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Clear differences in turbulence intensity profiles in smooth, transitional and fully rough
zero-pressure gradient boundary layers are demonstrated, using the diagnostic plot in-
troduced by Alfredsson et al. (2011) – u′/U vs. U/Ue where u′ and U are the local (rms)
fluctuating and mean velocities and Ue is the free-stream velocity. A wide range of pub-
lished data are considered and all zero-pressure gradient boundary layers yield outer flow
u′/U values which are roughly linearly related to U/Ue, just as for smooth walls, but with
a significantly higher slope which is completely independent of the roughness morphology.
The difference in slope is due largely to the influence of the roughness parameter (∆U+

in the usual notation) and all the data can be fitted empirically by using a modified form
of the scaling, dependent only on ∆U/Ue. The turbulence intensity, at a location in the
outer layer where U/Ue is fixed, rises monotonically with increasing ∆U/Ue which, how-
ever, remains of O(1) for all possible zero-pressure gradient rough-wall boundary layers
even at the highest Reynolds numbers. A measurement of intensity at a point in the
outer region of the boundary layer can provide an indication of whether the surface is
aerodynamically fully rough, without having to determine the surface stress or effective
roughness height. Discussion of the implication for smooth/rough flow universality of
differences in outer layer mean velocity wake strength is included.

1. Background

There is now a substantial literature on issues concerning universality of smooth- and
rough-wall boundary layers, particularly focussed on the question of under what circum-
stances an aerodynamically rough flow has outer layer characteristics identical to those
for a smooth-wall flow, consistent with the original hypothesis of Townsend (1976). For
three-dimensional roughness Flack et al. (2005) provide support for this, at least for
small roughness height (k) to boundary layer height (δ) ratios, as do Krogstad & Efros
(2012) in the context of two-dimensional roughness (very small spanwise bars). Recent
papers (Castro 2007; Amir & Castro 2011) present further experimental data, cite much
of the surrounding and sometimes contradictory literature but, likewise, conclude that
zero-pressure-gradient rough-wall boundary layers are (in the outer flow) indistinguish-
able from smooth-wall flows, independently of the nature of the roughness but provided
k/δ is sufficiently small. Furthermore, this seems to be valid for surprisingly large k/δ -
perhaps up to 15%. Despite this apparent universality, however, there is also considerable
evidence that the mean velocity profiles differ in the strength of the wake component.
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in the usual notation. Note that the y-origin is located at the zero-plane displacement
height, d (so that the actual height from the bottom of the roughness is y + d), and the
roughness height k is measured from the bottom of the roughness elements to the top
of the tallest ones. The roughness function ∆U+ is zero for a smooth-wall flow and Π
is the usual Coles (1956) wake parameter, which is typically about 0.55 for smooth-wall
flows provided the Reynolds number is high enough (see, e.g. Nagib & Chauhan 2008).
However, there is little doubt that it can rise to at least 0.7 for fully-rough flows (as
found by Krogstad et al. 1992; Bergstrom et al. 2005; Castro 2007, for example).

This difference in wake strength implies that full universality between smooth and
rough boundary layers does not exist. But there are major, well-known difficulties in
assessing the extent to which the classical two-parameter scaling embodied in the above
expression for U+ accurately describes zero-pressure gradient boundary layers and, if
so, over what range of Reynolds numbers. These include the accurate determination of
the wall stress and hence uτ , assessing whether spatial resolution of probes is adequate
(especially near the wall), and determining the precise probe distance from the wall.
The latter two difficulties, in particular, become increasingly serious as the Reynolds
number becomes very large (especially for smooth wall flows). In the context largely of
smooth-wall flows at high Reynolds numbers, Marusic et al. (2010) have recently explored
these issues in examining much of the available data. In commenting on rough-wall flows,
they state that the possible interactions between inner and outer regions ‘require further
investigation’ and that, more generally, ‘there is a pressing need for further investigation
of the rough-wall case’.

Recently, Alfredsson et al. (2011, 2012) have introduced what they call the ‘diagnostic
plot’ as a means of assessing, as the Reynolds number increases, the adequacy of scaling
laws and of experimental data, including those for the turbulence (at least, the axial
intensity). Alfredsson et al.’s diagnostic plot is a convenient way of addressing some of
the difficulties mentioned above: u′/U (or u′/Ue, where Ue is the free-stream velocity) is
plotted against U/Ue as this avoids use of both y and uτ and helps to determine whether
features identified in the data are genuinely physical. Their interest was restricted to
smooth-wall flows and secondary ‘outer’ peaks in the u′+ profiles in the near-wall region.
However, in view of the even more serious difficulties for rough-wall flows in determining
wall stress, wall distance and the zero-plane displacement the approach would seem
to have considerable merit for that case too. Initial work on such cases was reported
by Segalini et al. (2012); this paper pursues the matter more fully, by re-analysis of
many rough-wall data available in the literature. We demonstrate that the diagnostic
plot emphasises the clear differences between smooth-wall and fully-rough-wall boundary
layers and can provide a rapid assessment of whether or not the flow is transitionally
rough. We also discuss the reasons for the high value of wake strength in many rough-wall
flows and the implications for true universality.

2. The diagnostic plot

Alfredsson et al. (2011, 2012) have shown that in a region starting within the loga-
rithmic region and continuing through almost the entire outer wake flow the turbulence
intensity u′/U decreases linearly with U/Ue. Also, the extent of this linear region in-
creases with increasing Reynolds number. This is illustrated in figure 1a, for a collection
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Figure 1. (a): Turbulence intensity, u′/U , plotted against the mean velocity for a collection
of smooth-wall, zero-pressure-gradient boundary layer data (from Alfredsson et al. 2012). (b)
Rough-wall data, from some of the data sets listed in table 1. The legend includes values of
δ/k for the labelled data; symbols not in the legend are for the Amir mesh surface with smaller
δ/k. The solid line provides a reasonable linear fit in the outer layer and the dashed line is the
smooth-wall outer layer straight line from Alfredsson et al. (2012).

Experiment Label Roughness δ/k δ/ks ∆U+ y+
o

Castro & Snyder (1980) FMS, FMF Gravel/blocks 31, 24 36, 28 8.7, 11.4 4.3, 13.5
Snyder & Castro (2002) SC2002 Plates 59, 59 36, 44 8.3, 3.4 3.7, 0.5
Cheng & Castro (2002) CC2002 Cubes 4.2-10.4 3.4-7.2 14.1-12.4 19.1-41.3

Flack et al. (2005) FSC2005 mesh 19.1-109 5.1-55 12.6-6.7 22.6-1.8
Flack et al. (2007) FSC2007 Sandgrain 54-15.7 91-7.0 6.0-13.5 1.4-24.3
Brzek et al. (2008) BCJC08 Grit 30, 86 15.7, 142 9.7, 2 6.7, 0.3

Amir & Castro (2011) AC2011 Mesh 8.1-29 6.0-8.6 10.7-13.4 9.7-31
Amir & Castro (2011) AC2011 Random blocks 4.6-18 109-311 3.6-10.3 10.7-17
Amir & Castro (2011) AC2011 Grit 29-31 72-38 3.0-8.2 0.43-3.5
Volino et al. (2011) VSF2011 2D bars 32,159 2.3, 17.7 12.7, 7.7 23.5, 3
Volino et al. (2011) VSF2011 Staggered cubes 27.6 7.3 9.5 6.3

Krogstad & Efros (2012) KE2012 2D bars 131 41 13.6 36.4

Table 1. Details of the experimental data used in the figures. (Note that δ/yo is 32.6δ/ks.
Where two comma-separated entries appear in the δ/k column, all subsequent pairs in that row
have corresponding entries (i.e. in the same order). Where ranges appear, minima and maxima
are shown in each column, but the variations for the different parameters are not necessarily
monotonic between the limits.)

of smooth-wall zero-pressure-gradient boundary layers. The behaviour conforms to the
expected scaling for the axial turbulence, expressed by

u′

U
= g

(

U

Ue

;
Ue

uτ

)

. (2.1)
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Figure 2. (a): Turbulence intensity, u′/U , plotted against the mean velocity for a sample
of rough-wall and transitional boundary layers.(b) The same data as in (a) plotted using U ′

(U + ∆U) as the scaling velocity. In both figures, the dashed line is the smooth wall line of
Alfredsson et al. (2011) and the solid line is the same as in figure 1b. The legend in both plots
gives values of k+

s , ∆U+ for each case.

The linear region is well-fitted by

u′

U
= a + b

U

Ue

, (2.2)

where a = 0.286. b = −0.255 are empirical constants determined from the smooth wall
data compilation of Alfredsson et al. (2011). Note that this linear relationship is inde-
pendent of the Reynolds number (characterised by Ue/uτ in (2.1)) but becomes more
extensive as the Reynolds number rises. Similar collapse to a linear behaviour was shown
to occur for (circular) pipe flows and planar (2D) channel flows, although with different
values of the slope which, as Alfredsson et al. (2012) pointed out, is probably a result of
the different strengths of the wake component (Π) in the three flow classes. This would
suggest that if rough-wall boundary layers really do have a significantly larger Π than
that in smooth-wall flows, it would be apparent in the diagnostic plot. Figure 1b shows
a selection of fully-rough boundary layer data from various sources and it is immediately
clear that the slope of the linear collapse region is indeed significantly larger than it is for
smooth-wall flows. Figure 1b also includes smooth-wall data from Hutchins et al. (2011),
Amir & Castro (2011) and Krogstad & Efros (2012), which collapse in the outer layer
and lie close to (although marginally above) the linear smooth-wall line-fit from Alfreds-
son et al. (2012). (Higher Reynolds number smooth-wall data lie closer to the Alfredsson
line.) It is important to emphasise here that although the scaling implied by equation
(2.1) arises essentially from a dimensional argument, there is no obvious physical rea-
son for the appearance of a linear region in the outer layer; this seems to be merely a
convenient empirical finding.

A significant feature of the data shown in fig.1b is the wide range of δ/k covered. In
particular, Krogstad & Efros (2012)’s rough-wall data have δ/k > 100, which ensures
a much more significant separation of inner and outer length scales than is often the
case for aerodynamically fully-rough-wall experiments and is perhaps the main reason
for expecting universality between smooth and rough cases (Jiménez 2004). Another
significant feature is the very different types of roughness morphology the data represent.
The surfaces include the expanded mesh of Flack et al. (2005) (with Reθ ≈ 13000), the
similar but not identical mesh of Amir & Castro (2011) (for a range of δ/k and Reθ), the
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array of random-height rectangular blocks of Amir & Castro (2011) (Reθ ≈ 12600) and
the two-dimensional spanwise bar surface of Krogstad & Efros (2012) (Reθ = 32800).
Other data could have been included. For example, the fully-rough sand-grain surface
cases of Flack et al. (2007) and Amir & Castro (2011). The fact that all these data
collapse suggests that for fully rough boundary layers the diagnostic plot is universal in
the outer region, independent of roughness morphology. However, the data shown cover
flows with roughness functions (∆U+) varying between about 9.5 and 14. A much wider
range might not be expected to yield such good collapse (not least because boundary
layers with sufficiently low ∆U+ are transitionally rough – i.e. viscous effects become
non-negligible). This is demonstrated by figure 2a, which shows profiles from a range
of flows having increasing values of k+

s , the traditional ‘equivalent sand-grain roughness
length’, chosen to yield flows with gradually increasing values of k+

s . Common values of
κ and A in (1.1)(0.41 and 5.0 respectively) and the classical (Schlichting 1968) empirical
relationship for sand-grain roughness, ∆U+ = κ−1 ln k+

s + A − 8.5, yield ks = 32.6yo

where yo is the roughness length defined by the alternative form of (1.1):

U+ ≡
U

uτ

=
1

κ
ln

(

y

yo

)

+
2Π

κ
w

(y

δ

)

. (2.3)

(1.1) and (2.3) together imply that ∆U+ = κ−1ln(y+
o ) + A; k+

s , y+
o and ∆U+ are equiv-

alent ways of characterising the roughness. We prefer the use of y+
o rather than k+

s as
it is a more direct measure of roughness ‘strength’ than the rather artificial construct
provided by the latter for general roughness morphologies. And y+

o is certainly more ap-
propriate than k+, since yo/k can vary very widely, being highly dependent on roughness
morphology. It is clear from figure 2a that as k+

s rises a roughly linear outer region is
still found but the slope of this linear part increases.

Although the differences between smooth- and rough-wall data in figures 1b and 2a
might initially be thought to be a consequence solely of wake strength (and can actually
be parameterised on that basis alone), this is not so. The full profile model provided
by (1.1) with ∆U+ 6= 0 properly requires a more appropriate general scaling to that
embodied in (2.1), with U+ being enhanced by the roughness parameter ∆U+ (zero for
a smooth wall). (2.1) then becomes

u′

U ′
= h

(

U ′

U ′

e

)

(2.4)

(ignoring possible Reynolds number effects) and, analogously to (2.2), one might antici-
pate that the data follow

u′

U ′
= ã + b̃

U ′

U ′

e

, (2.5)

where U ′ = U +∆U and U ′

e = Ue+∆U . In the limit of ∆U+ → 0, (2.5) will coincide with
(2.2) and therefore ã = a and b̃ = b, where a and b are the diagnostic constants determined
from smooth wall data only. Defining the parameter ∆Un by ∆Un = ∆U+/U+

e (2.5) can
be re-written as

u′

U
=

U/Ue + ∆Un

U/Ue

(

a + b
U/Ue + ∆Un

1 + ∆Un

)

. (2.6)

Note that this is not linear in U/Ue, but the degree of curvature implied by non-zero
∆Un is small.

The profiles in figure 2a are re-plotted in figure 2b using the scaling implied by (2.4)
and it is evident that all the profiles collapse onto the smooth wall result in the outer
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Figure 3. Data for all the cases in previous figures (and given in table 1). (a): values of δ+/y+
o

vs. y+
o . Solid lines (from (2.6)) indicate constant values of ∆Un (with Π = 0.7), ranging from

0.2 to 1.4. Dotted line is for ∆Un = 0.6, Π = 0.55. Large solid symbols (labelled ABL) are
typical values for the neutral atmospheric boundary layer, from rural to urban roughness (from
Cook 1985) and are surrounded by the ‘cloud’ to indicate the likely range of all possible ABL
data. The vertical dashed line indicates the smooth-wall limit, whose lower bound is chosen to
start when δ+ = 1000; y+

o = e−κA = 0.129 for smooth flows and the upper value of δ/yo is
unbounded. (b): u′/U at U/Ue = 0.55 as a function of ∆Un.

layer, independent of ∆U+ (or, equivalently, y+
o ). We have not found any data which has

a slope greater than that of the solid line in figures 1b and 2 and this suggests an upper
limit to the right-hand side of (2.6), which would require an upper limit on ∆Un (since
u′/U should remain bounded). Now it can be shown that

∆Un ≡
∆U+

U+
e

=
ln(y+

o ) + κA

ln(δ/yo) + 2Π
, (2.7)

which does not immediately indicate such a limit. However, on physical grounds the
outer layer local turbulence intensities cannot rise without limit as y+

o increases. Figure 3a
shows contours of constant ∆Un (with Π = 0.7) in the δ/yo– y+

o plane along with the data
for all the cases in figure 1b and figure 2 (and others from the same sources). It is clear
that for these laboratory flows ∆Un hardly exceeds about 1.0. Even in flows with very
much larger Reynolds numbers, typified by neutrally stable atmospheric boundary layers
(ABL), ∆Un rarely reaches 1.4 - for extreme winds in very urban (i.e. high roughness
length) environments. (The three ABL data points were extracted from compilations in
Cook 1985.) Noting that w(1) = 1, (1.1) can be used directly to deduce a relation for
∆Un, viz:

∆Un ≡
∆U+

U+
e

=

√

Cf

2

(

1

κ
ln(δ+) + B +

2Π

κ

)

− 1, (2.8)

where δ+ = δuτ/ν is the Kármán number. Now, the maximum Cf in any zero-pressure
gradient boundary layer is unlikely to exceed 0.01 at the very most and (2.8) implies that
even for such an extreme case ∆Un|max ranges from about 0.74 to 2.15 for δ+ values
between 103 and 106. It seems clear that for fully rough boundary layers ∆Un must
remain an O(1) quantity whatever the Reynolds number and whatever the roughness.

For all the profiles used to deduce the data in figure 3a, figure 3b shows how the
turbulence intensity at a fixed location in the boundary layer, chosen (arbitrarily) as the
point where U/Ue = 0.55, i.e. usually in the upper half of the log law region for a smooth
flow, varies with ∆Un. The data are compared with what would be expected from (2.6)
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– recall that the latter follows (2.5) exactly provided (2.5) yields a reasonable fit to the
profile data (as figure 2b indicates). There is clearly a monotonic increase in u′/U |0.55

with ∆Un but, as just argued, we do not expect the latter to much exceed unity even
at very high Reynolds numbers – not least because that would imply unphysically large
turbulence intensities. Note that alternative choices of the fixed U/Ue point (e.g. 0.65)
would not alter these conclusions. Note also that cases for which ∆Un / 0.5 are almost
certainly transitionally rough (i.e. y+

o is not large enough to prevent viscous effects being
significant).

3. The influence of k/δ, y+
o

and δ+

The Townsend hypothesis (i.e. that all roughness does is affect the boundary layer
thickness and the local skin friction, without altering the structure of the boundary layer
in any way) is usually reckoned to be valid provided there is a sufficiently large separation
of inner and outer length scales which is often thought to require k/δ to be sufficiently
small. The former can only occur at sufficiently large Reynolds numbers. Jiménez (2004)
suggested that δ+ needs to exceed about 4000 and that k/δ should be below 2.5% at
most. The u′/U data shown in figure 3b are re-plotted in figure 4a as a function of
k/δ and appear to asymptote to a value around 0.22 but have increasing scatter below
about k/δ = 0.05. Some data below this value have u′/U |0.55 values similar to those in
the large (high roughness) k/δ range. The clearest example is provided by the Krogstad
& Efros (2012) data, for which k/δ is only 0.0076 and yet has u′/U |0.55 = 0.225; this
result was anticipated by the entire profile shown in figure 1b, which collapses very well
with the other fully-rough data. There are other data around k/δ = 0.03 which have
high values of u′/U |0.55. The great scatter in figure 4a below k/δ ≈ 0.05, with data
lying between the smooth and the fully rough values, must be largely a result of the
variability in y+

o , rather than specific roughness morphology. If y+
o is too small viscous

effects become significant, although the value of y+
o at which this happens depends on

the specific roughness morphology (Snyder & Castro 2002). Figure 4b shows the figure
4a plotted as a function of y+

o demonstrating a reduced scatter and an asymptotic trend
towards the fully rough, universal regime at large enough y+

o . Note that in figure 4b
the Krogstad & Efros (2012) data appear at y+

o = 36 – well above the value y+
o ≈ 2

(k+
s ≈ 70) generally thought necessary for fully rough conditions. Using this value and

Jiménez (2004)’s lower limit criterion for δ+ (4000), the lower limit of ∆Un (given by
(2.7)) for fully rough conditions satisfying Townsend’s hypothesis is about 0.30; this rises
to about 0.37 if one relaxes the scale separation criterion to δ+ = 1000.

Although δ/k is the classical parameter used to indicate the degree of scale separation
we suggest that, given the significant variation in yo (or, equivalently, ks) that can arise
from different roughness morphologies with the same k, a more appropriate measure of
scale separation would be provided by δ/yo. It is large enough values of y+

o and δ/yo that
determines whether the flow can be both fully rough and universal (i.e. the same as a
smooth-wall flow in all its essential characteristics). The Krogstad & Efros (2012) data
has δ/yo = 375 – more than adequate – whereas some other data, although having values
even larger than this, have too small a value of y+

o . Figure 4c shows the data plotted as
a function of δ/yo. Notice that at large δ/yo – greater than about 100, say – values of
u′/U |0.55 can nonetheless fall below the fully-rough result, but entirely as a result of too
low a value of y+

o (cf. figure 4b). This emphasises the difficulties in designing appropriate
experiments, for too large a value of δ/yo usually means that the roughness is physically
too small to make y+

o large enough. Unusually long wind tunnels with relatively high
free stream speeds are needed to achieve genuinely fully rough (i.e. large enough y+

o )
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Figure 4. Axial turbulence intensities at the point where U/Ue = 0.55, as a function of (a)
k/δ, (b) y+

o , (c) δ/yo and (d) δ+. The horizontal solid and dashed lines represent the average
for values of k+

s larger than about 200 and values ±4% from that average. In (c) and (d), the
smooth-wall data (i.e. for yo → 0) is shown by the dotted lines.

boundary layers having δ/yo in excess of, say, 400. If smaller tunnels are used with a
large roughness height, y+

o might be large enough to ensure fully rough conditions, but
δ/yo might be so small that the flow ceases to have genuine boundary layer characteristics
– becoming merely a flow over a set of large obstacles, as Jiménez (2004) argued.

An alternative way of plotting the data is shown in figure 4d, where the abscissa is
the Kármán number, δ+. The figure includes data for a selection of smooth, transitional
and fully-rough flows. In this plot, smooth-wall data from the unusually high Reynolds-
number experiments of Fernholz et al. (1995) and Hutchins et al. (2011) are included;
these were obtained in large wind tunnels (in the Netherlands and Australia, respec-
tively). It is clear that even at large δ+, the rough-wall values are significantly higher
than the smooth-wall ones (as one expects from (2.6)). Incidentally, the Hutchins et al.

(2011) data suggest a slowly falling value with increasing Reynolds number, as implied
by the smooth-wall compilation given by Alfredsson et al. (2011) and shown in figure 1a.
This would be less noticeable if intensities at, say, U/Ue = 0.65 had been used. Notice
also that for the transitionally-rough layers, the rise between smooth and rough values
occurs over a range of δ+ which depends on the nature of the roughness, just as it does
when plotted against the roughness Reynolds number y+

o (see figure 4b) or the more ap-
propriate scale separation parameter δ/yo (see figure 4c). Even at rather low δ+, a surface
may yield high values of u′/U in the outer layer if y+

o and δ/yo are both sufficiently large.
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4. Final Discussion

We emphasise first that any plausible higher value of the wake strength in rough-wall
flows (0.7, say) than for smooth walls (0.55) does not significantly alter the relation
between the scale ratio, δ/yo, and y+

o at fixed ∆Un ≡ ∆U+/U+
e . This is demonstrated in

figure 3a where, as an example, the implication of (2.7) for the ∆Un = 0.6 contour but
with Π = 0.55 rather than 0.7 is included. However, the fact that the wake strength seems
to be different for rough-wall flows, increasing gradually with ∆U+ (e.g. Bergstrom et al.

2005; Castro 2007) whilst not affecting the collapse of smooth- and rough-wall Reynolds
stress profiles, would appear to indicate a lack of complete universality between smooth-
and rough-wall flows. Figure 5b confirms again the outer-layer collapse of Reynolds shear
stresses for smooth and rough walls. When plotted against U/Ue, rather than U ′/U ′

e,
smooth and rough-wall profiles separate, as anticipated – from figure 1b, for example –
and as shown in figure 5a. Since it is only the turbulent shear stress which appears in the
(first-order) mean momentum equation and can thus affect the mean velocity profile, one
is prompted to ask why the wake strength should be different. Might it not simply be
a result of too low a value of δ/yo to ensure sufficient scale separation, or is it because,
despite collapse of all second moments, the turbulence structure is rather different?

There are many suggestions in the literature about why the turbulence structure in
the outer layer of a rough-wall flow may differ from that over smooth walls. One of
the first was that of Grass (1971) who argued that entrainment near rough surfaces is
much more violent than near smooth surfaces, associated with important differences in
the ejection-sweep cycles. Likewise, Antonia (1971) found that energy transfer via the
triple velocity products is not a gradient diffusion process near a rough surface, as later
emphasised by Andreopoulos & Bradshaw (1981) who concluded that turbulence energy
sinks may exist near roughness elements. The latter authors found significantly higher
triple product levels in rough- than in smooth-wall flows. Orlandi & Leonardi (2008) have
argued that it is the vertical component of the fluctuation velocity which may provide a
better indication (than, say, y+

o ) of the roughness effects. Data from the experiments cited
here certainly show that v′/U (at fixed y/δ) rises monotonically with k/δ, as previously
discussed by Orlandi & Leonardi (2008) and Amir & Castro (2011). Furthermore, there
have been a number of studies of the details of the turbulence structure (e.g. Flack et al.

2005, 2007; Krogstad & Antonia 1999; Krogstad & Efros 2012), some of which provide
conflicting evidence concerning structural characteristics in the outer layer and the extent
to which they may be influenced by the inevitable changes in the inner layer caused by
roughness.

The recent flow described by Krogstad & Efros (2012) is again particularly significant,
however, since this is one of the few cases which has a fully rough surface (y+

o = 36),
a high Reynolds number (δ+ = 13, 650) and a high δ/yo (375), guaranteeing adequate
scale separation. This is probably because this case used two-dimensional bar roughness,
which is known to give a significantly larger yo/k (or, equivalently, ks/k) ratio than most
three-dimensional roughness morphologies. Their study demonstrated that the detailed
turbulence structure (triple velocity products, pdfs, quadrant analysis data, etc.) was
in fact the same as in a high Reynolds number smooth-wall flow. In particular, in the
current context, the outer layer wake strength was only around 0.51 - typical of smooth-
wall flows. On the other hand, most of the other fully rough (y+

o >≈ 2) data discussed here
are from cases which had too small a value of δ/yo to ensure adequate scale separation
and this presumably allowed the altered near-surface flow to affect the outer flow at least
to the extent of altering the wake strength, even though outer layer stress profiles collapse
closely with those over smooth walls. This would also explain the noticeable changes that
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Figure 5. Reynolds shear stress profiles for some of the cases used in previous figures, plotted
against (a) U/Ue, (b) U ′/U ′

e.

occur in turbulence structure in the outer flow. Recognising that most of the cases in
figure 4 having δ/yo / 300 had wake strengths rather higher than the smooth-wall value,
we suggest that this value might provide a reasonable criterion to ensure sufficient scale
separation, with yo ' 10 ensuring (for many morphologies) fully rough conditions, so
that if both these are satisfied the boundary layer structure may be properly universal
in all respects. Note, however, that for some roughness morphologies rather smaller y+

o

may be sufficient to ensure fully rough conditions.
In any case, the results presented here demonstrate that despite the different nature

of smooth, transitional and fully-rough boundary layers in the near-surface region, outer
layer turbulence intensities, when presented in the form of the diagnostic plot introduced
by Alfredsson et al. (2011) but re-scaled to account for the roughness function, collapse
(figure 2b). There is similar outer-layer collapse in profiles of the normal component of
the fluctuating velocity (not shown) and, as noted above, the shear stress. Incidentally,
the fall in shear stress below U ′/U ′

e ≈ 0.62, evident in figure 5b, is not a result of
increasing viscous effects, as in the smooth-wall case, but simply because this marks the
approximate top of the roughness sub-layer (defined as the region in which flow variables
are inhomogeneous in horizontal planes). Below this height, ytopRS say, Reynolds stresses
(and mean velocity) depend on spatial location.

We make a final comment concerning the depth of this roughness sublayer which is
known to vary widely for different roughness morphologies. By assuming that the location
where U ′/U ′

e ≈ 0.62 corresponds to the top of the roughness sublayer, the measured mean
velocity at the same location will be U/Ue ≈ 0.62−0.38∆Un. Equation (2.3) then implies
that the associated y position is

ytop RS = yo exp
[

κU+
e (0.62 − 0.38∆Un)

]

. (4.1)

Consider as examples the Krogstad & Efros (2012) case of 2D bars and the Flack et al.

(2007) case having the largest mesh. The respective values of the (U+
e , ∆Un) pair for these

cases, (16.9, 0.819) and (16.1, 0.783), yield (using the appropriate yo/k) ytop RS/k = 3.4
and 0.7. The corresponding measured values, taken as the location where the shear stress
begins to fall rapidly, are 2.3 and 1.05, respectively. Whilst the calculated values are not
too far from those measured, ytop RS < k (as in the second case) is not physically realistic
and is a result of too small a value of U ′/U ′

e used in (4.1), compared with that measured
(0.646). ytop RS is very sensitive to the value of U ′/U ′

e chosen and it is clear that (4.1) is
not a very precise way of estimating the depth of the roughness sublayer.
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Overall, we conclude that, following the spirit of Alfredsson et al. (2011) and plotting
mean flow profiles in a way which avoids the uncertainties associated with determining
surface stress, wall distance and roughness function (whose accurate determination is
equally problematic), data plotted simply as u′/U vs. U/Ue – the most easily measurable
quantities – do not collapse (figure 2a). This is a result predominantly of the non-zero
roughness function ∆U+ rather than any differences in outer layer wake strength which,
if present, are probably caused by inadequate scale separation. However, data for fully
rough situations (with ∆U+ ' 7) do collapse quite closely among themselves, as seen
in figure 1b, despite the very different surface morphologies in all these cases. Given the
continual rise in turbulence intensity with increasing ∆U/Ue at any arbitrary point in
the outer region (but at the same U/Ue), see (2.6) and figure 3b, for example, it is not in
principle possible to use the measured intensity at such a point as a test for whether the
flow is transitionally or fully rough. Nevertheless, laboratory flows will almost never have
∆U+ > 14 even at the highest Reynolds number (δ+) and a measurement of u′/U at a
fixed value of U/Ue (0.55, say) in the outer layer provides a rapid pragmatic assessment
of whether the flow is fully rough or not, since for transitional cases its value would lie
between the two limiting straight lines shown in figure 1b.
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Krogstad, P.-Ȧ. & Efros, V. 2012 About turbulence statistics in the outer part of a boundary
layer developing over 2D surface roughness. Phys. Fluids 24, 075112.

Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M.N., Smits, A.J. & K.R.,
Sreenivasan 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent ad-
vances and key issues. Phys. Fluids 22, 065103.

Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows.
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