condition on Q-functors is the general-

isation of the order preserving or non-expanding properties of the morphisms between

preorders or generalised metric spaces.

Now just like the case of SetR (Definition 2.1) and GMet (Definition 2.5), we are

interested in the category of all Q-categories.

Definition 5.4. Given a commutative unital quantale (Q,⊗, I), the category Q−Cat

has for objects Q-categories, and for morphisms Q-functors.

As ultimately we want to enrich over Q−Cat, we would like Q−Cat to satisfy the

conditions of Assumption 1.

The first property of Q−Cat that we require, is that Q−Cat is complete and cocomplete.

This can be seen to follow from the fact that Q is a complete lattice.

Products: the product of (X, qX) and (Y, qY ) is given by (X × Y, qX×Y ), where

qX×Y ((x, y), (x′, y′)) = qX(x, x′) ∧ qY (y, y′).

Coproducts: the coproduct of (X, qX) and (Y, qY ) is given by (X + Y, qX+Y ), where

qX+Y (w,w′) =


qX(w,w′) : if w,w′ ∈ X

qY (w,w′) : if w,w′ ∈ Y

⊥ : otherwise.
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Equalisers: the equaliser of f, g : (X, qX) → (Y, qY ) is given by e : (E, qE) → (X, qX),

where

E = {x ∈ X | f(x) = g(x)},

and

qE(x, x′) = qX(x, x′).

Coequalisers: the coequaliser of f, g : (X, qX)→ (Y, qY ) is given by

h : (Y, dY )→ (H, dH),

where H = Y/ ∼, and ∼ is the smallest equivalence relation such that for all x ∈ X
we have f(x) ∼ g(x). The hom-functor qH is given by

qH([y], [y′]) =
∨
u∼y
u′∼y′

qY (u, u′).

Final Object: the final object is (1, q1), where 1 is the singleton set, and q1(∗, ∗) = >.

Initial Object: the initial object is (0, q0), where 0 is the empty set.

Since Q is a complete lattice, small products also exist, as do small coproducts, and so

we have the following proposition.

Proposition 5.5. The category Q−Cat is complete and cocomplete.

We also require that Q−Cat be symmetric monoidal closed, and for this we need a tensor

and a unit. We define the tensor as follows. Note, this defines a functor since ⊗ is a

functor on Q.

Definition 5.6. Given a commutative unital quantale (Q,⊗, I), the tensor product

(X, qX) ⊗ (Y, qY ) of the Q-categories (X, qX) and (Y, qY ) is given by (X × Y, qX⊗Y ),

where

qX⊗Y ((x, y), (x′, y′)) = qX(x, x′)⊗ qY (y, y′),

and the unit Q-category is the singleton set (1, qI) with qI(∗, ∗) = I.

Note that in general the unit Q-category is not the final Q-category.

It is easy to verify that tensor product and the unit Q-category form the tensor and unit

of a symmetric monoidal category. To make Q−Cat also closed we need internal-hom

objects [(X, qX), (Y, qY )], such that [(Y, qY ),−] is right adjoint to − ⊗ (Y, qY ) (Defini-

tion B.9). These are given as follows:
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Internal-hom: the internal-hom of (X, qX) and (Y, qY ) is given by the set of all Q-

functors from (X, qX) to (Y, qY ) with the hom-functor

q[(X,qX),(Y,qY )](f, g) =
∧
x∈X

qY (f(x), g(x)).

Unit: the unit of the adjunction −⊗ (Y, qY ) a [(Y, qY ),−] is given by

d(X,qX) : (X, qX)→ [(Y, qY ), (X, qX)⊗ (Y, qY )]

x 7→ fx : (Y, qY )→ (X, qX)⊗ (Y, qY ),

where fx(y) = (x, y).

Counit: the counit of the adjunction −⊗ (Y, qY ) a [(Y, qY ),−] is given by

e(Z,qZ) : [(Y, qY ), (Z, qZ)]⊗ (Y, qY )→ (Z, qZ)

(g : (Y, qY )→ (Z, qZ), y) 7→ g(y).

To show that these do indeed make Q−Cat closed, we are required to use that Q is both

closed and complete, and also make use of all the defining properties of Q-categories

and Q-functors (thus explaining why we said at the beginning of this section that it was

vital that each pair (X, qX) was a category). This gives the following proposition, which

also appears as Wagner (1997, Proposition 1.14) and Worrell (2000b, Definition 4.3.8).

Proposition 5.7. The category Q−Cat is symmetric monoidal closed.

In Wagner (1997) it is remarked that Q−Cat is Cartesian closed if and only if Q is a

complete Heyting algebra with ⊗ given by meet.

Finally, the symmetric monoidal closed functor elem|−| (Definition B.15) is easily seen

to be faithful, and strong monoidal (Definition B.14). It is also a fibration (Defini-

tion A.5), as for any function f : X → Y , if Y carries the hom-functor qY , then we can

define a hom-functor qX on X by

qX(x, x′) = qY (f(x), f(x′)).

This is easily shown to be universal in the sense required of an initial lift.

Therefore putting everything together we can deduce:

Proposition 5.8. The category Q−Cat satisfies all the conditions of Assumption 1.

The above results show, that based on the assumption that one should enrich over

a category with a structure analogous to Preord or GMet, that in order to satisfy



116 Chapter 5 Behavioural Questions

the basic assumptions on Vo we used to develop logical connections (Chapter 3) and

coalgebraic modal logic (Chapter 4), we require thatQ be a commutative unital quantale.

The eagle-eyed reader will have spotted though, that for the category SetR, the objects

satisfy additional axioms beyond those of a Q-category in the cases where the type R

does not represent preorders. For example, in the case of equivalence relations we require

symmetry in addition to reflexivity and transitivity. Thus in the general case we are

forced to consider full subcategories of Q−Cat.

Definition 5.9. Given a commutative unital quantale (Q,⊗, I), we shall use the nota-

tion VQ−Cat for any full subcategory of Q−Cat that satisfies the conditions of Assump-

tion 1.

To show that our generalisation genuinely subsumes bisimulation, simulation, and ap-

proximate simulation, we should be able to recreate the categories Set, SetR, and GMet

via instances of Q−Cat for appropriate choices of Q.

Example 5.1. If we take Q to be the set 2 with the usual order, and take ⊗ to be meet,

and I to be 1, then Q−Cat is the category Preord, and for each of the four choices of

the type R, the category SetR (and thus Set) is a full subcategory of Q−Cat.

Example 5.2. If we take Q to be the set [0,∞] with the opposite order, and take ⊗ to

be +, and I to be 0, then Q−Cat is the category GMet.

Note, Set cannot be recovered from 2 with the discrete order, as 2 is not then complete.

The above examples show that we can recreate all of our previously discussed notions

of behavioural comparability through an appropriate choice of a commutative unital

quantale, but do we get anything more? Can we find new ways of comparing the

behaviour of states, new behavioural questions that we can ask?

The following simple example from Wagner (1997) is a possibility.

Example 5.3. If we have a commutative monoid (M,+, 0), then we can take Q to be

P(M), the powerset of M , with the order given by inclusion, meet and join given by

intersection and union, and take ⊗ to be defined by

u⊗ v = {m+ n | m ∈ u, n ∈ v},

and I to be {0}. Then Q−Cat is the category WDGraphM of weighted directed graphs

(X, eX), where the weights are elements of M , every vertex has a self-loop of weight 0,

and to compose edges we add the weights. Here eX assigns the set of edges to every

ordered pair of points. Note, between any ordered pair of points there can be multiple

edges, but only one with each weight. The morphisms of WDGraphM are functions

f : X → Y such that

eX(x, x′) ⊆ eY (f(x), f(x′)).
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We can try out WDGraphM to see what it might give us, by defining the powerset

functor on WDGraphM .

Example 5.4 (Powerset on WDGraphM enriched over WDGraphM ). The functor

T is defined as

T (X, eX) = (P(X), eP(X)),

where

eP(X)(u, v) =
⋂
x∈u
y∈v

eX(x, y),

and for any function f : (X, eX)→ (Y, eY ), the action of T on f is the function

T (f) : P(X)→ P(Y )

u 7→ {f(x) | x ∈ u}.

To see what this might actually mean we need to consider what happens to a T -coalgebra

γ : (X, eX)→ T (X, eX). The structure map γ is required to satisfy

eX(x, y) ⊆
⋂

x′∈γ(x)

y′∈γ(y)

eX(x′, y′),

which says that for any pair of states x and y, the smallest common set of edge weights

between every possible successor of x, and every possible successor of y, must contain

the set of edge weights between x and y. So if we regard the set of edges from x to y

as signifying some set of properties that y has with respects to x, then when x and y

transition to successor states, the successor of y must have at least the same properties

with respect to the successor of x, as y had to x.

In this example there is no observable behaviour, so it is not obvious that the set of

properties that y has with respect to x has anything to do with behaviour. However,

we can extend this example to Labelled Transition Systems by taking a set of labels Σ,

and defining eΣ(l, l′) = M if l = l′, and eΣ(l, l′) = ∅ otherwise.

Example 5.5 (LTS enriched over WDGraphM ). The functor T is defined as

T (X, eX) = (P(Σ×X), eP(Σ×X)),

where

eP(Σ×X)(u, v) =
⋂

(l,x)∈u
(l′,x′)∈v

eΣ×X((l, x), (l′, x′))

=
⋂

(l,x)∈u
(l′,x′)∈v

(eΣ(l, l′) ∩ eX(x, x′)),
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and for any function f : (X, eX)→ (Y, eY ), the action of T on f is the function

T (f) : P(Σ×X)→ P(Σ× Y )

u 7→ {(l, f(x)) | (l, x) ∈ u}.

Now when we consider a T -coalgebra, we find that the structure map γ must satisfy

eX(x, y) ⊆
⋂

(l,x′)∈γ(x)

(l′,y′)∈γ(y)

(eΣ(l, l′) ∩ eX(x′, y′)).

This has the same constraint as in the simple powerset case, but in addition, for every

transition that x can make with label l, y must also be able to make a transition with

label l that preserves the set of properties that y has with respect to x.

In this formulation of Labelled Transition Systems we chose a particular graph eΣ on

the set of labels Σ that only distinguished whether two labels were equal, but this is

obviously not the only choice we could have made. This particular choice was made to

force y to have to be able to match the label chosen by x, but if there was some kind

of relationship between the different labels, where l′ had a particular set of properties

(from M) with respect to l, then the choices y would have to be able to make to follow

x would be different. Specifically, y would have to be able to choose a transition (l′, y′)

such that both the set of properties that l′ had with respect to l, and the set of properties

that y′ had with respect to x′, contained the set of properties that y had with respect

to x.

It is clear from the above that we can define many different notions of behavioural

comparability, or behavioural questions, but we still have not addressed how to compare

states from different T -coalgebras.

In actual fact we are not really interested in comparing states from completely arbitrary

T -coalgebras, but rather from T -coalgebras that are models for some L-algebra, since

our interest is in coalgebraic modal logic.

First we instantiate our running assumptions by fixing the category V to be of the form

VQ−Cat for some commutative unital quantale Q.

Assumption 6. We extend Assumption 5 (page 83) as follows:

12. We fix the category V to be VQ−Cat (Definition 5.9), where (Q,⊗, I) is a commu-

tative unital quantale.

Now we are finally ready to write down precisely what we mean when we talk of com-

paring the behaviour of two states.
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Definition 5.10. Given the conditions of Assumption 6, for any two models X1, X2

in Mod(A,α), and any two states x1 ∈ X1, x2 ∈ X2, if there exists in Mod(A,α)o a

cospan

X1
f1 // X3 X2,

f2oo

then we say x2 has a behavioural adjacency bound of

qX3(f1(x1), f2(x2))

with respect to x1.

Here the model morphisms f1 and f2 are T -coalgebra morphisms, and thus transport

states x1 and x2 bisimilarly to the model X3 where their images f1(x1) and f2(x2) are

compared. The resulting answer qX3(f1(x1), f2(x2)) is a lower bound to the definitive

answer (given by the final model), since for any morphism f3 ∈ Mod(A,α)o(X3, X4),

the answer qX4(f3 ◦ f1(x1), f3 ◦ f2(x2)) is at least as good, and possibly better, as f3 has

an underlying Q-functor (Definition 5.3).

In the concrete examples of enrichment over the categories Set, SetR, and GMet,

Definition 5.10 takes on the following familiar forms.

Example 5.6 (Enrichment over Set). In this case qX(x, y) simply determines if x = y

(Example 5.1), and so we therefore look for a cospan where the model morphisms f1 and

f2 identify x1 and x2. We then say x1 and x2 are behaviourally equivalent (Kurz, 2000).

Example 5.7 (Enrichment over SetR). In this case qX(x, y) determines membership in

the relation RX (Example 5.1), and so we therefore look for cospans where

f1(x1)RX3f2(x2).

In Wilkinson (2012a) x1 and x2 are then said to be behaviourally R-related.

There are actually four cases to consider depending upon the type R:

1. If R is the type preorder, then we have simulation.

2. If R is the type partial order, then we have simulation where mutual simulation

implies bisimulation.

3. If R is the type equivalence relation, then we have mutual simulation.

4. If R is the type equality, then we have bisimulation.

Example 5.8 (Enrichment over GMet). In this case qX(x, y) is the metric dX(x, y)

(Example 5.2), and so we say that x2 is at most dX3(f1(x1), f2(x2)) from x1, or x2

approximately simulates x1 to within at least the accuracy dX3(f1(x1), f2(x2)).
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We now need to consider the logical counterpart to Definition 5.10. Given a pair of

models in Mod(A,α), and a state from each model, we want to compare the logical

theories of these two states. Now, the logical theory for each state is an element of

S(A), so we should use qS(A) to compare the theories.

Definition 5.11. Given the conditions of Assumption 6, for any two models X1, X2 in

Mod(A,α), and any two states x1 ∈ X1, x2 ∈ X2, we say x2 has a logical adjacency

of

qS(A)(f1(x1), f2(x2))

with respect to x1, where f1 and f2 are the theory maps of X1 and X2 respectively.

Note here, unlike in Definition 5.10, we do not have a lower bound on the logical adja-

cency, but the actual definitive value. This is because for each model the theory map is

part of the definition, and therefore unique.

To understand this definition we should look at some examples. Now we know by

Assumption 6 that V S(A) = A(A,ΩA), and that UA,ΩA : A(A,ΩA) → [U(A), U(ΩA)],

and since the VQ−Cat functors U and V are forgetful functors, we typically find that

qS(A) is the same as q[U(A),U(ΩA)]. Thus in many cases

qS(A)(s, s
′) =

∧
a∈A

qΩA(s(a), s′(a)).

Example 5.9 (Example 3.1). In this example qS(A)(s, s
′) tests for equality of the filter-

s/prime filters/ultrafilters s and s′. This is the usual notion of logical equivalence (Kurz,

2001).

Example 5.10 (Example 3.2). In this example qS(A)(s, s
′) tests for inclusion of the

filter/prime filter s in s′, or in the case that the type R is equality, it reverts to the

example above. This example captures the notion that two states may be logically R-

related of Wilkinson (2012a).

Example 5.11 (Example 3.9). In this example qS(A)(s, s
′) is given by the metric

dS(A)(s, s
′) = sup

a∈A
d[0,1](s(a), s′(a)),

which gives the distance between the fuzzy filters/fuzzy prime filters s and s′.

The following result is a simple consequence of the fact that the theory maps of models

are morphisms in X, and have underlying morphisms in VQ−Cat, which are Q-functors

(Definition 5.3).
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Proposition 5.12. Given the conditions of Assumption 6, for any two models X1, X2

in Mod(A,α), and any two states x1 ∈ X1, x2 ∈ X2, if x2 has a behavioural adjacency

bound of b with respect to x1, then

b ≤ qS(A)(f1(x1), f2(x2)),

where qS(A)(f1(x1), f2(x2)) is the logical adjacency of x2 with respect to x1, and f1 and

f2 are the theory maps of X1 and X2 respectively.

If it is possible to find a cospan in Mod(A,α)o such that the inequality of Proposi-

tion 5.12 can be made into equality, then the L-algebra (A,α) is said to be expressive

for Mod(A,α).

Definition 5.13. Given the conditions of Assumption 6, an L-algebra (A,α) is expres-

sive for Mod(A,α), if for any two models X1, X2 in Mod(A,α), and any two states

x1 ∈ X1, x2 ∈ X2, there exists in Mod(A,α)o a cospan

X1
g1 // X3 X2,

g2oo

such that

qX3(g1(x1), g2(x2)) = qS(A)(f1(x1), f2(x2)),

where f1 and f2 are the theory maps of X1 and X2 respectively.

This definition is slightly stronger than the standard cospan based definition of expres-

sivity for bisimulation, and the definition of expressivity for simulation in Wilkinson

(2012a). The difference is that in these two cases if x1 and x2 are not logically equiva-

lent (not logically R-related) i.e. f1(x1)
���RS(A)f2(x2), then there is no requirement that

there exist a cospan such that g1(x1)���RX3g2(x2). However the above definition requires

this. In practice this is not a problem, since if X has coproducts, then by Theorem 4.24,

so does Mod(A,α), and thus such a cospan always exists.

In the case of approximate simulation however, we need to take into account the full range

of values that the metric can take, and we want the distance between the behaviours of

two states to equal the distance between their logical theories. This forces the above,

slightly stronger, definition.

5.3 Behavioural Questions and Truth Values

The definition of expressivity of an L-algebra (A,α) for its category of models Mod(A,α)

with respect to VQ−Cat (Definition 5.13) makes use of the Q-category structure on S(A),

the collection of theories of (A,α). Moreover, as already noted in the previous section,
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qS(A) is often given by

qS(A)(s, s
′) =

∧
a∈A

qΩA(s(a), s′(a)),

where qΩA is the Q-category structure on the truth object ΩA.

An obvious question then is how do we choose a set of truth values? Specifically, should

it relate in some way to Q, and if so, how?

The first observation we can make is that since (Q,⊗, I) is a commutative unital quan-

tale, it is a symmetric monoidal closed category (Proposition 5.2), and thus it enriches

over itself (Section C.3).

Proposition 5.14. If (Q,⊗, I) is a commutative unital quantale, then Q is itself a

Q-category, with qQ(a, b) = [a, b].

In the case of the examples that have motivated our study, we get the following.

Example 5.12 (Example 5.1). If we take Q to be the set 2 with the usual order, and

take ⊗ to be meet, and I to be 1, then

[a, b] =

1 : if a ≤ b

0 : otherwise.

Example 5.13 (Example 5.2). If we take Q to be the set [0,∞] with the opposite order,

and take ⊗ to be +, and I to be 0, then

[a, b] =

b− a : if a ≤ b

0 : otherwise.

So in the case of enrichment over SetR, and with the type R representing preorders

or partial orders, we find that (2, q2) is the same as the truth object in our bivalent

examples (Definition 3.23). However, in the case of enrichment over Set, (2, q2) is not

an object in the full subcategory of Q−Cat that is Set, and indeed in our bivalent

examples we have taken the truth object to be 2 with the discrete order. Finally, in the

case of enrichment over GMet, none of our examples have taken the interval [0,∞] as

the set of truth values.

So does this mean that the choice of Q has nothing to do with the choice of truth

values? Not necessarily. In Example 4.20 and Example 4.21 we enrich over Set and

take the truth object to be 2 or [0, 1] respectively. In both cases the set of truth values

is just a set, i.e. carries the discrete order. However, whilst constructing the predicate

liftings and the natural transformation δ : LP ⇒ PT we make explicit use of the fact

that both 2 and [0, 1] have meets given by the usual orders. Similarly, in Example 4.22

and Example 4.23 we use the joins of 2 and [0, 1].
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So it would appear that the truth values get used in at least two different ways. Firstly

in the construction of the logical connection, and then secondly in the definition of the

predicate liftings and the natural transformation δ : LP ⇒ PT . In the latter case the

set of truth values may carry additional structure not required to define the logical

connection, and this may be the structure of a lattice, or even a commutative unital

quantale.

Also, in several of our examples we have used fuzzy logics with truth values taken

from [0, 1] purely for illustrative purposes, but are there ever compelling reasons to do

so? Starting with Kozen (1981, 1985) and then Panangaden (1999); Desharnais et al.

(2004); van Breugel et al. (2005), it has been argued that probabilistic systems should

be modelled with a logic of real-valued functions taking their values in the interval [0, 1].

One of the motivations for doing so, is that bivalent logics are not robust to small changes

in the probabilities, and so “close” approximations to a probabilistic system may have

radically different logical theories.

However, Example 5.13 above suggests that to study approximations we perhaps should

use a logic with truth values from [0,∞], though perhaps this should be just thought of

as a rescaling of the interval [0, 1]? Having said that, in Mislove et al. (2004) Markov

Processes are studied using a duality between real C∗-algebras and compact Hausdorff

spaces where the duality arises from the set R, so it is far from clear what the correct

approach should be.

In general therefore, at this stage it is unclear what the correct choice of truth values

should be, nor how they should relate to the choice of category VQ−Cat. Further study

of examples along the lines of the real-valued logics for Markov Processes may provide

clues as to what the correct approach, if such a general approach exists, should be.

5.4 Discussion

In the literature there have been many different approaches to bisimulation and simu-

lation for coalgebras, but essentially they can be split into two distinct groups - those

that use spans, and those that use cospans. Our work falls squarely in the latter camp.

The first approaches, starting with Aczel and Mendler (1989) 1, were interested in bisim-

ulation and were span based. The aim was to construct a relation R ⊆ X×Y , the bisim-

ulation, on the carriers X and Y of a pair of coalgebras. This approach was subsequently

generalised to that of a relation lifting, first through the use of fibrations (Jacobs, 1995;

Hermida and Jacobs, 1998; Klin, 2005), and then via relators (Rutten, 1998).

1Note that in the same paper, Aczel and Mendler also introduce a notion of (pre)congruence, which
is essentially a cospan approach (Kurz, 2000, Section 1.2).



124 Chapter 5 Behavioural Questions

In the relator approach of Rutten (1998) a functor T on Set extends to a unique functor

on Rel 2, the relator, if and only if T preserves weak pullbacks (Carboni et al., 1991).

This condition on T is also required (in general) to construct an Aczel-Mendler style

bisimulation (Aczel and Mendler, 1989).

The relator approach was then generalised in two different ways. Firstly, relators were

applied to simulation and metric bisimulation through generalising relations to the en-

riched equivalent - bimodules (Rutten, 1998; Turi and Rutten, 1998; Worrell, 2000a,b).

Here in the case of the approach by Worrell, the functor T on Q−Cat is extended to a

graph homomorphism 3 on the corresponding category of bimodules, and this is a lax

functor 4, if and only if T preserves Q-embeddings (Definition 6.1) (Worrell, 2000a, The-

orem 4.5). Then using the graph homomorphism extending T , a notion of a T -simulation

is defined, and if the extension of T is a lax functor, the composition of T -simulations

is also a T -simulation.

In the approach to bisimulation of Rutten (1998) the extension of T to Rel is fixed, so

the second generalisation was to take a separate relator Γ on Rel that was not derived

from T (Hughes and Jacobs, 2004; Ĉırstea, 2006; Levy, 2011). This then allows the

notion of a Γ-simulation for T -coalgebras to be defined, and for different choices of Γ,

this yields different notions of simulation.

The strength of the span based approach is that when one thinks about the states of two

coalgebras, and one wants to compare the behaviours of pairs of states, one’s intuitive

response is to think of constructing a relation on the two sets of states. The weakness

though of this approach, is that not only does one have to find the relation, but to show

that it is the relation one is looking for, one has to put a coalgebra structure on it.

In general, if we desire that such a relation be transitive, and this is indeed what we

expect for standard notions of bisimulation or simulation, this can only be done if T

preserves weak pullbacks (Rutten, 1998), or some generalisation of this in the enriched

case (Worrell, 2000a; B́ılková et al., 2011).

The alternative approach to bisimulation using cospans originated in the PhD thesis

of Kurz (Kurz, 2000), and has the key advantage that it does not need the functor T

to preserve weak pullbacks. The two are easily seen to be equivalent in most cases.

Specifically, if the category X has pushouts, then any span based bisimulation yields a

cospan based bisimulation, and if X has weak pullbacks and T preserves them, then any

cospan based bisimulation yields a span based bisimulation.

This removal of the requirement that T preserves weak pullbacks has practical conse-

quences. For example, in Danos et al. (2006) it is shown that the cospan approach

2There are two formulations of the category Rel that appear in the coalgebra literature: the first has
sets as objects and binary relations as morphisms, and the second has binary relations as objects and
pairs of relation preserving functions as morphisms.

3A mapping of objects and morphisms that need not preserve composition and identities.
41T (X) ≤ T (1X) for all objects X, and T (f) ◦T (g) ≤ T (f ◦ g) for all composable morphisms f and g.
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greatly simplifies the analysis of Markov Process viewed as coalgebras for the Giry func-

tor (Example 4.17) which does not preserve weak pullbacks. Moreover, the authors point

out that in their earlier work (Desharnais et al., 2002) the proofs made explicit use of

cospans, but that at the time they regarded them as merely an intermediate step towards

the construction of an appropriate span. Also, the cospan approach greatly extended

their results to general measurable spaces, whereas the original work was restricted to

analytic spaces by the preservation of weak pullbacks requirement.

In a similar vein, whilst the approach of Worrell (2000a) is nominally span based through

the use of bimodules and the desire to construct simulation relations (or their generali-

sations), in the detailed proofs explicit use is made of the collage of a bimodule, which

is a cospan. Indeed, this is contrasted (Worrell, 2000a, Section 4) with the span based

approach underlying the corresponding result in Carboni et al. (1991) which forms the

basis of Rutten (1998). However, once again, in order that the required relation be

transitive, we require that the composite of T -simulations be a T -simulation, and this

means that the functor T must preserve Q-embeddings. We side step this requirement by

working with an explicit cospan based notion of simulation and bisimulation. Also, our

work greatly extends that of Worrell by enriching over Q−Cat, which means the objects

of the category X upon which T is defined, can also carry additional structure (sigma

algebras for example). Whereas in Worrell (2000a) and Worrell (2000b) the functor T

is constrained to act directly on Q−Cat.

Recently (Kapulkin et al., 2010, 2012) the cospan approach has been extended to simula-

tion through enriching over Pos and looking at cospans to the final coalgebra. This work

also relates to that of Levy (Levy, 2011), who takes a relator approach to simulation,

but links it to final coalgebras over the categories we subsumed into SetR, though he

does not work in an enriched setting. Our work extends this to general cospans, not just

those to the final coalgebra, and to other notions of behavioural comparability beyond

bisimulation and simulation. We also work with models, and not just with coalgebras.

This means we also have a generalised notion of logical comparability, and our notions

of behavioural comparability correctly handle propositional variables (cf. the definition

of bisimulation in Blackburn et al. (2001)), so we can work with arbitrary L-algebras,

not just the initial one.

Finally, we can give the following slightly more detailed account, taken from our earlier

work Wilkinson (2012a), of how our approach to simulation relates to the more standard

relator based approach mentioned above.

For any functor F : Set → Set, an F -relator is defined as a functor Γ: Rel → Rel

that satisfies certain additional properties, and then using this, it is standard to define

a notion of Γ-simulation for F -coalgebras. Now, associated with F and Γ is a functor
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T : Preord → Preord (Hughes and Jacobs, 2004, Lemma 5.5) (Levy, 2011, Defini-

tion 11) given by

T (X,RX) = (F (X),Γ(RX)),

and under certain conditions (Hughes and Jacobs, 2004, Theorem 9.4) the final T -

coalgebra is the final F -coalgebra with the preorder given by the Γ-similarity relation.

This final T -coalgebra characterises Γ-similarity of F -coalgebras as every set carries

a discrete preorder (equality). Thus for every F -coalgebra there is a corresponding

T -coalgebra, and given two F -coalgebras, the Γ-similarity relation on those two F -

coalgebras is given by the preorder on the images of states under the corresponding

unique cospan of morphisms to the final T -coalgebra (Ĉırstea, 2006, Remark 21).

Now in our general framework, for the initial L-algebra, every T -coalgebra has a unique

theory map making it a model. Therefore if there exists a final T -coalgebra, it is a model,

and moreover every other model factors uniquely via it. It is thus the final model Z. So

for any cospan of models

X1
f1 // X3 X2

f2oo

such that f1(x1)RX3 f2(x2), there exists a unique model morphism g : X3 → Z, and this

gives g ◦ f1(x1)RZ g ◦ f2(x2). So if T is given by an F -relator as above, our notion of

similarity coincides with Γ-similarity.

Our notion of simulation can thus be seen as taking the F -relator notion of simulation

and extending it to arbitrary cospans in Mod(A,α)o, not just those with the final T -

coalgebra as the target, and also to an arbitrary functor T , rather than one arising from

a functor F on Set and an F -relator Γ.
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Expressivity

In Chapter 5 we introduced a generalised notion of what it means for an L-algebra

(A,α) to be expressive for its category of models Mod(A,α) (Definition 5.13). In this

chapter we shall show that whether (A,α) is expressive can be characterised by the

structure of the category Mod(A,α), and we shall explore how this may be used to

prove expressivity.

A brief outline of this chapter is as follows:

Section 6.1 The concept of a behavioural skeleton is introduced, and a theorem proved

that says that an L-algebra (A,α) is expressive if and only if Mod(A,α) has a

behavioural skeleton.

Section 6.2 Parametric behavioural skeletons are introduced as a flexible tool for prov-

ing expressivity, and a result proved that shows that through the careful choice of

a factorisation system for Xo, expressivity of an L-algebra (A,α) follows from a

condition on δ∗A. Conditions are also given for the existence of final models.

Section 6.3 The specific case of expressivity with respect to bisimulation is examined

using the internal models of Wilkinson (2012b).

Section 6.4 The specific case of expressivity with respect to simulation is examined

using the R-models of Wilkinson (2012a).

Section 6.5 A brief discussion of different approaches for proving expressivity from the

literature is given.

6.1 Behavioural Skeletons

In Wilkinson (2012b) we introduced the notion of an internal model, and in Wilkinson

(2012a) we extended this notion to an R-model, and showed how these two notions can

127
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be used to give a characterisation of expressivity, that in the former cases is with respect

to bisimulation, and in the latter with respect to simulation. These two cases correspond

to enrichment over Set and SetR respectively.

In this section we shall generalise still further to the case of enrichment over VQ−Cat

(Definition 5.9). We shall proceed by defining the abstract notion of a behavioural

skeleton, and then show how they can be used to give a characterisation of expressivity.

First though we need to define a piece of terminology we will make use of later.

Definition 6.1. Given the conditions of Assumption 6, a morphism

f : (X, qX)→ (Y, qY )

in VQ−Cat is said to be Q-preserving if

qX(x, x′) = qY (f(x), f(x′)),

and a morphism in Xo is Q-preserving if its underlying morphism in VQ−Cat is. A model

((X, γ), f) in Mod(A,α) is said to be Q-preserving if its theory map is Q-preserving,

and a model morphism

h : ((X, γ), f)→ ((Y, ζ), g)

is said to be Q-preserving if the morphism h : X → Y in Xo is. If in addition a Q-

preserving morphism also has an injective underlying function, then it is said to be a

Q-embedding.

Note by Section 3.2, Q-embeddings are precisely those morphism of VQ−Cat or Xo that

are monomorphisms and Q-preserving.

Definition 6.2. Given the conditions of Assumption 6, the (unique up to isomorphism)

skeleton (Definition C.31) of the full subcategory (Definition C.22) of Q-preserving mod-

els of Mod(A,α) is a behavioural skeleton of Mod(A,α), and denoted BSkel(A,α),

if it has the following properties:

1. For every model X in Mod(A,α), there exists a model Y in BSkel(A,α), and a

morphism f : X → IBSkel(A,α)(Y ) in Mod(A,α)o. Here the functor

IBSkel(A,α) : BSkel(A,α)→Mod(A,α)

is the inclusion functor. We say that X factors via Y .

2. For every pair of models X1 and X2 in BSkel(A,α) there exists a cospan

X1
f1 // X3 X2

f2oo

in BSkel(A,α)o.
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It is relatively easy to prove that the existence of a behavioural skeleton ensures that an

L-algebra is expressive for its models (Definition 5.13).

Proposition 6.3. Given the conditions of Assumption 6, if Mod(A,α) has a be-

havioural skeleton BSkel(A,α), then (A,α) is expressive for Mod(A,α).

Proof. Take any pair of models X1 and X2 in Mod(A,α). These factor via the models

Y1 and Y2 in BSkel(A,α), and there also exists a model Y3 in BSkel(A,α) such that

there exists a cospan Y1 → Y3 ← Y2. Thus both X1 and X2 factor via Y3.

Spelling this out in more detail, the models ((X1, γ1), f1) and ((X2, γ2), f2) factor via

the model ((Y3, ζ3), h3) by way of T -coalgebra morphisms g1 : (X1, γ1) → (Y3, ζ3) and

g2 : (X2, γ2)→ (Y3, ζ3), such that f1 = h3 ◦ g1 and f2 = h3 ◦ g2.

Now if we consider two states x1 ∈ X1 and x2 ∈ X2, then since h3 is Q-preserving, we

have

qS(A)(f1(x1), f2(x2)) = qS(A)(h3 ◦ g1(x1), h3 ◦ g2(x2))

= qY3(g1(x1), g2(x2))

as required.

We are interested in conditions where the converse is true, i.e. under which conditions

is the existence of a behavioural skeleton necessary for expressivity?

To answer this we need to think a bit about what the definition of a behavioural skeleton

actually says, and how it relates to expressivity. Expressivity says that any pair of states

can be mapped bisimilarly to a model where their behavioural adjacency is equal to their

logical adjacency. So if we could bisimilarly map any two states to a Q-preserving model

we would be done. But is it realistic to expect Q-preserving models to exist, and is it

reasonable to expect that any state, in any model, can be mapped bisimilarly to a state

in a Q-preserving model?

It turns out that the key question is whether a given model factors via a Q-preserving

model, for if that is the case, then provided the category X has binary coproducts, and

thus by Theorem 4.24, Mod(A,α) also has binary coproducts, any two states, no matter

which models they are in, can be bisimilarly mapped to a Q-preserving model.

This constraint that X should have binary coproducts is very mild, however in the rare

cases where X does not have binary coproducts, it should be noted that this is only a

sufficient condition anyway, it may not be a necessary one. If binary coproducts exist

they provide an easy way to generate the required cospan in Mod(A,α)o, but it is not

necessarily the case that all such cospans derive from coproducts in X.
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So how do we determine whether a given model factors via a Q-preserving model? More

precisely, does expressivity require that this be the case?

One way to answer this is to take a model, and then look at the image of its theory

map. If we could put a T -coalgebra structure map on the image (assumed to carry a

restriction of qS(A)), such that the surjective function from the carrier of the model to

the theory map image is a T -coalgebra morphism, then we would have constructed such

a factorisation via a Q-preserving model.

However, in the case of logics that are expressive for simulation, the above procedure

is often found to be too aggressive. For example, in the case of simulation of Labelled

Transition Systems (Example 4.12), the logic that is usually chosen (tt | ∧ | 〈l〉) is

unable to distinguish mutually similar states that are not bisimilar. Thus two states in

a model can have the same theory, i.e. be identified by the theory map in S(A), but not

be bisimilar (Example 6.4). Therefore attempting to put a T -coalgebra structure map

on the image of the theory map, as above, will fail, as the resulting surjective function

could not be a T -coalgebra morphism as it will identify states that are not bisimilar.

The way to proceed therefore is to “work from the other direction”. For each model

we look to create its smallest bisimilar quotient, in other words, we identify all pairs of

bisimilar states. We do this by looking at factorisations of model morphisms, and by

assuming the existence of a factorisation system in Mod(A,α)o, not Xo, we ensure that

all the operations we perform result in another model.

Ultimately we shall relate the factorisation system on Mod(A,α)o to more primitive

notions, but for the purposes of the next few results we make the following assumptions.

Assumption 7. We extend Assumption 6 (page 118) as follows:

13. The category Mod(A,α) has small pushouts.

14. The category Mod(A,α)o has a factorisation system (E,M) (Definition A.18).

15. M is a subclass of those morphisms in Mod(A,α)o that are Q-preserving.

16. E is a subclass of those morphisms in Mod(A,α)o with surjective underlying

functions.

17. The category Mod(A,α)o is E-cowellpowered (Definition A.21).

Note that there is a forgetful functor

V UCoAlg(T )UMod(A,α) : Mod(A,α)→ VQ−Cat,

and since the underlying functor is also faithful (Proposition C.20), it can be composed

with elem|−| to yield a faithful functor to Set. Then since faithful functors reflect
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monomorphisms and epimorphisms (Proposition A.12 and Proposition A.14), we have

InjectMod(A,α)o ⊆ monos in Mod(A,α)o

SurjectMod(A,α)o ⊆ epis in Mod(A,α)o,

where InjectMod(A,α)o is the class of morphisms in Mod(A,α)o with injective underlying

functions, and SurjectMod(A,α)o those with surjective underlying functions.

Using the above assumptions we can show that for an expressive logic, every model must

factor via a Q-preserving model.

Theorem 6.4. Given the conditions of Assumption 7, if the L-algebra (A,α) is ex-

pressive for Mod(A,α), then every model in Mod(A,α) factors via a model that is

Q-preserving.

Proof. We proceed as follows:

1. All model morphisms have an (E,M)-factorisation:

Since Mod(A,α)o has a factorisation system (E,M), any model morphism

g : ((X, γ), f)→ ((X ′, γ′), f ′)

factors via a model ((I, ζ), f ′ ◦m), where g = m ◦ e, and

e : ((X, γ), f)→ ((I, ζ), f ′ ◦m)

is in E, and

m : ((I, ζ), f ′ ◦m)→ ((X ′, γ′), f ′)

is in M .

2. Take the pushout of the E-quotient objects of ((X, γ), f):

Given a model ((X, γ), f), since Mod(A,α)o is E-cowellpowered, the collection of

equivalence classes of E-quotient objects is indexed by a set J , and we can therefore

take the pushout of a representative from each equivalence class
∐
<ej>

((Ij , ζj), fj),

which by Theorem 4.24, we can write as ((
∐
<ej>

Ij , ζ), f †) for some ζ and f †. This

gives the following diagram

X

f

��

g

$$ej // // Ij
mj //

fj

;;
pj

��

X ′
f ′ // S(A)

∐
<ej>

Ij
f†

EE
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where any g : ((X, γ), f) → ((X ′, γ′), f ′) factors via a representative of one of the

equivalence classes.

3. Construct a model epimorphism h : ((X, γ), f)→ ((
∐
<ej>

Ij , ζ), f †):

By the definition of a pushout there is a morphism h = pj ◦ ej for all j ∈ J

in Mod(A,α)o. To show that this is an epimorphism we use the fact that the

forgetful functor UCoAlg(T )oUMod(A,α)o : Mod(A,α)o → Xo reflects epimorphisms

(Proposition A.14). Given any parallel pair of morphisms u and v in Mod(A,α)o,

where for the underlying morphisms u, v :
∐
<ej>

Ij → Y , if u ◦ h = v ◦ h, then

u ◦ pj ◦ ej = v ◦ pj ◦ ej , but since ej is an epimorphism, we must therefore have

u ◦ pj = v ◦ pj = qj , as in the following diagram

X

h

""

ej // // Ij

qj

""

pj

��∐
<ej>

Ij
u //

v
// Y

Clearly the qj form a cocone for the pushout, so by the universal property of the

pushout u = v, and thus h is an epimorphism.

4. Show h, pj ∈ E for all j ∈ J :

If we take the (E,M)-factorisation of h in Mod(A,α)o given by e and m, then

by the diagonalisation property of the factorisation system, there exists a unique

Mod(A,α)o morphism µj for each j ∈ J such that the following diagram commutes

X
ej // //

e

����

Ij

pj

��

µj

||
I m

//
∐
<ej>

Ij

Once again the µj form a cocone for the pushout, so there exists a unique morphism

η :
∐
<ej>

Ij → I

in Mod(A,α)o such that µj = η ◦ pj . Now trivially 1I ◦ e = e, and also

η ◦m ◦ e = η ◦m ◦ µj ◦ ej = η ◦ pj ◦ ej = µj ◦ ej = e,
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so since e is an epimorphism, we must have η ◦ m = 1I . Similarly, we have

1∐
<ej>

Ij ◦ h = h, and

m ◦ η ◦ h = m ◦ η ◦ pj ◦ ej = m ◦ µj ◦ ej = pj ◦ ej = h,

and since h is also an epimorphism, we must have m ◦ η = 1∐
<ej>

Ij . From this we

deduce that m is an isomorphism, and therefore h ∈ E, and so by Proposition A.20,

pj ∈ E for all j ∈ J .

5. Show that the theory map f † is Q-preserving:

Since
∐
<ej>

Ij has an underlying set we can pick a pair of states w1, w2 ∈
∐
<ej>

Ij .

Now since h ∈ E is a surjective function, there exists states x1, x2 ∈ X such that

w1 = h(x1) and w2 = h(x2). Thus

qS(A)(f(x1), f(x2)) = qS(A)(f
†(w1), f †(w2)),

and by expressivity there must exist a model morphism

g : ((X, γ), f)→ ((X ′, γ′), f ′)

such that

qX′(g(x1), g(x2)) = qS(A)(f
†(w1), f †(w2)),

and therefore a j ∈ J such that

qX′(mj ◦ ej(x1),mj ◦ ej(x2)) = qS(A)(f
†(w1), f †(w2)).

However, since mj ∈M , we have that mj is Q-preserving, therefore

qIj (ej(x1), ej(x2)) = qS(A)(f
†(w1), f †(w2)).

Thus since pj has an underlying Q-functor

q∐
<ej>

Ij (pj ◦ ej(x1), pj ◦ ej(x2)) ≥ qS(A)(f
†(w1), f †(w2)),

but f † also has an underlying Q-functor and Q is a partial order, so

q∐
<ej>

Ij (w1, w2) = qS(A)(f
†(w1), f †(w2)),

from which we deduce that f † is Q-preserving.
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As already alluded to, given the above result, with the additional assumption that

coproducts of models exist, it is easy to show that cospans of Q-preserving models also

exist.

Assumption 8. We extend Assumption 7 (page 130) as follows:

18. The category Mod(A,α) has binary coproducts.

The following easy result is a direct consequence of Theorem 6.4.

Corollary 6.5. Given the conditions of Assumption 8, if the L-algebra (A,α) is expres-

sive for Mod(A,α), then for every pair of Q-preserving models, there exists a cospan of

Q-preserving models in Mod(A,α)o.

Proof. Given two Q-preserving models X1 and X2, by assumption their coproduct exists,

and by Theorem 6.4 the coproduct factors via a Q-preserving model, say X3, and this

induces an obvious cospan between X1 and X2.

From Proposition 6.3, Theorem 6.4, and Corollary 6.5, we obtain our main expressivity

result - an abstract, category theoretic, characterisation of expressivity.

Theorem 6.6. Given the conditions of Assumption 8, an L-algebra (A,α) is expressive

for Mod(A,α), if and only if, Mod(A,α) has a behavioural skeleton BSkel(A,α).

The conditions of Assumption 8 are precisely those required to prove our characterisation

result (Theorem 6.6), and may appear slightly strange, or awkward to use. However, it

is possible to show that they follow from appropriate conditions on the category X and

the functor T . Essentially what is required is that X has enough colimits, and that Xo
has a proper factorisation system (Definition A.19), the monomorphisms of which are

preserved by T .

Assumption 9. We extend Assumption 6 (page 118) as follows:

13. The category X has small conical colimits.

14. The category Xo has a factorisation system (E,M) (Definition A.18).

15. M is a subclass of those morphisms in Xo that are Q-embeddings.

16. E is a subclass of those morphisms in Xo with surjective underlying functions.

17. The category Xo is E-cowellpowered (Definition A.21).

18. T preserves M , i.e. m ∈M ⇒ T (m) ∈M .
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Using these assumptions Theorem 6.6 can be restated as follows. Here it should be

noted that, even though the morphisms in the class M of the factorisation system are

Q-embeddings, the models in the behavioural skeleton need only be Q-preserving. This

is because the factorisation system in Xo is not directly used to construct the models of

the behavioural skeleton, but rather to induce the factorisation system of Mod(A,α)o.

Corollary 6.7. Given the conditions of Assumption 9, an L-algebra (A,α) is expressive

for Mod(A,α), if and only if, Mod(A,α) has a behavioural skeleton BSkel(A,α).

Proof. We have to show that the premises of Theorem 6.6 hold. Firstly we observe that

by Theorem 4.24, Mod(A,α) has small conical colimits.

To show that the factorisation system of Xo lifts to Mod(A,α)o we note that in Jacobs

and Sokolova (2010) it is observed that if T preserves M , and the members of M are

monomorphisms, then the factorisation system of Xo lifts to CoAlg(T )o, and it is easy

to see that this extends to Mod(A,α)o.

Finally, since the morphisms in E are epimorphisms, given a span in Mod(A,α)o where

the underlying morphisms are in E, there is an isomorphism between the two so defined

E-quotient objects in Mod(A,α)o, if and only if, there is an isomorphism between the

underlying E-quotient objects in Xo. Therefore Mod(A,α)o is E-cowellpowered.

Remark 6.8. The lifting of a factorisation system for Xo to the category CoAlg(T )o

(as in the above proof) is also examined in Kurz (2000, Section 1.3), and this follows

previous work on the application of factorisation systems to the study of categories of

algebras, for example see Adámek et al. (1990).

6.2 Parametric and Strong Behavioural Skeletons

So far we have looked at behavioural skeletons BSkel(A,α) where the objects are Q-

preserving models of Mod(A,α), and seen that under certain mild assumptions on the

category X, that BSkel(A,α) characterises expressivity of (A,α). However, it turns out

in practice that often we want to work with models that have additional properties be-

yond being Q-preserving. We therefore introduce the notion of a parametric behavioural

skeleton, where the parametricity is in the subclass of models of Mod(A,α) that define

the subcategory for which we take the skeleton.

Definition 6.9. Given the conditions of Assumption 6, and a subclass M of the mod-

els of Mod(A,α) that are Q-preserving, then the skeleton of the full subcategory of

Mod(A,α) given by M is a parametric behavioural skeleton of Mod(A,α), and

denoted PBSkelM (A,α), if it has the following properties:
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1. For every model X in Mod(A,α), there exists a model Y in PBSkelM (A,α), and

a morphism f : X → IPBSkelM (A,α)(Y ) in Mod(A,α)o. Here the functor

IPBSkelM (A,α) : PBSkelM (A,α)→Mod(A,α)

is the inclusion functor. We say that X factors via Y .

2. For every pair of models X1 and X2 in PBSkelM (A,α) there exists a cospan

X1
f1 // X3 X2

f2oo

in PBSkelM (A,α)o.

If in addition the theory map of every model in M is a monomorphism, then the category

PBSkelM (A,α) is said to be a strong behavioural skeleton of Mod(A,α).

The first thing to note, is that in the proof of Proposition 6.3, no assumption was made

that BSkel(A,α) contained a representative from all equivalence classes of isomorphic

Q-preserving models, thus the result also holds for parametric behavioural skeletons.

Proposition 6.10. Given the conditions of Assumption 6, if Mod(A,α) has a para-

metric behavioural skeleton PBSkelM (A,α), for some class M , then (A,α) is expressive

for Mod(A,α).

Theorem 6.4 on the other hand, clearly does not hold in general for parametric be-

havioural skeletons, as expressivity is only strong enough to force the existence of a

Q-preserving model, it cannot impose any additional structure that might be required

of some arbitrary subclass M of Q-preserving models. For example, if the carriers of

our T -coalgebras had a topology, and the Q-preserving models were those with contin-

uous injective theory maps, and the subclass M consisted of models with theory maps

that were topological embeddings, then expressivity is only strong enough to construct

a model with a continuous injective theory map, and in general this need not be a

topological embedding.

So what use are parametric behavioural skeletons, if they only characterise expressivity

when M is the class of all Q-preserving models of Mod(A,α)? Well, Proposition 6.10

says that if a classM can be found such that PBSkelM (A,α) is a parametric behavioural

skeleton of Mod(A,α), then (A,α) is expressive for Mod(A,α). To find such a class

M , one is primarily faced with the task of showing that every model factors via a model

in M , and this is often easier if the models of M have additional properties (see for

example Example 6.3).

To proceed we shall consider the class M to be defined to consist of those models with

theory maps taken from a subclass of the Q-preserving morphisms of Xo that we shall
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also refer to as M . It should be noted though, that not every morphism in M need be

the theory map of a model. For example it may not have the target S(A).

We now choose M to be a subclass of the Q-preserving morphisms of Xo such that there

exists a class E of morphisms in Xo, and together (E,M) is a factorisation system for

Xo. Typically the morphisms of M will also be monomorphisms to ensure the unique

diagonalisation property of the factorisation system, but at this stage we do not require

this, so we do not assume it.

Assumption 10. We extend Assumption 6 (page 118) as follows:

13. The category Xo has a factorisation system (E,M) (Definition A.18).

14. M is a subclass of those morphisms in Xo that are Q-preserving.

Under these assumptions we find, given a particular technical condition involving M , T ,

and δ∗A (Definition 4.14), that models factor via models with theory maps in M .

Proposition 6.11. Given the conditions of Assumption 10, if

m ∈M ⇒ δ∗A ◦ T (m) ∈M,

then every model in Mod(A,α) factors via a model whose theory map is in M .

Proof. Consider a model ((X, γ), f) in Mod(A,α). Then by the factorisation system

there exists e ∈ E and m ∈ M such that f = m ◦ e, and by the definition of a model,

the perimeter of the following diagram commutes

X
e //

T (e)◦γ

��

I

S(α)◦m

��

ζ

||
T (I)

δ∗A◦T (m)
// SL(A)

Then by assumption δ∗A ◦ T (m) ∈ M , so by the diagonalisation property of the factori-

sation system, there exists a unique ζ : I → T (I) making the diagram commute.

Thus ((I, ζ),m) is a model in Mod(A,α) with theory map m ∈M , and e is the model

morphism by which ((X, γ), f) factors via ((I, ζ),m).

Now that we have conditions that yield Q-preserving models (possibly with additional

properties) via which other models factor, we also need cospans of such models in order

to create a parametric behavioural skeleton. This is easy to do, and we use the same

technique that we used for Corollary 6.5.
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Assumption 11. We extend Assumption 10 (page 137) as follows:

15. The category X has binary coproducts.

With this additional assumption we get the expressivity result we are looking for.

Corollary 6.12. Given the conditions of Assumption 11, if

m ∈M ⇒ δ∗A ◦ T (m) ∈M,

then the models of Mod(A,α) with theory maps in M , define a parametric behavioural

skeleton PBSkelM (A,α), and (A,α) is expressive for Mod(A,α).

Proof. By Proposition 6.11 every model in Mod(A,α) factors via a model with a theory

map in M , and following our slight abuse of notation, we also use M to describe the class

of models with theory maps in M . Then since X has binary coproducts, by Theorem 4.24

the coproduct of every pair of models in M exists, and by Proposition 6.11 again, factors

via a model in M . Thus we have cospans of models in M .

Hence the full subcategory of Mod(A,α) given by the models in M defines a parametric

behavioural skeleton PBSkelM (A,α), and so by Proposition 6.10, we have that (A,α)

is expressive for Mod(A,α).

This result is a generalisation of Wilkinson (2012b, Corollary 35), which in turn closely

follows Klin (2007, Theorem 4.2) and Jacobs and Sokolova (2010, Theorem 4).

To apply Corollary 6.12 one typically uses the fact that M is closed under composition

(Proposition A.20), and splits the condition

m ∈M ⇒ δ∗A ◦ T (m) ∈M

into m ∈ M ⇒ T (m) ∈ M , and δ∗A ∈ M . The former is often very easy to show, and

guides the choice of M , and the latter is often quite difficult, and is where the bulk of

the work lies.

In many cases though, Corollary 6.12 is not applicable. This is because the unique diag-

onalisation property of the factorisation system (E,M) typically forces the morphisms

of M to have injective underlying functions, and as discussed in Section 6.1, this is some-

times too strong a condition to ask of the theory maps of the models of a behavioural

skeleton. In this case what is likely to happen is that δ∗A fails to be in M (Example 6.4).

As well as providing a tool for proving expressivity, parametric behavioural skeletons

also provide a way of showing that final models exist.
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Assumption 12. We extend Assumption 6 (page 118) as follows:

13. M is a subclass of those morphisms in Xo that are Q-preserving.

14. The category Xo is M -wellpowered (Definition A.21).

15. The category X has small coproducts.

Proposition 6.13. Given the conditions of Assumption 12, if Mod(A,α) has a strong

parametric behavioural skeleton PBSkelM (A,α), then Mod(A,α)o has a final object.

Proof. Since Xo is M -wellpowered, PBSkelM (A,α) is small, and thus by Theorem 4.24,

the coproduct of all objects in PBSkelM (A,α) exists as an object in Mod(A,α). But

then since every object in Mod(A,α) factors via an object in PBSkelM (A,α), so does

the coproduct. Call this object Z. For any other object in PBSkelM (A,α), the inclusion

morphism in the coproduct composes with the factoring morphism from the coproduct

to Z, to give a morphism to Z.

Now given any object in Mod(A,α) it will factor via an object in PBSkelM (A,α),

and thus also via Z, and since PBSkelM (A,α) is strong, the theory map of Z is a

monomorphism, and so the morphism to Z will be unique. Therefore Z is a final object

in Mod(A,α)o.

If in Proposition 6.13 the parametric behavioural skeleton PBSkelM (A,α) is not strong,

then the above proof only allows us to infer that Mod(A,α)o has a weakly final object.

However, in some cases it actually has a final object. For example in the case of finitely

branching Labelled Transition Systems there is a final coalgebra, and it is a model for

the initial algebra of the logic given by (tt | ∧ | 〈l〉), however the theory map is not

injective, as non-bisimilar states can have the same theory under this logic.

6.3 Bisimulation via Internal Models

As we have seen, if we are interested in bisimulation we should enrich over the cate-

gory Set, and the Q-preserving models will then be those with injective theory maps.

Also from Section 3.2 we know that the monomorphisms in Xo are precisely those with

injective underlying functions. Therefore we should look to construct a parametric be-

havioural skeleton from a subclass of the models with theory maps that are monomor-

phisms. In Wilkinson (2012b) such models were called internal models.



140 Chapter 6 Expressivity

Definition 6.14. Given a class M of monomorphisms in Xo, we define the category

IntModM (A,α) of internal models of (A,α) to be the full subcategory of Mod(A,α)

where the theory maps are in M , and write

IIntModM (A,α) : IntModM (A,α)→Mod(A,α)

for the corresponding inclusion functor.

We parameterise by the class M as we hope to apply Corollary 6.12, and this is typically

done by requiring that the members of M are preserved by T . In Example 4.17 the Giry

functor does not preserve all monomorphisms, but does preserve a particular subclass

of them, and we shall exploit this in Example 6.3.

Internal models can be thought of as a generalisation of the canonical models of Kripke

semantics (Blackburn et al., 2001). A canonical model is a model of a modal logic

constructed from the syntax itself. The idea is that when trying to prove completeness,

by the way the canonical model is constructed from the syntax, for every formula that

is not derivable, one can find a state that witnesses that the formula is not valid.

In such a canonical model the possible worlds are the theories of the logic. In our setup

S(A) is the collection of all possible theories of (A,α), so an obvious question is when

can we construct a model from S(A), i.e. when can we put a T -coalgebra structure on

S(A) such that it becomes a model for (A,α)?

In general this cannot be done. However in Schröder and Pattinson (2009) (following

Jacobs (2001); Kupke et al. (2005); Kurz and Rosický (2012) - see also Section 4.5),

for the standard logical connection between BA and Set (Example 3.1), conditions are

given for the existence of a (not necessarily unique) model with carrier set S(A). From

this they derive a strong completeness result.

Internal models extend this idea, and are models built over subsets of S(A), moreover,

if there is a largest internal model, then it can be regarded as the canonical model (in

the Kripke sense). However, if the carrier set of the largest internal model is a strict

subset of S(A), it may fail to yield any kind of completeness result.

Our present interest in internal models is not with regards completeness though, for

we have made no mention of proof systems etc., but rather as a means to address

expressivity by way of Corollary 6.12.

In Section 4.3 we looked at the standard bivalent formulation of Hennessy-Milner logic

for Labelled Transition systems (Example 4.20), and a fuzzy variant from which we

removed negation (Example 4.21). We shall now proceed to investigate the expressivity

of these two logics.
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Example 6.1 (Bivalent logic for bisimulation of LTSs). Continuing Example 4.20 we

observe that the category Set can be given the factorisation system (E,M), where E

is the class of all surjective functions, and M is the class of all injective functions.

Moreover, the functor T (X) = P(Σ×X) preserves injective functions.

So if for an L-algebra (A,α) δ∗A is injective, then by Corollary 6.12, (A,α) is expressive

for bisimulation of those Labelled Transition Systems that are models for (A,α).

From the definition of δ∗A (Definition 4.14), we see that δ∗A = S(δS(A) ◦ LρA) ◦ σTS(A),

and from the counit of the logical connection (Example 3.1)

δ∗A(v) = {[al] ∈ L(A) | v ∈ (δS(A) ◦ LρA)([al])},

and so from the unit of the logical connection and the form of δS(A) from Example 4.20,

we finally have

δ∗A(v) = {[al] ∈ L(A) | ∀(l′, s) ∈ v, l′ = l and a ∈ s}.

To show that δ∗A is injective we consider v, v′ ∈ TS(A) such that v 6= v′. We need to

show that there exists a formula a ∈ A, and a label l ∈ Σ, such that (without loss of

generality) there exists an ultrafilter s ∈ BA(A,2), with (l, s) ∈ v and a ∈ s, but for all

(l′, s′) ∈ v′, either l′ 6= l or a 6∈ s.

In the case of finitely branching Labelled Transition Systems (finite powerset functor),

using the fact that all s ∈ BA(A,2) are ultrafilters, it is indeed possible to find an [al] to

distinguish δ∗A(v) and δ∗A(v′) (Jacobs and Sokolova, 2010, Theorem 9). However, in the

case of unbounded non-determinisim, since our logic only has finite conjunctions, this is

not possible.

Hence we can deduce that Hennessy-Milner logic is expressive for bisimulation of finitely

branching Labelled Transition Systems (Hennessy and Milner, 1980, 1985).

Example 6.2 (Fuzzy logic for bisimulation of LTSs). Continuing Example 4.21 we

observe that, as in Example 6.1, the category Set can be given the factorisation system

(E,M), where E is the class of all surjective functions, and M is the class of all injective

functions, and the functor T (X) = P(Σ×X) preserves the injective functions.

This time we find that

δ∗A(v)([al]) = (δS(A) ◦ LρA)([al])(v),

and this means

δ∗A(v)([al]) = inf
(l′,s)∈v
l′=l

s(a).
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In this case δ∗A is unlikely to be injective, even in the finitely branching case, since the

property we relied upon in Example 6.1 was that the s were ultrafilters. In other words,

for all a ∈ A, either a ∈ s or ¬a ∈ s, and this allowed us to assert the existence of

the element of A we required. We have no equivalent property in our formulation of the

fuzzy case. However this should not be surprising, as whilst we were forced to discard

a ∨ ¬a = tt as this is not valid in fuzzy logic, we took the stronger action of discarding

negation completely (Example 4.21). We had no justification for doing this other than

expediency.

There are many other examples in the literature that are directly ammenable to the inter-

nal models approach to proving expressivity for bisimulation. A good source of examples

can be found in Jacobs and Sokolova (2010), and we shall briefly cover one of them. The

significance of this example is that it illustrates why the category IntModM (A,α) is

parameterised by the class of morphisms M .

Example 6.3 (Bivalent logic for bisimulation of Markov Processes). Markov Processes

are given by coalgebras for the Giry functor on measurable spaces (Example 4.17). For

the logic we take the logical connection between MSL and Meas (Example 3.4), and

add modalities of the form Lr, indexed by r ∈ Q ∩ [0, 1] (Example 4.3).

To apply Corollary 6.12, first we note that since sigma algebras are closed under in-

tersection Meas is topological over Set (Adámek et al., 1990, Definition 21.1), so by

Adámek et al. (1990, Theorem 21.16) Meas is cocomplete.

Then in Jacobs and Sokolova (2010, Section 3.1) it is observed that morphisms with

surjective underlying functions, and morphisms with injective underlying functions and

surjective inverse image functions, form a factorisation system (E,M) for Meas. More-

over, the Giry functor G is observed to preserve M .

For the modalities given in Example 4.3 there is a natural choice for the natural trans-

formation δ, and in Jacobs and Sokolova (2010, Theorem 17) it is shown that δ∗ is

componentwise in M .

Thus Corollary 6.12 allows us to conclude that the logic given by the syntax

φ ::= tt | φ ∧ φ | Lrφ where r ∈ Q ∩ [0, 1]

is expressive for bisimulation of Markov Processes (Desharnais et al., 2002).

6.4 Simulation via R-Models

In the previous section we looked at using internal models to prove expressivity for

bisimulation. If on the other hand we are interested in simulation, then instead we must
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enrich over the category SetR for some choice of the type R. This corresponds to taking

Q to be 2, the two element set with the usual order (Example 5.1). The Q-preserving

models will then be those with R-reflecting theory maps, and in Wilkinson (2012a) such

models were called R-models.

Definition 6.15. The category R−Mod(A,α) of R-models of (A,α) is the full sub-

category of Mod(A,α) where the theory maps are R-reflecting. A function f : X → Y

is R-reflecting, if for all x, y ∈ X, if f(x)RY f(y) then xRXy. We write

IR−Mod(A,α) : R−Mod(A,α)→Mod(A,α)

for the corresponding inclusion functor.

To demonstrate the use of R-models we shall continue the study of simulation for La-

belled Transition Systems from Example 4.22 and Example 4.23.

First we recall that, as mentioned in Section 6.1 already, for Labelled Transition Systems,

mutual simulation does not imply bisimulation. In other words, given states x and y,

it may be the case that x simulates y, and y simulates x, but this does not mean that

x and y need be bisimilar. Thus we should not expect the R-reflecting models to have

injective theory maps, and this probably precludes the use, à la Proposition 6.11, of

a factorisation system in Xo to show that all models factor via an R-reflecting model

(the unique diagonalisation property of a factorisation system (E,M) typically forces

the morphisms of M to be monomorphisms).

In this example we shall therefore proceed differently (Wilkinson, 2012a).

Example 6.4 (Bivalent logic for simulation of LTSs). We recall from Example 4.22 that

we have a logical connection given by the dual adjunction between MSL and SetR from

Example 3.2, with the type R set to preorders. To this we have added the functor L from

Example 4.4, which adds the modal operators 〈l〉, and the functor

T (X,RX) = (P(Σ×X), RP(Σ×X))

from Example 4.12. This then yielded

δ(X,RX) : LP (X,RX)→ PT (X,RX)

> 7→ P(Σ×X)

[ul] 7→ {w ∈ P(Σ×X) | ∃(l′, x) ∈ w, l′ = l and x ∈ u}

[ul1 ] ∧ [vl2 ] 7→ δX([ul1 ]) ∩ δX([vl2 ]),

and from this, following a similar line of reasoning as for Example 6.1, we get

δ∗A(v) = {[al] ∈ L(A) | ∃(l′, s) ∈ v, l′ = l and a ∈ s}.
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To proceed we shall consider the following commuting diagram

(X,RX)

f

))

e
//

γ

��

(I,RI) m
//

ζ

��

S(L3)

S(α)
��

SL(L3)

T (X,RX)
T (e) //

T (f)

55
T (I,RI)

T (m) // TS(L3)

δ∗L3

OO

where we first choose (((X,RX), γ), f) to be any model of the logic

L3 3 φ ::= tt | p | φ ∧ φ | 〈l〉φ where l ∈ Σ and p ∈ Var,

and then construct (((I,RI), ζ),m) such that it is an R-model for the L-algebra (L3, α).

Here, in a slight abuse of notation, L3 refers both to the logic and its Lindenbaum-Tarski

algebra. We can do this as there is an obvious bijection between filters/ultrafilters of a

logic, and the corresponding filters/ultrafilters of its Lindenbaum-Tarski algebra.

In actual fact, we now choose to restrict ourselves to finitely branching Labelled Tran-

sition Systems (the finite powerset functor), for then we can use the result from Exam-

ple 6.1 that Hennessy-Milner logic (L3 with negation) is expressive for bisimulation of

finitely branching Labelled Transition Systems.

Specifically, using a functor Udisc : SetR → SetR that assigns to every object the discrete

preorder (in other words, forgets the current preorder), any model (((X,RX), γ), f) can

be quotiented via a surjective T -coalgebra morphism e : (X, γ) → (I, ζ), where I is a

subset of the ultrafilters of Hennessy-Milner logic. There is then an obvious function

m : I → UdiscS(L3) that maps an ultrafilter in Hennessy-Milner logic to the correspond-

ing filter in L3 by throwing out all the formulae that contain negation, and moreover,

Udisc(f) = m ◦ e. The way to think of this, is that a filter in L3 lists all the possible

future things a state in a transition system can do, and an ultrafilter in Hennessy-Milner

logic explicitly adds all the things it cannot do.

Now S(L3) is ordered by inclusion, and it is easy to see that I can be given a preorder RI

such that e is R-preserving, and m is both R-preserving and R-reflecting. Specifically,

we can order the ultrafilters of I by the inclusion order on their negation free subsets.

Further, since e is surjective, ((I, Udisc(ζ)), Udisc(m)) is a model for L3. What remains to

be shown is that ζ preserves the preorder RI , for if that is the case, then (((I,RI), ζ),m)

is an R-model for L3. It is easily seen that this is the case if T preserves R-reflecting

morphisms, and δ∗L3
is R-reflecting. The former is not very hard to show, so what
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remains is to show that δ∗L3
is R-reflecting. In fact we shall show this for an arbitrary

L-algebra (A,α).

To do this suppose v��RTS(A)v
′, then

v��RTS(A)v
′ ⇔ ∃(l, s) ∈ v. ∀(l, s′) ∈ v′ either l 6= l′ or s��RS(A)s

′.

Now, our plan is to find an [al] ∈ L(A) such that a ∈ s, and for all (l′, s′) ∈ v′, either

l 6= l′, or a 6∈ s′.

The first case to consider is if there is no (l′, s′) ∈ v′ such that l = l′, for then we can

take a = >. If that is not the case, then there is a finite set of pairs (l, s′) ∈ v′ such that

s��RS(A)s
′. Now s��RS(A)s

′ means s 6⊆ s′, so it is possible to find an element of s that is not

in any of the s′ (do it pairwise and then take the meet - we can do this as v′ is finite).

Therefore δ∗A(v) 6⊆ δ∗A(v′), which means δ∗A(v)��RSL(A)δ
∗
A(v′), and thus δ∗A is R-reflecting.

We have thus shown that every model for L3 factors via an R-model. Further, since SetR

has coproducts, by Theorem 4.24 the coproduct of any pair of R-models, as models, exists,

and since any model factors via an R-model, this yields a cospan of R-models. Therefore

the R-models of L3 form a parametric behavioural skeleton, and so by Proposition 6.10,

the logic L3 is expressive for simulation of finitely branching Labelled Transition Systems

(van Glabbeek, 2001).

Note, it is easy to see that δ∗A is not injective, since if v and v′ differ only in that for

some s ∈ S(A), we have (l, s) ∈ v and (l, s) 6∈ v′, but there exists an s′ ∈ S(A) such that

s ⊂ s′, and both (l, s′) ∈ v and (l, s′) ∈ v′, then clearly δ∗A(v) = δ∗A(v′).

Thus an attempt to use the factorisation system of Example 6.1 to invoke Corollary 6.12

would have failed.

The fuzzy logic version is less interesting, but only because we have not properly con-

sidered the role of negation.

Example 6.5 (Fuzzy logic for simulation of LTSs). Example 4.23 is similar to Exam-

ple 4.22, however, the failure to have a corresponding expressivity result in the bisimu-

lation case (Example 6.2), means we cannot repeat the procedure of Example 6.4.

This is not to say that an expressivity result cannot be proven in the fuzzy case, but only

that our decision to remove negation from the logic in Example 4.21, without properly

considering what to put in its place, means that we do not have the tools we need to

hand.
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6.5 Discussion

As we have seen, expressivity of a modal logic can be characterised by the existence

of a particular structure to the category of its models. However, as we have also seen,

determining the existence of this structure can be far from easy. For expressivity with

respect to bisimulation, the existence of a factorisation system for the category Xo can

prove very useful (Corollary 6.12), but in the case of simulation, this is often not the

case (Example 6.4).

However what Example 6.4 does show, is that proving expressivity for bisimulation may

be a stepping-stone to proving expressivity for simulation, or expressivity for some other

form of behavioural comparability. This is consistent with the proof of Theorem 6.4,

where a Q-preserving model is constructed by “quotienting out” bisimilar states. The

question then is how to turn this into a general technique for proving expressivity, and

more work needs to be done to understand this.

The first step is probably to look at existing expressivity proofs in the literature, es-

pecially those not formulated in terms of coalgebras, and try to recast them into our

framework - for example the simulation result for Markov Processes of Desharnais et al.

(2003), or the approximation results for Markov Processes of Desharnais et al. (2004).

There is also a body of work in the literature (Klin, 2005, 2007; Schröder, 2008), where

given certain conditions, any functor T admits a modal logic that is expressive for all T -

coalgebras. This is typically phrased in terms of the existence of a collection of polyadic

modalities and their corresponding predicate liftings, but from this we can construct

a functor L and a natural transformation δ : LP ⇒ PT . This approach is different in

spirit from the approach taken in this chapter. Here the authors prove the existence of

an expressive logic, whereas our approach is to try to establish whether a given logic is

expressive. Finally, the above results only work for bisimulation, however recent work

has started to extend this to simulation as well (Kapulkin et al., 2010, 2012).
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Conclusions and Future Work

In this thesis we have presented our contribution towards a framework for the systematic

study of coalgebraic modal logic, where we have particularly emphasised the role that

enrichment should play in this framework.

The main technical conclusions from our work are as follows:

1. Enrichment is an essential part of the framework of coalgebraic modal logic, and

it controls the choice of behavioural questions that a modal logic is intended to

capture.

2. The choice of behavioural questions is limited only by our imagination, as it is

determined by the choice of a commutative unital quantale.

3. Expressivity of an L-algebra is determined by the structure of its category of

models. This then provides an avenue by which powerful tools of category theory

like factorisation systems, can be brought to bear when trying to prove expressivity.

However, the main conclusion that we feel should be drawn, is that category theory is

the natural language in which to frame modal logic. As a consequence, we feel it will

prove fruitful to further investigate which ready-made tools in the mathematical toolbox

of category theory can be applied to the study of modal logic.

7.1 Future Work

Many-Sorted Logics

The first possible extension to our work would be to look at the full many-sorted enriched

logical connections of Kurz and Velebil (2011), and try to extend this to many-sorted

147
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coalgebraic modal logic. Some work has already been done on many-sorted coalgebraic

modal logics, but not as far as we are aware in an enriched setting - for example Jacobs

(2001); Schröder and Pattinson (2007a); Kurz and Petrişan (2008). We would therefore

look to combine these approaches with the work presented in this thesis.

Traces

It may not have escaped the observant reader that there is one class of behavioural

comparisons that we have not mentioned - traces.

The first thing we can say is that besides asking whether two states have the same trace

(or set of traces in the case of non-determinism), we can also ask if one trace is a prefix

of another, or ask the distance between two traces, if there is a metric on the set of labels

say. Therefore we can ask of pairs of traces all the same sorts of questions we can ask of

pairs of states - “Are they equal?”, “Is one greater than the other?”, “How far apart are

they?”. So perhaps we can handle traces directly in our framework by treating them as

the “states” to be compared, and not the actual states themselves?

The coalgebraic approach to finite traces (Hasuo et al., 2007) replaces our functor T

with the composite functor TF and a distributive law λ : FT ⇒ TF , here T is in

actual fact a monad and represents the branching type, and F represents the transition

type. Then the initial F -algebra (the elements of which are the finite traces) lifts to a

final F -coalgebra, where F is the lifting of F to the Kleisli category K`(T ) of T , and

any TF -coalgebra corresponds to a F -coalgebra. Thus for any TF -coalgebra there is

a unique F -coalgebra morphism between the corresponding F -coalgebra and the final

F -coalgebra. This is called the finite trace map of the TF -coalgebra (Hasuo et al., 2007).

This suggests that perhaps we should simply try to instantiate the category X in our

framework with the Kleisli category for T , however in the case of infinite traces the

situation is more complicated. In this case one uses the final F -coalgebra (the elements

of which are the maximal, possibly infinite traces), but in general this does not lead

to a final F -coalgebra in K`(T ), and the resulting trace map is an op-lax F -coalgebra

morphism (Ĉırstea, 2010). Lax and op-lax F -coalgebra morphisms also appear in Hasuo

(2006, 2010), where they are related to forward and backward simulations respectively.

Finally, the path based modal logics that are typically used when reasoning about infinite

traces are 2-sorted - there are formulae that represent states, and formulae that represent

paths (Ĉırstea, 2010). Therefore a full treatment of traces and path based modal logics

is likely to require a many-sorted variant of our framework.
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Modularity

Various authors have looked at modularity of coalgebras and coalgebraic modal log-

ics, for example Ĉırstea (2006) and Ĉırstea and Pattinson (2007), and in Kurz and

Petrişan (2008) it is shown that even if the resulting composite logic is single-sorted, a

many-sorted logic is required during the construction of this composite logic from the

component logics. Some work has also been done to explore the decidability of such

modularly defined coalgebraic modal logics (Schröder and Pattinson, 2007a).

More generally, in a monoidal category the tensor ⊗ is often regarded as “parallel com-

position”, and some authors take the view that composition should be regarded as a

colimit (Goguen, 1991). We therefore propose investigating how our framework could

be extended to incorporate some of these ideas. For example, we could assume that the

categories A and X are also monoidal categories (in addition to V), and that the functors

U, V, P, S, L and T are monoidal functors.

There is also the dual notion of forgetting, or hiding, parts of a system’s structure -

putting the lid on the box so we cannot see the internal workings. This introduces

the notion of τ transitions - transitions that we cannot observe - and weak bisimulation,

something that as far as the author is aware, has not been given a satisfactory coalgebraic

treatment.

Approximations of Probabilistic Systems

In Section 5.3 we discussed several papers on Probabilistic PDL and approximations of

Markov Processes, and we believe that translating this work to our framework would

form an interesting case study, and help to clarify some of the questions raised in Sec-

tion 5.3.

General Proof Method for Expressivity

As was discussed in Section 6.5, we are currently lacking a general method for proving

expressivity in cases other than bisimulation. This warrants further investigation.

Proof Systems, Soundness, and Completeness

Finally, as discussed in Section 4.5, a coalgebraic modal logic can be given a proof sys-

tem, and then questions of soundness and completeness arise. Our systematic approach

to handling models of coalgebraic modal logics may provide tools for answering these

questions.
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Category Theory

This chapter is not intended to cover the basics of category theory, for that the reader

is advised to try any of the many very good books on the subject, for example Adámek

et al. (1990) or Mac Lane (1997). Instead this chapter summarises some of the more

advanced topics we use in the rest of the text.

A.1 Initial Lifts and Fibrations

Definition A.1. Given a functor F : C→ D, and a morphism f : D → F (C) in D, then

an F -initial lift of f is a morphism f : D → C in C such that F (f) = f , and for any

other pair of morphisms g : B → C in C, and h : F (B)→ D in D such that

D
f // F (C)

F (B)

h

OO

F (g)

<<

there exists a unique morphism h′ : B → D such that

D
f // C

B

h′

OO

g

??

and F (h′) = h.
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Proposition A.2. Given a functor F : C→ D, the following commuting diagram in D

B

g

!!

h

��
h′′

��

A
f //

h′

��

F (C)

B

g

==

and the F -initial lifts f : A→ C, and g : B → C, then

h′′ = h′ ◦ h,

and

h′′ = 1B ⇐⇒ h′′ = 1B.

Proof. The morphisms h, h′′, and h′′ clearly exist by the universal property of the F -

initial lifts f and g. That h′′ = h′ ◦ h follows from the uniqueness property associated

with the F -initial lift of g.

Now if h′′ = 1B, since h′′ = F (h′′), we must have h′′ = 1B. Conversely, if h′′ = 1B, then

clearly 1B is a possible choice for h′′, and by uniqueness, it is the only one.

If in Proposition A.2, A = B, and h′ and h′′ equal 1A, but f and g remain distinct

F -initial liftings, then h and h′ define an isomorphism between A and B.

Corollary A.3. Given a functor F : C→ D, F -initial liftings are unique up to a unique

isomorphism.

Definition A.4. Given a functor F : C→ D, a morphism f : B → C in C is cartesian,

if for all pairs of morphisms g : A→ C in C, and h : F (A)→ F (B) in D such that

F (B)
F (f) // F (C)

F (A)

h

OO

F (g)

<<
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there exists a unique morphism h′ : A→ B such that

B
f // C

A

h′

OO

g

??

and F (h′) = h.

Definition A.5. A functor F : C → D is called a fibration if for every C ∈ obj|C|,
and every morphism f : D → F (C) in D, there exists a cartesian morphism f ′ : D′ → C

in C, such that F (f ′) = f .

We have the following trivial proposition.

Proposition A.6. A functor F : C → D is a fibration, if and only if, every morphism

f : D → F (C) in D has an F -initial lifting.

A.2 Concrete Categories

For many categories A the objects can be viewed as sets with some additional structure,

and the morphisms as functions that preserve that structure. Thus by considering A
simply as a category we lose this additional information. The way to retain access to

this additional information is through a construction known as a concrete category.

The material in this section is taken from Adámek et al. (1990).

First we need a few preliminary definitions.

Definition A.7 (Adámek et al. (1990), Definition 3.27). Let F : A→ B be a functor.

1. F is called an embedding provided that F is injective on morphisms.

2. F is called faithful provided that all the hom-set restrictions

FA,A′ : A(A,A′)→ B(F (A), F (A′))

are injective.

3. F is called full provided that all hom-set restrictions are surjective.

4. F is called amnestic provided that an A-isomorphism f is an identity whenever

F (f) is an identity.
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Remark A.8 (Adámek et al. (1990), Remark 3.28). Notice that a functor is:

1. an embedding if and only if it is faithful and injective on objects,

2. an isomorphism if and only if it is full, faithful, and bijective on objects.

Now that the preliminaries are out of the way we can provide the general definition of

a concrete category.

Definition A.9 (Adámek et al. (1990), Definition 5.1).

1. Let X be a category. A concrete category over X is a pair (A, U), where A
is a category and U : A → X is a faithful functor. Sometimes U is called the

forgetful (or underlying) functor of the concrete category and X is called the

base category for (A, U).

2. A concrete category over Set is called a construct.

Remark A.10. For a pair of categories A and X there may be more than one choice of

faithful functor U : A→ X giving a concrete category over X.

Definition A.11 (Adámek et al. (1990), Definition 5.28). A concrete category (A, U)

over X is said to be (uniquely) transportable provided that for every A-object A and

every X-isomorphism f : U(A)→ X there exists a (unique) A-object B with U(B) = X

such that f : A→ B is an A-isomorphism.

In the category Set, monomorphisms are injective functions, and epimorphisms are

surjective functions. This leads to the following results.

Proposition A.12 (Adámek et al. (1990), Proposition 7.37).

1. Every representable functor preserves monomorphisms, i.e., if F : A → Set is

representable and if f is a monomorphism in A, then F (f) is a monomorphism in

Set (i.e., an injective function).

2. Every faithful functor reflects monomorphisms, i.e., if F : A → B is faithful and

F (f) is a B-monomorphism, then f is an A-monomorphism.

Corollary A.13 (Adámek et al. (1990), Corollary 7.38). In any construct all morphisms

with injective underlying functions are monomorphisms. When the underlying functor is

representable, the monomorphisms are precisely the morphisms with injective underlying

functions.

Proposition A.14 (Adámek et al. (1990), Proposition 7.44). Every faithful functor

reflects epimorphisms.
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Corollary A.15 (Adámek et al. (1990), Corollary 7.45). In any construct all morphisms

with surjective underlying functions are epimorphisms.

We shall also need the following generalisations of some of the above results.

Definition A.16 (Adámek et al. (1990), Definition 10.5). A pair (A, (fi)I), consisting

of an object A, and a family of morphisms fi : A→ Ai indexed by some class I, is called

a mono-source, if for any pair of morphisms r, s : B → A, if fi ◦ r = fi ◦ s for all i, then

r = s.

Proposition A.17 (Adámek et al. (1990), Definition 10.7). Representable functors

preserve mono-sources (i.e., if G : A→ Set is a representable functor, and (A, (fi)I) is

a mono-source in A, then (G(A), (G(fi))I) is a mono-source in Set).

A.3 Factorisation Systems

Often we need to be able to factorise morphisms. The standard approach to this is via

a factorisation system (Adámek et al., 1990).

Definition A.18. In a category C, a pair (E,M) of classes of morphisms is called a

factorisation system for C, if the following hold:

1. If e ∈ E, and h an isomorphism in C, then if h ◦ e exists, h ◦ e ∈ E.

2. If m ∈M , and h an isomorphism in C, then if m ◦ h exists, m ◦ h ∈M .

3. C has (E,M)-factorisations; i.e. every morphism f in C factors as f = m ◦ e,
with m ∈M and e ∈ E.

4. C has the unique (E,M)-diagonalisation property; i.e. every commuting

square in C, with e ∈ E and m ∈ M , has a unique diagonal d such that the

following commutes

A
e //

f
��

B

g

��

d

~~
C m

// D

Definition A.19. In a category C a factorisation system (E,M) is called proper, if E

is a subclass of the epimorphisms of C, and if M is a subclass of the monomorphisms of

C.

The classes E and M of a factorisation system are closed under composition. We for-

malise this in the following proposition, which is a statement of parts of Adámek et al.

(1990, Propositions 14.6, 14.9).
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Proposition A.20. Let C be a category with a factorisation system (E,M).

1. Each of E and M is closed under composition.

2. If f ◦ g ∈M and f ∈M , then g ∈M .

3. If f ◦ g ∈ E and g ∈ E, then f ∈ E.

A class of monomorphisms defines a notion of subobject in a category, and it is often

important that for every object in a category its collection of subobjects is a set. The

following definitions are standard (Adámek et al., 1990).

Definition A.21. Given a class M of monomorphisms in a category C we define the

following:

1. An M-subobject of an object A in C is a pair (S,m), where m : S → A is in M .

2. Two M -subobjects (S,m) and (S′,m′) of A are isomorphic if there exists an

isomorphism h : S → S′ such that m = m′ ◦ h.

3. C is M-wellpowered if no object in C has a proper class of pairwise non-

isomorphic M -subobjects. Here by pairwise non-isomorphic we mean that any

pair of distinct subobjects are non-isomorphic.

Dually, for a class E of epimorphisms we can define an E-quotient object of an object

A as a pair (e,Q), where e : A → Q is in E. The obvious dual notion to C being

M -wellpowered is that C is E-cowellpowered.

A.4 Preservation and Creation of Limits and Colimits

The following definitions are standard (Adámek et al., 1990).

Definition A.22. Given a functor F : C → D, let J denote any small category, and

D : J→ C any functor, then we say that:

1. F preserves limits of D, if and only if, (L, φj)j∈J is a limit of D implies

(FL,F (φj))j∈J is a limit of FD.

2. F preserves limits of type J, if and only if, F preserves limits of D for all

D : J→ C.

3. F preserves limits, or is continuous, if and only if, F preserves limits of type

J for all small categories J.
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Definition A.23. Given a functor F : C → D, let J denote any small category, and

D : J→ C any functor, then we say that:

1. F creates limits of D, if and only if, (L, φj)j∈J is a limit of FD implies there

exists a unique cone (L′, φ′j)j∈J of D such that F (L′, φ′j)j∈J = (L, φj)j∈J, and

moreover, (L′, φ′j)j∈J is a limit of D.

2. F creates limits of type J, if and only if, F creates limits of D for all D : J→ C.

3. F creates limits, if and only if, F creates limits of type J for all small categories

J.

Definition A.24. Given a functor F : C → D, let J denote any small category, and

D : J→ C any functor, then we say that:

1. F preserves colimits of D, if and only if, (L, φj)j∈J is a colimit of D implies

(FL,F (φj))j∈J is a colimit of FD.

2. F preserves colimits of type J, if and only if, F preserves colimits of D for all

D : J→ C.

3. F preserves colimits, or is cocontinuous, if and only if, F preserves colimits

of type J for all small categories J.

Definition A.25. Given a functor F : C → D, let J denote any small category, and

D : J→ C any functor, then we say that:

1. F creates colimits of D, if and only if, (L, φj)j∈J is a colimit of FD implies

there exists a unique cocone (L′, φ′j)j∈J of D such that F (L′, φ′j)j∈J = (L, φj)j∈J,

and moreover, (L′, φ′j)j∈J is a colimit of D.

2. F creates colimits of type J, if and only if, F creates colimits of D for all

D : J→ C.

3. F creates colimits, if and only if, F creates colimits of type J for all small

categories J.

A.5 Natural Transformations in Several Variables

The notion of a natural transformation between two functors is well known, but it is

usually only presented in its most basic form, where the components are only indexed

by a single variable. However the definition can be readily extended to a many variable

form.

Recall the definition from Mac Lane (1997, II.3) of the product of two categories.
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Definition A.26. Given two categories B and C, the product of B and C is a category

B× C with the following data:

1. obj|B×C| = obj|B|×obj|C| i.e. objects in B×C are pairs consisting of an object

from B and an object from C.

2. A morphism (B,C)→ (B′, C ′) is a pair (f, g) of arrows f : B → B′ and g : C → C ′,

and composition of two morphisms

(B,C)
(f,g) // (B′, C ′)

(f ′,g′) // (B′′, C ′′)

is defined by the composites in B and C as

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

Remark A.27. If we construct the product Bop ×C, then the objects are still pairs from

B and C, but a morphism (f, g) : (B,C)→ (B′, C ′) is given by the pair f : B′ → B and

g : C → C ′, and the composite

(B,C)
(f,g) // (B′, C ′)

(f ′,g′) // (B′′, C ′′)

is defined as

(f ′, g′) ◦ (f, g) = (f ◦ f ′, g′ ◦ g).

Since B× C is a category, we can define functors F,G : B× C → D, and natural trans-

formations α : F ⇒ G, with components α(B,C) for every object (B,C) ∈ obj|B × C|.
However, we can also consider naturality in B or C separately. The proposition below

shows that naturality can be examined variable-by-variable.

Definition A.28. Given a pair of functors F,G : B×C→ D, a collection of morphisms

αB,C : F (B,C) → G(B,C), one for every pair (B,C) ∈ obj|B × C|, is natural in

B, if for each C ∈ obj|C|, the components αB,C for all B ∈ obj|B| define a natural

transformation

α−,C : F (−, C)⇒ G(−, C).

Similarly for α natural in C.

Proposition A.29 (Mac Lane (1997), II.3 Proposition 2). Given a pair of functors

F,G : B × C → D, a collection of morphisms αB,C : F (B,C) → G(B,C) is a natural

transformation α : F ⇒ G, if and only if, α is natural in B for each C ∈ obj|C|, and

natural in C for each B ∈ obj|B|.

A.6 Dinatural Transformations

The material in this section comes from Mac Lane (1997, IX.4).
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Definition A.30. Given a pair of functors F,G : Cop × C→ D, we define a dinatural

transformation α : F ⇒ G as a collection of components αC : F (C,C)→ G(C,C), one

for each C ∈ obj|C|, such that for all morphisms f : C → C ′ in C the following diagram

commutes

F (C,C)
αC // G(C,C)

G(1C ,f)

&&
F (C ′, C)

F (f,1C)
88

F (1C′ ,f) &&

G(C,C ′)

F (C ′, C ′)
αC′

// G(C ′, C ′)
G(f,1C′ )

88

Now noting Remark A.27, we could consider any natural transformation τ : F ⇒ G for

functors F,G : Cop ×C→ D. Then for any morphism f : C → C ′ we have the following

commuting cube

G(C ′, C)
G(1C′ ,f)

//

G(f,1C)

��

G(C ′, C ′)

G(f,1C′ )

��

F (C ′, C)

τC′,C
88

F (1C′ ,f)

//

F (f,1C)

��

F (C ′, C ′)

τC′,C′

88

F (f,1C′ )

��

G(C,C)
G(1C ,f)

// G(C,C ′)

F (C,C)
F (1C ,f)

//

τC,C
88

F (C,C ′)

τC,C′

88

from which we see that the following two paths from opposing corners F (C ′, C) and

G(C,C ′) commute

F (C,C)
τC,C

// G(C,C)
G(1C ,f)

&&
F (C ′, C)

F (f,1C)
88

F (1C′ ,f) &&

G(C,C ′)

F (C ′, C ′)
τC′,C′

// G(C ′, C ′)
G(f,1C′ )

88

Thus τ defines a dinatural transformation α, where the component αC = τC,C .

Not every dinatural transformation arises from an ordinary natural transformation

though.
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In addition to the general definition of a dinatural transformation, it makes sense to

consider several common special cases where F and G are “dummy” in one or more

variables.

1. If both F and G are dummy in the first variable, then α is simply a natural

transformation between functors from C to D.

2. If both F and G are dummy in the second variable, then α is simply a natural

transformation between functors from Cop to D, and this can be thought of as a

natural transformation between contravariant functors from C to D.

3. If F is dummy in the first variable and G dummy in the second variable then the

following must commute

F (C)
αC //

F (f)

��

G(C)

F (C ′) αC′
// G(C ′)

G(f)

OO

which is a natural transformation between a covariant F and a contravariant G.

4. If F is dummy in the second variable and G dummy in the first variable then the

following must commute

F (C)
αC // G(C)

G(f)

��
F (C ′)

F (f)

OO

αC′
// G(C ′)

which is a natural transformation between a contravariant F and a covariant G.

5. If F is dummy in both variables then the following must commute

D
αC //

αC′

��

G(C,C)

G(1C ,f)

��
G(C ′, C ′)

G(f,1C′ )
// G(C,C ′)

and α is called an extranatural transformation from D to G.
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6. If G is dummy in both variables then the following must commute

F (C ′, C)
F (1C′ ,f) //

F (f,1C)

��

F (C ′, C ′)

αC′

��
F (C,C) αC

// D

and α is called an extranatural transformation from F to D.

Extranatural transformations occur in combinations with ordinary natural transforma-

tions, so we make the following general definition.

Definition A.31. Given a pair of functors

F : Cop × C× A→ B G : A× Dop × D→ B

we define a natural transformation α : F ⇒ G as a collection of components

αC,A,D : F (C,C,A)→ G(A,D,D),

one for each triple of objects (C,A,D) ∈ obj|C× A× D|, such that the following hold:

1. for C and D fixed, αC,−,D is natural (in the ordinary sense) in A,

2. for A and D fixed, α−,A,D is extranatural in C,

3. for C and A fixed, αC,A,− is extranatural in D.

Remark A.32. Any of the categories A, C, and D can be replaced by a product of

several categories, and in each case naturality in a product argument may be replaced

by naturality in each argument of the tuple (that makes up the product argument)

where the others are fixed. The ordinary natural transformation case is covered by

Definition A.28 and Proposition A.29, but the extranatural case is analogous.

A.7 Adjunctions

A very powerful idea in category theory is that of an adjunction. Here we summarise

the basic idea (and results) as typically given for pairs of covariant functors (Mac Lane,

1997), and then in the next section, present the corresponding results for pairs of con-

travariant functors - a so called dual adjunction, or “adjunction on the right”.
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Definition A.33. Given a pair of categories C and D, an adjunction from C to D is

given by a triple (F,G,Φ), where F and G are covariant functors as follows

C
F

&& D
G

ff

and

ΦC,D : D(F (C), D)⇒ C(C,G(D))

is a natural isomorphism. We write F a G, or (F a G,Φ) if we want to be explicit about

the choice of Φ.

Definition A.34. Given an adjunction (F a G,Φ), we say that F is the left adjoint

of G, and G is the right adjoint of F . Further, we say Φ−1
C,D(f) : F (C) → D is the

left adjunct of f : C → G(D), and ΦC,D(g) : C → G(D) is the right adjunct of

g : F (C)→ D.

Adjunctions have lots of interesting properties, many of which are themselves sufficient

to define the concept of an adjunction. We start with the following.

Definition A.35. Given an adjunction (F a G,Φ), the unit is a natural transformation

η : 1C ⇒ GF given by

ηC = ΦC,F (C)(1F (C)),

and the counit is a natural transformation ε : FG⇒ 1D given by

εD = Φ−1
G(D),D(1G(D)).

The next three propositions correspond to Mac Lane (1997, IV.1 Theorem 1).

Proposition A.36. Given an adjunction (F a G,Φ) then:

1. The right adjunct of any g : F (C)→ D is given by

ΦC,D(g) = G(g) ◦ ηC .

2. The left adjunct of any f : C → G(D) is given by

Φ−1
C,D(f) = εD ◦ F (f).
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Proposition A.37. Given an adjunction (F a G,Φ) then the following hold:

1. ηC is a universal morphism from C to G, i.e. any other morphism f : C → G(D)

from C to G factors as

f = G(g) ◦ ηC ,

for a unique g : F (C)→ D (the left adjunct of f).

2. εD is a universal morphism from F to D i.e. any other morphism g : F (C) → D

from F to D factors as

g = εD ◦ F (f),

for a unique f : C → G(D) (the right adjunct of g).

Proposition A.38. Given an adjunction (F a G,Φ) then the following hold:

Gε ◦ ηG = 1G

εF ◦ Fη = 1F .

The following proposition, giving left and right adjuncts for composite morphisms, fol-

lows from the naturality of Φ.

Proposition A.39. Given an adjunction (F a G,Φ), and morphisms f : C → G(D),

g : F (C)→ D, h : C ′ → C and k : D → D′, then the following hold:

ΦC,D(k ◦ g) = G(k) ◦ ΦC,D(g)

ΦC,D(g ◦ F (h)) = ΦC,D(g) ◦ h

Φ−1
C,D(f ◦ h) = Φ−1

C,D(f) ◦ F (h)

Φ−1
C,D(G(k) ◦ f) = k ◦ Φ−1

C,D(f).

The following theorem collects together the different alternative definitions of an ad-

junction, and is very useful when trying to construct an adjunction.

Theorem A.40 (Mac Lane (1997), IV.1 Theorem 2). Any adjunction (F a G,Φ) is

completely determined by any of the following:

1. Functors F, G, and a natural transformation η : 1C ⇒ GF , such that each ηC is

universal from C to G. Then Φ is defined by ΦC,D(g) = G(g) ◦ ηC .

2. The functor G, and for each C in C, an object DF in D, and a universal morphism

ηC : C → G(DF ) from C to G. Then the functor F has object mapping F (C) =

DF , and is defined on morphisms h : C → C ′, by GF (h) ◦ ηC = ηC′ ◦ h.

3. Functors F, G, and a natural transformation ε : FG ⇒ 1D, such that each εD is

universal from F to D. Then Φ−1 is defined by Φ−1
C,D(f) = εD ◦ F (f).
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4. The functor F , and for each D in D, an object CG in C, and a universal morphism

εD : F (CG) → D from F to D. Then the functor G has object mapping G(D) =

CG, and is defined on morphisms k : D → D′, by k ◦ εD = εD′ ◦ FG(k).

5. Functors F, G, and natural transformations η : 1C ⇒ GF and ε : FG ⇒ 1D, such

that Gε ◦ ηG = 1G and εF ◦ Fη = 1F . Then Φ is defined by ΦC,D(g) = G(g) ◦ ηC ,

and Φ−1 by Φ−1
C,D(f) = εD ◦ F (f).

The next theorem is the very useful result that left adjoints preserve colimits (Defini-

tion A.24), and right adjoints preserve limits (Definition A.22).

Theorem A.41 (Mac Lane (1997), V.5 Theorem 1). Given an adjunction (F a G,Φ),

and functors S : I→ C and T : J→ D, then:

1. If S has the colimiting cone τ : S ⇒ ∆(C) in C, where ∆ is the diagonal functor

∆: C→ CI, then FS has the colimiting cone Fτ : FS ⇒ F∆(C) in D.

2. If T has the limiting cone τ : ∆(D) ⇒ T in D, where ∆ is the diagonal functor

∆: D→ DJ, then GT has the limiting cone Gτ : G∆(D)⇒ GT in C.

If both the unit and counit of an adjunction are natural isomorphisms, then we can

make the following stronger definition.

Definition A.42. Given an adjunction (F a G,Φ), if the unit η : 1C ⇒ GF , and

counit ε : FG⇒ 1D, are both natural isomorphisms, then (F a G,Φ) is an equivalence

between C and D.

A.8 Dual Adjunctions

In the definition of an adjunction the two functors are covariant, however it is often the

case that we have a similar situation, except that the two functors are contravariant.

This will lead to the definition of what is known as a dual adjunction, or an “adjunction

on the right” (Mac Lane, 1997, IV.2).

First though it should be noted, that if we are given a pair of contravariant functors as

follows

A
S

&& X
P

ff

then we can take the opposite of one of the categories and replace the two functors with

their covariant equivalents

Aop

S∗

&& X
P ∗

gg
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Then using Definition A.33 we can write (P ∗ a S∗,Φ), where Φ is the natural transfor-

mation Φ: Aop(P ∗(−),−)⇒ X(−, S∗(−)). Thus we can make the following definition.

Definition A.43. Given a pair of categories A and X, a dual adjunction from A to

X is given by a triple (P, S,Φ), where P and S are contravariant functors as follows

A
S

&& X
P

ff

and

ΦA,X : A(A,P (X))⇒ X(X,S(A))

is a natural isomorphism. We write P a S, or (P a S,Φ) if we want to be explicit about

the choice of Φ.

Unlike the covariant case, for dual adjunctions we have the following result.

Proposition A.44. For dual adjunctions the following holds

(P a S,Φ)⇔ (S a P,Φ−1)

Proof. By Definition A.43 we have (P a S,Φ) corresponds to a natural isomorphism

ΦA,X : A(A,P (X))⇒ X(X,S(A)), and (S a P,Ψ) corresponds to a natural isomorphism

ΨX,A : X(X,S(A)) ⇒ A(A,P (X)), but clearly Φ−1
A,X is a suitable choice for ΨX,A (or

Ψ−1
X,A for ΦA,X), and thus we have (P a S,Φ)⇔ (S a P,Φ−1).

Remark A.45. As a result of Proposition A.44, dual adjunctions do not have the concept

of a left or right adjoint. In this respect they are symmetric.

Definition A.46. Given a dual adjunction (P a S,Φ), we say ΦA,X(f) : X → S(A) is

the dual adjunct of f : A → P (X), and Φ−1
A,X(g) : → P (X) is the dual adjunct of

g : X → S(A). We write f [ for ΦA,X(f), and g] for Φ−1
X,A(g), and note (f [)] = f and

(g])[ = g.

Following Definition A.35, for a dual adjunction we can also define the unit and counit.

Once again, as a result of Proposition A.44 there is no real distinction between which

is which, though they remain distinct natural transformations. We adopt the following

convention.

Definition A.47. Given a dual adjunction (P a S,Φ), the unit is a natural transfor-

mation ρ : 1A ⇒ PS given by

ρA = Φ−1
S(A),A(1S(A)),
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and the counit is a natural transformation σ : 1X ⇒ SP given by

σX = ΦP (X),X(1P (X)).

Dual adjunctions have an analogue to Proposition A.36 as follows.

Proposition A.48. Given a dual adjunction (P a S,Φ) then:

1. The dual adjunct of any f : A→ P (X) is given by

f [ = S(f) ◦ σX .

2. The dual adjunct of any g : X → S(A) is given by

g] = P (g) ◦ ρA.

And an analogue to Proposition A.37.

Proposition A.49. Given a dual adjunction (P a S,Φ) then the following hold:

1. ρA is a universal morphism from A to P , i.e. any other morphism f : A→ P (X)

from A to P factors as

f = P (f [) ◦ ρA,

for a unique f [ : X → S(A) (the dual adjunct of f).

2. σX is a universal morphism from X to S, i.e. any other morphism g : X → S(A)

from X to S factors as

g = S(g]) ◦ σX ,

for a unique g] : A→ P (X) (the dual adjunct of g).

And also an analogue to Proposition A.38.

Proposition A.50. Given a dual adjunction (P a S,Φ) then the following hold:

Pσ ◦ ρP = 1P

Sρ ◦ σS = 1S .

And an analogue to Proposition A.39.
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Proposition A.51. Given a dual adjunction (P a S,Φ), and morphisms f : A→ P (X),

g : X → S(A), h : A′ → A and k : X ′ → X, then the following hold:

(f ◦ h)[ = S(h) ◦ f [

(P (k) ◦ f)[ = f [ ◦ k

(g ◦ k)] = P (k) ◦ g]

(S(h) ◦ g)] = g] ◦ h.

Just as in Theorem A.40, there is a theorem that collects together the different alterna-

tive definitions of a dual adjunction, and is very useful when trying to construct a dual

adjunction.

Theorem A.52. Any dual adjunction (P a S,Φ) is completely determined by any of

the following:

1. Contravariant functors P, S, and a natural transformation ρ : 1A ⇒ PS, such that

each ρA is universal from A to P . Then Φ−1 is defined by Φ−1
X,A(g) = P (g) ◦ ρA.

2. The contravariant functor P , and for each A in A, an object XS in X, and a

universal morphism ρA : A→ P (XS) from A to P . Then the contravariant functor

S has object mapping S(A) = XS, and is defined on morphisms h : A → A′, by

PS(h) ◦ ρA = ρA′ ◦ h.

3. Contravariant functors P, S, and a natural transformation σ : 1X ⇒ SP , such that

each σX is universal from X to S. Then Φ is defined by ΦA,X(f) = S(f) ◦ σX .

4. The contravariant functor S, and for each X in X, an object AP in A, and a

universal morphism σX : X → S(AP ) from X to S. Then the contravariant functor

P has object mapping P (X) = AP , and is defined on morphisms k : X → X ′, by

SP (k) ◦ σX = σX′ ◦ k.

5. Contravariant functors P, S, and natural transformations ρ : 1A ⇒ PS and

σ : 1X ⇒ SP , such that Pσ ◦ ρP = 1P and Sρ ◦ σS = 1S. Then Φ is defined by

ΦA,X(f) = S(f) ◦ σX , and Φ−1 by Φ−1
X,A(g) = P (g) ◦ ρA.

Theorem A.41 states that left adjoints preserve colimits, and right adjoints preserve

limits. For a dual adjunction we make no distinction between left and right adjoints,

and since the functors P and S are contravariant, we have that both P and S map

colimits to limits.
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Theorem A.53. Given a dual adjunction (P a S,Φ), and functors F : I → A and

G : J→ X, then:

1. If F has the colimiting cone τ : F ⇒ ∆(A) in A, where ∆ is the diagonal functor

∆: A→ AI, then SF has the limiting cone Sτ : S∆(A)⇒ SF in X.

2. If G has the colimiting cone τ : G⇒ ∆(X) in X, where ∆ is the diagonal functor

∆: X→ XJ, then PG has the limiting cone Pτ : P∆(X)⇒ PG in A.

Following Definition A.42, if both the unit and counit of a dual adjunction are natural

isomorphisms then we can make the following stronger definition.

Definition A.54. Given a dual adjunction (P a S,Φ), if the unit ρ : 1A ⇒ PS, and

counit σ : 1X ⇒ SP , are both natural isomorphisms, then (P a S,Φ) is a dual equiva-

lence between A and X.
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Monoidal Categories

The idea of a monoidal category is that we make abstract some of the properties of the

category Set that are found to be so useful in mathematics. In this way we can make it

explicit when we use these properties, and moreover, we can prove results that only use

these properties, and thus that will hold for categories other than Set.

The following definition is standard material, see for example Mac Lane (1997, VII.1)

or Kelly (1982, Section 1.1).

Definition B.1. A monoidal category V = (Vo,⊗, I, a, l, r) has the following data:

1. a category Vo,

2. a functor ⊗ : Vo × Vo → Vo called the tensor product,

3. an object I of Vo called the unit,

4. a natural isomorphism

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

called the associator,

5. natural isomorphisms

lX : I ⊗X → X

rX : X ⊗ I → X

called the left unitor and right unitor,

169
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such that the following diagrams commute

(W ⊗X)⊗ (Y ⊗ Z)
aW,X,Y⊗Z

**
((W ⊗X)⊗ Y )⊗ Z

aW⊗X,Y,Z
44

aW,X,Y ⊗1Z

��

W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z
aW,X⊗Y,Z

//W ⊗ ((X ⊗ Y )⊗ Z)

1W⊗aX,Y,Z

OO

(X ⊗ I)⊗ Y
aX,I,Y //

rX⊗1Y

  

X ⊗ (I ⊗ Y )

1X⊗lY

~~
X ⊗ Y

Remark B.2. In Mac Lane (1997) an additional axiom is required, specifically that

lI = rI , but this can be shown to follow from the other axioms (Eilenberg and Kelly,

1966, II Proposition 1.1), and so most authors do not make it part of the definition.

There is a famous result, a coherence theorem (Mac Lane, 1997, VII.2), that says every

diagram of natural transformations formed from ⊗, I, 1−, the natural transformations

a, l, r, and their inverses, commutes.

Like in the case of the category Set, we frequently would like to talk about the elements

of and object in a monoidal category. The following definition has been found to be the

best statement of this notion, as the subsequent proposition generalises the fact that in

Set two functions f, g : X → Y are equal if they are the same on all elements of X.

Definition B.3. Given a monoidal category V, if Vo is locally small, we can define the

representable functor

elem|−| = Vo(I,−) : Vo → Set,

and for any object X of Vo, we say f is an element of X, if and only if, f ∈ elem|X|,
i.e. f : I → X.

Proposition B.4. For a monoidal category V, with Vo locally small, if elem|−| is

faithful, then a pair of morphisms f, g ∈ Vo(A,B) are equal, if and only if they are the

same on all elements of A.

We also frequently want to think of an element of the tensor of two objects X and Y

to consist of a pair of elements, one from X, and one from Y . We can do this if the

canonical natural transformation below is a natural isomorphism.
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Proposition B.5. For a monoidal category V, with Vo locally small, there exits a

canonical natural transformation

elem|X| × elem|Y | → elem|X ⊗ Y |

natural in X and Y , given by

I
l−1
I // I ⊗ I f⊗g // X ⊗ Y.

So far we have only captured the structure of Set that corresponds to the formation

of the cartesian product of sets. Another important property is that of a symmetry

(Mac Lane, 1997; Kelly, 1982).

Definition B.6. Given a monoidal category V, a symmetry is a natural isomorphism

cX,Y : X ⊗ Y → Y ⊗X such that the following diagrams commute

X ⊗ Y
cX,Y //

1X⊗Y

##

Y ⊗X

cY,X

��
X ⊗ Y

X ⊗ (Y ⊗ Z)
cX,Y⊗Z

((
(X ⊗ Y )⊗ Z

aX,Y,Z
66

cX,Y ⊗1Z

��

(Y ⊗ Z)⊗X

aY,Z,X

��
(Y ⊗X)⊗ Z

aY,X,Z ((

Y ⊗ (Z ⊗X)

Y ⊗ (X ⊗ Z)
1Y ⊗cX,Z

66

I ⊗X
cI,X //

lX

��

X ⊗ I

rX

��
X

Remark B.7. A monoidal category may have more than one symmetry.

Definition B.8. A monoidal category with a symmetry is called a symmetric monoidal

category.
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Once again, there is a coherence theorem (Mac Lane, 1997, XI.1) for symmetric monoidal

categories.

The final bit of structure that Set possesses that we require, is the existence of function

spaces - given two sets X and Y , the collection of all functions from X to Y is also a set,

and this set has certain properties. To do this we define what we mean for a symmetric

monoidal category to be closed (Mac Lane, 1997; Kelly, 1982).

Definition B.9. A symmetric monoidal category V is closed if for every object Y in

Vo the functor −⊗Y has a right adjoint [Y,−], where [−,−] : Vo×Vo → Vo is a functor

called the internal-hom, and the unit and counit are denoted

dX,Y : X → [Y,X ⊗ Y ]

eY,Z : [Y,Z]⊗ Y → Z

with e called evaluation.

Proposition B.10 (Kelly (1982), Section 1.8). Given a symmetric monoidal closed

category V, for every object Y in Vo, the morphisms

dX,Y : X → [Y,X ⊗ Y ]

eY,Z : [Y,Z]⊗ Y → Z

are natural in X and Z, and extranatural in Y .

For a symmetric monoidal closed category V, where Vo is locally small, we have that

Vo(X ⊗ Y,Z) ∼= Vo(X, [Y,Z]),

and thus

Vo(X,Y ) ∼= Vo(I ⊗X,Y ) ∼= Vo(I, [X,Y ]) = elem|[X,Y ]| ,

which corresponds to the following diagram

X
l−1
X //

f]

��

I ⊗X

f†

xx

f⊗1X

��
Y [X,Y ]⊗XeX,Y
oo

where for f ∈ elem|[X,Y ]|, f † is the transpose of f under the adjunction −⊗X a [X,−],

and f ] = f † ◦ l−1
X .

We can summarise this in the following important proposition.
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Proposition B.11 (Kelly (1982), Section 1.5). Given a symmetric monoidal closed

category V, with Vo locally small, for every pairs of objects X and Y in Vo, we have a

natural isomorphism

elem|[X,Y ]| ∼= Vo(X,Y )

f 7→ f † ◦ l−1
X

(g ◦ lX)‡ ←[ g

where −† and −‡ denote the transposes (in the two directions respectively) under the

adjunction −⊗X a [X,−].

This bijection between the morphisms from X to Y and the elements of [X,Y ], means

that for f : X → Y , g : Y → Z, and g‡ : I → [Y,Z], the following commutes

X
f //

l−1
X

��

Y

g

��

l−1
Y

��
I ⊗X 1I⊗f //

g‡⊗f

$$

I ⊗ Y

g‡⊗1Y

��
[Y, Z]⊗ Y eY,Z

// Z

and we see that

g ◦ f = eY,Z ◦ (g‡ ⊗ f) ◦ l−1
X .

In particular, if f is an element y : I → Y of Y , we write g(y) for g ◦ y, and we see that

g‡ can be regarded as actually being g, and e then evaluates g at y.

For this interpretation to make sense, we need e to also capture associativity of evalua-

tion, but that is precisely what the extranaturality of e from Proposition B.10 guarantees.

Often we will blur the distinction between elements of elem|[X,Y ]| and elements of

Vo(X,Y ), and use them interchangeably.

The following natural isomorphisms appear frequently, and are very useful.

Proposition B.12 (Kelly (1982), Section 1.5). Given a symmetric monoidal closed

category V, for every object X in Vo, there is a natural isomorphism

iX : X → [I,X]

given by iX = r‡Z and i−1
X = 1†[I,Z] ◦ r

−1
[I,Z], where † and ‡ are transposes under the

adjunction −⊗X a [X,−].
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Also, for all objects X, Y , and Z in Vo, there is a natural isomorphism

pX,Y,Z : [X ⊗ Y,Z]→ [X, [Y,Z]]

given by

pX,Y,Z = ((eX⊗Y,Z ◦ a[X⊗Y,Z],X,Y )‡)‡,

where the inner ‡ is the transpose under −⊗Y a [Y,−], and the outer ‡ is the transpose

under −⊗X a [X,−], and

p−1
X,Y,Z = (e†X,[Y,Z] ◦ a

−1
[X,[Y,Z]],X,Y )‡,

where the inner † is the transpose under −⊗Y a [Y,−], and the outer ‡ is the transpose

under −⊗ (X ⊗ Y ) a [X ⊗ Y,−].

Further, the following commutes

[X, [Y,Z]]⊗ (X ⊗ Y )
p−1
X,Y,Z⊗1X⊗Y

**
([X, [Y, Z]]⊗X)⊗ Y

a[X,[Y,Z]],X,Y
44

eX,[Y,Z]⊗1Y
��

[X ⊗ Y, Z]⊗ (X ⊗ Y )

eX⊗Y,Z

��
[Y,Z]⊗ Y eY,Z

// Z

There is also the concept of a functor between monoidal categories that preserves the

monoidal structure (Mac Lane, 1997; Eilenberg and Kelly, 1966).

Definition B.13. Given a pair of symmetric monoidal closed categories V and V′ a

symmetric monoidal closed functor F : V→ V′ has the following data:

1. a functor F : Vo → V′o,

2. a natural transformation F̃ : F (−)⊗′ F (−)⇒ F (−⊗−),

3. a natural transformation F̂ : F ([−,−])⇒ [F (−), F (−)]′,

4. a moprhism F 0 : I ′ → F (I),

such that all the following diagrams commute.

I ′ ⊗′ F (X)
l′
F (X) //

F 0⊗′1F (X)

��

F (X) F (X)⊗′ I ′
r′
F (X) //

1F (X)⊗′F 0

��

F (X)

F (I)⊗′ F (X)
F̃I,X

// F (I ⊗X)

F (lF (X))

OO

F (X)⊗′ F (I)
F̃X,I

// F (X ⊗ I)

F (rF (X))

OO
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(F (X)⊗′ F (Y ))⊗′ F (Z)
a′
F (X),F (Y ),F (Z) //

F̃X,Y ⊗′1F (Z)

��

F (X)⊗′ (F (Y )⊗′ F (Z))

1F (X)⊗′F̃Y,Z

��
F (X ⊗ Y )⊗′ F (Z)

F̃X⊗Y,Z

��

F (X)⊗′ F (Y ⊗ Z)

F̃X,Y⊗Z

��
F ((X ⊗ Y )⊗ Z)

F (aX,Y,Z)
// F (X ⊗ (Y ⊗ Z))

F (X)⊗′ F (Y )
c′
F (X),F (Y ) //

F̃X,Y

��

F (Y )⊗′ F (X)

F̃Y,X

��
F (X ⊗ Y )

F (cX,Y )
// F (Y ⊗X)

I ′
j′
F (X) //

F 0

��

[F (X), F (X)]′ F (X)
i′
F (X) //

F (iF (X))

��

[I ′, F (X)]′

F (I)
F (jF (X))

// F ([X,X])

F̂X,X

OO

F ([I,X])
F̂I,X

// [F (I), F (X)]′

[F 0,1F (X)]

OO

F ([Y, Z])
F ([X,−]Y,Z)

//

F̂Y,Z

��

F ([[X,Y ], [X,Z]])

F̂[X,Y ],[X,Z]

��
[F (Y ), F (Z)]′

[F (X),−]′
F (Y ),F (Z)

��

[F ([X,Y ]), F ([X,Z])]′

[1F ([X,Y ]),F̂X,Z ]′

��
[[F (X), F (Y )]′, [F (X), F (Z)]′]′

[F̂X,Y ,1[F (X),F (Z)]′ ]
′
// [F ([X,Y ]), [F (X), F (Z)]′]′
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F ([X ⊗ Y,Z])
F (pX,Y,Z)

//

F̂X⊗Y,Z

��

F ([X, [Y,Z]])

F̂X,[Y,Z]

��
[F (X ⊗ Y ), F (Z)]′

[F̃X,Y ,1F (Z)]
′

��

[F (X), F ([Y,Z])]′

[1F (X),F̂Y,Z ]′

��
[F (X)⊗′ F (Y ), F (Z)]′

p′
F (X),F (Y ),F (Z)

// [F (X), [F (Y ), F (Z)]′]′

There are also various strengthenings of a symmetric monoidal closed functor (Mac Lane,

1997, XI.2), the terminology can be somewhat confusing however. We make the follow-

ing, possibly non-standard, definitions, as they are the appropriate ones for our needs.

Definition B.14. A symmetric monoidal closed functor (F, F̃ , F̂ , F 0) is:

1. a strong monoidal functor if F̃ and F 0 are isomorphisms,

2. a strong closed functor if F̂ and F 0 are isomorphisms,

3. a strong monoidal closed functor if F̃ , F̂ and F 0 are isomorphisms.

If in the above, the isomorphisms are strengthened further to identities, then we have a

strict monoidal functor, strict closed functor, or strict monoidal closed functor

respectively.

For a symmetric monoidal closed functor (F, F̃ , F̂ , F 0), it is possible to define F̂ in a

canonical way in terms of F̃ as a transpose under the adjunction −⊗′F (X) a [F (X),−]′.

F ([X,Y ])⊗′ F (X)
F̃[X,Y ],X //

F̂X,Y ⊗′1F (X)

��

F ([X,Y ]⊗X)

F (eX,Y )

��
[F (X), F (Y )]′ ⊗′ F (X)

e′
F (X),F (Y )

// F (Y )

As the category Set was our prototype symmetric monoidal closed category, we can

extend the functor elem|−| : Vo → Set to a symmetric monoidal closed functor (Eilen-

berg and Kelly, 1966, I.3, Prop 3.11), (Eilenberg and Kelly, 1966, II.8, Prop 8.1), and

(Eilenberg and Kelly, 1966, III.1, Prop 1.3).
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Definition B.15. Given a symmetric monoidal closed category V, if Vo is locally small,

we define a symmetric monoidal closed functor elem|−| : V→ Set as follows:

1. take Definition B.3 and define

elem|−| = Vo(I,−),

2. take Proposition B.5 and define

ẽlemX,Y : elem|X| × elem|Y | → elem|X ⊗ Y |

(f, g) 7→ (f ⊗ g) ◦ l−1
I ,

3. define the natural transformation

êlemX,Y : elem|[X,Y ]| → Set(elem|X| , elem|Y |)

as the transpose of

elem|[X,Y ]| × elem|X|
ẽlem[X,Y ],X // elem|[X,Y ]⊗X|

elem|eX,Y | // elem|Y |

under the adjunction −× elem|X| a Set(elem|X| ,−),

4. define the morphism

elem0 : {∗} → elem|I|

∗ 7→ 1I .
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Enriched Category Theory

In its most simple terms, enriched category theory can be thought of as ordinary category

theory where the hom-sets have additional structure, for example morphisms can be

ordered pointwise. However, this is not the fully story. What is really going on in

enriched category theory, is that those properties of the category Set that are implicitly

assumed in ordinary category theory (hom-sets etc), are made explicit through the use

of a symmetric monoidal closed category (Definition B.9).

We will denote this symmetric monoidal closed category V, and in addition, throughout

we shall assume that Vo is both complete and cocomplete, and Vo is locally small.

The material in this chapter closely follows that in the first few chapters of Kelly (1982),

but with occasional reference to the original material summarised therein.

C.1 Enriched Categories

Definition C.1. A V-category C has the following data:

1. a collection of objects obj|C|,

2. for each pair A,B ∈ obj|C| a hom-object C(A,B) in Vo,

3. for each triple A,B,C ∈ obj|C| a composition law

MA,B,C : C(B,C)⊗ C(A,B)→ C(A,C),

4. for every A ∈ obj|C| an identity element

jA : I → C(A,A),

179
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subject to the following diagrams commuting

(C(C,D)⊗ C(B,C))⊗ C(A,B)
aC(C,D),C(B,C),C(A,B)

//

MB,C,D⊗1C(A,B)

��

C(C,D)⊗ (C(B,C)⊗ C(A,B))

1C(C,D)⊗MA,B,C

��
C(B,D)⊗ C(A,B)

MA,B,D

&&

C(C,D)⊗ C(A,C)

MA,C,D

xx
C(A,D)

C(B,B)⊗ C(A,B)
MA,B,B

// C(A,B) C(A,B)⊗ C(A,A)
MA,A,B

oo

I ⊗ C(A,B)

jB⊗1C(A,B)

OO

lC(A,B)

88

C(A,B)⊗ I

1C(A,B)⊗jA

OO

rC(A,B)

ff

The idea is that a morphism between objects A and B in a V-category C, is an element

(Definition B.3) of the hom-object C(A,B). The first diagram then ensures that com-

position of morphisms is associative, and the second diagram ensures that the identity

elements really are identities under composition.

Proposition C.2 (Kelly (1982), Section 1.8). In any V-category C, the composition law

MA,B,C : C(B,C)⊗ C(A,B)→ C(A,C),

is natural in A and C, and extranatural in B, and the identity elements

jA : I → C(A,A),

are extranatural in A.

Now that we have defined enriched categories we can proceed to define enriched functors

between them.

Definition C.3. A V-functor F : C→ D is defined as:

1. an object function F : obj|C| → obj|D|,

2. for every pair A,B ∈ obj|C| there is a morphism

FA,B : C(A,B)→ D(F (A), F (B))
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subject to the following diagrams commuting

C(B,C)⊗ C(A,B)
MA,B,C //

FB,C⊗FA,B

��

C(A,C)

FA,C

��
D(F (B), F (C))⊗ D(F (A), F (B))

MF (A),F (B),F (C)

// D(F (A), F (C))

C(A,A)

FA,A

��

I

jA

55

jF (A) ))
D(F (A), F (A))

This definition is the obvious one to make, where the first diagram ensures that the

image of the composite of a pair of morphisms, is the composite of their images, and the

second diagram ensures that image of an identity is an identity.

Similarly we can define enriched natural transformations. Initially we shall only consider

the enriched version of an ordinary natural transformation, though subsequently (Sec-

tion C.6) we shall extend this to enriched extranatural transformations (Section A.6).

Definition C.4. A V-natural transformation α : F ⇒ G : C → D is defined as an

obj|C| indexed family of components

αA : I → D(F (A), G(A))

such that the following diagram commutes

I ⊗ C(A,B)
αB⊗FA,B // D(F (B), G(B))⊗ D(F (A), F (B))

MF (A),F (B),G(B)

��
C(A,B)

l−1
C(A,B)

OO

r−1
C(A,B)

��

D(F (A), G(B))

C(A,B)⊗ I
GA,B⊗αA

// D(G(A), G(B))⊗ D(F (A), G(A))

MF (A),G(A),G(B)

OO

We can also define the enriched analogue of composition of natural transformations.
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Definition C.5. The vertical composite β ◦ α of the pair α : F ⇒ G : C → D and

β : G⇒ H : C→ D has the component (β ◦ α)A given by

I
(β◦α)A //

l−1
I

��

D(F (A), H(A))

I ⊗ I
βA⊗αA

// D(G(A), H(A))⊗ D(F (A), G(A))

MF (A),G(A),H(A)

OO

The composite of α : F ⇒ G : C → D and H : D → E has the component (Hα)A given

by

I
αA // D(F (A), G(A))

HF (A),G(A) // E(HF (A), HG(A)),

and the composite of F : C → D and α : G ⇒ H : D → E has the component (αF )A

given by αF (A).

The enriched equivalent of the notion of the product of two ordinary categories (Defini-

tion A.26), is that of the tensor product of two V-categories.

Definition C.6. Given two V-categories B and C the tensor product of B and C is a

V-category B⊗ C with the following data:

1. obj|B⊗C| = obj|B|×obj|C| i.e. objects in B⊗C are pairs consisting of an object

from B and an object from C.

2. For each pair of pairs (B,C), (B′, C ′) ∈ obj|B⊗ C| the hom-object

(B⊗ C)((B,C), (B′, C ′)) = B(B,B′)⊗ C(C,C ′),

and the composition law

M(B,C),(B′,C′),(B′′,C′′) :
(B⊗ C)((B′, C ′), (B′′, C ′′))

⊗(B⊗ C)((B,C), (B′, C ′))
→ (B⊗ C)((B,C), (B′′, C ′′))

is given by

(B⊗ C)((B′, C ′), (B′′, C ′′))

⊗(B⊗ C)((B,C), (B′, C ′))

M(B,C),(B′,C′),(B′′,C′′) //

m

��

B(B,B′′)⊗ C(C,C ′′)

(B(B′, B′′)⊗ B(B,B′))

⊗(C(C ′, C ′′)⊗ C(C,C ′))

MB,B′,B′′⊗MC,C′,C′′

55
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where m : (W ⊗X)⊗ (Y ⊗Z) ∼= (W ⊗Y )⊗ (X⊗Z) is defined in terms of a and c.

3. For each object (B,C) ∈ obj|B⊗ C| the identity element

j(B,C) : I → (B⊗ C)((B,C), (B,C))

is given by the composite

I
l−1
I // I ⊗ I jB⊗jC // B(B,B)⊗ C(C,C).

This definition is quite general, but if the functor elem|−| is a strong monoidal functor,

then the natural transformation (Definition B.15)

ẽlemX,Y : elem|X| × elem|Y | → elem|X ⊗ Y |

is a natural isomorphism. This means that the elements of (B⊗C)((B,C), (B′, C ′)) are

pairs of elements from B(B,B′) and C(C,C ′), and composition is then the direct gener-

alisation of composition for the product of ordinary categories given in Definition A.26.

Another basic construct that can be defined is that of an opposite V-category, and from

this we can defined contravariant V-functors.

Definition C.7. Given a V-category C we can define the opposite V-category Cop by

the following data:

1. obj|Cop | = obj|C|.

2. For each pair (A,B) ∈ obj|Cop | the hom-object Cop(A,B) = C(B,A), and the

composition law

MA,B,C : Cop(B,C)⊗ Cop(A,B)→ Cop(A,C)

is the composite

C(C,B)⊗ C(B,A)
cC(C,B),C(B,A) // C(B,A)⊗ C(C,B)

MC,B,A // C(C,A).

3. For each object A ∈ obj|Cop | the identity element

jA : I → Cop(A,A)

is given by that from C.

Definition C.8. A V-functor F : Cop → D is called a contravariant V-functor from

C to D, and a V-functor F : B⊗ C→ D is a V-functor of two variables.
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We now have the definitions we need to handle enriched natural transformations of

several variables, and state an enriched version of Proposition A.29.

Proposition C.9 (Kelly (1982), Section 1.4). Given a pair of V-functors

F,G : B⊗ C→ D,

a collection of morphisms

αB,C : I → D(F (B,C), G(B,C))

is a V-natural transformation α : F ⇒ G, if and only if, α is V-natural in B for each

C ∈ obj|C|, and V-natural in C for each B ∈ obj|B|.

C.2 Underlying Ordinary Categories

Recall from Definition B.3 that for every monoidal category V there is a notion of

element, and a functor

elem|−| = Vo(I,−) : Vo → Set,

that gives the set of elements of any object of Vo. We can use this to define for every

V-category C, an underlying ordinary category Co.

Definition C.10. For any V-category C the underlying category Co (an ordinary

category) has the following data:

1. The same objects as C, i.e. obj|Co| = obj|C|.

2. For any pair A,B ∈ obj|Co| we define the hom-set

Co(A,B) = elem|C(A,B)| ,

i.e. for any element f ∈ elem|C(A,B)| given by f : I → C(A,B), there is a

morphism f : A→ B in Co.

3. For any pair f : A→ B and g : B → C of morphisms in Co, the composite g • f is

defined by the element

I
l−1
I // I ⊗ I g⊗f // C(B,C)⊗ C(A,B)

MA,B,C // C(A,C).

4. For every A ∈ obj|Co| the identity morphism is given by the identity element

jA : I → C(A,A).
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To see that this actually is a category, observe that associativity of composition follows

from the following diagram

I

l−1
I

��
I ⊗ I

1I⊗l−1
I

&&

l−1
I ⊗1I

xx
(I ⊗ I)⊗ I

aI,I,I
//

(h⊗g)⊗f

��

I ⊗ (I ⊗ I)

h⊗(g⊗f)

��
(C(C,D)⊗ C(B,C))⊗ C(A,B)

aC(C,D),C(B,C),C(A,B)

//

MB,C,D⊗1C(A,B)

��

C(C,D)⊗ (C(B,C)⊗ C(A,B))

1C(C,D)⊗MA,B,C

��
C(B,D)⊗ C(A,B)

MA,B,D

&&

C(C,D)⊗ C(A,C)

MA,C,D

xx
C(A,D)

and the unit laws from

C(B,B)⊗ C(A,B)
MA,B,B

// C(A,B) C(A,B)⊗ C(A,A)
MA,A,B

oo

I ⊗ C(A,B)

jB⊗1C(A,B)

OO

lC(A,B)

88

I

f

OO

C(A,B)⊗ I

1C(A,B)⊗jA

OO

rC(A,B)

ff

I ⊗ I

1I⊗f

OO

lI

88

I ⊗ I

f⊗1I

OO

rI

ff

I

1I

OO

r−1
I

88

l−1
I

ff
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If every V-category has an underlying ordinary category, then it makes sense to ask if

every V-functor has an underlying ordinary functor. This turns out to be the case.

Definition C.11. For any V-functor F : C→ D the underlying functor Fo : Co → Do
(an ordinary functor) is defined as follows:

1. Fo has the same object function as F , i.e. Fo(A) = F (A).

2. For any pair A,B ∈ obj|Co| the function

FoA,B : Co(A,B)→ Do(F (A), F (B))

is given by

elem|FA,B| : elem|C(A,B)| → elem|D(F (A), F (B))| ,

where for f ∈ Co(A,B), we write F (f) ∈ Do(F (A), F (B)) for the composite

I
f // C(A,B)

FA,B // D(F (A), F (B)),

and then since elem|−| is the hom-functor Vo(I,−), we have

FoA,B(f) = elem|FA,B| (f) = FA,B ◦ f = F (f).

To see that this actually is a functor, observe that preservation of composition follows

from the diagram

I
l−1
I // I ⊗ I

g⊗f
//

F (g)⊗F (f)

&&

C(B,C)⊗ C(A,B)
MA,B,C

//

FB,C⊗FA,B

��

C(A,C)

FA,C

��
D(F (B), F (C))⊗ D(F (A), F (B))

MF (A),F (B),F (C)

// D(F (A), F (C))

and preservation of identities is simply

C(A,A)

FA,A

��

I

jA

55

jF (A) ))
D(F (A), F (A))

from Definition C.3.
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It should be noted though, that whilst every V-functor has a unique underlying ordinary

functor, unless elem|−| is faithful, two V-functors can have the same underlying ordinary

functor.

Since every V-functor has an underlying ordinary functor we can define an ordinary

natural transformation underlying every V-natural transformation.

Definition C.12. For any V-natural transformation α : F ⇒ G : C→ D the underly-

ing natural transformation αo : Fo ⇒ Go : Co → Do (an ordinary natural transfor-

mation) has the component αoA : Fo(A)→ Go(A) given by the element

αA : I → D(F (A), G(A)).

That this indeed gives an ordinary natural transformation follows from the following

diagram

I ⊗ I 1I⊗f // I ⊗ C(A,B)
αB⊗FA,B // D(F (B), G(B))⊗ D(F (A), F (B))

MF (A),F (B),G(B)

��
I

l−1
I

OO

f //

r−1
I

��

C(A,B)

l−1
C(A,B)

OO

r−1
C(A,B)

��

D(F (A), G(B))

I ⊗ I
f⊗1I

// C(A,B)⊗ I
GA,B⊗αA

// D(G(A), G(B))⊗ D(F (A), G(A))

MF (A),G(A),G(B)

OO

In the converse direction, given V-functors F,G : C→ D, and an ordinary natural trans-

formation αo : Fo ⇒ Go : Co → Do in the underlying categories, then αo lifts to a

V-natural transformation α : F ⇒ G : C→ D, if

Vo(C(A,B),D(F (A), G(B)))

elem|−|C(A,B),D(F (A),G(B))

��
Set(Co(A,B),Do(F (A), G(B)))

is injective. For then the right-hand “hexagon” in the above diagram commutes if the

outer perimeter commutes. Thus we have the following proposition.

Proposition C.13. Given V-functors F,G : C→ D, if the functor elem|−| is faithful,

then every ordinary natural transformation αo : Fo ⇒ Go : Co → Do lifts to a V-natural

transformation α : F ⇒ G : C→ D.
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For the tensor product of a pair of V-categories we need to be careful. It is easy to see

that (B⊗ C)o and Bo×Co must have the same objects, but they do not necessarily have

the same morphisms.

For any V-category C, the underlying hom-sets Co(A,B) = elem|C(A,B)|, so using

Definition B.15, we have the following result.

Proposition C.14 (Kelly (1982), Section 1.4). Given two V-categories B and C, the

natural transformation

ẽlemX,Y : elem|X| × elem|Y | → elem|X ⊗ Y |

given by

I
l−1
I // I ⊗ I f⊗g // X ⊗ Y

yields a canonical functor

H : Bo × Co → (B⊗ C)o.

Furthermore, for a V-functor F : B ⊗ C → D, the partial functors of the composite

ordinary functor

Bo × Co
H // (B⊗ C)o

Fo // Do

are precisely F (A,−)o and F (−, B)o.

Corollary C.15. Given two V-categories B and C, if the functor elem|−| is a strong

monoidal functor, then the natural transformation

ẽlemX,Y : elem|X| × elem|Y | → elem|X ⊗ Y |

given by

I
l−1
I // I ⊗ I f⊗g // X ⊗ Y

is a natural isomorphism, and the category Bo × Co is isomorphic to the category

(B⊗ C)o.

For the opposite category of any V-category C, the underlying ordinary category is given

by the opposite category of Co.

Proposition C.16 (Kelly (1982), Section 1.4). For any V-category C

(Cop)o = (Co)op .
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C.3 V is Enriched over Itself

Since V is a symmetric monoidal closed category, it carries sufficient structure to be able

to construct a V-category with the same objects as Vo, and who’s hom-objects have the

same elements as the hom-sets of Vo. The key to doing this are the internal hom-objects.

In a slight abuse of notation we also call this V-category V.

Definition C.17. We define the V-category V̂ by the following data:

1. V̂ has the same objects as Vo, i.e. obj|V̂| = obj|Vo|.

2. For every pair A,B ∈ obj|V̂| the hom-object V̂(A,B) = [A,B].

3. For all A,B,C ∈ obj|V̂| the composition law

MA,B,C : [B,C]⊗ [A,B]→ [A,C]

is given by the transpose under the adjunction − ⊗ A a [A,−] of the composite

morphism M †A,B,C defined by

([B,C]⊗ [A,B])⊗A
M†A,B,C //

a[B,C],[A,B],A

��

C

[B,C]⊗ ([A,B]⊗A)
1[B,C]⊗eA,B

// [B,C]⊗B

eB,C

OO

4. For every A ∈ obj|V̂| the identity element jA : I → [A,A] is given by the transpose

under the adjunction −⊗A a [A,−] of the morphism lA : I ⊗A→ A.

The above V-category V̂ we actually want to call V, so why are we justified in doing

so? Well the underlying category V̂o of V̂ has the same objects as Vo, and by Proposi-

tion B.11,

V̂o(A,B) = elem|[A,B]| ∼= Vo(A,B).

This therefore yields the following proposition.

Proposition C.18 (Kelly (1982), Section 1.6). For the V-category V̂, the underlying

category V̂o, is isomorphic to the category Vo.

We henceforth identify V̂o and Vo, and simply refer to V̂ as V.
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C.4 Subcategories and Concrete V-categories

The material in this section does not follow Kelly (1982), but the definitions are reason-

ably obvious extensions of the corresponding notions from ordinary category theory.

We can define an enriched analogue of faithful functors (Definition A.7).

Definition C.19. Let F : C→ D be a V-functor.

1. F is full, if for all A,B ∈ obj|C|, FA,B is an epimorphism in Vo.

2. F is faithful, if for all A,B ∈ obj|C|, FA,B is a monomorphism in Vo.

3. F is fully faithful, if for all A,B ∈ obj|C|, FA,B is an isomorphism in Vo.

Note that in Vo it is in general not the case that bimorphisms are isomorphisms, therefore

unlike the case in ordinary category theory, a V-functor that is both full and faithful, is

not necessarily fully faithful.

Now since elem|−| is representable, by Proposition A.12 it preserves monomorphisms,

and since all functors preserve isomorphisms, we have the following result.

Proposition C.20. Given a V-functor F : C→ D we have the following:

1. If F is faithful, then the underlying ordinary functor Fo is faithful.

2. If F is fully faithful, then the underlying ordinary functor Fo is full and faithful.

If in addition elem|−| is faithful, then by Proposition A.12 and Proposition A.14, we

have the following result.

Proposition C.21. Given a V-functor F : C → D, if elem|−| is faithful, we have the

following:

1. If the underlying ordinary functor Fo is full, then F is full.

2. If the underlying ordinary functor Fo is faithful, then F is faithful.

Note that faithfulness of elem|−| is not enough to lift a full and faithful Fo to a fully

faithful F .

Using the above definitions we can define the notion of a subcategory for V-categories.

Definition C.22. Given a V-category C, a subcategory B of C is a V-category B,

where the objects of B are a subclass of the objects of C, and where there exists a

faithful V-functor I : B → C called the inclusion functor, that is the identity on

objects. If I is fully faithful, then B is a full subcategory of C.
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Proposition C.20 then immediately gives the following.

Proposition C.23. Given V-categories B and C then the following hold:

1. If B is a subcategory of C, then Bo is a subcategory of Co.

2. If B is a full subcategory of C, then Bo is a full subcategory of Co.

Conversely, by Proposition C.21 we have a partial dual result.

Proposition C.24. Given V-categories B and C, if elem|−| is faithful, and if Bo is a

subcategory of Co, then B is a subcategory of C.

Note again, faithfulness of elem|−| is not enough to ensure a full subcategory at the

underlying ordinary category level, lifts to a full subcategory at the enriched level.

Just like in ordinary category theory (Definition A.9), the notion of a faithful functor

captures what it means for one category to be concrete over another.

Definition C.25. Let D be a V-category. A concrete V-category over D is a pair

(C, U), where C is a V-category and U : C → D is a faithful V-functor. Sometimes U

is called the forgetful (or underlying) V-functor of the concrete V-category and D is

called the base V-category for (C, U).

Since the underlying functors of faithful V-functors are faithful, we have the following

results.

Proposition C.26. Given a V-category D, if (C, U) is concrete over D, then (Co, Uo)
is concrete over Do.

Proposition C.27. Given a V-category D and a V functor U : C → D, if elem|−| is

faithful, and if (Co, Uo) is concrete over Do, then (C, U) is concrete over D.

We also have an enriched version of unique transportability (Definition A.11).

Definition C.28. A concrete category (C, U) over D is (uniquely) transportable, if

for every isomorphism f ∈ Do(U(C), D), there exists a (unique) C ′ ∈ obj|C| such that

U(C ′) = D and f : C → C ′ is an isomorphism in Co.

It is easy to see that this corresponds to unique transportability of (Co, Uo) over Do, and

if elem|−| is faithful we have the converse result.

Proposition C.29. Given a V-category D, if the concrete category (C, U) over D is

(uniquely) transportable, then (Co, Uo) is (uniquely) transportable.
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Proposition C.30. Given a V-category D and a V-functor U : C → D, if elem|−| is

faithful, and if the concrete category (Co, Uo) over Do is (uniquely) transportable, then

(C, U) is (uniquely) transportable.

Finally, we can define what we mean by the skeleton of a V-category.

Definition C.31. A skeleton of a V-category C is any full subcategory B such that

each object of C is isomorphic to exactly one object of B.

C.5 Hom-Functors

One of the most useful tools in ordinary category theory are hom-functors, as from these

we can develop the notion of a representable functor. Enriched category theory is no

different in this respect.

We start with the definition of a covariant hom-functor.

Definition C.32. Given a V-category C, and an object A in C, we can define a co-

variant hom-functor C(A,−) : C→ V, as follows:

1. For any B ∈ obj|C| the action of C(A,−) on B is given by C(A,B).

2. For any pair B,C ∈ obj|C| the morphism

C(A,−)B,C : C(B,C)→ [C(A,B),C(A,C)]

is the transpose of MA,B,C under the adjunction −⊗A a [A,−].

Now for f ∈ elem|C(B,C)| = Co(B,C) we can form the following diagram

I ⊗ C(A,B)

f⊗1C(A,B)

��
C(B,C)⊗ C(A,B)

MA,B,C

))

C(A,−)B,C⊗1C(A,B)

��
[C(A,B),C(A,C)]⊗ C(A,B) eC(A,B),C(A,C)

// C(A,C)

and using C(A,−)B,C ◦ f = C(A, f) (Definition C.11), and Proposition B.11, we have

the following result.
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Proposition C.33 (Kelly (1982), Section 1.6). Given a V-category C, and the covari-

ant hom-functor C(A,−), then for any f ∈ elem|C(B,C)| = Co(B,C), the morphsim

C(A, f) is given by

C(A,B)
l−1
C(A,B) // I ⊗ C(A,B)

f⊗1C(A,B) // C(B,C)⊗ C(A,B)
MA,B,C // C(A,C).

Similarly we can define a contravariant hom-functor.

Definition C.34. Given a V-category C, and an object C in C, we can define a con-

travariant hom-functor C(−, C) : C→ V, as follows:

1. For any A ∈ obj|C| the action of C(−, C) on A is given by C(A,C).

2. For any pair A,B ∈ obj|C| the morphism

C(−, C)A,B : C(A,B)→ [C(B,C),C(A,C)]

is the transpose of MA,B,C ◦ cC(A,B),C(B,C) under the adjunction −⊗A a [A,−].

Now for f ∈ elem|C(A,B)| = Co(A,B) we can form the following diagram

I ⊗ C(B,C)

f⊗1C(B,C)

��
C(A,B)⊗ C(B,C)

cC(A,B),C(B,C) //

C(−,C)A,B⊗1C(B,C)

��

C(B,C)⊗ C(A,B)

MA,B,C

��
[C(B,C),C(A,C)]⊗ C(B,C) eC(A,B),C(A,C)

// C(A,C)

and using C(−, C)A,B ◦ f = C(f, C) (Definition C.11), Proposition B.11, and Defini-

tion B.6, we have the following result.

Proposition C.35 (Kelly (1982), Section 1.6). Given a V-category C, and the con-

travariant hom-functor C(−, C), then for any f ∈ elem|C(A,B)| = Co(A,B), the

morphsim C(f, C) is given by

C(B,C)
r−1
C(B,C) // C(B,C)⊗ I

1C(B,C)⊗f // C(B,C)⊗ C(A,B)
MA,B,C // C(A,C).
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It therefore follows from Proposition C.33 and Proposition C.35 that the following dia-

grams commute.

C(A,B)
l−1
C(A,B) // I ⊗ C(B,C)

f⊗1C(A,B) // C(B,C)⊗ C(A,B)
MA,B,C // C(A,C)

I

u

OO

l−1
I

// I ⊗ I

1I⊗u

OO

f⊗u

77

C(B,C)
r−1
C(B,C) // C(B,C)⊗ I

1C(B,C)⊗f // C(B,C)⊗ C(A,B)
MA,B,C // C(A,C)

I

u

OO

r−1
I

// I ⊗ I

u⊗1I

OO

u⊗f

77

In both cases it should be observed that the lower path from I to C(A,C) correspond

to the composites f • u and u • f (in the underlying category Co) respectively, which

gives the following commuting diagrams.

C(A,B)
C(A,f) // C(A,C) C(B,C)

C(f,C) // C(A,C)

I

u

OO

f•u

::

I

u

OO

u•f

::

Now it should be noted that for the covariant hom-functor C(A,−) : C → V, that the

underlying functor C(A,−)o : Co → Vo is not the same as the ordinary hom-functor

Co(A,−) : Co → Set. Specifically we have

C(A,−)oB,C : Co(B,C)→ Vo(C(A,B),C(A,C))

f 7→ C(A, f) : C(A,B)→ C(A,C)

Co(A,−)B,C : Co(B,C)→ Set(Co(A,B),Co(A,C))

f 7→ Co(A, f) : Co(A,B)→ Co(A,C).

However, since elem|−| is the ordinary hom-functor Vo(I,−) (Definition B.3), we have
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elem|C(A, f)| : elem|C(A,B)| → elem|C(A,C)|

u 7→ C(A, f) ◦ u

where the composition C(A, f) ◦ u is in Vo. But as shown above, C(A, f) ◦ u = f • u,

and since elem|C(A,B)| = Co(A,B) (Definition C.10), we have

elem|C(A, f)| : Co(A,B)→ Co(A,C)

u 7→ f • u

but this is just the definition of Co(A, f).

The contravariant case proceeds similarly, and we have the following proposition.

Proposition C.36. Given a V-category C, then for all A,B,C ∈ obj|C|

Co(A,−) = elem|C(A,−)o|

Co(−, C) = elem|C(−, C)o| ,

with

Co(A,−)B,C = elem|−|C(A,B),C(A,C) ◦ C(A,−)oB,C

Co(−, C)A,B = elem|−|C(B,C),C(A,C) ◦ C(−, C)oA,B.

C.6 Extranatural Transformations

As is the case in ordinary category theory (Section A.6) there is a more general notion

of naturality in enriched category theory than that of basic V-natural transformations

(Definition C.4).

We start by using the hom-functors of the previous section to redraw the commutativity

diagram from the definition of a V-natural transformation α : F ⇒ G : C→ D as follows.

C(A,B)
FA,B //

GA,B

��

D(F (A), F (B))

D(F (A),αB)

��
D(G(A), G(B))

D(αA,G(B))
// D(F (A), G(B))

It is this diagram that we shall proceed to generalise.
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Definition C.37. Given a V-functor F : Cop ⊗ C → D we define an extranatural

transformation from D to F by an obj|C| indexed collection of components

αA : D → F (A,A)

in Do, such that the following diagram commutes

C(A,B)
F (A,−)A,B //

F (−,B)A,B

��

D(F (A,A), F (A,B))

D(αA,F (A,B))

��
D(F (B,B), F (A,B))

D(αB ,F (A,B))
// D(D,F (A,B))

Similarly we have a dual notion.

Definition C.38. Given a V-functor F : Cop ⊗ C → D we define an extranatural

transformation from F to D by an obj|C| indexed collection of components

αA : F (A,A)→ D

in Do, such that the following diagram commutes

C(A,B)
F (B,−)A,B //

F (−,A)A,B

��

D(F (B,A), F (B,B))

D(F (B,A),αB)

��
D(F (B,A), F (A,A))

D(F (B,A),αA)
// D(F (B,A), D)

Like the case for V-natural transformations (Definition C.5), we can define the composi-

tion of a V-extranatural transformation with a V-functor to yield another V-extranatural

transformation.

Definition C.39. Given the V-functors F : Cop ⊗ C → D, G : D → E, and H : B → C,

the composite of the V-extranatural transformation αA : D → F (A,A) and G, has the

component (Gα)A given by

G(αA) : G(D)→ GF (A,A),

and the composite with H, has the component (αH)A given by

αH(A) : D → F (H(A), H(A)).
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Dually, the composite of the V-extranatural transformation βA : F (A,A) → D and G,

has the component (Gβ)A given by

G(βA) : GF (A,A)→ G(D),

and the composite with H, has the component (βH)A given by

βH(A) : F (H(A), H(A))→ D.

Using the tensor product of two V-categories we can handle V-extranatural transforma-

tions of several variables, and extend the V-natural transformation result of Proposi-

tion C.9.

Proposition C.40 (Kelly (1982), Section 1.7). Given a V-functor

F : (B⊗ C)op ⊗ (B⊗ C)→ D,

a collection of morphisms

αB,C : K → F (B,C,B,C)

is V-extranatural in (B,C), if and only if, α is V-extranatural in B for each C ∈ obj|C|,
and V-extranatural in C for each B ∈ obj|B|.

It is not usually necessary to make an explicit distinction between V-naturality and

V-extranaturality, and indeed, in line with the ordinary category theory case (Defini-

tion A.31), both can be combined into a general notion of V-natural transformation.

Definition C.41. Given a pair of V-functors

F : Cop ⊗ C⊗ A→ B G : A⊗ Dop ⊗ D→ B

we define a V-natural transformation α : F ⇒ G as a collection of components

αC,A,D : F (C,C,A)→ G(A,D,D),

one for each triple of objects (C,A,D) ∈ obj|C× A× D|, such that the following hold:

1. for C and D fixed, αC,−,D is V-natural (in the ordinary sense) in A,

2. for A and D fixed, α−,A,D is V-extranatural in C,

3. for C and A fixed, αC,A,− is V-extranatural in D.

Remark C.42. Any of the V-categories A, C, and D can be replaced by a tensor product

of several V-categories, and in each case V-naturality in a tensor product argument may

be replaced by V-naturality in each argument of the tuple (that makes up the tensor
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product argument) where the others are fixed. The ordinary V-natural transformation

case is covered by Proposition C.9, and the V-extranatural case by Proposition C.40.

Proposition C.13 also extends to cover this expanded notion of V-natural transformation.

Proposition C.43. Given a pair of V-functors

F : Cop ⊗ C⊗ A→ B G : A⊗ Dop ⊗ D→ B

if the functor elem|−| is faithful, then every ordinary natural transformation

αo : Fo ⇒ Go

lifts to a V-natural transformation α : F ⇒ G.

We have come across many such V-natural transformations so far, without realising

(Kelly, 1982, Section 1.8):

1. For a V-category C, the composition law and identity elements

MA,B,C : C(B,C)⊗ C(A,B)→ C(A,C)

jA : I → C(A,A)

are V-natural in every variable.

2. For a V-functor F : C→ D, the family of morphisms

FA,B : C(A,B)→ D(F (A), F (B))

are V-natural in A and B.

3. For the V-category V, the unit and counit

dX,Y : Y → [Y,X ⊗ Y ]

eY,Z : [Y,Z]⊗ Y → Z

are V-natural in every variable, and the isomorphisms

iX : X → [I,X]

pX,Y,Z : [X ⊗ Y,Z]→ [X, [Y,Z]]

are also V-natural in every variable.
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Remark C.44. The case of the V-functor F : C→ D is worth further discussion. The V-

natural transformation FA,− has the underlying ordinary natural transformation (FA,−)o,

which is not the same as FoA,−, as can be seen if we spell out the signatures

(FA,−)o : C(A,−)o ⇒ D(F (A), F (−))o : Co → Vo
FoA,− : Co(A,−)⇒ Do(F (A), F (−)) : Co → Set.

Proposition C.45 (Kelly (1982), Section 1.8(m)). A family of morphisms

fD,A,B,E,C,F : F (D,D,A,B)⊗G(E,E,A,C)→ H(F, F,B,C)

is V-natural in any of its variables, if and only if, the corresponding transpose

f ‡D,A,B,E,C,F : F (D,D,A,B)→ [G(E,E,A,C), H(F, F,B,C)]

is so.

C.7 The Yoneda Lemma

We now state (without proof) from Kelly (1982, Section 1.9) a weak form of the Yoneda

Lemma for V-categories. It is a weak form because the isomorphism is a bijection of

sets, not an isomorphism of Vo objects.

Lemma C.46 (Yoneda (weak form)). Given a covariant V-functor F : C → V, and

K ∈ obj|C|, if we write V−nat(C(K,−), F ) for the set of all V-natural transformations

from the hom-functor C(K,−) to F , then we have an isomorphism

V−nat(C(K,−), F ) ∼= elem|F (K)| ,

where any α : C(K,−)⇒ F is mapped to η : I → F (K) given by

I
jK // C(K,K)

αK // F (K),

and any η : I → F (K) is mapped to α : C(K,−)⇒ F given by

C(K,A)
FK,A // [F (K), F (A)]

[η,F (A)] // [I, F (A)]
i−1

// F (A).

Though not in Kelly (1982), there is also a contravariant form of the Yoneda Lemma.
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Lemma C.47 (Contravariant Yoneda (weak form)). Given a contravariant V-functor

F : C→ V, and K ∈ obj|C|, if we write V−nat(C(−,K), F ) for the set of all V-natural

transformations from the hom-functor C(−,K) to F , then we have an isomorphism

V−nat(C(−,K), F ) ∼= elem|F (K)| ,

where any α : C(−,K)⇒ F is mapped to η : I → F (K) given by

I
jK // C(K,K)

αK // F (K),

and any η : I → F (K) is mapped to α : C(−,K)⇒ F given by

C(A,K)
FA,K // [F (K), F (A)]

[η,F (A)] // [I, F (A)]
i−1

// F (A).

We shall also need the following special cases. See Kelly (1982, Section 1.9) for the first,

the others are simple variants.

Proposition C.48.

1. Given the covariant V-functors F : C → D, and G : D → C, for all C ∈ obj|C|,
there exists a bijection

{αC,− : D(F (C),−)⇒ C(C,G(−))} ∼= {ηC : C → GF (C)},

such that for every V-natural transformation αC,−, there is a unique ηC , V-natural

in C, given by the image of 1F (C) under

elem
∣∣αC,F (C)

∣∣ : Do(F (C), F (C))→ Co(C,GF (C)),

and for every ηC , V-natural in C, there is a unique V-natural transformation αC,−,

where the component αC,A is given by

D(F (C), A)
GF (C),A // C(GF (C)), G(A))

C(ηC ,G(A)) // C(C,G(A)).

2. Given the covariant V-functors F : C → D, and G : D → C, for all D ∈ obj|D|,
there exists a bijection

{α−,D : C(−, G(D))⇒ D(F (−), D)} ∼= {ηD : FG(D)→ D},

such that for every V-natural transformation α−,D, there is a unique ηD, V-natural

in D, given by the image of 1G(D) under

elem
∣∣αG(D),D

∣∣ : Co(G(D), G(D))→ Do(FG(D), D),
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and for every ηD, V-natural in D, there is a unique V-natural transformation

α−,D, where the component αA,D is given by

C(A,G(D))
FA,G(D) // D(F (A), FG(D))

D(F (A),ηD) // D(F (A), D).

3. Given the contravariant V-functors F : C→ D, and G : D→ C, for all C ∈ obj|C|,
there exists a bijection

{α−,C : D(−, F (C))⇒ C(C,G(−))} ∼= {ηC : C → GF (C)},

such that for every V-natural transformation α−,C , there is a unique ηC , V-natural

in C, given by the image of 1F (C) under

elem
∣∣αF (C),C

∣∣ : Do(F (C), F (C))→ Co(C,GF (C)),

and for every ηC , V-natural in C, there is a unique V-natural transformation α−,C ,

where the component αA,C is given by

D(A,F (C))
GA,F (C) // C(GF (C), G(A))

C(ηC ,G(A)) // C(C,G(A)).

4. Given the contravariant V-functors F : C→ D, and G : D→ C, for all D ∈ obj|D|,
there exists a bijection

{αD,− : C(G(D),−)⇒ D(F (−), D)} ∼= {ηD : FG(D)→ D},

such that for every V-natural transformation αD,−, there is a unique ηD, V-natural

in D, given by the image of 1G(D) under

elem
∣∣αD,G(D)

∣∣ : Co(G(D), G(D))→ Do(FG(D), D),

and for every ηD, V-natural in D, there is a unique V-natural transformation

αD,−, where the component αD,A is given by

C(G(D), A)
FG(D),A // D(F (A), FG(D))

D(F (A),ηD) // D(F (A), D).

C.8 Universal Elements and Universal Morphisms

The material in this section follows that of Mac Lane (1997, III.1–2), adapted to the

enriched setting.
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We start with the idea of a universal element. This is an idea that possibly finds its

true home in enriched category theory, as it is in this setting that we have formalised

the notion of element.

Definition C.49. For a covariant V-functor F : C→ V, a universal element of F is a

pair (A, u), where A ∈ obj|C|, and u ∈ elem|F (A)| (i.e. u : I → F (A)), such that for all

pairs (B, f), with B ∈ obj|C| and f ∈ elem|F (B)|, there exists a unique f ′ ∈ Co(A,B)

with F (f ′) • u = f .

Vo Co

I
u //

f

""

F (A)

F (f ′)

��

A

f ′

��
F (B) B

We can also define universal morphisms to or from a V-functor. These will be familiar

to any student of ordinary category theory, and since formally we don’t have morphisms

in a V-category, the correct place to define them is in the corresponding underlying

categories. However, as we shall see in Proposition C.59, since universal morphisms are

defined at the level of the underlying categories, they are really too weak a concept.

Definition C.50. For a covariant V-functor F : C → D, and an object D in D, a pair

(A, u), where A ∈ obj|C|, and u ∈ Do(D,F (A)), is a universal morphism from D to

F , if for all B ∈ obj|C| and f ∈ Do(D,F (B)), there exists a unique f ′ ∈ Co(A,B) with

F (f ′) • u = f .

Do Co

D
u //

f

""

F (A)

F (f ′)

��

A

f ′

��
F (B) B

The dual definition is a universal morphism from a functor.

Definition C.51. For a covariant V-functor F : C → D, and an object D in D, a pair

(B, u), where B ∈ obj|C|, and u ∈ Do(F (B), D), is a universal morphism from F

to D, if for all A ∈ obj|C| and f ∈ Do(F (A), D), there exists a unique f ′ ∈ Co(A,B)

with u • F (f ′) = f .



Appendix C Enriched Category Theory 203

Do Co

F (A)

f

""

F (f ′)

��

A

f ′

��
F (B) u

// D B

Now we know from Section C.5 on hom-functors, that if F : C → D is covariant, then

for f ′ ∈ Co(A,B) we have the following bijection of diagrams

Do Vo

D
u //

f

""

F (A)

F (f ′)

��

I
u //

f

##

D(D,F (A))

D(D,F (f ′))

��

⇐⇒

F (B) D(D,F (B))

and similarly

Do Vo

F (A)

f

""

F (f ′)

��

I
u //

f

##

D(F (B), D)

D(F (f ′),D)

��

⇐⇒

F (B) u
// D D(F (A), D)

This then leads us to the following propositions.

Proposition C.52. For a covariant V-functor F : C→ D, a pair (A, u : D → F (A)) is

a universal morphism from D to F , if and only if, (A, u : I → D(D,F (A))) is a universal

element of D(D,F (−)).

Proposition C.53. For a covariant V-functor F : C → D, a pair (B, u : F (B) → D)

is a universal morphism from F to D, if and only if, (B, u : I → D(F (B), D)) is a

universal element of D(F (−), D).

As usual there are contravariant versions of universal elements and universal morphisms.
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Definition C.54. For a contravariant V-functor F : C → V, a universal element of

F is a pair (A, u), where A ∈ obj|C|, and u ∈ elem|F (A)| (i.e. u : I → F (A)), such

that for all pairs (B, f), with B ∈ obj|C| and f ∈ elem|F (B)|, there exists a unique

f ′ ∈ Co(B,A) with F (f ′) • u = f .

Vo Co

I
u //

f

""

F (A)

F (f ′)

��

A

F (B) B

f ′

OO

Definition C.55. For a contravariant V-functor F : C → D, and an object D in D, a

pair (A, u), where A ∈ obj|C|, and u ∈ Do(D,F (A)), is a universal morphism from

D to F , if for all B ∈ obj|C| and f ∈ Do(D,F (B)), there exists a unique f ′ ∈ Co(B,A)

with F (f ′) • u = f .

Do Co

D
u //

f

""

F (A)

F (f ′)

��

A

F (B) B

f ′

OO

Definition C.56. For a contravariant V-functor F : C → D, and an object D in D, a

pair (B, u), where B ∈ obj|C|, and u ∈ Do(F (B), D), is a universal morphism from

F to D, if for all A ∈ obj|C| and f ∈ Do(F (A), D), there exists a unique f ′ ∈ Co(B,A)

with u • F (f ′) = f .

Do Co

F (A)

f

""

F (f ′)

��

A

F (B) u
// D B

f ′

OO
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Just like in the covariant case, universal elements and universal morphisms are essentially

the same thing.

Proposition C.57. For a contravariant V-functor F : C→ D, a pair (A, u : D → F (A))

is a universal morphism from D to F , if and only if, (A, u : I → D(D,F (A))) is a

universal element of D(D,F (−)).

Proposition C.58. For a contravariant V-functor F : C→ D, a pair (B, u : F (B)→ D)

is a universal morphism from F to D, if and only if, (B, u : I → D(F (B), D)) is a

universal element of D(F (−), D).

For a covariant V-functor F : C → D, the Yoneda Lemma (Proposition C.48), when

applied to the functor D(D,F (−)), gives a bijection between V-natural transformations

of the form αB : C(A,B)→ D(D,F (B)), and morphisms u : D → F (A).

So given a morphism u : D → F (A), by Proposition C.48, we have that

αB = D(u, F (B)) ◦ FA,B,

and so if u is universal from D to F , elem|αB| : Co(A,B)→ Do(D,F (B)) is a bijection

of hom-sets.

Conversely, if αB is a natural isomorphism, then for any f : D → F (B), there is a unique

f ′ : A→ B such that αB(f ′) = f . So by the naturality of α, we have f = F (f ′)•αA(1A),

but by Yoneda, u = αA(1A), and so f = F (f ′) • u. Thus u is universal from D to F .

We can follow a similar argument for the other cases in Proposition C.48, and this yields

the following proposition, which is essentially Mac Lane (1997, III.2 Proposition 1).

Proposition C.59.

1. Given a covariant V-functor F : C → D, and A ∈ obj|C| and D ∈ obj|D|, then

there is a bijection between natural isomorphisms of the form

αB : Co(A,B)→ Do(D,F (B)),

and morphisms u : D → F (A) that are universal from D to F .

2. Given a covariant V-functor F : C → D, and A ∈ obj|C| and D ∈ obj|D|, then

there is a bijection between natural isomorphisms of the form

αB : Co(B,A)→ Do(F (B), D),

and morphisms u : F (A)→ D that are universal from F to D.
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3. Given a contravariant V-functor F : C → D, and A ∈ obj|C| and D ∈ obj|D|,
then there is a bijection between natural isomorphisms of the form

αB : Co(B,A)→ Do(D,F (B)),

and morphisms u : D → F (A) that are universal from D to F .

4. Given a contravariant V-functor F : C → D, and A ∈ obj|C| and D ∈ obj|D|,
then there is a bijection between natural isomorphisms of the form

αB : Co(A,B)→ Do(F (B), D),

and morphisms u : F (A)→ D that are universal from F to D.

C.9 Representable Functors

Just like in ordinary category theory, from the definition of an enriched hom-functor we

can define what it means for a V-functor to be representable.

Definition C.60. A covariant V-functor F : C → V is representable, if there exists

K ∈ obj|C|, and a V-natural isomorphism

α : C(K,−)⇒ F : C→ V.

The pair (K,α) is a representation of F , and the corresponding element η : I → F (K)

given by the Yoneda Lemma is called the unit of the representation.

Definition C.61. A contravariant V-functor F : C → V is representable, if there

exists K ∈ obj|C|, and a V-natural isomorphism

α : C(−,K)⇒ F : C→ V.

The pair (K,α) is a representation of F , and the corresponding element η : I → F (K)

given by the Yoneda Lemma is called the counit of the representation.

Suppose we have two representations (K,α) and (K ′, α′) for a covariant V-functor F .

Then clearly since α and α′ are isomorphisms, for all A ∈ obj|C|, there exists an isomor-

phism between C(K,A) and C(K ′, A). Now by the Yoneda Lemma (Proposition C.48),

this means there exists a unique k : K ′ → K in Co, such that the isomorphism between

C(K,A) and C(K ′, A) is

C(k,A) : C(K,A)→ C(K ′, A).

Moreover, it is clear that C(k,A) is an isomorphism if and only if k is, which yields the

following proposition.
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Proposition C.62 (Kelly (1982), Section 1.10). A representation (K,α) of a covariant

V-functor F : C → V is unique up to isomorphism, i.e. given another representation

(K ′, α′), there exists a unique isomorphism k : K ′ → K, such that for all A ∈ obj|C|,
αA = α′A ◦ C(k,A).

Similarly for a contravariant V-functor.

Proposition C.63. A representation (K,α) of a contravariant V-functor F : C → V
is unique up to isomorphism, i.e. given another representation (K ′, α′), there exists a

unique isomorphism k : K → K ′, such that for all A ∈ obj|C|, αA = α′A ◦ C(A, k).

Given a representation (K,α) for a contravariant V-functor F : C→ V, it is straightfor-

ward to show that the following diagram commutes.

C(A,B)
FA,B //

l−1
C(A,B)

��

[F (B), F (A)]

I ⊗ C(A,B)

r−1
I⊗C(A,B)

��

[C(B,K), F (A)]⊗ [F (B),C(B,K)]

MF (B),C(B,K),F (A)

OO

(I ⊗ C(A,B))⊗ I
(αA⊗C(−,K)A,B)⊗α−1

B

// ([C(A,K), F (A)]⊗ [C(B,K),C(A,K)])

⊗[F (B),C(B,K)]

MC(B,K),C(A,K),F (A)

⊗1[F (B),C(B,K)]

OO

A similar diagram can be constructed for the covariant case, and together they yield the

following propositions.

Proposition C.64. Given a covariant V-functor F : C → V, and a representation

(K,α), for any f ∈ Co(A,B),

F (f) = αB ◦ C(K, f) ◦ α−1
A .

Proposition C.65. Given a contravariant V-functor F : C → V, and a representation

(K,α), for any f ∈ Co(A,B),

F (f) = αA ◦ C(f,K) ◦ α−1
B

Suppose we have a covariant V-functor F : C → V, and a representation C(K,−) ∼= F .

Now we know from Proposition B.12, that for all X ∈ obj|V|, we have X ∼= [I,X], so

C(K,−) ∼= F ∼= [I, F (−)].
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Similarly, if F is contravariant, we have

C(−,K) ∼= F ∼= [I, F (−)].

Proposition C.59 then says that there exists a unique morphism u : I → F (K) that is

universal from I to F (the unit or counit of the representation to be precise).

We can summarise this as the following proposition, that can be seen to be one direction

of Mac Lane (1997, III.2 Proposition 2).

Proposition C.66. Given a V-functor F : C → V, for every representation (K,α),

there exists a unique morphism u : I → F (K) that is universal from I to F .

Remark C.67. It should be noted that Proposition C.66 is one directional, unlike Mac Lane

(1997, III.2 Proposition 2), where each universal morphism from I to F yields a repre-

sentation. The reason for this is simple, universal morphisms are defined at the level of

the underlying categories, and can only induce bijections of hom-sets, not isomorphisms

in V of hom-objects.

C.10 Adjunctions

We continue our enrichment of ordinary category theory notions by looking at adjunc-

tions.

Definition C.68. A V-adjunction η, ε : F a G : D→ C, between covariant V-functors

F : C→ D (the left adjoint), and G : D→ C (the right adjoint), consists of V-natural

transformations η : 1 ⇒ GF (the unit), and ε : FG ⇒ 1 (the counit), satisfying the

triangular equations

εF ◦ Fη = 1F

Gε ◦ ηG = 1G.

Now it is well known in ordinary category theory that an adjunction corresponds to a

bijection of hom-sets (Definition A.33), so we can consider a V-natural transformation

of the form

ΦC,D : D(F (C), D)→ C(C,G(D)).

By the Yoneda Lemma (Proposition C.48), ΦC,D = C(ηC , G(D)) ◦GF (C),D for a unique

ηC : C → GF (C), V-natural in C, and similarly for ΨC,D : C(C,G(D)) → D(F (C), D),

we have that ΨC,D = D(F (C), εD) ◦ FC,G(D) for a unique εD : FG(D) → D, V-natural

in D.
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We would like ΦC,D to be an isomorphism with ΨC,D its inverse, so we want

ΨC,D ◦ ΦC,D = 1D(F (C),D)

ΦC,D ◦ΨC,D = 1C(C,G(D)).

Setting D = F (C) into the first equation, and considering the action on 1F (C), we recover

the first of the triangular equations. Similarly, setting C = G(D) in the second equation

recovers the second triangular equation.

Thus we have established the following result.

Proposition C.69 (Kelly (1969), Proposition 3.1). There is a bijection between V-

adjunctions

η, ε : F a G : D→ C,

and V-natural isomorphisms

ΦC,D : D(F (C), D) ∼= C(C,G(D)),

where

ΦC,D = C(ηC , G(D)) ◦GF (C),D

Φ−1
C,D = D(F (C), εD) ◦ FC,G(D).

From the definition of the underlying ordinary natural transformation of a V-natural

transformation (Definition C.12), it is clear that any V-adjunction η, ε : F a G : D→ C
has an underlying ordinary adjunction ηo, εo : Fo a Go : Do → Co, and that the corre-

sponding isomorphism of hom-sets is elem|ΦC,D| : Do(F (C), D) ∼= Co(C,G(D)).

Proposition C.70 (Kelly (1982), Section 1.11). Given a V-adjunction

η, ε : F a G : D→ C,

there is an underlying ordinary adjunction

ηo, εo : Fo a Go : Do → Co.

Moreover, for the isomorphism of hom-objects

ΦC,D : D(F (C), D) ∼= C(C,G(D)),

the corresponding isomorphism of hom-sets is

elem|ΦC,D| : Do(F (C), D) ∼= Co(C,G(D)).
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If elem|−| is faithful, the existence of an ordinary adjunction between the ordinary func-

tors underlying a pair of V-functors, is enough to guarantee a V-adjunction. Faithfulness

of elem|−| ensures that the unit and the counit are V-natural (Proposition C.43), and

since a V-natural transformation and its underlying ordinary natural transformation

have the same components, the triangular equations hold automatically.

Proposition C.71. Given covariant V-functors F : C → D and G : D → C such that

the underlying ordinary functors form an ordinary adjunction ηo, εo : Fo a Go : Do → Co,
then if the functor elem|−| is faithful, this lifts to a V-adjunction η, ε : F a G : D→ C.

From Proposition C.69 it is clear that their is a tight relationship between V-adjunctions

and representable V-functors, and this can be made precise as follows.

Proposition C.72 (Kelly (1982), Section 1.11).

1. A covariant V-functor G : D→ C has a left adjoint exactly when each C(C,G(−))

is representable.

2. A covariant V-functor F : C→ D has a right adjoint exactly when each D(F (−), D)

is representable.

The notion of a V-adjunction can be strengthen to that of an equivalence of V-categories.

Definition C.73 (Kelly (1982), Section 1.11). Given a V-adjunction

η, ε : F a G : D→ C,

if the unit η and counit ε are V-natural isomorphisms, then η, ε : F a G : D → C is an

equivalence between C and D.

The following result is often useful in computations involving V-adjunctions.

Proposition C.74 (Kelly (1969), Proposition 3.2). Given a V-adjunction

η, ε : F a G : D→ C,

then for all C,C ′ ∈ obj|C|, and all D,D′ ∈ obj|D|, the morphisms FC,C′ and GD,D′ are

given by

C(C,C ′)
C(C,ηC′ ) //

FC,C′

%%

C(C,GF (C ′))

Φ−1
C,F (C′)

��

D(D,D′)
D(εD,D) //

GD,D′

&&

D(FG(D), D′)

ΦG(D),D′

��
D(F (C), F (C ′)) C(G(D), G(D′))
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For contravariant functors we can develop a dual formulation of the above, though in this

case we lose the obvious distinction between the left and right adjoints (Remark A.45).

Definition C.75. A V-dual adjunction η, ε : G a F : C → D, between contravariant

V-functors F : C→ D, and G : D→ C, consists of V-natural transformations η : 1 ⇒ GF

(the unit), and ε : 1 ⇒ FG (the counit), satisfying the triangular equations

Fη ◦ εF = 1F

Gε ◦ ηG = 1G.

Proposition C.76. There is a bijection between V-dual adjunctions

η, ε : G a F : C→ D,

and V-natural isomorphisms

ΦC,D : C(C,G(D)) ∼= D(D,F (C)),

where

ΦC,D = D(εD, F (C)) ◦ FC,G(D)

Φ−1
C,D = C(ηC , G(D)) ◦GD,F (C).

Proposition C.77. Given a V-dual adjunction

η, ε : G a F : C→ D,

there is an underlying ordinary dual adjunction

ηo, εo : Go a Fo : Co → Do.

Moreover, for the isomorphism of hom-objects

ΦC,D : C(C,G(D)) ∼= D(D,F (C)),

the corresponding isomorphism of hom-sets is

elem|ΦC,D| : Co(C,G(D)) ∼= Do(D,F (C)).

Proposition C.78. Given contravariant V-functors F : C→ D and G : D→ C such that

the underlying functors form an ordinary dual adjunction ηo, εo : Go a Fo : Co → Do, then

if the functor elem|−| is faithful, this lifts to a V-dual adjunction η, ε : G a F : C→ D.

Since there is no real distinction between the left and right adjoints in a dual adjunction,

Proposition C.72 collapses to the following.
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Proposition C.79. A contravariant V-functor F : C → D has a dual adjoint exactly

when each D(D,F (−)) is representable.

Definition C.80. Given a V-dual adjunction

η, ε : G a F : C→ D,

if the unit η and counit ε are V-natural isomorphisms, then η, ε : G a F : C → D is a

dual equivalence between C and D.

Proposition C.81. Given a V-dual adjunction

η, ε : G a F : C→ D,

then for all C,C ′ ∈ obj|C|, and all D,D′ ∈ obj|D|, the morphisms FC,C′ and GD,D′ are

given by

C(C,C ′)
C(C,ηC′ ) //

FC,C′

%%

C(C,GF (C ′))

ΦC,F (C′)

��

D(D,D′)
D(D,εD′ ) //

GD,D′

&&

D(D,FG(D′))

Φ−1
G(D′),D

��
D(F (C ′), F (C)) C(G(D′), G(D))

C.11 Functor Categories

In order to develop the notion of limits and colimits for V-categories, we need the concept

of a functor category, but before we can define these, we need to define the concept of

an end.

Definition C.82 (Kelly (1982), Section 2.1). Given a V-functor F : Cop ⊗ C → V, if

there exists a V-natural family of morphisms

λA : K → F (A,A),

such that for every V-natural αA : X → F (A,A) there exists a unique f : X → K such

that αA = λA ◦ f , then the pair (K,λ) is called the end of F , and we write∫
A
F (A,A)

for K, and λ is called the counit of the end.

Now, since we are assuming that Vo is complete, we have the following result which

ensures the existence of ends if C is small.
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Proposition C.83 (Kelly (1982), Section 2.1). If the V-category C is small, then for

all V-functors F : Cop ⊗ C→ V, the end

λA :

∫
A
F (A,A)→ F (A,A)

exists.

Using the notion of an end we define functor categories as follows.

Definition C.84 (Kelly (1982), Section 2.2). Given the V-categories C and D, the

functor category [C,D] has the following data:

1. The objects of [C,D] are the V-functors F : C→ D.

2. For every pair F,G ∈ obj|[C,D]|, the hom-object [C,D](F,G) is given by the end

[C,D](F,G) =

∫
A
D(F (A), G(A)),

with the counit

EA = EA,F,G : [C,D](F,G)→ D(F (A), G(A)).

3. For all F,G,H ∈ obj|[C,D]|, the composition law

MF,G,H : [C,D](G,H)⊗ [C,D](F,G)→ [C,D](F,H)

is given by the universal property of EA,F,H , such that

[C,D](G,H)⊗ [C,D](F,G)
MF,G,H //

EA,G,H⊗EA,F,G

��

[C,D](F,H)

EA,F,H

��
D(G(A), H(A))⊗ D(F (A), G(A))

MF (A),G(A),H(A)

// D(F (A), H(A))

4. For every F ∈ obj|[C,D]|, the identity element jF is given by the universal property

of EA,F,F , such that

EA,F,F (jF ) = jF (A).

If the V-category C is small, then by Proposition C.83, the hom-objects all exist, and

thus so does the functor category [C,D].

Proposition C.85 (Kelly (1982), Section 2.2). Given the V-categories C and D, if C
is small, then the functor category [C,D] exists.
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The hom-set [C,D]o(F,G) of the underlying category [C,D]o, corresponding to the V-

functors F,G : C→ D, is the set of V-natural transformations α : F ⇒ G.

The EA,F,G form a V-functor EA : [C,D]→ D as given by the following definition.

Definition C.86 (Kelly (1982), Section 2.2). Given the V-categories C and D, if the

functor category [C,D] exists, then the family of morphisms

EA,F,G : [C,D](F,G)→ D(F (A), G(A))

defines for all A ∈ obj|C|, a V-functor called evaluation at A

EA : [C,D]→ D,

where EA(F ) = F (A), and for every pair F,G ∈ obj|[C,D]|, EA,F,G(α) = αA.

Given a V-functor F : C → D it straightforward to define a V-functor from [B,C] to

[B,D], that corresponds to post-composition with F .

Proposition C.87. Given a V-category B and a V-functor F : C → D, if the functor

categories [B,C] and [B,D] exist, then we can define a V-functor

F̂ : [B,C]→ [B,D],

where F̂ (G) = FG, and for all G,H ∈ obj|[B,C]|,

(F̂ )oG,H : [B,C]o(G,H)→ [B,D]o(FG,FH)

α 7→ Fα.

Similarly for pre-composition with F .

Proposition C.88. Given a V-category D and a V-functor F : B → C, if the functor

categories [C,D] and [B,D] exist, then we can define a V-functor

F̂ : [C,D]→ [B,D],

where F̂ (G) = GF , and for all G,H ∈ obj|[C,D]|,

(F̂ )oG,H : [C,D]o(G,H)→ [B,D]o(GF,HF )

α 7→ αF.

C.12 Free V-Categories

Since we are assuming that Vo is cocomplete, it has small coproducts, so the functor

elem|−| has a left adjoint
∐
− I : Set → Vo, sending the set E to the coproduct

∐
E I
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of E copies of I. Moreover, since Vo is closed, ⊗ preserves colimits, so∐
E
I ⊗

∐
F
I ∼=

∐
E

(
I ⊗

∐
F
I
)

∼=
∐

E

(∐
F
I
)

∼=
∐

E×F
I.

From this we are able to define for every ordinary category L, the free V-category over

L. This has the same objects as L, but “promotes” the hom-sets of L to objects in Vo
using the above left adjoint to elem|−|.

Definition C.89 (Kelly (1982), Section 2.5). Given a locally small ordinary category

L, the V-category LV is called the free V-category on L, and has the following data:

1. The objects of LV are precisely the same as those of L, i.e. obj|LV| = obj|L|.

2. For every pair A,B ∈ obj|LV|, the hom-object LV(A,B) is given by

LV(A,B) =
∐

L(A,B)
I.

3. For all pair A,B,C ∈ obj|LV|, the composition law

MA,B,C : LV(B,C)⊗ LV(A,B)→ LV(A,C)

is given by

∐
L(B,C) I ⊗

∐
L(A,B) I

MA,B,C //

∼=

��

∐
L(A,C) I

∐
L(B,C)×L(A,B) I

∐
◦ I

66

where
∐
◦ I is

∐
− I acting on composition in L.

4. For every A ∈ obj|LV|, the identity element jA is given by

I
jA //

∼=

��

∐
L(A,A) I

∐
1 I

∐
1A

I

;;
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Using the above definition of a free V-category, it is also possible to lift an ordinary

functor F : L→ Co, where Co is the underlying category of a C-catgeory, to a V-functor

F : LV → C. Similarly, ordinary natural transformations can be lifted too.

Proposition C.90 (Kelly (1982), Section 2.5). Given a locally small ordinary category

L, there is an ordinary functor ψ : L→ (LV)o defined by:

1. On objects ψ is the identity.

2. For every pair A,B ∈ obj|L|, the morphism ψA,B : L(A,B)→ elem
∣∣∣∐L(A,B) I

∣∣∣ is

defined in the obvious way.

Given a V-category C, then the following are true:

1. If F : L→ Co is an ordinary functor, then there exists a V-functor

F : LV → C,

such that (F )o ◦ ψ = F . Moreover, F is defined as follows:

(a) F (A) = F (A), for any A ∈ obj|LV|,

(b) for every pair A,B ∈ obj|LV|, the morphism

FA,B :
∐

L(A,B)

I → C(F (A), F (B))

is the transpose of FA,B : L(A,B) → Co(F (A), F (B)) under the adjunction∐
− I a elem|−| : Vo → Set.

2. If α : F ⇒ G : L → Co is an ordinary natural transformation, then there exists a

V-natural transformation

α : F ⇒ G : LV → C,

such that (α)oψ = α. Moreover, the component αA is αA ∈ Co(F (A), G(A)).

If the ordinary category L is small, then since LV has precisely the same objects as L, it

too must be small, and hence by Proposition C.85, the functor category [LV,C] exists.

The objects of the underlying ordinary category [LV,C]o are the V-functors from LV to

C, and the construction of Proposition C.90 yields a bijection between them and the

ordinary functors from L to Co. Moreover, this extends to an isomorphism of ordinary

categories.

Proposition C.91 (Kelly (1982), Section 2.5). Given a small ordinary category L, and

a V-category C, then LV is a small V-category, and [LV,C] exists. Moreover,

[LV,C]o ∼= [L,Co].
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C.13 Limits and Colimits

Enriched category theory has a more general notion of limits and colimits than is stan-

dard in ordinary category theory. These are the so called indexed, or weighted, limits

and colimits. The standard “cone” based limits and colimits of ordinary category theory

then acquire the name conical limits and colimits. It turns out, though we shall not dis-

cuss this further, that in ordinary category theory all indexed limits can be constructed

from conical limits, and similarly for colimits. However, in the general enriched case this

is no longer true.

Definition C.92 (Kelly (1982), Section 3.1). Given the covariant V-functor F : K→ V
and the covariant V-functor G : K→ C, if the contravariant V-functor H : C→ V given

by

H(A) = [K,V](F,C(A,G(−)))

is defined for all A, and has a representation

C(A, {F,G}) ∼= [K,V](F,C(A,G(−))),

with counit

µ : F ⇒ C({F,G}, G(−)),

then the representation ({F,G}, µ) is called the limit of G indexed by F . The V-

functor F is called the indexing type, and the V-functor G is called the diagram in

C of type F .

Definition C.93 (Kelly (1982), Section 3.1). Given the contravariant V-functor F : K→
V and the covariant V-functor G : K → C, if the covariant V-functor H : C → V given

by

H(A) = [K,V](F,C(G(−), A))

is defined for all A, and has a representation

C(F ∗G,A) ∼= [K,V](F,C(G(−), A))

with unit

µ : F ⇒ C(G(−), F ∗G)

then the representation (F ∗ G,µ) is called the colimit of G indexed by F . The

V-functor F is called the indexing type, and the V-functor G is called the diagram

in C of type F .

Conical limits and colimits correspond to the special case where the diagrams are given

by an ordinary category J, and all “cone” vertices have the same weight or index. We do

this by defining the diagonal functor ∆I : J→ Vo that maps every object of J to I, and
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every morphism of J to 1I . Then by Proposition C.90, ∆I and the diagram G : J→ Co
are paired with V-functors ∆I : JV → V and G : JV → C, for which we take the indexed

limits and colimits.

Definition C.94 (Kelly (1982), Section 3.8). Given a V-category C, a locally small

ordinary category J, and an ordinary functor G : J→ Co, then the limit ({∆I , G}, µ), if

it exists, of G : JV → C indexed by ∆I : JV → V, is called the conical limit in C of G,

and we write

limC(G) = {∆I , G},

giving the representation

C(A, limC(G)) ∼= [JV,V](∆I ,C(A,G(−))).

The counit

µ : ∆I ⇒ C(limC(G), G(−))

has components

µJ : limC(G)→ G(J),

which give the limiting cone of G in Co.

Definition C.95 (Kelly (1982), Section 3.8). Given a V-category C, a locally small

ordinary category J, and an ordinary functor G : J → Co, then the colimit (∆I ∗ G,µ),

if it exists, of G : JV → C indexed by ∆I : JV → V, is called the conical colimit in C
of G, and we write

colimC(G) = ∆I ∗G,

giving the representation

C(colimC(G), A) ∼= [JV,V](∆I ,C(G(−), A)).

The unit

µ : ∆I ⇒ C(G(−), colimC(G))

has components

µJ : G(J)→ colimC(G),

which give the colimiting cocone of G in Co.

Just like in ordinary category theory, V-functors can be said to preserve and create limits

and colimits.

Given a V-functor H : C → D, then for V-functors F : K → V and G : K → C, any

V-natural transformation

α : F ⇒ C(A,G(−)),
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yields a V-natural transformation

β : F ⇒ D(H(A), HG(−)),

given by β = HA,G(−) ◦α. Thus the limit ({F,G}, µ) of G indexed by F , can be mapped

to the pair (H({F,G}), H{F,G},G(−) ◦ µ). Similarly, if F is contravariant, the colimit

(F ∗G,µ) of G indexed by F , can be mapped to the pair (H(F ∗G), HG(−),F∗G ◦ µ).

Using this we can define what is meant by preservation and creation of limits and colimits

in the enriched setting.

Definition C.96. Given the covariant V-functor F : K → V, and the V-functors

G : K → C, and H : C → D, then H preserves limits of G indexed by F , if for

any limit ({F,G}, µ) of G indexed by F , we have that (H({F,G}), H{F,G},G(−) ◦ µ) is a

limit of HG indexed by F .

Definition C.97. Given the contravariant V-functor F : K → V, and the V-functors

G : K→ C, and H : C→ D, then H preserves colimits of G indexed by F , if for any

colimit (F ∗G,µ) of G indexed by F , we have that (H(F ∗G), HG(−),F∗G ◦µ) is a colimit

of HG indexed by F .

Definition C.98. Given the covariant V-functor F : K → V, and the V-functors

G : K → C, and H : C → D, then H creates limits of G indexed by F , if for any

limit ({F,HG}, µ) of HG indexed by F , there exists a unique pair (A, ν), where ν is a

V-natural transformation

ν : F ⇒ C(A,G(−)),

and such that H(A) = {F,HG}, HA,G(−) ◦ ν = µ, and (A, ν) is a limit of G indexed by

F .

Definition C.99. Given the contravariant V-functor F : K → V, and the V-functors

G : K → C, and H : C → D, then H creates colimits of G indexed by F , if for any

colimit (F ∗HG,µ) of HG indexed by F , there exists a unique pair (A, ν), where ν is a

V-natural transformation

ν : F ⇒ C(G(−), A),

and such that H(A) = F ∗HG, HG(−),A ◦ ν = µ, and (A, ν) is a colimit of G indexed

by F .
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Kurz, A. and Rosický, J. (2012). Strongly complete logics for coalgebras. Logical Methods

in Computer Science, 8(3).

Kurz, A. and Velebil, J. (2011). Enriched logical connections. Applied Categorical

Structures (online first), pages 1–29.

Larsen, K. G. and Skou, A. (1991). Bisimulation through probabilistic testing. Infor-

mation and Computation, 94(1):1–28.



226 REFERENCES

Lawvere, F. W. (1973). Metric spaces, generalized logic, and closed categories. Milan

Journal of Mathematics, 43(1):135–166.

Levy, P. (2011). Similarity quotients as final coalgebras. In Hofmann, M., editor, Foun-

dations of Software Science and Computational Structures, volume 6604 of Lecture

Notes in Computer Science, pages 27–41. Springer Berlin / Heidelberg. FOSSACS

2011 proceedings.

Mac Lane, S. (1997). Categories for the Working Mathematician, volume 5 of Graduate

Texts in Mathematics. Springer Berlin / Heidelberg, second edition.

Mislove, M., Ouaknine, J., Pavlovic, D., and Worrell, J. (2004). Duality for labelled

markov processes. In Walukiewicz, I., editor, Foundations of Software Science and

Computation Structures, volume 2987 of Lecture Notes in Computer Science, pages

393–407. Springer Berlin / Heidelberg. FOSSACS 2004 proceedings.

Moss, L. S. (1999). Coalgebraic logic. Annals of Pure and Applied Logic, 96(1-3):277–

317.

Panangaden, P. (1999). The category of Markov kernels. Electronic Notes in Theoretical

Computer Science, 22:171–187. PROBMIV 1998 proceedings.

Pattinson, D. (2001). Modal languages for coalgebras in a topological setting. Electronic

Notes in Theoretical Computer Science, 44(1):271–284. CMCS 2001 proceedings.

Pattinson, D. (2003). Coalgebraic modal logic: soundness, completeness and decidability

of local consequence. Theoretical Computer Science, 309(1-3):177–193.
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Schröder, L. and Pattinson, D. (2009). Strong completeness of coalgebraic modal logics.

In Albers, S. and Marion, J.-Y., editors, 26th International Symposium on Theoretical

Aspects of Computer Science, volume 3 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 673–684. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

STACS 2009 proceedings.

Schwencke, D. (2008). Coequational logic for finitary functors. Electronic Notes in

Theoretical Computer Science, 203(5):243–262. CMCS 2008 proceedings.

Turi, D. and Rutten, J. (1998). On the foundations of final coalgebra semantics: non-

well-founded sets, partial orders, metric spaces. Mathematical Structures in Computer

Science, 8(5):481–540.

van Breugel, F., Mislove, M., Ouaknine, J., and Worrell, J. (2005). Domain theory,

testing and simulation for labelled Markov processes. Theoretical Computer Science,

333(1-2):171–197.

van Glabbeek, R. J. (2001). The linear time - branching time spectrum I. In Bergstra,

J., Ponse, A., and Smolka, S., editors, Handbook of Process Algebra, chapter 1, pages

3–99. Elsevier Science B.V.

Wagner, K. R. (1997). Liminf convergence in Ω-categories. Theoretical Computer Sci-

ence, 184(1-2):61–104.



228 REFERENCES

Wilkinson, T. (2012a). A characterisation of expressivity for coalgebraic bisimula-

tion and simulation. Electronic Notes in Theoretical Computer Science, 286:323–336.

MFPS XXVIII proceedings.

Wilkinson, T. (2012b). Internal models for coalgebraic modal logics. In Pattinson, D.
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