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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

DESIGN AND EXPERIMENTAL EVALUATION OF ITERATIVE LEARNING
CONTROLLERS ON A MULTIVARIABLE TEST FACILITY

by Thanh Dinh Van

Iterative learning control (ILC) algorithms are employed in many applications, espe-
cially these involving single-input and single-output plants undertaking repeated tasks
with finite-time interval. ILC is applicable to systems executing a repeated trajectory
tracking task, and uses data recorded over previous trials in the construction of the next
control input. The objective is to sequentially improve tracking accuracy as the trial
number increases. This method has been shown to operate well in the presence of signif-
icant modeling uncertainty and exogenous disturbances. However, for MIMO (multiple
input -multiple output) systems, there exist far fewer applications reported in the litera-
ture, and minimal benchmarking and evaluation studies have been undertaken. To tackle
this shortcoming, this thesis focuses on designing an electromechanical test-bed which
can verify the weaknesses and the advantages of various ILC methods on a purpose-built
platform. The system has two inputs and two outputs and enables variation of the in-
teraction between inputs and outputs through simple and rapid parameter modification.
This interaction variation permits the control problem to be modified, allowing stipula-
tion over the challenge presented to the ILC controller. The system is made up of two
back-to-back differential gearboxes with mass-spring-damper components to increase the
system order and control difficulty. In its standard configuration, two motors provide
torque to the two input ports and the two outputs are measured using encoders. This
work enables a comparative summary of ILC approaches for MIMO systems, together
with modifications for improved performance and robustness, and the development of new
control schemes incorporating input and output constraints and point-to-point tracking
capability. The system can also be configured in a variety of other arrangements, varying
the number of inputs and outputs, and allowing noise to be injected using a dc motor.
Models of the system are derived using a lumped parameter system representation, as
well as purely from experimental input and output data. Simple structure controllers
such as proportional-type ILC, derivative-type ILC and phase-lead ILC are then applied
to test the combined performance of the controller and the MIMO system, and establish
its efficacy as a benchmarking platform. Advanced controllers are then derived and ap-
plied and experimental data are used to confirm theoretical findings concerning the link
between interaction and convergence rate, input norm and robustness.

mailto:S.R.Gunn@ecs.soton.ac.uk




Contents

Nomenclature xv

Acknowledgements xvii

1 Introduction 1

2 Review of multivariable tracking and iterative learning control 5
2.1 Multivariable systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Basic controllers for MIMO systems . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Decoupling and decentralise control . . . . . . . . . . . . . . . . . . 7
2.2.2 Centralised control . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Direct Nyquist array, inverse Nyquist array method and Gershgorin

band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 PI/PID controller design for MIMO systems . . . . . . . . . . . . . 12

2.3 Iterative learning control methods for SISO system . . . . . . . . . . . . . 14
2.3.1 Simple-structure ILC approaches . . . . . . . . . . . . . . . . . . . 14
2.3.2 Newton method based ILC . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Gradient ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Norm optimal ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 ILC applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Test facility design and analysis 27
3.1 Differential gearbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Lagrange’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Gearboxes and transfer-functions . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Case 1 arrangement and transfer-function . . . . . . . . . . . . . . . . . . 32
3.5 Case 2 arrangement and transfer-function . . . . . . . . . . . . . . . . . . 36
3.6 Case 3 arrangement and transfer-function . . . . . . . . . . . . . . . . . . 40
3.7 Case 4 arrangement and transfer-function . . . . . . . . . . . . . . . . . . 43
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Parameter selection and system simulation 51
4.1 Simulation of case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Simulation of case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Simulation of case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Simulation of case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Choosing the optimum configuration for the MIMO facility . . . . . . . . 57

v



vi CONTENTS

4.6 PID tuning for the system in case 2 . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Simulations of gradient ILC using MIMO system model . . . . . . . . . . 62
4.8 Disturbance injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.9 Simulation of case 2 with disturbance injection . . . . . . . . . . . . . . . 68
4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Experimental design and frequency based modeling 71
5.1 Mechanical system design and component selection . . . . . . . . . . . . . 71
5.2 Frequency based modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Inverter and induction motor model . . . . . . . . . . . . . . . . . 74
5.2.2 Mechanical system modeling and validation . . . . . . . . . . . . . 76

5.3 Disturbance injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Basic ILC controllers 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Multivariable system description . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Proportional type ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Derivative type ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Phase-lead ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Gradient ILC 99
7.1 Gradient ILC with variable optimal β . . . . . . . . . . . . . . . . . . . . 99

7.1.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1.3 Control effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Norm optimal iterative learning control 107
8.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1.1 NOILC feed-forward implementation . . . . . . . . . . . . . . . . . 109
8.1.2 NOILC feed-forward and state feedback implementation . . . . . . 109

8.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Control effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.5.1 Feedforward NOILC . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.5.2 Feedforward plus state feedback NOILC . . . . . . . . . . . . . . . 115

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Point-to-point ILC 117
9.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Point-to-point ILC motivation . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.3 Point-to-point gradient ILC . . . . . . . . . . . . . . . . . . . . . . . . . . 120



CONTENTS vii

9.3.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3.3 Control effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Point-to-point NOILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.4.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.4.1.1 Point-to-point feed-forward NOILC . . . . . . . . . . . . 124
9.4.1.2 Point-to-point feed-forward plus state feedback NOILC . 125

9.4.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.4.3 Control effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.4.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.4.5.1 Point-to-point feed-forward NOILC . . . . . . . . . . . . 127
9.4.5.2 Point-to-point feed-forward plus state feedback NOILC

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10 Conclusions and further work 131
10.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A System components 135
A.1 Computer aided designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B Device datasheets and measured data 149
B.1 Data collection for inverter and induction motor . . . . . . . . . . . . . . . 149
B.2 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.3 Induction motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.4 ABB inverter and setup parameters . . . . . . . . . . . . . . . . . . . . . . 150

C Coding method 153
C.1 Frequency modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

References 155





List of Figures

2.1 Decoupling method block-diagram . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Feedback control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Differential gearbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Epicyclic gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Differential gearbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 2 differential gearboxes back to back. . . . . . . . . . . . . . . . . . . . . 33
3.5 The load for output B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 The load for output C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 System arrangement 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 System arrangement 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 The arrangement 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.10 spring-mass-damper components . . . . . . . . . . . . . . . . . . . . . . . 45
3.11 Lower half spring-mass-damper components . . . . . . . . . . . . . . . . . 46

4.1 The impulse response of case 1 arrangement. . . . . . . . . . . . . . . . . 52
4.2 The impulse response of case 2 arrangement. . . . . . . . . . . . . . . . . 54
4.3 The impulse response of case 3 arrangement. . . . . . . . . . . . . . . . . 56
4.4 The impulse response of case 4 arrangement. . . . . . . . . . . . . . . . . 57
4.5 RGA number for arrangement 1. . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 RGA number for arrangement 2. . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 RGA number for arrangement 3. . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Low interaction impulse response . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Tracking sine-wave for high interaction case . . . . . . . . . . . . . . . . . 61
4.10 Tracking sine-wave for low interaction case . . . . . . . . . . . . . . . . . . 61
4.11 Results for the low interaction case. . . . . . . . . . . . . . . . . . . . . . 62
4.12 Results for medium interaction case. . . . . . . . . . . . . . . . . . . . . . 63
4.13 Results for high interaction case. . . . . . . . . . . . . . . . . . . . . . . . 63
4.14 The error norm of 3 interaction levels. . . . . . . . . . . . . . . . . . . . . 64
4.15 MIMO facility with disturbance/noise injection. . . . . . . . . . . . . . . . 65
4.16 Impulse response for arrangement 3 with disturbance injection. . . . . . . 69
4.17 Impulse response for MIMO system with disturbance injection. . . . . . . 69

5.1 The system design in 3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 The completed system with control infrastructure. . . . . . . . . . . . . . 72
5.3 The complete MIMO system showing two induction motors and distur-

bance injection via a DC motor. Components labelled in Table 5.1. . . . . 73
5.4 The fitting transfer-function compare to the experimental results. . . . . 76

ix



x LIST OF FIGURES

5.5 Bode plot showing fitting for no interaction case, c = 0. . . . . . . . . . . 77
5.6 Bode plot fit for extreme low interaction case, c = 0.2. . . . . . . . . . . . 77
5.7 Bode plot fit for low interaction case, c = 0.4. . . . . . . . . . . . . . . . . 78
5.8 Bode plot fit for medium interaction case, c = 0.6. . . . . . . . . . . . . . 79
5.9 Bode plot fit for high interaction case, c = 0.8. . . . . . . . . . . . . . . . 80
5.10 Bode plot shows fitting for extreme high interaction case, c = 1. . . . . . . 81
5.11 Bode plot fit for disturbance injector. . . . . . . . . . . . . . . . . . . . . . 82
5.12 Validation of the transfer-functions corresponding to no interaction case. . 83
5.13 Validation the transfer-functions of the extremely low interaction case. . . 83
5.14 Validation of the transfer-functions of the low interaction case. . . . . . . 83
5.15 Validation of the transfer-functions of the medium interaction case. . . . . 84
5.16 Validation of the transfer-functions of the high interaction case. . . . . . . 84
5.17 Validation of the transfer-functions of the extremely high interaction case. 84
5.18 Validation the transfer-functions of the DC motor. . . . . . . . . . . . . . 85

6.1 References for basic ILC controllers. . . . . . . . . . . . . . . . . . . . . . 92
6.2 P-type ILC with varied gain. . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 D-type ILC with varied gain. . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Phase-lead ILC with gain = 0.03. . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Standard gradient ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1 Feedforward norm optimal ILC . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Feedforward NOILC with noise injection. . . . . . . . . . . . . . . . . . . . 114
8.3 Standard state feedback NOILC. . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Standard state feedback NOILC with noise injection. . . . . . . . . . . . . 116

9.1 References for standard and point-to-point ILC controllers. . . . . . . . . 123
9.2 Point-to-point gradient ILC. . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3 Point-to-point feed-forward NOILC . . . . . . . . . . . . . . . . . . . . . . 127
9.4 Point-to-point feed-forward NOILC with noise injection. . . . . . . . . . . 128
9.5 Point-to-point feed-forward plus state feedback NOILC. . . . . . . . . . . 129
9.6 Point-to-point state feedback NOILC with noise injection. . . . . . . . . . 130

A.1 Mass IB for the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Mass IB2 for the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.3 Mass IC for the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.4 Mass IC2 for the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.5 Supporter for differential gear. . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.6 Motor plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.7 Encoder and shaft supporter. . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.8 Encoder supporter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.9 Middle supporter for S dash-pot model. . . . . . . . . . . . . . . . . . . . 142
A.10 Middle supporter for X dash-pot model. . . . . . . . . . . . . . . . . . . . 143
A.11 Supporter for S dash-pot model. . . . . . . . . . . . . . . . . . . . . . . . 144
A.12 Supporter for X dash-pot model. . . . . . . . . . . . . . . . . . . . . . . . 145
A.13 Triangle holder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.14 Components of the mechanical system . . . . . . . . . . . . . . . . . . . . 147



LIST OF FIGURES xi

A.15 Components of mechanical system . . . . . . . . . . . . . . . . . . . . . . 148

B.1 Data collection from the inverter and the induction motor . . . . . . . . . 149

C.1 The problem of drift in the frequency model. . . . . . . . . . . . . . . . . 153





List of Tables

4.1 Chosen parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Chosen parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Chosen parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Chosen parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Low interaction table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 PID value based on Matlab PID toolbox . . . . . . . . . . . . . . . . . . . 60
4.7 PID value based on Matlab PID toolbox . . . . . . . . . . . . . . . . . . . 61
4.8 Parameter values for arrangement 3. . . . . . . . . . . . . . . . . . . . . . 68

5.1 Components of the MIMO system . . . . . . . . . . . . . . . . . . . . . . . 74

9.1 The smallest, largest singular value and the bound of controller effort for
varying interaction level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Robustness measures, input bounds and convergence rates of slowest mode
for NOILC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.1 Muirhead Vatric encoder wiring diagram . . . . . . . . . . . . . . . . . . . 150
B.2 British encoder wiring diagram . . . . . . . . . . . . . . . . . . . . . . . . 150
B.3 Induction motor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.4 ABB inverter configuration in REM (remote) mode . . . . . . . . . . . . . 151

xiii





Nomenclature

σ Maximum singular value
σ Minimum singular value
‖.‖∞ Infinity norm
β Gain constant
|.| Absolute value
||.||p p norm
||.||2 2 norm
R Field of real numbers
s Laplace transform variable
σi(A) The ith singular value of matrix A
θ Angular value
GT Transpose of matrix G
In n× n identity matrix
0n n× n zero matrix
λi(A) The ith eigenvalue of matrix A
ρ(A) Spectral radius of matrix A, equivalent to maxi |λi(A)|
yd Tracking reference defined over whole trial
yr Tracking reference for point-to-point movements
AT Transpose of matrix A
k Iteration number
yk Measured output on kth trial
Q Weighting matrix in gradient-based ILC
R Weighting matrix in gradient-based ILC
N Number of samples
Ts Sampling time in seconds
e Control error
x State vector
t Time variable
γ Constant matrix for basic ILC control update
L Diagonal constant matrix
G Transfer function matrix
δ Integer time delay for phase-lead ILC

xv



xvi NOMENCLATURE

S Shift operator matrix
D Differential operator
m Number of inputs
p Number of outputs



Acknowledgements

Thanks to my family and my friends who support my studies. A grateful acknowledg-
ment goes to my supervisors Dr Chris Freeman and Prof Paul Lewin for their help and
guidance.

xvii





Chapter 1

Introduction

Within control theory, there are an exceptionally diverse range of control methodologies
covering a wide variety of system types and applications. One such approach is iterative
learning control (ILC) which has been developed for more than 25 years. ILC is suitable
for systems which perform a repeated process defined over a finite time interval. ILC
uses the previous error of a trial to modify the control signal with the aim of sequen-
tially improving tracking accuracy. In practice, there does not exist a perfect model for
a system, and the presence of unpredicted disturbance or noise on the system’s signals
means an exact representation of the system is impossible. However ILC has shown the
ability to provide high performance without the need for an exact model, demonstrating
the ability to cope with system uncertainty and exogenous disturbance (Bristow et al.,
2006), (Ahn et al., 2007). In practical terms, this significant reduces the effort that an
engineer must place on identifying a system model. This robustness to modeling un-
certainty has led to its popularity in many industries, most notably in manufacturing
(Kim and Kim, 1996), chemical process engineering (Tan and Tang, 2002), (Gao et al.,
2001), robotics applications (Elci et al., 1994), (Norrlöf, 2002) and biomedical engineer-
ing (Huang et al., 2003). ILC has also been modified and integrated with other control
techniques with the aim of further increasing their performance. For example ILC has
been integrated with tuning of proportional plus integrated plus differential (PID) con-
trollers in (Li, 2010), with fuzzy controllers in (Zheng et al., 2009), and with adaptive
controllers in (French et al., 1999), (French and Rogers, 2000), (Tayebia and Islamb,
1984). There has been a large number of published works on the subject of ILC, many
of which include experimental application. There is a distinct lack, however, of litera-
ture using multiple input, multiple output (MIMO) systems, which typically are much
harder to control than single input, single output (SISO) systems. It is well known that
designing controllers for MIMO systems can be extremely challenging as is illustrated in
applications to, for example, an industrial distillation column (Tyréus, 1979), (Haurani
et al., 2001), and this is certainly true for ILC. Additionally, no MIMO system exists in
which the level of interaction level is adjustable in order to enable precise investigation

1
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of the role played by input-output coupling on the subsequent performance of ILC. Such
a platform is critical for examination and benchmarking of MIMO update algorithms.

Consequently, the main object of this research is focused on designing a test facility
which can be used to implement different kinds of ILC algorithm and enable MIMO ILC
approaches to be rigorously evaluated on a demanding multi-configurable experimental
platform. The facility will also be used to investigate the effect of interaction and noise
injection on the performance of different controllers. The MIMO testbed will be used to
assess existing controllers as well as new varieties which track only a subset of outputs
along the trial duration. Such point-to-point ILC updates will be compared in detail to
their standard counter parts (Freeman and Tan, 2013), (Freeman and Tan, 2011), (Free-
man, 2012). After deriving these algorithms, convergence rate and robustness analysis
results are developed in order to examine role of interaction in detail. This leads to
fundamental results on interaction, convergence and how it affects robustness and input
norms. Moreover, it explicitly leads to a design framework for point-to-point ILC to
overcome traditional control limitations.

The first task of the research is deriving transfer-functions for every configuration for the
MIMO system so that an optimal design and configuration can be chosen. The resulting
2× 2 MIMO system is controllable via a PC interface and have the facility for all inputs
and outputs to be stored for further analysis. Basic ILC algorithms such as P-type ILC
and D-type ILC will be used to control the system, as well as advanced ILC algorithms
which will be studied and implemented using the same system. Advanced controllers
are mainly based on a model of the system, and this is derived via frequency modeling.
The method can reduce the order of the system to make computation shorter and more
straightforward. The controllers studied in this thesis comprise gradient descent based
ILC and norm optimal ILC . These two methods are chosen due to their popularity,
their similarity in implementation and use of the same underlying cost function. For the
first time, these controllers are analysed in depth with convergence rate and robustness
results which illustrate the role of MIMO interaction and verify experimental findings.

In order to achieve these objectives, this thesis starts with a review of existing ILC
algorithms in Chapter 2. The chapter also focus on application of ILC within indus-
try. Additionally, leading MIMO controllers are also discussed and compared to ILC. In
Chapter 3 Lagrange’s equations are introduced and applied to derive transfer-functions
for possible configurations of the MIMO system. The chapter also gives details of the
principal components in the MIMO system and different arrangements are discussed in
detail. In Chapter 4, each arrangement of the system is examined for a range of realistic
parameters. Using extensive simulations, the optimum configuration is chosen based on
the relative gain array method (Bristol, 1966). Components to realise disturbance/noise
injection are then installed to complete the MIMO facility. The system is then tested
in simulation with a variety of controllers. In Chapter 5, the practical realisation of the
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MIMO system is undertaken through design in 3D Solidworks in order to aid manufac-
turing. The manufactured MIMO facility is then discussed and presented along with the
electrical system. Before applying advanced ILC controllers, basic methods need to be
applied and are given in Chapter 6. All the results are discussed and analysed in detail,
and their shortcomings are highlighted. This provides motivation to apply advanced
controllers to improve the results. Chapter 7, 8 introduce advanced controllers based on
a model of the MIMO facility. All controllers in these chapters use the standard ILC
framework and these results are then discussed and weaknesses analysed. Chapter 9
focusses on novel controller design with the aim of addressing limitations of the standard
ILC framework. The class of algorithms is named point-to-point and the methodology
can be extended to most ILC techniques. This chapter also provides gives analysis of
the method in comparison with standard controllers. Performance is found to associate
closely with the level of interaction, and this finding is supported by extensive experi-
mental results. Finally Chapter 10 gives conclusions on the results and clearly highlights
future work that should be conducted.





Chapter 2

Review of multivariable tracking
and iterative learning control

Many methods have been derived to analyse and design controllers to stabilise a system
and/or achieve performance objectives. However it still can be a very difficult task to
satisfactorily control a multivariable system, these having more than one input and/or
more than one output. Therefore in this chapter, multivariable systems will be reviewed
and different control methods will be discussed and evaluated. Subsequently the most
promising method will be tested and implemented on the experimental system to pro-
vide baseline performance. The literature review then summarises ILC approaches with
specific focus on multivariable systems.

2.1 Multivariable systems

There are two types of system considered in this thesis; single input, single output (SISO)
system and a multiple input, multiple output (MIMO) system. The difference between
these systems lies in the presence of interaction such that any one output is influenced by
more than one input, or any one input influences more than one output. In general, the
more inputs and outputs, the more challenging it is to design suitable controllers when
interaction is present. This chapter will focus on analysing and synthesising controllers
to make the resulting MIMO system robust and achieve specific requirements.

Consider a MIMO plant with m inputs and p outputs. Thus, the basic transfer-function
is y(s) = G(s)u(s) where y is an p × 1 vector, u is m × 1 vector and G(s) is p × m
transfer-function matrix, alternatively

y1(s)
...

yl(s)

 =


G11(s) . . . G1m(s)

...
. . .

...
Gl1(s) . . . Glm(s)




u1(s)
...

um(s)

 (2.1)
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6 Chapter 2 Review of multivariable tracking and iterative learning control

If there is any change in input component u1 all the outputs of the system will be affected
in proportion to the interaction between inputs and outputs. In order to calculate the
gain of a MIMO plant, the singular value decomposition (SVD) technique was introduced
at around the end of the 19th century by Eugenio Beltrami, Camille Jordan, James Joseph
Sylvester, Erhard Schmidt and Hermann Weyl. Beltrami, Jordan and Sylvester came to
the decomposition approach through a background in linear algebra while Schmidt and
Weyl approached it from the route of integral equations. A full overview concerning the
historical underpinnings of SVD can be found in Stewart (1993) with deeper theoretical
detail given in Golub and Loan (1996).

The SVD method can be applied to analyse a MIMO system by decomposing the transfer-
function matrix G(s) in the form

G = UΣV T (2.2)

where Σ is a p ×m diagonal matrix with non-negative singular values, σi, arranged in
descending order along its main diagonal. The matrix Σ is here represented as

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 0 σk


where σ1 is the maximum singular value and σk is the minimum singular value. U

is an p × p unitary matrix of output singular vectors ui, and V is an m × m unitary
matrix of input singular vectors, vi which can be interpreted as input direction. V T is
the transpose of the matrix V . This method is still applicable for the case when the
transfer-function matrix G is not a square matrix. The SVD is used to establish which
input directions will not have any affect on the output, and conversely if any output
direction cannot be controlled by an input. Additionally, the value of σi represents the
gain of the subsystem associated with ui and vi. Therefore the ratio of the maximum
singular value and minimum singular value is termed the conditional number which can
be used to measure the input-output controllability. If the ratio is high (greater than
ten), it indicates sensitivity to uncertainty and a difficulty to control. This means if there
is any slight change in the input, there will be a far greater change in the output. If the
conditional number is small, the system is easy to control and uncertainty is not likely
to be serious. However, the SVD cannot show the magnitude of the interaction inside a
MIMO system. In order to gain a general view of MIMO interaction, the relative gain
array (RGA) was first introduced in Bristol (1966) and is defined as

RGA = Λ(G) = G× (G−1)T (2.3)

where × denotes element by element multiplication. The value of RGA can be calculated
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when s is equal to zero in the s-plane thus time is infinity and the frequency is zero.
Therefore the system is analysed for the steady-state only. RGA is used to measure the
interaction of a MIMO system so that the most important pairing can be found before
starting to design controllers. Based on this theory, the method of decentralised control
can choose the optimal coupling with the least interaction. However RGA still has a
restriction since it is only able to show the interaction between each pair at steady-state,
and hence the method has been extended to arbitrary frequencies in Bristol (1978). The
use of the RGA was popularised by Shinskey (1988), who applied it to many applications
including blending, energy conservation, and distillation. Later Kinnaert (1995) did a
survey for dynamic extension of the RGA.

Further research shows that RGA can be modified to have a better index for stability and
achievable performance, which is called performance RGA (Hovd and Skogestad, 1992).
In (Grosdidier et al., 1985) it is shown that the method can be used to predict the closed-
loop instability of multivariable systems. Following from this, RGA has been applied to
choose the most desirable coupling for decentralised control (Albertos and Sala, 2004).
Furthermore the method was used to approach interactions in the Takagi-Sugeno fuzzy
model (Mollov et al., 2001).

An alternative way to approach the interaction problem is by using Participation Matrices
which consider observability and controllability Gramians (Conley and Salgado, 2000).
In a similar way Wittenmark and Salgado (2002) introduced the Hankel interaction
index array. Both methods comprise appropriate approaches for decentralised and full
multivariable controller structures. Another recent method has been proposed by Birk
and Medvedev (2003) using the H2 norm as a basis to measure the interaction effect. The
thesis of Halvarsson (2010) provides a comparison between these methods using specific
examples.

In this thesis, due to its simplicity and well established theoretical background, the
RGA method is employed to find the best pairing for the MIMO system. The details of
calculation are given in Section 4.5.

2.2 Basic controllers for MIMO systems

2.2.1 Decoupling and decentralise control

For a simple MIMO system with a feedback controller K, a simple approach involves the
following two steps. Firstly a compensator W (s) is designed to deal with interaction of
the transfer-function matrix G(s) so that the new transfer-function is more diagonal and
hence easier to control. Then a diagonal controller is synthesised as in the case of a SISO
system. Based on this procedure, the decoupling method (Skogestad and Postlethwaite,
1996) starts with designing a compensator W (s) = G−1(s) hence G(s)W (s) = I. This
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method can be expressed using the block diagram of Figure 2.1. The designed controller is

Figure 2.1: Decoupling method block-diagram

K(s) = l(s)G−1(s) where l(s) can be any transfer-function that realises the performance
targets of the operator. In some cases the diagonal elements need to be kept the same
so that the compensator matrix W (s) can be set equal to G−1(s)(Gdiag). For example
Zheng et al. (2004) used the decoupling method to design and control hard disk drives
with dual actuators.

The advantage of this method is its simplicity and that all the control methods for SISO
systems are available for application since, after the system is decoupled, it can be treated
as parallel SISO systems with no interaction. However, the method has drawbacks which
can make it unsuitable for practical implementation. The method involves the inverse
of matrix G(s), which leads to difficulty in some cases due to amplification of noise and
lack of robustness with respect to the plant model. In addition, if the MIMO system is
non-minimum phase, this method cannot be used since the controller will be unstable
with right hand plane (RHP) poles. The method can use the RGA values, which are
described in the previous subsection, to determine the appropriate pairs so that a diagonal
controller can be designed separately. The purpose of RGA is to minimise the interaction
of the system, detected by the off-diagonal terms. This method allows engineers to design
a controller K independently, with each controller designed locally and then all the loops
closed. However, the interaction from off-diagonal terms may cause the overall system
to be unstable due to the presence of uncertainty and noise.

Another simple method is called decentralised control which ignores the interaction of
the original plant. The method considers the MIMO system as parallel SISO plants.
Therefore the controller K(s) is designed independently for diagonal terms only. The
method works well if the MIMO system is diagonal dominance otherwise the performance
of the controller may be poor. The decentralised controller has been applied to control a
hard disk drive system (Zheng et al., 2005) which has off-diagonal elements much smaller
than the diagonal elements.

2.2.2 Centralised control

As opposed to the previously described control methods for MIMO plants, the centralised
control approach synthesises a controller K(s) to stabilise without transformation of the
target controlled system into separate SISO systems. The method uses a state-space
model description of the MIMO system as the starting point for analysis. The first
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method relating to this category is the pole placement method which may be applied
to both SISO and MIMO systems in state-space model form (Dorf and Bishop, 2005).
This enables all poles of the system to be placed within the left hand plane so that
the system is stable. The requirement of state observability clearly raises the issue of
observer controller interaction and fortunately the separation principle holds for multi-
variable systems (Albertos and Sala, 2004). Thus the observer and controller can be
designed separately in order to reach a satisfactory output response.

A more complicated control method uses optimisation to decide on the state feedback
matrix which best achieves a performance cost. Firstly, a constant J is introduced as
the performance index for the targeted system. The cost J can be written as

J =
∫ tf

0
g(x,u, t)dt (2.4)

where tf is the final time, x(t) is the state vector and u(t) equals the control vector. The
main purpose of this algorithm is to try to find the optimum state feedback controller
K so that the performance of the states and controller are optimum. The controller
should be designed with a mixed cost because in reality the energy consumption is
proportional to the square of the 2-norm of the input u(t) therefore the J index can
strike a balance between system performance and energy consumption. Equation (2.4)
can then be expressed as

J =
∫ ∞

0
(xTQx + uTRu)dt (2.5)

The tf parameter is now considered as infinity when the system reaches the steady-state,
R and Q are symmetric and positive weighting matrices. The weighting matrices will
be chosen so that the relative important of the state variable performance is contrasted
with the importance of the expenditure of the system energy resource that is represented
by uTu. The general state-space model has the form

ẋ(t) = Ax(t) +Bu(t) (2.6)

y(t) = Cx(t) (2.7)

and the state feedback controller is u(t) = −Kx(t). The optimisation state feedback
control method is straightforward to achieve with a low order system but in the case of
higher order or MIMO systems the matrix A will be large and this method requires a high
computational cost to find the controller K which achieves the optimum performance.
Therefore this method must be solved computationally using a software environment
such as Matlab. The controller K can be found from the equation

K = R−1BTP (2.8)
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where P is determined from the solution of the equation

ATP + PA− PBR−1BTP +Q = 0 (2.9)

which is termed a Riccati equation. This method will be applied to discrete iterative
learning control and will be implemented later but with the error weighting instead of
optimal state feedback.

Another method applicable to this section is mixed sensitivity design, which is discussed
in, for example, Skogestad and Postlethwaite (1996) and Kwakernaak (2002). This ap-
proach has been applied to an aerospace case study Kwakernaak (2002). The purpose of
the method is to design a feedback controller K which minimises the peak of the sensi-
tivity function S = I

I+GK where I is the identity matrix, and G is the transfer-function
matrix. In the frequency domain, the sensitivity magnitude is then below the peak value
for all frequencies. Therefore the effect of disturbance is limited and the system will
be more robust with respect to external signal noise or plant uncertainty. The mixed
sensitivity can be written as

‖N‖∞ = max
w

σ̄(N(jw)) < 1 (2.10)

N =

 wpS

wTT

wuKS

 (2.11)

The values of the weights wp, wT , wu need to be chosen by the designer to address the
particular requirements of the system. Here T is the complementary sensitivity T = I−S
and is associated with system performance. Therefore the H∞ optimal solution can be
defined as the minimum controller K which makes the infinity norm of N(K) as small
as possible

min
k
‖N(K)‖∞ (2.12)

Further examples and explanation can be found in Kwakernaak (1993). Maciejowski
(1989) give further theory about MIMO control and design.

2.2.3 Direct Nyquist array, inverse Nyquist array method and Gersh-
gorin band

The Nyquist method is very commonly used for SISO system analysis to investigate
the stability of a closed-loop system. When the method is extended for application to
MIMO systems it is known as the direct Nyquist array (DNA). In order to improve its
convenience for analysing a system, the inverse Nyquist array (INA) has been derived
based on the direct Nyquist array method. The method was firstly introduced by Rosen-
brock (1969) and more details are described in (Rosenbrock, 1974). The approaches
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aid engineers to synthesise a suitable feedback controller, K(s) in order to stabilise
the system. However, the method only works for diagonally dominant transfer-function
matrices, therefore the controller K(s) needs to be split into 2 different controllers; a
diagonal controller Kd and a Kp pre-compensator. The controller Kp is used to ensure
the transfer-function matrix G(s) has diagonal dominance so that both Nyquist array
methods can be used. The diagonal controller Kd can be designed individually for each
loop to reach the specification requirements. The INA method is used more extensively
for multi-variable systems compared to the direct Nyquist array because of its conve-
nience and since it is possible to display results graphically. Full details relating to the
INA method are given in (Munro, 1972). Considering the transfer-function matrix G(s)
and controller Kd,Kp, the open-loop transfer-function matrix Q(s) can be expressed as

Q(s) = G(s)K(s) (2.13)

so the close-loop transfer-function in Figure 2.2 is defined

H(s) =
(
I +Q(s)F

)−1
Q(s) (2.14)

where F is a diagonal gain F = diag(fi) with i = 1, . . . ,m. Therefore the inverse of

Figure 2.2: Feedback control loop.

the closed-loop transfer-function H(s) is Ĥ(s) = F + Q̂(s) where Ĥ(s) = H−1(s) and
Q̂(s) = Q−1(s). The matrix Q̂(s) is a row diagonally dominant matrix if

|q̂ii(s)| >
m∑
j=1
j 6=1

|q̂ij(s)| i = 1, 2, ...,m (2.15)

or a column diagonal dominance matrix if

|q̂ii(s)| >
m∑
j=1
j 6=1

|q̂ji(s)| i = 1, 2, ...,m (2.16)

Here q̂ii is a diagonal element of matrix Q̂(s), and m is the number of inputs/outputs.
The diagonal dominance can be determined by graphical method called Gershgorin band
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method. Circles are drawn with radius

di(s) =
m∑
j=1
j 6=i

|q̂ij(s)| (2.17)

and centered on appropriate point of q̂ii(s). If each the band produced excludes the
origin, for i = 1, . . . ,m, the Q̂(s) is row dominant.

Therefore the stability of the system can be stated as follows. Let matrices Q̂(s) and
Ĥ(s) be row or column dominant, let Q̂ii(s) has contour Γ̂Qi in the s-plane and let Ĥii(s)
has contour Γ̂Hi in s-plane. Let Γ̂Qi encircles the origin N̂Qi times and Γ̂Hi circles the
origin N̂Hi times clockwise respectively, then the closed-loop system is asymptotically
stable if and only if

m∑
i=1

N̂Qi −
m∑
i=1

N̂Hi = po (2.18)

where po is the number of right-half s-plane poles of H(s). Comparing the two meth-
ods, the inverse Nyquist direct method is slightly more complicated since it requires an
inverse matrix, however, in practice the system must be analysed and a range if possible
controllers will be established. The INA has greater advantage since all the necessary
information is shown in the diagram as a function of frequency. At the same time, the
Gershgorin band is defined as a tool to show whether the system is diagonally dominant.
Follow this procedure, few applications give satisfactory results such as an automotive
gas turbines, a chemical reactor, a multi stream heater (Munro, 1976), a turbogenerator
(Ahson et al., 1979) and examples show how to use this method (Munro, 1990).

In general, by combining the Gorshgorin band and INA or DNA methods, an in-depth
analysis framework is achieved for multivariable systems. This aids the engineer in
choosing a suitable control method. However the method only applied for a square
transfer-function matrix.

2.2.4 PI/PID controller design for MIMO systems

Proportional plus integral (PI) or proportional plus integral plus derivative (PID) are
very common methods which are widely applied to SISO systems. Both are simple to
calculate and can provide a high level of performance as well as robustness. For this
reason, these methods are applied in many applications and throughout industry. For
MIMO systems, the method has been modified so that it is dimensionally compatible
and achieves the same main objectives as for a SISO system. The method has 2 types
of control scheme: one is multi-loop control and the other one is decoupling control.
The first approach treats the MIMO system as a whole and designs a controller matrix
including off-diagonal and diagonal terms. The decoupling method seeks to design a
matrix which can cancel out the interaction first, then a PI/PID controller is designed
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separately for each loop to achieve performance objectives as in the SISO case. The
decoupling control method was introduced in subsection 2.2 but now controller K is
replaced by a PID controller matrix. There are many rules for tuning a PID controller
and these are summarised in (O’Dwyer and Aidan, 2006). One common method used for
MIMO systems is called biggest log modulus tuning (BLT) and this is explained fully in
(Luyben, 1986). Before applying the tuning method it is assumed that the system has
the most appropriate pairing with least interaction. Then the ultimate frequency (wui)
is found when the phase angle is equal to -180 degrees and the ultimate gain (kui) is the
reciprocal of the real part of Gii which is the diagonal function, i = 1, 2..., n where n
is the number of inputs or outputs. The case in which systems have more inputs than
outputs or vice versa is not addressed in (Luyben, 1986). Therefore the method can only
be applied to a square matrix G(s). Thus the equations used for calculating proportional
gain and integral gain can be expressed as

KPi =
Kui

F2.2
(2.19)

τIi =
F2π

1.2ωui
(2.20)

where F is the detuning factor, which is normally chosen from 2 to 5 but in some cases to
achieve stability, F can be outside this bound. In order to establish how well the method
performs in reality, Luyben (1986) gives results for different MIMO systems such as the
2 × 2 MIMO system Tyreus stabiliser (Tyréus, 1979) or the 3 × 3 system appearing in
(Ogunnaike and Ray, 1979). The performance of this method compares well with the
Zeigler-Nichols (ZN) approach (Ziegler and Nichols, 1942).

Another method which is used to tune multiloop PI/PID controllers is based on the Ger-
shgorin band (Chen and Seborg, 2001). It enables a controller to be found by calculating
the ultimate point of the Gershgorin band and deriving the ultimate gain and ultimate
frequency at that point. The method only applies to plants with a diagonally dominant
matrix, otherwise the system needs to have a pre-compensator matrix (Hawkins, 1972),
(Ford and Daly, 1979) before the PI/PID controller can be applied. The PI/PID action
is tuned based on modified Ziegler-Nichols rules (Ziegler and Nichols, 1942). However
this method needs to have a very accurate system model in order to guarantee that
the PI/PID controller achieves satisfactory performance. Additionally, the method does
not take into account the interaction, hence the result may be unpredictable. However
the method appears to be an improvement on the ZN method and BLT based on the
impressive results presented in the paper.

Another choice for tuning PI/PID for the MIMO system case is explained in (Xiong
et al., 2007). The method is based on the effective energy transmission ratio array,
effective relative gain array, relative frequency array, these terms all being defined in
(Xiong et al., 2007), so that an equivalent transfer-function matrix for the closed-loop
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system can be derived with stable pairs selected based on the information above. An off-
diagonal controller is designed to achieved a satisfactory response. The method has been
simulated and applied to control an industrial-scale polymerization reactor (Chien et al.,
1999) and a binary ethanol-water system of a pilot-plant distillation column (Ogunnaike
et al., 1983), and results show the method improves upon other PID control methods.
The performance achieved is of a high level especially in terms of settling time and
maximum overshoot.

The use of PI/PID control methods is very common for both SISO and MIMO systems
because of their relative simplicity and robustness. However these methods often need
an accurate system model especially in the MIMO case and performance degrades in the
presence of any external disturbance and plant uncertainty, which always exist in reality.
Thus performance similar to that found in simulation is hard to achieve.

2.3 Iterative learning control methods for SISO system

Iterative Learning Control (ILC) was formally conceived over 25 years ago, and has
become an area of considerable research interest in both theoretical and application do-
mains. ILC is suitable for systems which perform a repeated process defined over a finite
time interval, termed a trial. It uses data recorded over previous trials to modify the
control signal of the subsequent trial with the aim of sequentially improving tracking ac-
curacy. It has been combined with many other methodologies including adaptive, model
predictive, optimal, neural, fuzzy and robust control. In this subsection, ILC theory will
be reviewed from basic to advanced approaches, with a focus on those approaches which
have been implemented in practice.

2.3.1 Simple-structure ILC approaches

ILC is a method suitable for system which perform a tracking task over a finite, time
interval. One finished, the system is reset to the same starting point and the task is
repeated. The basic principle of ILC is to use the tracking error recorded over the
previous trial to modify the control signal applied on the next so that the error of the
system can be reduced ideally to zero as the number of trials increases. The concept of
ILC can be found in a U.S patent (Garden, 1971) and later Cryer et al. (1976) proposed a
discrete-time iterative controller. The first widely accepted publication on ILC is written
in Japanese (Uchiyama, 1978) but it was not until 1984 that the method found significant
research interest in the series of publications (Craig, 1984), (Arimoto et al., 1984).

Amongst the first papers to exploit the concept of ILC is (Arimoto et al., 1985) which
presents an algorithm in which the update control input uk+1(t) is equal to sum of the
previous trial control input uk(t) and a term dependent upon the previous error ek(t).
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The error of each trial is given by the difference between the reference signal or demand
output yd(t) and the real output of the system yk(t). The update and error are given by

uk+1(t) = uk(t) + Lek(t) (2.21)

ek(t) = yd(t)− yk(t) (2.22)

Here k is the trial number and time t ∈ [0, T ]. This algorithm is termed proportional
ILC (P-type ILC) since the control input is related to the error via the constant L which
affects the convergence speed of the algorithm. If the L constant is too big the system can
be unstable, and if it is too small the rate of convergence is very slow. In accordance with
the ILC paradigm, the system should have the same initial condition at each operation
trial and in this case the dynamics are assumed time-invariant.

Another ILC algorithm is called derivative (D-type) ILC and is given as

uk+1(t) = uk(t) + Lėk(t) (2.23)

Instead of the error, in this case, the rate of change of the error ėk(t) is considered and
is multiplied by a constant L before being adding to the previous control input uk(t).
As described in (Arimoto et al., 1984), (Arimoto et al., 1985) the condition for the error
norm to converge to zero in the SISO case is

| I − CBL |< 1 (2.24)

yd(0) = Cx0 (2.25)

Here the initial system state should be the same for each trial. C,B are continuous-time
state-space model matrices and L is a scalar gain. Furthermore, u0(t), yd(t) must be
continuously and differentiable on [0, T ]. The value of CB should be different to zero so
that the controller always exist a value L satisfy condition (2.24). When CB equals to
zero a lifting method, as in Wijdeven and Bosgra (2008), is used so that model based ILC
can force the system to track reference signals. However the method does not care about
the performance during trials. If controlled system require a smooth operation during
trials the method can give unsatisfied results. Another method is implemented by linear
matrix inequalities Hladowski et al. (2010) allows the design of robust control laws in
the presence of uncertainty in the dynamics produced along the trials. The method is
also applied on a gantry robot performing a pick and place operation.

A further ILC method comprises the combination of the previous two methods, and is
termed PD-type ILC. It is given by

uk+1(t) = uk(t) + (Φ + L
d

dt
)ek(t) (2.26)
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where Φ, L are scalar values which should be chosen carefully to ensure stability. These
simple approaches exhibit satisfactory convergence properties for systems which have low
relative degree (either 0 or 1). With high order systems the method often cannot achieve
satisfactory performance since the convergence conditions are not met. Another issue
is their use of the error derivative which is susceptible to high levels of noise. Clearly,
practical conditions heavily impact on all algorithms. In order to fill the gap between the-
ory and practical implementation, much effort has been expended on analysing different
types of ILC algorithm in laboratory conditions. One such example is a non-minimum
phase facility (Freeman et al., 2005) which has been used to test a large number of ILC
approaches including D-type, P-type, phase-lead algorithm and more advanced model-
based methods such as gradient ILC, norm-optimal ILC and Newton method based ILC.
The papers (Bristow et al., 2006), (Ahn et al., 2007) provide a thorough review of ILC
and its applications .

A simple extension to the P-type ILC is termed phase-lead ILC (Park et al., 1998). This
method has been implemented on several applications and has led to a high level of
performance provided the phase-lead value is chosen carefully. The phase-lead ILC can
be written as

uk+1(t) = uk(t) + Lek(t+ δ) (2.27)

ek = yd(t)− yk(t) (2.28)

where δ is the phase-lead of the error signal which assumed to be the number of samples
which, when shifting the demand forward, minimised the difference between the demand
and the system output. When δ = 0, phase-lead ILC equates to P-type ILC. One
advantage of phase-lead method is that the optimum phase-lead does not change when
the demand is altered. In order to use this and previous methods to control a given
system, the continuous-time algorithms are converted into discrete updates. Therefore
the discrete version of (2.27) can be written as

uk+1(i) = uk(i) + Lek(i+ δ) (2.29)

ek(i) = yd(i)− yk(i) i = 0, 1, ...N (2.30)

where i is the discrete-time instant and δ is now the integer phase-lead in samples. Sim-
ilarly, N , is the trial length in sample. The discrete-time delay methods, P-type ILC,
D-type ILC were implemented to control the same non-minimum phase system test fa-
cility (Freeman, 2004). The results show that phase-lead ILC outperforms P-type and
D-type over 20 times in terms of normalized error. Similarly, the same method was ap-
plied on an industrial robot, SEIKO TT3000, in (Ye and Wang, 2003) and gave rise to
improved results compared to P-type and D-type ILC. In addition, many types of filter
were tested on the same system to provide a comparison between different techniques.
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Generally, ILC method takes advantage of non-causal information available through pre-
vious trials to change controller signal so that the tracking ability can be better and
better after a number of trials in finite time interval.

In the next sections, advanced ILC methods will be introduced in detail and performance
comparisons will be drawn between ILC approaches.

2.3.2 Newton method based ILC

The proportional-type ILC law (2.21) may be regarded as an iterative scheme for minimi-
sation of a cost involving the system error. It therefore follows that greater performance
may be achieved through use of more advanced iterative optimisation techniques. The
Newton method based ILC was proposed in (Avrachenkov, 1998) for continuous-time with
convergence condition and later the same method was derived for discrete-time nonlin-
ear systems (Lin et al., 2006), which contains full derivation and simulation results. In
general, convergence of Newton method based ILC is very fast since its rate is quadratic
rather than linear. The approach is based on the Newton method or Newton-Raphson
(Kincaida and Cheney, 2002) method which can written as

xn+1 = xn −
f(xn)
f ′(xn)

(2.31)

where n is the trial number, x is the estimated root of f(x) and f(x) is a known function
of x. The notation f ′(x) stands for the derivative of f with respect to x. The method is
feasible if the function f ′(x)−1 exists. Another drawback of this method is that it may
take a considerable effort to calculate the inverse of f ′(x).

To adapt equation (2.31) for the ILC framework, firstly, recall the basic proportional-type
ILC equations (2.21) (2.22) and the error function ek(t) = yd(t)−g(uk). Then introduce
supervector notation as follows. Consider a SISO, linear time-invariant discrete plant
with relative degree m and t ∈ [0, 1, ..., N ], and write in the form

y(z) = H(z)u(z) = (hmz−m + hm+1z
−(m+1) + hm+2z

−(m+2) + ...)u(z). (2.32)

Now introduce vectors of input, output and reference signals as follows

uk = [uk(0),uk(1), ...,uk(N − 1)]T (2.33)

yk = [yk(m),yk(m+ 1), ...,yk(m+N − 1)]T (2.34)

yd = [yd(m),yd(m+ 2), ...,yd(m+N − 1)]T (2.35)
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Then the SISO system can be described as yk = Hpuk, where Hp is defined as

Hp =



hm 0 0 . . . 0
hm+1 hm 0 . . . 0
hm+2 hm+1 hm . . . 0

...
...

...
. . .

...
hm+N−1 hm+N−2 hm+N−3 . . . hm


(2.36)

In (Lin et al., 2006) a general form of system description suitable for nonlinear plants is
assumed, g(uk) = yk. Note that for the linear SISO above g(uk) = HPuk. Suppose the
P-type update has applied to the plant, hence substitute g(uk) into (2.21) to give

uk+1 = uk + L(yd − g(uk)) (2.37)

If the scalar L is replaced by the operator ( d
duk

(yd− g(uk)))−1, the result equates to the
Newton method where the minimised quantity is the error. The derivative of d

duk
(yd −

g(uk)) is given by
d

duk
(yd − g(uk)) = −g′(uk) (2.38)

Consequently the Newton method based ILC is expressed as

uk+1 = uk + g′(uk)
−1ek (2.39)

ek = yd − yk (2.40)

This method inherits the fast convergence from the Newton method in a region suf-
ficiently close to the real solution but it will be valid only when the inverse function
g′(uk)

−1 exists. However this problem can be solved by writing the Newton method
based ILC update in the form

uk+1 = uk + wk+1 (2.41)

and computing wk+1 = g′(uk)−1ek by solving the equation

g′(uk)wk+1 = ek (2.42)

The term g′(uk) is a linear time-varying system, and so this can be achieved via ILC.
This also means calculation of the inverse is avoided. In (Lin et al., 2006) this method is
implemented for a non-linear discrete system and there is a comparison between different
choices of initial values. The same method has been applied on patients to help them
recover after stroke (Davies et al., 2008) and (Cai et al., 2011b).
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2.3.3 Gradient ILC

The gradient method has been proposed in the ILC literature for LTI systems such as
(Kinosita et al., 2002) for continuous-time or (Owens et al., 2009) for discrete-time, but
here it is expanded to the nonlinear case (Freeman, 2011) using the framework introduced
previously for the Newton method-based approach. Let a non-linear discrete-time system
be defined as

x(i+ 1) = f(x(i),u(i)) (2.43)

y(i) = h(x(i),u(i)) x(0) = x0

where x is the state vector and f(.) and h(.) are vector functions of x and u which are
continuously differentiable. The system is defined at the sample times i = 0, 1, 2, ...N−1.
The input and output vectors of the system are given as

u = [u(0),u(1),u(2), ...,u(N − 1)]T (2.44)

y = [y(0),y(1),y(2), ...,y(N − 1)]T (2.45)

The system (2.43) can be replaced by an algebraic function g(u) such that y = g(u).
Accordingly, the components of function g(.) can be written as

g(.) = [g0(.), g1(.), g2(.), ..., gN−1(.)]T (2.46)

The desired reference signal is defined as yd = [yd(0),yd(1),yd(2), ...,yd(N −1)]. There-
fore over each trial the relationship between the input output time-series is expressed
as

y(0) = h(x(0),u(0)) = g0(x(0),u(0))

y(1) = h(x(1),u(1)) = h(f(x(0),u(0)),u(1))

= g1(x(0),u(0),u(1))
...

y(N − 1) = h(x(N − 1),u(N − 1))

= h(f(x(N − 1),u(N − 2)),u(N − 1))

= gN−1(x(0),u(0),u(1), ...,u(N − 1))

Hence the error of the system can be written as

‖e‖22 = ‖yd − g(u)‖22 = f(u) (2.47)

The control signal u should be chosen such that the error function robustly converges
to zero. An alternative to the Newton method is the gradient descent method to solve
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minu ‖yd − g(u)‖22. Applying this within the ILC framework yields

uk+1 = uk − β∇f(uk) (2.48)

= uk + β∇(yd − g(uk)) (2.49)

= uk + βg′(uk)T (yd − g(uk)) (2.50)

= uk + βg′(uk)Tek (2.51)

where β is a scalar gain. The derivative of the algebraic function g(u) is given as

g′(u) =



∂g0
∂u(0) 0 0 . . . 0
∂g0
∂u(0)

∂g1
∂u(1) 0 . . . 0

∂g0
∂u(0)

∂g1
∂u(1)

∂g2
∂u(2) . . . 0

...
...

...
. . .

...
∂g0
∂u(0)

∂g1
∂u(1)

∂g2
∂u(2) . . . ∂gN

∂u(N−1)


(2.52)

Therefore g′(uk)Tek is the vector that determines the direction of the update vector.
Previously, this update has only been considered for the LTI SISO case (Hätönen et al.,
2003) in which case it becomes uk+1 = uk + βGTek with

G =



0 0 0 . . . 0
CB 0 0 . . . 0
CAB CB 0 . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B . . . 0


(2.53)

The matrix G contains Markov parameters which can be obtained from the finite impulse
response (FIR) of the plant. It can always be shown that there exists a scalar β > 0
which ensures convergence to zero for the nominal plant. In fact β can be designed to
optimise the convergence rate. Using the trial varying value

βk+1 =
‖GTek‖22
‖GGTek‖22

(2.54)

The proof that this gives the maximum convergence rate can be found in (Owens et al.,
2009) but is for the SISO case only. The gradient ILC method has been implemented
to control a gantry robot (Ratcliffe et al., 2006), hydraulic servo system (Hätönen and
Owens, 2004) and a non-minimum phase test facility (Freeman et al., 2007c). The same
method has been simulated with different models such as a flexible arm robot (Kinoshita
et al., 2002) and a helicopter model (Ogoshi et al., 2002). The results of these papers all
show a high rate of convergence of the norm error which is low after a small number of
trials, although in some cases the method is slow. The papers (Dinh et al., 2012b,a) show
that the gradient method can be extended for MIMO systems with an optimal constant
β which enables the system to converge to zero norm as rapidly as possible.
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2.3.4 Norm optimal ILC

Norm optimal ILC involves the minimisation of a performance index J in order to calcu-
late the optimum control input u for each trial. Consider the discrete-time state-space
model of a system

x(i+ 1) = Ax(i) +Bu(i) x(0) = x0 (2.55)

y(i) = Cx(i) where x ∈ Rn, u ∈ Rm, y ∈ Rp (2.56)

where i = 0, 1, . . . N − 1. The state-space matrices A,B,C are assumed to be time-
invariant for simplicity although the approach can also be applied to linear time-varying
plants. The cost function following the kth trial is given by

Jk+1(uk+1) = ‖ek+1‖2Q + ‖uk+1 − uk‖2R (2.57)

Where ‖.‖w denotes the 2-norm with an inner product weighting w and ek+1 = yd−yk+1.
Using the more familiar formulation where the norms are written out as sums (Amann
et al., 1996a), (2.57) becomes

Jk+1 =
N∑
t=1

[yd(i)− yk+1(i)]TQ(i)[yd(i)− yk+1(i)] +

N−1∑
t=0

[uk+1(i)− uk(i)]TR(i)[uk+1(i)− uk(i)] (2.58)

where Q(i), R(i) are weighting functions which are usually assumed static. The optimum
control input uk+1 is found by setting the derivative respect to the control input to zero
for each time instant.

∂Jk+1

∂uk+1
= −GTQek+1 +R(uk+1 − uk) = 0 (2.59)

where the matrix G ∈ R(pN)×(mN) is given by

G =


CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAN−1B CAN−2B . . . CB

 (2.60)

and Q, R are diagonal matrices with Q(i), R(i) on the leading diagonal. Therefore

uk+1 = uk +R−1GTQek+1 (2.61)
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For simplicity, denote R−1GTQ as G∗ so the final update is

uk+1 = uk +G∗ek+1 (2.62)

The approach has been tested on an LTI (linear time-invariant) SISO system in (Ratcliffe
et al., 2006), but it can be used for the general MIMO case (Amann et al., 1996b),
(Amann et al., 1998). The non-causal term G∗ek+1 is not known at the start of trial
k + 1, but can be generated through use of feedback and feed-forward actions involving
state estimation and the solution to a Ricatti equation (Polyanin and Zaitsev, 2005).
This method was implemented on a non-minimum phase system and led to a high level
of performance. Another application class, called molding processes (Gao et al., 2001),
used an ILC method based on a similar optimal theory but with a slight difference; a
new parameter was introduced ρ = Q

R to ensure that the norm error converged to zero
in any situation even when the initial position after the resetting process was not the
same for each trial. Norm optimal ILC has also been applied to accelerator based free
electron lasers in (Rogers et al., 2010), (Kichhoff et al., 2008). In this case NOILC did
not reach the target performance for the application but the method used only 10 trials
to reach a very small error value. Extensions have been proposed using a predictive
mechanism Bristow and Alleyne (2003), constraints Chu and Owens (2010), projections
Chu and Owens (2009), and to address point-to-point tracking Owens et al. (2012). If
the application permits a large enough number of trials to be carried out, the method
typically enables the system to reach the preset target.

2.4 ILC applications

Compared to other control methods, ILC has demonstrated clear advantage when applied
to applications which involve repetitive tasks. When applied to systems with uncertainty
and disturbance, ILC has shown the ability to give outstanding performance (Bristow
et al., 2006), (Ahn et al., 2007). Due to these qualities, ILC has been used in many
industrial areas. CNC machining (Kim and Kim, 1996) is one example, where ILC im-
proved the tracking performance compared to a PID controller. In this case PID-type
ILC was implemented in the discrete-time domain using a microprocessor. Under suffi-
cient conditions the method guarantees convergence to zero error after a small number
of trials. Similarly, the same technique has been applied to micro-scale robotics (Bristow
and Alleyne, 2003) which are used for manufacturing photonic band gap (PBG) material.
The application requires a highly accurate micro-scale (0.1µm-100µm) movement from
the machine. The system not only needs an accurate controller but also all the servo and
movement components need to be very precisely manufactured without any backlash.
A feed-forward ILC controller has been successful applied to the system and shown to
help improve the efficiency and be more effective than other methods such as lithography
and laser-induced chemical vapour deposition (Lin et al., 1998), (Wanke et al., 1998).
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Such alternatives not only cost much more than the micro-scale robot, but also have a
long build time and place restrictions on size. Another application to which ILC has
been employed is control of linear, permanent magnet, synchronous motors (LPMSM)
(Butcher and Karimi, 2010) in which a new ILC method to cope with uncertainty of the
system and the disturbance was used. The novelty of this ILC implementation for linear
parameter-varying plants (Shamma and Athans, 1998) is illustrated by the algorithm
still converging to the reference signal even when there is a disturbance in the reset pro-
cedure, meaning that the system is not reset to the same initial location after each trial.
In general, standard ILC does not work well if there is a difference in initial position or
an trial-varying disturbance. The ILC controller was designed, simulated and applied
to LPMSM, and gave a better result compared to standard gradient ILC (Owens et al.,
2009) and a PID controller. A similar problem in which the disturbance does not have
exact initial reseting has been found in injection moulding processes (Gao et al., 2001),
(Tan et al., 2003). The proposed method was used in polymer manufacturing techniques.
It transformed polymer granules into various shapes and types of products, ranging from
simple cups to precision lens and compact discs. In (Gao et al., 2001) the approach ex-
ploited an optimal norm controller to make the system track more accurately. The initial
injection velocity response could not be repeated exactly, resulting in uncertainty of ini-
tialization error of the injection velocity control. Furthermore, there were disturbances
during the moulding process from different sources, such as variation of the material or
operating conditions. The method uses a modified norm optimal ILC method with a
new variable, ρ, which has the following relationship with other components

R = λI (2.63)

Q = µI (2.64)

ρ =
µ

λ
(2.65)

Here Q and R are the weighting matrices used in optimal control which must be selected
carefully, I is the identity matrix and µ, λ is a positive design constant. These constants
are used to ensure the controller can reject uncertain disturbances as well as track the
desired reference with rapid convergence. Another modified ILC algorithm, called H∞
ILC, was introduced in (Roover, 1996) and applies ILC in the H∞ framework. The
control input comprises the combination of current error feedback and past error feed-
forward components. The method has been successfully applied to control of a wafer
stage (Roover and Bosgra, 2000) and the setup experiment is fully described in (Roover,
1997). As is usual, the application needs a very high accuracy to track the reference
signal. As a result, the method gives outstanding performance within 5-10 iterations and
the norm error can reach close to zero. Many other applications use ILC to cope with
disturbance and plant uncertainty such as cold rolling mills (Garimella and Srinivasan,
1998), antilock braking of electric and hybrid vehicles (Mi et al., 2005) and underwater
robot manipulators (Kawamura and Sakagami, 2002), (Sakagami et al., 2002), (Sakagami
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and Kawamura, 2003) and acrobat robot (Yamakita et al., 2002), (Watabe et al., 2002).

ILC algorithms are not only used to control mechanical applications but also can be used
in controlling temperature, such as in a batch polymerization reactor (Lee et al., 1996)
and extruder (Pandit and Buchheit, 1999). For the extruder application, researchers
have used an optimal ILC which has a performance index Q defined by the following
function of the input and output

Q[uk+1(t),yk+1(t)] =
∫ T

0
L(uk+1(t), u̇k+1(t), ...,yk+1(t), ẏk+1(t), ...,yd(t))dt (2.66)

Here u,y are the input and output of the system respectively, k is the trial number, t is
the time variable and L is a function which is chosen to stipulate behavior of u and y.
Therefore in order to provide the optimum performance u,y need to correspond to the
minimum point of the function Q. The result of this method is improved with the aid of
a non-causal filter and can reduce the extrusion time to about 10% compared to classical
controllers. With the same control objective, the polymerization reactor application
is a combination of a sequence of charge, heat-up, reaction and discharge phases. In
particular, in the heat-up and reaction phases, the temperature variable requires a fast
response time as well as a fast settling time but low overshoot magnitude. ILC was
therefore applied to enable the reactor temperature to settle down to the set point in
the minimum time while rejecting disturbances. The system uses a filter and feedback
controller and a learning filter. If H1 = P−1, where H1 is the learning filter and P

is the model of plant, the control method is similar to the inverse method ILC which
makes the system converge to the target reference quickly. Experimental results show
very precise tracking even when it is designed based on a nominal process model. Despite
the simplicity of the method, it has been applied to industrial batch reactors producing
ABS polymers and has been in successful operation for more than 3 years.

Recently, ILC has been used to aid stroke patients rehabilitate their upper limbs Freeman
et al. (2007b), Freeman et al. (2007a), Freeman et al. (2009c), Freeman et al. (2012). The
experimental facility is under researching and develop in order to transfer the technology
to all hospitals. The system is improving to have a cheap version for household using
also. The facility uses functional electrical stimulation to help patients moving their
upper limb to do specific tasks. Therefore they have motivation to practice everyday.
The system was improved tracking ability by using ILC controller Hughes et al. (2009c),
Hughes et al. (2009a) and adjoint, phase-lead were used in Freeman et al. (2008), Freeman
et al. (2009a) and Freeman et al. (2011a) is for 3D stroke rehabilitation facility. Interview
patients also gave positive comments and they would like to have further testing sessions
Hughes et al. (2009b). Each patient has different muscle structure therefore in order
to improve tracking ability of the facility a muscle model is identified such as upper
extremity Freeman et al. (2009b), Le et al. (2010), Le et al. (2012), hand and wrist Soska
et al. (2012). Based on derived models, more advance controller can be implemented
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such as Newton method based nonlinear ILC Freeman et al. (2010) for robotic station
and Cai et al. (2011c) for 3D stroke rehabilitation.

Whilst many such reported applications and cases of detailed experimental comparison
and benchmarking exist for the SISO case, there are few instances involving MIMO sys-
tems Tyréus (1979); Haurani et al. (2001). These are generally more challenging due to
interaction dynamics which typically increase controller demand as well as significantly
complicating controller design and performance/robustness analysis. With mild interac-
tion, one approach is to ignore the coupling and design multiple SISO controllers Wallén
et al. (2008), however loss of performance is inevitable. In addition to a lack of MIMO
application examples there exists no comparative benchmarking between algorithms,
critical for thorough performance assessment prior to wider industrial implementation.
To solve this problem, a multi-configurable experimental test facility is needed to enable
MIMO ILC approaches to be rigorously evaluated.

In summary, ILC has been designed and implemented on many different types of control
problem. Depending on each specific application, a ILC controller is chosen to achieve
an appropriate objective. Experimental results confirm that ILC can yield satisfactory
results despite significant modeling error. However it is clear that as accurate a model
as possible is necessary to guarantee the best performance.

2.5 Summary

A review of MIMO control approaches has been conducted, centering on practical per-
formance needs. In addition to feedback based techniques, a summary of ILC approaches
has been presented, focusing on optimisation based methods, and those approaches which
have been applied experimentally.

However, there is a little emphasis on MIMO system, in theoretical or application terms.
In particular there is no analysis on the effect of interaction on performance. There is
hence a pressing need for a MIMO benchmarking facility for evaluation and comparison
of controllers. The MIMO facility must enable the interaction level to be adjusted, as
well as provide disturbance/noise injection capability. Such a MIMO facility would give
rise to a full robustness and performance characteristic of MIMO ILC.





Chapter 3

Test facility design and analysis

The review of applications to which ILC has been applied has exposed a lack of multi-
variable system studies. In this chapter an electromechanical system will be developed
for the purpose of benchmarking and evaluating controllers. To cover a wide range of
characteristics it will encompass multiple inputs and outputs with variable interaction
between these ports.

3.1 Differential gearbox

One approach to designing such a system is to use a differential gearbox which has 3
ports and therefore, if two devices are connected together, is intrinsically multivariable.
Commonly the differential gear is used in both light duty and heavy duty vehicles. The
component can help cars turn in sharp corners easily especially at high speed. The
gear is constructed from a variety of bevel gears and it is therefore a challenging task
to determine a transfer-function using Newton-based analysis of all the forces applied
to the system. Consequently, Lagrange’s method will instead be used to derive the
dynamic representation for this system. Firstly, however, an overview of the structure
and function of a gearbox will be described before Lagrange’s method is applied to this
particular system.

In the automotive industry, differential gearboxes are an important component of almost
every vehicle. This device is used to transmit torque from the main engine to the rear
wheels and allows the vehicle to turn easily at a bend in the road and avoid skidding.
Basically, the gearbox has 1 input shaft, from the engine, and 2 outputs to the rear
wheels. The speed of each rear wheel is dependent on their respective inertia. If the 2
sides are balanced on a straight road, the speeds of the 2 wheels are equal, but on a bend
in the road, there will be different inertia associated with each wheel. As a result, the
speeds are different so that the vehicle will change direction without loss of traction. A
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schematic of a gearbox is given in Figure 3.1. Shaft A is the input gear from the engine
to port A and the 2 rear wheels are called B, C. The angular speed of shaft B and shaft
C can be different depending on the load applied to each.

Figure 3.1: Differential gearbox

In some references the differential gearbox is presented as one of the special cases of an
epicyclic gear. It can be seen that gear E is free to rotate around the housing when
shaft B and shaft C have the same speed but their movements are in same directions.
Otherwise, the gear E will be stationary with respect to gear D or gear C and rotate
around itself if the angular speed of B, C are the same and in opposite directions.

A simple epicyclic train (Hannah and Stephens, 1963) has 3 components: the sun wheel
(S), annulus (A) and planet (P) wheels which are connected together by an arm L.
Details of the gearbox are shown in Figure 3.2. The planet gears (P) can rotate and are
situated between the annulus and the sun wheel. Similarly, a differential gearbox has the
same properties as the epicyclic gear (Holmes, 1977), (Morrison and Crossland, 1970).
Comparing Figure 3.1 and Figure 3.2, the planet gears correspond to gear E in Figure
3.1, the sun wheel correspond to the gears connected to shaft B and C while the gear
connected to shaft A corresponds to the annulus. The only difference is that in Figure
3.1, there is only one gear E and all gears are bevel gears and therefore they can be
connected together at 90 degrees. The angular speed relationship between gears of the
differential gearbox (Holmes, 1977) can be expressed as (3.1) where NA is the speed of
gear A and similarly for gear B and gear C. The structure also means that usually the
number of teeth on gear B is equal to the number of teeth on gear C and the number
of teeth on gear A is equal to the number of teeth on the bevel gear B. However this
constraint equation can be different depending on the ratio between bevel gears.

2NA = NB +NC (3.1)
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Figure 3.2: Epicyclic gear

3.2 Lagrange’s equation

Lagrange’s equation is one of the most prevalent methods used to derive the dynamics of
a system and involves consideration of the total potential energy and kinetic energy. An
alternative is the Newtonian method, which necessitates analysis of the reaction forces
that are applied to a body together with a free body diagram (Close and Frederick, 1995)
in order to derive an equation of motion. In contrast, Lagrange’s method more concisely
yields differential equations for a complex system that have many applied forces and
reaction forces. The derivation and application of Lagrange’s equation is fully explained
in (Greenwood, 2003), (Palm, 2007), (Marion and Thornton, 1995). The method is
encapsulated in the form of equation (3.2) which is called Lagrange’s equation. The
equations (3.2), (3.3) are applicable to holonomic systems with generalised independent
coordinates q1, q2...qn. The number of coordinates of a system should be chosen so that
they can completely specify the state of the system. In general, there is no specific
rule to choose coordinates in order to optimise the solution or simplify its derivation.
Rather, their choice depends on the skill gained from experimentation and practice. The
Lagrange function, is calculated as

L = Kinetic energy− Potential energy

⇒ L = T − V
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (i = 1, 2...n) (3.2)

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= 0 (i = 1, 2, ....n) (3.3)
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Here V denotes the total potential energy, T the total kinetic energy, qi is the set of
generalised coordinates, n is the total number of coordinates. The constraint coordinate
function can be derived through differentiation of the constraint equations. If a portion
of the applied generalised force is not obtained from a potential function, the equation
above can be written as (3.4). This type of system is termed a nonholonomic system and
has external forces applied to it.

d

dt

(
∂T

∂q′i

)
− ∂T

∂qi
+
∂V

∂qi
= Q′i (i = 1, 2, ...n) (3.4)

Q′i represents the applied forces on the system that are not derived from the potential
energy. Here Qi = −∂V

∂qi
+ Q′i. When considering nonholonomic systems, there may

be more generalised coordinates than degrees of freedom. Therefore, the generalised
coordinates are not completely independent and there will be generalised constraint
forces Ci which are nonzero given by

Ci =
m∑
j=1

λjaji (i = 1, 2...n) (3.5)

The Lagrange multiplier λj applies equally to all components aji. A single constraint
force can be expressed as Cj = λjaj . Assume that there are m holonomic constraint
equations and n generated coordinates. The constraint equations then has the form

φj(q, t) = 0 (j = 1...m) (3.6)

Therefore the coordinates aji can be calculated as

aji(q, t) =
∂φj
∂qi

(i = 1, 2...n) (j = 1...m) (3.7)

To give
d

dt

(
∂T

∂q′i

)
− ∂T

∂qi
+
∂V

∂qi
=

m∑
j=1

λjaji (i = 1, 2, ...n) (3.8)

In a system which has dissipated energy, F , the final Lagrange’s equation is given by

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
+
∂F

∂q̇i
= Q′i +

m∑
j=1

λjaji (i = 1, 2, ...n) (3.9)

3.3 Gearboxes and transfer-functions

As described previously, Lagrange’s equation can be used to derive dynamic equations for
a mechanical system. The system shown in Figure 3.3 is now considered, and it will be
assumed that there is no friction between gears. The variables θA, θB and θC are used to
denote the output angular displacements. Each port of the gearbox has its own inertia,
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damping and applied torque. Port A has inertia IA, damping BA and applied torque
TA. Port B has inertia IB, damping BB and applied torque TB. Port C has inertia IC ,
damping BC and applied torque TC . The differential gearbox has been discussed in the
previous section. In this section, the transfer-function for this gearbox will be derived
and used to find expressions for different arrangements of a composite system. These

Figure 3.3: Differential gearbox

can then be analysed and simulated in Matlab.

To apply Lagrange’s equation to the gearbox, Figure 3.3 requires kinetic and potential
expressions, T and V . The former is given by

Kinetic energy (T) =
1
2
IAθ̇

2
A +

1
2
IB θ̇

2
B +

1
2
IC θ̇

2
C

where IA,IB, IC are the inertias of input A, output B and output C respectively. The
potential energy for a rotational object can be considered to be zero. The terms θA, θB,
θC denote the angular displacement of input A, output B and output C respectively and
comprise the generalised system coordinates. As a result, q1 = θA, q2 = θB, q3 = θC .
The system does not have any potential energy, so V can be considered to be zero. This
yields

L =
1
2
IAθ̇

2
A +

1
2
IB θ̇

2
B +

1
2
IC θ̇

2
C (3.10)

Applied partial differentiation of L gives

∂L

∂ ˙θA
= IAθ̇A;

∂L

∂θ̇B
= IB θ̇B;

∂L

∂θ̇C
= IC θ̇C . (3.11)

⇒ d

dt

(
∂L

∂θ̇A

)
= IAθ̈A;

d

dt

(
∂L

∂θ̇B

)
= IB θ̈B;

d

dt

(
∂L

∂θ̇C

)
= IC θ̈C . (3.12)
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The dissipated energy can be calculated for the system:

Dissipated energy = F =
1
2
BB θ̇

2
B +

1
2
BC θ̇

2
C +

1
2
BAθ̇

2
A (3.13)

Which yields
∂F

∂θ̇A
= BAθ̇A;

∂F

∂θ̇B
= BB θ̇B;

∂F

∂θ̇C
= BC θ̇C ; (3.14)

The constraint equation is given by

2θA = θB + θC (3.15)

Differentiate equation (3.15) with respect to time to give

2θ̇A = θ̇B + θ̇C (3.16)

⇒ θ̇B + θ̇C − 2θ̇A = 0

Therefore from equation (3.7) values of aji are given as aA = −2, aB = 1, aC = 1.
On each input or output of this system, torques may be applied and are denoted by
TA, TB, TC . These torques correspond to Q′i. Therefore using Lagrange’s equation (3.9)
the following set of equations which describe the dynamics of the gearbox is obtained

IAθ̈A +BAθ̇A − TA = −2λ (3.17)

IB θ̈B +BB θ̇B − TB = λ (3.18)

IC θ̈C +BC θ̇C − TC = λ (3.19)

Substitute λ from (3.19) into (3.17) and (3.18), in order to obtain the general dynamics
for a differential gearbox given by

IAθ̈A +BAθ̇A − TA + 2IC θ̈C + 2BC ˙θC − 2TC = 0 (3.20)

IB θ̈B +BB θ̇B − TB − IC θ̈C −BC θ̇C + TC = 0 (3.21)

2θA = θB + θC (the constraint equation) (3.22)

These equations are next used to develop dynamic relationships for mechanical systems
which incorporate gearboxes.

3.4 Case 1 arrangement and transfer-function

The first arrangement is shown in Figure 3.4 and features two motors attached to port 1
and port 2 of the differential gearbox 2. The output port A1 of gearbox 2 is coupled with
the port A2 of the gearbox 1. The output ports B and C of gearbox 1 are connected to
spring-mass-damper systems which are used to modify the system’s response. Gearbox
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2 has inputs T1, T2 and output θA1. The constraint equation for the upper gearbox is
2θA = θ1+θ2 and the relationship between torque and angular displacement TA = G(s)θA
is now introduced where G(s) is a continuous-time transfer-function. Using the general
differential equation from the previous section, the new equations for gearbox 1 and
gearbox 2 can be shown to be

Gearbox 2

IA1θ̈A +BA1
˙θA − TA + 2I2θ̈2 + 2B2θ̇2 − 2T2 = 0 (3.23)

I1θ̈1 +B1θ̇1 − T1 − I2θ̈2 −B2θ̇2 + T2 = 0 (3.24)

2θA = θ1 + θ2 (the constraint equation) (3.25)

Comparing these with the general differential gearbox equations, IA = IA1, BA = BA1,
IC = I2, BC = B2, IB = I1, BB = B1

Gearbox 1

IA2θ̈A +BA2
˙θA − TA + 2IC1θ̈C + 2BC1θ̇C − 2TC = 0 (3.26)

IB1θ̈B +BB1θ̇B − TB − IC1θ̈C −BC1θ̇C + TC = 0 (3.27)

2θA = θB + θC (the constraint equation) (3.28)

Again comparing these with the general case gives IA = IA2, BA = BA2, IC = IC1,
BC = BC1, IB = IB1, BB = BB1. First substitute the constraint equation into equation

Figure 3.4: 2 differential gearboxes back to back.

(3.24). Let s be the Laplace transform variable so that θ̇ = θs, and hence

(I1s
2 +B1s)(2θA − θ2)− (I2s

2 +B2s)θ2 = T1 − T2 (3.29)

⇒ θ2 =
T2 − T1 + 2(I1s

2 +B1s)θA
(I1 + I2)s2 + (B1 +B2)s

(3.30)
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Substitution in (3.23) gives

(IA1s
2 +BA1s)θA +

2(I2s
2 +B2s)

(I1 + I2)s2 + (B1 +B2)s
(T2 − T1 + 2(I1s

2 +B1s)θA) = 2T2 + TA

(3.31)
Now factorise by θA and substitute the value of TA = G(s)θA into the equation above to
give

θA

[
(IA1s

2 +BA1s) +
4(I2s

2 +B2s)(I1s
2 +B1s)

(I1 + I2)s2 + (B1 +B2)s
−G

]
=

T1
2(I2s

2 +B2s)
(I1 + I2)s2 + (B1 +B2)s

+ T2
2[(I1 + I2)s2 + (B1 +B2)s− (I2s

2 +B2s)]
(I1 + I2)s2 + (B1 +B2)s

(3.32)

As shown in Figure 3.4, the outputs of the lower gearbox are connected to spring-mass-
damper systems and therefore the transfer-functions for these loads needs to be derived
first. These loads are shown in Figure 3.5 and Figure 3.6 for port B and port C respec-
tively. Using Newton’s second law and free-body diagrams to derive the transfer-function
for the system in Figure 3.5, yields

Figure 3.5: The load for output B.

Figure 3.6: The load for output C.

IB θ̈B +KB(θB − φB) +BB θ̇B = TB (3.33)

IB2φ̈B +BB2φ̇B = KB(θB − φB) (3.34)

From equation (3.34), the notation s = d
dt is used to simplify the system and can be

transfered back by inverse Laplace transform (assume zero initial condition). This yields:

φB
θB

=
KB

IB2s2 +BB2s+KB
(3.35)
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Substitute into equation (3.33) to get the transfer-function from TB to θB

TB
θB

= (IBs2 +BBs+KB)−
K2
B

IB2s2 +BB2s+KB
(3.36)

Similarly the transfer-functions for the system in Figure 3.6 can be derived as

φC
θC

=
KC

IC2s2 +BC2s+KC
(3.37)

TC
θC

= (ICs2 +BCs+KC)−
K2
C

IC2s2 +BC2s+KC
(3.38)

From equation (3.38) and (3.36), the value of torque that is applied on the input shaft
of the gearbox should be negative and therefore:

TB = θBGB(s) (3.39)

TC = θCGC(s) (3.40)

where

GB(s) :=
K2
B

IB2s2 +BB2s+KB
− (IBs2 +BBs+KB)

GC(s) :=
K2
C

IC2s2 +BC2s+KC
− (ICs2 +BCs+KC)

Substitute into equation (3.27):

(IB1s
2 +BB1s−GB)θB = (IC1s

2 +BC1s−GC)θC (3.41)

Using the constraint equation: 2θA = θB + θC ⇒ θB = 2θA − θC substitute into the
equation above:

θC

(
1 +

IC1s
2 +BC1s−GC

IB1s2 +BB1s−GB

)
= 2θA (3.42)

Substitute into equation (3.26) to get[
(IA2s

2 +BA2s) +
4(IC1s

2 +BC1s−GC)(IB1s
2 +BB1s−GB)

(IC1 + IB1)s2 + (BC1 +BB1)s− (GB +GC)

]
θA = TA (3.43)

Similarly to equation (3.42), the transfer-function from θB to θA can be derived as

θB

(
1 +

IB1s
2 +BB1s−GB

IC1s2 +BC1s−GC

)
= 2θA (3.44)
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This equation gives G(s) where TA = G(s)θA therefore

φB
T1(s)

=
θA
T1(s)

.
φB
θB

.
θB
θA

= G11(s) (3.45)

φB
T2(s)

=
θA
T2(s)

.
φB
θB

.
θB
θA

= G12(s) (3.46)

φC
T1(s)

=
θA
T1(s)

.
φC
θC
.
θC
θA

= G21(s) (3.47)

φC
T2(s)

=
θA
T2(s)

.
φC
θC
.
θC
θA

= G22(s) (3.48)

Consequently the transfer-function for this MIMO system can be fully derived since
G11(s), G12(s), G21(s), G22(s) all can be calculated. Using notation T1(s) = u1(s),
T2(s) = u2(s), φB(s) = y1(s), φC(s) = y2(s), therefore the transfer-function matrix
for this configuration is given[

y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

][
u1(s)
u2(s)

]
(3.49)

This matrix has been used in Matlab to simulate the system so that its response can be
investigated with different parameters such as the damper constants, spring constants or
inertias. As a result, the behavior of this system can be fully understood and the various
impulse responses may be easily computed.

3.5 Case 2 arrangement and transfer-function

In this case, motors are placed at the side of each of the two gearboxes and deliver
the torque input to the system. The mass-spring-damper components are placed at the
other side of each of the gearboxes. The ports in the middle are coupled together so that
they cause interaction between inputs. This arrangement is shown in Figure 3.7. The
parameters I1, B1, T1 respectively denote the inertia, damping and torque of port 1 of
differential gearbox 2 . Similarly I2, B2, T2 denotes the inertia, damper and the torque of
port 2 of the differential gearbox 2 respectively. IA1 and BA2 are the inertia and damper
values of the other port of gearbox 2. Similarly, IB1, BB1, TB are the inertia, damper
and torque of port B1 of differential gearbox 1. Likewise IC1, BC1, TC are the inertia,
damper, input torque of port C1 of differential gearbox 1. Finally, IA2, BA2 are the inertia
and damper values of the final port of gearbox 1. This type of arrangement is of great
interest since the interaction (the dynamical connection between the 2 gearboxes) can be
fully manipulated and the magnitude will depend on the value of inertia and damping
IA1, BA1, IA2 and BA2. Because of the new notation used, their dynamic equations,
derived using Lagrange’s analysis as before, are restated as
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Figure 3.7: System arrangement 2.

Gear 1

IA2θ̈A +BA2
˙θA − TA + 2IC1θ̈C + 2BC1

˙θC − 2TC = 0 (3.50)

IB1θ̈B +BB1
˙θB − TB − IC1θ̈C −BC1

˙θC + TC = 0 (3.51)

2θA = θB + θC (3.52)

Gear 2

IA1θ̈A +BA1
˙θA + TA + 2I2θ̈2 + 2B2θ̇2 − 2T2 = 0 (3.53)

I1θ̈1 +B1θ̇1 − T1 − I2θ̈2 −B2θ̇2 + T2 = 0 (3.54)

2θA = θ1 + θ2 (3.55)

Note that for the upper gearbox the angular positions are defined in opposite directions
to those of the lower to facilitate their connection. However the sign of TA in equation
(3.53) should be opposite to the sign of TA in equation (3.50). Using the set of gearbox
1 equations, from equation (3.51):

θB(IB1s
2 +BB1s−GB)− θC(IC1s

2 +BC1s) = −TC (3.56)

Since TB = GBθB and θC = 2θA − θB, equation (3.56) becomes

θB[(IB1 + IC1)s2 + (BB1 +BC1)s−GB]− 2θA(IC1s
2 +BC1s) = −TC (3.57)

To give : θA =
θB[(IB1 + IC1)s2 + (BB1 +BC1)s−GB] + TC

2(IC1s2 +BC1s)
(3.58)

From equation (3.50)

θA(IA2s
2 +BA2s) + 2θC(IC1s

2 +BC1s) = TA + 2TC (3.59)
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Since θB = 2θA − θC substitute into equation (3.56) to result in

2θA(IB1s
2 +BB1s−GB)− θC [(IC1 + IB1)s2 + (BB1 +BC1)s−GB] = −TC (3.60)

⇒ θC =
2θA(IB1s

2 +BB1s−GB) + TC
(IC1 + IB1)s2 + (BB1 +BC1)s−GB

(3.61)

Substitute equation (3.61) into equation (3.59) to obtain

θA(IA2s
2 +BA2s) +

4θA(IB1s
2 +BB1s−GB) + 2TC

(IC1 + IB1)s2 + (BB1 +BC1)s−GB
(IC1s

2 +BC1s) =

TA + 2TC (3.62)

to give

θA

(
IA2s

2 +BA2s+
4(IB1s

2 +BB1s−GB)(IC1s
2 +BC1s)

(IC1 + IB1)s2 + (BB1 +BC1)s−GB

)
=

TA + 2TC

(
1− IC1s

2 +BC1s

(IC1 + IB1)s2 + (BB1 +BC1)s−GB

)
(3.63)

The values of GA1 and GC are then defined as

GA1 := (IA2s
2 +BA2s) +

4(IB1s
2 +BB1s−GB)(IC1s

2 +BC1s)
(IC1 + IB1)s2 + (BB1 +BC1)s−GB

(3.64)

GC := 1− IC1s
2 +BC1s

(IC1 + IB1)s2 + (BB1 +BC1)s−GB
(3.65)

Now considering the equations from gearbox 2, equation (3.54) can be written as

θ1(I1s
2 +B1s−G1)− θ2(I2s

2 +B2s) + T2 = 0 (3.66)

Substituting T1 = G1θ1 and θ1 = 2θA − θ2, equation (3.66) becomes

2θA(I1s
2 +B1s−G1)− θ2[(I1 + I2)s2 + (B1 +B2)s−G1] + T2 = 0 (3.67)

⇒ θ2 =
2θA(I1s

2 +B1s−G1) + T2

(I1 + I2)s2 + (B1 +B2)s−G1
(3.68)

From equation (3.53)

θA(IA1s
2 +BA1s) + TA + 2θ2(I2s

2 +B2s)− 2T2 = 0 (3.69)

Substitute equation (3.68) into equation (3.69)

θA

(
IA1s

2 +BA1s+
4(I1s

2 +B1s−G1)(I2s
2 +B2s)

(I1 + I2)s2 + (B1 +B2)s−G1

)
=

−TA + 2T2

(
1− I2s

2 +B2s

(I1 + I2)s2 + (B1 +B2)s−G1

)
(3.70)
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From this define:

GA2 := IA1s
2 +BA1s+

4(I1s
2 +B1s−G1)(I2s

2 +B2s)
(I1 + I2)s2 + (B1 +B2)s−G1

(3.71)

G2 := 1− I2s
2 +B2s

(I1 + I2)s2 + (B1 +B2)s−G1
(3.72)

Now substitute θ2 = 2θA + θ1 into equation (3.66), giving

θ1[(I1 + I2)s2 + (B1 +B2)s−G1]− 2θA(I2s
2 +B2s) + T2 = 0 (3.73)

To give: θA =
θ1[(I1 + I2)s2 + (B1 +B2)s−G1] + T2

2(I2s2 +B2s)
(3.74)

Since the spring-mass-damper system has the same behavior, as previously the deriva-
tions in Section 3.4 are reused to give

φB =
KB

IB2s2 +BB2s+KB
θB (3.75)

φ1 =
KC

IC2s2 +BC2s+KC
θ1 (3.76)

From this, define the transfer-functions

GBB :=
KB

IB2s2 +BB2s+KB
(3.77)

GAA :=
KC

IC2s2 +BC2s+KC
(3.78)

together with

GB :=
K2
B

IB2s2 +BB2s+KB
− (IBs2 +BBs+KB) (3.79)

G1 :=
K2
C

IC2s2 +BC2s+KC
− (ICs2 +BCs+KC) (3.80)

Here GB, G1 are the transfer-functions relating the torque applied at the input of the
spring-mass-damper components and the angular position of the input. Adding equation
(3.63) and equation (3.70) gives

θAGA1 + θAGA2 = TA + 2TCGC − TA + 2T2G2 (3.81)

which results in
θA(GA1 +GA2) = 2TCGC + 2T2G2 (3.82)
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Substitute equation (3.58) into equation (3.82), to give

θB[(IB1 + IC1)s2 + (BB1 +BC1)s−GB](GA1 +GA2)
2(IC1s2 +BC1s)

=

2T2G2 + TC

(
2GC −

GA1 +GA2

2(IC1s2 +BC1s)

)
(3.83)

Now define GBA := [(IB1+IC1)s2+(BB1+BC1)s−GB ](GA1+GA2)
2(IC1s2+BC1s)

. Similarly substitute equation
(3.74) into equation (3.82).

θ1[(I1 + I2)s2 + (B1 +B2)s−G1](GA1 +GA2)
2(I2s2 +B2s)

=

2TCGC + T2

(
2G2 −

GA1 +GA2

2(I2s2 +B2s)

)
(3.84)

Also define: G1A := [(I1+I2)s2+(B1+B2)s−G1](GA1+GA2)
2(I2s2+B2s)

. Considering φ1(s) = y1(s), φB(s) =
y2(s) and T2(s) = u1(s), TC(s) = u2(s), the transfer-function for this system can be
written as [

y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

][
u1(s)
u2(s)

]
(3.85)

in which values of G11(s), G12(s), G21(s), G22(s) are defined as

G11(s) =

(
2G2(s)− GA1(s)+GA2(s)

2(I2s2+B2s)

)
G1A(s)

GAA(s) (3.86)

G12(s) =
2GC(s)
G1A(s)

GAA(s) (3.87)

G21(s) =
2G2(s)
GBA(s)

GBB(s) (3.88)

G22(s) =
2GC(s)− GA1(s)+GA2(s)

2(IC1s2+BC1s)

GBA(s)
GBB(s) (3.89)

3.6 Case 3 arrangement and transfer-function

In this system the mass-spring-damper component is placed inbetween the 2 differen-
tial gearboxes. This component provides additional parametric freedom to control the
interaction. This arrangement is given in Figure 3.8. From case 2, equation (3.63) and
equation (3.70) can again be used. The only difference is that the values of θA and TA
for each gearbox are not the same. The value of θA splits into θA1 and θA2 . Likewise TA
splits into TA1 and TA2.

θA2GA1 = TA2 + 2TCGC (3.90)

θA1GA2 = −TA1 + 2T2G2 (3.91)
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Figure 3.8: System arrangement 3.

Here TA1 and TA2 are the torques applied on port A1 of gearbox 2 and port A2 of
gearbox 1 respectively. The location of each torque is shown in Figure 3.8. Using free-
body diagrams, the relationship between components can be calculated as

IA3θ̈A1 +BA3θ̇A1 +KA(θA1 − θA2) = TA1 (3.92)

IA4θ̈A2 +BA4θ̇A2 −KA(θA1 − θA2) = TA2 (3.93)

where KA is the spring constant. Using equation (3.92) and equation (3.93) substitute
into equation (3.91) and equation (3.90) respectively, to give

θA2GA1 = θ̈A2IA4 +BA4θ̇A2 −KA(θA1 − θA2) + 2TCGC (3.94)

θA1GA2 = −
(
θ̈A1IA3 +BA3θ̇A1 +KA(θA1 − θA2)

)
+ 2T2G2 (3.95)

From equation (3.95)

θA1 =
θA2KA + 2T2G2

IA3s2 +BA3s+KA +GA2
(3.96)

Substitute into equation (3.94)

θA2(GA1 − IA4s
2 −BA4s−KA +

K2
A

IA3s2 +BA3s+KA −GA2
) =

−2T2G2KA

IA3s2 +BA3s+KA −GA2
+ 2TCGC (3.97)



42 Chapter 3 Test facility design and analysis

Similarly from equation (3.95) factorise θA2

−KAθA2 = −θA1(IA3s
2 +BA3s+KA +GA2) + 2T2G2 (3.98)

From equation (3.94):

KAθA1 = θA2(IA4s
2 +BA4s+KA −GA1) + 2TCGC (3.99)

Substitute equation (3.98) into equation (3.99) to give

θA1[KA −
(IA3s

2 +BA3s+KA +GA2)
KA

(IA4s
2 +BA4s+KA −GA1)] =

−2T2G2

KA
(IA4s

2 +BA4s+KA −GA1) + 2TCGC (3.100)

The gearbox equation (3.58) and equation (3.74), using the current notation, are given
by

θA1 =
θ1[(I1 + I2)s2 + (B1 +B2)s−G1] + T2

2(I2s2 +B2s)
(3.101)

θA2 =
θB[(IB1 + IC1)s2 + (BB1 +BC1)s−GB] + TC

2(IC1s2 +BC1s)
(3.102)

Substitute equation (3.101) into equation (3.100):

θ1
[(I1 + I2)s2 + (B1 +B2)s−G1]

2(I2s2 +B2s)
G1A

= −T2

[
2
G2

KA
(IA4s

2 +BA4s+KA −GA1)− G1A

2(I2s2 +B2s)

]
+ 2TCGC

(3.103)

Define

G1A(s) := KA −
(IA3s

2 +BA3s+KA +GA2)(IA4s
2 +BA4s+KA −GA1)

KA
(3.104)

Substitute equation (3.102) into equation (3.97) :

θB
[(IB1 + IC1)s2 + (BB1 +BC1)s−GB]

2(IC1s2 +BC1s)
G1B

=
2T2G2KA

IA3s2 +BA3s+KA −GA2
+ TC

(
2G2 −

G1B

2(IC1s2 +BC1s)

)
(3.105)

where G1B(s) can be defined as

G1B(s) := GA1 − IA4s
2 −BA4s−KA +

K2
A

IA3s2 +BA3s+KA −GA2(s)
(3.106)
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The other equations are now summarised as

GAA(s) :=
[(I1 + I2)s2 + (B1 +B2)s−G1(s)]

2(I2s2 +B2s)
(3.107)

GT2(s) := −
[
2
G2(s)
KA

(IA4s
2 +BA4s+KA −GA1(s))− G1A(s)

2(I2s2 +B2s)
]

(3.108)

GBB(s) :=
[(IB1 + IC1)s2 + (BB1 +BC1)s−GB(s)]

2(IC1s2 +BC1s)
(3.109)

G1B(s) := GA1(s)− IA4s
2 −BA4s−KA +

K2
A

IA3s2 +BA3s+KA −GA2(s)
(3.110)

GTC(s) := 2G2(s)− G1B

2(IC1s2 +BC1s)
(3.111)

GA1(s) := (IA2s
2 +BA2s) +

4(IB1s
2 +BB1s−GB(s))(IC1s

2 +BC1s)
(IC1 + IB1)s2 + (BB1 +BC1)s−GB

(3.112)

GA2(s) := IA1s
2 +BA1s+

4(I1s
2 +B1s−G1(s))(I2s

2 +B2s)
(I1 + I2)s2 + (B1 +B2)s−G1(s)

(3.113)

G2(s) := 1− I2s
2 +B2s

(I1 + I2)s2 + (B1 +B2)s−G1(s)
(3.114)

GC(s) := 1− IC1s
2 +BC1s

(IC1 + IB1)s2 + (BB1 +BC1)s−GB(s)
(3.115)

If there are no additional components placed at port 1 of gearbox 2 and port B1 of gearbox
1, the transfer-functions G1(s) = GB(s) are zero in which case θ1 = φ1; θB = φB. Finally,
the complete transfer-function matrix for this MIMO system is given by[

y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

][
u1(s)
u2(s)

]
(3.116)

where y1 = φ1(s), y2 = φ2(s) and u1(s) = T2(s), u2(s) = TC(s) in which each transfer-
function is given as

G11(s) =
GT2(s)

GAA(s)G1A(s)
(3.117)

G12(s) =
2GC(s)

GAA(s)G1A(s)
(3.118)

G21(s) =
2G2(s)KA

(IA3s2 +BA3s+KA −GA2(s))(GBB(s)G1B(s))
(3.119)

G22(s) =
GTC(s)

GBB(s)G1B(s)
(3.120)

3.7 Case 4 arrangement and transfer-function

This new arrangement is quite similar to the arrangement of case 2 but the spring-
mass-damper components are between each motor and its associated gearbox. This new
arrangement provides a different system behavior and therefore should be investigated



44 Chapter 3 Test facility design and analysis

carefully in order to enable the most suitable choice of arrangement for future experimen-
tation. The whole system is shown in Figure 3.9. There are no components connected to

Figure 3.9: The arrangement 4

port 1 and B1 of the gearboxes leading to the transfer-function GB = G1 = 0 and exter-
nally applied torques TB = T1 = 0. Recall the earlier case of two differential gearboxes
connected back-to-back (case 2). Here the set of equations for gearbox 1 is

IA2θ̈A +BA2
˙θA − TA + 2IC1θ̈C + 2BC1

˙θC − 2TC = 0 (3.121)

IB1θ̈B +BB1
˙θB − IC1θ̈C −BC1

˙θC + TC = 0 (3.122)

2θA = θB + θC (the constraint equation) (3.123)

and the set of equations for gearbox 2 is

IA1θ̈A +BA1
˙θA + TA + 2I2θ̈2 + 2B2θ̇2 − 2T2 = 0 (3.124)

I1θ̈1 +B1θ̇1 − I2θ̈2 −B2θ̇2 + T2 = 0 (3.125)

2θA = θ1 + θ2 (the constraint equation) (3.126)

The spring-mass-damper system which is connected to gearbox 1 and 2 will be derived
to obtain the transfer-functions and then these transfer-functions will be substituted
into the sets of differential gearbox equations. Firstly, consider the spring-mass-damper
between motor 2 and port 2 of gearbox 2. This system is shown in Figure 3.10. Here
TM2 and T2 are the torque of motor 2 and the applied torque on the gearbox respectively.
Using the free-body diagram method, the set of equations that describe this system are

IM2
¨θM2 +BM2

˙θM2 +K2(θM2 − θ2) = TM2 (3.127)

K2(θM2 − θ2) = IK2θ̈2 +BK2θ̇2 + T2 (3.128)
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Figure 3.10: spring-mass-damper components

From equation (3.128)

T2 = θM2K2 − θ2(K2 + IK2s
2 +BK2s) (3.129)

From equation (3.127)

θM2 =
TM2 +K2θ2

IM2s2 +BM2s+K2
(3.130)

Substitute into equation (3.129) to give the torque T2 applied to gearbox 2, port 2, in
terms of θ2 and the torque applied by motor 2, TM2

T2 =
K2TM2

IM2s2 +BM2s+K2
+ θ2

[
K2

2

IM2s2 +BM2s+K2
− (IK2s

2 +BK2s+K2)
]

(3.131)

Substitute equation (3.131) into equation (3.124) and equation (3.125) to give

θA(IA1s
2 +BA1s) + TA + 2θ2

[
I2s

2 +B2s−
(

K2
2

IM2s2 +BM2s+K2
−

(IK2s
2 +BK2s+K2)

)
− 2TM2K2

IM2s2 +BM2s+K2

]
= 0 (3.132)

θ1(I1s
2 +B1s)− θ2

[
I2s

2 +B2s−
(

K2
2

IM2s2 +BM2s+K2
−

(IK2s
2 +BK2s+K2)

)
− TM2K2

IM2s2 +BM2s+K2

]
= 0 (3.133)

Now define

G2 := I2s
2 +B2s−

(
K2

2

IM2s2 +BM2s+K2
− (IK2s

2 +BK2s+K2)
)
(3.134)

GM2 :=
K2

IM2s2 +BM2s+K2
(3.135)

therefore

θA(IA1s
2 +BA1s) + TA + 2θ2G2 − 2TM2GM2 = 0 (3.136)

θ1(I1s
2 +B1s)− θ2G2 +GM2TM2 = 0 (3.137)

Substitute θ1 = 2θA − θ2 into equation (3.137) to give

θ2 =
2θA(I1s

2 +B1s) +GM2TM2

I1s2 +B1s+G2
(3.138)
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Substitute into equation (3.136)

θA

[
IA1s

2+BA1s+
4G2(I1s

2 +B1s)
I1s2 +B1s+G2

]
+TA−TM2

[
2GM2−

2G2GM2

I1s2 +B1s+G2

]
= 0 (3.139)

Define

GA2(s) := IA1s
2 +BA1s+

4G2(I1s
2 +B1s)

I1s2 +B1s+G2
(3.140)

Therefore equation (3.139) is equivalent to

GA2(s)θA = −TA + TM2

[
2GM2(s)− 2G2GM2(s)

I1s2 +B1s+G2(s)

]
(3.141)

Substitute equation θ2 = 2θA − θ1 into equation (3.137) to yield

θA =
θ1(I1s

2 +B1s+G2(s)) +GM2(s)TM2

2G2(s)
(3.142)

Secondly, the lower half of the system will be investigated. Figure 3.11 shows all the pa-
rameters and the components of the spring-mass-damper system and how it is connected
to the system. As with the first half, the transfer-function for this system can be derived

Figure 3.11: Lower half spring-mass-damper components

using free-body diagrams as

IM1
¨θM1 +BM1

˙θM1 +KC(θM1 − θC) = TM1 (3.143)

θ̈CIKC + ˙θCBKC = KC(θM1 − θC)− TC (3.144)

From equation (3.143)

θM1 =
TM1 +KCθC

IM1s2 +BM1s+KC
(3.145)

Substitute into equation (3.144) to produce

TC = θC

[
K2
C

IM1s2 +BM1s+KC
−(IKCs2+BKCs+KC)

]
+

KCTM1

IM1s2 +BM1s+KC
(3.146)
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Substitute this equation into equation (3.121) and equation (3.122)

θA(IA2s
2 +BA2s)− TA + 2θC

[
IC1s

2 +BC1s−
(

K2
C

IM1s2 +BM1s+KC
−

(IKCs2 +BKCs+KC)
)]
− 2KCTM1

IM1s2 +BM1s+KC
= 0 (3.147)

θB(IB1s
2 +BB1s)− θC

[
IC1s

2 +BC1s−
(

K2
C

IM1s2 +BM1s+KC
−

(IKCs2 +BKCs+KC)
)]

+
KCTM1

IM1s2 +BM1s+KC
= 0 (3.148)

Define

GC(s) := IC1s
2 +BCs1s−

(
K2
C

IM1s2 +BM1s+KC
− (IKCs2 +BKCs+KC)

)
(3.149)

GM1(s) :=
KC

IM1s2 +BM1s+KC
(3.150)

So that equation (3.147) and equation (3.148) can be written as

θA(IA2s
2 +BA2s) + 2θCGC(s)− 2TM1GM1(s) = TA (3.151)

θB(IB1s
2 +BB1s)− θCGC(s) + TM1GM1(s) = 0 (3.152)

Substitute 2θB = 2θA − θC into equation (3.152)

θC =
2θA(IB1s

2 +BB1s) + TM1GM1(s)
IB1s2 +BB1s+GC(s)

(3.153)

Substitute into equation (3.151)

θA

[
IA2s

2 +BA2s+
4GC(s)(IB1s

2 +BB1s)
IB1s2 +BB1s+GC(s)

]
+

TM1

(
2GM1GC(s)

IB1s2 +BB1s+GC(s)
− 2GM1(s)

)
= TA (3.154)

Define

GA1(s) := IA2s
2 +BA2s+

4GC(s)(IB1s
2 +BB1s)

IB1s2 +BB1s+GC(s)
(3.155)

and substitute into equation (3.154) to give

θAGA1 = TA + TM1

(
2GM1 −

2GM1GC
IB1s2 +BB1s+GC(s)

)
(3.156)

From equation (3.152), substitute θC = 2θA − θB to give

θA =
TM1GM1 + θB(IB1s

2 +BB1s+GC(s))
2GC(s)

(3.157)
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Now add equation (3.156) and equation (3.141) to give

θA(GA1(s) +GA2(s)) = TM1

(
2GM1(s)− 2GM1(s)GC(s)

IB1s2 +BB1s+GC(s)

)
+

TM2

(
2GM2(s)− 2G2(s)GM2(s)

I1s2 +B1s+G2(s)

)
(3.158)

Since the value of torque TA in gear 1 is opposite to the value of torque in gear 2 therefore
they cancel out. Substitute equation (3.157) and equation (3.142) into equation (3.158):

θ1
(I1s

2 +B1s+G2(s))(GA1(s) +GA2(s))
2G2(s)

= TM1

[
2GM1 −

2GM1(s)GC(s)
IB1s2 +BB1s+GC(s)

]
+TM2[2GM2(s)− 2G2GM2(s)

I1s2 +B1s+G2(s)
− GM2(s)(GA1(s) +GA2(s))

2G2(s)

(3.159)

θB
(IB1s

2 +BB1s+GC(s))(GA1(s) +GA2(s))
2GC(s)

= TM1

[
2GM1(s)− 2GM1(s)GC(s)

IB1s2 +BB1s+GC(s)
−

GM1(s)(GA1(s) +GA2(s))
2GC(s)

]
+ TM2

[
2GM2(s)− 2G2(s)GM2(s)

I1s2 +B1s+G2(s)

]
(3.160)

Finally, the transfer-functions for this arrangement can be written as[
u1(s)
u2(s)

][
G11(s) G12(s)
G21(s) G22(s)

][
y1(s)
y2(s)

]
(3.161)

where TM2(s) = y1(s), TM1(s) = y2(s) and u1(s) = θ1(s) = φ1(s), u2(s) = θ2(s) =
φ2(s). The other transfer-functions are defined as

G1(s) :=
(I1s

2 +B1s+G2(s))(GA1(s) +GA2(s))
2G2(s)

(3.162)

GB(s) :=
(IB1s

2 +BB1s+GC(s))(GA1(s) +GA2(s))
2GC(s)

(3.163)

to give the transfer-functions components

G11(s) :=
2GM2(s)− 2G2(s)GM2(s)

I1s2+B1s+G2(s)
− GM2(s)(GA1(s)+GA2(s))

2G2(s)

G1(s)
(3.164)

G12(s) :=
2GM1(s)− 2GM1(s)GC(s)

IB1s2+BB1s+GC(s)

G1(s)
(3.165)

G21(s) :=
2GM2(s)− 2G2(s)GM2(s)

I1s2+B1s+G2(s)

GB(s)
(3.166)

G22(s) :=
2GM1(s)− 2GM1(s)GC(s)

IB1s2+BB1s+GC(s)
− GM1(s)(GA1(s)+GA2(s))

2GC(s)

GB(s)
(3.167)
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Having established dynamic representations for a variety of system configurations, the
next chapter will examine what parameter values are feasible in order to result in desirable
dynamic characteristics for the final system.

3.8 Summary

This chapter investigated a variety of different 2×2 MIMO structure incorporating differ-
ential gearboxes and spring-mass-damper sections. Each combination was analysed and
a matrix linking inputs and outputs was derived. In order to further examine each layout,
simulation studies will be reported out in the next chapter, together with measures of
interaction. A huge variety of feasible system parameters ( damping, inertia and stiffness
) will be analysed to arrive at an optimum selection. Addition of a disturbance/noise
injection device will also be discussed in term of both location and characteristic dynamic.





Chapter 4

Parameter selection and system
simulation

As described in the previous chapter, the transfer-functions of the dual differential gear-
boxes connected with spring-mass-damper sections in various arrangements have been
successfully derived. In this chapter, these transfer-functions will be implemented in
Matlab and simulated with realistic parameter values and hence the behavior of each
arrangement can be analysed in detail. The end result will be the selection of a final
design for manufacture. The design should provide a stable or marginally stable relation-
ship between inputs and outputs. The interaction should be able to be modified through
variation of a small number of parameters. Finally, the system needs to be controllable
and observable to increase the range of controllers which may be applied.

4.1 Simulation of case 1

From the previous chapter, the transfer-functions for Case 1 in Section 3.4 have been
derived and are given by (3.45) to (3.49). Many simulations has been carried out using
Matlab with different parameter values. In general, the transfer-function has 1 pole at
the origin and is therefore marginally stable. Figure 3.4 shows the system layout and
associated parameters, which has been chosen with physically realisable values. Pole-
zero cancellation has been carried out prior to calculation of the impulse response. As
described in (Williamson, 1999), the impulse response values provide a measure of the
input-output magnification of a system. Consider a digital signal y which is the solution
of the causal nth order linear time invariant difference equation

y(k + n) =
n−1∑
p=0

apy(k + p) +
n∑
p=0

bpu(k + p); k ≥ k0 − n (4.1)

51
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where ap, bp for all integers p are real constants with a0 6= 0, k0 is a fixed integer and
k is a variable integer. The signal y is uniquely determined by the initial conditions
y(k0 − n),y(k0 − n + 1), ...,y(k0 − 1) and the input signal u. Therefore the complete
response y for k ≥ 0 can be expressed in the form

y(k) = yi(k) +
k∑

m=0

h(k −m)u(m) (4.2)

Here yi is the zero input response (initial condition) and h is the unit impulse response.
Consequently, an upper bound on the infinity norm of the complete response y of the
linear time invariant difference equation (4.1) can be expressed in terms of norms on the
unit impulse response h and the input signal u. This is given by

‖y‖∞ ≤ ‖yi‖∞ + L (4.3)

where yi is the zero input response and L is defined as L = ‖h‖1‖u‖∞. The impulse
responses shown in the simulations which follow therefore provide information concerning
the extent of interaction of the system. In all sections in this chapter, inertial, damping
and stiffness-values K have units kgm2, Nsm−2 and Nm−1 respectively. Simulation of

Figure 4.1: The impulse response of case 1 arrangement.

case one has been conducted using the parameters shown in Table 4.1.

Within this set of parameters IB1, BB1, IC1, BC1, IA2, BA2, IA1, BA1, I1, B1, I2 and
B2 are the inertial and damper constants of the differential gearbox. These values are
very small compared to the other parameters. In reality having selected a gearbox, these
values cannot be changed. The impulse response of the system is shown in Figure 4.1.
The steady-state outputs of the system can either assume a negative or a positive value
depending on the defined positive direction between output angle displacement and input
torque. The settling time is quite slow but it can be controlled by adjusting the damper
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constants BB and BC . The spring constants KB and KC produce more fluctuation in the
response of the system. From Figure 4.1 a significant interaction is present. No matter
what parameter values are chosen, the degree of interaction cannot be fully controlled
(as specified by the magnitude of G11 and G22 with respect to G12 and G21).

The controllability and the observability of the transfer-functions can be established by
application of theorems in (Dorf and Bishop, 2005), (Srivastava et al., 2009). For a
system described by the state-space model

ẋ(t) = Ax(t) +Bu(t) (4.4)

y(t) = Cx(t) (4.5)

controllability is determined by examining the algebraic condition for the controllability
matrix PC

PC = [B AB A2B · · ·An−1B] (4.6)

rank(PC) = n (4.7)

The matrix A is an n × n matrix and B is an n × 1 matrix. For multi-input systems,
B can be n ×m where m is the number of inputs. So if the determinant of matrix PC
is non-zero or the matrix PC is full row rank, the system is controllable. In order to
ascertain observability, the observability matrix PO is constructed as

P TO = [C CA · · ·CAn−1] (4.8)

rank(P TO ) = n (4.9)

where P TO is the transpose of the PO matrix, C is an m × n matrix, and x is an n × 1
column vector. The system is observable if the P TO matrix has full row rank. Applying
equations (4.6) and (4.8) to the system transfer-function to investigate the controllability
and observability of the system shows that the matrix PC and PO are each full row rank so
this transfer-function with realistic parameters is controllable and observable. However
through inherent coupling existing between the transfer-functions, there is also limited
scope to independently specify any one transfer-function in the matrix. As a result, this
configuration will not be considered for the test facility.

Table 4.1: Chosen parameter values

System parameter values
I1 0.0001 (kg.m2) I2 0.0006 (kg.m2) IA1 0.0009 (kg.m2) IA2 0.0008 (kg.m2)
IB1 0.0004 (kg.m2) IC1 0.0004 (kg.m2) BA1 0.0001 (N.m.srad ) BA2 0.0009 (N.m.srad )
B1 0.0001 (N.m.srad ) B2 0.0002 (N.m.srad ) BB1 0.0002 (N.m.srad ) BC1 0.0002 (N.m.srad )
IB 0.04 (kg.m2) IC 0.03 (kg.m2) IB2 0.008 (kg.m2) IC2 0.005 (kg.m2)
BB2 0.01 (N.m.srad ) BC2 0.006 (N.m.srad ) BB 0.03 (N.m.srad ) BC 0.01 (N.m.srad )
KB 1 (N.mrad ) KC 2 (N.mrad )
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4.2 Simulation of case 2

Matlab has also been used to simulate the response of case 2 with the results shown in
Figure 4.2, for a wide variety of parameter values. The transfer-functions are given by
equations from (3.85) to (3.89). G11 and G22 are the diagonal terms of the transfer-

Table 4.2: Chosen parameter values

System parameter values
I1 10−4 (kg.m2) I2 10−4 (kg.m2) IA1 10−4 (kg.m2) IA2 0 (kg.m2)
IB1 10−4 (kg.m2) IC1 10−4 (kg.m2) BA1 0 (N.m.srad ) BA2 0 (N.m.srad )
B1 0.0002 (N.m.srad ) B2 0.0002 (N.m.srad ) BB1 0.0002 (N.m.srad ) BC1 0.0002 (N.m.srad )
IB 0.01 (kg.m2) BB 0.013 (N.m.srad ) IC2 0.011 (kg.m2) BC2 0.014 (N.m.srad )
IC 0.03 (kg.m2) BC 0.012 (N.m.srad ) IB2 0.02 (kg.m2) BB2 0.008 (N.m.srad )
KB 1.5 (N.mrad ) KC 1 (N.mrad )

function matrix and G12 and G21 are off-diagonal entities which specify interaction. In
this system the steady-state of each transfer-function can be changed easily by adjusting
specific parameters. For example, the steady-state values of G11 and G22 can be changed
by varying the values of BC2 and BB2. The steady-state value of the coupling transfer-
functions G12, G21 can be changed by adjusting the value of BA1 and BA2. The settling
time can be changed by varying the damper coefficients BB and B1. In particular, this
set-up is more convenient than the previous arrangement because the interaction can be
canceled out completely if there is a very large value of damper BA1 or BA2 or both.
The value of IA1 and IA2 corresponds to the inner inertia of the differential gearbox 1
and 2 but these values can be increased by connecting an external damper component
which will augment the value of damping in the connection shaft. Figure 4.2 shows
the system response with very little inertia in the coupling, therefore the interaction
is very high. G11, G22 are approximately equal to G12 and G21 respectively. In this

Figure 4.2: The impulse response of case 2 arrangement.

arrangement, the fluctuation of each transfer-function can be minimised by increasing
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the spring constant. If the spring constants are very stiff (K tends to infinity) the output
will not have any fluctuation at all but if the stiffness constant is small, there will exist
significant fluctuation. Applying equations (4.6) and (4.8) to check the controllability
and observability of the system using Matlab yields results which show that the system
is controllable and observable since matrices P TO and PC are full row rank. Therefore,
this system is ideal for the intended purpose of controller validation and benchmarking
since the response of this system can be fully adjusted.

4.3 Simulation of case 3

The arrangement corresponding to this case is shown in Figure 3.8. The transfer-
functions for this system are given by equations (3.116) to (3.120). The system has
only one spring-mass-damper section located in the coupling connection. These com-
ponents will determine the interaction effect and the performance of the system. Using
realistic parameters values, the impulse response is shown in Figure 4.3. The set of pa-
rameters used is given in Table 4.3.

Table 4.3: Chosen parameter values

System parameter values
I1 10−4 (kg.m2) B1 10−4 (N.m.srad ) I2 10−4 (kg.m2) B2 10−4 (N.m.srad )
IA1 10−4 (kg.m2) IA2 0.0002 (kg.m2) BA1 0.0002 (N.m.srad ) BA2 10−4 (N.m.srad )
IB1 10−4 (kg.m2) IC1 10−4 (kg.m2) BB1 0.0002 (N.m.srad ) BC1 10−4 (N.m.srad )
IA3 0.009 (kg.m2) BA3 0.009 (N.m.srad ) IA4 0.013 (kg.m2) BA4 0.003 (N.m.srad )
IB 0.03 (kg.m2) BB 0.01 (N.m.srad ) IC 0.02 (kg.m2) BC 0.008 (N.m.srad )
KA 1.5 (N.mrad )

Similarly to the other 2 simulations, G11 and G22 are the ‘direct’ transfer-functions
for the system and G12 and G21 determine the interaction. In this case, there is no
damper or inertia at the output ports, therefore the settling time for each output is
very long. However the IB, BB, IC , BC parameters can be used to change the settling
time as well as the magnitude. These components are located at the output of each
port. IB, BB is connected to IB1 and BB1. IC , BC is connected to I1 and B1. With
the spring-mass-damper situated between the gearboxes, these parameters can directly
adjust the interaction of the system. If the dampers BA3 and BA4 are increased, the
magnitude of interaction is smaller. If the inertial IA3 or IA4 parameters decrease, the
response time for the system will be faster. The stiffness constant in this system can be
used to adjust the fluctuation in the G11, G12, G21 and G22 responses. Therefore, this
configuration needs the aid of extra output components in order to change the response
of the system. Applying the controllability and observability tests given by (4.6) and
(4.8) to this transfer-function, the values are all full row rank. it can thus be concluded
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Figure 4.3: The impulse response of case 3 arrangement.

that this system is controllable and observable. As a result, this arrangement can be
combined with other spring-mass-damper sections to make a more complicated system.

4.4 Simulation of case 4

The arrangement corresponding to case 4 can be seen in Figure 3.9. The chosen param-
eters of this system are given in Table 4.4. The derived transfer-functions are given in
(3.161) to (3.167). The corresponding impulse responses for this system are shown in

Table 4.4: Chosen parameter values

System parameter values
I1 10−4 (kg.m2) B1 10−4 (N.m.srad ) IB1 10−4 (kg.m2) BB1 10−4 (N.m.srad )
IA1 10−4 (kg.m2) BA1 10−4 (N.m.srad ) IA2 10−4 (kg.m2) BA2 10−4 (N.m.srad )
IC1 10−4 (kg.m2) BC1 10−4 (N.m.srad ) IK2 0.012 (kg.m2) BK2 0.011 (N.m.srad )
IM2 0.02 (kg.m2) BM2 0.01 (N.m.srad ) I2 10−4 (kg.m2) B2 10−4 (N.m.srad )
IKC 0.001 (kg.m2) BKC 0.011 (N.m.srad ) IM1 0.01 (kg.m2) BM1 0.008 (N.m.srad )
K2 1 (N.mrad ) KC 2 (N.mrad )

Figure 4.4. As with other arrangements, the interaction can be controlled by increasing
the value of damping in the connection between differential gearboxes, and the system
will have less fluctuation if the spring constant is higher. The stabilised values of out-
put terms G11 and G22 can be changed easily if there are external inertia and damper
devices connected. The smaller the inertia, the faster the system response. As a result,
the response of this system can be fully manipulated as required. Using equations (4.8)
and (4.6) to obtain the controllability and observability matrices respectively, the results
from Matlab confirm that these matrices are of full row rank, and therefore this system
is both controllable and observable.
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Figure 4.4: The impulse response of case 4 arrangement.

4.5 Choosing the optimum configuration for the MIMO fa-
cility

From the preceding four configurations and corresponding transfer-functions, the only
arrangement of the MIMO system which cannot be used is arrangement 1 because the
interaction factor cannot be canceled completely and the output of this system is very
difficult to change since the interaction is substantial. Therefore there are three remaining
configurations left. The remaining configurations will be analysed in order to choose the
most suitable system to manufacture. Transfer-functions relating the inputs and outputs,
taken as {u1,u2} and {y1,y2} respectively, have been calculated in each case, and are
given later in this section. To estimate the magnitude of the interaction existing in the
MIMO system, the relative gain array (RGA) Bristol (1966) is used and is written as

RGA number = ‖G(jw)× (G−1(jw))T − I‖sum (4.10)

where × denotes element-by-element multiplication, G is the transfer-function matrix
and w is the frequency (rads−1). The sum norm is defined as ||A||sum =

∑
i,j |aij |.

If the RGA number is close to zero, this indicates little interaction at that frequency,
with values greater than one indicating substantial interaction and associated control
difficulty.

For arrangement 3 in Figure 3.8, two differential gears are connected via a central spring-
mass-damper. Varying the latter’s mass, damping and spring constant has little effect on
the outputs coupled via the gears but directly affects the interaction. The RGA number
for this first arrangement with a selection of realisable parameter values is shown in
Figure 4.5. For high interaction BA3 = BA4 = 0.0001, medium interaction BA3 = BA4 =
0.0005, low interaction BA3 = BA4 = 0.002. Based on the RGA number and numerous
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Figure 4.5: RGA number for arrangement 1.

simulations with a variety of parameter values, this arrangement is found to be unsuitable
because significant interaction at 10 rads−1 cannot be reduced as shown in the figure.
Additionally it is not possible to influence the dynamics of the system through further
variation of spring-mass-damper components as is desirable in practice. In arrangement
4, shown in Figure 3.9, the interaction can be stipulated by varying the damper and mass
values located between the 2 differential gears. The dynamics of output 1 of gear 2 can
be modified by varying IM2, BM1,K2, IK2, BK2. Similarly, the dynamics of output B1

of gear 1 can be modified by changing IM1, BM1,KC , IKC , BKC , but this arrangement
needs to have a very stiff spring in order to cope with the necessarily high torque demand
from the induction motors which drive the inputs. For high interaction BA1 = BA2 =
0.0001, medium interaction BA1 = BA2 = 0.0005, low interaction BA1 = BA2 = 0.002.
The RGA number is given in Figure 4.6 for typical parameter values and shows that

Figure 4.6: RGA number for arrangement 2.

the system has low interaction at low frequencies but at higher frequencies the system
has much more interaction and will hence always present significant control difficulty.
This has also been confirmed by numerous simulations using a wide range of parameter
values. Therefore this arrangement is also deemed unsuitable. The final layout considered
is arrangement 2 in Figure 3.7 which has a level of interaction which can be transparently
manipulated using a small number of physical parameters. Additional variation in spring-
mass-damper constants has a large effect on the outputs, and the RGA number can be



Chapter 4 Parameter selection and system simulation 59

decreased within the operating frequency range for medium and low interaction cases,
as shown in Figure 4.7. For high interaction BA1 = BA2 = 0.0001, medium interaction
BA1 = BA2 = 0.0005, low interaction BA1 = BA2 = 0.002. Hence this arrangement is
ideal for the MIMO test-bed facility.

Figure 4.7: RGA number for arrangement 3.

4.6 PID tuning for the system in case 2

PID is one of the simplest methods to control a system. It is easy to implement and
generally gives a reasonable performance, however it is rarely used for MIMO systems
since the interaction can be a significant problem to deal with. In this case, the biggest
log modulus tuning (BLT) method (Luyben, 1986) will be used to investigate how the
interaction will cause difficulty in controlling the system when using an arrangement
similar to Figure 3.7. The pairing is for u1 to y1 and u2 to y2 and all the parameters for
high interaction are given in Table 4.2. The impulse response for this case is shown in
Figure 4.2. The parameters chosen for low interaction are shown in Table 4.5. The only

Table 4.5: Low interaction table.

System parameter values
I1 10−4 (kg.m2) I2 10−4 (kg.m2) IA1 10−4 (kg.m2) IA2 10−4 (kg.m2)
IB1 10−4 (kg.m2) IC1 10−4 (kg.m2) BA1 0.5 (N.m.srad ) BA2 0.5 (N.m.srad )
B1 0.0002 (N.m.srad ) B2 0.0002 (N.m.srad ) BB1 0.0002 (N.m.srad ) BC1 0.0002 (N.m.srad )
IB 0.01 (kg.m2) BB 0.013 (N.m.srad ) IC2 0.011 (kg.m2) BC2 0.04 (N.m.srad )
IC 0.03 (kg.m2) BC 0.012 (N.m.srad ) IB2 0.02 (kg.m2) BB2 0.05 (N.m.srad )
KB 1.5 (N.mrad ) KC 1 (N.mrad )

difference in this table compared with Table 4.2 is that the value of damper coefficients
BA2, BA1 is 0.5 instead of 0. These values enable full control over the interaction. Addi-
tionally IA2 is 0.0001, BB2 is 0.05 and BC2 is 0.04. The impulse response of this system
is simulated in Matlab and the result is shown in Figure 4.8. Comparing results in Fig-
ure 4.2 and Figure 4.8, there is substantial difference in the interaction magnitude. The
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Figure 4.8: Low interaction impulse response

high interaction case has interaction functions close to the dominant transfer-functions
whilst in the low interaction case they almost disappears. These two cases will now be
controlled by the BLT method. Firstly, ultimate gain ku and ultimate frequency wu of
each diagonal transfer-function Gii are calculated as in the classical SISO manner. For
the high interaction case, the controller for the first pair is KP1 = 0.5214, τI1 = 1.419
and the second pair is KP2 = 0.688, τI2 = 1.0267. Similarly, for the low interaction
case, the first pairing KP1 = 0.2742, τI1 = 1.5355, the values for the second pair are
KP2 = 0.3692, τI2 = 1.0267. The performance of each case is decided by the error norm.
The result of this method is highly unsatisfactory since the output is forced to a different
value leading to error norms for the high interaction case and the low interaction case of
1.4594×104, 3.6687×105 respectively. This method is not successful since the interaction
is ignored. The same problem also happens to the ICD method (O’Reilley and Leithead,
1991) where the controller PID cannot be tuned to be stable in order to track a reference
signal. Instead the Matlab tool-box for tuning a PID for a SISO system is used for the
MIMO case to get suitable constants. As with other previous approaches, this method
ignores all the interaction of the system. The constants are shown in Table 4.6 for the
high interaction case and the total norm error is 46.85. The low interaction case has the
PID constants given in Table 4.7 and the total norm error for this case is 29.7061. There

Table 4.6: PID value based on Matlab PID toolbox

PID tuning values for high interaction case
P1 0.0240 (N.mrad ) P2 0.0197 (N.mrad )
I1 8.3881×10−5 (N.m.srad ) I2 6.8871×10−5 (N.m.srad )
D1 0.0022 ( N.mrad.s ) D2 -0.0026 ( N.mrad.s )

is a large total norm error difference between the low and high interaction cases since
the low interaction case is much easier to control with the high interaction case requiring
more effort to achieve a reasonable error value. The tracking results for high interaction
and low interaction cases are shown in Figure 4.9, Figure 4.10 respectively.
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Figure 4.9: Tracking sine-wave for high interaction case

Figure 4.10: Tracking sine-wave for low interaction case

The results of this method are far superior to other two methods described in (O’Reilley
and Leithead, 1991) and (Luyben, 1986) . It can enable the MIMO system to track two
sine-wave reference signals but the accuracy is not high.

In the next section, the gradient ILC method will be used to control this MIMO system.
The method does not need an accurate model description and it can automatically modify
the input signal so that the output tacking can be improved significantly after a few trials
of the tracking task.

Table 4.7: PID value based on Matlab PID toolbox

PID tuning values for low interaction case
P1 0.0810 (N.mrad ) P2 0.0887 (N.mrad )
I1 0.0124 (N.m.srad ) I2 0.0055 (N.m.srad )
D1 0.1066 ( N.mrad.s ) D2 0.0104 (N.m.srad.s )
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4.7 Simulations of gradient ILC using MIMO system model

All four configurations of the MIMO system have been simulated and compared. In
Section 4.5, based on the relative gain array method the most suitable arrangement was
chosen, and hence control design is conducted only for arrangement case 2, as in the
previous section. In this section, a more advanced controller is used so that the system’s
tracking ability can be improved, hence confirming suitability and nominal performance
prior to manufacture. The implemented controller is gradient ILC which was introduced
in Section 2.3.3. The MIMO system has two outputs and requires two references . The
first reference signal is a sine-wave and the second has a trapezium form. Both are given
below

yd1 =


0 if 0 ≤ t ≤ 0.5

sin(2πt) if 0.5 < t ≤ 5.5
0 if 5.5 < t ≤ 6

(4.11)

yd2 =



0 if 0 ≤ t ≤ 0.5
0.05t if 0.5 ≤ t ≤ 1.5

5 if 1.5 < t ≤ 4.11
−0.05t if 4.11 < t ≤ 5.11

0 if 5.11 < t ≤ 6.

(4.12)

The results from Matlab for the case 2 system with low interaction are shown in Figure

Figure 4.11: Results for the low interaction case.

4.11. The dotted lines are the desired output and the continuous line is the output from
the model over the 500th trial. After trying many values of β the best value for this
system was found to be 7.10−9. The controller gives rise to a very impressive convergence
rate over the first 20 trials, but then slows down to reach a final error of 6.2. Output 1
is more difficult to control since it responds to the input signal slower than the output
2. This explains why output 2 cannot track reference signal 1 in the first 2 seconds of
each trial.
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The medium interaction level has also been tested under the same conditions. It has
the same reference signals of 6 second duration and a number of total trials 500. The
results for this case is shown are shown in Figure 4.12. As expected, the interaction
affects the performance, as it does with any controller hence the results are worse than
the low interaction case. The error norm has the same convergence rate as before but
after 500 trials the final value of error norm is 10, which is higher than when using the
low interaction level. Similarly, the medium interaction case has the same difficulty in
tracking reference 1 over the first few seconds of each trial.

Figure 4.12: Results for medium interaction case.

The final investigated case is that of high interaction which is simulated similarly to the
first two cases. Figure 4.13 shows that performance is far poorer than previously, and the
convergence rate is much slower. This case needs around 100 trials to reach a value of 20
for error norm and after 500 trials the error norm is approximately 19. The interaction
factor makes the MIMO system much harder to control.

Figure 4.13: Results for high interaction case.

Over 500 trials the error norm of the three different levels of interaction was still high,
therefore longer tests were performed to assess whether improvement would still occur.
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The results are shown in Figure 4.14 with the x-axis taking a logarithm scale. The error
norm results are shown to aid comparison. The high interaction case is still the most
difficult to control, however the result for 5000 trials are still impressive clearly. It has a
far superior error norm value over 500 trials. The error norm of the low interaction case
is around 2 over the 5000th trial and 5 for the medium interaction case.

Compared to the PID controller tests in the previous section, the reference signal used
for gradient ILC is much harder. The duration of each trial is much shorter and it has a
really challenging velocity profile which the MIMO system finds difficult due to the high
inputs needs. Therefore the error norm takes many more trials to reach a zero value. If
the number of trials is large enough, the error norm will eventually reach a zero value.

Figure 4.14: The error norm of 3 interaction levels.

Overall, the arrangement case 2 has been shown to be a suitable choice for manufacturing
since it is easy to adjust the interaction level and the system is possible to control.
The MIMO system also presents sufficient challenge for any implemented controller.
Additionally, the simulations have shown the effect of interaction on the performance of
the controller, which significantly elevates the control difficulty.

4.8 Disturbance injection

After having selected the system and parameters and confirmed the ability of ILC to
enforce tracking, the additional capability to inject disturbance is now examined. The
noise/disturbance will be externally generated via a DC motor therefore simulation in
the presence of injected noise and disturbance can be synthesised easily via Simulink
and Matlab. The DC motor is initially installed at the output of gear 1. The new
arrangement is shown in Figure 4.15. The transfer-function is modified based on the
analysis in Section 3.5. From gear 1 there is an additional input torque which is termed
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Figure 4.15: MIMO facility with disturbance/noise injection.

u3. The spring-mass-damper component has the new equation.

IB θ̈B +BB θ̇B +KB(θB − φB) = TB (4.13)

IB2φ̈B +BB2φ̇B = KB(θB − φB) + u3 (4.14)

From (4.14)

IB2φBs
2 +BB2φBs = KBθB −KBφB + u3 (4.15)

⇒ φB(IB2s
2 +BB2s+KB) = KBθB + u3 (4.16)

⇒ φB =
KBθB + u3

IB2s2 +BB2s+KB
(4.17)

Substitute (4.17) into (4.13) to give

IBθBs
2 +BBθBs+KB(θB −

KBθB + u3

IB2s2 +BB2s+KB
) = TB (4.18)

⇒ θB(IBs2 +BBs+KB −
K2
B

IB2s2 +BB2s+KB
) = TB +

KBu3

IB2s2 +BB2s+KB
(4.19)

The transfer-function GB is defined as

GB = IBs
2 +BBs+KB −

K2
B

IB2s2 +BB2s+KB
(4.20)

⇒ TB = θBGB −
KBu3

IB2s2 +BB2s+KB
(4.21)

From gear 1, substitute (4.21) into (3.51) to give

θB(IB1s
2 +BB1s−GB)− θC(IC1s

2 +BC1s) = − KBu3

IB2s2 +BB2s+KB
− TC . (4.22)



66 Chapter 4 Parameter selection and system simulation

Since θC = 2θA − θB, substitute into (4.22) to give the relationship between θA and θB
as

θB
[
(IB1 + IC1)s2 + (BB1 +BC1)s−GB

]
− 2θA(IC1s

2 +BC1s) =
−KBu3

IB2s2 +BB2s+KB
− TC

⇒ θA =
θB
[
(IB1 + IC1)s2 + (BB1 +BC1)s−GB)

]
+ TC + KBu3

IB2s2+BB2s+KB

2(IC1s2 +BC1s)
. (4.23)

Similarly substitute θB = 2θA − θC into (4.22) to give

2θA(IB1s
2 +BB1s−GB)− θC

[
(IC1 + IB1)s2 + (BC1 +BB1)s−GB

]
=

− KBu3

IB2s2 +BB2s+KB
− TC (4.24)

⇒ θC =
2θA(IB1s

2 +BB1s−GB) + KBu3

IB2s2+BB2s+KB
+ TC

(IC1 + IB1)s2 + (BC1 +BB1)s−GB
(4.25)

From (3.50)

θA(IA2s
2 +BA2s) + 2θC(IC1s

2 +BC1s) = 2TC + TA (4.26)

Substitute (4.25) into (4.26) to give

θA(IA2s
2 +BA2s) +

4θA(IB1s
2 +BB1s−GB) + 2TC + 2KBu3

IB2s2+BB2s+KB

(IC1 + IB1)s2 + (BC1 +BB1)s−GB
(IC1s

2 +BC1s)

= 2TC + TA

⇒ θA

[
IA2s

2 +BA2s+
4(IB1s

2 +BB1s−GB)(IC1s
2 +BC1s)

(IC1 + IB1)s2 + (BC1 +BB1)s−GB

]
=

2TC
(

1− IC1s
2 +BC1s

(IC1 + IB1)s2 + (BC1 +BB1)s−GB

)
+ TA −

2KBu3(IC1s
2 +BC1s)

(IB2s2 +BB2s+KB)
[
(IC1 + IB1)s2 + (BC1 +BB1)s−GB

] . (4.27)

Therefore the transfer-functions GA1, GC are defined as

GA1 := IA2s
2 +BA2s+

4(IB1s
2 +BB1s−GB)(IC1s

2 +BC1s)
(IC1 + IB1)s2 + (BC1 +BB1)s−GB

(4.28)

GC := 1− IC1s
2 +BC1s

(IC1 + IB1)s2 + (BC1 +BB1)s−GB
. (4.29)

Consequently (4.27) is equivalent to

θAGA1 = 2TCGC + TA −
2KB(1−GC)

IB2s2 +BB2s+KB
(4.30)
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Derivation for gear 2 is similar to that undertaken in Section 3.5 so the relationship
between θA and the three inputs torques is

θA(GA1 +GA2) = 2GCTC −
2KB(1−GC)

IB2s2 +BB2s+KB
u3 + 2G2T2. (4.31)

Substitute (4.23) into (4.31) to give

θB
(IB1 + IC1)s2 + (BB1 +BC1)s−GB

2(IC1s2 +BC1s)
(GA1 +GA2) = TC

[
2GC −

GA1 +GA2

2(IC1s2 +BC1s)
]

+

2T2G2 −
KB

IB2s2 +BB2s+KB

[
2(1−GC) +

GA1 +GA2

2(IC1s2 +BC1s)
]
u3. (4.32)

In order to express the transfer-functions more concisely, GBA is defined as

GBA :=
(IB1 + IC1)s2 + (BB1 +BC1)s−GB

2(IC1s2 +BC1s)
(GA1 +GA2) (4.33)

Considering gear 2, from (3.74) substitute into (4.31) to give

θ1

[
(I1 + I2)s2 + (B1 +B2)s−G1

]
(GA1 +GA2)

2(I2s2 +B2s)
= 2GCTC +

[
2G2 −

GA1 +GA2

2(I2s2 +B2s)
]
T2 −

2KB(1−GC)
IB2s2 +BB2s+KB

u3. (4.34)

Therefore G1A is defined as

G1A :=

[
(I1 + I2)s2 + (B1 +B2)s−G1

]
(GA1 +GA2)

2(I2s2 +B2s)
(4.35)

The overall transfer-function matrix for this arrangement is given by

[
y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)︸ ︷︷ ︸

G(s)

G13(s)
G23(s)

]u1(s)
u2(s)
u3(s)

 (4.36)
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where u1 = T2; u2 = TC . Each matrix component is written as

G11 :=
2G2 − GA1+GA2

2(I2s2+B2s)

G1A
GAA (4.37)

G12 :=
2GC
G1A

GAA (4.38)

G13 :=
2KB(1−GC)

G1A(IB2s2 +BB2s+KB)
GAA (4.39)

G21 :=
2G2

GBA
GBB (4.40)

G22 :=

[
2GC − GA1+GA2

2(IC1s2+BC1s)

]
GBA

GBB (4.41)

G23 :=
−KB

(IB2s2 +BB2s+KB)GBA

[
2(1−GC) +

GA1 +GA2

2(IC1s2 +BC1s)

]
GBB (4.42)

4.9 Simulation of case 2 with disturbance injection

Having selected a suitable configuration, injection of noise and disturbance is considered
through addition of an extra input u3. The parameters are chosen as in Table 4.8. The
impulse response for each interaction level is shown in Figure 4.16. The interaction
level depends mainly on the coupling damper and mass inertia values therefore for the
high interaction case, the values of BA1, BA2, IA1 and IA2 are very small. The impulse
response for this case is shown in Figure 4.16(a). Here the steady-state value of G12 is
close to the steady-state value of G11. For output 2, the interaction level with input 1 is
also high, which is reflected by the steady-state value of G21 being close to the steady-
state value of G22. In order to change the interaction level, the values BA1, BA2 are
modified and in the medium interaction case are equal to 0.0008 and 0.0001 respectively.
These are shown in Figure 4.16(b), which illustrate that the steady-state value of G12,
G21 reduces significantly. Similarly, if the value of both BA1, BA2 parameters increases
to 0.001, this yields impulse responses for G12, G21 which are much smaller than the two
previous cases, as shown for the low interaction case which is displayed in Figure 4.16(c).

Table 4.8: Parameter values for arrangement 3.

System parameter values
I1 10−4 (kg.m2) I2 10−4 (kg.m2) IA1 10−4 (kg.m2) IA2 10−4 (kg.m2)
IB1 10−4 (kg.m2) IC1 10−4 (kg.m2) BA1 10−4 (N.m.srad ) BA2 10−4 (N.m.srad )
B1 0.0002 (N.m.srad ) B2 0.0002 (N.m.srad ) BB1 0.0002 (N.m.srad ) BC1 0.0002 (N.m.srad )
IB 0.01 (kg.m2) BB 0.013 (N.m.srad ) IC2 0.021 (kg.m2) BC2 0.014 (N.m.srad )
IC 0.03 (kg.m2) BC 0.011 (N.m.srad ) IB2 0.01 (kg.m2) BB2 0.008 (N.m.srad )
KB 1.5 (N.mrad ) KC 0.05 (N.mrad )
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Having designed the physical system configuration and associated parameters, control-
lability and observability of a corresponding discrete-time state-space representation is
established to ensure feasibility of later ILC approaches. Having finalised the system
design the extra transfer-functions for the disturbance injection are derived as

G13 :=
2KB(1−GC)GAA

(IB2s2 +BB2s+KB)G1A
(4.43)

G23 :=
[ −2KB(1−GC)
IB2s2 +BB2s+KB

− GA1 +GA2

2(IC1s2 +BC1s)
KB

IB2s2 +BB2s+KB

]GBB
GBA

(4.44)

For all three cases of interaction the transfer-function matrixG13 gives the output impulse
response, and does not vary markedly in term of transient response or steady-state value.
The magnitude of steady-state is also very small compare to G11, G12, G21, G22 in all
three levels of interaction. This is shown clearly in Figure 4.17 therefore it can be
neglected. At the same time, there is little difference in the response of G23, and hence
for simplicity G23 will be treated as the same transfer-function for all interaction levels.
The remaining term in (4.36) are identical to the noise-free case.

(a) High interaction. (b) Medium interaction. (c) Low interaction.

Figure 4.16: Impulse response for arrangement 3 with disturbance injection.

(a) High interaction. (b) Medium interaction. (c) Low interaction.

Figure 4.17: Impulse response for MIMO system with disturbance injection.

All the transfer-functions for this configuration with disturbance injection have been
derived and analysed carefully. It has confirmed suitability and therefore is chosen for
manufacturing, prior to being used as a platform for implementing different controllers.
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4.10 Summary

In this chapter many different system configurations have been derived and tested us-
ing RGA to ensure the system may be controlled but is sufficiently challenging to test
controllers. Arrangement 2 has been chosen for manufacturing based on these factors.
It has been simulated with both a PID controller and the gradient ILC method. The
MIMO system has been tested in 3 levels of interaction. The results illustrate the role
played by interaction, and the control difficulty inherent at high levels.

Disturbance injection has also been examined and feasibility established. Arrangement
2 enables interaction to be easily varied, and is the basis for more complex, expanded,
system. In the next section the physical MIMO testbed is designed and manufactured.



Chapter 5

Experimental design and frequency
based modeling

In Chapter 4 suitable parameter values were assigned to the components appearing in the
MIMO system configuration. In this chapter the physical implementation of the testbed
is addressed, together with choice of motors, materials, drivetrains, electrical systems
and ancillary hardware. Identification of a model based on experimental data is also
performed and evaluated.

5.1 Mechanical system design and component selection

In order to convert the designs of Chapter 3 into a practical system, there are many
problems and obstacles that must be considered. One such issue is the choice of drive
trains, and this has been solved by linking the two gearboxes using belt drives. Another
issue was searching for suitable gearboxes, which was not trivial since the standard
units commercially available include additional gearing, awkward input/output shaft
positions, and usually have an unsuitable size. There are many other issues related to
size, reduction of whirling friction and other unwanted properties, in addition to design
for multi-configuration. Also the selection and design of spring-mass-damper components
used to adjust the complexity of the coupling dynamics must be considered. The whole
system was drawn using SolidWorks software which allows examination of the system in
3D so that all the dimensions can be checked carefully to ensure compatibility. Figure
5.1 shows the completed mechanical parts of the experimental test facility and details of
components are given in Table 5.1.

The induction motors and drives were chosen to be of a type widely employed in industry.
The differential gears selected are custom-made by Westgarage Engineering Services,
UK to eliminate gearing and reduce inertia and friction. The real differential gears are
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Figure 5.1: The system design in 3D.

Figure 5.2: The completed system with control infrastructure.
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different to the one in Figure 3.1. The real differential gears do not have housing but
they are connected using belt drive therefore it still have all properties as discussed
previously. Gearing between devices is implemented via belt drives to reduce the overall
footprint and ensure low backlash. As described previously the interaction can be made
easily adjustable in practice by combining BA1 and BA2 into a single parameter, which is
realised by an adjustable number of dampers geared together to provide a suitable range
of overall damping. Disturbance injection is realised mechanically using a DC motor
which can be coupled to any drive shaft. The DC motor acts as a disturbance injector
or alternatively plays the role of an extra load for the system. The speed/torque of DC
motor is controlled via the dSpace card that is installed on the host PC, allowing injected
noise profile to be adjusted in real-time. This maximises the scope of the system and
the options available to the operator. The CAD drawings for individual components and
those that were purchased can be seen in Appendix A.1. Figure 5.2 shows the electrical
drive components and firmware. The final implementation of the two input, two output
system is shown in Figure 5.3 with numbered components defined in Table 5.1. Note
that this is only one possible configuration of inputs and outputs, since the position and
number of motors can be easily altered whilst maintaining the same central structure.

Figure 5.3: The complete MIMO system showing two induction motors and
disturbance injection via a DC motor. Components labelled in Table 5.1.

Two induction motors drive the inputs and are equipped with integrated 2000 pulse per
revolution encoders. The two remaining ports are initially designated system outputs
and are fitted with 2500 pulses per revolution encoders. Each 1.1 kW AC induction
motor is connected to an ABB inverter configured in torque mode, with an external
demand signal supplied by real-time hardware comprising a ds1103 dSpace board which
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interfaces directly with Matlab/Simulink to enable rapid controller development and
implementation. The DC motor has been connected to one of the outputs but can be
moved to inject variable noise and disturbance to any drive train. All the mechanical
and electrical components have been fitted and tested. The electrical system incorporates
the two inverters, four quadrant amplifier, and associated protection including emergency
switches and circuit breakers.

The four adjustable dampers are shown in figure 5.3. If no interaction is required, there
is a clamping device which will lock the coupling shaft (label 7). If the system is required
to operate with extremely low interaction, all four dampers are geared to the coupling
shaft which minimises the interaction between the two differential gearboxes. Similarly
the low interaction case uses three dampers and the medium interaction case uses two
dampers. The high interaction case has only one damper geared to the coupling shaft and
the extremely high interaction case has no damper. Each level of interaction corresponds
to a different transfer-function matrix which will be described later.

5.2 Frequency based modeling

In this section the frequency based modeling approach is applied, first to the inverter
and motor system above, and then to the full MIMO system.

5.2.1 Inverter and induction motor model

Using a predetermined model structure is not only computationally intensive but also
leads to difficulty in taking into account factors such as friction or other disturbances
which are challenging to precisely model. Therefore the final representation often cannot
describe a physical system accurately and sometimes can be over complicated and ill-
suited to controller design. An alternative method that can be used instead is called
frequency modeling. The method uses a harmonic function at a single frequency as the
input signal which is applied to the system. The output of the system is measured and
plotted on a Bode plot. This is then repeated for other frequencies of interest. A linear

Table 5.1: Components of the MIMO system

System components
1 Encoder 2 Induction motor
3 DC motor 4 Damper
5 Spring 6 Differential gearbox
7 Coupling shaft 8 DC motor controller
9 Inverters and circuit breakers 10 Mass
11 Adjusting interaction dampers 12 Emergency button
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model is then fitted to match the experimental results, using the Least Mean Squares
(LMS) approach. The linear model is used to represent the experimental system since it
has a similar frequency response and can be assumed to capture its steady-state behavior.
This method will be applied to all the components to find approximate transfer-functions.
Clearly this method is only suitable for systems which can be adequately modeled by
linear dynamics.

An inverter is a device which is used to control the speed or torque of an induction
motor. It achieves this by varying the frequency of the main power supply fed to the
motor. A typical full electronic circuit is given in (Rashid, 1993) and is in wide spread
use. The output of the system is measured using encoders which provide the position
of the motors. Where to derive a transfer-function which describes how the input signal
(voltage) and the output signal (position of the motor) are related, different sine-wave
frequencies are fed into the system, then the position of the motor is recorded over a
fixed time length. The graph of magnitude (dB) against frequency (Hz) is then plotted
with each measurement the average of three separate tests. A transfer-function is then
fitted based on standard Bode plotting rules together with LMS optimisation. This
method does not require accurate knowledge regarding the actuator, drives circuit or
mechanical system. The only requirement is to record an accurate output signal from
the system. The method has been applied successfully in (Cai, 2009), (Barton, 1999) and
is now applied to each combined ABB 2.2 kW inverter and induction motor without the
additional mechanical components attached. The latter includes an integrated British
encoder. This allows the technique to be refined prior to application on the full system. In
order to subsequently derive a suitable transfer-function which has a frequency response
similar to the experimental results, the identity function method can be used (Dutton
et al., 1997). In order to increase accuracy, the SISO tool-box function in Matlab is
used to tune the frequency response and display results without the need for further
calculation. Unfortunately it has been found that there is a problem with the output of
the motor when the injected frequency is high. The output drifts from the zero value, and
fluctuates both up and down, an example being given in Appendix C.1. This problem
can be solved by using the average value of crests and trough values, therefore with each
frequency the phase shift and the magnitude can still be calculated. Finally, the result of
the fitting process is shown in Figure 5.4 which shows that the fitted transfer-function is
very close to the experimental results. The blue line is the fitted transfer-function, the red
line is the average of 3 repeated measurements of the output. Each output is displayed on
the same graph so that the accuracy of the model can be observed. At frequency around
38 rad/s, there is a sudden change in magnitude since this is due to the amplitude of
the reference signal being changed from 10V to 1V which changes the operating point
of the identification. This has been done because of the limitation of the motor. The
input current for the motor is about 3A but with a high frequency (larger than 3Hz) and
amplitude of 10V, the inverter will generate more than the allowed maximum current.
Consequently the inverter will stop automatically and report an over-current fault. As a



76 Chapter 5 Experimental design and frequency based modeling

result, the amplitude is set to 1V so that the inverter can work within the limited current
range. All the data from the encoder and inverter can be seen in Appendix B.1. The

Figure 5.4: The fitting transfer-function compare to the experimental results.

transfer-function obtained for this system is

GInduction motor =
43466875.8037(s+ 32.43)(s+ 0.4212)

s(s+ 0.515)(s+ 85.14)(s+ 104.1)(s+ 122.3)(s+ 149.5)
(5.1)

Similarly, when the full system is ready to operate the same technique is used to obtain a
new transfer-function which has a lower order than that derived through the analysis of
Chapter 3. This transfer-function will replace those models in subsequent model-based
control.

5.2.2 Mechanical system modeling and validation

The frequency modeling method has been applied to the MIMO mechanical system.
To increase accuracy, the DC motor amplifier is turned on throughout these tests, but
receives a zero demand signal. It hence will not inject any noise or disturbance into the
system. The testbed facility has different levels of interaction therefore each interaction
level will be tested and will lead to a unique model. Additionally, the system has 2
inputs and 2 outputs so each side of the system necessitates separate tests involving
injecting a sine-wave in one input applying to the other a zero value. The 2 outputs
are then measured and recorded. The experiment collects 5 times and it is averaged
for the final value. The interaction level is defined as c, which is varied in the range
[0 0.2 0.4 0.6 0.8 1]. Here c = 0 denotes no interaction at all and corresponds to two
parallel SISO systems operating independently. Conversely c = 1 refers to the maximum
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level of interaction. The input signal fed in has the form u(t) = Asin(w2πt) with the
sampling time is Ts = 1

300 where A is the amplitude and w is the frequency in Hz. In
this experiment A is 2 and the frequency is in the range from 0.1 to 17 (Hz).

Firstly, coupling shaft is clamped so that the interaction is eliminated completely. The
input signal is fed in as described previously. The fitting for this case is shown in Figure
5.5 and the transfer-function is

(a) G11 (b) G22

Figure 5.5: Bode plot showing fitting for no interaction case, c = 0.

(a) G11 (b) G12

(c) G21 (d) G22

Figure 5.6: Bode plot fit for extreme low interaction case, c = 0.2.
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(a) G11 (b) G12

(c) G21 (d) G22

Figure 5.7: Bode plot fit for low interaction case, c = 0.4.

G0
11(s) =

1031255286(s+ 0.4308)
s(s+ 0.272)(s+ 81.93)2(s+ 92.56)(s+ 133.5)

G0
12(s) = 0 (5.2)

G0
21(s) = 0

G0
22(s) =

17801570474710
s(s+ 59.75)(s+ 75.81)(s+ 88.13)(s+ 139.8)(s+ 153.3)(s+ 159.4)

.

The method is then repeated for the extremely low interaction level which uses all four
dampers to minimise the the extremely low interaction case (c = 0.2). Therefore the
transfer-functions are

G0.2
11 (s) =

111826099400(s+ 0.4652)
s(s+ 0.2488)(s+ 98.55)5

G0.2
12 (s) =

9(s+ 0.3822)
s(s+ 0.7257)(s+ 43.36)

(5.3)

G0.2
21 (s) =

11103002065(s+ 11.43)
s(s+ 18.22)(s+ 27.94)(s+ 104.7)(s+ 137.5)(s+ 165.7)(s+ 244.4)

G0.2
22 (s) =

7155482699531
s(s+ 55.28)(s+ 75.43)(s+ 78.42)(s+ 102.9)(s+ 125)(s+ 130)

,
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(a) G11 (b) G12

(c) G21 (d) G22

Figure 5.8: Bode plot fit for medium interaction case, c = 0.6.

which has the Bode plot shown in Figure 5.6. The low interaction case (c = 0.4) operates
with 3 dampers and the resulting transfer-function is

G0.4
11 (s) =

108961369833(s+ 0.15)
s(s+ 0.2284)(s+ 83.96)(s+ 91.63)(s+ 97.13)(s+ 109.1)(s+ 115.7)

G0.4
12 (s) =

2488(s+ 0.6273)
s(s+ 1.168)(s+ 133.8)2

(5.4)

G0.4
21 (s) =

112194440(s+ 24.33)
s(s+ 70.49)(s+ 73.28)(s+ 76.18)(s+ 92.52)(s+ 121.4)

G0.4
22 (s) =

6806671977274
s(s+ 80.3)2(s+ 87.63)(s+ 92.89)2(s+ 98.47)

,

which is corresponding to the result in Figure 5.7. The extreme low interaction level and
low interaction level do not have an accurate Bode plot fit since it is hard to detect the
interaction level in high frequency due to the spring and dampers. Therefore the transfer-
function is not accurate as expected. However it will not affect system performance too
much because the interaction is not big and ILC controllers can learn and minimise it.
The medium interaction case (c = 0.6) is then tested with the same method and the
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(a) G11 (b) G12

(c) G21 (d) G22

Figure 5.9: Bode plot fit for high interaction case, c = 0.8.

transfer-function is

G0.6
11 (s) =

40024701578405(s+ 0.1143)
s(s+ 0.5739)(s+ 90.3)(s+ 93.34)(s+ 107.6)(s+ 121.3)(s+ 159.4)(s+ 201.3)

G0.6
12 (s) =

160480(s+ 1.6)
s(s+ 1.103)(s+ 64.95)(s+ 75.87)(s+ 95.79)

(5.5)

G0.6
21 (s) =

122499582151
s(s+ 115.7)(s+ 131.3)(s+ 171.5)(s+ 186.2)(s+ 217.5)

G0.6
22 (s) =

4354268187193
s(s+ 64.58)(s+ 73.64)(s+ 84.78)(s+ 87.71)(s+ 88.13)(s+ 98.55)

,

with the Bode plot in Figure 5.9. The high interaction case (c = 0.8) and the extreme
high interaction level (c = 1) are tested using the same technic therefore the transfer-
functions are

G0.8
11 (s) =

61629241234845(s+ 0.2)
s(s+ 0.9133)(s+ 116.7)(s+ 117.7)2(s+ 123.9)(s+ 160.1)(s+ 177.4)

G0.8
12 (s) =

3067892780938(s+ 0.2)
s(s+ 3.935)(s+ 51.15)(s+ 103)(s+ 122.6)(s+ 130)(s+ 154.8)(s+ 184.4)

G0.8
21 (s) =

33637744568707
s(s+ 90.3)(s+ 146.1)(s+ 148.1)(s+ 151.9)(s+ 195.5)(s+ 345.1)

(5.6)

G0.8
22 (s) =

15626746219(s+ 20.13)
s(s+ 42.32)(s+ 49.2)(s+ 53.18)(s+ 55.02)2(s+ 64.58)
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(a) G11 (b) G12

(c) G21 (d) G22

Figure 5.10: Bode plot shows fitting for extreme high interaction case, c = 1.

for the high interaction level and

G1
11(s) =

883232998(s+ 0.09)
s(s+ 0.3641)(s+ 76.93)(s+ 86.44)(s+ 109.1)(s+ 115.7)

G1
12(s) =

1168992866700(s+ 1.0)
s(s+ 2.374)(s+ 51.15)(s+ 62.12)(s+ 72.57)(s+ 103)2(s+ 120.3)

G1
21(s) =

60812424193
s(s+ 63.76)(s+ 71.65)(s+ 87.86)(s+ 110.9)2

(5.7)

G1
22(s) =

40744427000(s+ 1.649)
s(s+ 1.852)(s+ 69.8)(s+ 78.44)(s+ 81.54)(s+ 122.6)(s+ 146.1)

.

for the extremely high interaction level. The Bode plots for these cases are shown in
Figure 5.9 and Figure 5.10 respectively. The greater the interaction level the more data
can be collected so that the Bode plot fitting method can achieve a better accuracy since
the graph can show more information of the facility. The system only operates over
frequency ranges up to 40 rads−1 so that the transfer-functions for all interaction levels
fit well up to this frequency. Hence transfer-functions have a smaller order compared to
those of Chapter 3, leading to simpler controller implementation.
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5.3 Disturbance injection

The DC motor is used as a disturbance or noise injector therefore in order to characterise
the device it also needs to be identified. The same technique is applied to obtain such
a model. The input signal here has magnitude A = 1.5 and a frequency range from 0.1
Hz to 7 Hz. The system is tested at the medium interaction level. The Bode plot fit is
shown in Figure 5.11 and the transfer-function is

Figure 5.11: Bode plot fit for disturbance injector.

G23 =
1848694.6893(s+ 2.889)(s+ 0.5334)

s(s+ 0.08998)(s+ 25.35)(s+ 28.6)(s+ 46.34)(s+ 72.85)
.

The Bode plot shows the DC motor acts as a form of a low pass filter so when noise is
applied to the amplifier the range of frequencies is generated between 1 Hz to 4 Hz only.
Higher than this frequency the system will not give any output. The transfer-function
for the other output has not been derived because it has negligible amplitude. It will
hence be assumed to be zero.

5.4 Model validation

Each transfer-function derived from the Bode plot fitting has been validated using a
sine-wave signal with different values of frequency. The output of each model should
approximate the real output of the system at that frequency. For simplicity a sine-wave
with magnitude 2 and frequency 1 Hz is applied to all the identified transfer-functions
of the MIMO system. Figure 5.12 shows the validation result for the zero interaction
case. The model output is not exactly the same as the simulated output but it is
acceptable since the drift effect is caused from the integrator. The other transfer-function
for different levels of interactions have been validated similarly. Figure 5.13-5.17 shows
the performance of these models compared to the real output. The output of each model
is reasonably accurate. The final transfer-function that needs to be tested is that of
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(a) G11 (b) G12

Figure 5.12: Validation of the transfer-functions corresponding to no interaction
case.

(a) G11 and G12 (b) G21 and G22

Figure 5.13: Validation the transfer-functions of the extremely low interaction
case.

(a) G11 and G12 (b) G21 and G22

Figure 5.14: Validation of the transfer-functions of the low interaction case.
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(a) G11 and G12 (b) G21 and G22

Figure 5.15: Validation of the transfer-functions of the medium interaction case.

(a) G11 and G12 (b) G21 and G22

Figure 5.16: Validation of the transfer-functions of the high interaction case.

(a) G11 and G12 (b) G21 and G22

Figure 5.17: Validation of the transfer-functions of the extremely high interac-
tion case.
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Figure 5.18: Validation the transfer-functions of the DC motor.

the DC motor and the result is shown in figure 5.18. From the medium interaction level
and above, there is a drift phenomenon which model cannot incorporate. The use of a
linear model hence represents a significant challenge in controlling the MIMO system.
Especially in the highest interaction level, the interaction magnitude is approximately
equal in size to the direct outputs. The lack of more accurate models mean the MIMO
system needs to have robust controllers so that it can cope with uncertainty in modeling
and the presence of nonlinear factors.

5.5 Summary

The system configurations of Chapter 3 and parameter selection results of Chapter 4 have
been physically realised in the form of a practical system. This has been constructed,
commissioned and tested, including layout, component selection, hardware, firmware and
electrical system.

This chapter derived and validated models the MIMO system. For each level of interac-
tion, different models were derived and will be used for model based controller design.
The model accuracy can be judged by examining associated Bode plot fit to experimental
data. Moreover the method yields a lower order system than those derived in Chapter 3
so enable quicker computation and easier implementation.





Chapter 6

Basic ILC controllers

6.1 Introduction

As described in the previous chapters, the MIMO facility has been completed, com-
missioned and tested. Before applying advanced controllers, basic ILC algorithms are
applied to investigate baseline performance. Additionally, these experiments confirm
the efficiency of the system. The simple controllers are termed P-type and D-type and
were first proposed by Arimoto et al. (1985), Arimoto et al. (1984), Kawamura et al.
(1985), Arimoto and Kawamura (1988). These methods have previously been applied
to several SISO systems but there have been few experimental results performed on a
MIMO system. Another simple ILC method, termed phase-lead ILC, has been applied
to control a conveyor system and yielded impressive results (Barton et al., 2000). These
basic controllers do not require a system model and have few parameters, which can be
tuned heuristically by the operator. In this section these methods will be applied to the
MIMO facility. This chapter also provides analysis and evaluation of each controller with
reference to effects of parameter variation and a discussion of system performance.

6.2 Multivariable system description

The analysis which follows requires a general MIMO system description which is now
introduced. Links are established between system norms that will be central to future
performance measures.

Consider an m input, p output discrete-time system expressed by the transfer-function
matrix

G(z) =


G11(z) . . . G1m(z)

...
. . .

...
Gp1(z) . . . Gpm(z)

 (6.1)

87
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whose components are assumed to be stable, and, for simplicity, to have the same relative
degree. The off-diagonal subsystems Gij(z), i 6= j, govern the interaction between input
and outputs pairs, and their size is reflected in the H2-norm of G, given by

‖G(z)‖2 =

 1
2π

∫ 2π

0

∑
i,j

|Gij(ejθ)|2dθ

1/2

(6.2)

=

∑
i,j

||Gij(z)||22

1/2

=

∑
i,j

‖gij‖22

1/2

(6.3)

with gij the impulse response of Gij(z). Hence the norm of G(z) directly increases if the
norm of any of the off-diagonal systems Gij(z), i 6= j increases. Similarly the H∞-norm
of G, is given by

‖G(z)‖∞ = max
θ=[0,2π]

σ̄
(
G(ejθ)

)
(6.4)

and illustrates the effect of interaction terms in influencing the ‘high-gain direction’ which
is associated with the maximum singular value σ̄

(
G(ejθ)

)
. Robustness, convergence and

control effort properties are now examined with specific reference to the role of interaction
dynamics. This requires the following lemma which relates the magnitude of off-diagonal
system entries to the maximum singular value of GGT .

To aid subsequent controller development and analysis, the system (6.1) is represented
in state-space form as

x(i+ 1) = Ax(i) +Bu(i), x(0) = x0 0 ≤ i ≤ N
y(i) = Cx(i), x(i) ∈ Rn u(i) ∈ Rm y(i) ∈ Rp

(6.5)

running over a trial length of N samples with state resetting between each trial. Hence
G(z) = C (zI −A)−1B with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n with n the number
of states. This leads to the impulse response components gij(q) =

(
CAq−1B

)
ij
, q =

1, 2, . . . . Since ILC runs over a finite interval, the input and output sequences of (6.5)
can be expressed by the supervectors

u = [u(0)T ,u(1)T , . . . ,u(N − 1)T ]T ∈ RmN , (6.6)

y = [y(nr)T ,y(nr + 1)T , . . . ,y(N + 1− nr)T ]T ∈ RpN . (6.7)

where the relative degree of each subsystem, nr, has been used to shift the output relative
to the input to ensure that each output component can be influenced by the input. The
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input/output time-series relationship can then be represented by y = Gu+ y0 where

G =



CAnr−1B 0 0 · · · 0
CAnrB CAnr−1B 0 · · · 0
CAnr+1B CAnrB CAnr−1B · · · 0

...
...

...
. . .

...
CAN+2−nrB CAN+1−nrB CAN−nrB · · · CAnr−1B


∈ RpN×mN (6.8)

and

y0 =



CAnr

CAnr+1

CAnr+2

...
CAN+3−nr


x0 (6.9)

Here y0 is the response to initial conditions whose effect can be absorbed into the refer-
ence trajectory, so that without loss of generality it is assumed y0 = 0, or equivalently
x0 = 0.

Lemma 6.1. Consider the supervector matrix G given by (6.8) corresponding to the
state-space system (6.5). Assuming N exceeds the time taken for all impulse responses
to approximately go to zero, the maximum singular value satisfies

σ̄
(
GGT

)
≥ max

 1
mN

· max
1≤i≤p

 m∑
j=1

‖gij‖1

2

,
1
pN
· max

1≤j≤m

(
p∑
i=1

‖gij‖1

)2
 (6.10)

Proof. By applying standard matrix norms to G and exploiting the Toeplitz structure,
it can be shown that

‖G‖∞ = max
1≤i≤pN

mN∑
j=1

|Gij | = max
1 ≤ i ≤ p

1 ≤ q ≤ N

m∑
j=1

q∑
n=1

|gij(n)|

= max
1≤i≤p

m∑
j=1

N∑
n=1

|gij(n)|

= max
1≤i≤p

m∑
j=1

‖gij‖1 ,

‖G‖1 = max
1≤j≤mN

pN∑
i=1

|Gij | = max
1 ≤ j ≤ m

1 ≤ q ≤ N

p∑
i=1

q∑
n=1

|gij(n)|

= max
1≤j≤m

p∑
i=1

N∑
n=1

|gij(n)|

= max
1≤j≤m

p∑
i=1

‖gij‖1

(6.11)
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Hence ‖G‖2 can be bounded using

1√
mN

‖G‖∞ ≤ ‖G‖2 ≤
√
pN ‖G‖∞ ,

1√
pN
‖G‖1 ≤ ‖G‖2 ≤

√
mN ‖G‖1 (6.12)

to give

‖G‖2 ≥ max

 1√
mN

· max
1≤i≤p

m∑
j=1

‖gij‖1 ,
1√
pN
· max

1≤j≤m

p∑
i=1

‖gij‖1

 (6.13)

which leads to (6.10) since
√
σ̄ (GGT ) = ‖G‖2.

Since interaction terms directly contribute to the right-hand side of (6.10), greater inter-
action increases the lower bound of σ̄

(
GGT

)
.

The maximum singular values σ(GGT ) are 456.51, 457.06, 457.11, 459.01, 488.04, 565.01
for the zero interaction case, the extremely low interaction case, the low interaction case,
the medium interaction case, the high interaction case and the extremely high interaction
case respectively. These confirm that, as c increases, so too does σ(GGT ). This is also
reflected in plots of the RGA number in Dinh et al. (2012c) which rises as c is increased.
The connection between c and σ(GGT ) will form a crucial component of future analysis.

Remark 6.2. It can further be shown that

‖G(z)‖∞ = ‖G‖2 = σ̄ (G) =
√
σ̄ (GGT ) (6.14)

and hence the bound (6.10) links the magnitude of off-diagonal system components to
the l∞-norm of G(z), given by (6.4).

6.3 Proportional type ILC

The P-type ILC algorithm from Arimoto et al. (1985) is given in discrete-time for mul-
tivariable systems by

uk+1(i) = uk(i) + γek(i) (6.15)

where γ is a constant matrix defined by

γ =


γ11 γ12 . . . γ1p

γ21 γ22 . . .
...

...
...

. . .
...

γm1 . . . . . . γmp

 (6.16)
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the input, reference, output are given as

uk = [uk(0)T ,uk(1)T , . . . ,uk(N − 1)T ]T ∈ RmN , (6.17)

yd = [yd(nr)T ,yd(nr + 1)T , . . . ,yd(N + 1− nr)T ]T ∈ RpN , (6.18)

yk = [yk(nr)T ,yk(nr + 1)T , . . . ,yk(N + 1− nr)T ]T ∈ RpN . (6.19)

and ek = yd − yk. The objective of ILC is to force the system to track the reference
signal such that the error norm decreases and reaches zero in a finite number of trials.
At the same time the controller signal approaches a fixed signal. This requirement is
stated as

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − ud|| = 0. (6.20)

Over the kth trial the relationship between input and output in discrete-time can be
expressed by yk = Guk where ud is the ideal control input such that the output equals
the reference yd.

The error progression is given by

ek+1 = yd − yk+1 (6.21)

= yd −G(uk+1) (6.22)

= yd − (Guk +GLek) (6.23)

= ek −GLek (6.24)

= (I −GL)ek (6.25)

where L = diag{γ, . . . , γ}. Therefore a necessary and sufficient condition for convergence
of an arbitrary error signal is hence

max
i
|λi(I −GL)| < 1 (6.26)

where λi is the ith eigenvalue. The matrix γ is typically chosen experimentally and for
safety reasons its elements should be chosen starting from a low value to avoid aggressive
behavior of the MIMO facility. Note that the condition in (6.26) can only be satisfied
if the system relative degree is zero and p ≤ m. In particular, for LTI SISO systems,
λi = 1 − γh(0) where h(0) is the first Markov parameter of the system. The MIMO
facility is a 2× 2 system therefore m, p = 2 and

γ =

[
γ11 γ12

γ21 γ22

]
. (6.27)

The interaction has been adjusted to zero (c = 0) and increases to the highest interaction
level (c = 1). The diagonal gain values γ11 = γ22 and off-diagonal gain values γ21 = γ12 =
0 have been chosen after trying many different values which all cause the system to be
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unstable. The results are shown in Figure 6.2 with tracking references shown in Figure
6.1. References are sine-waves with different magnitudes and the same period. Reference
1 corresponding to output 1 has a magnitude of 7 rad while the magnitude of reference
2 is 5 rad. Reference 2 is shifted around 60 degrees compared to reference 1.

Figure 6.1: References for basic ILC controllers.

For all interaction levels, when γ11 is set equal to 0.01 and 0.02, the error norm keeps
increasing and the MIMO system becomes unstable after the first few trials. A gain of
γ11 = −0.01 is then used and the error norm is seen to reduce over the first 10 trials but
after that the error norm increases with a higher rate than the other 2 values. The poor
performance is not surprising since this method does not employ any model information.

P-type ILC is often implemented in combination with a PID controller or other feedback
controller but to ensure a fair comparison here no feedback controller is used. The
heuristic approach to tuning is time consuming and potentially damages the system.
Hence an alternative scheme is necessary.

6.4 Derivative type ILC

Another approach to control this system is D-type ILC, which uses the derivative of
the error to update the controller input. The controller update is given as (2.23) in
continuous-time and is derived below for discrete-time. Similar to the discrete-time P-
type ILC in the previous section, the control update is expressed as

uk+1(i) = uk(i) + γ
ek(i+ 1)− ek(i)

Ts
(6.28)

where Ts denotes time sampling. In supervector form, this is given by

uk+1 = uk + γDek (6.29)
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(a) P-Type ILC zero interaction (b) P-Type ILC extreme low interaction

(c) P-Type ILC low interaction (d) P-Type ILC medium interaction

(e) P-Type ILC high interaction (f) P-Type ILC extreme high interaction

Figure 6.2: P-type ILC with varied gain.

where

D =
1
Ts



−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1
0 0 0 0 . . . −1


∈ RmN×pN (6.30)

γ is defined in (6.16) and L = diag{γ, . . . , γ}. The necessary and sufficient condition for
convergence is hence

max
i
|λi(I −GLD)| < 1 (6.31)
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and it can be shown that this can be satisfied if the system has relative degree 1 and
p ≤ m.

The method is next applied with different levels of interaction using the same references
as in the previous section. For simplicity the gain assumes the form γ11 = γ22 and
γ12 = γ21 = 0. This effectively ignores all interaction and provides a fair comparison
with P-type ILC. Additionally, it is difficult to find values for off-diagonal components
since they can easily make the system unstable.

The results for this method are displayed in Figure 6.3. For the zero interaction case,
shown in Figure 6.3(a), the convergence over the first few trials is reasonable for all
chosen gain values. The larger the gain the faster the convergence. However the error
norm diverges in a fewer number of trials. For the biggest gain, 0.02, the error norm
diverges after 6 trials while for a 0.01 gain, it diverges after 15. Lower gain values, 0.005
and 0.002, experience divergence after 24 and 75 trials respectively. When increasing the
interaction level, the same convergence rate trends occur but it is more difficult for the
controller enforce force reference tracking. This is especially true in the high interaction
case and the extremely high interaction case shown in Figure 6.4(e) and Figure 6.4(f)
respectively. Here the minimum error norm achieves 75, which is higher than other
interaction levels.

Over all interaction levels, D-type ILC cannot drive the error norm to a low level. The
error norm diverges after a few trials, whose number depends on the chosen gain constant.
Compared to P-type ILC this method is superior since it can force the outputs to track
references and reduce the error norm after a few trials. However, the heuristic tuning
method also requires much effort to find a suitable gain constant matrix for the controller
and the operator cannot be sure that the chosen gain is the optimum value. As the
number of inputs and outputs increase, it will take more time to find a suitable range of
gains in matrix γ.

6.5 Phase-lead ILC

Phase-lead is a popular method that is used to control a practical system. For example,
in Tutty et al. (2012), phase-lead ILC was used for controlling load on wind turbines, in
Freeman et al. (2011b) it was used for stroke rehabilitation and in Wallén et al. (2008)
it was applied to industrial robotics. The controller does not require a model and hence
can be applied easily in practice. The controller is given by

uk+1(i) = uk(i) + γek(i+ δ) (6.32)

ek(i) = yd(i)− yk(i), (6.33)
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(a) D-Type ILC zero interaction (b) D-Type ILC extreme low interaction

(c) D-Type ILC low interaction (d) D-Type ILC medium interaction

(e) D-Type ILC high interaction (f) D-Type ILC extreme high interaction

Figure 6.3: D-type ILC with varied gain.

where δ is a positive integer time delay and γ is defined in (6.16). This can be written
in supervector form as

ek+1 = (I −GγS)ek (6.34)
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where the shift operator

S =



0 . . . 1 0 0 . . . 0
0 0 . . . 1 0 . . . 0
0 0 0 . . . 1 . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . 0


∈ RpN×pN (6.35)

and L = diag{γ, . . . , γ}. Hence a necessary and sufficient condition for convergence to
zero error is

max
i
|λi(I −GLS)| < 1 (6.36)

Phase-lead ILC has been applied to the MIMO facility with varying levels of interaction.
The same reference signals as shown in Figure 6.1 have been used. After many tests, the
best combination of gains comprised γ1 and γ2 as both 0.03 and δ as 10, 20, 30, 70 and
100. Results for the low interaction case are shown in Figure 6.4(a). Time-delays of 100,
70 and 10 give rise to error norm divergence after around 10 trials. The only values of
time-delay that produce satisfactory results are 20 and 30. For a value of 20, the error
norm converges dramatically and reaches a minimum value of 10 after about 50 trials.
However after that the error norm diverges and the system needs to be turned off to
protect mechanical parts since the control signal is too high. The delay time, δ = 30,
yields the greatest performance, providing a similar convergence rate but keeping the
error norm at a reasonably low value over 300 trials. However it tends to give rise to
divergence if the system is run over a large number of trials. The same observation
holds for the extremely low interaction, low interaction, medium interaction and high
interaction cases which are shown in Figure 6.4(b)-6.4(e) respectively. However, the
result is different in the highest interaction case. All the delay time values converge after
a few trials except δ = 10, which diverges in the first few trials. The delay-time constant
δ = 30 still has the best result but the system must be shut down after 60 trials due to
the high control input norm. In this case, the results are far less satisfactory than other
interaction levels in terms of both the convergence rate and the error norm value.

Generally, the phase-lead method yields better results compared to the other two con-
trollers. Like them, it does not need any model within the control update algorithm.
The output can satisfactorily track references in the first few trials but still diverges after
a set number of trials depending on the tuning delay factor and the gain matrix γ. In
general the method only works well with systems that behave like a pure time delay (Cai
et al., 2007), (Cai et al., 2008b). Therefore for the MIMO facility, phase-lead ILC cannot
be expected to give high performance. The MIMO facility has integrator hence models
always exist uncertainty that increase when the interaction increases. Additionally, the
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(a) Phase-lead type ILC with zero interaction (b) Phase-lead type ILC with extremely low inter-
action

(c) Phase-lead type ILC with low interaction (d) Phase-lead type ILC with medium interaction

(e) Phase-lead type ILC with high interaction (f) Phase-lead type ILC with extremely high inter-
action

Figure 6.4: Phase-lead ILC with gain = 0.03.
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heuristic tunning method is also time consuming, and the operator cannot be sure they
have found the optimal parameters.

6.6 Summary

Three simple structure controllers for ILC have been presented in discrete-time and ap-
plied to the 2 × 2 MIMO facility. These controllers require a tuning gain matrix γ and
in one case a delay-time constant, and do not require explicit model. This aids usability
but necessarily degrades performance. Additionally, the heuristic tuning requires signif-
icant experiments to arrive at suitable values and hence is extremely time consuming.
Consequently practical constraints mean it cannot yield impressive performance for a
system with multiple inputs and outputs.

Basic ILC controllers also provide an overview of baseline performance achievable for
the MIMO facility and reveal the effect of interaction levels on the system performance.
Interaction is seen to cause increasing controller norm and error norm. Therefore it is
frequently necessary to engage safety devices to protect the mechanical system.

In order to achieve better results and save time in finding a good combination of tunning
parameters, a more advanced controller is required. The controller should utilise all
information from the MIMO facility to aid the control update. This will help improve
the response time to any reference signal and yield faster convergence rates. The next
chapter will describe more advanced controllers which aim to improve the baseline results
discussed in this chapter, using the same test conditions.



Chapter 7

Gradient ILC

A well established algorithmic framework has been developed, coupling analysis with
practical performance demands, and this is especially true for linear optimal algorithms
whose properties have been extensively studied Bristow (2008b); Ratcliffe et al. (2005);
Donkers et al. (2008); Wang et al. (2010); Barton et al. (2008); Mishra and Tomizuka
(2005); Davies et al. (2008); Butcher et al. (2008b). Gradient-based ILC algorithms
have received significant attention in the literature due to their attractive theoretical
properties.

Unlike basic ILC controllers, gradient-based ILC algorithms require a system model in
the control update. In this chapter a popular type of ILC update termed gradient ILC
is analysed in order to understand the performance characteristics for multivariable sys-
tems, robustness, convergence and control effort properties under a variety of conditions.

Whilst the role of interaction terms is well understood in multivariable control, it is not
well explored in ILC, in either theoretical or practical domains. In order to tackle this,
in this chapter, the effect on performance of off-diagonal sub-systems Gij(z), i 6= j, is
explicitly considered.

7.1 Gradient ILC with variable optimal β

Gradient ILC has appeared in (Furuta and Yamakita, 1987), (Hätönen et al., 2004),
(Owens et al., 2007), (Kinosita et al., 2002) for SISO systems and is now derived for
MIMO systems.

7.1.1 Algorithm description

Consider again the objective of ILC, with uk and yk the input and output vectors
respectively on the kth trial, and the goal being to find a sequence of control inputs

99
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satisfying
lim
k→∞

‖ek‖ = 0, lim
k→∞

‖uk − ud‖ = 0 (7.1)

where ek = yd − yk is the tracking error, and ud is the unknown desired input sequence
corresponding to reference signal yd. The vectors uk,yd and yk are given in (6.17 - 6.19)
respectively. Over the kth trial the relationship between input and output time-series
can be expressed by yk = Guk.

To achieve this, on the (k+ 1)th trial gradient ILC minimises a cost function of the form

J(uk+1) =
{

[yd − yk+1]T Q [yd − yk+1] + [uk+1 − uk]
T R [uk+1 − uk]

}
(7.2)

where

Q = diag {Q(0), Q(1), . . . , Q(N − 1)} , R = diag {R(0), R(1), . . . , R(N − 1)}
(7.3)

in which weighting matrices Q(i) are R(i) are symmetric and positive semi-definite for all
i. Notational simplification occurs if the input and output spaces U and Y respectively,
are adopted with inner products

〈u1,u2〉U = uT1 Ru2 =
N−1∑
i=0

u1(i)TR(i)u2(i) (7.4)

〈y1,y2〉Y = yT1 Qy2 =
N−1∑
i=0

y1(i)TQ(i)y2(i). (7.5)

Using these (7.2) becomes

J(uk+1) = ||ek+1||2Y + ||uk+1 − uk||2U. (7.6)

The gradient optimisation method may be applied to minimise the cost function (7.6)
by setting the required change in input proportional to the gradient of the error with
respect to the input, to give the ILC update

uk+1 = uk + βR−1GTQek (7.7)

= uk + βG∗ek (7.8)

since R−1GTQ is equivalent to the adjoint operator G∗ of G with respect to the weighted
inner product equations (7.4) and (7.5). Substitution into (7.6) this gives

J(uk+1) =‖ (I − βGG∗)ek ‖2Y + ‖ βG∗ek ‖2U (7.9)
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which is minimised with respect to the positive scalar β by setting β equal to

β̂ =
eTkQGG

∗ek
(GR−1GTQek)TQ(GR−1GTQek) + (R−1GTQek)TR(R−1GTQek)

(7.10)

=
eTkQGG

∗ek
‖ GG∗ek ‖2Y + ‖ G∗ek ‖2U

(7.11)

For simplicity now suppose Q = qI and R = I. As q is increased from zero to ∞, the
optimum scalar multiplier βq = β̂(q)q in (7.8) varies continuously and monotonically
from zero to a maximum of

‖ GTek ‖2

‖ GGTek ‖2
(7.12)

which can be approximated by a static value of 1
‖GGT ‖ . Consider some initial arbitrary

choice of Q = qI, 0 < q < ∞, in update (7.8). Then within the approximate range(
0, 1

q‖GGT ‖

)
any scalar multiplier β may be selected in the update (7.8) such that the

optimisation problem (7.2) is then solved for some particular choice of Q and R weighting
matrices. This means β can be regarded as a tuning parameter within gradient ILC
update (7.8).

Remark 7.1. It is shown in Butcher et al. (2008a) that the gradient algorithm can be
implemented without an explicit model thus providing significant utility. Instead an
additional experiment between each trial provides the term G∗ek.

7.1.2 Convergence analysis

From (7.8) the error evolution is given by

ek+1 = (I − βGG∗)ek. (7.13)

A necessary and sufficient condition for convergence is

ρ(I − βGG∗) < 1. (7.14)

Since σi(GG∗) ≥ 0 this is equivalent to

|1− βσi(GG∗)| < 1, ∀i (7.15)

so that 0 < βσ(GG∗) < 2 so β < 2
||GG∗|| . Hence convergence to zero error is guaranteed

if G has full rank, and either the trial-dependent gain (7.11) is employed with any choice
of symmetric positive definite Q and R, or a fixed gain satisfying

0 < β <
2

q ‖ GGT ‖
(7.16)
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is used together with R = I and any choice of Q = qI, 0 < q <∞. Let V be the eigenvec-
tor matrix of GG∗, with Λ a diagonal matrix of corresponding eigenvalues

(
σi(GG∗)

)2.
Then (7.13) can be written as

ek+1 = V (1− βΛ)V −1ek (7.17)

so that
V −1ek = (1− βΛ)kV −1e0. (7.18)

Since V −1 = V T , the component of e0 projected onto the ith eigenvector of GG∗ hence

evolves as
(

1−β
(
σi(GG∗)

)2)k. If σ2 is the minimum eigenvalue then the reference with
slowest convergence rate is a scalar multiple of its corresponding eigenvector. Similarly
if σ2 is the maximum eigenvalue then the reference with the fastest convergence rate is
a scalar multiple of its corresponding eigenvector. For an arbitrary reference and gain
satisfying (7.16), the error norm sequence lies in the interval

(
1− β

(
σ(GG∗)

)2)k ≤ ‖ek‖Y
‖e0‖Y

≤
(

1− β
(
σ(GG∗)

)2)k (7.19)

For a given reference an approximation of the convergence rate is the weighted sum

‖ V Tyd ‖p
‖ (I − βΛ)V Tyd ‖p

(7.20)

where ‖ · ‖p denotes the p-norm.

7.1.3 Control effort

In practice the input norm required to enforce tracking plays an important role in de-
termining robustness, due to actuator saturation and the range over which the plant
must be assumed linear. The input norms as k → ∞ are hence derived. Assuming the
condition (7.14) holds so the algorithm is convergent, a application of the ILC update
yields

uk+1 = uk + βG∗(yd −Guk) (7.21)

= (I − βG∗G)uk + βG∗yd (7.22)

= (I − βG∗Gk+1)u0 +
( k∑
i=0

(I − βG∗G)i
)

(βG∗)yd (7.23)

⇒ u∞ =
(
I − (I − βG∗G)

)−1
βG∗yd (7.24)

= G†yd. (7.25)
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where (·)† denotes the pseudo-inverse. This input sequence hence satisfies the bound

‖u∞‖ =
∥∥∥G†yd∥∥∥ ≤ ‖yd‖Y

σ(GG∗)
(7.26)

and hence is governed by σ(GG∗). The correlation between interaction and σ(GGT )
means that the bound on control effort typically increases with higher interaction.

7.1.4 Robustness analysis

Assume that the true plant is now G̃ and includes multiplicative modeling uncertainty
described by the equation

G̃ = UG (7.27)

where G is the nominal plant model used in the update law (7.8).

Theorem 1. Suppose U is a Hermitian matrix. Then the weighting selection R = rI,
Q = qI, with

0 < β <
2

maxi
{

0, λi(U)
} 1
σ2(GG∗)

(7.28)

guarantees convergence of the true plant to zero tracking error using gradient ILC update
law (7.8).

Proof. The error is given by

ek+1 = yd − G̃uk+1 (7.29)

= yd − UG(uk + βG∗ek) (7.30)

= (I − βUGG∗)ek (7.31)

since λi(GG∗) = σ2
i (GG

∗) > 0

0 < σ2(GG∗) ≤ λi(GG∗) ≤ σ2
i (GG

∗) < 1 (7.32)

A necessary and sufficient condition for convergence to an arbitrary reference is

max
i
|λi(I − βUGG∗)| < 1 (7.33)

⇒ max
i
|1− βλi(UGG∗)| < 1 (7.34)

which can be written as

σ2(I − UGG∗) = max
i
|1− λi(UGG∗)| < 1, ∀i (7.35)
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The assumption that U is Hermitian guarantees that λi(UGG∗) are real and satisfy

0 < σ2(GG∗) min
j
λj(U) ≤ λi(UGG∗) ≤ σ2(GG∗) max

j
λj(U) < max

j
λj(U) (7.36)

It can hence be shown that a sufficient condition is

λi(U) <
2

βσ2(GG∗)
, ∀i (7.37)

Hence a sufficient condition for convergence to zero error is

0 < β <
2

maxi{0, λi(U)}
· 1
σ2(GG∗)

, ∀i. (7.38)

So for any known uncertainty as defined in (7.27) exist an optimal β results in convergence
to zero tracking error

Remark 7.2. For any uncertainty U , there exists a β which satisfies condition (7.28).

Remark 7.3. As discussed in Section 6.2, increasing interaction causes σ(GG∗) to in-
crease, which hence leads to a reduction in robustness.

Remark 7.4. With no uncertainty, U = I and (7.28) = (7.16).

7.1.5 Experimental results

In this section gradient ILC is applied to the MIMO testbed facility in order to investigate
the performance degradation caused by MIMO interaction. Sinusoidal references are used
with magnitudes of 7 and 5 for reference 1 and reference 2 respectively, as displayed in
Figure 6.1. Both references have a total length T = 2.4 seconds. The reference is exactly
the same as the version used in the previous chapter so that the performance of this
method can be compared fairly.

The gradient ILC update (7.8) has been applied to track the reference and an optimal
β is calculated using (7.11). After applying a wide range of weighting matrix values
Q,R the best performance has been found to correspond to R = I and Q = 0.1I for
the highest interaction case and Q = 0.5I for the remaining interaction cases. Using
the highest interaction case the controller norm becomes excessive and the system has
been switched off to protect the facility after 109 trials. This is due to model uncertainty
that is amplified by the interaction effect and leads to degradation in the controller’s
performance. The controller norm result for this case is shown in Figure 7.1(a). For the
remaining interaction cases, controller norms reach steady values which correspond to
accurate tracking. The corresponding errors norm are shown in Figure 7.1(b), and after
100 trials the zero interaction case attains an error norm of approximately 4 while the
highest interaction case attains a value of 90 and then diverges. For the coupling level
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(a) Controller norm. (b) Error norm.

Figure 7.1: Standard gradient ILC

c = 0.2 there is a spike at trial number 70 due to an unpredictable disturbance generated
within the differential gear but the controller quickly recovers accurate tracking.

Compared to basic ILC controllers gradient ILC provides a significant improvement in
tracking performance. The controller keeps the error norm at a low value and maintains
it over the test duration. The results do not show any sign of divergence for the zero
interaction case to the high interaction case. The only case that gradient ILC fails
to control adequately is the highest interaction level, which is associated with much
uncertainty in the model. The performance could be improved if a more accurate model
could be derived but this is highly time consuming.

The experimental results also confirm observations in Section 7.1.3 and 7.1.4 since in-
creasing the interaction level leads to increased controller effort and reduced robustness.
Therefore for the highest interaction level the error norm cannot converge to very low
value.

7.2 Summary

The gradient ILC method has been derived for multivariable systems. The properties
of the method have been discussed with regard to control effort, convergence rate and
robustness. To investigate the theory, experimental results using the MIMO facility
have been provided. The results support theoretical conclusions that interaction plays a
significant role in influencing the error and the controller effort. If the interaction level is
sufficient large it can make the controller become unstable. Consequently, an alternative
controller is required to improve the tracking performance of the system. In the next
chapter another advanced controller is hence introduced and analysed.





Chapter 8

Norm optimal iterative learning
control

Along with gradient ILC, another prominent member of the class of linear optimal ILC
algorithms is norm optimal ILC (NOILC) which selects the next control input to min-
imise a cost function involving the predicted error and the change in successive control
inputs (Bristow et al., 2006; Ahn et al., 2007). NOILC can be implemented using a
purely feed-forward structure (Buchheit et al., 1994), or through combination of state
feedback and predictive feed-forward action (Amann et al., 1996a,b). The framework
has been applied to a range of systems including gantry robots (Ratcliffe et al., 2006),
industrial robotic systems (Barton and Alleyne, 2011), rehabilitation platforms (Rogers
et al., 2010), free electron lasers (Rogers et al., 2010) and pneumatic muscle actuators
(Schindele and Aschemann, 2011). Extensions have been proposed using a predictive
mechanism (Bristow and Alleyne, 2003), constraints (Chu and Owens, 2010) and projec-
tions (Chu and Owens, 2009).

This chapter uses the NOILC framework to investigate the role of MIMO interaction on
ILC performance, including convergence speed, control effort, and robustness to modeling
uncertainty. In particular, a rigid connection between increased interaction and reduced
robustness bounds is derived. Two implementations of NOILC are experimentally as-
sessed on the MIMO test facility over a wide range of interaction and noise conditions,
and results are compared with theoretical predictions.
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8.1 Algorithm description

As previously described, the objective of ILC is to use experimental data over repeated
trials to generate a signal uk such that

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − ud|| = 0 (8.1)

where ek = yd−uk is the system tracking error on trial k. NOILC achieves this objective
by calculating the control input supervector, uk+1, for application to the plant (6.8) on
the k + 1th trial, such that a quadratic cost function of the form

J(uk+1) =
{

[yd − yk+1]T Q [yd − yk+1] + [uk+1 − uk]
T R [uk+1 − uk]

}
(8.2)

is minimised, hence balancing tracking error reduction against change in successive con-
trol inputs. Here yk+1 = Guk+1 is the predicted output on the k + 1th trial, and

Q = diag {Q(0), Q(1), . . . , Q(N − 1)} , R = diag {R(0), R(1), . . . , R(N − 1)}
(8.3)

in which weighting matrices Q(i) are R(i) are symmetric and positive semi-definite for all
i. Notational simplification occurs if the input and output spaces U and Y respectively,
are adopted with inner products

〈u1,u2〉U = uT1 Ru2 =
N−1∑
i=0

u1(i)TR(i)u2(i) (8.4)

〈y1,y2〉Y = yT1 Qy2 =
N−1∑
i=0

y1(i)TQ(i)y2(i). (8.5)

which allows (8.2) to be expressed as

J(uk+1) = ||ek+1||2Y + ||uk+1 − uk||2U. (8.6)

where ek+1 = yd − yk+1. Hence the NOILC control input is the trial

uk+1 = arg min
uk+1

J(uk+1) (8.7)

with the weights R and Q employed to set the balance between convergence and trial-
to-trial input change. Full details appear in, for example, Amann et al. (1996a). The
problem (8.7) can be directly solved and the resulting uk+1 applied to the plant in a
feed-forward implementation, or the same solution can be expressed in terms of the
plant states, leading to a combined feed-forward and state feedback realisation. Both
options are now summarised, and are compared experimentally.
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8.1.1 NOILC feed-forward implementation

The unique solution to (8.7) can be directly realised in the purely feed-forward structure
given by

uk+1 = uk +R−1GTQek+1 (8.8)

= uk +R−1GTQ(I +GR−1GTQ)−1ek

= uk +G∗(I +GG∗)−1ek. (8.9)

in which G∗ = R−1GTQ is the plant adjoint operator.

8.1.2 NOILC feed-forward and state feedback implementation

To embed the possibility of increased robustness to noise and modeling uncertainty, the
solution to (8.7) can also be realised using combined feed-forward and current trial state
feedback action Amann et al. (1996a,b). In particular, the non-causal solution (8.8) is
equivalent to the co-state system

ψk+1(i) = ATψk+1(i+ 1) + CTQ(i+ 1)ek+1(i+ 1) (8.10)

uk+1(i) = uk(i) +R−1(i)BTψk+1(i) (8.11)

for i = 0, 1, . . . N − 1 with terminal condition ψk+1(N) = 0. Causal implementation is
achieved by assuming full state knowledge and writing the co-state in the form

ψk+1(i) = −K(i)(I +BR−1(i)BTK(i))−1A[xk+1(i)− xk(i)] + ξk+1(i). (8.12)

which combines state feedback, with an additional feed-forward, predictive term ξk+1(i).
Equating representations, it can be shown that the matrix gain K(i) is the solution of
the discrete-time matrix Riccati equation on the interval i = 0, 1, . . . N − 1, that is

K(i) = ATK(i+ 1)A+ CTQ(i+ 1)C −

ATK(i+ 1)B
(
BTK(i+ 1)B +R(i+ 1)

)−1
BTK(i+ 1)A (8.13)

with the terminal condition K(N) = 0. This equation does not depend on experimental
data and is calculated only once before the test begins. The predictive term ξk+1(i) is
given by

ξk+1(i) = (I +K(i)BR−1(i)BT )−1(AT ξk+1(i+ 1) + CTQ(i)ek(i)) (8.14)

with the terminal condition ξk+1(N) = 0, and must be calculated after each trial is
performed. Hence inserting (8.12) in (8.11) and rearranging, the control input on sample
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i is then given by

uk+1(i) = uk(i)− (BTK(i)B +R(i))−1BTK(i)A[xk+1(i)− xk(i)] +

R−1(i)BT ξk+1(i) (8.15)

8.2 Convergence analysis

From (8.9) the trial-to-trial error evolution is governed by

ek+1 = (I +GG∗)−1ek. (8.16)

and convergence to zero tracking error is guaranteed with any choice of symmetric pos-
itive definite Q and R since G has full rank. Let V and Λ be matrices containing the
eigenvectors and corresponding eigenvalues, σ2

i (GG
∗), of GG∗. Then (8.16) can be writ-

ten in the form
ek+1 = V (I + Λ)−1V −1ek (8.17)

and repeated action results in

V −1ek = (I + Λ)−kV −1e0 (8.18)

The component of e0 projected onto the ith eigenvector of GG∗ hence evolves as (1 +
σ2
i (GG

∗))−k. Taking norms, tracking error on the kth trial is bounded by

(
1 + σ2(GG∗)

)−k
≤ ‖ek‖Y
‖e0‖Y

≤
(

1 + σ2(GG∗)
)−k

. (8.19)

The fastest convergence rate is hence dictated by σ2(GG∗). Assuming for simplicity the
form R = rI, Q = qI, this increases with the level of interaction since

σ(GG∗) = σ(GqGT r−1) =
q

r
σ(GGT ) (8.20)

The slowest convergence is governed by the minimum singular value σ(GG∗) = q
rσ(GGT ).

Whilst not directly linked to MIMO interaction, there is often a strong correlation be-
tween increased interaction and a reduction in σ(GGT ), which hence reduces the conver-
gence rate of the slowest mode. The values of of σ(GGT ) for each interaction case are
calculated in Table 9.2. It shows values close to zero but due to the model uncertainty
the trend cannot be shown clearly.
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8.3 Control effort

In practice the input norm required to enforce tracking plays an important role in deter-
mining robustness, due to actuator saturation and the range over which the plant may
be assumed linear. The limiting input as k →∞ is found through repeated application
of (8.9), which yields

uk+1 =
(
I −G∗(I +GG∗)−1G

)k+1u0 +(
k∑
i=0

(I −G∗(I +GG∗)−1G)i
)
G∗(I +GG∗)−1yd (8.21)

⇒ u∞ =
(
G∗(I +GG∗)−1G

)−1
G∗(I +GG∗)−1yd (8.22)

= G†yd (8.23)

where (·)† denotes the pseudo-inverse. This input sequence hence satisfies the bound

‖u∞‖ =
∥∥∥G†yd∥∥∥ ≤ ‖yd‖Y

σ(GG∗)
(8.24)

and hence is governed by σ(GG∗). The correlation between interaction and σ(GGT )
means that the bound on control effort typically increases with higher interaction. Values
of σ(GGT ) are given for the MIMO test facility in Table 9.2.

8.4 Robustness analysis

Assume now that the true plant, G̃, includes multiplicative modeling uncertainty de-
scribed by the equation

G̃ = UG (8.25)

Here G is the nominal plant model used in the update law (8.9) or (8.13)-(8.15) to
generate control input uk+1, whereas G̃uk+1 gives the output when subsequently applied
in practice to the true plant (producing the experimental tracking error ek+1 = yd −
G̃uk+1).

Theorem 2. Suppose that U is a Hermitian matrix. Then the weighting selection R = rI,
Q = qI, with

0 <
q

r
<

2
maxi {0, λi(U)− 2}

· 1
σ2(GGT )

(8.26)

guarantees convergence of the true plant to zero tracking error using the feed-forward
NOILC law (8.9).

Proof. Employing the real plant (8.25) in the NOILC update (8.9) gives rise to

ek+1 = (I − UGG∗(I +GG∗)−1)ek (8.27)
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Let the Hermitian matrix
W = GG∗(I +GG∗)−1 (8.28)

so that
ek+1 = (I − UW )ek (8.29)

The eigenvalues of W are all real and satisfy

λi(W ) = 1− (1 + λi(GG∗))
−1 , i = 1, · · ·N (8.30)

and since λi(GG∗) = σ2
i (GG

∗) > 0

0 <
σ2(GG∗)

1 + σ2(GG∗)
≤ λi(W ) ≤ σ2(GG∗)

1 + σ2(GG∗)
< 1 (8.31)

A necessary and sufficient condition for the output to converge to an arbitrary reference
is

ρ(I − UW ) = σ2(I − UW ) = max
i
|1− λi(UW )| < 1 ∀i (8.32)

The assumption that U is Hermitian guarantees that λi(UW ) are real and satisfy

0 < σ2(W ) min
j
λj(U) ≤ λi(UW ) ≤ σ2(W ) max

j
λj(U) < max

j
λj(U) (8.33)

and using (8.28) a sufficient condition for convergence to zero error is

λi(U) <
2

σ2(W )
, ∀i (8.34)

The choice of weights R = rI and Q = qI, r, q > 0, on the right-hand side of (8.34) gives

2(1 + σ2(GG∗))
σ2(GG∗)

=
2(1 + q

rσ
2(GGT ))

q
rσ

2(GGT )
=

2( rq + σ2(GGT ))

σ2(GGT )
. (8.35)

This leads to the condition

λi(U) <
2

q
rσ

2(GGT )
+ 2, ∀i (8.36)

So that for a known uncertainty, any weight such that (8.26) holds will result in conver-
gence to zero tracking error.

Remark 8.1. For the case of no model uncertainty, U = I, and all weighting values
provide convergence to zero error. The bound on the admissible modeling uncertainty
(8.36) strictly increases as q

r reduces.

Remark 8.2. It is shown in Hätönen (2004) that U can be realised as a positive definite
transfer-function U(z). Therefore a sufficient condition for monotonic convergence to
zero error is that arg{U(ejω)} lies in the open interval (−π/2, π/2) ∀ i, with a gain
chosen to satisfy (8.26).
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From Theorem 2, robustness to multiplicative model uncertainty reduces as σ2(GGT )
increases. From Lemma 6.1 this is also strongly correlated with increased interaction
between input and output pairs, and hence the robustness bound (8.26) decreases as the
level of interaction increases.

This section has illustrated that achievable robustness and performance bounds using
NOILC typically degrade as MIMO interaction increases. The next section presents
results when NOILC is applied to the MIMO test facility with varied levels of interaction.

8.5 Experimental results

In this section both implementations of NOILC algorithms are applied to the MIMO
test-bed facility. Sinusoidal references are used with magnitudes of 7 and 5 for reference
1 and reference 2 respectively, and are shown in Figure 6.1. Both references have a
total length T = 2.4 seconds. The transfer-function model for each interaction case was
derived and validated in Chapter 5 and are the same as were used previously.

8.5.1 Feedforward NOILC

Experiments were undertaken using the NOILC update (8.9). Based on a large number
of tests, the best performance has been achieved using R = I and Q = 0.05I for all
interaction cases except the highest interaction level (c = 1), which uses Q = 0.005I.
The error norm results in Figure 8.1(b) show rapid convergence rates for all coupling

(a) Controller norm. (b) Error norm.

Figure 8.1: Feedforward norm optimal ILC

values except the highest interaction case that requires a smaller value of Q to delay the
onset of instability, which always occurs. In the case of c = 0, after 60 trials, the error
norm almost attains its final value, which is around 1. However the final error norm
increases with the level of interaction, as is most obvious in the cases of c = 0.8, 1. There
is a significant difference in the error norm of the highest interaction case and the other
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interaction levels. The controller cannot cope with the high model uncertainty magnified
by the effect of substantial interaction and therefore the system diverges after around
180 trials. The corresponding controller norm is extremely high and still has not reached
a steady value after 180 trials. The controller norm results are shown in Figure 8.1(a).
Compared to gradient ILC, feed-forward NOILC displays superior convergence rates and
reduced final error norm, but higher controller norms at low levels of interaction.

Noise is now injected into the system via the DC motor, which can be considered as
a low pass filter as shown in Figure 5.11 with a cut-off frequency ≈ 14 rads−1. The
chosen noise amplitude is 0.5 and the weighting matrices used in the controller are
Q = 0.05I and R = I. The results of standard feed-forward NOILC are shown in Figure
8.2 and do not include the extremely high interaction case since none of the previous
controllers were able to adequately control it. For the zero interaction case the error

(a) Controller norm. (b) Error norm.

Figure 8.2: Feedforward NOILC with noise injection.

norm converges but does not reach zero due to the presence of unrepeatable noise. With
higher interaction levels the noise effect increases, and in the high interaction case the
error norm diverges after 200 trials. The controller norm corresponding to this error
norm is higher compared to the case without noise, and all controller norms are seen to
fluctuate due to the presence of noise.

Injecting noise leads to degradation in performance of the controller and can cause diver-
gence as in the high interaction case. The effect is shown clearly in the high interaction
case and the zero interaction case. In the high interaction case with noise the error norm
starts to diverge after 250 trials while without noise the error norm remains at around
5. In the no interaction case with noise, the error norm fluctuates around 3 but without
noise the error norm is more stable and stays at around 2. The highest interaction case
with noise is not shown because of the aggressive behavior which results in the experi-
ment being terminated. Additionally, feed-forward NOILC failed to control the highest
interaction case without noise so no more information can be gleaned with the addition
of noise.
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8.5.2 Feedforward plus state feedback NOILC

Feedforward plus state feedback NOILC has been applied to control the system using
controller update (8.15), and the same sinusoidal references as in Figure 6.1. For the
extremely high interaction case the weight Q = 0.005I is used, and the rest of the
interaction cases use Q = 0.05I. The results for this experiment are shown in Figure
8.3. Similarly to the case of feed-forward NOILC, the highest interaction case presents
a significant challenge for this controller. A high control effort is generated, and the
system’s automatic protection switches the system off after 250 trials. In all other cases
the controller is successful in driving the error norm low and the control effort within a
satisfactory operating range which does not increase over 300 trials.

(a) Controller norm. (b) Error norm.

Figure 8.3: Standard state feedback NOILC.

Compared to feed-forward NOILC, this controller generates a similar control input norm
but provides an improvement in error norm. Moreover it gives rise to a steadier control
input norm value, as is clearly seen in the high interaction case in Figure 8.3(a).

With the same level of noise injection, feed-forward plus state feedback NOILC is again
implemented. The resulting error norms fluctuate less with levels of interaction between
c = 0 and 0.6 compared to the case of feed-forward NOILC with noise. For the high
interaction case the result fluctuates less, the error norm generally stays under 40 and the
trend does not diverge over 300 trials as shown in Figure 8.4. In general, state feedback
NOILC shows more robust performance compared with feed-forward NOILC over the
same conditions. It gives rise to similar controller norms but provides far superior error
norms.

The experimental results for NOILC confirm that the control effort increases with the
interaction level as in Section 8.3. The results also show reducing robustness when
noise is injected which causes an increase in model uncertainty as stated in Theorem 2.
Therefore q has been chosen to be smaller for the high interaction case.
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(a) Controller norm. (b) Error norm.

Figure 8.4: Standard state feedback NOILC with noise injection.

8.6 Summary

All the controllers implemented highlight the effect of interaction on the control effort
and error norms. For coupling value c=0 to c = 0.8 the standard state feedback NOILC
has lower error norm than standard feed-forward NOILC with the same controller norm
while c = 1 both controller fail to keep the error norm low after 300 trials. In the injection
noise, the standard state feedback NOILC still is still better than feed-forward NOILC
in term of controller norm and error norm.

In general the interaction increases so too does the control effort, and this gives rise
to an increased error norm due to magnified plant uncertainty and noise which are
exacerbated by the larger operating region and more rapidly changing signals. Moreover,
the experiments show that NOILC can provide a superior convergence rate but gives rise
to higher controller norms, especially at low interaction levels. Both NOILC approaches
cannot cope with the highest interaction case.

In the next chapter it is shown that both gradient ILC and NOILC can be improved by
a new technique which enables them to cope with the highest interaction level.



Chapter 9

Point-to-point ILC

The ILC approaches seen thus far have displayed limited ability to deal with highly
interacting systems. NOILC and gradient ILC are among the few approaches that have
been applied to solve the point-to-point (or intermediate point) ILC problem where the
need to track all reference points in yd is relaxed. This will be shown to be an effective tool
in addressing performance limitations associated with highly interacting MIMO systems.
In Freeman (2012) gradient ILC is applied to this problem and in Owens et al. (2012)
NOILC is employed in both feedback and feed-forward forms. In the next subsection
results are summarised and expanded using the same notation.

9.1 Problem description

The point-to-point problem considers the case in which the component of the reference
yd corresponding to the jth plant output is required to be tracked only at a fixed number,
Mj ≤ N , of sample instants given by 0 ≤ nj,1 < nj,2 < · · · < nj,Mj < N . Suppose the
ILC algorithms considered in Chapter 8 and 7 were required to track these time instants.
Both involve minimisation of the cost

J(uk+1) =
{

[yd − yk+1]T Q [yd − yk+1] + [uk+1 − uk]
T R [uk+1 − uk]

}
(9.1)

with weighting matrices

Q = diag {Q(0), Q(1), . . . , Q(N − 1)} , R = diag {R(0), R(1), . . . , R(N − 1)}
(9.2)

Hence this simply involves the choice

Q(i)

{
> 0 if i = (nj,q − 1)p+ j, q = 1, . . .Mj , j = 1, . . . p,
= 0 otherwise

(9.3)

117
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in the cost (7.6) with the resulting updates (8.9), (8.15) and (7.8) unchanged for gradi-
ent ILC and NOILC respectively. Subsequent analysis however requires the cost to be
rewritten to exclude points that are not tracked, becoming

Jk+1(uk+1) = ||ek+1||2Y + ||uk+1 − uk||2U (9.4)

with Q = ΦQΦT where ek+1 = yr − Φyk+1 is the point-to-point tracking error and the
inner product < y1,y2 >Y= yT1 Qy2. The vector yr contains only those points required
to be tracked, in the same order as they appear in yd. The matrix Φ ∈ RM×pN is defined
as follows:

Introduce ψ ∈ RpN with elements

ψi =

{
1 if b(i− 1)/pc ∈ Si−b(i−1)/pcp,

0 otherwise
(9.5)

where b·c denotes the ‘floor’ function and the set Sj = nj,1, ..., nj,Mj . The former is a
vector whose (i× p+ j)th point is 1 if the jth output at time i is required to be tracked,
and 0 otherwise. Φ is produced by splitting each non-zero element of ψ into a separate
row, giving

Φi,j =

{
1 if ψj = 1,

∑j
q=1 ψq = i

0 otherwise
(9.6)

with M =
∑p

j=1Mj . When any output vector is pre-multiplied by Φ, it extracts the
components that correspond to prescribed point-to-point locations, whilst retaining their
original order, hence yr = Φyd.

Consider the general ILC control update using the point-to-point algorithm

uk+1 = uk + L(yr − Φyk) (9.7)

= uk + Lek (9.8)

The convergence condition is given by

ρ(IM − ΦGL) < 1 (9.9)

and will be shown to provide greater performance than standard ILC which corresponds
to Φ = IM , M = N .

9.2 Point-to-point ILC motivation

Theorem 9.1. Let d denote the rank deficiency of the plant matrix G (the number of
linearly dependent rows). If d > 0 the ILC update (9.7) with Φ = I cannot force the
plant to track an arbitrary reference trajectory yd. However the point-to-point update
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(9.7) with Φ 6= I can enforce tracking of an arbitrary reference yr if and only if the
tracked points are chosen such that

M ≤ Np−max {d,N(p−m)} (9.10)

Proof. A necessary and sufficient condition for an operator L to exist satisfying (9.9) is
that rank (ΦG) = M . For the standard ILC case Φ = I, M = N and hence rank (ΦG) =
N − d < M , leading to IM −ΦGL having d eigenvalues at unity. Now the ith row of ΦG
is the (j|Φi,j = 1)th row of G, hence if p ≤ m and the point-to-point samples are chosen
to correspond to any subset of linearly independent rows of G, the convergence condition
(9.9) can be satisfied. If p > m then the additional condition M ≤ Nm is imposed. �

The ability of point-to-point ILC to employ a modified standard reference to recover
feasibility is extremely important, however many tasks are naturally defined only at
a small number of points, and hence additional benefits may also be expected by not
enforcing unnecessary tracking.

To show its ability to address the limitations caused by MIMO interaction, the following
lemma is required.

Lemma 9.2. Let the matrix Φ correspond to a point-to-point tracking task defined using
(9.3), and suppose an arbitrary point ni,j is removed from the tracking specification. This
corresponds to a new Φ matrix denoted by Φ̃, which is equal to Φ but with the qth row
removed (where q = i × p + j). Let the M eigenvalues of the matrix A = (ΦG)(ΦG)T

be denoted λM < λM−1 · · · < λ2 < λ1, which also equal the singular values since A is
Normal. Similarly, let the M − 1 eigenvalues of the matrix B = (Φ̃G)(Φ̃G)T be denoted
µM < µM−1 · · · < µ3 < µ2, which also equal the singular values since B is Normal. Then
the following relationship holds

λM < µM < λM−1 < µM−1 · · · < µ3 < λ2 < µ2 < λ1. (9.11)

and in particular
σ(Φ̃G(Φ̃G)T ) < σ(ΦG(ΦG)T ) (9.12)

and
σ(Φ̃G(Φ̃G)T ) > σ(ΦG(ΦG)T ) (9.13)

Proof. This is a special case of Cauchy’s Interlace Theorem for eigenvalues of Hermitian
matrices, with a full proof appearing in Freeman and Tan (2013).

Lemma 9.2 shows how the maximum singular value, σ(ΦG(ΦG)T ), is monotonically re-
duced by removal of tracking points within the ILC task. At the same time the minimum
singular value, σ(ΦG(ΦG)T ), is monotonically increased. The next sections illustrate the
performance advantages it provides.
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9.3 Point-to-point gradient ILC

9.3.1 Algorithm description

Application of gradient ILC using the cost function (9.4) yields the update

uk+1 = uk + β(ΦG)∗ek (9.14)

where (ΦG)∗ = R−1(ΦG)TQ. This is simply the general form (7.8) but with a redefined
plant operator to account for the choice of Q(i) components (9.3). Following previous
comments, consider an arbitrary choice of Q̄ = qI, 0 < q < ∞, used in input (9.14).
It can then be shown that any choice of positive scalar β in the approximate range(

0, 1
q‖ΦG(ΦG)T ‖

)
minimises the cost function (9.4) for a particular choice of Q̄ and R

weights. In particular, (9.4) is minimised for the explicit choice of Q̄ and R using a value
of β given by

β̂ =
eTkQΦG(ΦG)∗ek

‖ ΦG(ΦG)∗ek ‖2Y + ‖ (ΦG)∗ek ‖2U
(9.15)

9.3.2 Convergence analysis

From (9.14) the error evolution is given by

ek+1 = (I − βΦG(ΦG)∗)ek (9.16)

A necessary and sufficient convergence condition is

ρ
(
I − βΦG(ΦG)∗

)
< 1 (9.17)

so that

0 < βσi
(
ΦG(ΦG)∗

)
< 2, ∀i (9.18)

giving

β <
2

||ΦG(ΦG)∗||
. (9.19)

Convergence to zero error is guaranteed if ΦG has full rank, and either the trial-dependent
gain (9.15) is employed with any choice of symmetric positive definite Q̄ and R, or a fixed
gain satisfying

0 < β <
2

q ‖ ΦG(ΦG)T ‖
(9.20)

is used together with R = I and any choice of Q̄ = qI, 0 < q <∞.
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Let V be the eigenvector matrix of ΦG(ΦG)∗, with Λ a diagonal matrix of corresponding
eigenvalues

(
σi(ΦG(ΦG)∗)

)2. Then (9.16) can be written as

ek+1 = V (1− βΛ)V −1ek (9.21)

so that
V −1ek = (1− βΛ)kV −1e0. (9.22)

Since V −1 = V T , the component of Φe0 projected onto the ith eigenvector of ΦG(ΦG)∗

hence evolves as
(

1 − β
(
σi(ΦG(ΦG)∗)

)2)k. If σ2 is the minimum eigenvalue then the
point-to-point reference with slowest convergence rate is a scalar multiple of its corre-
sponding eigenvector. Similarly if σ2 is the maximum eigenvalue then the point-to-point
reference with the fastest convergence rate is a scalar multiple of its corresponding eigen-
vector. For an arbitrary reference, the error norm sequence lies in the interval(

1− β
(
σ(ΦG(ΦG)∗)

)2)k ≤ ‖ek‖Y
‖e0‖Y

≤
(

1− β
(
σ(ΦG(ΦG)∗)

)2)k (9.23)

For a given reference an approximation of the convergence rate is the weighted sum

‖ V Tyr ‖p
‖ (I − βΛ)V Tyr ‖p

(9.24)

where ‖ · ‖p denotes the p-norm.

9.3.3 Control effort

Application of (9.14) for any β satisfying (9.15) or (9.20) yields

uk+1 = uk + β(ΦG)∗(yr − ΦGuk) (9.25)

= (I − β(ΦG)∗ΦG)uk + β(ΦG)∗yr (9.26)

= (I − β(ΦG)∗ΦG)k+1u0 +
( k∑
i=0

(I − β(ΦG)∗ΦG)i
)

(β(ΦG)∗)yr (9.27)

⇒ u∞ = (I − (I − β(ΦG)∗ΦG))−1β(ΦG)∗yr (9.28)

= (ΦG)†yr. (9.29)

Hence the equation (7.26) is replaced by

||u∞|| = ||(ΦG)†yr|| ≤
||yr||

σ
(
ΦG(ΦG)∗

) . (9.30)
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9.3.4 Robustness analysis

In the point-to-point case the uncertainty model from (7.27) is replaced by

ΦG̃ = UΦG (9.31)

and the condition (7.28) changes to

0 < β <
2

maxi
{

0, <{λi(U)}2+={λi(U)}2
<{λi(U)}

} 1
σ2(ΦG(ΦG)∗)

(9.32)

Applying Lemma 9.2 shows that the robustness bound increases as points are removed
from the point-to point-tracking task. Appropriate use of point-to-point ILC can there-
fore mitigate the robustness degradation observed in Section 7.1.4.

9.3.5 Experimental results

Table 9.1 shows the maximum and minimum of singular values of GGT and ΦG(ΦG)T

for varying interaction levels. Note that the input bound is conservative and will only
match observed results when yd is a multiple of the eigenvector corresponding to the
slowest eigenvalue. For standard gradient ILC it is clear that:

1. convergence of the slowest mode is not possible in practice since σ(GG∗) = q
rσ(GGT )

approaches 0 (from (7.19)),

2. the input bound required is also prohibitively large (from (7.26)),

3. as interaction increases, robustness bounds reduce since σ(GGT ) increases (from
(7.28) and (6.10))

For point-to-point gradient ILC, the convergence, input norm and robustness properties
all significantly improve. In particular

1. convergence of the slowest mode is far more rapid, but still reduces as interaction
increases (from (9.23), (6.10) and (9.13) ),

2. the input norm bound is far smaller, but still increases as interaction increases
(from (9.30), (6.10) and (9.13)),

3. the robustness bounds are far larger, but still reduce as interaction increases (from
(9.32), (9.12) and (6.10)).

The point-to-point gradient ILC update (9.14) has been applied with the optimal β
calculated using (9.15). The highest performance found in practice corresponds to the
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Table 9.1: The smallest, largest singular value and the bound of controller effort
for varying interaction level.

Coupling Standard ILC Point-to-point gradient ILC
Robustness† Input bound

c σ(GGT ) σ(GGT ) σ(ΦG(ΦG)T ) σ(ΦG(ΦG)T ) ||yr||Y
σ

0 5.06 10−9 456.51 0.1891 5.5655 87.3829
0.2 5.10 10−11 457.06 0.1802 5.5872 89.5615
0.4 1.13 10−9 457.11 0.1686 6.5419 98.0077
0.6 1.32 10−11 459.01 0.1616 6.5710 102.2531
0.8 2.79 10−10 488.04 0.1482 7.0148 111.4987
1 3.77 10−11 565.01 0.0549 7.5565 300.9854
†Robustness measure appearing in (9.32) : a smaller value indicates greater robustness.

weighting matrices R = I, Q = 0.1I for the highest interaction case and the remaining
interaction cases employ Q = I. These have been found after application of many
alternative values. The reference signals are shown in Figure 9.1. Both references have
a total length of T = 2.4 seconds. Six reference points are also defined for use in point-
to-point ILC and are given by yd = [6.9, 0.5, 3.2, 0.9, −6.9, 1.5]T at the time samples
S1 = {0.5, 0.9, 1.5}, S2 = {0.8, 1.4, 1.7}. The odd values of yd relate to input 1 and
the even values relate to input 2.

Figure 9.1: References for standard and point-to-point ILC controllers.

For values of c = 0, 0.2, 0.4, 0.6, 0.8, 1 the errors norm maintains low values of around
1, and takes about 10 trials to reach that value. The convergence rates and final errors
are quite similar for these cases but they have a different saturated control norm since
a higher interaction level generally requires a higher control effort to force the system
to track the reference signals. Increasing the interaction level leads to increased error
norms and also controller norms. A significant change in convergence rate is shown in the
highest interaction case because it has a lower value of q in order to increase robustness to
cope with high uncertainty and noise. Full results are shown in Figure 9.2 which confirms
that a zero error norm is still hard to achieve in practice due to model uncertainty and
noise.



124 Chapter 9 Point-to-point ILC

Similarly to the previous cases, the final error depends on the coupling magnitude. How-
ever, now reasonable tracking is achieved in the highest interaction case, where, after
300 trials the error norm output is approximately 3. This confirms far superior perfor-
mance compared to the standard ILC case. In general, point-to-point gradient ILC has a
lower controller norm for all interaction cases compared with the standard gradient-based
ILC, which has reduced the effect of uncertainty leading to convergence to a smaller error
norm.

(a) Controller norm. (b) Error norm.

Figure 9.2: Point-to-point gradient ILC.

Point-to-point gradient ILC shows improved performance and robustness properties com-
pared with standard gradient ILC and standard NOILC on this MIMO facility. Increased
interaction is also shown to correspond to a higher input norm, higher error norm and
slower convergence. These features magnify effects of model uncertainty, which are fur-
ther exacerbated when the plant is forced to track additional points in the reference
giving rise to learning transients and instability.

9.4 Point-to-point NOILC

In this section NOILC the performance properties in Chapter 8 are generalised for appli-
cation to the point-to-point problem. This includes the ‘standard’ ILC problem discussed
in Sections 8.1 and as a special case, through selection of Φ = I.

9.4.1 Algorithm description

9.4.1.1 Point-to-point feed-forward NOILC

Employing the choice of Q components (9.3) for point-to-point tracking simply means
substituting for the plant operator and error in (8.9). This yields the update

uk+1 = uk + (ΦG)∗(I + ΦG(ΦG)∗)−1ek (9.33)
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where ek is the experimentally recorded point-to-point tracking error.

9.4.1.2 Point-to-point feed-forward plus state feedback NOILC

The point-to-point implementation for state feedback NOILC is simply (8.13) - (8.15)
using the weight selection (9.3).

9.4.2 Convergence analysis

The tracking error evolution (8.16) is exchanged for

ek+1 = (I + ΦG(ΦG)∗)−1ek. (9.34)

and tracking error on the kth trial is bounded by(
1 + σ2(ΦG(ΦG)∗)

)−k
≤
‖ek‖Y
‖e0‖Y

≤
(

1 + σ2(ΦG(ΦG)∗)
)−k

. (9.35)

The slowest convergence rate is dictated by σ2(ΦG(ΦG)∗) and, assuming for simplicity
that R = rI, Q = qI, strictly increases as points are removed from the tracking task
via Lemma 9.2. This hence mitigates reduction in convergence rates caused by MIMO
interaction, as discussed in Section 8.2.

9.4.3 Control effort

The limiting input (8.23) is exchanged for

uk+1 = (ΦG)†yd (9.36)

which can be shown to correspond to the minimum input energy solution to the tracking
task, given by

arg min
u

{
‖u‖2 : yd = ΦGu

}
(9.37)

The input norm bound (8.24) is replaced by

‖u∞‖ =
∥∥∥(ΦG)†yd

∥∥∥
Y
≤

‖yd‖Y
σ(ΦG(ΦG)∗)

(9.38)

and strictly reduces as points are removed from the tracking task via Lemma 9.2. Hence
suitably reducing the number of points tracked by ILC mitigates degradation of system
performance caused by increased MIMO interaction.
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9.4.4 Robustness analysis

In the point-to-point case, the specification of the true plant in Theorem 2 is replaced
by

ΦG̃ = UΦG (9.39)

and the condition (8.26) becomes

0 <
q

r
<

2

maxi
{

0, <{λi(U)}2+={λi(U)}2
<{λi(U)} − 2

} · 1
σ2(ΦG(ΦG)T )

(9.40)

Applying Lemma 9.2 shows that the robustness bound increases as points are removed
from the point-to point-tracking task. Appropriate use of point-to-point ILC can there-
fore mitigate the robustness degradation observed in Section 8.4.

9.4.5 Experimental results

Table 9.2 shows parameters governing the robustness, worse case convergence rate, and
input norm for the six levels of interaction. The value of qr required to enforce a NOILC
convergence rate of 0.5 is also shown. Note that the input bound is conservative and will
only match observed results when yd is a multiple of the eigenvector corresponding to
the slowest eigenvalue. For standard NOILC it is clear that:

1. convergence of the slowest mode is not possible in practice since σ(GG∗) = q
rσ(GGT )

approaches 0 (from (8.19)),

2. the input bound required is also prohibitively large (from (8.24)),

3. as interaction increases, robustness bounds reduce since σ(GGT ) increases (from
(8.26) and (6.10))

For point-to-point NOILC, the convergence, input norm and robustness properties all
significantly improve. In particular

1. convergence of the slowest mode is far more rapid, but still reduces as interaction
increases (from (9.35), (6.10) and (9.13) ),

2. the input norm bound is far smaller, but still increases as interaction increases
(from (9.38), (6.10) and (9.13)),

3. the robustness bounds are far larger, but still reduce as interaction increases (from
(9.40), (6.10) and (9.12)).
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Table 9.2: Robustness measures, input bounds and convergence rates of slowest
mode for NOILC.

Coupling Standard ILC Point-to-point ILC
Robustness† Convergence‡ Convergence§ Input bound

c σ(GGT ) σ(GGT ) σ(ΦG(ΦG)T ) σ(ΦG(ΦG)T ) (1 + σ2)−1 q
||yr||Y
σ

0 5.06 10−9 456.51 0.1891 5.5655 0.9655 27.9651 87.3829
0.2 5.10 10−11 457.06 0.1802 5.5872 0.9671 29.3770 89.5615
0.4 1.13 10−9 457.11 0.1686 6.5419 0.9724 35.1791 98.0077
0.6 1.32 10−11 459.01 0.1616 6.5710 0.9746 38.2928 102.2531
0.8 2.79 10−10 488.04 0.1482 7.0148 0.9785 45.5306 111.4987
1 3.77 10−11 565.01 0.0549 7.5565 0.9970 331.7839 300.9854

†Robustness measure appearing in (9.40) : a smaller value indicates greater robustness.
‡Convergence rate of slowest mode, q = 1.

§Value of q required for the slowest mode convergence rate of 0.5.

Table 9.2 hence confirms results in Chapter 7 linking interaction with maximum and min-
imum singular values of GGT . It also confirms the results in Section 9.2, 9.3, 9.4 linking
point-to-point tracking with maximum and minimum singular values of ΦG(ΦG)T .

9.4.5.1 Point-to-point feed-forward NOILC

The same references as used in the gradient ILC case of Section 9.3.5 are used and
shown in Figure 9.1. Point-to-point feed-forward NOILC is implemented to track yr
using update equation (9.33) with R = I and Q = I found to perform the best for all
interaction cases except the highest interaction level which uses Q = 0.05I.

(a) Controller norm. (b) Error norm.

Figure 9.3: Point-to-point feed-forward NOILC

In Figure 9.3(b), the error norm shows a superior result to point-to-point gradient ILC.
For levels of interaction between c = 0 and c = 0.8, the error norm is below 0.5 and
is even smaller in the zero interaction case. The convergence is also fast and it takes
only 3 trials to reach its final error norm. The most challenging case is still the highest
interaction level, which has a slow convergence rate due to a lower value of q. It takes
more than 100 trials to reach the final error value but this is maintained over 300 trials.
The corresponding control effort norms are shown in Figure 9.3(a) and indicate that the
controller norm increases when higher interaction is applied.
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This method shows how point-to-point can mitigate the effect of uncertainty at the
highest interaction level while the standard NOILC leads to instability. The point-to-
point feed-forward NOILC yields favorable error and controller norm values. Compared
to point-to-point gradient ILC this method shows an improvement in error norm, having
a lower final value and a faster convergence rate. The controller effort has a lower value
for the highest interaction case and reaches a steady-state value quicker.

The point-to-point method is again applied, but now noise is injected as described in
Section 8.5.1. The controller update is still given by (9.33). Figure 9.4 shows both
controller norms and error norms results. The controller norm and error norm increase
when the interaction level rises. For interaction levels between c = 0 and c = 0.8 error
norms fluctuate due to the injected noise. This leads to fluctuation in controller norm
values also. The highest interaction case is not shown in this experiment because it
responded aggressively to noise controller update displays instablity. For safety reasons
and to protect the mechanical system the data for this interaction level has not been
collected.

Compared to standard feed-forward NOILC with noise results shown in Figure 8.2, the
error norm is significantly improved taking a lower value especially in the high interaction
case. The point-to-point method aids the controller in maintaining a low error norm value
around 3. Clearly, the controller norm also improves in term of steady value.

(a) Controller norm. (b) Error norm.

Figure 9.4: Point-to-point feed-forward NOILC with noise injection.

Overall the point-to-point algorithm helps standard NOILC to mitigate the effects of
uncertainty and noise. Therefore in challenging situation like the high interaction case
and the highest interaction case, divergence does not occur and the controller norm
possesses a lower value.

9.4.5.2 Point-to-point feed-forward plus state feedback NOILC results

The combined feed-forward and state feedback implementation of point-to-point NOILC
is applied, using the controller update described in Section 9.4.1.2. The weights Q =
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0.05I, R = I are employed for the highest interaction level, and the remaining cases use
Q = I, R = I. The reference is still the same as the previous case.

As shown in theory, the point-to-point method only tracks a subset of points and therefore
leads to superior results in terms of both controller norm and error norm as confirmed
in Figure 9.5. It yields low errors norm and almost reaches zero error after 4 trials in all
interaction cases except for the highest. For interaction case c = 1, the convergence rate
of the error norm is slower compare to other interaction levels. It takes 100 trials to reach
an error norm of 3 and maintains that value until the end of the test. Corresponding to
this result the input norm has a higher value than the feed-forward implementation of
NOILC in order to force the system to track the reference. Hence it can be concluded
that feed-forward NOILC is more robust.

Compared to point-to-point feed-forward NOILC this method has a similar controller
norm but a significantly lower error norm for all cases between c = 0 and c = 0.8.
For interaction c = 1, the error norm has a similar value but the point-to-point feed-
forward plus state feedback NOILC possesses a higher controller norm since the controller
takes into account the estimated state error in the controller update. Therefore the
performance is degraded by an increasing interaction level which causes a decline in
robustness.

(a) Controller norm. (b) Error norm.

Figure 9.5: Point-to-point feed-forward plus state feedback NOILC.

Finally the point-to-point method is again implemented with the addition of injected
noise. The error norm in Figure 9.6 confirms significant improvement compared with
other controller methods. It does not fluctuate significantly and maintains a low value.
At the same time the controller norm is slightly higher than the noise-free case and
significantly lower than the standard NOILC case. For the high interaction level the
error norm has a value of ≈ 2 which is smaller than that of point-to-point feed-forward
NOILC. The control input norm is approximately the same but there is a significant
improvement in the error norm. Due to protecting the mechanical system the highest
interaction case is not implemented due to the aggressive response from the system.
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(a) Controller norm. (b) Error norm.

Figure 9.6: Point-to-point state feedback NOILC with noise injection.

9.5 Summary

This chapter has introduced a new algorithm, termed point-to-point ILC, which can be
integrated into gradient ILC and NOILC scheme such that its performance improves
significantly. The theoretical properties of each previous controller have been extended
to encompass this framework.

All the controllers implemented highlight the effect of interaction on the control effort
and error norms. When the interaction increases so too does the control effort, and
this gives rise to an increased error norm due to magnified plant uncertainty and noise
which are exacerbated by the larger operating region and more rapidly changing signals.
Therefore the error norm degrades, more oscillations are produced and the control effort
norm is seen to increase in all cases. These confirm the theoretical predictions given in
this chapter.

Both standard gradient ILC and NOILC approaches cannot cope with the highest inter-
action case, however experiments show that the point-to-point implementations of both
algorithms restore satisfactory performance in terms of controller and final error norms.
Hence the point-to-point method is a practical way of addressing the effect of a highly
interacting systems if only a subset of points are required to be tracked.
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Conclusions and further work

A MIMO facility has been developed to meet the needs of ILC benchmarking, using
theoretical analysis and extensive simulations. It has been successfully manufactured
with the aid of 3D computer-aided design tools. The testbed is suitable for use with
a wide range of ILC controllers which are straightforward to implement using the Mat-
lab/Simulink environment. The facility also allows adjustment of interaction level by
connecting/disconnecting the interaction dampers or clamping the coupling shaft. Addi-
tionally, disturbance/noise injection can be applied to generate a wide range of repetitive
disturbances and/or random noise to make the system more challenging to control. The
MIMO facility is hence an ideal tool with which to investigate a variety of controllers
with respect to the level of interaction and effect of disturbance/noise injection.

With the aid of Matlab and Simulink, P-type, D-type and phase-lead ILC controllers
have been applied to establish the efficacy of the MIMO system as a bench-marking
platform. The controllers have shown the ability to force the MIMO system to track
reference signals in the first few trials but after that the outputs diverge and cause an
aggressive response. Hence advanced ILC controllers were applied in Chapter 7-9 to
improve the performance. Before applying any advanced ILC method, a model for the
MIMO facility was derived since the theoretical model was ill-suited due to being of a
very high order and hence requiring excessive computational load. Therefore a reduced
model was derived using a frequency modeling method, which yielded models suitable
for implementable algorithms.

Standard gradient ILC and NOILC were introduced in Chapter 7, 8 and have been ap-
plied to control the MIMO system. These two controllers have the same cost function
and have the same input norm when the number of trials tends to infinity. The two
controllers also have the ability to mitigate effects of uncertainty and noise. The results
show that the standard gradient ILC produces a higher controller norm than NOILC.
In terms of convergence, NOILC gives improved results compared with standard gradi-
ent ILC as well as lower error norms. NOILC was shown to yield a lower error norm

131
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and could maintain a small value during the tests. Overall, standard NOILC showed
improvement over standard gradient ILC in terms of both controller norm and error
norm. However, both controllers could not successfully control the MIMO facility with
the highest interaction setting due to nonlinear factors and the model uncertainty that is
associated with the highest interaction level. Hence alternative algorithms were required
to minimise these factors.

The point-to-point algorithm was introduced in Chapter 9 to eliminate points within
the demand reference, which were deemed not important to track. This method was
shown to reduce the effect of uncertainty and disturbance which built up during trials.
It was shown to maintain a low error norm during 300 trials and the controller norm was
substantially smaller compared to that of both NOILC and gradient ILC. Therefore, in
practice, this method provides superior results compared to standard controllers.

Under noise injection conditions, standard ILC controllers still produces satisfactory
results up to the medium interaction level, however with higher interaction levels, the
controllers were shown to yield unstable results since the error norm started to diverge
after a few hundred trials. However, point-to-point gradient ILC and NOILC were able
to cope with this condition and could keep the error norm at a low value.

Results in this thesis also confirmed the relationship between interaction level and the
maximum eigenvalue of the plant model and showed that increasing interaction or noise/dis-
turbance leads to a reduction in robustness for both NOILC and gradient ILC. With the
aid of the point-to-point method, increasing the number of removed points leads to in-
creased robustness for both controllers.

In summary, many controllers have been applied to investigate the effect of MIMO inter-
action and uncertainty. The facility that has been developed also shows how noise/dis-
turbance injection degrades the performance of controllers. Basic ILC controllers which
do not use a model have been shown to perform poorly while model based ILC provides
superior results except in the case of the highest level of interaction. The point to- point
method enhances the performance of advanced ILC even in the highest interaction or
noise/disturbance conditions. Generally, the point-to-point method embeds robustness
and mitigates the effects of uncertainty. The MIMO facility has hence been shown to be
a valuable tool in investigating MIMO interaction and noise/disturbance conditions.

10.1 Future work

In order to improve the results achieved using model based ILC controllers, a more
accurate model for the MIMO facility needs to be developed. The better the model, the
better the results these controllers may be expected to give, especially at the highest
interaction level.
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The MIMO facility is the only benchmarking system that allows engineers to apply a
broad range of ILC controllers. Therefore there is a scope for not only ILC algorithms
to be investigated but for other control structures to be implemented and analysed. In
general all approaches suffer from a lack of experimental analysis in the MIMO case and
in the presence of noise/disturbance injection. Therefore the MIMO facility can play an
important role in providing evaluation and assessment.

The MIMO system is still in phase 1, it can be modified to make a more complicated
system with added spring-mass-damper components between induction motors and dif-
ferential gearboxes. The devices will make the system more difficult to control and it is
another challenge for ILC. The system has much more uncertainty and non-linear factors
such as friction or backlash from dampers and coupling connection.

The thesis gives details of ILC performance for MIMO system under disturbance injec-
tion, varying interaction level but has not given any analysis under non-minimum phase
effect for MIMO system. It is clearly that the inversed plant is unstable. Hence it is
worth to investigate how NOILC, gradient ILC and point-to-point method perform with
this kind of system.

In the industrial robot case the system contains non-linearities in the form of, for example,
friction, backlash, and saturations. The ILC theory should be extended also to this kind
of MIMO system. Especially point-to-point method is useful for robotic applications. It
has been a favorite method used in rehabilitation system and gave promised results as
discussed previously. Therefore it needs to investigate further for non-linear system since
human arm or wrist are a non-linear model. The method can be tested and improved
by using the MIMO rig before applying to try on controlling human parts.

Stochastic learning control algorithms are one class of controller that needs to be applied
and evaluated using the MIMO system. These controllers were first introduced in (Saab,
2001a) for the discrete-time case. The controllers are based on P-type and D-type struc-
tures but the gain is designed using a state-space model of the system (Saab, 2001b),
(Saab, 2003). The advantage of this method is that it takes into the account the distur-
bance model and noise, and therefore is suitable for the MIMO system which has one
channel of disturbance injection. The method has also been applied to a gantry robot
(Cai et al., 2008a) and compared to other controllers. However the gantry robot only has
a small amount of interaction, and therefore the effect of noise and disturbance cannot
be shown clearly. The MIMO facility will be a suitable platform with which to evaluate
stochastic controllers, unlocking their full noise and disturbance capabilities. There is
also an existing model of disturbance injection which can be used for immediate design.

Further testing can be carried out using the same technique but in a different arrange-
ment. The method consists of two filters that need to be designed. One filter is applied to
the measured error and another one to the controller update. The approach is derived and
analysed in (Bristow, 2008a), (Bristow, 2010). It is based on minimising the error power
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spectrum from trial to trial so that the fastest convergence can be achieved. The resulting
filters also depend on a deterministic-to-stochastic ratio. Cai et al. (2011a) applied the
approach and gave promising experimental results for the gantry robot. Therefore the
MIMO facility provides a new challenge for the controller to address higher interaction
levels and different disturbance powers.

The continuous-time NOILC has been applied to the non-minimum phase system and
has yielded accurate results. For further investigation the continuous-time gradient ILC
will be derived for the continuous-time case and applied on the same non-minimum phase
system. The results will be evaluated and compared to those of NOILC.

In addition to these controllers there are many different approaches that are suitable for
the MIMO system, for example adaptive iterative learning control or repetitive control
methodologies.
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Figure A.9: Middle supporter for S dash-pot model.
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Figure A.14: Components of the mechanical system
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Figure A.15: Components of mechanical system



Appendix B

Device datasheets and measured
data

B.1 Data collection for inverter and induction motor

Ts is the number of samples per second. TT is the trial time. Amp is the amplitude of
the sine-wave applied to the system.

Figure B.1: Data collection from the inverter and the induction motor

B.2 Encoders

The encoder in the longer of the two induction motors is from the Muirhead Vatric
company but this model is around 20 years old and this has been custom modified.
Therefore there is no specific datasheet for this device. The only information obatianable
is the wiring diagram shown in Table B.1. The encoder has 2000 PPR. The second

149
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Table B.1: Muirhead Vatric encoder wiring diagram

No Colour Function
1 Green 0V
2 Blue A
3 Yellow B
4 Orange Z
5 Brown Ā
6 white B̄
7 Purple Z̄
8 Red 5V
9 Case shield 0V

encoder is from the British Encoder company and this encoder has the same number of
pulses (2000 PPR). The voltage applied is 5V. The wiring diagram is shown in Table B.2

Table B.2: British encoder wiring diagram

No Colour Function
1 Black Com
2 white +V DC
3 Brown A
4 Yellow Ā
5 Red B
6 Greem B̄
7 Orange Z
8 Blue Z̄
9 Case shield 0V

B.3 Induction motors

The two induction motors are from a company called Eurodrive. All the parameters of
the motors are from (Barton, 1999) and are given in the Table B.3

B.4 ABB inverter and setup parameters

The method for configuring the inverter is outlined in the manual document booklet.
Table B.4 shows parameters which have been used configure the drive. The Hand/auto
macro is used as 9902 are set at 5. Therefore the AI port is the frequency reference
which corresponds to the speed reference since the speed of motor is proportional to the
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Table B.3: Induction motor parameters

No Name Value Unit
1 Vs 415 V
2 Frequency 50 Hz
3 Stator resistance 11 Ω
4 Rotor resistance 12 Ω
5 Stator self inductance 0.03 H
6 Rotor self inductance 0.0442 H
7 Mutual inductance 0.81 H
8 Number of poles 2
9 Inertial 0.00427 kgm2

10 Viscous friction 0.005 Ns/m
11 Dry friction 0.1 Nm

applied frequency. DI3, DI4,DI5 are not connected. DI1 is connected to +24V and DI2
is connected to a signal which stipulates the direction of the motor.

Table B.4: ABB inverter configuration in REM (remote) mode

No Code Value Meaning
1 2202 0 Acceleration time
2 2203 0 Deceleration time
3 2008 50Hz Maximum output frequency
4 1301 0 Minimum frequency refer to port AI
5 9905 415V Motor nominal voltage
6 9906 4.75A Motor Nominal current
7 9907 50Hz Motor nominal frequency
8 9902 5 Using the mode 5 to control the inverter





Appendix C

Coding method

C.1 Frequency modeling

Figure C.1: The problem of drift in the frequency model.
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