Cruise Control in Hybrid Event-B

Richard Banachand Michael Butlet

!School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.
banach@s. nan. ac. uk
2School of Electronics and Computer Science, UniversityaftBampton,
Highfield, Southampton, SO17 1BJ, U.K.
nj b@cs. soton. ac. uk

Abstract. A case study on automotive cruise control originally dongdon-
ventional, discrete) Event-B is reexamined in Hybrid EvBran extension of
Event-B that includes provision for continuously varyinghlaviour as well as
the usual discrete changes of state). A significant casg stuch as this has var-
ious benefits. It can confirm that the Hybrid Event-B desidgoves appropriately
fluent application level modelling (as is needed for seriadsistrial use). It also
permits a critical comparison to be made between purelyretis@nd genuinely
hybrid modelling. The latter enables application requieets to be covered in a
more natural way. It also enables some inconvenient modeftietaphors to be
eliminated.

1 Introduction

With the ever decreasing size and cost of computing devaesyt there is a strong
incentive to embed digital processors in all sorts of devared systems, in order to im-
prove design flexibility, performance and production cdkis has two readily discern-
able consequences. Firstly, since many of these systeeradhtirectly with humans,
such designs rapidly acquire a safety-critical dimensiat tost computing systems
in the past did not have. Secondly, the profusion of suclegysttheir interactions with
the environment and with each other, dramatically incredssign complexity beyond
the bounds where traditional development techniques dabhedeliver the needed
level of dependability.

It is by now well accepted that formal techniques, apprdplyadeployed, can of-
fer significant help with both of these issues. However, i ttiain, these techniques
are strongly focused on purely discrete reasoning, andpealy with the continuous
behaviours, that of necessity, are forced into the blendhéyrttimate coupling of com-
puting devices to real world systems. Timgbrid andcyberphysicabystems we speak
of (see, e.g. [20, 23, 2, 22, 6]) are poorly served by conweatiformal techniques. Al-
though they do have approaches of their own (see, e.g. [83f of these techniques
are either limited in their expressivity, or lack rigour bgnaparison with most discrete
techniques. An exception is KeYmaera (see [1,16]), a systethcombines formal
proof (of a quality commensurate with contemporary forneahhiques) with continu-
ous behaviour (as needed in the description of genuine gdilysistems).

The need for similar capabilities in systems to which themite Event-B method-
ology [3] has been applied in recent years, prompted thelojgwent of an extension,
Hybrid Event-B [5], that treats discrete and continuousavésurs equally. In this pa-
per, we apply this formalism to a case study previously dongiscrete Event-B: the
modelling of a cruise control system, first investigated asraponent of the DEPLOY
Project [9]. The motivation for doing this is: firstly, to jgd the expressivity and flu-
ency of the Hybrid Event-B formalism regarding the desaipif scenarios such as
this (especially with a view to practical engineering usej)d secondly, to readdress
some of the methodological deficiencies that the origins¢ caudy identified as caused
by purely discrete modelling. In contrast to KeYmaera, d¢fisrat present no dedicated
tool support for Hybrid Event-B. In light of this, a furtheebefit of the present study
is to confirm that Hybrid Event-B contains the right collectiof ingredients for indus-
trial scale modelling, before more serious investment berding the RODIN Tool for
discrete Event-B [17] is made.

The rest of this paper is as follows. Section 2 overviews thése control system.
Section 3 discusses the methodological issues raised lpyatimus discrete case study,
and how Hybrid Event-B can address them. Section 4 oveniigisid Event-B itself.
Sections 5, 6, 7 then take the cruise control system from a puorde based model,
through a model where continuous properties are consttéinenot defined explicitly,
to a model where both modes and continuous behaviour ayedefined. These models
are related to one another using a sequence of refinement®rse concludes.

2 Cruise Control System Overview

A cruise control system (CCS) is a software system whichraatizally controls the
speed of a car. The CCS is part of the engine control softwarehxcontrols actuators
of the engine, based on the values of specific sensors. SiecEES automatically
controls the speed of the car there are some safety aspéetstmsidered and it needs
to fulfil a number of safety properties. For example, thesguiontrol system must be
deactivated upon request of the driver (or in case of a syfah).

The part of the CCS focused on in the DEPLQY Project, whichalled here, was
the signal evaluation subsystem. For economy of space waigira bit from the full
case study tackled in DEPLOY [12], but we take care to retlitha elements where
we can demonstrate the methodological improvements disdiis Section 3 and show
the advantages of our approach.

We broadly follow the description in [25, 24]. In Fig. 1 we dbe state transition
diagram for a simplified CCS at an intermediate level of dpsion. The CCS starts in
the OFF state, from where it can HawitchedOnto put it into theON state.

In the ON state several things can happen. One option for the driter3gitchOff
the CCS. Alternatively, the driver céðeSpeedor the CCS, which will set the target
speed for the car, to be maintained by the engine contraésysnder the guidance of
the CCS. While the speed is under the control of the CCS, thedspan b&ippedJp
by the driver to increase it a little, diippeddownto decrease it a little. If the driver
chooses tDepresBrakeoClutch while the CCS is on, then the CCS is designed to
switch off since it is assumed that a hazardous condition na&g been encountered.

DepBrCl

SwOn SwOlff, DepBrCl
RelAcc

SetSpeed, TipUp, TipDown

Fig. 1. The state transition diagram for a simplified cruise corgyatem.

However, if the driver chooses Bepres?ccelerator while the CCS is on, then it is
assumed that conditions are safe, and the CCS is merelytpuhieSUSPENDstate.

In this state the driver controls the speed via the accelepadal. If in this state the
driver subsequentliRekaseAccelerator, the previous CCS state is resumed. However,
use of the brake or clutch in this state switches the CCSrulifjé with the assumptions
mentioned earlier.

Below, we will develop a series of Hybrid Event-B machinesapture this design.
Before that though, we recap some methodological issu¢sthae in the context of
the earlier, purely discrete development, in order to fadbeseader’s attention on how
these are handled differently in the fully hybrid formalitater.

3 Methodological Considerations

In the original discrete Event-B development of the CCS [th2] formal techniques
contemplated were based round existing design practiteselproduce, for any pro-
posed application: firstly, a set of functional requirenseygnerated by a requirements
engineering process; secondly, a set of safety requirergenerated by a hazard anayl-
sis. In relation to Event-B, the former are transformed ievents, and the latter are
transformed into invariants of the eventual Event-B magjel(

Typical systems in the automotive industry are embeddeldtiraa applications
which contain a closed loop controller as an essential f@zidsed loop controller
development is done by control engineers, while their \@ifon requires reasoning
about continuous behaviour. Discrete Event-B does notatigpntinuous behaviour,
so the application of discrete Event-B to the CCS case stud¥4] had to avoid its
direct inclusion. Since the presence of continuous beliaziannot be avoided in CCS,
whenever such behaviour was needed in an Event-B model §ftfiemodelling in-
corporated a function that interfaced between the contiadi@haviour and the rest of
the model. The function itself though, was not (and becawvsn&B is discrete, could
not be) specified within Event-B.

The extension of discrete Event-B to Hybrid Event-B perrtiits deficiency to be
addressed. Most closed loop controller design takes plabewvthe frequency domain

[15,10,11,4]. This is seemingly a long way away from theestzised approach of
techniques like Event-B, but the state based formulatiaoaotrol theory (increasingly
popular today, especially when supported by tools such&JEINK [13]), enables a
direct connection with the conceptual framework of HybriceBt-B to be made.

In our reworking of the CCS case study, we are able to incatpdhe modelling
of a closed loop controller as an essential element. Thisisian of the closed loop
controller constitutes the first major point of departutirthe earlier account.

Another issue concerns the communication of values betwebsytems at differ-
ent levels of a system hierarchy, especially when real tispeets are paramount. Ex-
amples include the transmission of values registered kgsysensors, handled by an
Event-B sensor machine, which need to be communicated tmtigemachine that con-
sumes them and decides future behaviour. A correspondimgtisin concerns values
determined by the core machine that need to be communiacateddctuator machine.

Events in the machines concerned update relevant varialitleshe required val-
ues. However, the fact that enabledness of events in désEnagnt-B merelypermits
them to execute but does nfotrce them to do so, means that when such values need
to be transmitted in a timely manner, the semantics does uariagtee that this will
happen. To address this, flags are introduced to prevenelaats from executing be-
fore earlier events that they depend on have completed. ®aetimiques, essentially
handshake mechanisms, are discussed in [7,12, 25, 24].

Handshake mechanisms are eloquent in modelling commioricptotocols at a
high level of abstraction (see e.g. the examples in [3]). el®v, when the abstract
level communication is continuous, such as in the coupling continuous controller
to its plant, the low level mechanics do rather obscure therdgials of what is going on.
In Hybrid Event-B, continuous behaviour is intrinsic, se thstantaneous communica-
tion of continuously changing values can be modelled diye€the capacity to directly
model the communication of continuously varying valuesstibumtes the second major
point of departure from the earlier account.

4 Hybrid Event-B, a Sketch

In Fig. 2 we see a bare bones Hybrid Event-B machihd&vBMch It starts with dec-
larations of time and of a clock. In Hybrid Event-B time is aficlass citizen in that
all variables are functions of time, whether explicitly onglicitly. However time is
special, being read-only, never being assigned, sincedanaot be controlled by any
human-designed engineering process. Clocks allow a big fifexibility, since they are
assumed to increase their value at the same rate that tinse lolstenay be set during
mode events (see below). Variables are of two kinds. Therenade variables (like,
declared as usual) which take their values in discrete setshange their values via
discontinuous assignment in mode events. There are aksat phriables (such asy),
declared in the PLIANT clause, which take their values irotogically dense sets (nor-
mally R) and which are allowed to change continuously, such chargglspecified
via pliant events (see below).

Next are the invariants. These resemble invariants in eisdevent-B, in that the
types of the variables are asserted to be the sets from whieckariables’ valueat any

MACHINE HyEvBMch
TIME t MoEv
CLOCK clk STATUS ordinary
PLIANT X,y ANY i?,1, 0l
VARIABLES u WHERE grd(x,y, u,i?,1,t, clk)
INVARIANTS THEN
x e R XY, U, clk, o! :| BApredx,y, u,
yeR i7,1,0Lt, clk, X,y U, clk’)
ue N END
EVENTS PliEv
INITIALISATION STATUS pliant
STATUS ordinary INIT iv(x,y,t, clk)
WHEN WHERE grd(u)
t=0 ANY 7,1 0!
THEN COMPLY
ck =1 BDApredXx, y, u,i?, 1, 0!, t, clk)
X = Xo SOLVE
Y = Yo Dx=p(xy,u,i?,1, 0,1, clk)
u = Uy y,ol = E(x,u,i?,1,t,clk)
END END
END

Fig. 2. A schematic Hybrid Event-B machine.

given moment of timare drawn. More complex invariants are similarly predisaktet
are required to holdt all moments of timduring a run.

Then we get to the events. TH¢ITIALISATIONhas a guard that synchronises time
with the start of any run, while all other variables are assijtheir initial values in the
usual way. As hinted above, in Hybrid Event-B, there are twaw& of event: mode
events and pliant events.

Mode events are direct analogues of events in discrete Eehhey can assign all
machine variables (except time itself). In the schemisltaEv of Fig. 2, we see three
parameterg’, |, o, (an input, a local parameter, and an output respectivaty) a guard
grd which can depend on all the machine variables. We also segetieric after-value
assignment specified by the before-after prediBa&tpred which can specify how the
after-values of all variables (except time, inputs andIE)care to be determined.

Pliant events are new. They specify the continuous evalufdahe pliant variables
over an interval of time. The schematic pliant evBfiEv of Fig. 2 shows the struc-
ture. There are two guards: therevsfor specifying enabling conditions on the pliant
variables, clocks, and time; and theregisl, for specifying enabling conditions on the
mode variables. The separation between the two is motiMatetbnsiderations con-
nected with refinement.

The body of a pliant event contains three parameteiso!, (once more an input,
a local parameter, and an output respectively) which aretimms of time, defined over
the duration of the pliant event. The behviour of the eveudtgined by the COMPLY
and SOLVE clauses. The SOLVE clause specifies behavioly thinectly. For exam-
ple the behaviour of pliant variableand outpub! is given by a direct assignment to

the (time dependent) value of the expresdign .). Alternatively, the behaviour of pli-
ant variablex is given by the solution of the first order ordinary differi@hequation
(ODE) Dx = ¢(...), whereD indicates differentiation with respect to time. (In fact
the sematics of thg o! = E case is given in terms of the ODEy, D o! = D E, so that

X, y ando! satisfy the same regularity properties.) The COMPLY clazssebe used to
express any additional constraints that are required td thating the pliant event via
its before-during-and-after predicaB®Apred Typically, constraints on the permitted
range of values for the pliant variables, and similar restms, can be placed here.

The COMPLY clause has another purpose. When specifying abatract level,
we do not necessarily want to be concerned with all the detdithe dynamics — it
is often sufficient to require some global constraints tallwahich express the needed
safety properties of the system. The COMPLY clauses of thehina’s pliant events
can house such constraints directly, leaving it to loweelleefinements to add the
necessary details of the dynamics.

Briefly, the semantics of a Hybrid Event-B machine is as fefiolt consists of a set
of system tracesach of which is a collection of functions of time, expragghe value
of each machine variable over the duration of a system rarth@ case oHyEvBMch
in a given system trace, there would be functionsd@rx, y, u, each defined over the
duration of the run.)

Time is modeled as an intervdl of the reals. A run starts at some initial mo-
ment of time,ty say, and lasts either for a finite time, or indefinitely. Theation
of the run7’, breaks up into a succession of left-closed right-openrgebials:7 =
[to...t1),[t1...t2),[t2...t3),.... The idea is that mode events (with their discontinu-
ous updates) take place at the isolated times correspotalithg common endpoints
of these subintervals, and in between, the mode variables are constant and ths plia
events stipulate continuous change in the pliant variables

Although pliant variables change continuously (excephpps at thd;), continu-
ity alone still allows for a wide range of mathematically lpaibgical behaviours. To
eliminate these, we make the following restrictions whiplplg individually to every
subintervaltj . . . t+1):

| Zeno: there is a constafiten,, such that for all neededti; — tj > dzeno-
II' Limits: for every variablex, and for every timé € 7, the left limitlims_,o X(t — 0)

writtem?t)) and right limitlims_,o X(t + ¢), written% (with § > 0) exist, and for
everyt, x(t) = x(t). [N. B. At the endpoint(s) off, any missing limit is defined to
equal its counterpart.]

Differentiability: The behaviour of every pliant vatige x in the intervallt; . . . ti11)

is given by the solution of a well posed initial value probléhxs = ¢(xs...)
(wherexsis a relevant tuple of pliant variables afiis the time derivative). “Well
posed” means thai(xs. . .) has Lipschitz constants which are uniformly bounded
over(t; . ..t41) bounding its variation with respect i@, and thatp(xs. . .) is mea-
surable irt.

Regarding the above, the Zeno condition is certainly a bénséstriction to de-
mand of any acceptable system, but in general, its truthlggeli@od can depend on the
system’s full reachability relation, and is thus very freqtly undecidable.

The stipulation on limits, with the left limit value at a tinbebeing not necessarily
the same as the right limit &t makes for an easy interpretation of mode events that
happen at;. For such mode events, the before-values are interpretdtedsft limit
values, and the after-values are interpreted as the rigittalues.

The differentiability condition guarantees that from adifie starting pointt; say,
there is a maximal right open interval, specifiedtayx say, such that a solution to the
ODE system exists ifft; . . . tyax). Within this interval, we seek the earliest tiig;
at which a mode event becomes enabled, and this time becam@sgemption point
beyond which the solution to the ODE system is abandonedttendext solution is
sought after the completion of the mode event.

In this manner, assuming that theITIALISATIONevent has achieved a suitable
intial assignment to variables, a system rurwisll formed and thus belongs to the
semantics of the machine, provided that at runtime:

e Every enabled mode event is feasible, i.e. has an aftes;statl on its comple-(1)
tion enables a pliant event (but does not enable any modé¢)éven

e Every enabled pliant event is feasible, i.e. has a timexeddamily of after- (2)
states, and EITHER:

(i) During the run of the pliant event a mode event becomesledalt pre-
empts the pliant event, defining its end. ORELSE
(i) During the run of the pliant event it becomes infeasilfileite termination.
ORELSE
(iii) The pliant event continues indefinitely: nontermiioeit

Thus in a well formed run mode events alternate with pliardnés. The last event
(if there is one) is a pliant event (whose duration may bedioit infinite). In reality,
there are a number of semantic issues that we have glossethdkie framework just
sketched. We refer to [5] for a more detailed presentation.

We note that this framework is quite close to the modern féatan of hybrid
systems. (See eg. [21, 16] for representative formulationthe large literature in the
Hybrid Systems: Computation and Contsalries of international conferences, and the
further literature cited therein.)

5 Cruise Control — Top Level Mode Oriented Model

In this section we begin the development of the cruise cosirstem by introducing
the top level, mode oriented model of the CC3yiseContral0. At this level, we just
model the state transition diagram given in Fig. 1, i.e. wa jocus on the high level
user view modes of operation of the system. Regarding a nealéstic engineering
development, such a model would probably be agreed on fekirdthe details of the
various submodel behaviours were determined.

Regarding the CCS model itself, we see that we model thetateuof Fig. 1 using
two mode variablesmodeand sm (submode). The former models whether the CCS

1 1f a mode event has an input, the semantics assumes thaltiesarmly arrives at a time strictly
later than the previous mode event, ensuring part of (1)naatically. This used in Fig. 3.

MACHINE CruiseContral0
VARIABLES modesm
INVARIANTS

modec {OFF, ON, SUSR

sme {NIL, SET}

sm= SET=- modec {ON, SUSR
EVENTS

INITIALISATION
STATUS ordinary
BEGIN

mode := OFF
sm := NIL
END

SwOn
STATUS ordinary
ANY in?

WHERE in? = swOnA mode= OFF

THEN mode:= ON

sm := NIL
END
SwOff
STATUS ordinary
ANY in?

WHERE in? = swOff A mode= ON

THEN mode:= OFF

sm := NIL
END
SetSpeed
STATUS ordinary
ANY in?

WHERE in? = setSpeed\
mode= ON A sm= NIL

THEN sm:= SET

END

TipUp

STATUS ordinary

ANY in?

WHERE in? = tipUp A
mode= ON A sm= SET

THEN skip

END

TipDown

STATUS ordinary
ANY in?
WHERE in? = tipDown A
mode= ON A sm= SET
THEN skip
END
DepAcc
STATUS ordinary
ANY in?
WHERE in? = depAccA
mode= ON A sm= SET
THEN mode := SUSP
END
RelAcc
STATUS ordinary
ANY in?
WHERE in? = relAcc A
mode= SUSPA sm= SET
THEN mode:= ON
END
DepBrCl
STATUS ordinary
ANY in?
WHERE in? = depBrCIA
modec {ON, SUSR
THEN mode := OFF
sm := NIL
END
PliTrue
STATUS pliant
COMPLY INVARIANTS
END
END

Fig. 3. Mode level description of cruise control operation.

is ON, OFF or SUSRnded, while the latter models whether the speed has BE&n
otherwise it isNIL. It is not hard to check that Fig. 3 gives a translation of Rignto
the framework of Hybrid Event-B. Aside from typing invarianwe have an invariant
that only allows thesmto beSETwhen the CCS is active (i.e. eitheN or SUSH.

One aspect of both Fig. 1 and Fig. 3 that we should commentdhat in the real
world, the pressing of any of the pedals, or of the CCS cotinttbns, is not restricted
to when the CCS deems it permissible to do so. The car drivetiese user interface
elements at his disposal at all times, and can operate theanavir he wishes. Thus,
we have clearly designed Fig. 1 and Figa@gressivelyassuming events take place
only when their guards are true. This implies that there éefensivdayer above it,
deflecting inappropriately commanded events away fromdine €CS functionality.

Aside from a few details, Fig. 3 is almost identical to congide models written
in discrete Event-B as described in [12] or [25, 24]. The ndifference between the
earlier treatments and ours, is that these other treatndentdoped their mode level
descriptions incrementally, adding a feature or two at @tira refinement, to ease
automated verification. By contrast, we have presented adentevel model mono-
lithically, so as to save space (and the reader’s attenfian)sfor the richer modelling
of the continuous system behaviour between mode changes tha main contribution
of this paper.

Regarding the technical structure of Fig. 3, it differs frandiscrete Event-B ma-
chine in only a couple of details. First is that each of the enedents (indicated by
the ‘STATUS ordinary’ designation) has an input parametbose value is (almost)
the name of the event. Considering the actions of theseusrnmde events, such pa-
rameters would be unnecessary in discrete Event-B. In ldybrent-B though, time is
an essential feature of the modelling framework, so theniinaif occurrences of mode
events is an issue. The semantics of Hybrid Event-B stipsltiiat mode events with
input parameters only become enabled when the input vakeiesnie available from
the environment, and it @ssumedhat they only become available at times that do not
clash with other mode events. Thus the appearance of thésifom the environment
acts to schedule mode event occurrences in a way compaiitlehe usual interpre-
tation of their occurrence in discrete Event-B. The onlyeottiifference from discrete
Event-B that is visible in Fig. 3, is the pliant everliTrue. This has a vacuous guard,
and (essentially) vacuous semantics that merely insistiedNVARIANTS are main-
tained. Its job is simply to formally allow time to pass (amting to the semantics of
Hybrid Event-B) until the next mode event occurrence takesgy prompted by the
appearance of the relevant parameter from the environment.

From the above, it is easy to see that a standard discretd-Buaachine, giving
a mode level description of the behaviour of some desiretésyscould be mechani-
cally and routinely translated to a machine of the form of. Bigallowing an original
discrete Event-B machine to be refined ultimately by a HyBwent-B machine. Al-
ternatively, the formal semantics of UML-B [18, 14, 19] wdw@nable the same job to
be done starting from a more diagrammatic representatiois.Would enable a devel-
opment process that started by focusing on just a conveaititiscrete Event-B mode
level behaviour of the system, to be enriched with real timgprties further along the
development, within an integrated development activity.

6 Cruise Control — Abstract Continuous Behaviour

In this section we enhance the pure mode oriented model difoBe® with a specifi-
cation of the desired continuous behaviour in the period@dxen occurrences of the
mode events.

The requirements that are intended to be addressed by thesioer are relatively
easy to formulate at a user level. Thus, once the CCS is im@amftthe car, we require
that the actual speed of the car differs from the target spiesichas been set by the
driver by at worst a margin that is determined by the CCS dhesig

The car’s actual behaviour may drift away from it's targduesfor many reasons.
The target speed is set when the driver engages the CCS, &atstated into com-
mands for the car to maintain it, but the actual behaviouifésted by many additional
environmental factors. These include factors such as nope swind resistance, road
surface characteristics, total car weight, fuel energpuoitand so on. These add con-
siderable uncertainty and complexity to the real worldagitn.

Control engineers cope with the vast range of environmemtegrtainty by using
feedback. The deviation between the actual and desiredioeinds monitored, and the
difference is used to impel the controlled system towardsisired behaviour.

The low level design of a real CCS deals with the many factuas affect the car’s
performance, as indicated. In this paper we will restrigtattention to a simple control
design addressing the user level requirements statedreditis illustrates how a con-
trol system design may be integrated with the modelling bditias of Hybrid Event-B.
More realistic designs will follow the same general priegas our example, and will
merely exhibit increased complexity.

Our enhanced treatment of the CC system is to be found in Figoshpleted in
Fig. 5. After the machine and refinement declarations, tleeaedeclaration of a pliant
variablev, representing the velocity of the car. In our simple apphoacCCS, this
single pliant variable will be sufficient.

Next come the (mode) variables. Of thesmdeandsmare familiar from Fig. 3. Of
the remaindersetvis the target velocity set by the driver of the car, while tegvari-
ablern records whether a ramp up/down episode is needed after tise a€Ecelerator
prior to resuming cruising velocity. All other identifiersgcurring but not declared in
Figs. 4 or 5, are constants of the system, as if they were irbaitlfzvent-B CONTEXT
not included in the paper. We return to them at the end of gitien.

Next come the invariants. For the real valued variablesgdigable as such because
of the invariants that restrict them to a real valued closeerval, e.gv € [0. . . Vimax,
the restriction to the interval is mostly the only propehgy have to satisfy. Aside from
v, these real valued variables are mode variables, so arevgizconstant during pliant
transitions, despite being real valued.

The remaining invariantiEONTINUOUS(v), featuring the CONTINUOUS'’ pli-
ant modality Now, the semantics of Hybrid Event-B guarantees that imweeh mode
transitions, the behaviour of all pliant variables must bsdadutely continuous. Never-
theless, pliant variables may suffer discontinuities nigirnode transitions. ThHEON-
TINUOUS modality stipulates that this must not happem,tand a simple static check
on the mode events is enough to guarantee this. The glob&haay of v is of course
intended to contribute to the ‘comfortable behaviour’ regunent.

10

MACHINE CruiseContrall
REFINES CruiseContral0
PLIANT v
VARIABLES modesm setyrn
INVARIANTS
vel0... Vi
CONTINUOUS(v)
modee {OFF, ON, SUSB
sme {NIL, SET}
sm= SET=- modec {ON, SUSR
setve [VCGuin . . . VCGnax
rm € BOOL
EVENTS
INITIALISATION
STATUS ordinary
REFINES INITIALISATION
BEGIN

Vi€ [0... Vma
setv:€ [VCGin . . . VCGnax
mode := OFF
sm = NIL
m = FALSE
END
PliDefault

STATUS pliant
REFINES PliTrue
WHEN modee {OFF,SUSH Vv
(mode= ON A sm= NIL)
COMPLY INVARIANTS
END
SwOn
STATUS ordinary
REFINES SwOn
ANY in?
WHERE in? = swOnA mode= OFF
THEN mode:= ON
sm := NIL
END
SwOff
STATUS ordinary
REFINES SwOff
ANY in?
WHERE in? = swOff A mode= ON
THEN mode := OFF
sm := NIL
END

SetSpeed
STATUS ordinary
REFINES SetSpeed
ANY in?
WHERE in? = setSpeed\
V € [VCGain...VCGna] A
mode= ON A sm= NIL
THEN sm := SET
setv:= v
END
Cruise
STATUS pliant
REFINES PIiTrue
INIT |V — set\/1 < Acruise
WHERE mode= ON A sm= SET
COMPLY |V — SetV1 < Acniise A
| Dv| < Awmca
END
RampUp
STATUS pliant
REFINES PlIiTrue
INIT v— setv< —Acruise
WHERE mode= ON A sm= SET
COMPLY |Dv — RUA| < Arup
END
RampDown
STATUS pliant
REFINES PlIiTrue
INIT v — setv> Acruise
WHERE mode= ON A sm= SET
COMPLY |Dv + RDA| < Arup
END
ResumeCruise
STATUS convergent
WHEN |V — set\/1 < Acruise N
mode= ON A sm= SETA n
THEN rn := FALSE
END

VARIANT rn

Fig. 4. Cruise control operation with abstract continuous behayitrst part.

11

TipUp

STATUS ordinary

REFINES TipUp

ANY in?

WHERE in? = tipUp A
mode= ON A sm= SET

THEN
setv := min{setv4 TUD, VCGCnax}

END

TipDown

STATUS ordinary

REFINES TipDown

ANY in?

WHERE in? = tipDown A
mode= ON A sm= SET
setv— TUD > VCGuin

THEN
setv := max{setv— TUD, VCGin}

END

DepAcc

STATUS ordinary

REFINES DepAcc

ANY in?

WHERE in? = depAccA
mode= ON A sm= SET

THEN mode := SUSP

END

RelAccCruise

STATUS ordinary

REFINES RelAcc

ANY in?

WHERE in? = relAccA
mode= SUSPA sm= SETA
|V —sety < Acuise

THEN mode:= ON

m = FALSE

END

RelAccRamp

STATUS ordinary

REFINES RelAcc

ANY in?

WHERE in? = relAcc A
mode= SUSPA sm= SETA
|V - 5et\l1 > Acrise

THEN mode:= ON

m = TRUE

END

DepBrCl

STATUS ordinary

REFINES DepBrCl

ANY in?

WHERE in? = depBrCIA
modec {ON, SUSR

THEN mode:= OFF

sm := NIL
END
END

Fig. 5. Cruise control operation with abstract continuous behayigecond part.

The heart of the model consists of the events, the first of misitNITIALISATION
This intialisesmodeandsmas before, and sets all the real valued variables to anpitrar
values in their permitted range. We examine the remainiegtswone by one.

PliDefaultis a pliant event that refind2liTrue of Fig. 3. It allows the variables to
vary arbitrarily via the ‘COMPLYINVARIANTSclause, although the invariants must
be maintained. Note that the guardRiiDefaultis stronger than that d?liTrue — the
unconstrained behaviour is only permitted under condstiwhere the CCS wouldot
be expected to be in control.

The eventSwOnandSwOffare identical to their Fig. 3 precursors.

EventSetSpeedcquires new functionality, in that it now also sets the gadfithe
demanded speexktvto be the car’s current speed

The continuous control itself is handled by the next thraanpleventsCruise
RampUp RampDown We start withCruise On entry toCruise if the car’s actual

12

speedv is within a suitable margin (given by the constakd,ise) of the desired speed
sety then the event is enabled, as defined by the INIT cldwse setv] < Acpise
In this case, at the present level of abstraction, the behai$ not precisely defined,
but theCruise event demands that the speed remains within a suitable mairgety
bounded byAcise 2again. A further requirement is once more related to ‘cothfor
that the rate of change ofshould not exceed BlaximunCruiseAcceleration Apca.
These stipulations are housed in the COMBlY— setv| < Acpise A | DV | < Amca
clause. Note that this represents a gengpecificationin that the COMPLY clause
gives no indication of how a behaviour with the required mies is to be achieved.
It also represents behaviour that trivially refif@i§True, in that the latter accepts all
behaviours obeying the invariants.

Similar considerations apply ®ampUpandRampDownTakingRampUpit caters
for the cases when, following use of the accelerator to casnee temporary vari-
ation in the car’s speed, the car’s actual speesd less than the desired speseitv
by an amount greater thadcnise? In such a case, it is deemed that a(n approxi-
mately) constant acceleration towards the desired spebds an appropriate han-
dling of the ‘comfort’ requirement. So we have a clause COMRLDv — RUA| <
Arup. This demands that the acceleratibmr does not differ from the constaRIUA
i.e. RampJpAcceleration, by more than the deviatidpyp. Again this is specification,
pure and simple. No indication is given about how to achieediehaviour described.

EventRampDowns very similar toRampUplt fires when, following use of the ac-
celerator, the car’s actual speed is greater #&vby an amount exceeding the constant
Acrise NOw the car is required to decelerate at the (approximptelystant accelera-
tion —RDA (with the same margin as before). Again, the COMPLY clauseuats to
pure specification. No indication is given about how to aghite behaviour described.

A number of additional remarks are in order regardingise RampUpRampDown
Firstly, the constants occurring in the events’ INIT guamsst be chosen so that the
disjunction of the INIT guards can cover all permissible glageds in the car's permit-
ted rang€0 . . . Vimay. Otherwise, whemode= ON A sm= SET, the relative deadlock
freedom property of refinement will fail since all three etgerefine the unconstrained
behaviour ofPliTrue. It is clear thaCruise RampUpRampDownas defined, meet this
constraint.

Secondly, if sayRrampUpruns, then if left to continue in an unhindered manner,
it will eventually cause the € [0...Vnay invariant to fail, since a constant positive
acceleration will eventually causy upper speed limit to be exceeded. To prevent
this, we have introduced a new mode evResumeCruisevhich runs when the car’s
velocity, previously differing from the set speed by morani\cse eventually gets
within Acrise Of the set speed. The main job of this mode event is to causehedule,
so thatRampUps preempted, an@ruiseis able to run.

We only wantResumeCruist only run once per resumption-of-cruise-control. In
order thatResumeCruisdisables itself upon completion, we use the rmewariable
in its guard, and falsify it in the action &tesumeCruiselhis causeResumeCruist®

2 The initially puzzling possibility that the car might neeul gpeed ugfollowing use of the
acceleratoris explained by considering driving up a steep hill.

13

decrease the VARIANTNn (with which we interrupt the presentation of events, in orde
to show it at the most opportune place).

The remainder of th€ruiseContrall machine is in Fig. 5. Now, sincgetvis a
new feature of theCruiseControll machine, and sinc&pUp and TipDown are in-
tended to manipulate it, these events must be refined niailyivn order to achieve
this. The refinements therefore add or subtract the con$tabtfrom sety although
they must do it in a way that prevents the range of permissihlese control speeds
[VCGuin - . - VCGnax from being overstepped.

Among the remaining events @fruiseControll (all mode events)DepAccis as
previously. EvenRelAcchas been split in two though, depending on whether the car’s
speed is within the margifc,ise When the accelerator pedal is releasedvlf setv|
< Acnise holds, i.e. the car is near enough its cruise speed,@neisecan be entered
directly, ResumeCruiswill not be needed, and sRelAccCruisesetsnr to FALSE. If
|v — setV| < Acnise is false though, then a ramp up or down episode is needed, so
RelAccRampetsnr to TRUE so thaResumeCruiswill eventually be enabled.

Finally, DepBrClis as inCruiseContral0.

Having covered the whole system model, we are in a positiore¢onsider the
constants, as promised earlier. While it is natural in higrel modelling to introduce,
at will, constants that constrain system behaviour in desérways, these constants will
not normally be independent, and will need to satisfy a nurobproperties to ensure
soundness. The safest way to ensure that all needed catstrave been considered, is
to attempt mechanical verification — a mechanical prover minorselessly uncover
any missing constraints, which will show up by generatingronable subgoals.

Despite lack of dedicated tool support for Hybrid Event-Basent, the simplicity
of our model here, means that a large portion of this work @addne using discrete
Event-B and the existing RODIN tool. The fact that, asiderfrproperties involving
continuity and differentiability, we only have uninstaatgd constants, and only use
properties of reals that are also true of the integers, mtwtisunprovability in the
integers is a strong indication of falsity in the reals. Tmegarding the details of our
models, we would obviously neel < VCGyin < VCGnax < Vmax Beyond that,
the mode events can be treated directly, as noted earliex|ddves the pliant events,
Cruise RampUpRampDown

For our purposes, we can tre@tuise as a mode event thakips, for the fol-
lowing collection of reasons: it maintains its guafd;< Acise IS @ constant that
is just used to partition the set of velociti€By is a variable independent of at
any given time (and which is never tested in any guard); @nd Apca is a con-
stant that occurs nowhere else. RampUpandRampDownaside from the obvious
0 < min{RUA RDA Agryp}, all of RUA RDA Agrup are again constants that occur
nowhere else, that only concefiv, and thus are not further constrained. Beyond that,
the behaviour oRampUpRampDowris intended to achievier— set < Acpise SO for
our purposes, we can replace them by mode events with actjgw’ — setVl < Acpise
In this manner, with the help of some admittedly informak@zsing regarding continu-
ity and differentiability, we can go quite a long way towardsglicating the reachabil-
ity relation of theCruiseContrall machine (expressed in terms of sequences of event
names that are executed and the before-/after-values @fvdrds’ variables), using a

14

discrete Event-B machine with the same constants obeymgdme constraints. (In
fact, the authors used this approach on an earlier versitreahodels, and uncovered
a typo concerning inconsistent assumptions about the $igbd. RDAcan be a nega-
tive constant, or alternatively, a positive constant thatégated when necessary at the
point of use; but you must be consistent.)

7 Cruise Control — Continuous Behaviour Defined

In the previous section we specified the continuous behawbthe CCS in terms of
some safety properties captured in the invariants and COM#Pauses. A real CCS
though, would have to realise these properties in a spe@8gd. In this section, we
enhanceCruiseControl1 with such a design.

Fig. 6 contains the enhancement, mach@reiseContral2. This is a refinement
of CruiseContral1 in which the vast majority o€ruiseContrall remains unchanged.
The variable declarations show that we only introduce mefi@aed behaviour in this
machine, and even then, only in eve@isiise RampUpRampDown

We start withCruise Assuming INIT is satisfied, on entry tGruise the actual
speedv may differ fromsetvby some margin sinc€ruise may have been preceded
by RampUpor RampDownAnd while CruiseContral1 tolerated a bounded deviation
between these indefinitely, @ruiseContral2 we replace this by a more specific con-
trol law. Sincesetvis the desired speed, we drive the actual speed toveatysiSing
negative feedback. The earli€@ruiseControl1 behaviour is refined to a control law
described in the SOLVE clause of tli@uiseControl2 event. The control law sets the
acceleratiorDv to be proportional to minus the excess/afversetv Thus, ifv— setvis
positive, the acceleration is negative, tending to dinhinitowardssety and ifv — setv
is negative, the acceleration is positive, tending to iaseg towardssetv

The preceding constitutes an extremely simple example axfed loop negative
feedback linear control, expressed in the state spacergiciilne control law in the
SOLVE clauseDv = —C(v — sety), is a simple linear ODE, and can be solved exactly,
yieldingv(t) = setv+ (v(t1,) — sety e C(=t1) wherety, is the symbol used in Hybrid
Event-B to refer generically to the start time of any timeemval during which a pliant
eventruns. Itis trivial to verify that with a suitab(® this refines the behaviour permit-
ted by theCruiseContrall model, since the maximum values of bétt) — setv and
of | Dv| occur precisely at = t1,, and henceforth reduce.

In more realistic control scenarios, the overall objedjweamely to design a dy-
namics that behaves in an acceptable way in the face of thiéreetents, remains the
same, but the technical details get considerably more doatpll. To a large extent,
frequency-based techniques using Laplace and Fouriesftnans cast the reasoning
into the algebraic domain, and the picture is further coogpéid by the use of varying
criteria (often based on the properties of these frequéased techniques) to evaluate
design quality. Often, use of these techniques does notiblel with the reasoning
found in state machine based formalisms like Event-B anceittives. For this rea-
son, resticting to state space control design techniques@mmended to achieve the
optimal integration between approaches.

15

MACHINE CruiseContral2
REFINES CruiseContral1 Cruise

PLIANT v STATUS pliant
VARIABLES modesm setyrn REFINES Cruise
INVARIANTS INIT |v—sety < Acruise
cee e WHERE mode= ON A sm= SET
EVENTS SOLVE Dv = —C(v — sety
INITIALISATION END
PliDefault RampUp
SwOn STATUS pliant
SwOoff REFINES RampUp
SetSpeed INIT v—setv< —Acise
ResumeCruise. . . WHERE mode= ON A sm= SET
TipUp SOLVE Dv = RUA
TipDown END
DepAcc RampDown
RelAccCruise . .. STATUS pliant
RelAccRamp ... REFINES RampDown
INIT v — setv> Acruise

DepBrCl ...
... WHERE mode= ON A sm= SET
SOLVE Dv = —RDA
END
END

Fig. 6. Cruise control operation with continuous control.

We turn toRampUpandRampDownHere, the approximately linear and nondeter-
ministic variation in speed of machir@&uiseContrall is replaced by a precise, deter-
ministic linear law for the velocity, specified by a constanteleration in the SOLVE
clausesDv = RUAfor RampUpandDv = —RDAfor RampDown

In writing these deterministic dynamical laws, it is presdrthat acceleration is
something that can be commanded accurately by the enginegaarent system, based
on the properties of the engine, the fuel, the environmewtaditions, etc., as discussed
in Section 6. In truth, this is something of an exageratiarrelality, there is too much
uncertainty in all these environmental elements to endideatceleration to be pre-
dicted (and therefore commanded) with complete precigisitde form anything else,
the car’s sensors are severely limited regarding the typefafmation about the envi-
ronment that they can obtain. So there will be some devidteween the acceleration
that the engine management system predicts, and that whattually achieved. On
this basis we would expected to see some difference betwedneatments o€ruise
and ofRampUpandRampDown

In the case o€ruise a misjudgement of the precise acceleration that will bésaetal
is compensated for by the presence of negative feedbadie Hdr's velocity does not
reduce quite as rapidly as anticipated by the engine managesystem, then the neg-
ative feedback will work that much harder to bring the veipanto line. The precise
details of the control law can be adjusted to make allowaacstich potential impreci-

16

sion, without disturbing the overall structure of the babav. In this sense, the negative
feedback makes th@ruisedesign robust against a margin of imprecision.

In the case oRampUpandRampDownthere is no feedback included in the control
law. For these two events, it is thheceleratiorthat might be awry, and that would need
to be broughtinto line. There are a number of reasons why éeatiinclude this in our
models. Firstly, it would need the introduction of at leasé @ther pliant variable into
the models (to distinguish measured acceleration from cana®&d acceleration). Sec-
ondly, the resulting feedback law would make the controteayshigher order, adding
unnecessary complexity. Thirdly we would lose the oppdtiuto illustrate the contrast
between closed loop control (as@muise and open loop control (as here, fRampUp
andRampDowhin the context of Hybrid Event-B. Fourthly, if our earlieesign is ap-
propriate, then any deviation from cruise speed caused &ypithe accelerator pedal
will be temporary, and thuRampUpandRampDowrdescribdransientsof the system.
The small imprecisions that may affect their behaviour wilt significantly affect the
quality of the CCS at the relatively simple level that we midtie this paper.

8 Conclusions

In the preceding sections, we overviewed the cruise contonlel examined within the
DEPLOQY project, and we commented on the deficiencies whendbmodelling and
verification are based purely on discrete Event-B, as wadamg in DEPLOY. We
then commented on the anticipated improvements expected tile more expressive
Hybrid Event-B formalism is used instead. We continued biliming the essential
elements of Hybrid Event-B, sufficient to cater for the mdidglto be done later.

We then developed a simple version of the CCS in Hybrid E®ritrough a num-
ber of relatively large scale refinements, using these nefmes to illustrate the major
modelling steps. Thus, we started with a pure mode orientedein very similar to
what DEPLOY achieved for CCS. The hybrid aspects of HybriériEsB were almost
completely disregarded here by allowing the continuousbielir to be arbitrary.

The first refinement then introduced additional structukrastrictions on the con-
tinuous behaviour. These, though nondeterministic, wemted sufficient to express
the system requirements. The next refinement then intratspecific control laws that
modelled in a simple way how a real CCS might implement thedicaous control.

Of course, a real system would be much more complicated tiat we presented,
but it would consist of a larger collection of ingredientaafimilar nature to those in our
design. For expository purposes then, we can claim that mseptation met the goals
described in Section 3. Specifically, we showed that we cmglorporate provision for
closed loop controller designs unproblematically (inahgda brief discussion of open
loop control too). Additionally, the smoothness with whalr development proceeded,
bore eloquent testimony to the fluency of the Hybrid EveniBrfalism in tackling
developments of this kind. This gives strong encouragermrte development of
mechanical support for the Hybrid Event-B framework in thife.

Acknowledgement: Michael Butler is partly funded by the FP7 ADVANCE Project
(http://www.advance-ict.eu).

17

References

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

KeYmaerahttp://symbolaris.com

Report: Cyber-Physical Systems (2008),
http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf

Abrial, J.R.: Modeling in Event-B: System and Softwargteering. Cambridge University
Press (2010)

Antsaklis, P., Michel, A.: Linear Systems. Birkhaused(g)

Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: CorebHg¢ Event-B: Adding Contin-
uous Behaviour to Event-B (2012), submitted.

Barolli, L., Takizawa, M., Hussain, F.: Special Issue ondfging Trends in Cyber-Physical
Systems. J. Amb. Intel. Hum. Comp. 2, 249-250 (2011)

Butler, M.: Towards a Cookbook for Modelling and Refinetn&rControl Problems (2009),
http://deploy-eprints.ecs.soton.ac.uk/108/1/cookbook.pdf

Carloni, L., Passerone, R., Pinto, A., Sangiovanni-¥irtelli, A.: Languages and Tools for
Hybrid Systems Design. Foundations and Trends in Eleatioresign Automation 1, 1-193
(2006)

DEPLOY: European Project DEPLOY IST-51158@p://www.deploy-project.eu/

Dorf, R., Bishop, R.: Modern Control Systems. Pears6@i Q2

Dutton, K., Thompson, S., Barraclough, B.: The Art of @ohEngineering. Addison Wesley
(1997)

Loesch, F., Gmehlich, R., Grau, K., Mazzara, M., Jones, RCoject DEPLOY, De-
liverable D19: Pilot Deployment in the Automotive SectoO1R), http://www.deploy-
project.eu/pdf/D19-pilot-deployment-in-the-automotive-sector.pdf

MATLAB and SIMULINK: http://www.mathworks.com

Mermet, J.: UML-B: Specification for Proven Embeddedt&ys Design. Springer (2004)
Ogata, K.: Modern Control Engineering. Pearson (2008)

Platzer, A.: Logical Analysis of Hybrid Systems: Prayitheorems for Complex Dynamics.
Springer (2010)

RODIN: European Project RODIN (Rigorous Open Develapinfer Complex Systems)
IST-51159%ttp://rodin.cs.ncl.ac.uk/

Snook, C., Butler, M.: UML-B: Formal modeling and desmjded by UML. TOSEM 15,
92-122 (2006)

Snook, C., Oliver, I., Butler, M.: The UML-B Profile for Fmal Systems Modelling in UML.
UML-B Specification for Proven Embedded Systems Design4200

Sztipanovits, J.: Model Integration and Cyber Physi&stems: A Semantics
Perspective. In: Butler, Schulte (eds.) Proc. FM-11. Smin LNCS 6664, p.1,
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf (2011), Invited talk, FM
2011, Limerick, Ireland

Tabuada, P.: Verification and Control of Hybrid SystemsSymbolic Approach. Springer
(2009)

White, J., Clarke, S., Groba, C., Dougherty, B., Thomp§&b, Schmidt, D.: R&D Challenges
and Solutions for Mobile Cyber-Physical Applications angporting Internet Services. J.
Internet Serv. Appl. 1, 45-56 (2010)

Willems, J.: Open Dynamical Systems: Their Aims andrt®eigins. Ruberti Lecture, Rome
(2007),http://homes.esat.kuleuven.be/qwillems/Lectures/2007/Rubertilecture.pdf
Yeganefard, S., Butler, M.: Control Systems: Phenonsemh Structuring Functional Re-
guirement Documents. In: Proc. ICECCS-12. pp. 39-48. IEEHRZ)

Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluatioam Guideline by Formal Modelling
of Cruise Control System in Event-B. In: Proc. 2nd NFM, NAER-2010-216215. pp. 182—
191. NASA (2010)

18

