Problem Decomposition and Sub-Model Reconciliation of
Control Systems in Event-B

Sanaz Yeganefard
Electronics and Computer Science
University of Southampton, UK
sy2g08 @ecs.soton.ac.uk

Abstract

To break the complexity of the formalisation process, we
propose to model a functional requirement document of a
control system as composeable monitored, controlled, mode
and commanded sub-models. Influenced by the problem
[frame approach and the decomposition of the four-variable
model, we suggest decomposing requirements of a control
system into monitored, controlled, mode and commanded
sub-problems. Each sub-problem can be formalised in a
step-wise manner as a separate sub-model.

To introduce the phenomena shared amongst the sub-
problems, the sub-models are reconciled. We propose a rec-
onciliation process in the Event-B formal language based
on the shared-variable and the shared-event styles which
were originally developed for a model decomposition. The
advantages and disadvantages of shared-variable and the
shared-event reconciliation steps are also discussed. The
requirements of an automotive cruise control system are de-
composed and formalised as sub-models. These sub-models
are also reconciled to introduce shared phenomena.

1. Introduction

Control systems are complex, as they usually consist of
a number of hardware and software components which in-
teract with the evolving environment and can receive com-
mands from operators. Such systems are usually used in life
critical situations, and as they control environmental quan-
tities, such as temperature, pressure or speed, their failures
can be costly and potentially life threatening.

To improve the functionality of control systems, their
software applications have become more complex. For in-
stance, software has allowed the automotive industry to pro-
duce intelligent cars. This means software errors can play
an essential role in the system failure. As is well-known, the
cost of identifying and correcting a software error is usually

Michael Butler
Electronics and Computer Science
University of Southampton, UK
mjb@ecs.soton.ac.uk

higher in late stages of a development life cycle compared
with early stages. Also, one cause of software errors is
‘faulty requirements definition’. Thus, approaches such as
formal methods, which are mathematical based techniques,
can be used to reveal ambiguity, incompleteness and in-
consistency of requirements and verify system properties in
early development stages.

However, the transition from informal requirements to
a formal model can be time consuming and complicated,
since the requirements of a control system are usually large
in number and complex. One approach for breaking sys-
tem complexity is decomposition. To help with understand-
ing a complex problem, decomposition of a problem into
smaller sub-problems each with a degree of unity has been
suggested [8]. One contribution of this paper is to propose
an approach for breaking the complexity of the formalisa-
tion process of a functional requirement document (RD) of
a control system.

The first step of the approach is to decompose an RD of
a control system into monitored, controlled, mode and com-
manded sub-problems. The sub-problems are defined based
on the requirement structuring approach for control sys-
tems [11]. The second step is to formalise each sub-problem
as a separate sub-model which is composeable with other
sub-models. So, while each sub-model captures a set of re-
quirements, the composition of the sub-models represents
the overall specification. Furthermore, to simplify the for-
malisation process refinement techniques are used within
each sub-model. As it is often not clear how to construct a
refinement chain, in this paper we suggest some guidelines
on refinement steps. Our chosen formal language is Event-
B [3], although this approach is applicable in other state-
based formal languages with composition mechanisms.

Another contribution of this paper is to propose recon-
ciliation of the phenomena shared amongst the sub-models
formalised in the Event-B language. Shared phenomena are
reconciled as shared variables and shared events based on
the shared-variable [4] and the shared-event [6] decompo-
sition styles in Event-B. During reconciliation the cross-

cutting invariants and the consistency of sub-models are
proven. Note that the shared-event and the shared-variable
styles were originally developed for model decomposition.
In this paper, they are adapted and developed further for
the purpose of the shared phenomena reconciliation. Also,
an evaluation of these two reconciliation steps is provided.
The proposed approach is applied to a case study of a cruise
control system (CCS).

2. Decomposing RD into Sub-Problems

To structure an RD of a control system which con-
sists of plant, controllers and operators, the identification
of monitored, controlled, mode and commanded variable
phenomena are suggested [11]. Influenced by the four-
variable model [9], the monitored and controlled phenom-
ena are environment quantities whose values are determined
by the plant and the controller respectively. The mode
phenomenon represents the controller modes. Commanded
phenomena are quantities whose values are determined by
the operator and that influence controlled and mode phe-
nomena. The RD of a control system can be structured
according to these phenomena by following the steps be-
low [11].

1. List the system’s monitored, controlled and com-
manded phenomena.

2. List the values of the mode phenomenon. One simple
way is to use a state machine diagram.

3. Organise RD into four sections: monitored (MNR),
controlled (CNT), mode (MOD) and commanded
(CMN). Requirements are placed in the section which
represents the type of their main phenomenon. This is
the phenomenon that the requirement describes how or
when it will be modified.

4. Add unique ID labels. Every ID starts with the section
the requirement belongs to (i.e. MNR, CMN, CNT or
MOD), followed by a unique number.

The above requirement structuring steps will result in
the RD being divided into monitored, controlled, mode and
commanded sections where each section describes the mod-
ification of its corresponding phenomena. Thus, each sec-
tion can be treated as a sub-problems which can be for-
malised independently. The independent sub-models are
then reconciled to accommodate shared phenomena.

3. Formalising Sub-Problems as Sub-Models

An overview of Event-B is given in Section 3.1. Sec-
tion 3.2 briefly explains the formalisation of sub-problems.

3.1. Event-B Formal Language

Event-B is extended from B Method [1] and has evolved
from action systems [5]. In particular, the notation of
guarded actions and some refinement notations are based
on action systems. An example is that new variables and
events can be defined in the refinement levels by refining a
dummy event called skip which does nothing in the more
abstract level. This refinement style allows behaviour to be
added to a model gradually thus elaborating the model with
requirements that were not included in abstract levels.

The Event-B language is chosen because of the simplic-
ity of its notation, its support for incremental refinement-
based development and the availability of a tool. This tool,
called Rodin, provides automatic proof and a wide range
of plug-ins, such as shared-event composition [10] which is
used in this work.

An Event-B model consists of contexts and
machines. Contexts specify the static part of a model
and provide axiomatic properties. In this paper we focus
on the dynamic part which is captured in machines. Ma-
chines contain variables, invariants and events.
An event, Figure 1, can refine a more abstract event. It is
possible to replace the refines keyword with extends
which means the guards and actions of the abstract event
remain unchanged, while further guards or actions can be
introduced in the refinement. Proof obligations are gen-
erated to ensure that a refined (extended) event is correct
with respect to its abstraction. An event can consist of
parameters, guards and actions. Guards are pred-
icates which describe the conditions necessary for the oc-
currence of an event. Actions determine how specific state
variables change as a result of the event occurrence. Ac-
tions of an event take place simultaneously to preserve its
atomic nature.

event EventName
refines EventName
any para
where
Cgrdl G1 A Gl A..
then
Qac AL I A21..
end

Figure 1. An event in Event-B.

3.2. Formalisation of Sub-Problems

To decompose the complexity of the modelling process,
we formalise each monitored (MON), controlled (CNT),
mode (MOD) and commanded (CMN) sub-problem as an
independent sub-model which is reconciled to deal with
phenomena it shares with other sub-models. To provide the

overall system specification, the most concrete levels of all
the sub-models can be composed.

To formalise the sub-problems, we propose to identify
the monitor, control, mode and command event phenomena
which update or modify variable phenomena, e.g. a mode
event such as switch on updates the mode variable. The vari-
able and event phenomena are then represented formally in
their corresponding sub-model, e.g. the switch on event and
the mode variable are formalised in the MOD sub-model.

We also suggest using refinement to formalise the re-
quirements of a sub-problem gradually. In the most abstract
level we start with the phenomenon that represents the main
behaviour of the sub-problem. It is the modeller’s judgment
to identify the main behaviour. Human judgment is neces-
sary in the development of a formal model, for instance in
constructing the refinement chain and validating the model
against requirements. Human judgment can be contrasted
with a mathematical judgment which provides the means
for proofs and verification.

After modelling the main behaviour, the phenomena re-
maining in a sub-problem can be formalised in refinement
steps. The main rule we follow is to model as few phe-
nomena as possible. We suggest formalising a small num-
ber of phenomenon at every refinement level. Sometimes
phenomena are interrelated which means they need to be
modelled simultaneously in one level.

4. Reconciliation of Shared Phenomena

Sub-models can share phenomena because requirements
of a sub-problem may refer to phenomena in other sub-
problems. To ensure shared phenomena are modelled cor-
rectly and cross-cutting invariants are preserved, the sub-
models are reconciled. In Section 4.1, the shared-variable
decomposition is adapted for reconciliation of variable phe-
nomena shared amongst sub-models. In Section 4.2, the
shared-event composition style is used for reconciliation of
shared event phenomena. Furthermore, in Section 4.3 we
developed an approach based on the shared-event composi-
tion that allows the reconciliation of shared variable as well
as shared event phenomena.

4.1. Shared-Variable Reconciliation

The shared-variable reconciliation is based on the model
decomposition style of [4]. Here, this decomposition is
adapted to a composition style based on which sub-model
reconciliation is developed. The reconciliation is explained
using the composition example of Figure 2. In this figure M
is a composition of the machines M1 and M2. M1 consists
of the events E1 and E2 whose dependencies to the vari-
ables v/ and v2 are shown using the links. A dependency
link shows that an event can modify or access a variable.

This in Event-B means the variable may appear in actions
or guards of the event. Similarly, E3 and E4 in M2 depend
on v2 and v3. So, while v/ and v3 are local (internal) to M1
and M2 respectively, v2 is shared among them.

m D @ (@ D w
Z

RTAT AT

Figure 2. Shared-variable composition style.

We treat M1 and M2 as composeable sub-models that
share the variable phenomenon v2. To ensure that the be-
haviours on v2 in M1 and M2 are consistent and also the
cross-cutting invariants are preserved the sub-models are
reconciled. To do this, external events [4] which simulate
the behaviour on the shared variable phenomena are added
to the sub-models. Introducing external events gives rise to
proof obligations (POs), such as the invariant preservation
PO, which ensure the correctness of sub-models. Thus, after
adding external events the sub-models which were indepen-
dent of each other, may require modifications to preserve
the invariants.

Figure 3 shows the external events E2’ and E3’. E3’
(E2’) of M1 (M2) simulates the way in which its environ-
ment, i.e. M2 (M1), may modify the shared variable v2.

E1 E3 E4

Figure 3. Shared-variable style reconciliation.

Assume E3 has the following form:

E3 % Any p Where G(v2,p) A H(v3,p)
Then S(v2,p) || T(v3,p)

E3’ can be constructed from E3 by projecting out the
non-shared variable v3 resulting in the following:

E3' 2 Any p Where G(v2,p) Then S(v2,p)

Notice that external events cannot be refined, as refining
an external event can break its consistency with other sub-
models.

The nature of this style allows the reconciliation of
shared variable phenomena. As will be discussed later,
shared event phenomena cannot be reconciled in this style.

4.2. Shared-Event Reconciliation

The shared-event style “corresponds to the synchronous
parallel composition of processes as found in process alge-
bra such as CSP” [6]. The nature of this style allows us to
reconcile shared event phenomena. This means events of
different sub-models can contribute to a specification, since
they can be composed. As shown in Figure 4, M1 and M2
share the event E2. The event E2a (E2b) in M1 (M2) rep-
resents parts of E2 which refer to the variable v/ (v2). The
variable v/ and the event E1 are local (internal) to M1. Sim-
ilarly, v2, v3 and E3 are local to M2. So, M1 and M2 can be
treated as sub-models which share an event.

E1 E2a E2b £3
M1 me G2 O3
[E1] [(E27] [E3]
M D, 3

Figure 4. Shared-event composition style.

As shown in (1) below, two events are composed by con-
joining their guards and combining their actions so they
happen simultaneously. It is possible for guards and actions
with disjoint variables to have common parameters. In Def-
inition 1, the events E2a and E2b share the parameter p.

FE2a = Any p Where G(vl,p) Then S(v1,p)
E2b 2 Any p Where H(v2,p) Then T(v2,p)

E2 % Any p Where G(vl,p) A H(v2,p)
Then S(vl,p) || T'(v2,p) (D

4.3. Introducing Shared Variables in Shared-Event
Reconciliation

It is possible for sub-models to share variable phenom-
ena. As an example consider a requirement such as “v/
shall be increased when v3 is greater than 0” for Figure 4
where v/ and v3 reside in two different sub-problems (M1
and M2 respectively). This requirement belongs to the M1
sub-problem, since it defines a condition under which v/
can be modified. This means v3 is a phenomena shared
amongst M1 and M2. Note that our aim is to model ev-
ery requirement in a single sub-model. In other words, we
avoid modelling the part referring to v/ in M1 and the rest
in M2.

To model such requirements using shared-event recon-
ciliation, variable sharing in addition to event sharing is re-
quired. This is shown in Figure 5. Here, the event E3’ is

defined in M1 to simulate the behaviour on v3 in M2. To
some extent this event is similar to an external event in the
shared-variable style. However here, events on shared phe-
nomena synchronise, which means they are shared amongst
the sub-models. For instance, E3 and E3’ are shared events.

However, shared variables can be modified only in one
sub-model. In Figure 5, v3 can be modified by events in
M2, whereas E1 can only read the value of v3. In other
words, a single sub-model has read and write access to a
shared variable, while other sub-models have a read-only
access. This is shown by the dependency link between E/
and v3 which is named rd. So, in this style, sub-models can
have shared event phenomena as well as read-only shared
variable phenomena.

E2a E2b

rd,
vt () Qo) TERCOICD)
CE3 E2d E2b

RO IRCS CERCOIRCD

Figure 5. Shared-event style reconciliation.

Figure 5 also shows that a copy of v3, called v3’, is de-
fined in M1. This is because the current semantics of the
shared-event style does not allow the introduction of vari-
ables with the same name in sub-models. This semantic ap-
proach emphasises that variables are local to a sub-model.
So, a variable which is shared amongst several sub-models
is named differently in every sub-model. To prove the cor-
rectness of a sub-model with regards to all possible val-
ues for a shared phenomenon and to prove the consistency
between the sub-models, invariants which equalise shared
variables are defined in the composed model, e.g. the in-
variant v3 = v3’. Such invariants give rise to consistency
and correctness related POs. Note that to discharge this
invariant all possible modifications of v3 in M2 should be
simulated in M1.

5. Case Study: Cruise Control System

A CCS receives the actual speed of the car from the envi-
ronment and the target speed from the driver and its role is
to minimise the difference between these two. This is done
by setting the acceleration of the car [2]. Some of the re-
quirements of the CCS are structured in Table 1. The CCS
can be modelled as monitored (MNR), controlled (CNT),
mode (MOD) and commanded (CMN) sub-models which
share some phenomena.

The requirement CNT1 (CCS operates when it is
active) denotes that the CNT and MOD sub-problems

share the mode variable phenomenon. This is because the
mode phenomenon belongs to the MOD sub-problem, how-
ever, CNT1 refers to mode. Also, the requirement CMN1
(once CCS is on, the driver can set the target speed) shows
that mode is shared amongst the CMN and MOD sub-
problems. Thus, the sub-models of the CCS need to be rec-
onciled to deal with the shared variable mode. Similarly,
the four sub-models are reconciled to model other shared
phenomena, such as brake pedal which is shared between
MNR and MOD sub-problems. However, in this paper only
reconciliation of the mode phenomenon is explained.

Phen. [ID | Requirement Description \
Actual | MNR1 | CCS shall monitor the vehicle’s ac-
speed tual speed.

Brake | MNR2 | CCS shall monitor any pressure ap-
pedal plied to the brake pedal.

Accele-| CNT1 | When CCS is active, it will
maintain the difference between ac-
tual speed and target speed as close
to 0 as possible by correcting the ac-

celeration.

MOD1 | CCS can be switched on or of £ by
the driver.

MOD2| When CCS is on, it will be
activated as soon as the driver
sets the target speed.

MOD3 | Once CCS is active, if the driver
uses the brake pedal, it will be
suspended.

Once CCS is switched on, the
driver can set the target speed to the
actual speed.

CMN?2 | The target speed is always within a
specific range.

ration

Mode

Target | CMNI1

speed

Table 1. Structured RD of a CCS.

6. Formalising CCS as Sub-Models

In Section 6.1, the formalisation of the CNT, MOD
and CMN sub-problems as sub-models are explained. The
MNR sub-model is not represented in this paper, although
the approach for modelling MNR is similar to others. The
sub-models are reconciled in Section 6.2 and 6.3 based on
the shared-variable and the shared-event styles respectively.

6.1. CNT, MOD and CMN Sub-Models in CCS

The CNT, MOD and CMN sub-models of the CCS which
formalise their corresponding sub-problems are discussed

in this section. As mentioned these sub-problems share the
mode variable phenomenon.

Figure 6 shows parts of the refinement in the MOD sub-
model. It also shows the requirement ID numbers which
are modelled at each step. In the MOD sub-model, the tran-
sitions between values of the mode variable are modelled
in the most abstract level, Mode_I. For instance, the Sus-
pend event at this level simply shows that the CCS can be
suspended from any other state. After this, the conditions
under which the mode change happens are added in the re-
finement steps. For instance, the CCS should be suspended
when brake pedal is pressed. This is shown in the guard
brakePedal = TRUFE in Mode_2. Note that the reconcil-
iation of introducing the monitored variable brake pedal in
the MOD sub-model is not discussed in this paper. How-
ever, it is similar to reconciling the shared mode variable.

MOD sub-model Phen. Req ID Examples of Event-B Model
event Suspend
where
Mode 1 * Mode Abstract rdl mode # SUSPEND
- (Local) transition then

t1 mode := SUSPEND
end

event Suspend refines Suspend
where
rdl mode = ACTIVE
rd2 brakePedal = TRUE

Y
* Brake
Mode_2 Pedal MOD3
(Shared) then
ct1 mode = SUSPEND

end

Figure 6. MOD sub-model in CCS.

Figure 7 represents the CMN sub-model where the com-
manded variable target speed and its corresponding events
are formalised. As shown in Cmnd_1, to model the require-
ment CMNI1 the formal variable targetSpd is set to actu-
alSpd. The introduction of the shared variable mode in
Cmnd_2 is discussed later on.

CMN sub-model Phen. ReqID Examples of Event-B Model

event SetTargetSpeed
where
CMN1, gr actualSpd € lb--ub
CMN2 then
iactl targetSpd := actualSpd
end

* Target
Cmnd_1 Speed
AF (Local)

* Mode
Cmnd_2 (shared) | “MN2

Figure 7. CMN sub-model in CCS.

The acceleration phenomenon is modelled in the CNT
sub-model which is shown in Figure 8. As Cntri_1 shows
a function, called accFun, determines the value of acceler-
ation based on the actual speed and the target speed phe-
nomena. The mode phenomenon, which is shared amongst
MOD and CNT sub-models is modelled in Cntrl_2 (Fig-
ure 8) and its reconciliation is explained later on.

CNT sub- Phen. Req

model D Examples of Event-B Model

event UpdateAcceleration

*Accelera then
Cntﬂ—l tion CNT1 dactl acceleration :=

1 (Local) accFun (targetSpdmactualSpd)

end
*Mode
Cntrl_2
et 2 || "Gy | ot

Figure 8. CNT sub-model in CCS.

6.2. Reconciling CCS using Shared-Variable Style

As mentioned in the shared-variable reconciliation exter-
nal events are defined to simulate the behaviour on a shared
variable. So, to reconcile the variable mode, external events
which capture the behaviour on mode in the MOD sub-
model are added to the CNT and CMN sub-models. Fig-
ure 9 illustrates the state machine which represents the tran-
sitions updating mode in the MOD sub-model. An abstrac-
tion of these events is defined as an external event in CNT
and CMN, i.e., in refinement levels C'ntri_2 and Cmnd_2.

Mode Events in MOD Sub-Model | Abstraction of Mode Events
in CNT and CMN Sub-Models

event UpdateMode

o=Olr
where
grdl st € STATUS
then
$.® . mode = st
end

Figure 9. External mode event.

When the shared variable mode and its external events
are introduced in the CNT and CMN sub-models, the re-
quirements CNT1 and CMNI1 can be modelled by refin-
ing the events UpdateAcceleration and SetTargetSpeed in
Cnitrl_2 and Cmnd_2 respectively. The refinement of these
events are shown in Figure 10.

CNT Sub-Model CMN Sub-Model

event UpdateAcceleration event SetTargetSpeed
extends UpdateAcceleration | extends SetTargetSpeed
when where
Cgrdl mode = ACTIVE @grd? mode = ON
end end

Figure 10. CNT and CMN sub-models after
shared-variable reconciliation.

6.3. Reconciling CCS using Shared-Event Style

As discussed in Section 4.3, we developed the shared-
event reconciliation in a manner that sub-models are able to

share variable (read-only access) or event phenomena.

So, to model the requirement CNT1 (CCS operates when
it is active) in Cntrl_2, the shared variable mode is
added to the CNT sub-model. To do this a copy of mode,
which is called cnt_mode is introduced in the CNT sub-
model. The consistency of these two variables and any
cross-cutting invariant can be proved by adding the invari-
ant mode = cnt_mode to the composed model.

An abstract event of the mode transitions is added to the
CNT sub-model in order to update cnt_mode. This event is
represented in Figure 11 as UpdateMode. The UpdateMode
event synchronises with the mode events in MOD. For in-
stance, Figure 11 illustrates that the events Suspend in MOD
and UpdateMode in CNT synchronise through the parame-
ter st. The requirement CNT1 is modelled by refining the
event UpdateAcceleration.

CNT Sub-Model

event UpdateMode

MOD Sub-Model

event Suspend

refines Suspend any st
any st where
where grdl st € STATUS
grdl mode = ACTIVE then
@grd2 brakePedal = TRUE tl cnt_mode = st
dgrd3 st = SUSPEND end

then
ac mode = SUSPEND event UpdateAcceleration
end extends UpdateAcceleration
when
@grdl cnt_mode = ACTIVE
end

Figure 11. Shared-event reconciliation for the
CNT sub-model.

In this reconciliation style, sub-models can share event
phenomena. Therefore, the requirement CMN1 (Once the
CCS is switched on, the driver can set the target speed to
the actual speed) and MOD2 (When CCS is on, it will be
activated as soon as the driver sets the target speed)
can be modelled as independent events which belong to
the CMN and MOD sub-models respectively, but are also
shared amongst these sub-models. Figure 12 shows that
the former requirement is modelled by the SetTargetSpeed
event, while the latter is represented by the Activate event.
The composition of these two events will provide an event
which updates the variables farget speed and mode simul-
taneously. Thus, the requirements CMN1 and MOD?2 are
modelled as a single atomic event.

7. Evaluation and Discussion on Reconciliation

Section 7.1 and 7.2 evaluate the shared-variable and the
shared-event reconciliation styles respectively.

MOD Sub-Model CMN Sub-Model

event Activate event SetTargetSpeed
where where
Ggrdl mode = ON @grdl actualSpd € 1lb--ub
Qgr N then
then @Gactl targetSpdi=actualSpd
‘actl mode = ACTIVE | end

end

Figure 12. Activate and SetTargetSpeed are rec-
onciled as shared events.

7.1. Reconciliation based on Shared-Variable Style

The main disadvantage of the shared-variable reconcilia-
tion is that sub-models cannot share events. In other words,
events of different sub-models cannot contribute to the spec-
ification of requirements. As an example, consider a com-
manded requirement “x should be set to 0 as soon as the
mode becomes of £, and a mode requirement which states
“mode becomes of £” under certain conditions.

To formalise these two requirements in a single model,
two design decisions can be made. Firstly, these require-
ments can be modelled concurrently using an event with
two actions which update x and mode simultaneously. Sec-
ondly, these requirements can be formalised sequentially by
modelling each one as a separate event; a mode event which
has the action mode := of f and a command event which
updates x when the guard mode = of f holds.

However, when modelling the considered requirements
in sub-models (e.g. one in CMN and another in MOD), the
shared-variable reconciliation will not allow event synchro-
nisation. Therefore, the only way to model these require-
ments is the sequential design decision. This was the case
in the example of the CCS, Section 6.2, where an exter-
nal mode event was defined in the CMN sub-model and the
guard mode = ON was introduced to the event SetTarget-
Speed.

Therefore, in the shared-variable reconciliation, require-
ments of different sub-problems cannot be modelled con-
currently, because this style does not allow synchronisation
of events, i.e., shared event phenomena cannot be defined.
This imposes an early design decision in the modelling pro-
cess. To avoid this restriction sub-models should be allowed
to contribute to the specification of a single event. This is
similar to the shared-event style.

7.2. Reconciliation based on Shared-Event Style

The main advantage of the shared-event reconciliation
we proposed in Section 4.3 is that sub-models can share
variable and event phenomena. Sharing events means sev-
eral sub-models can contribute to the specification of an
event. Therefore, this style allows freedom in design deci-

sion. However, the formalisation of shared variables in this
reconciliation is more restrictive than the shared-variable
reconciliation, since here shared variables can be modified
only in one sub-model, while other sub-models have read-
only access to the shared variables.

One disadvantage of the shared-event reconciliation is
the extra events which should be defined to update shared
variable phenomena. As Figure 11 showed, the event Up-
dateMode was defined in CNT to simulate the behaviour
on mode in the MOD sub-model. Defining such simu-
lating events is also a disadvantage of the shared-variable
reconciliation which requires external events. However, to
prove the correctness of cross-cutting invariants and consis-
tencies of shared variables, the shared-event reconciliation
requires composing the sub-models to express synchroni-
sations between simulating events and their concrete simu-
lated events. Whereas in the shared-variable reconciliation,
ensuring that external events are simulated correctly is suf-
ficient for proving cross-cutting invariants.

Another disadvantage of the shared-event reconcilia-
tion is that because of restrictions on its semantics, shared
variable phenomena should be renamed in different sub-
models. In addition, invariants which equalise the shared
variables (such as mode = cnt_mode in the CCS ex-
ample) should be defined to prove consistencies between
sub-models. Renaming variables, defining extra events and
composing the sub-models to prove consistencies can im-
pose a great overhead to the modelling process.

8. Related Work

The proposed monitored, controlled, mode and com-
manded phenomena are influenced by the four-variable
model [9]. In particular, the concept of monitored and con-
trolled phenomena are taken from the four-variable model.
The other two categories of the four-variable model are in-
put and output. We suggested that these are not used in
the system modelling; instead we introduce them in later
refinement steps where design details, such as sensors and
actuators are modelled [12].

A related work is problem frames (PF) [8] which is a
semi-formal approach used in requirement engineering of a
range of systems. PF introduces patterns (frames) accord-
ing to which sub-problems can be identified. Also, it tackles
the issue of sub-problem consistencies (requirement con-
flicts) in a semi-formal manner using Composition Frames.
However, this paper proposed an approach for categorising
requirements into sub-problems and then formalising them.
Also, we overcame the issue of consistencies between the
formalised sub-problems (sub-models) using formal proofs
that result from the reconciliation step.

The work of [7] proposes an approach for decompos-
ing requirements into sub-problems based on the frames and

patterns of PF. Similarly to our work, in [7] sub-problems
are formalised individually and connected to one another.
While the approach of [7] requires a good knowledge of
problem frames, we based the decomposition of require-
ments on simple concepts which involve understanding re-
quirements. Also, we focused on proposing and evaluat-
ing approaches for formalising sub-problems and reconcil-
ing sub-models in Event-B.

Another related work, is the approach of [13] for com-
posing partial specifications which are written in different
formal languages by defining a general semantic domain.
Similarly to this approach we proposed a systematic way of
composing sub-models. However, we focus on the Event-
B formal language and the composition of sub-models in
this language. Also, the approach of [13] does not consider
decomposition of an RD into sub-problems and their map-
pings to a formal model.

9. Conclusion and Future Work

In this paper we discussed an approach for decompos-
ing a control system RD into monitored, controlled, mode
and commanded sub-problems which can be formalised as
four composeable sub-models. We believe this approach is
applicable in other state-based formal languages with com-
position mechanisms, although in this paper we considered
the Event-B language only.

Dividing an RD into sub-problems means the required
effort and the complexity of modelling each sub-problem
will be less than the overall RD. In addition, in the pro-
posed approach sub-models are modularised, since shared
phenomena can be modified (read-write access) in one sub-
model, while other sub-models can only read the shared
phenomena (read-only access). Thus, it is sufficient to
model the concrete behaviour of phenomena in a sub-
model, while others can have an abstract representation of
shared phenomena.

This is a consequence of decomposing an RD into sub-
problems according to the structuring steps of Section 2,
as requirements with write access to a phenomenon always
reside in a single sub-problem.

In addition, we adapted the shared-variable model de-
composition style to provide a reconciliation step for mod-
elling variables shared amongst sub-problems. We showed
that this reconciliation style is restrictive, as it imposes an
early design decision. We also developed a shared-event
reconciliation step based on the shared-event model decom-
position style. This reconciliation step can be used to model
shared variables and shared events. However, the main dis-
advantage of the shared-event reconciliation is the overhead
of defining extra events and variables with different names.

In our future work the approach of formalising control
systems as monitored, controlled, mode and commanded

sub-models will be applied to other formal languages. Also,
the semantics of the shared-event reconciliation in Event-B
will be extended, so that it will include the advantage of
event synchronisation, but eliminate the overheads. In ad-
dition, in our future work we will refine each sub-model
independently to introduce design details such as sensors,
actuators and the user interface. Data refinement of shared
variables should also be considered, as currently this cannot
be done easily in either of the styles.

References

[1] J.-R. Abrial. The B-book: assigning programs to meanings.
Cambridge University Press, 1996.

[2] J.-R. Abrial. Cruise control requirement document. Techni-
cal report, Internal report of the Deploy project, 2009.

[3] J.-R. Abrial. Modeling in Event-B: System and Software En-
gineering. Cambridge University Press, 2010.

[4] J.-R. Abrial and S. Hallerstede. Refinement, decomposition,
and instantiation of discrete models: Application to Event-
B. Fundam. Inform., 77(1-2):1-28, 2007.

[5] R.J. R. Back. Refinement calculus, part II: parallel and re-
active programs. In Proceedings on Stepwise refinement of
distributed systems: models, formalisms, correctness, REX
workshop, pages 67-93. Springer-Verlag New York, Inc.,
1990.

[6] M. Butler. Decomposition structures for Event-B. In In-
tegrated Formal Methods iFM2009, Springer, LNCS 5423,
volume LNCS. Springer, February 2009.

[7] D. Jackson and M. Jackson. Problem decomposition for
reuse. Software Engineering Journal, 11(1):19-30, 1996.

[8] M. Jackson. Problem Frames: Analyzing and Structuring
Software Development Problems. Addison-Wesley Long-
man Publishing Co.,, Boston, USA, 2001.

[9] D. L. Parnas and J. Madey. Functional documents for com-
puter systems. Sci. Comput. Program., 25(1):41-61, 1995.

[10] R. Silva and M. Butler. Shared event
composition plug-in. http://wiki.event-
b.org/index.php/Paralle]_Composition_using_Event-B,
2011. cited 2012 April.

[11] S. Yeganefard and M. Butler. Control systems: phenomena
and structuring functional requirement documents. In /7th
IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2012)., April 2012.

[12] S. Yeganefard, M. Butler, and A. Rezazadeh. Evaluation
of a guideline by formal modelling of cruise control sys-
tem in Event-B. In Proceedings of the Second NASA Formal
Methods Symposium (NFM 2010), NASA/CP-2010-216215,
pages 182-191. NASA, April 2010.

[13] P. Zave and M. Jackson. Conjunction as composition. ACM
Trans. Softw. Eng. Methodol., 2(4):379-411, Oct. 1993.

