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Abstract. Critical events in industrial drilling should be overcome by engineers 

while they maintain safety and achieve their targeted operational drilling plans. 

Geophysical drilling requires maximum awareness of critical situations such as 

“Kicks”, “Fluid loss” and “Stuck pipe”. These may compromise safety and 

potentially halt operations with the need of staff rapid evacuations from rigs. In 

this paper, a robust method for the detection of operational states is proposed. 

Specifically, Echo State Networks (ESNs) were benchmarked and tested rigorously 

despite the challenging unbalanced datasets used for training. Nevertheless, these 

challenges were overcome and led to acceptable ESNs performances.  

1 Introduction 

Real-time operations decision-making is performed by drilling managers for 

executing complex drilling procedures and actions while meeting their daily drilling 

depth targets. Despite their collective expert knowledge, drillers need further support 

from more advanced information systems, specializing in automated detection of 

drilling states. The automation of state detection and reporting shall improve future 

drilling operations, particularly for handling critical events. The extraction of drilling 

information with the detection models shall assist drillers to reduce their time for the 

analysis of large volumes of well-bores drilling sensor observation data and decision-

making. Also, the integration of operational state detection models and storage of 

their results in drilling systems should improve audit-trails of drilling activities. These 

are conducted by multiple shifts of drilling teams during the 24hr operational cycles.  

The on-line access and learning from past decisions made during critical events by 

various teams shall potentially save operational costs and increase safety in drilling 

rigs.   

2 Operational drilling in critical conditions  

Critical drilling conditions do not usually arise abruptly in time. Drilling systems 

normally undergo transitional conditions prior to reaching criticality. Therefore, the 

ability to detect and control operational procedures and actions shall be very 

important to achieve in order to minimize critical situations during drilling operations. 
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Nevertheless, due to the lack of real-time knowledge and analysis on geological 

formation, it is very challenging for drilling teams to avoid critical situations. This is a 

difficult position of responsibility to take while assuring safety and low cost of 

operations. The time constraints for achieving sound decisions is also very tight, 

while the diagnosis made at each step of drilling procedures could encounter relative 

high uncertainties, and lead to costly mitigation measures for avoiding crises [1]. 

 Ten drilling sensor parameters were considered to represent drilling 

processes in this study.  These are used for monitoring the drilling system’ functions 

and therefore can be used as indicators of critical conditions. However, it is 

challenging for drilling experts to diagnose, assess and make sense of the large 

volume of generated data from these 10 channels during very limited time to decision-

making. The ten drilling Operation States (OS) which have been considered in this 

study include: Drilling rotary (DrlRot), Drilling sliding (DrlSld), Clean downwards 

(CleanDN), Clean upwards (CleanUP), Wash upwards (WashUP), Wash downwards 

(WashDN), Move in hole (MoveDN), Move out of hole (MoveUP), Circulation on 

(CirclHL) , Make connection (MakeCN). The OS can be reasonably detected under 

one drilling run, using machine learning techniques and the support of additional 

principal states such as String at Hook, Rock Penetrate, Fluid Circulate and String 

Rotate and Translate [2]. However, the challenge is to maintain such detection 

success rates in multiple drilling runs within a drilling phase and beyond.  

 In this paper, benchmarking is performed for the deployment and training of 

data-driven models to carry out OS detection under multiple runs per drilling phase. 

The models are trained using only 30% of the first drilling run data at each given 

drilling phase. Testing is then performed on the remaining unseen data at various 

subsequent runs of each phase. Drilling OS are then detected directly in order to avoid 

additional uncertainties caused by estimated principal states such as in hierarchical 

method used in [2]. Powerful Echo State Networks (ESNs) were deployed with 

significantly reduced training times. Techniques for using multi-class unbalanced data 

were also required due to the unbalanced datasets both for training and testing found 

during statistical analysis of the labeled data. 

3 Automated OS detection 

3.1 Multi-class imbalance problem  

Multi-class imbalance problems are difficult to solve and present an important 

challenge for building reliable decision-support applications in engineering [3].  The 

most useful approach to address this issue involves the decomposition of the problem 

into a multiple two-classes-classification problem to handle each imbalance binary 

sub-problem accordingly. For the case of drilling OS detection, two decomposition 

schemes were adopted [4]: one-against-one (OAO) and one-against-all (OAA). With 

the OAA scheme, each class is trained against all classes.  While with the OAO 

scheme, each class is trained against every single other class, i.e. a system of multiple 

classifiers has to be implemented. Considering the complex dynamics of drilling time 

series, the ESN was adopted as a classifier. A single ESN with multiple outputs that 

represent a number of classes was used for the OAA scheme, while multiple ESNs 

with a single binary output were deployed using the OAO scheme.  



 Two approaches were selected for dealing with the imbalance problems in 

this study: a Prior Duplicate Sampling (PDS) and Inverse Random Under Sampling 

(IRUS). PDS is based on duplicating data examples of minority class by a fixed 

number of times in a training set [5]. After this duplication, the number of examples 

in minority and majority classes becomes equal. IRUS is a recently proposed method 

for solving class imbalance problems. It showed significant performance gains on 22 

UCI public datasets when compared with many other existing class-imbalance 

learning methods [6]. The main idea is to severely under sample the majority class 

(negative class), thus creating a large number of distinct negative training sets. In this 

study,  both PDS and IRUS approaches are used as data pre-processing tools. PDS 

can be realized using a single ESN as a classifier under both OAA and OAO schemes.  

IRUS approach results in forming the new training sets. These sets can be considered 

as Multiple Time Series and used as inputs to a single ESN for training. In this case, 

OAO scheme is applied to make the decision about a sample class. 

 Extensive simulation experiments based on the different combinations of the 

approaches mentioned above were conducted. Thus, the most promising strategies for 

drilling OS detection are OAA, OAO, OAO with a prior duplicate sampling 

(OAO_PDS), and OAO with inverse random under sampling (OAO_IRUS) and ESN 

as classifier.   

3.2 Echo state networks  

ESNs are reservoir computing networks which are conceptually simple, 

computationally inexpensive, and able to learn complex dynamical behaviour [7]. The 

hidden layer (reservoir) consists of randomly connected neurons, some of which are 

connected in cycles. It allows the resulting states to be "echoes" of the past inputs in 

ESN. The hidden layer neurons are also randomly connected to the input signal which 

drives the network. Only the output weights are learnt; while all other weights 

including feedbacks are randomly selected and remain static. Detailed description of 

ESNs can be found in [7]. The decision function is used depending on a type of 

approach for modeling pattern classes. For OAA, the class label selected corresponds 

to the largest output value after ESN activation. The majority voting is used for OAO. 

4 Simulation results 

4.1 Experimental setup 

In order to evaluate the effectiveness of the proposed approaches, OS detection was 

performed on sensor measurement data for monitoring drilling operations at a single 

well on a drilling rig. The measurements received from a mud-logging system on the 

drilling rig included: Block Position, Bit Depth, Hole Depth, Weight on Bit, Mud 

Flow, Pump Pressure, Rate of Penetration, Rotary Torque, Hook Load and Rotary 

Speed. Six additional features were also considered: 1) Hole Depth - Bit Depth, 2) 

Hole Depth + Block Position, 3) Bit Depth + Block Position, 4) Rotary Torque * 

Rotary Speed, 5) Pump Pressure * Mud Flow, 6) Rate of Penetration * Weight on Bit. 

The drilling operation was achieved in three phases: 12.25", 8.75" and 6.00", and 

models were trained and tested for each phase respectively. The following 



assumptions were made about the data: 

 Drilling Runs are known for both training and testing. Altogether 11 drilling 

runs took place in the experiment.  

 Training was restricted to 30% of the data represented in the first Drilling 

Run at a given phase 

 The OS labels were provided for training sets at each phase 

 We applied a plain ESN with 300 hidden units and 16 inputs for each 

algorithm. Single Time Series learning mode were used for OAA, OAO and 

OAO_PDS algorithms, while Multiple Time Series learning mode were used for 

OAO_IRUS. The spectral radius was set to 0.45 without input and teaching scaling 

with no feedback. One ESN was trained with 10 binary outputs for OAA and 45 

ESNs with 1 binary output for other algorithms. For each drilling phase, a new single 

or set of multiple ESNs was trained. In OAO scheme ties are broken as follows. If a 

label in ties occurred at the previous step, it is used as an output. Otherwise, the ties 

are randomly broken. Table 1 below shows the unbalanced OS labels for Drilling 

Runs. The most representative class is DrlRot, followed by DrlSl then MakeCN. The 

rarest classes include CleanUp, WashDN and WashUp.  

 

CircHL CleanDN CleanUP DrlRot DrlSld MakeCN  MoveDN MoveUP WashDN WashUP 

7% 6.2% 

 

1.4% 38.3% 23.4% 13.2% 2.8% 3.4% 2% 1.9% 

  Table 1: Distribution of OS labels for Drilling Runs. 

4.2 Algorithms comparison 

Four algorithms were compared in this section. These are: OAA, OAO, OAO_PDS 

and OAO_IRUS. Micro-averaged and macro-averaged F-measures for overall 

performance at a drilling phase together with Correct Classification Rate (CCR) for 

each OS were adopted. The F-measure metric is equal to the harmonic mean of recall 

() and  precision (), and its values are in the interval [0,1]. The overall  and  are 

obtained by summing over all individual classes: 
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Where M is the number of classes, while TP, FP and FN are the number of their true 

positives, false positives and false negatives respectively. The micro-averaged and 

macro-averaged F-measures are computed as follows: 
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Micro-averaged F-measure 1F  gives equal weights to each label and is therefore 

considered as an average over all labels/classes pairs. It tends to be dominated by the 

classifier's performance on common classes. Macro-averaged F-measure 2F  gives 

equal weights to each class regardless of its frequency.  

 Table 2, below, shows the overall performance of four algorithms for the 

8.75" Drilling Phase. The best performing algorithm both for common and rare 

classes overall is OAO_IRUS, while the poor performing algorithm is OAA.  OAO 



overperforms OAO_PDS on rare classes, while OAO_PDS shows better performance 

on common classes.  

 

Algorithm   OAA OAO 

 

OAO_PDS 

 

OAO_IRUS  

1F  

2F  

51% 

28.7% 

71.9% 

37.5% 

74% 

32.4% 

78.8% 

40.8% 

                         Table 2: Overall performance for 8.75" Drilling Phase. 

 

 The overall performance does not show how good the algorithms are for 

different classes. However, the most important operational states  are DrlRot, DrlSld 

and MakeCN. The aim is that these should be classified with the highest possible 

accuracy.  The misclassification of the remaining states is in fact less critical. Figure 1 

shows CCR for each OS. All algorithms except OAA show good performance (>90%) 

for DrlSld, except OAO_PDS for MakeCN. The best performance is achieved with 

OAO_PDS and OAO_IRUS for DrlRot. All algorithms showed low CCR (<40%) for 

CleanDN/CleanUP and WashDN/WashUP. CleanUP, WashUP and MoveUP are 

often miss-detected as CleanDN, WashDN and MoveDN respectively and vice versa.  

CircHL is another OS with a low detection level, though significant improvement 

(100% or more) in CCR can be achieved using the OAO or OAO_IRUS algorithms. It 

is difficult to select the best algorithm for drilling applications, since the respective 

performances of these algorithms varies from OS to OS; and from Drilling Phase to 

another. Based on CCR for each OS, OAO and OAO_IRUS show more robust 

performance for the majority of considered OSs.  

  

 
   Fig. 1: CCR per OS for Drilling Phase 8.75". 

 

 The performance of the algorithms was also studied through runs at a given 

phase. Figure 2 shows how F1 and F2 measures changes for each algorithm as drilling 

progresses after training. The OAA algorithm tends to degrade in performance both 

for common and rare classes. Similar observation is displayed with the OAO for 

common classes. After significant drop in F2 from Run3 to Run4, it stays 

approximately stable for both Run5 and Run6. All algorithms show unsatisfactory 

performance for Run6 and common classes. The drop in both F1 and F2 in the 

algorithms took place for Run4. The best preforming algorithm for progressive 

drilling is OAO_IRUS. 

 



 
 

  Fig. 2: F1 and F2 per Drilling Run for Drilling Phase 8.75". 

5 Conclusions and future development 

A set of ESNs were implemented for the automated detection of industrial drilling 

operational states. Their overall performance is satisfactory for the detection of 

critical states and low for the less relevant ones. This may be due to the self-imposed 

benchmarking for training below 30% of the labeled dataset. Also the inclusion of 

high level features representing the direction of operations may improve the overall 

results. The ESNs were also tested on unseen multiple runs to explore the limits of 

their performances under one drilling phase. This approach was strategic to put in 

place in order to launch future deployment of ESNs as Multiple fused ESNs under an 

adaptive OS framework with dynamic error estimations.  
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