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Abstract. Critical events in industrial drilling should be overcome by engineers
while they maintain safety and achieve their targeted operational drilling plans.
Geophysical drilling requires maximum awareness of critical situations such as
“Kicks”, “Fluid loss” and “Stuck pipe”. These may compromise safety and
potentially halt operations with the need of staff rapid evacuations from rigs. In
this paper, a robust method for the detection of operational states is proposed.
Specifically, Echo State Networks (ESNs) were benchmarked and tested rigorously
despite the challenging unbalanced datasets used for training. Nevertheless, these
challenges were overcome and led to acceptable ESNs performances.

1 Introduction

Real-time operations decision-making is performed by drilling managers for
executing complex drilling procedures and actions while meeting their daily drilling
depth targets. Despite their collective expert knowledge, drillers need further support
from more advanced information systems, specializing in automated detection of
drilling states. The automation of state detection and reporting shall improve future
drilling operations, particularly for handling critical events. The extraction of drilling
information with the detection models shall assist drillers to reduce their time for the
analysis of large volumes of well-bores drilling sensor observation data and decision-
making. Also, the integration of operational state detection models and storage of
their results in drilling systems should improve audit-trails of drilling activities. These
are conducted by multiple shifts of drilling teams during the 24hr operational cycles.
The on-line access and learning from past decisions made during critical events by
various teams shall potentially save operational costs and increase safety in drilling
rigs.

2 Operational drilling in critical conditions

Critical drilling conditions do not usually arise abruptly in time. Drilling systems
normally undergo transitional conditions prior to reaching criticality. Therefore, the
ability to detect and control operational procedures and actions shall be very
important to achieve in order to minimize critical situations during drilling operations.
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Nevertheless, due to the lack of real-time knowledge and analysis on geological
formation, it is very challenging for drilling teams to avoid critical situations. This is a
difficult position of responsibility to take while assuring safety and low cost of
operations. The time constraints for achieving sound decisions is also very tight,
while the diagnosis made at each step of drilling procedures could encounter relative
high uncertainties, and lead to costly mitigation measures for avoiding crises [1].

Ten drilling sensor parameters were considered to represent drilling
processes in this study. These are used for monitoring the drilling system’ functions
and therefore can be used as indicators of critical conditions. However, it is
challenging for drilling experts to diagnose, assess and make sense of the large
volume of generated data from these 10 channels during very limited time to decision-
making. The ten drilling Operation States (OS) which have been considered in this
study include: Drilling rotary (DrlRot), Drilling sliding (DrlSld), Clean downwards
(CleanDN), Clean upwards (CleanUP), Wash upwards (WashUP), Wash downwards
(WashDN), Move in hole (MoveDN), Move out of hole (MoveUP), Circulation on
(CirclHL) , Make connection (MakeCN). The OS can be reasonably detected under
one drilling run, using machine learning techniques and the support of additional
principal states such as String at Hook, Rock Penetrate, Fluid Circulate and String
Rotate and Translate [2]. However, the challenge is to maintain such detection
success rates in multiple drilling runs within a drilling phase and beyond.

In this paper, benchmarking is performed for the deployment and training of
data-driven models to carry out OS detection under multiple runs per drilling phase.
The models are trained using only 30% of the first drilling run data at each given
drilling phase. Testing is then performed on the remaining unseen data at various
subsequent runs of each phase. Drilling OS are then detected directly in order to avoid
additional uncertainties caused by estimated principal states such as in hierarchical
method used in [2]. Powerful Echo State Networks (ESNs) were deployed with
significantly reduced training times. Techniques for using multi-class unbalanced data
were also required due to the unbalanced datasets both for training and testing found
during statistical analysis of the labeled data.

3 Automated OS detection

3.1  Multi-class imbalance problem

Multi-class imbalance problems are difficult to solve and present an important
challenge for building reliable decision-support applications in engineering [3]. The
most useful approach to address this issue involves the decomposition of the problem
into a multiple two-classes-classification problem to handle each imbalance binary
sub-problem accordingly. For the case of drilling OS detection, two decomposition
schemes were adopted [4]: one-against-one (OAO) and one-against-all (OAA). With
the OAA scheme, each class is trained against all classes. While with the OAO
scheme, each class is trained against every single other class, i.e. a system of multiple
classifiers has to be implemented. Considering the complex dynamics of drilling time
series, the ESN was adopted as a classifier. A single ESN with multiple outputs that
represent a number of classes was used for the OAA scheme, while multiple ESNs
with a single binary output were deployed using the OAO scheme.



Two approaches were selected for dealing with the imbalance problems in
this study: a Prior Duplicate Sampling (PDS) and Inverse Random Under Sampling
(IRUS). PDS is based on duplicating data examples of minority class by a fixed
number of times in a training set [5]. After this duplication, the number of examples
in minority and majority classes becomes equal. IRUS is a recently proposed method
for solving class imbalance problems. It showed significant performance gains on 22
UCI public datasets when compared with many other existing class-imbalance
learning methods [6]. The main idea is to severely under sample the majority class
(negative class), thus creating a large number of distinct negative training sets. In this
study, both PDS and IRUS approaches are used as data pre-processing tools. PDS
can be realized using a single ESN as a classifier under both OAA and OAO schemes.
IRUS approach results in forming the new training sets. These sets can be considered
as Multiple Time Series and used as inputs to a single ESN for training. In this case,
OAO scheme is applied to make the decision about a sample class.

Extensive simulation experiments based on the different combinations of the
approaches mentioned above were conducted. Thus, the most promising strategies for
drilling OS detection are OAA, OAO, OAO with a prior duplicate sampling
(OAO_PDS), and OAO with inverse random under sampling (OAO_IRUS) and ESN
as classifier.

3.2  Echo state networks

ESNs are reservoir computing networks which are conceptually simple,
computationally inexpensive, and able to learn complex dynamical behaviour [7]. The
hidden layer (reservoir) consists of randomly connected neurons, some of which are
connected in cycles. It allows the resulting states to be "echoes" of the past inputs in
ESN. The hidden layer neurons are also randomly connected to the input signal which
drives the network. Only the output weights are learnt; while all other weights
including feedbacks are randomly selected and remain static. Detailed description of
ESNs can be found in [7]. The decision function is used depending on a type of
approach for modeling pattern classes. For OAA, the class label selected corresponds
to the largest output value after ESN activation. The majority voting is used for OAO.

4 Simulation results

4.1 Experimental setup

In order to evaluate the effectiveness of the proposed approaches, OS detection was
performed on sensor measurement data for monitoring drilling operations at a single
well on a drilling rig. The measurements received from a mud-logging system on the
drilling rig included: Block Position, Bit Depth, Hole Depth, Weight on Bit, Mud
Flow, Pump Pressure, Rate of Penetration, Rotary Torque, Hook Load and Rotary
Speed. Six additional features were also considered: 1) Hole Depth - Bit Depth, 2)
Hole Depth + Block Position, 3) Bit Depth + Block Position, 4) Rotary Torque *
Rotary Speed, 5) Pump Pressure * Mud Flow, 6) Rate of Penetration * Weight on Bit.
The drilling operation was achieved in three phases: 12.25", 8.75" and 6.00", and
models were trained and tested for each phase respectively. The following



assumptions were made about the data:
e Drilling Runs are known for both training and testing. Altogether 11 drilling
runs took place in the experiment.
e Training was restricted to 30% of the data represented in the first Drilling
Run at a given phase
e The OS labels were provided for training sets at each phase
We applied a plain ESN with 300 hidden units and 16 inputs for each
algorithm. Single Time Series learning mode were used for OAA, OAO and
OAO_PDS algorithms, while Multiple Time Series learning mode were used for
OAO_IRUS. The spectral radius was set to 0.45 without input and teaching scaling
with no feedback. One ESN was trained with 10 binary outputs for OAA and 45
ESNs with 1 binary output for other algorithms. For each drilling phase, a new single
or set of multiple ESNs was trained. In OAO scheme ties are broken as follows. If a
label in ties occurred at the previous step, it is used as an output. Otherwise, the ties
are randomly broken. Table 1 below shows the unbalanced OS labels for Drilling
Runs. The most representative class is DrlRot, followed by DrlSl then MakeCN. The
rarest classes include CleanUp, WashDN and WashUp.

CircHLJCleanDN|CleanUPDrIR otDrlSIdMake CNMoveDNMoveUP[WashDN[WashUP

7% | 62% | 1.4% |38.3%|23.4%| 13.2% | 2.8% | 3.4% 2% 1.9%

Table 1: Distribution of OS labels for Drilling Runs.

4.2  Algorithms comparison

Four algorithms were compared in this section. These are: OAA, OAO, OAO_PDS
and OAO_IRUS. Micro-averaged and macro-averaged F-measures for overall
performance at a drilling phase together with Correct Classification Rate (CCR) for
each OS were adopted. The F-measure metric is equal to the harmonic mean of recall
(p) and precision (), and its values are in the interval [0,1]. The overall t and p are
obtained by summing over all individual classes:
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Where M is the number of classes, while TP, FP and FN are the number of their true

positives, false positives and false negatives respectively. The micro-averaged and
macro-averaged F-measures are computed as follows:
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Micro-averaged F-measure F, gives equal weights to each label and is therefore
considered as an average over all labels/classes pairs. It tends to be dominated by the
classifier's performance on common classes. Macro-averaged F-measure F, gives
equal weights to each class regardless of its frequency.

Table 2, below, shows the overall performance of four algorithms for the

8.75" Drilling Phase. The best performing algorithm both for common and rare
classes overall is OAO IRUS, while the poor performing algorithm is OAA. OAO




overperforms OAO_PDS on rare classes, while OAO_PDS shows better performance
on common classes.

Algorithm | OAA | OAO |OAO_PDS|OAO_IRUS

F, 51% |71.9% 74% 78.8%
F 28.7%(37.5%| 32.4% 40.8%
2

Table 2: Overall performance for 8.75" Drilling Phase.

The overall performance does not show how good the algorithms are for
different classes. However, the most important operational states are DrlRot, DrlS1d
and MakeCN. The aim is that these should be classified with the highest possible
accuracy. The misclassification of the remaining states is in fact less critical. Figure 1
shows CCR for each OS. All algorithms except OAA show good performance (>90%)
for DrlISld, except OAO PDS for MakeCN. The best performance is achieved with
OAO _PDS and OAO_IRUS for DrlRot. All algorithms showed low CCR (<40%) for
CleanDN/CleanUP and WashDN/WashUP. CleanUP, WashUP and MoveUP are
often miss-detected as CleanDN, WashDN and MoveDN respectively and vice versa.
CircHL is another OS with a low detection level, though significant improvement
(100% or more) in CCR can be achieved using the OAO or OAO IRUS algorithms. It
is difficult to select the best algorithm for drilling applications, since the respective
performances of these algorithms varies from OS to OS; and from Drilling Phase to
another. Based on CCR for each OS, OAO and OAO _IRUS show more robust
performance for the majority of considered OSs.
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Fig. 1: CCR per OS for Drilling Phase 8.75".

The performance of the algorithms was also studied through runs at a given
phase. Figure 2 shows how F1 and F2 measures changes for each algorithm as drilling
progresses after training. The OAA algorithm tends to degrade in performance both
for common and rare classes. Similar observation is displayed with the OAO for
common classes. After significant drop in F2 from Run3 to Run4, it stays
approximately stable for both Run5 and Run6. All algorithms show unsatisfactory
performance for Run6 and common classes. The drop in both F1 and F2 in the
algorithms took place for Run4. The best preforming algorithm for progressive
drilling is OAO_IRUS.
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Fig. 2: F1 and F2 per Drilling Run for Drilling Phase 8.75".

5 Conclusions and future development

A set of ESNs were implemented for the automated detection of industrial drilling
operational states. Their overall performance is satisfactory for the detection of
critical states and low for the less relevant ones. This may be due to the self-imposed
benchmarking for training below 30% of the labeled dataset. Also the inclusion of
high level features representing the direction of operations may improve the overall
results. The ESNs were also tested on unseen multiple runs to explore the limits of
their performances under one drilling phase. This approach was strategic to put in
place in order to launch future deployment of ESNs as Multiple fused ESNs under an
adaptive OS framework with dynamic error estimations.
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