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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

DIVISION OF SOCIAL STATISTICS AND DEMOGRAPHY

Doctor of Philosophy

by Emilio López Escobar

This thesis is formed of three manuscripts (chapters) about variance estimation.
Each of the chapters focuses on developing new original variance estimators. The
Chapter 1 proposes a novel jackknife variance estimator for self-weighted two-stage
sampling. Customary jackknifes for these designs rely only on the first sampling
stage. This omission may induce a bias in the variance estimation when cluster
sizes vary, second stage sampling fractions are small or when there is low variability
between clusters. The proposed jackknife accounts of all sampling stages via dele-
tion of clusters and observations within clusters. It does not need join-inclusion
probabilities and naturally includes finite population corrections. Its asymptotic
design-consistency is shown. A simulation study show that it can be more accurate
than the customary jackknife used for this kind of sampling designs (Rao, Wu and
Yue, 1992). The Chapter 2 proposes a totally new replication variance estimator
for any unequal-probability without-replacement sampling design. The proposed
replication estimator is approximately equal to the linearisation variance estima-
tors obtained by the Demnati and Rao (2004) approach. It is more general than
the Campbell (1980); Berger and Skinner (2005) generalised jackknife. Its asymp-
totic design-consistency is shown. A simulation study shows it is more stable than
standard jackknifes (Quenouille, 1956; Tukey, 1958) with ad hoc finite population
corrections and than the generalised jackknife (Campbell, 1980; Berger and Skin-
ner, 2005). The Chapter 3 proposes a new variance estimator which accounts the
item non-response under unequal-probability without-replacement sampling when
estimating a change from rotating (overlapping) repeated surveys. The proposed
estimator combines the original approach by Berger and Priam (2010, 2012) and
the non-response reverse approach for variance estimation (Fay, 1991; Shao and
Steel, 1999). It gives design-consistent estimation of the variance of change when
the sampling fraction is small. The proposed estimator uses random Hot-deck
imputation, but it can be implemented with other imputation techniques. Fur-
ther, there are two more complementary chapters. One introduces the R package
called samplingVarEst which implements of some methods for variance estimation
utilised for the simulations. Finally, there is a brief chapter which discusses future
research work.
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Introduction

In survey sampling the aim is to make inferences about a (finite) population from

a sample. We are often interested in estimating characteristics of a population or

in producing parameter-estimates of an assumed population model. In making in-

ferences from survey data, we have ultimately to deal with the quality of sampling

strategies and the accuracy of the obtained estimates. As it will be introduced

below, the output of the variance estimation problem gives input matter for that

quality and accuracy scrutiny. In practice, the variance estimation thus emerges as

central and imperative for accomplishing the survey sampling aim correctly (e.g.

Shao and Tu, 1995, ch. 1 & 6).

Two major conceptions

Inference from survey data has two major conceptions, either the design-based

approach or the model-based approach. Names to these approaches may vary and

mixtures are also available, e.g. the model-assisted approach (Särndal, Swensson

and Wretman, 1992). An overview of approaches can be encountered in Kish

(1995, sec. 7), Särndal et al. (1992, sec. 1.10) and in Smith (2001). Further, a

very good and complete summary can be found in Brewer and Gregoire (2009).

This thesis is confined to the design-based approach, also know as the classical or

as the randomised approach. The design-based conception is widely acknowledged

and used in practice. It can be found in any standard sampling techniques text-

book, e.g. Kish (1965); Särndal et al. (1992); Lohr (1999); Lehtonen and Pahkinen

(2004). Literature comprising the model-based approach includes, for example,

books by Valliant, Dorfman and Royall (2000) and, recently, by Chambers and

Clark (2012).

The variance estimation problem

Under the design-based approach, the inference is subject to the variability that

comes from the randomised draw of the sample. Accordingly, the population

1



2 Introduction

is assumed fixed and the variability emerges from the changeable output from

sample to sample. This variability is measured by the variance of the used point

estimators. In practice, this variance is unknown as it would be necessary to have

available all the possible samples. Usually only one sample is available and thus

the variance has to be estimated from it.

The estimated variance is important because it provides an input for the con-

struction of confidence intervals, coefficients of variation, hypothesis testing and

design effects. These serve as accuracy measures and ways to asses the suitability

of certain sampling strategies.

Variance estimation under complex sampling designs

The variance estimation often becomes complicated when the involved point esti-

mators are non-linear and when the used sampling designs are complex (e.g. Kish

and Frankel, 1974). Under that complex framework, standard statistical theory is

no longer suitable (e.g. Chambers and Skinner, 2003, sec. 1.1). That is, the usual

i.i.d. statistical inference assumptions no longer hold and standard methods fail.

Furthermore, estimating the variance of an estimator becomes even more com-

plex in the presence of certain features encountered in practice, e.g. non-response,

overlapping samples, multiple-frames (see Wolter, 2007, p. 2).

Solutions for the variance estimation problem include the traditional Taylor lin-

earisation (or delta) methods and resampling methods such as the Jackknife, the

Bootstrap and the Balanced half-sampling. An introductory overview about vari-

ance estimation can be found in Wolter (2007). Whereas a more theoretical com-

pendium can be found in Shao and Tu (1995).

Organisation of this thesis

This thesis is formed of three manuscripts about variance estimation. The focus

of each manuscript is on developing new original variance estimators for different

type of point estimators, sampling designs and/or particular features encountered

in practice. Each manuscript embodies a chapter of this thesis. The chapters are

related, nevertheless, each one is intended to be a self-contained and a standalone

piece of research.

Further, as pointed by the examiners, there are two more complementary chap-

ters. One introduces R software implementations of some methods for variance

estimation utilised for the simulations. Finally, there is a last brief chapter which

discusses future research work.



Introduction 3

The first chapter

The first chapter proposes a novel jackknife-type variance estimator for self-weighted

two-stage sampling designs. This kind of two-stage sampling is the most utilised in

practice as it simplifies field-work. Currently, the available jackknife variance es-

timators for this kind of designs rely only on the first sampling stage, i.e. deletion

of clusters. However, the omission of the second stage may induce a bias in the

variance estimation. Particularly when cluster sizes vary, second stage sampling

fractions are small or when there is low variability between clusters. On the con-

trary, the proposed jackknife from Chapter 1 accounts of all sampling stages via

deletion of clusters and observations within clusters. In Chapter 1, it is also shown

that the proposed jackknife is asymptotically design-consistent, and thus, valid for

inference. The proposed two-stage jackknife does not need join-inclusion proba-

bilities and naturally includes finite population corrections. It is further shown

that it can be more accurate than the customary jackknife utilised for these kind

of sampling designs (Rao, Wu and Yue, 1992).

The second chapter

Following, the second chapter proposes a totally new replication variance estimator

for any unequal-probability without-replacement sampling design. The proposed

replication estimator has the advantage of being approximately equal to the lin-

earisation variance estimators but without the need of deriving derivatives. It is

shown that the proposed replication method is asymptotically design-consistent

and more general than the generalised jackknife from Campbell (1980); Berger and

Skinner (2005). Moreover, a simulation study shows that the proposed estimator

is more stable than the standard jackknife (Quenouille, 1956; Tukey, 1958) with

the ad hoc finite population correction, and than the (Campbell, 1980; Berger and

Skinner, 2005) generalised jackknife .

The third chapter

The third chapter proposes a new variance estimator which accounts the item

non-response under unequal-probability without-replacement sampling when es-

timating a change from rotating (overlapping) repeated surveys. The proposed

method combines the original approach by Berger and Priam (2010, 2012) and

the Fay (1991) non-response reverse approach for variance estimation (e.g. Rao

and Shao, 1992; Shao and Steel, 1999). The proposed variance estimator gives

design-consistent estimation of the variance of change when the sampling fraction

is small, i.e. when the finite population corrections are negligible. The proposed
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approach is illustrated using random Hot-deck imputation, although the proposed

estimator can be implemented with other imputation techniques.

The fourth chapter

The fourth chapter introduces an R package called samplingVarEst. It implements

several well-known variance estimators and it also introduces some of the novel

methods developed in earlier chapters. The package is under continuous updating

and we invite readers of this thesis to check for the last version published at the The

Comprehensive R Archive Network, (CRAN). To illustrate details, the appendix

of this chapter includes the full user’s manual of the version 0.9-1 is.

The fifth chapter

The fifth chapter briefly discusses some possible extensions and further research

work which is planned in coming years.



Chapter 1

A jackknife variance estimator for

self-weighted two-stage samples

Abstract

Self-weighted two-stage sampling designs are popular in practice as they simplify field-

work. It is common in practice to compute variance estimates only from the first sam-

pling stage, neglecting the second stage. This omission may induce a bias in variance

estimation; especially in situations where there is low variability between clusters or

when sampling fractions are non-negligible.

We propose a design-consistent jackknife variance estimator which takes account of all

stages via deletion of clusters and observations within clusters. The proposed jackknife

can be used for a wide class of point estimators. It does not need joint-inclusion prob-

abilities and naturally includes finite population corrections. A simulation study shows

that the proposed estimator can be more accurate than standard jackknifes (Rao, Wu

and Yue, 1992) for self-weighted two-stage sampling designs.

Keywords and phrases: Linearisation; pseudovalues; Sen-Yates-Grundy form; smooth

function of means; stratification.

5
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1.1 Introduction

In survey sampling, the accuracy of point estimates are assessed using variance

estimates. Variance estimation becomes difficult when we have non-linear point

estimators and complex sampling designs. This is a well known problem which

has been broadly covered in the survey sampling literature, e.g. Kish and Frankel

(1974), Särndal et al. (1992) and Wolter (2007). Resampling techniques for vari-

ance estimation often overcome these difficulties. The Jackknife, was first intro-

duced by Quenouille (1956) for bias reduction and later by Tukey (1958) for vari-

ance estimation. This resampling technique has been widely studied, e.g. Krewski

and Rao (1981), Kovar et al. (1988), Rao et al. (1992), and Shao and Tu (1995)

among others.

Campbell (1980) proposed a totally different generalised jackknife variance estima-

tor based on the analogy between linearisation and jackknife techniques. Berger

and Skinner (2005) showed its design consistency for single stage designs under

a set of regularity conditions. They also compare the empirical performance of

Campbell’s jackknife (in a single stage context) with standard single stage jack-

knifes such as Tukey (1958), Kish and Frankel (1974), and Rao et al. (1992).

Further, Berger and Rao (2006) extended Campbell’s approach for imputation.

Berger (2007) proposed a modified Campbell’s estimator which incorporates the

Hájek (1964) approximation for the joint inclusion probabilities.

The regularity conditions in Berger and Skinner (2005) for the design-consistency

of the Campbell estimator are too restrictive for two-stage sampling. For example,

in two-stage simple random sampling the total number of sampled units would

need to be fixed as population size tends to infinity for the Berger and Skinner

(2005) regularity conditions to hold. In section 1.3, we propose new less restrictive

regularity conditions which accommodate two-stage sampling. We also propose a

Sen (1953) and Yates and Grundy (1953) version of the Campbell’s jackknife which

overcomes the possibility of getting negative variance estimates. Further, the

asymptotic design-consistency of these jackknife estimators is established under

two-stage sampling.

In section 1.4, we propose a jackknife variance estimator for self-weighted two-

stage (stratified) without replacement sampling. These sampling designs are very

common in practice; examples include, the Youth Risk Behavior Survey in the

U.S.A., the Labour Force Survey for São Paulo in Brazil, and the Living Standards
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Survey for countries like South Africa, Ghana and Côte d’Ivoire. We focus on self-

weighted two-stage designs. However, there are different self-weighted designs that

are widely used in practice. Some utilise three or more stages, and some others

use unequal probabilities at the final stage. Examples include the US National

Health and Nutrition Examination Survey (NHANES) and the Australian and

New Zealand Labour Force Surveys.

The proposed jackknife for self-weighted two-stage sampling involves deletion of

both, clusters and observations. The proposed jackknife estimator does not have

double sums and does not need joint inclusion probabilities. Further, we show

that this novel estimator is asymptotically design-consistent. To ease computing

efforts, a subsampling version is also proposed in subsection 1.4.2 for its most

computer intensive part which involve deleting observations.

In section 1.5, Monte-Carlo simulations show that the proposed jackknife can be

more accurate than customary jackknife estimators for more than one stage such

as the Rao et al. (1992) stratified multi-stage delete-cluster jackknife.

1.2 The class of point estimators

Let U denote a finite population of size N whose elements are grouped into NI

clusters of size Mi, i = 1, . . . , NI . Consider a without replacement sample s of ele-

ments drawn according to a self-weighted two-stage fixed sample size design. That

is, nI clusters are drawn using a without-replacement probability proportional to

the size of the clusters, then a simple random sample without-replacement of m

fixed elements is drawn within each sampled cluster. Therefore, the sample size is

fixed and given by n = nIm elements grouped in nI clusters.

Let πIi > 0 and πIij denote, respectively, the first and the second order inclusion

probabilities for the clusters i, j = 1, . . . , NI ; and also let πk > 0 and πk` denote

the inclusion probabilities for the elements k, ` = 1, . . . , N . For a self-weighted

sampling design the clusters inclusion probabilities are

πIi = nI
Mi

N
,

and thus

πk = f,

where f = n/N .
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Let yqk denote the value of the survey variable q (q = 1, . . . , Q) for k ∈ U . Suppose

we are interested in the population parameter

θ = g(µ1, . . . , µq, . . . , µQ),

which is a smooth and differentiable function of population means

µq =
1

N

∑

k∈U

yqk, q = 1, . . . , Q.

Further, assume θ is estimated by the substitution point estimator

θ̃ = g(µ̃1, . . . , µ̃q, . . . , µ̃Q),

where

µ̃q =
∑

k∈s

w̃kyqk, q = 1, . . . , Q,

is the Hájek (1971) mean estimator for µq, with normalised sampling weights

w̃k =
wk

N̂
,

where

N̂ =
∑

k∈s

wk,

and wk = 1/πk.

1.3 Generalised jackknife variance estimators

The Campbell (1980) generalised jackknife variance estimator of θ̃ is defined by

(see Berger and Skinner, 2005),

v̂ar(θ̃)HT =
∑

k∈s

∑

`∈s

Dk` ε(k) ε(`), (1.1)

with

Dk` =
πk` − πkπ`

πk`
, (1.2)

ε(k) = (1− w̃k)(θ̃ − θ̃(k)),
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where θ̃(k) has same functional form as θ̃ but after omitting the observation k.

That is,

θ̃(k) = g(µ̃1(k), . . . , µ̃q(k), . . . , µ̃Q(k)),

where

µ̃q(k) =
∑

`∈s−{k}

w̃`(k) yq`,

with

w̃`(k) =
w`∑

`∈s−{k}w`
,

and with s− {k} denoting s after deleting the k-th observation.

It can clearly be seen that the Equation (1.1) may take negative values. To

overcome this issue, we propose the following alternative Sen (1953) and Yates

and Grundy (1953) form,

v̂ar(θ̃)SY G =
−1

2

∑

k∈s

∑

`∈s

Dk` (ε(k) − ε(`))2, (1.3)

which is always positive if the Sen-Yates-Grundy condition, Dk` < 0, holds. Note

that the Equation (1.3) is suitable for unequal-probability fixed sample size designs

(e.g. Chao, 1982).

For single-stage sampling, Berger and Skinner (2005) showed the asymptotic design-

consistency of Equation (1.1) and also illustrated the better empirical performance

of (Eq. 1.1) in comparison with standard jackknifes such as Tukey (1958), Kish

and Frankel (1974), and Rao et al. (1992). Further, Berger and Rao (2006) ex-

tended (Eq. 1.1) for imputation and Berger (2007) proposed a modified version

incorporating the Hájek (1964) approximation for the joint inclusion probabilities.

Note that under uni-stage simple random sampling, both Equations (1.1) and (1.3)

reduce to the standard jackknife (e.g. Shao and Tu, 1995, p. 239),

v̂ar(θ̃)STD =
(

1− n

N

) n− 1

n

∑

k∈s

(θ̃(k) − θ̃(·))2,

where

θ̃(·) =
1

n

∑

k∈s

θ̃(k).
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1.3.1 Consistency of the generalised jackknifes for two-

stage sampling

The consistency of v̂ar(θ̃)HT and v̂ar(θ̃)SY G is now set under new less restrictive

regularity conditions than those specified by Berger and Skinner (2005). These

new conditions will allow two-stage sampling.

We use the Isaki and Fuller (1982) asymptotic framework which considers a se-

quence of nested populations of size N[t] (0 < N[t] < N[t+1]), and a sequence of

samples of size n[t] (n[t] < n[t+1], n[t] < N[t], for all t). To simplify notation, we

drop the index t in what follows. Thus, if t → ∞, it implies: N → ∞, n → ∞
and nI →∞. We consider that f = n/N , fI = nI/NI and m are constants free of

the limiting process.

For the vector of means

µ = (µ1, . . . , µQ)T ,

and the vector of point estimators

µ̃ = (µ̃1, . . . , µ̃Q)T ,

the multivariate Horvitz-Thompson and Sen-Yates-Grundy design variances and

variance estimators of µ̃ are defined by (see Särndal et al., 1992, secs. 5.5, 5.7)

var(µ̃)HT l
∑

k∈U

∑

`∈U

Dk` πk` zk zT` ,

v̂ar(µ̃)HT l
∑

k∈s

∑

`∈s

Dk` žk žT` ,

var(µ̃)SY G l
−1

2

∑

k∈U

∑

`∈U

Dk` πk` {zk − z`}{zk − z`}T ,

v̂ar(µ̃)SY G l
−1

2

∑

k∈s

∑

`∈s

Dk` {žk − ž`}{žk − ž`}T ,

with

zk =
wk
N

(yk − µ),

žk = w̃k(yk − µ̃),

yk = (y1k, . . . , yQk)
T .

Now, assume the following regularity conditions:
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C1. v̂ar(θ̃)L/var(θ̃)L →p 1, var(θ̃)L 6= 0 where

var(θ̃)L = ∇(µ)T var(µ̃)HT ∇(µ), (1.4)

v̂ar(θ̃)L = ∇(µ̃)T v̂ar(µ̃)HT ∇(µ̃).

Alternatively for fixed sample-size designs,

var(θ̃)L = ∇(µ)T var(µ̃)SY G∇(µ), (1.5)

v̂ar(θ̃)L = ∇(µ̃)T v̂ar(µ̃)SY G ,∇(µ̃),

where ∇(x) = (∂g(µ)/∂µ1, . . . , ∂g(µ)/∂µQ)Tµ=x is the gradient of g(·) at

x ∈ <Q with g(·) continuous and differentiable at µ.

C2. |1− w̃k| ≥ α > 0, for all k ∈ U , α is a constant.

C3. lim inf {n var(θ̃)L} > 0.

C4. n−1
∑

k∈s w̃
τ
k ‖yk − µ̃‖τ = Op(n−τ ) for all τ ≥ 2, where ‖A‖ = tr(ATA)1/2

denotes the Euclidean norm.

C5. Gs = n−β
∑∑

(k 6=`)∈s(D−k`)2 = Op(1), with 0 ≤ β < 1, where D−k` = −Dk` if

Dk` < 0 and 0 otherwise.

C6. Hs = n−β
∑∑

(k 6=`)∈s(D+
k`)

2 = Op(1), with 0 ≤ β < 1, where D+
k` = Dk` if

Dk` ≥ 0 and 0 otherwise.

C7. ∇(x) is Lipschitz continuous, ‖∇(x1)−∇(x2)‖ ≤ λ ‖x1 − x2‖δ, λ > 0 and

δ > 0 constants, 0 ≤ β/2 < δ, x1 and x2 in the neighbourhood of µ.

C8. ‖∇(µ̃)‖ = Op(1).

The regularity conditions C1 and C5 to C7 are similar but different from the ones

proposed by Berger and Skinner (2005). These conditions now allow two stage

sampling. The condition C1 sets the consistency of the linearisation variance

estimator recalling the Robinson and Särndal (1983) approach (see Särndal et al.,

1992, secs. 5.5, 5.7). The conditions C2 to C4 are typical in asymptotics (e.g. Shao

and Tu, 1995, p. 258): C2 sets that none of the normalised weights reach 1, C3

implies var(θ̃)L decreases with rate n−1, and C4 is a Lyapunov-type condition for

the existence of moments. The regularity conditions C5 and C6 are mild conditions

on the design, similar to ones in Isaki and Fuller (1982); the conditions C7 and C8

are usual smoothness requirements for the jackknife: C7 sets the smoothness of
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g(·) (regardless of the sampling design). Note that for two stage-sampling, β < 1

means that there are more observations than clusters in s.

Theorem 1.1. For sampling designs of fixed size, if the regularity conditions C1 to

C8 hold, then the proposed generalised jackknife variance estimator v̂ar(θ̃)SY G from

Equation (1.3) is asymptotically design-consistent for the approximate linearised

variance var(θ̃)L 6= 0 in (Eq. 1.5). That is,

v̂ar(θ̃)SY G

var(θ̃)L
→p 1.

A proof of Theorem 1.1 is given in the Appendix 1.A of this chapter.

Corollary 1.2. If the regularity conditions C1 to C8 hold, then v̂ar(θ̃)HT from

Equation (1.1) is also asymptotically design-consistent for the approximate lin-

earised variance var(θ̃)L 6= 0 in (Eq. 1.4), i.e.

v̂ar(θ̃)HT

var(θ̃)L
→p 1.

The Corollary 1.2 can be shown from Berger and Skinner (2005) proof taking into

account the changes in the conditions C5 to C7.

From the Theorem 1.1, Corollary 1.2 and the Slutsky’s theorem (e.g. Valliant,

Dorfman and Royall, 2000, p. 414), when θ̃ is asymptotically normal, it follows

that
θ̃ − θ√

v̂ar(θ̃)SY G

→d N(0, 1), (1.6)

and
θ̃ − θ√

v̂ar(θ̃)HT

→d N(0, 1).

Thus, allowing valid confidence intervals of θ̃ for θ.
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1.4 The proposed jackknife for self-weighted two-

stage sampling

For self-weighted two-stage sampling we have that

πIi = nI
Mi

N
,

and

πk =
n

N
= f.

Now, by using the Hájek’s approximation (Hájek, 1964, eq. 5.27, p. 1511), the

clusters’ joint inclusion probabilities πIij are approximated by

πIij l πIi πIj

{
1− (1− πIi)(1− πIj)

d

}
,

d =
∑

Ii∈U

πIi (1− πIi).

This approximation was originally developed for d→∞, i.e. in our case NI →∞,

under the maximum entropy sampling design (see Hájek, 1981, Theorem 3.3, ch.

3 & 6); namely the Rejective Sampling design, a. k. a. the Conditional Poisson

Sampling design. It requires that the utilised sampling design (of clusters) is of

large entropy. An overview can be found in Berger and Tillé (2009). An account of

different sampling designs, πIij’s approximations and approximate variances under

large-entropy designs can be found in Tillé (2006); Brewer and Donadio (2003);

Haziza et al. (2004, 2008). Recently, Berger (2011) gives sufficient conditions under

which Hájek’s results still hold for large entropy sampling designs that are not the

maximum entropy one.

Low entropy sampling designs, such as the systematic probability proportional-to-

size design, are not suitable for the above approximation. However, the randomized

systematic sampling is suitable as it is of large entropy (e.g. Brewer and Gregoire,

2009; Berger and Tillé, 2009).

Following, given the conditional inclusion probabilities

πk|Ii =
m

Mi

,

and

πk`|Ii =
m (m− 1)

Mi (Mi − 1)
,
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the elements’ joint inclusion probabilities πk` are,

πk` l





πIi πk|Ii = f if (k = `) ∈ si,
πIi πk`|Ii = f(m− 1)/(Mi − 1) if (k 6= `) ∈ si,
πIij πk|Ii π`|Ij l f 2{1− d−1(1− πIi)(1− πIj)} if k ∈ si, ` ∈ sj, i 6= j,

where si denotes the observations from the i-th cluster. Therefore, by substituting

for Dk` from Equation (1.2) we obtain

Dk` l





1− f if (k = `) ∈ si,
1− π∗Ii if (k 6= `) ∈ si,
(1− πIi)(1− πIj){(1− πIi)(1− πIj)− d}−1 if k ∈ si, ` ∈ sj, i 6= j,

where

π∗Ii = πIi

(
m

m− 1

)(
Mi − 1

Mi

)
.

Thus, it can be shown (see the Appendix 1.C of this chapter) that by substituting

these values of Dk` into (Eq. 1.3), the Equation (1.3) reduces to the following

jackknife variance estimator suitable for self-weighted two-stage sampling designs,

v̂ar(θ̃)prop = vclu + vobs, (1.7)

where

vclu =
∑

i∈s

(1− π∗Ii) ς 2
(Ii) −

1

d

(∑

i∈s

(1− πIi) ς(Ii)
)2

, (1.8)

vobs =
∑

k∈s

φk ε
2
(k), (1.9)

with

φk = π∗Ii
Mi −m
Mi − 1

,

for k ∈ si, where the delete cluster pseudo-values ς(Ii) are given by

ς(Ii) =
nI − 1

nI
(θ̃ − θ̃(Ii)), (1.10)

with θ̃(Ii) of same functional form as θ̃ but excluding the observations from the

i-th cluster, i.e.

θ̃(Ii) = g(µ̃1(Ii), . . . , µ̃q(Ii), . . . , µ̃Q(Ii)),
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where

µ̃q(Ii) =
∑

k∈s(Ii)

w̃k(Ii) yqk,

and

w̃k(Ii) =
wk∑

k∈s(Ii)wk
,

with s(Ii) = s−si denoting the sample without observations from the i-th cluster;

and where the delete observation pseudo-values ε(k), previously defined at section

1.3, are given by

ε(k) =
n− 1

n
(θ̃ − θ̃(k)).

The proposed variance estimator (Eq. 1.7) has two terms. One which deletes

observations within clusters and another which deletes clusters. The term vclu

from Equation (1.8) computes variability between clusters, and vobs from Equation

(1.9) computes variability of observations within clusters.

If d is unknown we can replace d by

d̂ =
∑

i∈s
(1− πIi).

As φk ∝ f(Mi −m)(m − 1)−1 the term vobs is zero if m = Mi and diminishes for

small f . Conversely, it may become large if f is large, if the sampling fractions

within clusters are small, or if the Mi vary.

To simplify notation, we derive the proposed estimator (Eq. 1.7) for non-stratified

designs. However, it can be generalised by treating the strata separately. The

number of strata has to be bounded and large sample regularity conditions must

hold within each stratum. Therefore, the applicability of the proposed jackknife

variance estimator excludes highly-stratified sampling designs with very few sam-

pling units per stratum.

1.4.1 Consistency of the proposed jackknife

Let var(θ̃)HL denote the Hájek approximation to the approximate linearised vari-

ance var(θ̃)L.

Theorem 1.3. If the regularity conditions C1, C3, C4, C7 and C8 hold, and

if Mi ≥ m ≥ 2, then the proposed jackknife variance estimator for self-weighted
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two-stage sampling designs v̂ar(θ̃)prop from Equation (1.7) is asymptotically design-

consistent for the Hájek approximate linearised variance var(θ̃)HL l var(θ̃)L 6= 0.

That is,
v̂ar(θ̃)prop

var(θ̃)L
→p 1.

A proof of Theorem 1.3 is given in the Appendix 1.B of this chapter. Furthermore,

the Equation (1.6) also holds for (Eq. 1.7) when θ̃ is asymptotically normal.

1.4.2 A less computationally intensive version of the pro-

posed jackknife

The delete-observation term vobs in Equation (1.9) may become laborious with

large datasets. To ease computing, we propose to treat vobs as a total which can

therefore be estimated from a subsample via the Horvitz and Thompson (1952)

estimator. Hence, we subsample ñ elements from the sample s.

Let s̃ denote this subsample and let π̃k be the first order inclusion probabilities

of s̃. We propose to estimate vobs using the unbiased Horvitz-Thompson point

estimator

ṽobs =
∑

k∈s̃

φk ε
2
(k)

π̃k
. (1.11)

Thus, a less computationally intensive estimator than Equation (1.7) is given by

ṽar(θ̃)prop = vclu + ṽobs. (1.12)

It is recommended to use inclusion probabilities proportional to φk; that is,

π̃k = ñ
φk
Φ
,

where

Φ =
∑

k∈s

φk,

implying

ṽπpsobs =
ñ∑

k=1

φk ε
2
(k)

π̃k
=

Φ

ñ

ñ∑

k=1

ε2(k).

Note that π̃k should be approximately proportional to φkε
2
(k). Hence, this will give

an efficient Horvitz-Thompson estimator.
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In the context of two-phase sampling, Kim and Sitter (2003) proposed also a

less computationally intensive approach. In further research, it would be good to

explore the applicability of (Eq. 1.11) for two-phase sampling designs.

1.4.3 Customary jackknife variance estimator

A customary jackknife variance estimator for sampling designs of more than one

stage is the stratified multi-stage delete cluster jackknife estimator by Rao, Wu

and Yue (1992), which is originally purposed for functions of totals and for with-

replacement sampling designs, that is, for negligible sampling fractions. The Rao

et al. (1992) estimator is defined as

v̂ar(θ̃)RWY =
∑

i∈s

ς 2
(Ii), (1.13)

where ς(Ii) is defined as Equation (1.10). When the sampling fraction is large, the

estimator (Eq. 1.13) is usually adjusted by an overall clusters’ finite population

correction (FPC),

v̂ar(θ̃)FPCRWY =
∑

i∈s

(
1− nI

NI

)
ς 2
(Ii). (1.14)

Comparing the proposed jackknife v̂ar(θ̃)prop in (Eq. 1.7) and the above FPC-

adjusted customary v̂ar(θ̃)FPCRWY in (Eq. 1.14) we note that they differ in two main

aspects:

(i) v̂ar(θ̃)prop adds the term vobs which computes variability of observations

within clusters,

(ii) v̂ar(θ̃)prop uses a different FPC (1−π∗Ii) for each cluster i, whereas v̂ar(θ̃)FPCRWY

uses the fixed FPC (1− nI/NI).
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1.5 Simulation study

We illustrate two simulation examples from two datasets: the Labour Force Popu-

lation from Valliant et al. (2000, Appendix B.5) and the MU284 Swedish Munici-

palities Population from Särndal et al. (1992, Appendix B). For both datasets, we

duplicated 3 times the number of clusters and 3 times the number of observations

within each cluster. We therefore use two population frames of N = 4 302 and

2 556 observations which are grouped into NI = 345 and 150 clusters, respectively.

The minimum/maximum cluster sizes are: 6/39 and 15/27, respectively.

We use four variables of interest, two from each population frame: the weekly

wages (y1) and number of hours worked per week (y2) from the first population

frame; and, the number of Social-Democratic seats in municipal council (y3) and

the number of Conservative seats in municipal council (y4) from the second pop-

ulation frame.

The homogeneity measures ICC(·), i.e. the intra-class correlation coefficient (as

defined in Särndal et al., 1992, secs. 3.4.3 & 4.2.2), for each of the variables

of interest are: ICC(y1) = 0.2965, ICC(y2) = 0.1951, ICC(y3) = 0.3181 and

ICC(y4) = 0.4958.

The parameters of interest are the ratios:

R12 =
µ1

µ2

= 7.697

and,

R34 =
µ3

µ4

= 2.439

which are estimated by

R̂12 =
µ̃1

µ̃2

,

and

R̂34 =
µ̃3

µ̃4

,

where µ̃1, . . . , µ̃4 are Horvitz and Thompson (1952) point estimators.

Clusters were selected using Brewer (1975) unequal probability sampling design

with clusters’ inclusion probabilities proportional to the cluster size; then, a simple

random without replacement sample of individuals is selected within clusters using

sample size m = 2, 4, 6. For the labour force population frame, it is important to
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note that 20.34% of the clusters of the minimum cluster size, meaning that with

m = 6 we are doing selection of all the elements within many clusters.

For the estimator (Eq. 1.12), we use Brewer (1975) unequal probability design with

subsampling rate 0.25 and with subsampling inclusion probabilities proportional

to φk as defined in subsection 1.4.2.

For each simulation and for each simulation example, NSim1 = 100 000 andNSim2 =

1 000 000 samples were selected to compute:

• The empirical relative bias

RB =
B(v̂ar(R̂ab))

var(R̂ab)
,

where

B(v̂ar(R̂ab)) = E(v̂ar(R̂ab))− var(R̂ab);

• The empirical relative root mean square error defined by

RRMSE =

√
MSE(v̂ar(R̂ab))

var(R̂ab)
;

• The coverage at a 95% confidence level.

The var(R̂ab) is the empirical variance computed from the NSim1 (and NSim2)

observed values of R̂ab (ab =12 and 34). These quantities were computed for the

estimators (Eq. 1.7), (Eq. 1.12), (Eq. 1.13) and (Eq. 1.14).

1.5.1 Example 1: Point estimator R̂12

Results for this example are summarised in Tables 1.1, 1.2 and 1.3. Additional

graphical representations for these results are provided in the Appendix 1.D of

this chapter.

The Table 1.1 illustrates in terms of RB that the customary estimators (Eq. 1.13)

and (Eq. 1.14), respectively, over-estimates and under-estimates the variance for

increasing values of f (fI). In general, this effect is more pronounced for small

second-stage sampling sizes m = 2, 4. That undesirable effect decreases with
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Table 1.1: Relative Bias (%) of variance estimators for the point estimator

R̂12 where ICC(y1) = 0.2965 and ICC(y2) = 0.1951.

Proposed Customary

m nI n fI f (Eq. 1.7) (Eq. 1.12) (Eq. 1.13) (Eq. 1.14)

2 20 40 0.058 0.009 -4.40 -4.41 4.52 -1.54
40 80 0.116 0.019 -1.73 -1.69 9.07 -3.58
60 120 0.174 0.028 -1.76 -1.80 12.87 -6.76
80 160 0.232 0.037 -1.33 -1.35 18.07 -9.31
100 200 0.290 0.046 -0.62 -0.71 24.25 -11.76
120 240 0.348 0.056 -0.78 -0.82 30.12 -15.14
140 280 0.406 0.065 -0.59 -0.62 37.15 -18.50
160 320 0.464 0.074 -0.54 -0.51 44.77 -22.37

4 20 80 0.058 0.019 -4.77 -4.78 5.52 -0.60
40 160 0.116 0.037 -3.06 -3.07 10.56 -2.26
60 240 0.174 0.056 -2.73 -2.73 16.60 -3.68
80 320 0.232 0.074 -1.81 -1.82 24.70 -4.21
100 400 0.290 0.093 -0.90 -0.91 34.15 -4.73
120 480 0.348 0.112 -0.01 -0.03 45.05 -5.40
140 560 0.406 0.130 -0.01 0.03 56.37 -7.09
160 640 0.464 0.149 -1.23 -1.23 67.54 -10.16

6 20 120 0.058 0.028 -4.93 -4.93 6.05 -0.10
40 240 0.116 0.056 -2.99 -2.99 12.17 -0.83
60 360 0.174 0.084 -1.28 -1.29 20.93 -0.10
80 480 0.232 0.112 -1.27 -1.27 29.32 -0.66
100 600 0.290 0.139 -0.82 -0.83 39.90 -0.65
120 720 0.348 0.167 -1.38 -1.38 50.89 -1.59
140 840 0.406 0.195 -0.22 -0.22 66.91 -0.82
160 960 0.464 0.223 -1.06 -1.07 82.67 -2.04

m = 6 (census within several clusters) for the FPC-adjusted customary estimator

(Eq. 1.14).

On the other hand, the RB for the proposed variance estimator (Eq. 1.7) and

its subsampling version (Eq. 1.12) remains tightly around zero as the sampling

fractions increases regardless of the second-stage sample sizes. The reason for

this is that the proposed estimators correctly incorporate the finite population

corrections at both stages. Note that there is a particular FPC for each cluster in

the expression of the proposed variance estimators (Eq. 1.7) and (Eq. 1.12).

In terms of RRMSE, it can also be seen in the Table 1.2 that the proposed estimator

(Eq. 1.7) has always the smallest RRMSE followed by the FPC-adjusted Rao et al.
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Table 1.2: Relative Root Mean-Square-Error (%) of variance estimators for

the point estimator R̂12 where ICC(y1) = 0.2965 and ICC(y2) = 0.1951.

Proposed Customary

m nI n fI f (Eq. 1.7) (Eq. 1.12) (Eq. 1.13) (Eq. 1.14)

2 20 40 0.058 0.009 46.12 46.41 51.52 48.37
40 80 0.116 0.019 31.90 32.91 38.04 32.86
60 120 0.174 0.028 25.25 27.22 33.49 26.42
80 160 0.232 0.037 21.05 24.38 32.89 23.07
100 200 0.290 0.046 18.32 23.36 35.25 21.64
120 240 0.348 0.056 16.03 23.09 38.50 21.77
140 280 0.406 0.065 14.38 23.87 43.74 23.04
160 320 0.464 0.074 13.12 25.49 50.09 25.40

4 20 80 0.058 0.019 42.13 42.15 47.22 44.18
40 160 0.116 0.037 29.24 29.30 35.49 30.04
60 240 0.174 0.056 23.21 23.39 33.01 23.86
80 320 0.232 0.074 19.59 19.88 35.77 20.31
100 400 0.290 0.093 16.97 17.44 41.86 17.84
120 480 0.348 0.112 15.05 15.79 50.75 16.16
140 560 0.406 0.130 13.36 14.50 60.74 15.20
160 640 0.464 0.149 11.94 13.63 71.07 15.63

6 20 120 0.058 0.028 40.06 40.07 45.03 42.04
40 240 0.116 0.056 27.70 27.72 34.44 28.50
60 360 0.174 0.084 22.10 22.13 34.57 22.72
80 480 0.232 0.112 18.44 18.50 38.30 18.93
100 600 0.290 0.139 16.16 16.26 46.25 16.61
120 720 0.348 0.167 14.16 14.33 55.53 14.59
140 840 0.406 0.195 12.65 12.91 70.39 13.01
160 960 0.464 0.223 11.28 11.71 85.43 11.73

(1992) from (Eq. 1.14) and by the subsampling version of the proposed estimator

(Eq. 1.12).

In terms of the coverage of the 95% confidence intervals, it can also be seen in Table

1.3 that the original Rao et al. (1992) (Eq. 1.13) has the correct coverage for small

sampling fractions, although this variance estimator had the worst performance in

terms of RB and RRMSE. Hence, discarding (Eq. 1.13), the proposed estimator

(Eq. 1.7) has presumably the best coverage for increasing sampling fractions. In

general, this also happens for the subsampling version (Eq. 1.12) which has similar

RB, RRMSE and coverage as (Eq. 1.7).

Finally, both Tables 1.1, 1.2 and 1.3 suggest that, although the FPC corrections
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Table 1.3: Coverage at 95% confidence level of variance estimators for the

point estimator R̂12 where ICC(y1) = 0.2965 and ICC(y2) = 0.1951.

Proposed Customary

m nI n fI f (Eq. 1.7) (Eq. 1.12) (Eq. 1.13) (Eq. 1.14)

2 20 40 0.058 0.009 91.86 91.84 92.89 92.13
40 80 0.116 0.019 93.39 93.35 94.45 93.12
60 120 0.174 0.028 93.83 93.65 95.25 93.10
80 160 0.232 0.037 94.24 94.02 95.96 93.06
100 200 0.290 0.046 94.37 94.05 96.53 92.70
120 240 0.348 0.056 94.43 94.07 97.02 92.40
140 280 0.406 0.065 94.73 94.22 97.54 91.95
160 320 0.464 0.074 94.68 94.00 97.90 91.29

4 20 80 0.058 0.019 92.13 92.12 93.32 92.62
40 160 0.116 0.037 93.47 93.44 94.93 93.52
60 240 0.174 0.056 93.90 93.87 95.78 93.72
80 320 0.232 0.074 94.21 94.20 96.54 93.89
100 400 0.290 0.093 94.45 94.42 97.27 93.88
120 480 0.348 0.112 94.66 94.63 97.84 93.94
140 560 0.406 0.130 94.74 94.73 98.31 93.83
160 640 0.464 0.149 94.65 94.62 98.69 93.42

6 20 120 0.058 0.028 92.07 92.07 93.41 92.71
40 240 0.116 0.056 93.52 93.50 95.12 93.75
60 360 0.174 0.084 94.12 94.11 96.16 94.23
80 480 0.232 0.112 94.30 94.28 96.93 94.37
100 600 0.290 0.139 94.50 94.48 97.56 94.51
120 720 0.348 0.167 94.46 94.44 98.09 94.42
140 840 0.406 0.195 94.59 94.59 98.63 94.52
160 960 0.464 0.223 94.50 94.50 99.03 94.40

improves the Rao et al. (1992) estimator in terms of bias and stability, these artifi-

cial corrections are not always the best way to proceed; particularly, for situations

where the second stage sampling may use small sampling fractions within certain

clusters.
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1.5.2 Example 2: Point estimator R̂34

The results for this example were summarised in Tables 1.4, 1.5 and 1.6. Additional

graphical representations for these results are provided in the Appendix 1.E of this

chapter.

Table 1.4: Relative Bias (%) of variance estimators for the point estimator

R̂34 where ICC(y3) = 0.3181 and ICC(y4) = 0.4958.

Proposed Customary

m nI n fI f (Eq. 1.7) (Eq. 1.12) (Eq. 1.13) (Eq. 1.14)

2 18 36 0.120 0.014 -3.5 -3.5 12.8 -0.8
26 52 0.173 0.020 -2.4 -2.4 17.3 -3.0
35 70 0.233 0.027 -1.7 -1.7 23.5 -5.3
44 88 0.293 0.034 -1.4 -1.4 30.5 -7.8
53 106 0.353 0.041 -1.1 -1.1 38.8 -10.3
62 124 0.413 0.049 -1.1 -1.1 47.8 -13.3
69 138 0.460 0.054 -0.9 -0.9 56.2 -15.7

4 18 72 0.120 0.028 -3.8 -3.8 14.1 0.4
26 104 0.173 0.041 -2.6 -2.6 19.9 -0.9
35 140 0.233 0.055 -2.0 -2.0 27.4 -2.3
44 176 0.293 0.069 -1.7 -1.6 36.3 -3.7
53 212 0.353 0.083 -1.4 -1.5 46.7 -5.1
62 248 0.413 0.097 -1.2 -1.2 59.1 -6.7
69 276 0.460 0.108 -1.0 -1.0 70.4 -8.0

6 18 108 0.120 0.042 -4.1 -4.1 14.6 0.8
26 156 0.173 0.061 -2.9 -2.9 20.7 -0.2
35 210 0.233 0.082 -1.9 -1.9 29.3 -0.8
44 264 0.293 0.103 -1.6 -1.6 39.0 -1.7
53 318 0.353 0.124 -1.7 -1.7 49.9 -3.0
62 372 0.413 0.146 -1.5 -1.5 63.7 -4.0
69 414 0.460 0.162 -1.0 -1.0 77.0 -4.4

In terms of RB, it can be seen that the FPC-adjusted Rao et al. (1992) (1.14)

estimator has the best performance when the sampling fractions are very small.

This might be useful for highly stratified sampling designs. However, for increasing

sampling fractions, both versions of the Rao et al. (1992), the estimators (Eq.

1.13) and (Eq. 1.14), tend respectively to increasingly over and under estimate

the variance. Again, this is more noticeable with small sample sizes at the second

stage (small values of m).

On the other hand, in terms of RB, both proposed variance estimators from Equa-

tions (1.7) and (1.12) tend consistently to zero for increasing sampling fractions
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and regardless of the utilised sample size at the second stage. This is something

desirable in business surveys for example, where sampling fractions are large or

in situations where stratification is moderate. Note that the RB for the proposed

estimators always showed a slight negative bias. This is something expected and

well documented when using the Hájek (1964) approximations (see Haziza et al.,

2004, 2008; Brewer and Donadio, 2003).

Table 1.5: Relative Root Mean-Square-Error (%) of variance estimators for

the point estimator R̂34 where ICC(y3) = 0.3181 and ICC(y4) = 0.4958.

Proposed Customary

m nI n fI f (Eq. 1.7) (Eq. 1.12) (Eq. 1.13) (Eq. 1.14)

2 18 36 0.120 0.014 42.2 43.0 51.7 44.1
26 52 0.173 0.020 33.6 35.1 44.9 34.4
35 70 0.233 0.027 27.8 30.5 43.2 28.3
44 88 0.293 0.034 23.8 27.8 44.9 24.6
53 106 0.353 0.041 20.9 27.0 49.6 22.5
62 124 0.413 0.049 18.5 26.8 56.2 21.8
69 138 0.460 0.054 17.0 27.7 63.1 22.1

4 18 72 0.120 0.028 39.9 39.9 49.5 41.7
26 104 0.173 0.041 31.9 32.0 44.2 32.6
35 140 0.233 0.055 26.4 26.6 44.2 26.6
44 176 0.293 0.069 22.7 22.9 48.2 22.7
53 212 0.353 0.083 19.8 20.3 55.4 20.0
62 248 0.413 0.097 17.6 18.3 65.7 18.2
69 276 0.460 0.108 16.2 17.1 75.9 17.2

6 18 108 0.120 0.042 38.9 38.9 48.5 40.8
26 156 0.173 0.061 31.1 31.1 43.8 31.9
35 210 0.233 0.082 25.8 25.8 44.9 26.1
44 264 0.293 0.103 22.1 22.2 50.0 22.1
53 318 0.353 0.124 19.3 19.4 57.9 19.2
62 372 0.413 0.146 17.1 17.2 69.7 17.0
69 414 0.460 0.162 15.7 15.9 81.8 15.7

In terms of RRMSE, that is in terms of stability of the studied variance estimators,

the Table 1.5 shows that the proposed estimator (Eq. 1.7) has the smallest RRMSE

in all considered situations. It can also be seen that the subsampling version (Eq.

1.12) have small but slightly higher RRMSE.

In terms of the coverage of the 95% confidence intervals, it can be seen that the Rao

et al. (1992) estimator (Eq. 1.13) has better coverage than the FPC-adjusted (Eq.

1.14). The coverage of the proposed estimators (Eq. 1.7) and (Eq. 1.12) become

closer to 95% for increasing sampling fractions. Overall, the worst coverage was
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Table 1.6: Coverage at 95% confidence level of variance estimators for the

point estimator R̂34 where ICC(y3) = 0.3181 and ICC(y4) = 0.4958.

Proposed Customary

m nI n fI f (Eq. 1.7) (Eq. 1.12) (Eq. 1.13) (Eq. 1.14)

2 18 36 0.120 0.014 93.1 93.0 94.8 93.3
26 52 0.173 0.020 93.7 93.6 95.7 93.6
35 70 0.233 0.027 94.1 93.9 96.4 93.5
44 88 0.293 0.034 94.3 94.0 97.0 93.4
53 106 0.353 0.041 94.4 94.1 97.5 93.2
62 124 0.413 0.049 94.5 94.0 98.0 92.8
69 138 0.460 0.054 94.6 94.0 98.3 92.4

4 18 72 0.120 0.028 92.9 92.9 94.8 93.4
26 104 0.173 0.041 93.6 93.6 95.8 93.8
35 140 0.233 0.055 94.0 94.0 96.6 94.0
44 176 0.293 0.069 94.2 94.2 97.3 93.9
53 212 0.353 0.083 94.4 94.3 97.9 93.9
62 248 0.413 0.097 94.5 94.5 98.4 93.8
69 276 0.460 0.108 94.5 94.5 98.7 93.6

6 18 108 0.120 0.042 92.9 92.9 94.9 93.5
26 156 0.173 0.061 93.6 93.6 95.9 93.9
35 210 0.233 0.082 94.0 94.0 96.8 94.1
44 264 0.293 0.103 94.2 94.2 97.4 94.2
53 318 0.353 0.124 94.3 94.3 98.0 94.2
62 372 0.413 0.146 94.4 94.4 98.5 94.1
69 414 0.460 0.162 94.5 94.5 98.9 94.1

showed by the FPC-adjusted Rao et al. (1992) estimator (Eq. 1.14). This suggest

again the fixed ad hoc FPC correction might not be always suitable.
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1.6 Conclusion

Self-weighted two-stage sampling designs are very common in practice. Besides

the popularity of such designs, it is also common in practice to compute variance

estimates relying only on the first sampling stage (e.g. Särndal et al., 1992, ch. 4).

A customary jackknife variance estimator for sampling designs of more than one

stage is the Rao et al. (1992) estimator which is originally designed for functions of

totals and for negligible sampling fractions. This customary jackknife would work

well when most of the variability is between clusters and with very small sampling

fractions (highly stratified samples) but this may not necessarily be the case.

First, we propose an alternative Sen-Yates-Grundy form of the generalised unequal-

probability without-replacement jackknife variance estimator (Campbell, 1980).

This estimator is extended to two-stage sampling by proposing new less restrictive

regularity conditions than those from Berger and Skinner (2005), and thus allow-

ing two-stage sampling for the Horvitz-Thompson (original) form of the Campbell

(1980) generalised jackknife as well.

Secondly, we propose a novel design-consistent jackknife variance estimator for

self-weighted two-stage without-replacement sampling. The proposed estimator

does not need joint-inclusion probabilities, allows stratification, naturally includes

FPC and comprises a wide class of point estimators (functions of means).

Monte-Carlo simulations show that the proposed estimator can be more accurate

than customary jackknife estimators, specially in situations where the first stage

sampling fraction is large or in cases where the second stage sampling fractions

are small.

The proposed estimator incorporates not only clustering effects but also the un-

derlying unequal-probabilities of both, clusters and observations.
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Appendices to Chapter 1

1.A. Proof of Theorem 1.1

The proof uses the standard arguments in proving jackknife variance estimators

design consistency (see Miller, 1964; Shao and Tu, 1995, sub-sec. 2.1.1). Hence,

from the mean value theorem we have that

θ̃ − θ̃(k) = g(µ̃)− g(µ̃(k))

= ∇(ξk)
T (µ̃− µ̃(k))

= ∇(µ̃)T (µ̃− µ̃(k)) + r∗k, (1.15)

where ξk denotes a point between µ̃ and µ̃(k), and where

r∗k = (∇(ξk)−∇(µ̃))T (µ̃− µ̃(k))

is the remainder term. Thus,

ε(k) = ∇(µ̃)T (1− w̃k) (µ̃− µ̃(k)) + rk,

where

rk = (1− w̃k) r∗k. (1.16)

It can be shown that

(1− w̃k) (µ̃− µ̃(k)) = w̃k (yk − µ̃), (1.17)

implying that

ε(k) = ∇(µ̃)T w̃k (yk − µ̃) + rk. (1.18)

Furthermore, the Cauchy inequality together with Equations (1.16) and (1.17)

imply

|rk| ≤ ||∇(ξk)−∇(µ̃)|| w̃k ||yk − µ̃||. (1.19)

Besides, the regularity condition C7 implies that there are constants λ > 0, δ and

0 ≤ β < 1 where β/2 < δ such that,

||∇(ξk)−∇(µ̃)|| ≤ λ ||ξk − µ̃||δ. (1.20)
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As ξk is between µ̃ and µ̃(k), we have that

||ξk − µ̃|| ≤ ||µ̃− µ̃(k)||.

Combining this with Equation (1.17), we obtain

||ξk − µ̃|| ≤ ||(1− w̃k)−1 w̃k (yk − µ̃)||,

which by Equation (1.20) gives

||∇(ξk)−∇(µ̃)|| ≤ λ |1− w̃k|−δ w̃δk ||yk − µ̃||δ.

Then, by condition C2 this becomes

||∇(ξk)−∇(µ̃)|| ≤ λα−δ w̃δk ||yk − µ̃||δ,

which combined with the Equation (1.19) imply

|rk| ≤ λα−δ w̃1+δ
k ||yk − µ̃||1+δ. (1.21)

Moreover, the regularity condition C3 implies that

{n var(θ̃)L}−2 = O(1). (1.22)

By substituting (Eq. 1.18) in Equation (1.3), we obtain

v̂ar(θ̃)SY G = A + 2 (E − C) + D −B,

where

A = ∇(µ̃)T v̂ar(µ̃)SY G ∇(µ̃),

B =
∑

k∈s

∑

`∈s

Dk` rk r`,

C =
∑

k∈s

∑

`∈s

Dk` rk w̃` (y` − µ̃)T ∇(µ̃),

D =
∑

k∈s

∑

`∈s

Dk` r2k, (1.23)

E =
∑

k∈s

∑

`∈s

Dk` rk w̃k (yk − µ̃)T ∇(µ̃). (1.24)
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Hence, Theorem 1.1 follows if we may show

A/var(θ̃)L →p 1, (1.25)

B/var(θ̃)L →p 0, (1.26)

C/var(θ̃)L →p 0, (1.27)

D/var(θ̃)L →p 0, (1.28)

E/var(θ̃)L →p 0, (1.29)

The condition C1 implies Equation (1.25), whereas Equations (1.26) and (1.27) can

be shown following the Berger and Skinner (2005) proof taking into account the

changes in regularity conditions C5 to C7. Hence, it remains to show Equations

(1.28) and (1.29). We start with Equation (1.28). By the triangle and by the

Cauchy inequalities, the Equation (1.23) implies

|D| ≤
∑

k∈s

∑

`∈s

|Dk`| |rk|2

= D1 +D2

≤ (G1/2
s +H1/2

s )D
1/2
3 ,

where

D1 =
∑

k∈s

∑

`∈s

D−k` |rk|2

≤ G1/2
s D

1/2
3 ,

D2 =
∑

k∈s

∑

`∈s

D+
k` |rk|2

≤ H1/2
s D

1/2
3 ,

and

D3 = nβ
∑

k∈s

∑

`∈s

|rk|4

= n1+β
∑

k∈s

|rk|4. (1.30)

Thus, (Eq. 1.28) follows from conditions C5 and C6, if we show D3{var(θ̃)L}−2 →p

0. Hence, using the Equation (1.21) in (Eq. 1.30), we have that

D3

var(θ̃)2L
≤ λ4

α4δ

n4+β

{n var(θ̃)L}2

(
1

n

∑

k∈s

w̃
4(1+δ)
k ||yk − µ̃||4(1+δ)

)
. (1.31)
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Conditions C3, C4 and Equations (1.22) and (1.31) imply

D3{var(θ̃)L}−2 = nβOp(n−4δ).

From condition C7, β < 4δ. Thus D3{var(θ̃)L}−2 →p 0, implying (1.28). We

now show Equation (1.29). Using the triangle and the Cauchy inequalities in (Eq.

1.24) gives

|E| ≤
∑

k∈s

∑

`∈s

|Dk`| |rk| |ỹk|

= E1 + E2

≤ (G1/2
s +H1/2

s )E
1/2
3 , (1.32)

where

E1 =
∑

k∈s

∑

`∈s

D−k` |rk| |ỹk|,

E2 =
∑

k∈s

∑

`∈s

D+
k` |rk| |ỹk|,

and

E3 = nβ
∑

k∈s

∑

`∈s

|rk|2 |ỹk|2

= n1+β
∑

k∈s

|rk|2 |ỹk|2, (1.33)

ỹk = w̃k (yk − µ̃)T ∇(µ̃). (1.34)

Thus, Equation (1.29) follows from conditions C5 and C6, if we show E3{var(θ̃)L}−2 →p

0. Hence, by using the Cauchy inequality in (Eq. 1.34) we have that

|ỹk| ≤ w̃k ||yk − µ̃|| ||∇(µ̃)||.

This inequality together with Equations (1.21) and (1.33) imply that

E3

var(θ̃)2L
≤ ||∇(µ̃)||2 λ

2

α2δ

n4+β

{n var(θ̃)L}2

(
1

n

∑

k∈s

w̃4+2δ
k ||yk − µ̃||4+2δ

)
. (1.35)

From condition C7, β < 2δ. This, together with (Eq. 1.35), (Eq. 1.22), conditions

C4 and C8 imply E3{var(θ̃)L}−2 = nβOp(n−2δ), i.e. E3{var(θ̃)L}−2 →p 0. �
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1.B. Proof of Theorem 1.3

We use the Theorem 1.1 that sets the consistency of the variance estimator

v̂ar(θ̃)SY G from Equation (1.3), which was utilised to develop the proposed vari-

ance estimator v̂ar(θ̃)prop in Equation (1.7). Hence, given conditions C1, C3, C4,

C7 and C8, it remains to show that Mi ≥ m ≥ 2, for all i = 1, . . . , NI implies that

C2, C5 and C6 hold.

From self-weighting, it can easily be shown that the condition C2 holds. We now

show the conditions C5 and C6 hold.

Let qIi = 1− πIi and q∗Ii = 1− π∗Ii, and also let

β =
Log(nI)

Log(n)
< 1,

be such that nβ = nI . It can be shown that |q∗Ii| = O(1) for Mi ≥ m ≥ 2, for all

i = 1, . . . , NI , and also that d = O(NI) as qIi = O(1).

If q∗Ii > 0, we have from the conditions C5 and C6 that:

D−k` = qIi qIj/d = Op(N −1
I ) for k ∈ si, ` ∈ sj, i 6= j,

and that

D+
k` = q∗Ii for (k 6= `) ∈ si.

Thus, we obtain

Gs =
1

nI

nI∑

i=1

nI∑

j=1,i 6=j

m∑

k=1

m∑

`=1

(qIi qIj
d

)2

=
m2n 2

I

nIN 2
I

Op(1)

= f 2
Im

2Op(n−1I ),

Hs =
1

nI

nI∑

i=1

nI∑

j=1,i=j

m∑

k=1

m∑

`=1,k 6=`

(q∗Ii)
2

= m(m− 1)Op(1),

where fI = nI/NI and m are constants. Moreover, if d̂ was used instead of d in

Equation (1.8), then:

Gs = m2Op(n−1I ).
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Following, if q∗Ii < 0, we have that:

D−k` = qIi qIj/d = Op(N −1
I ) for k ∈ si, ` ∈ sj, i 6= j,

and

D−k` = q∗Ii for (k 6= `) ∈ si,

and also that

D+
k` = 0.

Hence,

Gs = f 2
Im

2Op(n−1I ) + m(m− 1)Op(1),

and

Hs = 0.

Again, if d̂ was used instead of d, then

Gs = m2Op(n−1I ) + m(m− 1)Op(1).

Thus, Gs and Hs are Op(1) completing the proof. �
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1.C. Proof of Equation (1.7)

We first introduce some results and approximations which will be used. Hence,

for the designs and estimators defined in sections 1.2 and 1.4, we have that

ς(Ii) =
∑

k∈si

ε(k). (1.36)

We show Equation (1.36) by recalling that the sampling design is self weighted.

Hence,

n = nI m,

w̃k =
1

n
,

w̃`(k) =
1

n− 1
,

w̃k(Ii) =
1

n−m,

implying

nI − 1

nI
(µ̃q − µ̃q(Ii)) =

1

nI

[
(nI − 1)µ̃q −

nI − 1

m(nI − 1)

(
nImµ̃q −

∑

k∈si

yqk

)]

=
∑

k∈si

(n− 1)µ̃q − nµ̃q + yqk
n

=
n− 1

n

∑

k∈si

(µ̃q − µ̃q(k)).

Then, as g(·) is linearisable, we obtain Equation (1.36). Now, under the asymptotic

framework from subsection 3.1 (Isaki and Fuller, 1982) we have that N → ∞.

Thus, implying NI → ∞ as m is assumed fixed. Then we have that d → ∞, i.e.

the Hájek (1964) asymptotic framework for the clusters’ selection stage. Further,

we have that qIi = O(1). Letting qIi = 1−πIi and q∗Ii = 1−π∗Ii, we also introduce

the following approximations which are suitable for large values of d:

qIi qIj {qIi qIj − d}−1 l −qIiqIi/d, (1.37)

(d̂− qIi)/d l 1, (1.38)

q∗Ii + q2Ii/d l q∗Ii, (1.39)
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Hence, from Equation (1.3), we have that

v̂ar(θ̃)SY G =
∑

k∈s

∑

`∈s,` 6=k

Dkl ε(k) ε(`) −
∑

k∈s

∑

`∈s,` 6=k

Dkl ε2(k)

=
∑

i∈s

∑

j∈s,j=i

∑

k∈si

∑

`∈sj ,` 6=k

Dkl ε(k) ε(`)

+
∑

i∈s

∑

j∈s,j 6=i

∑

k∈si

∑

`∈sj

Dkl ε(k) ε(`)

−
∑

i∈s

∑

j∈s,j=i

∑

k∈si

∑

`∈sj ,` 6=k

Dkl ε2(k)

−
∑

i∈s

∑

j∈s,j 6=i

∑

k∈si

∑

`∈sj

Dkl ε2(k).

Then, substituting Dkl (see section 1.4) and using Equations (1.36) and (1.37) we

obtain,

v̂ar(θ̃)SY G l
∑

i∈s

q∗Ii

[
ς2(Ii) −

∑

k∈si

∑

`∈si`=k

ε(k) ε(`)

]

−
∑

i∈s

∑

j∈s,j 6=i

qIi qIj
d

ς(Ii) ς(Ij)

− (m− 1)
∑

i∈s

q∗Ii
∑

k∈si

ε2(k)

+m
∑

i∈s

∑

j∈s,j 6=i

qIi qIj
d

∑

k∈si

ε2(k)

=
∑

i∈s

[
q∗Ii +

q2Ii
d

]
ς2(Ii) −

1

d

[∑

i∈s

qIi ς(Ii)

]2

+m
∑

i∈s

[
qIi

d̂− qIi
d

− q∗Ii

]∑

k∈si

ε2(k).

Now, by using Equations (1.38) and (1.39), combined with

qIi − q∗Ii =
πIi − f
m− 1

=
πIi(Mi −m)

Mi(m− 1)
,

we obtain the proposed estimator v̂ar(θ̃)prop from Equation (1.7). �
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Chapter 2

A new replicate variance

estimator for unequal probability

sampling without replacement

Abstract

We propose a new replicate variance estimator suitable for differentiable functions of es-

timated totals. The proposed variance estimator is defined for any unequal-probability

without-replacement sampling design, it naturally includes finite population corrections

and it allows two-stage sampling. We show its design-consistency and its close relation-

ship with linearisation variance estimators.

When estimating a total, the proposed estimator reduces to the Horvitz and Thompson

(1952) variance estimator. Monte-Carlo simulations suggest that the proposed variance

estimator is more stable than its replicate competitors.

Keywords and phrases: Derivative; jackknife; pseudo-value; self-weighted; stratification;

Taylor linearisation.

41
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2.1 Introduction

Replication methods for variance estimation such as the Jackknife, the Bootstrap

and the Balanced Half-Samples are very popular in practice (e.g. Shao and Tu,

1995; Davison and Hinkley, 1997; Lehtonen and Pahkinen, 2004; Wolter, 2007).

However, there are only limited applications under unequal-probability without-

replacement sampling designs (e.g. Berger and Skinner, 2005; Berger and Rao,

2006; Berger, 2007).

Linearisation is an alternative to replication methods (e.g. Robinson and Särndal,

1983; Binder, 1996; Deville, 1999; Demnati and Rao, 2004, 2010). Although

slightly design-biased, the linearisation variance estimators are more stable than

its replication counterparts (e.g. Kish and Frankel, 1974; Kovar et al., 1988; Shao

and Tu, 1995, pp. 32, 69). There are different approaches for deriving linearisa-

tion variance estimators which may give asymptotically equivalent but different

estimators (Binder, 1996, pp. 17, 18). Deville (1999) proposes an approach based

upon derivatives of the population parameter of interest. Demnati and Rao (2004)

propose an approach which is based on derivatives of the estimator of the parame-

ter of interest. Nevertheless, linearisation involves deriving analytic derivatives; a

well documented practical drawback (e.g. Shao and Tu, 1995, pp. 69, 281). Skin-

ner (2004) and Demnati and Rao (2004, p. 21) raised the need of a replication

estimator which overcomes that practical drawback.

We propose a new replicate variance estimator suitable for differentiable func-

tions of estimated totals. The estimator is defined for any unequal-probability

without-replacement sampling design and it naturally includes finite population

corrections. The proposed approach consists in repeatedly perturbing the sam-

pling weights. In Subsections 2.3.1 and 2.3.2, we show that this novel approach

can be interpreted in several ways depending on its configuration. Further, we

show that the proposed replicate variance estimator is approximately equal to lin-

earisation variance estimators. Moreover, it can be seen as an approximation to

the linearisation estimators obtained by the Demnati and Rao (2004) approach.

We also show that it is asymptotically design-consistent and that it can handle

two-stage sampling. For the Horvitz and Thompson (1952) point estimator, the

proposed variance estimator reduces to the Horvitz and Thompson (1952) and the

Sen (1953); Yates and Grundy (1953) variance estimator.
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2.2 The class of point estimators

Let U = {1, . . . , k, `, . . . , N} denote a finite population and let s = {1, . . . , n} ⊆ U
denote a sample whose elements are randomly selected with an unequal probability

sampling design without replacement. We assume full response.

Consider the population parameter

θ = h(t1, . . . , tq, . . . , tQ),

where h(·) is a smooth and differentiable function (e.g. Shao and Tu, 1995, ch. 2)

of population totals tq, (q = 1, . . . , Q) of Q survey variables,

tq =
∑

k∈U

yqk,

with yqk denoting the value of the variable q for the unit k ∈ U . Consider that θ

is estimated by its substitution point estimator

θ̂ = h(t̂1, . . . , t̂q, . . . , t̂Q),

where t̂q, is the Horvitz and Thompson (1952) point estimator

t̂q =
∑

k∈s

wk yqk,

with survey weights wk = 1/πk; where πk > 0 is the inclusion probability of the

unit k.

2.3 The proposed replicate variance estimator

We propose to estimate the variance of θ̂ by

v̂ar(θ̂)HTprop =
∑

k∈s

∑

`∈s

Dk` wkνk w`ν`, (2.1)

where

Dk` =
πk` − πkπ`

πk`
,
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with πk` > 0 denoting the joint inclusion probability of the units k and `, and

where

νk =
θ̂ − θ̂∗k
%k

, (2.2)

with

%k = w1−αk
k ,

for some αk ≥ 0 (see Subsection 2.3.1), where θ̂∗k has the same functional form as

θ̂ but using t̂∗qk instead of t̂q, i.e.

θ̂∗k = h(t̂∗1k, . . . , t̂
∗
qk, . . . , t̂

∗
Qk),

with

t̂∗qk =
∑

`∈s

w∗`(k) yq`, (2.3)

where

w∗`(k) =

{
w` if ` 6= k,

wk − %k if ` = k.

Alternatively, with fixed sample size, we propose to use the estimator,

v̂ar(θ̂)SY Gprop =
−1

2

∑

k∈s

∑

`∈s

Dk` (wkνk − w`ν`)2, (2.4)

which is positive provided that the Sen (1953); Yates and Grundy (1953) condition,

Dk` < 0, holds.

2.3.1 The value of αk

We originally developed the proposed replication variance estimators v̂ar(θ̂)HTprop and

v̂ar(θ̂)SY Gprop for αk = 1 (Escobar and Berger, 2011). However, to avoid restricting

αk, we explore its range of values. In Section 2.5, we show that Equations (2.1)

and (2.4) are valid for any αk ≥ 0. We recommend to use αk = 1 or αk > 1 (see

below comments and Subsections 2.3.3, 2.4.2, 2.4.3 and Section 2.7).

Using αk = 0 gives %k = wk which corresponds to a näıve jackknife which deletes

the unit k, i.e. using w∗`(k) = 0 if ` = k. In Section 2.7 we show that this case

produces biased and unstable estimates.

Using αk = 1 gives %k = 1. This implies that Equations (2.2) and (2.3) reduce

respectively to νk = θ̂ − θ̂∗k and t̂∗qk = t̂q − yqk, obtaining the Escobar and Berger
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(2011) jackknife. In this case, note that αk (and therefore %k) is a constant free of

k.

Using αk > 1 results in approximating the linearisation variance estimators ob-

tained by the Demnati and Rao (2004) approach. The larger the value of αk,

the closer the approximation (Subsections 2.3.3, 2.4.3 and Section 2.7). This fea-

ture can be used when the involved derivatives in linearisation become extremely

cumbersome, e.g. when h(·) is an implicit function (Shao and Tu, 1995, p. 29).

2.3.2 Example of a total (underlying idea)

Consider the case of estimating a total,

θ̂ = t̂ =
∑

k∈s

wkyk.

The Equations (2.2) and (2.3) imply that,

νk =
θ̂ − θ̂∗k
%k

=
t̂ − ( t̂ − %k yk )

%k

=
%k yk
%k

= yk.

Hence, (Eq. 2.1) and (Eq. 2.4) reduce respectively to the Horvitz and Thompson

(1952), and the Sen (1953); Yates and Grundy (1953) unbiased estimators of var(t̂).

Note that this is true for any value of αk.

2.3.2.1 Intuitive underlying idea

As suggested by a referee, we give an intuitive explanation. Consider the case

αk = 1. Let f be the artificial population obtained from expanding the yk ∈ s by

their wk’s, i.e. the expanded sample. Accordingly, we are omitting yk from f and

estimating θ via θ̂∗k = t̂− yk with a Bias(θ̂∗k) = yk. Hence, νk = θ̂ − θ̂∗k = yk.

Comparing with the customary Jackknife (Quenouille, 1956; Tukey, 1958) we have

that: (i) The proposed replication removes units from f instead of from s; (ii) The

customary assumes the pseudo-values are unbiased and approx. i.i.d., whereas in
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the proposed the νk’s are neither unbiased nor i.i.d. If αk > 1, the proposed deletes

bits of units, i.e. it perturbs the wk’s by %k. The proposed variance estimator can

thus be seen as a post-expansion or as a delete-weight Jackknife.

From a Bootstrap (Efron, 1979) perspective, the proposed estimator can also be

seen as a Bootstrap which deterministically subsamples n different subsets of size

#(f) − %k from f, instead of randomly subsampling (say) L resamples of size n

from f. Note that there are at most n different pairs wkyk in f.

As it has been mentioned, and as it will be shown, the proposed replication esti-

mator can also be seen as an approximation to linearisation estimators.

2.3.3 Example of a ratio

Let R = ty/tx, be the parameter of interest, where ty =
∑

k∈U yk and tx =
∑

k∈U xk

are the population totals of the variables y and x. Assume that R is estimated

with the point estimator

R̂ =
t̂y

t̂x
.

A linearisation variance estimator of R̂ is given by (e.g. Demnati and Rao, 2004,

example 2.1),

v̂ar(R̂)Lin =
∑

k∈s

∑

`∈s

Dk` wkuk w`u`, (2.5)

with

uk =
yk − R̂ xk

t̂x
. (2.6)

In this case, the νk values in Equation (2.2) are given by

νk = uk

(
t̂x

t̂x − %k xk

)
. (2.7)

From (Eq. 2.6) and (Eq. 2.7) we see that

νk l uk,

if,
t̂x

t̂x − %kxk
l 1.
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Thus, for large αk, i.e. small %k, we have that (Eq. 2.1) is a suitable approximation

of (Eq. 2.5) and its sensitivity to highly-skewed weights should be low (see Section

2.7).

2.4 Alternative estimators for the variance

2.4.1 Generalised jackknife for functions of means

The Campbell (1980); Berger and Skinner (2005) generalised jackknife is defined

by,

v̂ar(θ̂)CBSJack =
∑

k∈s

∑

`∈s

Dk` wkεk w`ε`, (2.8)

with

εk =

(
1

wk
− 1

N̂

)
(θ̃ − θ̃(k)), (2.9)

where

θ̃ = g(µ̃1, . . . , µ̃q, . . . , µ̃Q),

is a function of Hájek (1971) mean estimators of Q variables with

µ̃q =
t̂q

N̂
,

N̂ =
∑

k∈s

wk,

and where

θ̃(k) = g(µ̃
(k)
1 , . . . , µ̃(k)

q , . . . , µ̃
(k)
Q )

has the same functional form as θ̃ but replacing µ̃q by

µ̃(k)
q =

t̂q − wkyk

N̂ − wk
.

Note that the generalised jackknife (Eq. 2.8) is designed for functions of means

whereas the proposed estimator (Eq. 2.1) is designed for functions of totals. Thus,

the proposed estimator is more general.
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2.4.1.1 Example of a ratio (revisited)

When θ̂ = R̂, we have that θ̃ = θ̂ and that the εk’s from (Eq. 2.9) are given by

εk = uk

(
t̂x

t̂x − wkxk

)(
N̂ − wk

N̂

)
. (2.10)

From Equations (2.6), (2.7) and (2.10) we see that

εk l uk,

if,
N̂ − wk

N̂
l 1,

and if,
t̂x

t̂x − wk xk
l 1.

Note that (Eq. 2.7) is a better approximation of (Eq. 2.6) than (Eq. 2.10). Hence,

the proposed estimator (Eq. 2.1) should be as precise as (Eq. 2.5).

As suggested by a referee, we show the above example for Poisson sampling. It

can be shown that the Equations (2.5), (2.8) and (2.1) reduce respectively to

v̂ar(R̂)PoiLin =
∑

k∈s

wk − 1

wk
(wk uk)

2, (2.11)

v̂ar(R̂)CBSPoiJack =
∑

k∈s

wk − 1

wk

(
t̂x

t̂x − wk xk

)2
(
N̂ − wk
N̂

)2

(wk uk)
2, (2.12)

v̂ar(R̂)HTPoiProp =
∑

k∈s

wk − 1

wk

(
t̂x

t̂x − %k xk

)2

(wk uk)
2, (2.13)

with uk as defined in (Eq. 2.6). Thus, we can see that (Eq. 2.13) is a better

approximation to (Eq. 2.11) than (Eq. 2.12) for uniformly negligible %k (large

αk).

2.4.2 Linearisation based on the Gâteaux derivative

Let θ = T (M) be a functional where M is measure which allocates the unit mass to

k ∈ U and let θ̂ be a functional T (M̂), where M̂ denotes a sample-based measure

that allocates the mass wk to the element k ∈ s, and let δyk be the degenerate point
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mass at yk. The empirical influence function of T (·) (e.g. Davison and Hinkley,

1997, sec. 2.7) in M̂ (if it exists) is defined as

EIT(M̂, yk) = lim
ζ→0

T [M̂ + ζδyk ]− T (M̂)

ζ
,

i.e. the Gâteaux derivative of T (·) over the random measure M̂ . A variance

estimator is given by the Equation (2.1) after substituting νk by EIT(M̂, yk).

The approach proposed by Deville (1999, p. 197) estimates the population in-

fluence function IT(M, yk) by IT(M̂, yk), i.e. the influence function of T (·) in

M evaluated at M = M̂ . Note that IT(M̂, yk) can be different from EIT(M̂, yk)

which is the empirical influence function of T (·) in M̂ . Also note that, for the ratio

(see Deville, 1999, p. 198), that approach does not always give the linearisation

estimator (Eq. 2.5) with uk as in Equation (2.6).

Using Equation (2.2), we have that

νk =
T [M̂ + ζkδyk ]− T (M̂)

ζk
,

with

ζk = − %k.

Thus, νk can be interpreted as an approximation of EIT(M̂, yk). Again, large αk

(small %k), ensures this approximation is better as ζk is close to zero.

Note that, for example, if αk = 1 then %k is a constant free of k.

An overview of the linearisation using Gâteaux differentiation can be found in

Goga et al. (2009).

2.4.3 Demnati and Rao (2004) linearisation approach

Let us redefine the point estimator as θ̂ = g(d1, d2, . . . , dN) where dk = wk if k ∈ s
and dk = 0 otherwise. Demnati and Rao (2004) propose to estimate the variance

using Equation (2.1) after substituting νk by

zk =
∂g(a1, . . . , aN)

∂ak

∣∣∣∣ (ak = dk)

= lim
ζ→0

g(d1, . . . , dk + ζ, . . . , dn)− g(d1, . . . , dn)

ζ
, (2.14)
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for constants a1, . . . , aN . Now, by using Equation (2.2), we have that

νk =
g(d1, . . . , dk + ζk, . . . , dn)− g(d1, . . . , dn)

ζk
,

with

ζk = − %k.

Thus, νk can be interpreted as an approximation of zk. Again, large αk’s (small

%k’s) ensure that ζk is small.

Note again that the αk can be defined such that %k is a constant free of k.

2.5 Design-consistency

We now set the validity of the proposed variance estimators (Eq. 2.1) and (Eq.

2.4) under the Isaki and Fuller (1982) asymptotic framework. Consider a sequence

of nested populations of increasing sizes {Nt : 0 < Nt < Nt+1,∀t}. Consider also a

sequence of non-necessarily nested samples of increasing sizes {nt : nt < nt+1;nt <

Nt,∀t}. Thus, if t → ∞, it implies that Nt → ∞ and nt → ∞, with f = nt/Nt

a constant free of the limiting process. In what follows, we drop the index t to

simplify the notation.

Consider the Horvitz and Thompson (1952) estimator

µ̂q =
∑

k∈s

w̄kyqk,

of the population mean

µq =
1

N
tq,

for q = 1, . . . , Q where

w̄k =
wk
N
.

Thus, for the vector of means µ = (µ1, . . . , µQ)T and the vector of estimators

µ̂ = (µ̂1, . . . , µ̂Q)T , the multivariate Horvitz and Thompson (1952) and Sen (1953);
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Yates and Grundy (1953) design variances and variance estimators of µ̂ are

var(µ̂)HT =
∑

k∈U

∑

`∈U

Dk` πk` w̄kw̄` ykyT` ,

v̂ar(µ̂)HT =
∑

k∈s

∑

`∈s

Dk` w̄kw̄` ykyT` , (2.15)

var(µ̂)SY G =
−1

2

∑

k∈U

∑

`∈U

Dk` πk` {w̄kyk − w̄`y`}{w̄kyk − w̄`y`}T ,

v̂ar(µ̂)SY G =
−1

2

∑

k∈s

∑

`∈s

Dk` {w̄kyk − w̄`y`}{w̄kyk − w̄`y`}T , (2.16)

with yk = (y1k, . . . , yQk)
T .

Now, assume the following regularity conditions:

(a) v̂ar(θ̂)L/var(θ̂)L →p 1, var(θ̂)L 6= 0 where,

var(θ̂)L = ∇(µ)Tvar(µ̂)HT∇(µ),

v̂ar(θ̂)L = ∇(µ̂)T v̂ar(µ̂)HT∇(µ̂). (2.17)

Alternatively for fixed sample-size designs,

var(θ̂)L = ∇(µ)Tvar(µ̂)SY G∇(µ),

v̂ar(θ̂)L = ∇(µ̂)T v̂ar(µ̂)SY G∇(µ̂), (2.18)

where ∇(x) = (∂h(µ)/∂µ1, . . . , ∂h(µ)/∂µQ)Tµ=x is the gradient of h(·) at

x ∈ <Q with h(·) continuous and differentiable at µ.

(b) lim inf {n var(θ̂)L} > 0.

(c) n−1
∑

k∈s w̄
τ
k %̄

γ
k ||yk||τ+γ = Op(n−(τ+γ)), ∀τ ≥ 2, ∀γ ≥ 0, where %̄k = w̄1−αk

k ,

αk ≥ 0, with ||A|| = tr(ATA)1/2 the Euclidean norm.

(d) Gs = n−β
∑∑

(k 6=`)∈s(D−k`)2 = Op(1), with 0 ≤ β < 1, where D−k` = −Dk` if

Dk` < 0 and 0 otherwise.

(e) Hs = n−β
∑∑

(k 6=`)∈s(D+
k`)

2 = Op(1), with 0 ≤ β < 1, where D+
k` = Dk` if

Dk` ≥ 0 and 0 otherwise.

(f) ∇(x) is Lipschitz (Hölder) continuous of order δ, i.e. ‖∇(x1)−∇(x2)‖ ≤
λ ‖x1 − x2‖δ, λ > 0 and δ > 0 constants, 0 ≤ β/2 < δ, for x1 and x2 in the

neighbourhood of µ.
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(g) ||∇(µ̂)|| = Op(1).

Conditions (a), (c), (d), (e) and (f) are similar but different from those proposed in

Berger and Skinner (2005). Condition (a) sets the consistency of the linearisation

variance estimator (e.g. Robinson and Särndal, 1983; Särndal et al., 1992, secs.

5.5, 5.7). Conditions (b) and (c) are usual conditions in asymptotic studies (e.g.

Shao and Tu, 1995, subsec. 6.4.1): Condition (b) implies var(θ̂)L decreases with

rate n−1, and the Condition (c) is a Lyapunov-type condition for the existence of

moments; Conditions (d) and (e) are mild conditions on the design similar to ones

in Isaki and Fuller (1982). These conditions allow two-stage sampling (e.g. Escobar

and Berger, 2013a); Conditions (f) and (g) are smoothness and differentiability

requirements.

Theorem 2.1. Theorem 1. Under unequal probability sampling with fixed sample

size, the regularity conditions (a)–(g) imply that

v̂ar(θ̂)SY Gprop

var(θ̂)L
→p 1.

A proof of Theorem 1 is given in the Appendix 2.A for this chapter.

Corollary 2.2. Corollary 1. Under unequal probability sampling, if the regularity

conditions (a)–(g) hold, then

v̂ar(θ̂)HTprop

var(θ̂)L
→p 1.

The proof of Corollary 1 is also given in the Appendix 2.A for this chapter. Hence,

from the Theorem 1, Corollary 1 and the Slutsky’s theorem (e.g. Valliant et al.,

2000, p. 414), it follows that:

θ̂ − θ√
v̂ar(θ̂)SY Gprop

→d N(0, 1),

and
θ̂ − θ√

v̂ar(θ̂)HTprop

→d N(0, 1),

when θ̂ is asymptotically Normal. Thus, allowing valid confidence intervals of θ̂

for θ.
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2.6 Two-stage sampling

The proposed variance estimator can be used for two-stage sampling. For example,

consider a self-weighted two-stage sampling design where nI clusters are selected

with inclusion probabilities πIi proportional to their sizes Mi, (i = 1, . . . , NI).

Within each selected cluster a simple random sample of m elements is drawn.

Hence, the clusters’ inclusion probabilities are

πIi = nI
Mi

N
,

and the elements’ inclusion probabilities are

πk =
n

N
= f.

By using the Hájek (1964, Eq. 5.27, p. 1511) approximation and by denoting

qIi = 1− πIi, the clusters’ joint inclusion probabilities πIij are approximated by

πIij l πIi πIj

{
1− qIiqIj

d

}
, (i 6= j = 1, . . . , NI), (2.19)

where

d =
∑

i∈U

πIi qIi.

This approximation was originally developed for d→∞, i.e. for NI →∞ with a

fixed m, under the maximum entropy sampling design (see Hájek, 1981, ch. 3 &

6); namely the Rejective Sampling. It requires that the used sampling design (for

clusters) is of large entropy. Low entropy sampling designs (e.g. systematic prob-

ability proportional-to-size design) are not suitable for the above approximation.

However, the randomised systematic sampling is suitable as it is of large entropy.

See Berger and Tillé (2009) for an overview. Berger (2011) gives sufficient condi-

tions under which Hájek’s results still hold for large entropy designs that are not

the maximum entropy one.

Hence, given that the i-th cluster is selected, the elements’ conditional inclusion

probabilities are

πk|Ii =
m

Mi

,

and

πk`|Ii =
m (m− 1)

Mi (Mi − 1)
.
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Using (Eq. 2.19), the elements’ joint inclusion probabilities πk` are given by

πk` l





πIi πk|Ii = f if (k = `) ∈ si,
πIi πk`|Ii = f(m− 1)/(Mi − 1) if (k 6= `) ∈ si,
πIij πk|Ii π`|Ij l f 2{1− d−1qIiqIj} if k ∈ si, ` ∈ sj, i 6= j,

where si denotes the sample of the i-th cluster. Substituting πk` in Dk`, we obtain

Dk` l





1− f if (k = `) ∈ si,
1− π∗Ii if (k 6= `) ∈ si,
qIi qIj/(qIi qIj − d) if k ∈ si, ` ∈ sj, i 6= j.

(2.20)

where

π∗Ii = πIi
m

m− 1

Mi − 1

Mi

.

Thus, the proposed estimator is given by the Equations (2.1) or (2.4) with Dk`
substituted by (Eq. 2.20).

2.6.1 Design-consistency for self-weighted two-stage sam-

pling

The proposed variance estimators (Eq. 2.1) and (Eq. 2.4) are consistent under

self-weighted two-stage sampling when the regularity conditions of Section 2.5

hold. Hence, assuming that the customary Conditions (a), (b), (c), (f) and (g)

hold, it is only necessary to show that the Conditions (d) and (e) hold.

Let

β =
log(nI)

log(n)
< 1,

such that nβ = nI and let fI = nI/NI . It can be shown that |1− π∗Ii| = O(1) for

Mi ≥ m ≥ 2,∀i = 1, . . . , NI and that d = O(NI) as qIi = O(1).

If 1− π∗Ii > 0, we have from Conditions (d) and (e), that

Gs = f 2
Im

2Op(n−1I ),

and

Hs = m(m− 1)Op(1).
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If 1− π∗Ii < 0, we have,

Gs = f 2
Im

2Op(n−1I ) + m(m− 1)Op(1),

and

Hs = 0.

Thus, Gs and Hs are Op(1) when fI and m are O(1). Note that this is also true if

d̂ =
∑

i∈s

(1− πIi),

is used instead of d, since d̂ = Op(nI). Thus, the Conditions (d) and (e) hold.

2.7 Simulation study

Consider the sugar cane farms dataset (Chambers and Dunstan, 1986) is a popu-

lation frame of size N = 338. The variables of interest are:

• Gross value of cane (y1k),

• Total farm expenditure (y2k).

The parameter of interest is the ratio

R =
t1
t2
,

with true value R = 1.58, which is estimated by the point estimator

R̂ =
t̂1

t̂2
.

For selecting the samples and for computing the joint inclusion probabilities we

use the Midzuno (1951) method.

We consider four scenarios where the inclusion probabilities πk are proportional

to the variables:

• Total cane harvested (xk), to obtain πk’s correlated to y1k and y2k,
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• Square root of the total cane harvested (
√
xk), to obtain πk’s mildly correlated

to y1k and y2k through a non-linear relationship,

• Variable with ones. The πk’s are equal in this case, πk = n/N ,

• Generated variable (ψ−1k ) where ψk ∼ Log-Normal(0, 1/2), to use indepen-

dent and randomly highly-skewed sampling weights wk’s.

For each simulation, 1 000 000 samples were selected to compute: the empirical

relative bias

RB =
B(v̂ar(R̂))

var(R̂)
,

where

B(v̂ar(R̂)) = E(v̂ar(R̂))− var(R̂),

and the empirical relative root mean square error

RRMSE =

√
MSE(v̂ar(R̂))

var(R̂)
.

The term var(R̂) is the empirical variance computed from the 1 000 000 observed

values of R̂. The used variance estimators are:

• The Quenouille (1956); Tukey (1958) standard jackknife,

v̂ar(θ̂)STD =
(

1− n

N

) n− 1

n

∑

k∈s

(θ̂(k) − θ̂(·))2, (2.21)

with an ad hoc finite population correction, where θ̂(k) has the same func-

tional form as θ̂ but using t̂q(k) instead of t̂q, i.e.

θ̂(k) = h(t̂1(k), . . . , t̂Q(k)),

with

t̂q(k) =
∑

` 6=k∈s

w` yq`,

and

θ̂(·) =
1

n

∑

k∈s

θ̂(k),

• The Campbell (1980); Berger and Skinner (2005) generalised jackknife from

the Equation (2.8),
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• The proposed variance estimator (Eq. 2.1) with αk = bk and αk = 0, 1, 2

where

bk = 1 +
log(n)

log(wk + 1/n)
,

i.e. %k l n−1 and %k = wk, 1, w
−1
k , respectively.

• The linearisation variance estimator from Equation (2.5).

In Table 2.1, we see that the standard jackknife (Eq. 2.21) has increasing RB,

in absolute value, for increasing n under the unequal probability scenarios πk ∝
xk,
√
xk and ψ−1k , and it has a decreasing RB for increasing n with πk = n/N . The

proposed estimator (Eq. 2.1) with αk = 0, has the largest but always positive RB

which decreases with increasing n.

Further, in all four scenarios, we can observe that for increasing values of αk,

the RB of the proposed (Eq. 2.1) tends to replicate the RB of the linearisation

estimator (Eq. 2.5), confirming that (Eq. 2.1) is approximately equal to (Eq. 2.5)

when αk > 1. The CBS generalised jackknife (Eq. 2.8) has a decreasing RB for

increasing n. Note that the RB of the proposed estimator can be smaller than

the RB of (Eq. 2.8) in absolute value. This is more noticeable with αk 6= 0 for

the scenarios πk ∝ xk and
√
xk. The estimator (Eq. 2.8) tends to be less biased

than (Eq. 2.5) and (Eq. 2.1) with independent or highly skewed sampling weights.

However, the RB of (Eq. 2.8) tends to be greater than (Eq. 2.5) and (Eq. 2.1)

with αk > 0 or αk = bk in the case where there is a non-linear relationship between

the inclusion probabilities and the variables of interest.

Table 2.2 shows that the linearisation estimator (Eq. 2.5) has the smallest RRMSE

among all other variance estimators, except for πk ∝ ψ−1k and f = 0.201, 0.302

where the standard estimator (Eq. 2.21) has the smallest RRMSE. Again, in all

four scenarios, we can observe, for increasing values of αk, that the RRMSE of the

estimator (Eq. 2.1) tends to replicate the RRMSE of the linearisation estimator

(Eq. 2.5).

In almost all cases, note that the proposed estimator (Eq. 2.1) with αk 6= 0 has

smaller RRMSE than the estimator (Eq. 2.8). Thus, the estimator (Eq. 2.1) is

more stable than the estimator (Eq. 2.8). This is more noticeable for small n,

when the inclusion probabilities are poorly correlated with the variables of interest,

or with highly skewed sampling weights. However, as previously suggested, the

estimator (Eq. 2.1) may become unstable if the extreme value αk = 0 is used.
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Table 2.1: Relative Bias (%) of the ratio point estimator.

Std. CBS Proposed replication Taylor
Jack. Jack. (Eq. 2.1) with Lin.

n f(%) (Eq. 2.21) (Eq. 2.8) αk = bk αk = 0 αk = 1 αk = 2 (Eq. 2.5)

πk ∝ xk
2 0.6 18.8 10.9 -2.5 343.3 -2.1 -2.9 -2.9
4 1.2 4.8 4.2 -1.6 84.4 -1.1 -1.8 -1.8
7 2.1 2.7 1.8 -1.0 38.7 -0.3 -1.1 -1.1

10 3.0 2.1 1.1 -0.8 25.0 -0.1 -0.8 -0.9
17 5.0 2.1 0.5 -0.5 13.7 0.3 -0.5 -0.5
34 10.1 3.1 -0.2 -0.6 6.2 0.1 -0.5 -0.6
68 20.1 7.8 0.1 0.0 3.3 0.7 0.2 0.0

102 30.2 14.2 -0.1 0.0 2.2 0.7 0.2 0.0

πk ∝
√
xk

2 0.6 15.0 12.3 -8.2 326.3 -7.9 -8.5 -8.5
4 1.2 5.9 11.7 -5.0 86.6 -4.5 -5.2 -5.2
7 2.1 3.2 6.7 -3.0 40.0 -2.3 -3.1 -3.2

10 3.0 2.5 4.6 -2.1 25.9 -1.4 -2.2 -2.2
17 5.0 2.0 2.5 -1.3 14.1 -0.5 -1.3 -1.4
34 10.1 2.6 1.1 -0.7 6.6 0.1 -0.7 -0.8
68 20.1 5.5 0.4 -0.5 3.1 0.4 -0.3 -0.5

102 30.2 10.0 0.3 -0.2 2.1 0.6 0.1 -0.2

πk = n/N
2 0.6 8.5 -3.6 -24.1 285.6 -23.8 -24.3 -24.3
4 1.2 6.8 5.1 -16.8 86.8 -16.4 -16.9 -17.0
7 2.1 5.1 4.7 -11.1 42.6 -10.5 -11.2 -11.2

10 3.0 4.0 3.9 -8.1 28.3 -7.4 -8.2 -8.2
17 5.0 2.5 2.4 -5.1 15.7 -4.3 -5.1 -5.2
34 10.1 1.0 1.0 -2.9 7.2 -2.0 -2.9 -3.0
68 20.1 0.9 0.9 -1.1 4.0 -0.1 -0.9 -1.1

102 30.2 0.2 0.2 -1.1 2.2 -0.2 -0.8 -1.1

πk ∝ 1/ψk
2 0.6 7.0 -28.2 -41.3 252.9 -41.1 -41.5 -41.5
4 1.2 10.4 -12.8 -29.1 94.4 -28.6 -29.2 -29.2
7 2.1 6.8 -8.9 -21.6 47.7 -21.0 -21.6 -21.6

10 3.0 5.0 -7.0 -17.2 32.2 -16.6 -17.3 -17.3
17 5.0 3.1 -4.2 -11.5 19.1 -10.8 -11.5 -11.6
34 10.1 -0.3 -2.2 -6.9 9.5 -6.1 -6.8 -6.9
68 20.1 -4.9 -1.4 -4.3 4.6 -3.4 -4.1 -4.3

102 30.2 -9.2 -1.1 -3.2 3.1 -2.3 -3.0 -3.2

Additional graphical representations for all these results are provided in the Ap-

pendix 2.B of this chapter.
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Table 2.2: Relative Root Mean-Square Error (%) of the ratio point estimator.

Std. CBS Proposed replication Taylor
Jack. Jack. (Eq. 2.1) with Lin.

n f(%) (Eq. 2.21) (Eq. 2.8) αk = bk αk = 0 αk = 1 αk = 2 (Eq. 2.5)

πk ∝ xk
2 0.6 202.1 189.5 150.4 814.9 151.0 149.9 149.9
4 1.2 101.7 102.9 88.3 199.2 88.8 88.1 88.1
7 2.1 68.7 68.5 63.2 101.3 63.6 63.1 63.1

10 3.0 55.0 54.7 51.7 72.4 52.1 51.7 51.7
17 5.0 40.4 40.0 38.8 47.5 39.1 38.8 38.8
34 10.1 27.4 26.8 26.4 29.3 26.6 26.4 26.4
68 20.1 20.0 18.1 18.0 19.0 18.1 18.0 18.0

102 30.2 20.3 14.3 14.3 14.8 14.4 14.3 14.3

πk ∝
√
xk

2 0.6 197.4 184.8 144.7 774.9 145.2 144.3 144.3
4 1.2 108.9 118.3 89.1 209.7 89.7 89.0 89.0
7 2.1 74.0 78.3 65.9 108.3 66.4 65.8 65.8

10 3.0 59.1 61.3 54.5 77.3 54.9 54.5 54.4
17 5.0 42.9 43.5 40.7 50.0 41.1 40.7 40.7
34 10.1 28.8 28.2 27.4 30.4 27.7 27.4 27.4
68 20.1 19.7 17.9 17.7 18.7 17.9 17.7 17.7

102 30.2 17.6 13.3 13.2 13.7 13.3 13.2 13.2

πk = n/N
2 0.6 186.3 161.3 132.3 705.4 132.6 132.0 131.9
4 1.2 127.4 124.2 90.7 237.2 91.1 90.6 90.5
7 2.1 94.0 93.5 73.3 134.0 73.8 73.2 73.2

10 3.0 76.4 76.2 63.4 98.2 63.9 63.4 63.4
17 5.0 55.4 55.4 49.6 64.4 50.0 49.6 49.5
34 10.1 36.4 36.4 34.6 39.3 34.9 34.6 34.6
68 20.1 23.8 23.8 23.2 24.8 23.4 23.2 23.2

102 30.2 17.9 17.9 17.6 18.3 17.8 17.6 17.6

πk ∝ 1/ψk
2 0.6 191.5 145.0 126.1 681.5 126.5 125.8 125.8
4 1.2 153.9 112.2 91.5 289.9 91.9 91.4 91.4
7 2.1 129.2 95.0 80.5 187.7 80.9 80.5 80.5

10 3.0 114.1 88.6 77.2 150.6 77.6 77.2 77.2
17 5.0 91.7 78.7 71.4 110.9 71.8 71.4 71.4
34 10.1 63.6 61.7 58.1 73.9 58.5 58.1 58.1
68 20.1 42.2 46.2 44.6 50.7 44.8 44.6 44.6

102 30.2 33.1 39.3 38.3 41.8 38.5 38.3 38.3
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2.8 Discussion

We propose a new design-consistent replication variance estimator for any unequal-

probability without-replacement sampling design. The proposed replication esti-

mator is approximately equal to the linearisation variance estimators proposed by

Demnati and Rao (2004).

As it is suitable for functions of Horvitz and Thompson (1952) totals, the proposed

estimator enjoys of broad applicability, being more general than the generalised

jackknife (Campbell, 1980; Berger and Skinner, 2005) which is designed for func-

tions of Hájek (1971) means. Our empirical results suggest that, the proposed

estimator is more stable than its competitors.

The proposed replicate estimator can be extended in a number of ways. For

example, by embedding the Hájek (1964) approximation for the joint inclusion

probabilities as in Berger (2007) and as in Escobar and Berger (2013a) for self-

weighted two-stage sampling; or by addressing non-response adjustments as in

Berger and Rao (2006). Further, another possibility is to address the variance

estimation of model parameters (e.g. Demnati and Rao, 2010).
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Appendices to Chapter 2

2.A. Proof of Theorem 2.1 (and Corollary 2.2)

We use standard arguments in proving design-consistency (e.g. Miller, 1964; Shao

and Tu, 1995, subsecs. 2.1.1, 3.1.5). Hence, from the mean value theorem we have

that,

θ̂ − θ̂∗k = h(µ̂)− h(µ̂∗k)

= ∇(ξk)
T (µ̂− µ̂∗k)

= ∇(µ̂)T (µ̂− µ̂∗k) + r∗k,

where ξk is a point between µ̂ and µ̂∗k, and

r∗k = {∇(ξk)−∇(µ̂)}T (µ̂− µ̂∗k),

is the remainder. Now, from the Equation (2.3) it can be shown that

µ̂− µ̂∗k = %̄k yk, (2.22)

where %̄k = w̄1−αk
k and w̄k = wk/N , αk ≥ 0. Combining with (Eq. 2.2) implies,

νk = ∇(µ̂)T yk + rk, (2.23)

where

rk = %̄ −1k r∗k

= {∇(ξk)−∇(µ̂)}T yk.

For rk, the Cauchy inequality implies

|rk| ≤ ||∇(ξk)−∇(µ̂)|| ||yk||. (2.24)

As ξk is between µ̂ and µ̂∗k we have that

||ξk − µ̂|| ≤ ||µ̂− µ̂∗k||.
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This combined with Condition (f) and (Eq. 2.22) imply, for constants λ > 0 and

0 ≤ β/2 < δ, that

||∇(ξk)−∇(µ̂)|| ≤ λ ||ξk − µ̂||δ

≤ λ ||µ̂− µ̂∗k||δ

≤ λ %̄ δ
k ||yk||δ. (2.25)

Now, let denote

r̃k = w̄k rk, (2.26)

ỹk = w̄k y
T
k∇(µ̂), (2.27)

Ψ = n var(θ̂)L. (2.28)

By combining Equations (2.24), (2.25) and (2.26) and multiplying both sides by

w̄k, we obtain

|r̃k| ≤ λ w̄k %̄
δ
k ||yk||1+δ. (2.29)

Using the Cauchy inequality and Condition (b) on Equations (2.27) and (2.28)

give,

|ỹk| ≤ w̄k ||yk|| ||∇(µ̂)||, (2.30)

Ψ−2 = O(1). (2.31)

By substituting (Eq. 2.23) in (Eq. 2.4) we obtain:

v̂ar(θ̂)SY Gprop = A + 2(E − C) + D − B,

where

A = ∇(µ̂)T v̂ar(µ̂)SY G ∇(µ̂), (2.32)

B =
∑∑

k,`∈s
Dk` r̃k r̃`, (2.33)

C =
∑∑

k,`∈s
Dk` r̃k ỹ`, (2.34)

D =
∑∑

k,`∈s
Dk` r̃2k, (2.35)

E =
∑∑

k,`∈s
Dk` r̃k ỹk, (2.36)
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with v̂ar(µ̂)SY G, r̃k and ỹk as Equations (2.16), (2.26) and (2.27). We have to

show:

A/var(θ̂)L →p 1, (2.37)

B/var(θ̂)L →p 0, (2.38)

C/var(θ̂)L →p 0, (2.39)

D/var(θ̂)L →p 0, (2.40)

E/var(θ̂)L →p 0. (2.41)

If proving for Corollary 1, note that substituting (Eq. 2.23) in (Eq. 2.1) gives:

v̂ar(θ̂)HTprop = A + B + 2C,

with A as (Eq. 2.32) but replacing v̂ar(µ̂)SY G by v̂ar(µ̂)HT defined in (Eq. 2.15),

and setting Equations (2.35) and (2.36) equal to zero. Thus, it would suffice to

show Equations (2.37), (2.38) and (2.39).

Condition (a) implies the Equation (2.37). We now show (Eq. 2.38). From

Equation (2.33) and Conditions (d) and (e) we have,

B =
−1

2

∑

k∈s

∑

`∈s

Dk` (r̃k − r̃`)2 +
1

2

∑

k∈s

∑

`∈s

Dk` (r̃2k + r̃2` )

≤ B1 +B2

2
, (2.42)

where

B1 =
∑

k∈s

∑

`∈s

D−k` (r̃k − r̃`)2,

and

B2 =
∑

k∈s

∑

`∈s

D+
k` (r̃2k + r̃2` ).

Now, using the Cauchy inequality on B1, we have that

B2
1 ≤ Gsn

β
∑∑

k,`∈s

(r̃k − r̃`)4,

but as

∑∑

k,`∈s

(r̃k − r̃`)4 = 2n
∑

k∈s

(r̃k − r̄)4 + 6

{∑

k∈s

(r̃k − r̄)2
}2

,
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with

r̄ =
1

n

∑

k∈s

r̃k,

we have that

B2
1 ≤ Gs


2n1+β

∑

k∈s

(r̃k − r̄)4 + 6nβ

{∑

k∈s

(r̃k − r̄)2
}2



≤ Gs(B3 + B4), (2.43)

with

B3 = 2n1+β
∑

k∈s

r̃4k,

and

B4 = 6nβ

(∑

k∈s

r̃2k

)2

.

Hence, the Equation (2.43) and the Condition (d) imply that B1/var(θ̂)L →p 0, if

we show (B3 +B4)/var(θ̂)2L →p 0. Thus, by using the Equation (2.29), we obtain

B3 +B4

var(θ̂)2L
≤ λ4n4+β

Ψ2


 2

n

∑

k∈s

(w̄k%̄
δ
k ||yk||1+δ)4 + 6

{
1

n

∑

k∈s

(w̄k%̄
δ
k ||yk||1+δ)2

}2

 .

From Condition (f), we have β < 4δ. This combined with Condition (c) and (Eq.

2.31) imply

B3 +B4

var(θ̂)2L
= n4+β Op(n−4(1+δ)) + n4+β Op(n−2(1+δ))2,

that is,
B3 +B4

var(θ̂)2L
→p 0. (2.44)

Thus, the Condition (d) and Equations (2.43) and (2.44) all together imply that

B1

var(θ̂)L
→p 0. (2.45)

We now show that B2/var(θ̂)L →p 0. As

∑

k∈s

∑

`∈s

(r̃2k + r̃2` )
2 = 2n

∑

k∈s

r̃4k + 2

(∑

k∈s

r̃2k

)2

,
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we have by the Cauchy inequality that

B2
2 ≤ Hs n

β
∑

k∈s

∑

`∈s

(r̃2k + r̃2` )
2

= Hs

(
B3 +

B4

3

)
.

Thus, the Condition (e) and the Equation (2.44) imply that

B2

var(θ̂)L
→p 0,

which together with Equations (2.45) and (2.42) imply (Eq. 2.38).

We now show (Eq. 2.39). By the triangle and Cauchy inequalities, (Eq. 2.34)

implies

|C| ≤
∑

k∈s

∑

`∈s

|Dk`||r̃k||ỹ`|

=
∑

k∈s

∑

`∈s

D−k`|r̃k||ỹ`| +
∑

k∈s

∑

`∈s

D+
k`|r̃k||ỹ`|

≤ (G1/2
s + H1/2

s ) C̃1/2,

where

C̃ = nβ
∑

k∈s

r̃2k
∑

`∈s

|ỹ`|2. (2.46)

From Conditions (d) and (e), Equation (2.39) follows if we show C̃/var(θ̂)2L →p 0.

Substituting Equations (2.29) and (2.30) in the Equation (2.46) implies

C̃

var(θ̂)2L
≤ ||∇(µ̂)||2λ

2n4+β

Ψ2

[
1

n

∑

k∈s

(
w̄k %̄

δ
k ||yk||1+δ

)2
][

1

n

∑

`∈s

w̄ 2
` ||y`||2

]
. (2.47)

From Condition (f), β < 2δ, which by Condition (c) and Equations (2.31) and

(2.47) imply
C̃

var(θ̂)2L
= nβ Op(n−2δ),

which implies Equation (2.39).
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We now show the (Eq. 2.40). Using the triangle and Cauchy inequalities on the

Equation (2.35),

|D| ≤
∑

k∈s

∑

`∈s

D−k`|r̃k|2 +
∑

k∈s

∑

`∈s

D+
k`|r̃k|2

≤ (G1/2
s + H1/2

s ) D̃1/2, (2.48)

where

D̃ = nβ
∑

k∈s

∑

`∈s

|r̃k|4

= n1+β
∑

k∈s

|r̃k|4. (2.49)

From Conditions (d) and (e), the Equation (2.40) follows if we show that D̃/var(θ̂)2L →p

0. By substituting the Equation (2.29) in (Eq. 2.49) we obtain,

D̃

var(θ̂)2L
≤ λ4 n4+β

Ψ2

[
1

n

∑

k∈s

(
w̄k %̄

δ
k ||yk||1+δ

)4
]
. (2.50)

which by Condition (c), (Eq. 2.31) and as β < 4δ, we have that

D̃

var(θ̂)2L
= nβ Op(n−4δ),

implying the Equation (2.40). We now show the Equation (2.41). Using the

triangle and the Cauchy inequalities on the Equation (2.36) gives

|E| ≤
∑

k∈s

∑

`∈s

D−k`|r̃k||ỹk| +
∑

k∈s

∑

`∈s

D+
k`|r̃k||ỹk|

≤ (G1/2
s + H1/2

s ) Ẽ1/2,

where

Ẽ = nβ
∑

k∈s

∑

`∈s

|r̃k|2|ỹk|2

= n1+β
∑

k∈s

|r̃k|2|ỹk|2. (2.51)
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From Conditions (d) and (e), the Equation (2.41) follows if Ẽ/var(θ̂)2L →p 0. By

substituting Equations (2.29) and (2.30) in the Equation (2.51),

Ẽ

var(θ̂)2L
≤ ||∇(µ̂)||2 λ

2 n4+β

Ψ2

[
1

n

∑

k∈s

w̄ 4
k %̄

2δ
k ||yk||4+2δ

]
. (2.52)

From Condition (f), we have β < 2δ, which by Condition (c) and Equations (2.31)

and (2.52) imply
Ẽ

var(θ̂)2L
= nβOp(n−2δ),

that is
Ẽ

var(θ̂)2L
→p 0.

�
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Chapter 3

Variance estimation of Hot-deck

imputed estimators of change for

rotating repeated surveys

Abstract

A primary interest of many users is often in changes or trends from one time period

to another. It is common to compare two cross-sectional estimates for the same study

variable taken on two different waves or occasions. These cross-sectional estimates often

include imputed values to compensate for item non-response. The estimation of the

sampling variance of an estimator of change is useful to judge whether the observed

change is statistically significant. Covariances play an important role in estimating

that variance and they are not straightforward to estimate due to rotation in repeated

surveys. We propose to use a multivariate linear regression approach to estimate these

covariances. The proposed estimator is not a model-based estimator, as it is valid even

if the underlying model does not fit the data (Berger and Priam, 2010, 2012). We show

how this approach can be used to accommodate the effect of imputation. This approach

gives design-consistent estimation of the variance of change when the sampling fraction

is small and the finite population corrections are negligible. We illustrate the proposed

approach using random Hot-deck imputation, although the proposed estimator can be

implemented with other imputation techniques.

Keywords and phrases: Deterministic imputation; longitudinal; missing data; nonre-

sponse; overlapping; unequal inclusion probabilities.

71
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3.1 Introduction

Measuring change over time is a central problem for many users of social, economic

and demographic data. Smith et al. (2003) recognised that assessing change is one

of the most important challenges in survey statistics. A primary interest of many

users is often in changes or trends from one time period to another. A common

problem is to compare two cross-sectional estimates for the same study variable

taken on two different waves or occasions. These cross-sectional estimates often

include imputed values to compensate for item non-response. That is, missing

information for certain variables from an observation contained in the sample (e.g.

Lohr, 1999, ch. 8). The estimation of the sampling variance of an estimator of

change is useful to judge whether the observed change is statistically significant.

Covariances play an important role in estimating the variance of an estimated

change and they are not straightforward to estimate due to rotation in repeated

surveys.

We propose to use a multivariate linear regression approach to estimate these

covariances. The proposed estimator is not a model-based estimator, as it is

valid even if the underlying model does not fit the data (Berger and Priam, 2010,

2012). We show how this approach can be used to accommodate the effect of

imputation. The regression approach gives design-consistent estimation of the

variance of change when the sampling fraction is small and the finite population

corrections are negligible. We illustrate the proposed approach using random Hot-

deck imputation, although the proposed estimator can be implemented with other

imputation techniques.

3.2 Rotating surveys

The estimation of variance of change would be relatively straightforward if cross-

sectional estimates were based upon the same sample. Furthermore, because of

rotations used in repeated surveys, cross-sectional estimates are not independent.

Let s1 and s2 denote respectively the first and the second wave samples. The

samples s1 and s2 are usually not completely overlapping sets of units, because

repeated surveys use rotation designs which consist in selecting new units (k ∈
s2 \s1) to replace old units (k ∈ s1 \s2) that have been in the survey for a specified

number of waves. We assume that s1 and s2 have the same sample size n. Let n12
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denote the sample size of the common sample,

s12 = s1 ∩ s2.

The units sampled on s12 represent usually a large fraction of the sample s1; that

is, n12/n is usually large. We denote the overall sample by s̃ where,

s̃ = s1 ∪ s2.

The size of the overall sample is denoted by ñ = #(s). We assume that the

rotation sampling design is such that n and n12 are fixed quantities.

This class contains standard rotating sampling designs such as the rotating sys-

tematic sampling design (Holmes and Skinner, 2000), the rotation groups sampling

design (e.g. Kalton, 2009; Gambino and Silva, 2009), the rotating design proposed

by Tam (1984) and the permanent random numbers rotating design (e.g. Ohlsson,

1995; Nordberg, 2000).

Let y`;k denote the value of the variable of interest y for the wave (` = 1, 2).

Suppose, we wish to estimate the absolute change

∆ = τ2 − τ1, (3.1)

between the two population totals

τ` =
∑

k∈U

y`;k,

from waves ` = 1, 2; where U denotes the population of size N , assumed to be the

same at both waves. In Section 3.3 we introduce the utilised non-response setting

for rotating sampling designs and we show how random Hot-deck imputed values

can be used to compensate for item non-response. In Section 3.4, we propose

to use a reverse approach (Fay, 1991) to estimate the variance of the imputed

estimator of change.

The proposed variance estimator depends on a covariance matrix which will be

estimated using a multivariate (general) linear regression approach described in

Section 3.6. Further, in Section 3.7 we treat the proposed variance estimator

using multiple imputation-classes. A simulation study in Section 3.8 illustrate our

findings.
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3.3 The non-response

The main objective of this article is to address the problem of variance estimation

rather than the non-response problem itself. Literature on variance estimation

in surveys with imputed data is vast. For example, when addressing the non-

response under a design-based approach we can mention Fay (1991); Rao and Shao

(1992); Rao and Sitter (1995); Shao and Steel (1999) among others. On the other

hand using models to address the non-response is also popular, a model-assisted

approach can be found in Deville and Särndal (1994); Fay (1994); Steel and Fay

(1995); Särndal and Lundström (2005) and a Bayesian treatment of imputation

can be found for example in the book of Rubin (1987). See Brick and Montaquila

(2009) for a wide discussion on non-response. A discussion on which inference-

approach to use for non-response in surveys can be found in Haziza (2009). Here

we propose to use a design-based approach particularly Hot Deck imputation. A

recent review on Hot Deck imputation can be found in Andridge and Little (2010).

Due to non-response, some of the values y`;k can be missing in each wave sample

s`, (` = 1, 2). We propose to impute this item non-response. Let z`;k = 1{k ∈ s`}
be the wave sample indicator variables, defined by

z`;k =

{
1 if k ∈ s`,
0 otherwise,

(` = 1, 2),

and let a`;k = 1{y`;k observed} be the random variables representing the response

mechanism.

a`;k =

{
1 if y`;k observed,

0 if y`;k missing,
(` = 1, 2).

The observed values of z`;k and a`;k are known. To simplify, we use the same

notation for the random variables and their observed values. For the response

mechanism, we consider the usual cross-sectional design-based assumption (e.g.

Fay, 1991; Rao and Shao, 1992; Rao and Sitter, 1995; Shao and Steel, 1999), but

adapted for rotating sampling designs:

Assumption 1 (single imputation-class). The response probabil-

ity for the variable of interest in each wave is uniform on U and it is

strictly positive (i.e. P{a`;k = 1} > 0). The units’ responses within

waves are independent; and the responses between waves can be depen-

dent. The imputation is conducted independently between waves.
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The setting of one imputation class is the simplest case when handling non-

response. In practice, however, it may be considered unrealistic (e.g. Rao and Shao,

1992, p. 818). We therefore also consider, in Section 3.7, multiple imputation-

classes where different values are imputed according to a categorical variable. The

following assumption is then used:

Assumption 2 (multiple imputation-classes). The population U
can be divided into C imputation classes according to a categorical vari-

able xk, which is observed for all units and remains unchanged at waves.

The response probability for the variable of interest is uniform within

wave-class combinations and it is strictly positive. The units’ responses

within and across classes are independent; and responses between waves

can be dependent. The imputation is conducted independently within

and across wave-class combinations.

To simplify, we proceed using a single imputation-class setting. In Section 3.7 we

address an extension under a multiple imputation-classes.

3.3.1 The imputed estimator of change

Suppose that the change ∆ from the Equation (3.1) is estimated by

∆̂∗ = τ̂ ∗2 − τ̂ ∗1 , (3.2)

where

τ̂ ∗` =
∑

k∈s̃

y∗`;k
π`;k

, (` = 1, 2), (3.3)

are two cross-sectional imputed Horvitz and Thompson (1952) estimators where

y∗`;k, are the imputed values given by

y∗`;k = z`;k {(1− a`;k) Φ`;k + a`;k y`;k}, (3.4)

where Φ`;k depends on the imputation technique. For example, in what follows Φ`;k

is defined for random Hot-deck imputation, although the proposed approach can be

generalised for other imputation techniques. The deterministic mean imputation

is also considered in what follows as a particular case of the Hot-deck imputation.

Note that the imputation will only be used for missing data due to non-response,

and not to impute the values y2;k of k ∈ s2 \ s1 and the values y1;k of k ∈ s1 \ s2
which rotate in and out.
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3.3.2 Random Hot-deck imputation

The random Hot-deck imputation has the advantage of guaranteeing unbiased es-

timation of population distributions. In this case, the values Φ`;k used in Equation

(3.4) are,

Φ`;k = µ̂r` + e`;k, (3.5)

e`;k = y`;j − µ̂r` ,

where j is a donor selected with replacement with probabilities

p`;k =
ǎ`;k

N̂ r
`

,

from the wave sample of respondents

sr` = {k : z`;k = 1 and a`;k = 1},

and where

µ̂r` =
τ̂ r`

N̂ r
`

,

is the estimator of the respondents’ mean,

τ̂ r` =
∑

k∈s̃

y̌`;k,

is the estimator of the respondents’ totals, and

N̂ r
` =

∑

k∈s̃

ǎ`;k,

is the estimator of the number of respondents for waves ` = 1, 2; with s̃ = s1 ∪ s2,
and where

y̌`;k = π−1`;k z`;k a`;k y`;k, (3.6)

ǎ`;k = π−1`;k z`;k a`;k, (3.7)

ž`;k = π−1`;k z`;k. (3.8)

The π`;k denote the first-order inclusion probability of the unit k at wave sample

s`.
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If we set e`;k = 0 in Equation (3.5), then the y∗`;k from Equation (3.4) are the

deterministic mean imputed values.

3.4 Population variance of the Hot-deck imputed

estimator of change

We propose to estimate the variance of ∆̂∗ from (Eq. 3.2) using a reverse approach

for non-response (Fay, 1991; Shao and Steel, 1999). Let U r1 and U r2 be respectively

the population of respondents at wave 1 and 2. In other words, at both waves, the

population is randomly split into a population of respondents and a population of

non-respondents according to an unknown response mechanism. Let Er{·}, Vr(·)
and Corrr(·) denote respectively the expectation, variance and the correlation

operators with respect to the response mechanism. Rotation samples s1 and s2

are selected from the population U according to a rotation sampling design (see

Section 4.1). The wave samples of respondents are given by

sr` = U r` ∩ s`, (` = 1, 2).

Let Ed{·} and Vd(·) denote the expectation and the variance operators with re-

spect to the sampling design. Furthermore, we suppose that the random Hot-deck

imputation from Section 3.3.1 is used. Let EI{·} and VI(·) denote the expectation

and the variance operators with respect to the random imputation.

The overall variance of the imputed estimator of change ∆̂∗ from (Eq. 3.2) is given

by

V (∆̂∗) = A + B + C, (3.9)

which is an overall three stage variance, where

A = Er{Vd(EI{∆̂∗|S,R}|R)}, (3.10)

B = Er{Ed{VI(∆̂∗|S,R)|R}}, (3.11)

C = Vr(Ed{EI{∆̂∗|S,R}|R}), (3.12)

with S = {s1, s2}, R = {sr1, sr2}.

The overall variance from the Equation (3.9) includes the effect of the response

mechanism, the sampling design and the imputation. We now focus on each of its

terms.
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The term A

Turning to the term A in Equation (3.10). As EI{e`;k|S,R} = 0, from (Eq. 3.5)

we have that

EI{Φ`;k|S,R} = µ̂r` .

Hence, from the Equations (3.3) and (3.4), it can be shown

EI{τ̂ ∗` |S,R} = N̂`
τ̂ r`

N̂ r
`

.

We thus have,

EI{∆̂∗|S,R} = N̂2
τ̂ r2

N̂ r
2

− N̂1
τ̂ r1

N̂ r
1

, (3.13)

where

N̂` =
∑

k∈s̃

ž`;k, (` = 1, 2),

is an estimator of N . The EI{∆̂∗|S,R} = f(τ̂ ) is a function f(·) of estimated

totals τ̂ = (τ̂ T1 , τ̂
T
2 )T , where

τ̂ ` =
(
N̂`, N̂

r
` , τ̂

r
`

)T
, (3.14)

is a vector of Horvitz and Thompson (1952) totals. Using the Taylor approximation

(e.g. Särndal et al., 1992, secs. 5.5, 5.7), we have that

EI{∆̂∗|S,R} −∆ l ∇(τ )T (τ̂ − τ ),

where

∇(τ ) =

(−τ r1
N r

1

,
Nτ r1

(N r
1 )2

,
−N
N r

1

,
τ r2
N r

2

,
−Nτ r2
(N r

2 )2
,
N

N r
2

)T
, (3.15)

is the gradient of f(τ ) at τ = (τ T1 , τ
T
2 )T , with

τ ` = (N, N r
` , τ

r
` )T , (3.16)

where τ r` is the population total of the variable of interest over the respondents at

wave `; and N r
` is the total number of respondents at wave `, (` = 1, 2).

The Taylor approximation of Vd(EI{∆̂∗|S,R}|R) is given by

Vd(EI{∆̂∗|S,R}|R) l ∇(τ )T Vd(τ̂ |R)∇(τ ), (3.17)
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where Vd(τ̂ |R) is the design covariance matrix of the vector τ̂ . Thus, an approx-

imately design-based unbiased estimator for Vd(EI{∆̂∗|S,R}|R) in the Equation

(3.17) is given by

V̂d(EI{∆̂∗|S,R}|R) = ∇(τ̂ )T V̂d(τ̂ |R)∇(τ̂ ), (3.18)

where V̂d(τ̂ |R) is the approximately design unbiased estimator, defined below in

(Eq. 3.25), of Vd(τ̂ |R). Note that in the Equation (3.18), the a`;k’s are treated as

fixed quantities, as V̂d(EI{∆̂∗|S,R}|R) is a conditional variance given R.

The term B

We now turn to the term B in Equation (3.11). From Assumption 1 we have,

VI(∆̂
∗|S,R) =

2∑

`=1

VI(τ̂
∗
` |S,R)

=
2∑

`=1

VI(Φ`;k|S,R)
∑

k∈s̃

z`;k
π2
`;k

(1− a`;k), (3.19)

with

VI(Φ`;k|S,R) = VI(e`;k|S,R)

=
∑

k∈s̃

a`;k p`;k e
2
`;k,

as

EI{e`;k|S,R} = 0.

Note that we use the same notation for the random variables e`;k’s and their

observed values. Also note that, under deterministic mean imputation, we have

VI(∆̂
∗|S,R) = 0.

The term C

We now turn to the term C in Equation (3.12). By denoting

Υ` = Ed{EI{t̂∗` |S,R}|R} = N`
τ r`
N r
`

,
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we have from (3.2) that,

Ed{EI{∆̂∗|S,R}|R} = Υ2 − Υ1.

Hence, from Equation (3.12),

C = Vr (Υ1) + Vr (Υ2) − 2Corrr (Υ1,Υ2)
√
Vr (Υ1) Vr (Υ2), (3.20)

where

Vr (Υ`) = Vr(Ed{EI{t̂∗` |S,R}|R}),

is the cross-sectional variance for the wave ` under the response mechanism given

the random imputation and the sampling design.

As the correlation Corrr (Υ1,Υ2) = O(1) in Equation (3.20), we recall from Shao

and Steel (1999, pp. 256, 257) that the cross-sectional variances Vr (Υ`) are of

order O(N`) implying

C = O(N`).

Given standard assumptions for linearised variances of functions of totals (e.g.

Robinson and Särndal, 1983; Särndal et al., 1992, secs. 5.5, 5.7), the linearised

version of the term A from (Eq. 3.17) is of order O(N2
` /n), being the dominant

term of the overall variance V (∆̂∗) from Equation (3.9). Furthermore,

C

A
= O

(
n

N`

)
.

Thus, for negligible n/N` the contribution of C to (Eq. 3.9) should be negligible

(e.g. Haziza, 2009, pp. 238-240). We thus have that

V (∆̂∗) l A + B. (3.21)

Also note from Equation (3.20) that the response mechanism can be correlated

between waves.
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3.5 The proposed variance estimator

We proposed to estimate the variance of the imputed estimator of change ∆̂∗ from

Equation (3.2) by

V̂ (∆̂∗) = V̂d(EI{∆̂∗|S,R}|R) + VI(∆̂
∗|S,R), (3.22)

where V̂d(EI{∆̂∗|S,R}|R) and VI(∆̂
∗|S,R) are as defined in Equations (3.18) and

(3.19). In the following section 3.6 we propose a multivariate (or general) lin-

ear regression model to estimate the covariance matrix Vd(τ̂ |R) involved in the

computation of (Eq. 3.18).

Note that (Eq. 3.22) can be generalised for other types of imputation, as long

as EI{∆̂∗|S,R} is a function of Horvitz and Thompson (1952) totals. In that

situation ∇(τ )T would have a different expression which depends on the used

imputation.

The proposed estimator (Eq. 3.22) is an approximately unbiased estimator of the

variance V (∆̂∗) from Equation (3.9), as the overall expectation of (Eq. 3.22) is

given by

Er{Ed{EI{V̂ (∆̂∗)|S,R}|R}} = Er{Ed{EI{V̂d(EI{∆̂∗|S,R}|R)|S,R}|R}}
+ Er{Ed{EI{VI(∆̂∗|S,R)}|R}}

l Er{Vd(EI{∆̂∗|S,R}|R)}
+ Er{Ed{VI(∆̂∗|S,R)|R}}

l V (∆̂∗),

by using the Equation (3.21) and the fact that (Eq. 3.18) does not depends on

the e`;k’s for ` = 1, 2.

An advantage of the proposed variance estimator (Eq. 3.22) is that it is approxi-

mately unbiased under the unknown response mechanism without making strong

assumptions about it.
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3.6 Variance estimation using the multivariate

regression approach

We derive here an expression to estimate the covariance matrix Vd(τ̂ |R) in Equa-

tion (3.17) under the rotation sampling design. Note that this covariance is not

straightforward to estimate because it involves covariance between components of

τ̂ defined from different samples, s1 and s2 that are partially overlapped. Sev-

eral methods can be used to estimate it (e.g. Kish, 1965; Tam, 1984; Holmes and

Skinner, 2000; Nordberg, 2000; Berger, 2004; Qualité and Tillé, 2008; Wood, 2008;

Goga et al., 2009). We propose to use a multivariate (or general) linear regression

model to estimate this covariance matrix.

Consider the following ñ× 6 matrix

Y̌ (ñ×6) = (y̌1, . . . , y̌k, . . . , y̌ñ)T ,

where ñ = #(s1 ∪ s2), y̌k = (y̌1k, y̌2k) and

y̌`k = (ž`;k, ǎ`;k, y̌`;k), (3.23)

with ž`;k, ǎ`;k and y̌`;k as in Equations (3.8), (3.7) and (3.6), (` = 1, 2). Consider

the following multivariate (general) regression model

Y̌ = Zsα+ ε, (3.24)

where α is a 3 × 6 matrix of regression parameters, the residuals ε have a 6 × 6

covariance matrix Σ, and Zs is a ñ×3 design matrix which specifies the fixed-size

constraints of the rotation design. The matrix Zs is defined by

Zs = (z1, . . . ,zk, . . . ,zñ)T ,

with

zk = (z1;k, z2;k, z1;k × z2;k).

The model (Eq. 3.24) belongs to the class of general linear model. In fact, (Eq.
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3.24) is also a multivariate analysis of variance (MANOVA) model, as the covari-

ates are all dummy variables. Note that we have the fixed size constraints

∑

k∈s̃

z`;k = n

∑

k∈s̃

z1;k z2;k = n12,

which restrict us to samples with only these sample sizes. Thus, by using the design

variables as covariates in the model, we are conditioning on them. This takes into

account the fixed size constraints in the estimation of the covariance (see Berger

and Priam, 2010). Note that the model from Equation (3.24) includes interactions

between the variable z1;k and z2;k. These interactions capture the rotation of the

sampling design which is represented by the constraint
∑

k∈s̃ z1;kz2;k = n12.

To estimate Vd(τ̂ |R), Berger and Priam (2010) proposed the estimator

V̂d(τ̂ |R) = D̂
T

Σ̂ D̂, (3.25)

where the matrix Σ̂ is the Ordinary Least Squares residual covariance matrix

estimate of the model from Equation (3.24) and D̂ is a diagonal matrix with the

diagonal elements: √
V̂ (τ̂q|R)

Σ̂qq

,

where V̂ (τ̂q|R) is a design-based variance estimator of the q-th component of τ̂

and Σ̂qq is the q-th diagonal component of Σ̂. Any unbiased standard variance

estimator can be used to calculate V̂ (τ̂q|R). Note that (Eq. 3.25) is positive

definite, as Σ̂ is always positive definite. Hence, the proposed variance estimator

(Eq. 3.22) is always positive.

Berger and Priam (2010) showed that the estimator (Eq. 3.25) is an approximately

design unbiased estimator for Vd(τ̂ |R) when the finite population corrections are

negligible. It is a design-based consistent estimator for Vd(τ̂ |R) even when model

from Equation (3.24) does not fit the data (Berger and Priam, 2010). Note that

(Eq. 3.25) takes into account the unequal probabilities.

In a series of simulations based on the Swedish Labour Force Survey, Andersson

et al. (2011a,b) showed that (Eq. 3.25) gives more accurate estimates than stan-

dard variance estimators (e.g. Tam, 1984; Qualité and Tillé, 2008) when we are

interested in change between strata domains.
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3.7 Multiple imputation-classes

We now consider the situation of multiple imputation-classes for the imputation.

Hence, the Hot-deck imputation setting uses the Assumption 2 in Section 3.3

instead of the Assumption 1.

Let b
(c)
k = 1{xk = c}, (c = 1, 2, . . . , C). That is,

b
(c)
k =

{
1 if xk = c,

0 otherwise,

where xk is the categorical variable from Assumption 2. The random Hot-deck

imputed values y∗`;k from Equation (3.4) now use

Φ`;k =
C∑

c=1

b
(c)
k

(
µ̂
r(c)
` + e

(c)
`;k

)
,

where

e
(c)
`;k = y`;j − µ̂

r(c)
` ,

instead of (Eq. 3.5), where j is a donor selected with replacement with probabili-

ties,

p`;k =
b
(c)
k ǎ`;k

N̂
r(c)
`

,

from the wave-class combination sample of respondents,

s
r(c)
` = {k : z`;k = 1, a`;k = 1, b

(c)
k = 1},

and where

µ̂
r(c)
` =

τ̂
r(c)
`

N̂
r(c)
`

,

τ̂
r(c)
` =

∑

k∈s̃

b
(c)
k y̌`;k

N̂
r(c)
` =

∑

k∈s̃

b
(c)
k ǎ`;k,

estimate, respectively, the respondents’ mean, totals and the number of respon-

dents for each wave-class combination (` = 1, 2; c = 1, 2, . . . , C).
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Again, as it was the case for a single-imputation class, if we set

e
(c)
`;k = 0,

then we are using deterministic mean imputation.

With multiple imputation-classes the population variance V (∆̂∗) from Equation

(3.9) changes. The term A in (Eq. 3.10) now uses the Equations (3.13), (3.14),

(3.15) and (3.16) replaced by,

EI{∆̂∗|S,R} = N̂2

∑C
c=1 τ̂

r(c)
2∑C

c=1 N̂
r(c)
2

− N̂1

∑C
c=1 τ̂

r(c)
1∑C

c=1 N̂
r(c)
1

, (3.26)

τ̂ ` =
(
N̂`, N̂

r(1)
` , . . . , N̂

r(C)
` , τ̂

r(1)
` , . . . , τ̂

r(C)
`

)T
, (3.27)

∇(τ ) =



−τ r1
N r

1

,
Nτ r1

(N r
1 )2

, . . .

︸ ︷︷ ︸
C times

,
−N
N r

1

, . . .

︸ ︷︷ ︸
C times

,
τ r2
N r

2

,
−Nτ r2
(N r

2 )2
, . . .

︸ ︷︷ ︸
C times

,
N

N r
2

, . . .

︸ ︷︷ ︸
C times




T

,(3.28)

τ ` =
(
N, N

r(1)
` , . . . , N

r(C)
` , τ

r(1)
` , . . . , τ

r(C)
`

)T
, (3.29)

with

τ r` =
C∑

c=1

τ
r(c)
` ,

and

N r
` =

C∑

c=1

N
r(c)
` ,

where τ
r(c)
` andN

r(c)
` are the respondents population total of the variable yk and the

number of respondents at each wave-class combination, (` = 1, 2; c = 1, 2, . . . , C).

Now, revisiting the term B in (Eq. 3.11). From Assumption 2 we have that

VI(∆̂
∗|S,R) =

2∑

`=1

VI(Φ`;k|S,R)
C∑

c=1

∑

k∈s̃

b
(c)
k z`;k
π2
`;k

(1− a`;k), (3.30)

with

VI(Φ`;k|S,R) =
C∑

c=1

∑

k∈s̃

a`;k p`;k {e(c)`;k}2.

Hence, the Equation (3.30) replaces (Eq. 3.19). About the term C in (Eq. 3.12).

The Assumption 2 implies an stratified setting which does not affect the obtained

results for a single imputation class. Thus, the proposed estimator is given by
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Equation (3.22) with V̂d(EI{∆̂∗|S,R}|R) and VI(∆̂
∗|S,R) now given by Equations

(3.18) and (3.30) but using the Equations (3.26), (3.27), (3.28) and (3.29).

As in section 3.6, the covariance matrix Vd(τ̂ |R) in the Equation (3.17) can be

estimated using a multivariate (or general) linear regression model. With multiple

imputation-classes, the model (Eq. 3.24) now uses a ñ× (2 + 4C) matrix

Y̌ (ñ×(2+4C)) = (y̌1, . . . , y̌k, . . . , y̌ñ)T ,

where y̌k = (y̌1k, y̌2k) with

y̌`k = (ž`;k, b
(1)
k ǎ`;k, . . . , b

(C)
k ǎ`;k, b

(1)
k y̌`;k, . . . , b

(C)
k y̌`;k),

replacing the Equation (3.23), and now α is a 3 × (2 + 4C) matrix and Σ is a

(2 + 4C)× (2 + 4C) matrix.

3.8 Simulation study

We use the Labor Force Population dataset from Valliant et al. (2000, Appendix

B.5) available at the John Wiley worldwide website. The dataset is duplicated

50 times to obtain a large population suitable for different levels of rotation and

small sampling fractions in the sampling design.

We consider using two variables to build the overtime wave variables and for the

inclusion probabilities (explained below):

• Weekly wages,

• Hours worked per week (HW ).

Their respective maximum values 99 and 999 are removed. We thus obtain a

population frame of size N = 23 550.

Further, we build the overtime waves (y1;k) and (y2;k) from the variable Weekly

wages, with

y1;k = Weekly wages,

y2;k = y1;k +
√
y1;k + ψk,
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where ψk denotes randomly generated values according to a Normal distribution

N(0, 52).

The population parameter of interest ∆ is the absolute change between the two

wave totals τ` =
∑

k∈U y`;k (` = 1, 2) as defined in section 4.1; and with true value

∆ = 377 960.66. We estimate ∆ by the Hot-deck imputed point estimator ∆̂∗

defined in subsection 3.3.1.

In selecting the corresponding wave sample s1, we use the sampling method by

Rao (1965); Sampford (1967) considering two scenarios:

• The π1;k = n/N ,

• The π1;k ∝ Hours worked per week.

Note that the Rao-Sampford sampling is of large entropy as shown in Berger

(2011). Then, for selecting the wave sample s2 we first select a simple random

sample of n12 units taken from s1 where g = n12/n = {0.40, 0.60, 0.80, 0.95}.
Following, we sample n− n12 units from U \ s1 with probabilities proportional to

π2;k =
π1;k

1− π1;k
.

Each wave respondents are selected randomly using a Poisson sampling from U .

At wave 1, they are selected with probabilities

q1;k = P{a1;k = 1} = {0.70, 0.90 }.

Then wave 2 respondents are selected with conditional probabilities given their

response at wave 1,

P{a2;k = 1|a1;k} = (0.95) a1;k + (0.65) (1 − a1;k).

These imply the wave 2 response probabilities

q2;k = P{a2;k = 1} l (0.95) (0.90) + (0.65) (0.10) = {0.86, 0.92}.

Note that at each wave the number of respondents is not fixed. Also note that it

could happen an observation has missing information at both waves. The item non-

response is imputed using random Hot-deck according to the procedure described

in subsections 3.3.1 and 3.3.2.
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For each simulation, 10 000 set of respondents and set of samples were selected to

compute: the empirical relative bias

RB =
B(v̂ar(∆̂∗))

var(∆̂∗)
,

where

B(v̂ar(∆̂∗)) = E(v̂ar(∆̂∗))− var(∆̂∗),

the empirical relative root mean square error

RRMSE =

√
MSE(v̂ar(∆̂∗))

var(∆̂∗)
,

and the coverage at a 95% confidence level. The term var(∆̂∗) denotes the empir-

ical variance computed from the 10 000 observed values of ∆̂∗.

We compare the proposed variance estimator V̂ (∆̂∗) from Equation (3.22) versus

a näıve approach which consists in computing variance estimates directly from

imputed values and neglecting the fact that imputation is used.

Both Tables 1 and 2, in terms of RB show that for different values of response

probabilities q1;k and for different values of the overlapping fraction g between

waves, the proposed approach tends to consistently give values which are closer

to zero than the näıve approach. As expected, the näıve approach which neglects

imputation, tends to severely under estimate the variance; in particular, when

non-response is large; that is, if q1;k is smaller. Further, by comparing Table 1

and 2, we can observe that using unequal inclusion probabilities improves both

approaches’ bias.

In terms of RRMSE it can also be seen in both tables that for different values

of g and q1;k, the proposed approach has smaller values than the näıve approach.

Now, comparing tables 1 and 2, it can be seen that both approaches are more

unstable with unequal probabilities than when using simple random sampling. We

recall that this can be generally improved by using a more complex imputation.

Regarding the coverage, the tables show that the proposed approach provides

closer values to 95% than the näıve approach.

Additional graphical representations for these simulation results are illustrated in

the Appendix 3.A of this chapter.
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Table 3.1: RB, RRMSE and Coverage at 95% confidence level of the variance

estimators for the Hot-deck imputed point estimator ∆̂∗ using π1;k = n/N .

q1;k q2;k g f RB RRMSE Coverage

Prop. Näıve Prop. Näıve Prop. Näıve

(l) (%) (%) (%) (%) (%) (%) (%) (%)

0.70 0.86 40 0.5 -2.8 -33.8 15.5 35.3 95.0 88.7
1.0 -0.7 -32.3 11.2 33.2 94.8 89.3
1.5 -0.4 -32.1 9.1 32.7 94.7 89.5
2.0 -2.7 -33.7 8.2 34.1 94.6 88.8

60 0.5 -1.8 -31.3 17.6 33.7 94.7 89.1
1.0 -1.2 -30.9 12.5 32.2 94.8 89.7
1.5 -1.1 -30.8 10.2 31.7 94.7 89.2
2.0 0.0 -30.1 8.7 30.8 94.8 89.9

80 0.5 -1.8 -28.8 20.1 32.7 94.7 89.8
1.0 -0.4 -27.5 14.4 29.8 95.0 90.4
1.5 -0.4 -27.5 11.6 29.0 95.0 90.5
2.0 -2.2 -29.0 10.0 30.0 94.6 90.0

95 0.5 -1.8 -25.3 22.8 31.9 94.8 90.8
1.0 -1.9 -25.5 16.0 29.0 94.5 90.8
1.5 -0.9 -24.8 13.1 27.2 94.8 90.7
2.0 -1.6 -25.3 11.2 27.0 94.7 90.9

0.90 0.92 40 0.5 -0.7 -15.9 14.5 20.2 94.8 92.9
1.0 0.2 -15.2 10.2 17.6 95.3 93.2
1.5 -2.1 -17.2 8.5 18.5 94.7 92.6
2.0 -0.7 -15.9 7.2 17.1 95.1 92.8

60 0.5 0.4 -14.4 17.2 21.0 94.9 93.2
1.0 0.2 -14.6 12.1 18.2 94.9 92.9
1.5 0.6 -14.2 9.9 16.7 95.1 93.1
2.0 0.0 -14.8 8.5 16.7 94.8 92.7

80 0.5 -2.2 -15.3 21.4 25.5 94.7 93.0
1.0 -2.0 -15.0 15.0 20.8 95.0 93.1
1.5 -0.2 -13.7 12.3 18.2 94.8 92.9
2.0 -1.0 -14.4 10.7 17.7 94.6 92.9

95 0.5 -2.9 -13.4 27.7 33.0 94.5 92.9
1.0 -2.4 -13.2 19.4 24.8 94.5 93.2
1.5 -1.1 -12.0 15.9 21.3 95.1 93.6
2.0 -0.9 -12.0 13.8 19.3 94.9 93.5
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Table 3.2: RB, RRMSE and Coverage at 95% confidence level of the variance

estimators for the Hot-deck imputed point estimator ∆̂∗ using π1;k ∝ HW .

q1;k q2;k g f RB RRMSE Coverage

Prop. Näıve Prop. Näıve Prop. Näıve

(l) (%) (%) (%) (%) (%) (%) (%) (%)

0.70 0.86 40 0.5 -1.6 -29.1 32.3 52.7 94.3 88.7
1.0 -2.5 -29.9 23.3 42.8 93.5 87.3
1.5 -3.4 -30.5 19.0 39.7 93.0 86.8
2.0 -1.5 -29.4 16.4 36.7 92.4 86.5

60 0.5 -2.0 -27.7 36.2 57.1 94.3 89.3
1.0 -1.2 -27.5 26.1 44.0 94.2 88.9
1.5 -0.8 -27.1 21.4 39.1 94.1 88.9
2.0 -0.7 -27.5 18.2 36.4 93.5 87.8

80 0.5 -0.1 -25.6 40.7 59.2 94.8 90.4
1.0 0.0 -25.2 29.3 45.5 94.9 89.7
1.5 -0.4 -25.1 23.6 40.4 94.8 90.2
2.0 -0.6 -25.8 20.4 37.1 94.5 89.7

95 0.5 -1.5 -24.3 43.9 63.6 94.5 90.8
1.0 0.4 -22.9 31.7 48.5 95.2 91.3
1.5 0.5 -23.4 26.0 41.4 94.9 91.2
2.0 -0.8 -24.3 22.3 38.1 94.9 90.6

0.90 0.92 40 0.5 -0.5 -15.5 34.3 51.2 94.1 91.7
1.0 -1.5 -15.6 23.5 37.7 93.1 90.4
1.5 -0.5 -14.8 19.9 33.1 92.9 90.2
2.0 -1.7 -16.0 16.9 29.7 91.8 88.9

60 0.5 -0.1 -14.2 41.2 61.1 94.3 92.3
1.0 -2.4 -15.3 29.2 48.1 93.8 91.6
1.5 0.2 -13.4 23.6 38.1 93.9 91.3
2.0 -1.0 -14.4 20.5 34.3 93.0 90.6

80 0.5 -0.3 -12.8 51.9 78.6 94.5 93.1
1.0 -0.3 -11.7 36.3 59.9 94.7 93.1
1.5 -1.3 -12.8 29.3 49.3 94.2 92.0
2.0 -0.4 -12.4 25.6 42.1 94.2 92.1

95 0.5 -0.8 -11.5 64.3 99.0 94.7 94.4
1.0 -1.9 -11.5 44.0 71.4 94.3 93.5
1.5 -1.5 -11.9 35.5 58.8 94.6 93.2
2.0 -0.8 -11.3 30.7 49.7 94.6 93.4
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3.9 Discussion

The proposed variance estimator is applicable for unequal rotation sampling de-

signs when random Hot-deck imputation is used at both waves and the sampling

fractions are negligible. The proposed variance estimator may be extended in var-

ious ways. Point estimators, such as calibration estimators (Huang and Fuller,

1978; Deville and Särndal, 1992) which employ auxiliary population information

may often be expressible as functions of totals. The proposed variance estimator

from Equation (3.18) can be modified to accommodate this situation.

The proposed approach is not limited to Hot-deck imputation, as it can be ex-

tended to other method of imputation, as long as the expectation of the imputed

estimator of change under the random imputation method can be expressed as

a function of totals. We have explored the use of single and multiple classes for

imputation. At the second wave, it is a common practice to impute using obser-

vations of the first wave. It would be useful to generalise the proposed estimator

for this method of imputation.
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Chapter 4

Some R software implementations

Abstract

There is an increasing use of R software in many branches of Statistics. Moreover, there

are R packages that comprise several other areas of knowledge and implementations

beyond Statistics, e.g. Actuarial Science, Ecology and Finance. Here we introduce

the samplingVarEst R package which incorporates some of the techniques utilised in

earlier chapters of this thesis. The main purpose of creating an R package is to support

other researchers interested in variance estimation. In our times, there is no doubt

that open-source and freely-distributed software contributes towards dissemination and

higher impact of research results.

Keywords and phrases: High-speed computing; variance estimation; R package.
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4.1 The samplingVarEst R package

4.1.1 About the coding of the package

Routines for variance estimation are high-consuming in time and computing re-

sources. To address this issue the package is mostly written in C compilable codes.

These are later interfaced using R. All codes are now public at The Comprehensive

R Archive Network, visit:

http://cran.r-project.org/web/packages/samplingVarEst/

4.1.2 About a description and a user’s manual

To avoid repeating information here we do not describe the R package. A complete

description is included in following pages as an appendix of this chapter. It is the

User’s manual of the samplingVarEst R package (version 0.9-1). It can be seen

that the manual is self-contained and care has been taken in explaining with high

detail each function.

The package is likely to suffer changes by the time this thesis is read. In fact, it is

planned to be changing and updated continuously. We invite readers to check for

the last version of the manual and, of course, the last version of the software.

Appendices to Chapter 4

4.A. User’s manual of the samplingVarEst package



Package ‘samplingVarEst’
November 6, 2012

Version 0.9-1

Date 2012-09-20

Title Sampling Variance Estimation

Author Emilio Lopez Escobar, Ernesto Barrios Zamudio <ebarrios@itam.mx>

Maintainer Emilio Lopez Escobar <emilio.lopez@itam.mx>

Description Functions for estimating the sampling variance of some point estimators.

Classification/MSC 62D05, 62F40, 62G09, 62H12

Classification/JEL C130, C150, C420, C830

Classification/ACM G.3

Depends R (>= 2.10)

License GPL (>= 2)

Repository CRAN

Date/Publication 2012-11-06 07:01:21

R topics documented:
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samplingVarEst-package

Sampling Variance Estimation package

Description

The package contains functions for estimating the variance of some point estimators under unequal-
probability sampling. Emphasis has been put on the speed of routines. The package mostly uses C
compilable code. The available functions are listed below matching: population parameters, point
estimators and variance estimators.
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samplingVarEst-package 3

parameters point estimators
total: Est.Total.NHT

Est.Total.Hajek
mean: Est.Mean.NHT

Est.Mean.Hajek
ratio: Est.Ratio

correlation coefficient: Est.Corr.NHT
Est.Corr.Hajek

regression coefficient: Est.RegCo.Hajek

point estimators variance estimators (uni-stage samples)
Est.Total.NHT: VE.HT.Total.NHT

VE.SYG.Total.NHT
VE.Hajek.Total.NHT

Est.Total.Hajek: VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek

Est.Mean.NHT: VE.HT.Mean.NHT
VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Est.Mean.Hajek: VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek

Est.Ratio: VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio

Est.Corr.NHT: VE.Jk.Tukey.Corr.NHT
Est.Corr.Hajek: VE.Jk.Tukey.Corr.Hajek

VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek

Est.RegCo.Hajek: VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek

point estimators variance estimators (self-weighted two-stage samples)
Est.Total.Hajek: VE.Jk.EB.SW2.Total.Hajek
Est.Mean.Hajek: VE.Jk.EB.SW2.Mean.Hajek

Est.Ratio: VE.Jk.EB.SW2.Ratio
Est.Corr.Hajek: VE.Jk.EB.SW2.Corr.Hajek
Est.RegCo.Hajek: VE.Jk.EB.SW2.RegCo.Hajek
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for the inclusion probabilities
1st order incl. probabilities: Pk.PropNorm.U

2nd order (joint) incl. probs.: Pkl.Hajek.s
Pkl.Hajek.U

datasets
oaxaca

Details

To return to this description, type any time:
help(samplingVarEst)
To cite, use the given references or use:
citation("samplingVarEst")

Est.Corr.Hajek Estimator of a correlation coefficient using the Hajek point estimator

Description

Estimates a population correlation coefficient of two variables using the Hajek (1971) point estima-
tor.

Usage

Est.Corr.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.
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Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9) (imple-
mented by the current function), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the correlation coefficient point estimator.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

See Also

Est.Corr.NHT
VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
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#Computes the correlation coefficient estimator for y1 and x
Est.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the correlation coefficient estimator for y2 and x
Est.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1])

Est.Corr.NHT Estimator of a correlation coefficient using the Narain-Horvitz-
Thompson point estimator

Description

Estimates a population correlation coefficient of two variables using the Narain (1951); Horvitz-
Thompson (1952) point estimator.

Usage

Est.Corr.NHT(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C (implemented by the current function) is given by:

Ĉ =

∑
k∈s wk(yk − ˆ̄yNHT )(xk − ˆ̄xNHT )√∑

k∈s wk(yk − ˆ̄yNHT )2
√∑

k∈s wk(xk − ˆ̄xNHT )2

where ˆ̄yNHT is the Narain (1951); Horvitz-Thompson (1952) estimator for the population mean
ȳ = N−1

∑
k∈U yk,

ˆ̄yNHT =
1

N

∑

k∈s
wkyk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
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Value

The function returns a value for the correlation coefficient point estimator.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

Est.Corr.Hajek
VE.Jk.Tukey.Corr.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the correlation coefficient estimator for y1 and x
Est.Corr.NHT(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the correlation coefficient estimator for y2 and x
Est.Corr.NHT(y2[s==1], x[s==1], pik.U[s==1], N)

Est.Mean.Hajek The Hajek estimator for a mean

Description

Computes the Hajek (1971) estimator for a population mean.

Usage

Est.Mean.Hajek(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.
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Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of ȳ (implemented by the current function) is
given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the mean point estimator.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

Est.Mean.NHT
VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Mean.Hajek(y1[s==1], pik.U[s==1]) #Computes the Hajek est. for y1
Est.Mean.Hajek(y2[s==1], pik.U[s==1]) #Computes the Hajek est. for y2
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Est.Mean.NHT The Narain-Horvitz-Thompson estimator for a mean

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for a population mean.

Usage

Est.Mean.NHT(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ (implemented by the current
function) is given by:

ˆ̄yNHT =
1

N

∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the mean point estimator.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.
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See Also

Est.Mean.Hajek
VE.HT.Mean.NHT
VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Mean.NHT(y1[s==1], pik.U[s==1], N) #The NHT estimator for y1
Est.Mean.NHT(y2[s==1], pik.U[s==1], N) #The NHT estimator for y2

Est.Ratio Estimator of a ratio

Description

Estimates a population ratio of two totals/means.

Usage

Est.Ratio(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecX.s. There
must not be any missing value.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecY.s. There
must not be any missing value. All values of VecX.s must be greater than zero.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk
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the ratio estimator of R (implemented by the current function) is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the ratio point estimator.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the numerator variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable of interest y2
x <- oaxaca$HOMES10 #Defines the denominator variable of interest x
Est.Ratio(y1[s==1], x[s==1], pik.U[s==1]) #Ratio estimator for y1 and x
Est.Ratio(y2[s==1], x[s==1], pik.U[s==1]) #Ratio estimator for y2 and x

Est.RegCo.Hajek Estimator of the regression coefficient using the Hajek point estimator

Description

Estimates the population regression coefficient using the Hajek (1971) point estimator.
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Usage

Est.RegCo.Hajek(VecY.s, VecX.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.9), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the regression coefficient point estimator.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

112 Chapter 4: Some R software implementations



Est.Total.Hajek 13

See Also

VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the regression coefficient estimator for y1 and x
Est.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the regression coefficient estimator for y2 and x
Est.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1])

Est.Total.Hajek The Hajek estimator for a total

Description

Computes the Hajek (1971) estimator for a population total.

Usage

Est.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.
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Details

For the population total of the variable y:

t =
∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the total point estimator.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

Est.Total.NHT
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Total.Hajek(y1[s==1], pik.U[s==1], N) #The Hajek estimator for y1
Est.Total.Hajek(y2[s==1], pik.U[s==1], N) #The Hajek estimator for y2
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Est.Total.NHT The Narain-Horvitz-Thompson estimator for a total

Description

Computes the Narain (1951); Horvitz-Thompson (1952) estimator for a population total.

Usage

Est.Total.NHT(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t (implemented by the current
function) is given by:

t̂NHT =
∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s.

Value

The function returns a value for the total point estimator.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

Chapter 4: Some R software implementations 115



16 oaxaca

See Also

Est.Total.Hajek
VE.HT.Total.NHT
VE.SYG.Total.NHT
VE.Hajek.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
Est.Total.NHT(y1[s==1], pik.U[s==1]) #Computes the NHT estimator for y1
Est.Total.NHT(y2[s==1], pik.U[s==1]) #Computes the NHT estimator for y2

oaxaca Municipalities of the state of Oaxaca in Mexico

Description

Dataset with information about the free and sovereign state of Oaxaca which is located in the south
part of Mexico. The dataset contains information of population, surface, indigenous language,
agriculture and income from years ranging from 2000 to 2010. The information was originally
collected and processed by the Mexico’s National Institute of Statistics and Geography (INEGI by
its name in Spanish, ‘Instituto Nacional de Estadistica y Geografia’, http://www.inegi.org.mx/).

Usage

data(oaxaca)

Format

A data frame with 570 observations on the following 41 variables:

IDREGION region INEGI code.

LBREGION region name (without accents and Spanish language characters).

IDDISTRI district INEGI code.

LBDISTRI district name (without accents and Spanish language characters).

IDMUNICI municipality INEGI code.

LBMUNICI municipality name (without accents and Spanish language characters).

SURFAC05 surface in squared kilometres 2005.

POP00 population 2000.

POP10 population 2010.
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HOMES00 number of homes 2000.
HOMES10 number of homes 2010.
POPMAL00 male population 2000.
POPMAL10 male population 2010.
POPFEM00 female population 2000.
POPFEM10 female population 2010.
INLANG00 5 or more years old population which speaks indigenous language 2000.
INLANG10 5 or more years old population which speaks indigenous language 2010.
INCOME00 gross income in thousands of Mexican pesos 2000.
INCOME01 gross income in thousands of Mexican pesos 2001.
INCOME02 gross income in thousands of Mexican pesos 2002.
INCOME03 gross income in thousands of Mexican pesos 2003.
PTREES00 planted trees 2000.
PTREES01 planted trees 2001.
PTREES02 planted trees 2002.
PTREES03 planted trees 2003.
MARRIA07 marriages 2007.
MARRIA08 marriages 2008.
MARRIA09 marriages 2009.
HARVBE07 harvested bean surface in hectares 2007.
HARVBE08 harvested bean surface in hectares 2008.
HARVBE09 harvested bean surface in hectares 2009.
VALUBE07 value of bean production in thousands of Mexican pesos 2007.
VALUBE08 value of bean production in thousands of Mexican pesos 2008.
VALUBE09 value of bean production in thousands of Mexican pesos 2009.
VOLUBE07 volume of bean production in tons 2007.
VOLUBE08 volume of bean production in tons 2008.
VOLUBE09 volume of bean production in tons 2009.
sHOMES00 a sample (column vector of ones and zeros; 1 = selected, 0 = otherwise) of 373 mu-

nicipalities drawn using the Hajek (1964) maximum-entropy sampling design with inclusion
probabilities proportional to the variable HOMES00.

sSURFAC a sample (column vector of ones and zeros; 1 = selected, 0 = otherwise) of 373 mu-
nicipalities drawn using the Hajek (1964) maximum-entropy sampling design with inclusion
probabilities proportional to the variable SURFAC05.

SIZEDIST the size of the district, i.e. the number of municipalities in each district.
sSW_10_3 a sample (column vector of ones and zeros; 1 = selected, 0 = otherwise) of 30 mu-

nicipalities drawn using a self-weighted two-stage sampling design. The first stage draws 10
districts using the Hajek (1964) maximum-entropy sampling design with clusters’ inclusion
probabilities proportional to the size of the clusters (variable SIZEDIST). The second stage
draws 3 municipalities within the selected districts at the first stage, using equal-probability
without-replacement sampling.
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Source

Mexico’s National Institute of Statistics and Geography (INEGI), ‘Instituto Nacional de Estadistica
y Geografia’ http://www3.inegi.org.mx/sistemas/descarga/

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Computes the INCOME00 mean (note that INCOME00 has NA’s)
mean(oaxaca$INCOME00, na.rm= TRUE)
#Computes the INCOME00 median (note that INCOME00 has NA’s)
median(oaxaca$INCOME00, na.rm= TRUE)

Pk.PropNorm.U Inclusion probabilities proportional to a specified variable.

Description

Creates and normalises the 1st order inclusion probabilities proportional to a specified variable. In
the current context, normalisation means that the inclusion probabilities are less than or equal to 1.
Ideally, they should sum up to n, the sample size.

Usage

Pk.PropNorm.U(n, VecMOS.U)

Arguments

n the sample size.

VecMOS.U vector of the variable called measure of size (MOS) to which the first-order
inclusion probabilities are to be proportional; its length is equal to the population
size. Values in VecMOS.U should be greater than zero (a warning message
appears if this does not hold). There must not be any missing value.

Details

Although the normalisation procedure is well-known in the survey sampling literature, we follow
the procedure described in Chao (1982, p. 654). Hence, we obtain a unique set of inclusion proba-
bilities that are proportional to the MOS variable.

Value

The function returns a vector of length n with the inclusion probabilities.

References

Chao, M. T. (1982) A general purpose unequal probability sampling plan. Biometrika 69, 653–656.
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See Also

Pkl.Hajek.s
Pkl.Hajek.U

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Creates the normalised 1st order incl. probs. proportional
#to the variable oaxaca$HOMES00 and with sample size 373
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
sum(pik.U) #Shows the sum is equal to the sample size 373
any(pik.U>1) #Shows there isn’t any probability greater than 1
any(pik.U<0) #Shows there isn’t any probability less than 0

Pkl.Hajek.s The Hajek approximation for the 2nd order (joint) inclusion probabil-
ities (sample based)

Description

Computes the Hajek (1964) approximation for the 2nd order (joint) inclusion probabilities utilising
only sample-based quantities.

Usage

Pkl.Hajek.s(VecPk.s)

Arguments

VecPk.s vector of the first-order inclusion probabilities; its length is equal to the sample
size. Values in VecPk.s must be greater than zero and less than or equal to one.
There must not be any missing value.

Details

Let πk denote the inclusion probability of the k-th element in the sample s, and let πkl denote the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. If the joint-inclusion
probabilities πkl are not available, the Hajek (1964) approximation can be used. Note that this
approximation is designed for large-entropy sampling designs, large samples and large populations,
i.e. care should be taken with highly-stratified samples, e.g. Berger (2005).

The sample based version of the Hajek (1964) approximation for the joint-inclusion probabilities
πkl (implemented by the current function) is:

πkl
.
= πkπl{1− d̂−1(1− πk)(1− πl)}

where d̂ =
∑

k∈s(1− πk).

The approximation was originally developed for d → ∞, under the maximum-entropy sampling
design (see Hajek 1981, Theorem 3.3, Ch. 3 and 6), the Rejective Sampling design. It requires
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that the utilised sampling design be of large entropy. An overview can be found in Berger and Tille
(2009). An account of different sampling designs, πkl approximations, and approximate variances
under large-entropy designs can be found in Tille (2006), Brewer and Donadio (2003), and Haziza,
Mecatti, and Rao (2008). Recently, Berger (2011) gave sufficient conditions under which Hajek’s
results still hold for large-entropy sampling designs that are not the maximum-entropy one.

Value

The function returns a (n by n) square matrix with the estimated joint inclusion probabilities, where
n is the sample size.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2011) Asymptotic consistency under large entropy sampling designs with unequal
probabilities. Pakistan Journal of Statististics, 27, 407–426.

Berger, Y. G. and Tille, Y. (2009) Sampling with unequal probabilities. In Sample Surveys: Design,
Methods and Applications (eds. D. Pfeffermann and C. R. Rao), 39–54. Elsevier, Amsterdam.

Brewer, K. R. W. and Donadio, M. E. (2003) The large entropy variance of the Horvitz-Thompson
estimator. Survey Methodology 29, 189–196.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1981) Sampling From a Finite Population. Dekker, New York.

Haziza, D., Mecatti, F. and Rao, J. N. K. (2008) Evaluation of some approximate variance estimators
under the Rao-Sampford unequal probability sampling design. Metron, LXVI, 91–108.

Tille, Y. (2006) Sampling Algorithms. Springer, New York.

See Also

Pkl.Hajek.U
Pk.PropNorm.U

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#First 5 rows/cols of (sample based) 2nd order incl. probs. matrix
pikl.s[1:5,1:5]

120 Chapter 4: Some R software implementations



Pkl.Hajek.U 21

Pkl.Hajek.U The Hajek approximation for the 2nd order (joint) inclusion probabil-
ities (population based)

Description

Computes the Hajek (1964) approximation for the 2nd order (joint) inclusion probabilities utilising
population-based quantities.

Usage

Pkl.Hajek.U(VecPk.U)

Arguments

VecPk.U vector of the first-order inclusion probabilities; its length is equal to the popula-
tion size. Values in VecPk.U must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

Let πk denote the inclusion probability of the k-th element in the sample s, and let πkl denote the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. If the joint-inclusion
probabilities πkl are not available, the Hajek (1964) approximation can be used. Note that this
approximation is designed for large-entropy sampling designs, large samples and large populations,
i.e. care should be taken with highly-stratified samples, e.g. Berger (2005).

The population based version of the Hajek (1964) approximation for the joint-inclusion probabilities
πkl (implemented by the current function) is:

πkl
.
= πkπl{1− d−1(1− πk)(1− πl)}

where d =
∑

k∈U πk(1− πk).

The approximation was originally developed for d → ∞, under the maximum-entropy sampling
design (see Hajek 1981, Theorem 3.3, Ch. 3 and 6), the Rejective Sampling design. It requires
that the utilised sampling design be of large entropy. An overview can be found in Berger and Tille
(2009). An account of different sampling designs, πkl approximations, and approximate variances
under large-entropy designs can be found in Tille (2006), Brewer and Donadio (2003), and Haziza,
Mecatti, and Rao (2008). Recently, Berger (2011) gave sufficient conditions under which Hajek’s
results still hold for large-entropy sampling designs that are not the maximum-entropy one.

Value

The function returns a (N by N ) square matrix with the estimated joint inclusion probabilities,
where N is the population size.
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References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2011) Asymptotic consistency under large entropy sampling designs with unequal
probabilities. Pakistan Journal of Statististics, 27, 407–426.

Berger, Y. G. and Tille, Y. (2009) Sampling with unequal probabilities. In Sample Surveys: Design,
Methods and Applications (eds. D. Pfeffermann and C. R. Rao), 39–54. Elsevier, Amsterdam.

Brewer, K. R. W. and Donadio, M. E. (2003) The large entropy variance of the Horvitz-Thompson
estimator. Survey Methodology 29, 189–196.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1981) Sampling From a Finite Population. Dekker, New York.

Haziza, D., Mecatti, F. and Rao, J. N. K. (2008) Evaluation of some approximate variance estimators
under the Rao-Sampford unequal probability sampling design. Metron, LXVI, 91–108.

Tille, Y. (2006) Sampling Algorithms. Springer, New York.

See Also

Pkl.Hajek.s
Pk.PropNorm.U

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
#(This approximation is only suitable for large-entropy sampling designs)
pikl.U <- Pkl.Hajek.U(pik.U) #Approximates 2nd order incl. probs. from U
#First 5 rows/cols of (population based) 2nd order incl. probs. matrix
pikl.U[1:5,1:5]

VE.Hajek.Mean.NHT The Hajek variance estimator for the Narain-Horvitz-Thompson point
estimator for a mean

Description

Computes the Hajek (1964) variance estimator for the Narain (1951); Horvitz-Thompson (1952)
point estimator for a population mean.

Usage

VE.Hajek.Mean.NHT(VecY.s, VecPk.s, N)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ is given by:

ˆ̄yNHT =
1

N

∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. For large-entropy
sampling designs, the variance of ˆ̄yNHT is approximated by the Hajek (1964) variance:

V (ˆ̄yNHT ) =
1

N(N − 1)

[∑

k∈U

y2k
πk

(1− πk)− dG2

]

with d =
∑

k∈U πk(1− πk) and G = d−1
∑

k∈U (1− πk)yk.

The variance V (t̂NHT ) can be estimated by the variance estimator (implemented by the current
function):

V̂ (ˆ̄yNHT ) =
n

N2(n− 1)

[∑

k∈s

(
yk
πk

)2

(1− πk)− d̂Ĝ2

]

where d̂ =
∑

k∈s(1− πk) and Ĝ = d̂−1
∑

k∈s(1− π)yk/πk.

Note that the Hajek (1964) variance approximation is designed for large-entropy sampling designs,
large samples and large populations, i.e. care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.
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Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.HT.Mean.NHT
VE.SYG.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#Computes the (approximate) var. est. of the NHT point est. for y1
VE.Hajek.Mean.NHT(y1[s==1], pik.U[s==1], N)
#Computes the (approximate) var. est. of the NHT point est. for y2
VE.Hajek.Mean.NHT(y2[s==1], pik.U[s==1], N)

VE.Hajek.Total.NHT The Hajek variance estimator for the Narain-Horvitz-Thompson point
estimator for a total

Description

Computes the Hajek (1964) variance estimator for the Narain (1951); Horvitz-Thompson (1952)
point estimator for a population total.

Usage

VE.Hajek.Total.NHT(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.
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Details

For the population total of the variable y:

t =
∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

t̂NHT =
∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. For large-entropy
sampling designs, the variance of t̂NHT is approximated by the Hajek (1964) variance:

V (t̂NHT ) =
N

N − 1

[∑

k∈U

y2k
πk

(1− πk)− dG2

]

with d =
∑

k∈U πk(1− πk) and G = d−1
∑

k∈U (1− πk)yk.

The variance V (t̂NHT ) can be estimated by the variance estimator (implemented by the current
function):

V̂ (t̂NHT ) =
n

n− 1

[∑

k∈s

(
yk
πk

)2

(1− πk)− d̂Ĝ2

]

where d̂ =
∑

k∈s(1− πk) and Ĝ = d̂−1
∑

k∈s(1− π)yk/πk.

Note that the Hajek (1964) variance approximation is designed for large-entropy sampling designs,
large samples and large populations, i.e. care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.HT.Total.NHT
VE.SYG.Total.NHT
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$SURFAC05)
s <- oaxaca$sSURFAC #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#Computes the (approximate) var. est. of the NHT point est. from y1
VE.Hajek.Total.NHT(y1[s==1], pik.U[s==1])
#Computes the (approximate) var. est. of the NHT point est. from y2
VE.Hajek.Total.NHT(y2[s==1], pik.U[s==1])

VE.HT.Mean.NHT The Horvitz-Thompson variance estimator for the Narain-Horvitz-
Thompson point estimator for a mean

Description

Computes the Horvitz-Thompson (1952) variance estimator for the Narain (1951); Horvitz-Thompson
(1952) point estimator for a population mean.

Usage

VE.HT.Mean.NHT(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

N the population size.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ is given by:

ˆ̄yNHT =
1

N

∑

k∈s

yk
πk
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where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of ˆ̄yNHT is
given by:

V (ˆ̄yNHT ) =
1

N2

∑

k∈U

∑

l∈U
(πkl − πkπl)

yk
πk

yl
πl

which can therefore be estimated by the Horvitz-Thompson variance estimator (implemented by the
current function):

V̂ (ˆ̄yNHT ) =
1

N2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

yk
πk

yl
πl

Value

The function returns a value for the estimated variance.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.SYG.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$SURFAC05)
s <- oaxaca$sSURFAC #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the variance estimation of the NHT point estimator for y1
VE.HT.Mean.NHT(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the variance estimation of the NHT point estimator for y2
VE.HT.Mean.NHT(y2[s==1], pik.U[s==1], pikl.s, N)
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VE.HT.Total.NHT The Horvitz-Thompson variance estimator for the Narain-Horvitz-
Thompson point estimator for a total

Description

Computes the Horvitz-Thompson (1952) variance estimator for the Narain (1951); Horvitz-Thompson
(1952) point estimator for a population total.

Usage

VE.HT.Total.NHT(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

t̂NHT =
∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of t̂NHT is
given by:

V (t̂NHT ) =
∑

k∈U

∑

l∈U
(πkl − πkπl)

yk
πk

yl
πl

which can therefore be estimated by the Horvitz-Thompson variance estimator (implemented by the
current function):

V̂ (t̂NHT ) =
∑

k∈s

∑

l∈s

πkl − πkπl
πkl

yk
πk

yl
πl
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Value

The function returns a value for the estimated variance.

References

Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from
a finite universe. Journal of the American Statistical Association, 47, 663–685.

Narain, R. D. (1951) On sampling without replacement with varying probabilities. Journal of the
Indian Society of Agricultural Statistics, 3, 169–175.

See Also

VE.SYG.Total.NHT
VE.Hajek.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.HT.Total.NHT(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the NHT point estimator for y2
VE.HT.Total.NHT(y2[s==1], pik.U[s==1], pikl.s)

VE.Jk.B.Corr.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the estimator of a correlation coefficient using the Hajek point es-
timator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a
correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.B.Corr.Hajek(VecY.s, VecX.s, VecPk.s)
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Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of ĈHajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (ĈHajek) =
∑

k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2

where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
ĈHajek − ĈHajek(k)

)

with
w̃k =

wk∑
l∈s wl

and where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from
the sample s. Note that this variance estimator utilises implicitly the Hajek (1964) approximations
that are designed for large-entropy sampling designs, large samples and large populations, i.e. care
should be taken with highly-stratified samples, e.g. Berger (2005).
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Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal
probabilities. Biometrika 94, 953–964.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.B.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.B.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.Mean.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the Hajek estimator of a mean

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the Hajek (1971)
estimator of a mean.
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Usage

VE.Jk.B.Mean.Hajek(VecY.s, VecPk.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of ˆ̄yHajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
∑

k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2

where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
ˆ̄yHajek − ˆ̄yHajek(k)

)

with
w̃k =

wk∑
l∈s wl

and

ˆ̄yHajek(k) =

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

Note that this variance estimator utilises implicitly the Hajek (1964) approximations that are de-
signed for large-entropy sampling designs, large samples and large populations, i.e. care should be
taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.
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References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal
probabilities. Biometrika 94, 953–964.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.B.Mean.Hajek(y1[s==1], pik.U[s==1])
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.B.Mean.Hajek(y2[s==1], pik.U[s==1])

VE.Jk.B.Ratio The Berger (2007) unequal probability jackknife variance estimator
for the estimator of a ratio

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of a
ratio of two totals/means.

Usage

VE.Jk.B.Ratio(VecY.s, VecX.s, VecPk.s)
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Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecX.s. There
must not be any missing value.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecY.s. There
must not be any missing value. All values of VecX.s must be greater than zero.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of R̂ can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (R̂) =
∑

k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2

where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
R̂− R̂(k)

)

with
w̃k =

wk∑
l∈s wl

and

R̂(k) =

∑
l∈s,l 6=k wlyl/

∑
l∈s,l 6=k wl∑

l∈s,l 6=k wlxl/
∑

l∈s,l 6=k wl
=

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wlxl

Note that this variance estimator utilises implicitly the Hajek (1964) approximations that are de-
signed for large-entropy sampling designs, large samples and large populations, i.e. care should be
taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.
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References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Berger, Y. G. (2007) A jackknife variance estimator for unistage stratified samples with unequal
probabilities. Biometrika 94, 953–964.
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See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.EB.SW2.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the numerator variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable of interest y2
x <- oaxaca$HOMES10 #Defines the denominator variable of interest x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.B.Ratio(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.B.Ratio(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.RegCo.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the estimator of the regression coefficient using the Hajek point
estimator

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the estimator of
the regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.B.RegCo.Hajek(VecY.s, VecX.s, VecPk.s)
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Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.9), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of β̂Hajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (β̂Hajek) =
∑

k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2

where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
β̂Hajek − β̂Hajek(k)

)

with
w̃k =

wk∑
l∈s wl

and where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from
the sample s. Note that this variance estimator utilises implicitly the Hajek (1964) approximations
that are designed for large-entropy sampling designs, large samples and large populations, i.e. care
should be taken with highly-stratified samples, e.g. Berger (2005).
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Value

The function returns a value for the estimated variance.

References
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population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.
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Verlag, Inc.

See Also

VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.B.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1])
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.B.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1])

VE.Jk.B.Total.Hajek The Berger (2007) unequal probability jackknife variance estimator
for the Hajek estimator of a total

Description

Computes the Berger (2007) unequal probability jackknife variance estimator for the Hajek (1971)
estimator of a total.
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Usage

VE.Jk.B.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of t̂Hajek can be estimated by the Berger (2007) unequal probability jackknife variance
estimator (implemented by the current function):

V̂ (t̂Hajek) =
∑

k∈s

n

n− 1
(1− πk)

(
εk − B̂

)2

where

B̂ =

∑
k∈s(1− πk)εk∑
k∈s(1− πk)

and
εk = (1− w̃k)

(
t̂Hajek − t̂Hajek(k)

)

with
w̃k =

wk∑
l∈s wl

and

t̂Hajek(k) = N

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

Note that this variance estimator utilises implicitly the Hajek (1964) approximations that are de-
signed for large-entropy sampling designs, large samples and large populations, i.e. care should be
taken with highly-stratified samples, e.g. Berger (2005).
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Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
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probabilities. Biometrika 94, 953–964.

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.B.Total.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.B.Total.Hajek(y2[s==1], pik.U[s==1], N)

VE.Jk.CBS.HT.Corr.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a correlation coefficient using the Hajek
point estimator (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point
estimator. It uses the Horvitz-Thompson (1952) variance form.
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Usage

VE.Jk.CBS.HT.Corr.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of ĈHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ĈHajek) =
∑

k∈s

∑

l∈s

πkl − πkπl
πkl

εkεl

where
εk = (1− w̃k)

(
ĈHajek − ĈHajek(k)

)

with
w̃k =

wk∑
l∈s wl

and where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from
the sample s.
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Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.CBS.HT.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.CBS.HT.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.Mean.Hajek

The Campbell-Berger-Skinner unequal probability jackknife vari-
ance estimator for the Hajek (1971) estimator of a mean (Horvitz-
Thompson form)
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Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the Hajek estimator of a mean. It uses the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of ˆ̄yHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
∑

k∈s

∑

l∈s

πkl − πkπl
πkl

εkεl

where
εk = (1− w̃k)

(
ˆ̄yHajek − ˆ̄yHajek(k)

)

with
w̃k =

wk∑
l∈s wl

and

ˆ̄yHajek(k) =

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl
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Value

The function returns a value for the estimated variance.
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and Winston.
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See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.CBS.HT.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.CBS.HT.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.Ratio The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a ratio (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a ratio of two totals/means. It uses the Horvitz-Thompson (1952) variance
form.
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Usage

VE.Jk.CBS.HT.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecX.s. There
must not be any missing value.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecY.s. There
must not be any missing value. All values of VecX.s must be greater than zero.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator (implemented by the current function):

V̂ (R̂) =
∑

k∈s

∑

l∈s

πkl − πkπl
πkl

εkεl

where
εk = (1− w̃k)

(
R̂− R̂(k)

)

with
w̃k =

wk∑
l∈s wl

and

R̂(k) =

∑
l∈s,l 6=k wlyl/

∑
l∈s,l 6=k wl∑

l∈s,l 6=k wlxl/
∑

l∈s,l 6=k wl
=

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wlxl

Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the numerator variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable of interest y2
x <- oaxaca$HOMES10 #Defines the denominator variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.CBS.HT.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.CBS.HT.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.RegCo.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the regression coefficient using the Hajek
point estimator (Horvitz-Thompson form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of the regression coefficient using the Hajek (1971) point estimator. It uses
the Horvitz-Thompson (1952) variance form.

Usage

VE.Jk.CBS.HT.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)
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Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.9), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of β̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (β̂Hajek) =
∑

k∈s

∑

l∈s

πkl − πkπl
πkl

εkεl

where
εk = (1− w̃k)

(
β̂Hajek − β̂Hajek(k)

)

with
w̃k =

wk∑
l∈s wl

and where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from
the sample s.

Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.CBS.HT.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.CBS.HT.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.HT.Total.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the Hajek (1971) estimator of a total (Horvitz-Thompson
form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the Hajek estimator of a total. It uses the Horvitz-Thompson (1952) variance form.
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Usage

VE.Jk.CBS.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

N the population size.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of t̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (t̂Hajek) =
∑

k∈s

∑

l∈s

πkl − πkπl
πkl

εkεl

where
εk = (1− w̃k)

(
t̂Hajek − t̂Hajek(k)

)

with
w̃k =

wk∑
l∈s wl

and

t̂Hajek(k) = N

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.CBS.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.CBS.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N)

VE.Jk.CBS.SYG.Corr.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a correlation coefficient using the Hajek
point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point
estimator. It uses the Sen (1953); Yates-Grundy(1953) variance form.
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Usage

VE.Jk.CBS.SYG.Corr.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of ĈHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ĈHajek) =
−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(εk − εl)2

where
εk = (1− w̃k)

(
ĈHajek − ĈHajek(k)

)

with
w̃k =

wk∑
l∈s wl

and where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from
the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive
regularity conditions.
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Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.CBS.SYG.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.CBS.SYG.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)
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VE.Jk.CBS.SYG.Mean.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the Hajek (1971) estimator of a mean (Sen-Yates-Grundy
form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance es-
timator for the Hajek estimator of a mean. It uses the Sen (1953); Yates-Grundy(1953) variance
form.

Usage

VE.Jk.CBS.SYG.Mean.Hajek(VecY.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of ˆ̄yHajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(εk − εl)2
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where
εk = (1− w̃k)

(
ˆ̄yHajek − ˆ̄yHajek(k)

)

with
w̃k =

wk∑
l∈s wl

and

ˆ̄yHajek(k) =

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity
conditions.

Value

The function returns a value for the estimated variance.
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Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
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#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.CBS.SYG.Mean.Hajek(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.CBS.SYG.Mean.Hajek(y2[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.Ratio The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of a ratio (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of a ratio of two totals/means. It uses the Sen (1953); Yates-Grundy(1953)
variance form.

Usage

VE.Jk.CBS.SYG.Ratio(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecX.s. There
must not be any missing value.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecY.s. There
must not be any missing value. All values of VecX.s must be greater than zero.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk
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where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator (implemented by the current function):

V̂ (R̂) =
−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(εk − εl)2

where

εk = (1− w̃k)
(
R̂− R̂(k)

)

with

w̃k =
wk∑
l∈s wl

and

R̂(k) =

∑
l∈s,l 6=k wlyl/

∑
l∈s,l 6=k wl∑

l∈s,l 6=k wlxl/
∑

l∈s,l 6=k wl
=

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wlxl

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity
conditions.

Value

The function returns a value for the estimated variance.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey
Research Methods Section of the American Statistical Association, 319–324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability
sampling. Journal of the Royal Statistical Society B, 67, 79–89.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica (to appear).

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio
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Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the numerator variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable of interest y2
x <- oaxaca$HOMES10 #Defines the denominator variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.CBS.SYG.Ratio(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.CBS.SYG.Ratio(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.RegCo.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the estimator of the regression coefficient using the Hajek
point estimator (Sen-Yates-Grundy form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance esti-
mator for the estimator of the regression coefficient using the Hajek (1971) point estimator. It uses
the Sen (1953); Yates-Grundy(1953) variance form.

Usage

VE.Jk.CBS.SYG.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, MatPkl.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.
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Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.9), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s.
The variance of β̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (β̂Hajek) =
−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(εk − εl)2

where
εk = (1− w̃k)

(
β̂Hajek − β̂Hajek(k)

)

with
w̃k =

wk∑
l∈s wl

and where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from
the sample s. The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive
regularity conditions.

Value

The function returns a value for the estimated variance.

References

Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey
Research Methods Section of the American Statistical Association, 319–324.

Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability
sampling. Journal of the Royal Statistical Society B, 67, 79–89.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica (to appear).

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.
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Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.CBS.SYG.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.CBS.SYG.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], pikl.s)

VE.Jk.CBS.SYG.Total.Hajek

The Campbell-Berger-Skinner unequal probability jackknife variance
estimator for the Hajek (1971) estimator of a total (Sen-Yates-Grundy
form)

Description

Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance es-
timator for the Hajek estimator of a total. It uses the Sen (1953); Yates-Grundy(1953) variance
form.

Usage

VE.Jk.CBS.SYG.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

N the population size.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of t̂Hajek can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal
probability jackknife variance estimator (implemented by the current function):

V̂ (t̂Hajek) =
−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(εk − εl)2

where
εk = (1− w̃k)

(
t̂Hajek − t̂Hajek(k)

)

with
w̃k =

wk∑
l∈s wl

and

t̂Hajek(k) = N

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

The Sen-Yates-Grundy form for the Campbell(1980); Berger-Skinner(2005) unequal probability
jackknife variance estimator is proposed in Escobar-Berger (2013) under less-restrictive regularity
conditions.

Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.CBS.SYG.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.CBS.SYG.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N)

VE.Jk.EB.SW2.Corr.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of a correlation coefficient
using the Hajek point estimator
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Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance esti-
mator for the estimator of a correlation coefficient of two variables using the Hajek (1971) point
estimator.

Usage

VE.Jk.EB.SW2.Corr.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the total sample size.
Its length has to be the same as the length of VecPk.s and VecX.s. There must
not be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the total sample size.
Its length has to be the same as the length of VecPk.s and VecY.s. There must
not be any missing value.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be any missing value.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be any missing value.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII .

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2
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where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of ĈHajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (ĈHajek) = vclu + vobs

vclu =
∑

i∈s
(1− π∗Ii)ς2(Ii) −

1

d̂

(∑

i∈s
(1− πIi)ς(Ii)

)2

vobs =
∑

k∈s
φkε

2
(k)

where d̂ =
∑

i∈s(1− πIi), φk = I{k ∈ si}π∗Ii(Mi − nII)/(Mi − 1), π∗Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi
is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII
is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(ĈHajek − ĈHajek(Ii))

ε(k) =
n− 1

n
(ĈHajek − ĈHajek(k))

where ĈHajek(Ii) and ĈHajek(k) have the same functional form as ĈHajek but omitting the i-th
cluster and the k-th element, respectively, from the sample s. Note that this variance estimator
utilises implicitly the Hajek (1964) approximations that are designed for large-entropy sampling
designs, large samples and large populations, i.e. care should be taken with highly-stratified sam-
ples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.
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See Also

VE.Jk.Tukey.Corr.Hajek
VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
#Defines the clusters’ labels in the sample dataset
CluLab.s <- SampData$IDDISTRI
#Defines the clusters’ sizes in the sample dataset
CluSize.s <- SampData$SIZEDIST
#Reconstructs clusters’ 1st order incl. probs. in the sample dataset
piIi.s <- (10 * CluSize.s / 570)
#Reconstructs elements’ 1st order incl. probs. in the sample dataset
pik.s <- piIi.s * (nII/CluSize.s)
y1.s <- SampData$POP10 #Defines the variable y1
y2.s <- SampData$POPMAL10 #Defines the variable y2
x.s <- SampData$HOMES10 #Defines the variable x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.EB.SW2.Corr.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.EB.SW2.Corr.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.Mean.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the Hajek (1971) estimator of a mean

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the Hajek estimator of a mean.

Usage

VE.Jk.EB.SW2.Mean.Hajek(VecY.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the total sample size.
Its length has to be the same as the length of VecPk.s. There must not be any
missing value.
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VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be any missing value.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be any missing value.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII .

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of ˆ̄yHajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (ˆ̄yHajek) = vclu + vobs

vclu =
∑

i∈s
(1− π∗Ii)ς2(Ii) −

1

d̂

(∑

i∈s
(1− πIi)ς(Ii)

)2

vobs =
∑

k∈s
φkε

2
(k)

where d̂ =
∑

i∈s(1− πIi), φk = I{k ∈ si}π∗Ii(Mi − nII)/(Mi − 1), π∗Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi
is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII
is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(ˆ̄yHajek − ˆ̄yHajek(Ii))
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ε(k) =
n− 1

n
(ˆ̄yHajek − ˆ̄yHajek(k))

where ˆ̄yHajek(Ii) and ˆ̄yHajek(k) have the same functional form as ˆ̄yHajek but omitting the i-th clus-
ter and the k-th element, respectively, from the sample s. Note that this variance estimator utilises
implicitly the Hajek (1964) approximations that are designed for large-entropy sampling designs,
large samples and large populations, i.e. care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica (to appear).

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

VE.Jk.Tukey.Mean.Hajek
VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
#Defines the clusters’ labels in the sample dataset
CluLab.s <- SampData$IDDISTRI
#Defines the clusters’ sizes in the sample dataset
CluSize.s <- SampData$SIZEDIST
#Reconstructs clusters’ 1st order incl. probs. in the sample dataset
piIi.s <- (10 * CluSize.s / 570)
#Reconstructs elements’ 1st order incl. probs. in the sample dataset
pik.s <- piIi.s * (nII/CluSize.s)
y1.s <- SampData$POP10 #Defines the variable of interest y1
y2.s <- SampData$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.EB.SW2.Mean.Hajek(y1.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the Hajek mean point estimator using y2
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VE.Jk.EB.SW2.Mean.Hajek(y2.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.Ratio The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of a ratio

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the estimator of a ratio of two totals/means.

Usage

VE.Jk.EB.SW2.Ratio(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the total
sample size. Its length has to be the same as the length of VecPk.s and VecX.s.
There must not be any missing value.

VecX.s vector of the denominator variable of interest; its length is equal to n, the total
sample size. Its length has to be the same as the length of VecPk.s and VecY.s.
There must not be any missing value. All values of VecX.s must be greater than
zero.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be any missing value.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be any missing value.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII .

166 Chapter 4: Some R software implementations



VE.Jk.EB.SW2.Ratio 67

Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. If
s is a self-weighted two-stage sample, the variance of R̂ can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (R̂) = vclu + vobs

vclu =
∑

i∈s
(1− π∗Ii)ς2(Ii) −

1

d̂

(∑

i∈s
(1− πIi)ς(Ii)

)2

vobs =
∑

k∈s
φkε

2
(k)

where d̂ =
∑

i∈s(1− πIi), φk = I{k ∈ si}π∗Ii(Mi − nII)/(Mi − 1), π∗Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi
is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII
is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(R̂− R̂(Ii))

ε(k) =
n− 1

n
(R̂− R̂(k))

where R̂(Ii) and R̂(k) have the same functional form as R̂ but omitting the i-th cluster and the k-th
element, respectively, from the sample s. Note that this variance estimator utilises implicitly the
Hajek (1964) approximations that are designed for large-entropy sampling designs, large samples
and large populations, i.e. care should be taken with highly-stratified samples, e.g. Berger (2005).

Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica (to appear).

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.
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See Also

VE.Jk.Tukey.Ratio
VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
#Defines the clusters’ labels in the sample dataset
CluLab.s <- SampData$IDDISTRI
#Defines the clusters’ sizes in the sample dataset
CluSize.s <- SampData$SIZEDIST
#Reconstructs clusters’ 1st order incl. probs. in the sample dataset
piIi.s <- (10 * CluSize.s / 570)
#Reconstructs elements’ 1st order incl. probs. in the sample dataset
pik.s <- piIi.s * (nII/CluSize.s)
y1.s <- SampData$POP10 #Defines the numerator variable y1
y2.s <- SampData$POPMAL10 #Defines the numerator variable y2
x.s <- SampData$HOMES10 #Defines the denominator variable x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.EB.SW2.Ratio(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.EB.SW2.Ratio(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.RegCo.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the estimator of the regression coefficient
using the Hajek point estimator

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the estimator of the regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.EB.SW2.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the total sample size.
Its length has to be the same as the length of VecPk.s and VecX.s. There must
not be any missing value.
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VecX.s vector of the variable of interest X; its length is equal to n, the total sample size.
Its length has to be the same as the length of VecPk.s and VecY.s. There must
not be any missing value.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be any missing value.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be any missing value.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.

VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII .

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.9), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of β̂Hajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (β̂Hajek) = vclu + vobs

vclu =
∑

i∈s
(1− π∗Ii)ς2(Ii) −

1

d̂

(∑

i∈s
(1− πIi)ς(Ii)

)2

vobs =
∑

k∈s
φkε

2
(k)
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where d̂ =
∑

i∈s(1− πIi), φk = I{k ∈ si}π∗Ii(Mi − nII)/(Mi − 1), π∗Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi
is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII
is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(β̂Hajek − β̂Hajek(Ii))

ε(k) =
n− 1

n
(β̂Hajek − β̂Hajek(k))

where β̂Hajek(Ii) and β̂Hajek(k) have the same functional form as β̂Hajek but omitting the i-th clus-
ter and the k-th element, respectively, from the sample s. Note that this variance estimator utilises
implicitly the Hajek (1964) approximations that are designed for large-entropy sampling designs,
large samples and large populations, i.e. care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.

References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica (to appear).

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

See Also

VE.Jk.Tukey.RegCo.Hajek
VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
#Defines the clusters’ labels in the sample dataset
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CluLab.s <- SampData$IDDISTRI
#Defines the clusters’ sizes in the sample dataset
CluSize.s <- SampData$SIZEDIST
#Reconstructs clusters’ 1st order incl. probs. in the sample dataset
piIi.s <- (10 * CluSize.s / 570)
#Reconstructs elements’ 1st order incl. probs. in the sample dataset
pik.s <- piIi.s * (nII/CluSize.s)
y1.s <- SampData$POP10 #Defines the variable y1
y2.s <- SampData$POPMAL10 #Defines the variable y2
x.s <- SampData$HOMES10 #Defines the variable x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.EB.SW2.RegCo.Hajek(y1.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.EB.SW2.RegCo.Hajek(y2.s, x.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s)

VE.Jk.EB.SW2.Total.Hajek

The self-weighted two-stage sampling Escobar-Berger (2013) jack-
knife variance estimator for the Hajek (1971) estimator of a total

Description

Computes the self-weighted two-stage sampling Escobar-Berger (2013) jackknife variance estima-
tor for the Hajek estimator of a total.

Usage

VE.Jk.EB.SW2.Total.Hajek(VecY.s, VecPk.s, nII, VecPi.s,
VecCluLab.s, VecCluSize.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the total sample size.
Its length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the elements’ first-order inclusion probabilities; its length is equal to
n, the total sample size. Values in VecPk.s must be greater than zero and less
than or equal to one. There must not be any missing value.

nII the second stage sample size, i.e. the fixed number of ultimate sampling units
that were selected within each cluster. Its size must be less than or equal to the
minimum cluster size in the sample.

VecPi.s vector of the clusters’ first-order inclusion probabilities; its length is equal to n,
the total sample size. Hence values are expected to be repeated in the utilised
sample dataset. Values in VecPi.s must be greater than zero and less than or
equal to one. There must not be any missing value.

VecCluLab.s vector of the clusters’ labels for the elements; its length is equal to n, the total
sample size. The labels must be integer numbers.
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VecCluSize.s vector of the clusters’ sizes; its length is equal to n, the total sample size. Hence
values are expected to be repeated in the utilised sample dataset. None of the
sizes must be smaller than nII .

N the population size.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. If s
is a self-weighted two-stage sample, the variance of t̂Hajek can be estimated by the Escobar-Berger
(2013) jackknife variance estimator (implemented by the current function):

V̂ (t̂Hajek) = vclu + vobs

vclu =
∑

i∈s
(1− π∗Ii)ς2(Ii) −

1

d̂

(∑

i∈s
(1− πIi)ς(Ii)

)2

vobs =
∑

k∈s
φkε

2
(k)

where d̂ =
∑

i∈s(1− πIi), φk = I{k ∈ si}π∗Ii(Mi − nII)/(Mi − 1), π∗Ii = πIinII(Mi −
1)/(nII − 1)Mi, with si denoting the sample elements from the i-th cluster, I{k ∈ si} is an
indicator that takes the value 1 if the k-th observation is within the i-th cluster and 0 otherwise, πIi
is the inclusion probability of the i-th cluster in the sample s, Mi is the size of the i-th cluster, nII
is the sample size within each cluster, nI is the number of sampled clusters, and where

ς(Ii) =
nI − 1

nI
(t̂Hajek − t̂Hajek(Ii))

ε(k) =
n− 1

n
(t̂Hajek − t̂Hajek(k))

where t̂Hajek(Ii) and t̂Hajek(k) have the same functional form as t̂Hajek but omitting the i-th cluster
and the k-th element, respectively, from the sample s. Note that this variance estimator utilises
implicitly the Hajek (1964) approximations that are designed for large-entropy sampling designs,
large samples and large populations, i.e. care should be taken with highly-stratified samples, e.g.
Berger (2005).

Value

The function returns a value for the estimated variance.
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References

Berger, Y. G. (2005) Variance estimation with highly stratified sampling designs with unequal prob-
abilities. Australian & New Zealand Journal of Statistics, 47, 365–373.

Escobar, E. L. and Berger, Y. G. (2013) A jackknife variance estimator for self-weighted two-stage
samples. Statistica Sinica (to appear).

Hajek, J. (1964) Asymptotic theory of rejective sampling with varying probabilities from a finite
population. The Annals of Mathematical Statistics, 35, 4, 1491–1523.

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

See Also

VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
s <- oaxaca$sSW_10_3 #Defines the sample to be used
N <- dim(oaxaca)[1] #Defines the population size
SampData <- oaxaca[s==1, ] #Defines the sample dataset
nII <- 3 #Defines the 2nd stage fixed sample size
#Defines the clusters’ labels in the sample dataset
CluLab.s <- SampData$IDDISTRI
#Defines the clusters’ sizes in the sample dataset
CluSize.s <- SampData$SIZEDIST
#Reconstructs clusters’ 1st order incl. probs. in the sample dataset
piIi.s <- (10 * CluSize.s / 570)
#Reconstructs elements’ 1st order incl. probs. in the sample dataset
pik.s <- piIi.s * (nII/CluSize.s)
y1.s <- SampData$POP10 #Defines the variable of interest y1
y2.s <- SampData$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.EB.SW2.Total.Hajek(y1.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s, N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.EB.SW2.Total.Hajek(y2.s, pik.s, nII, piIi.s, CluLab.s, CluSize.s, N)

VE.Jk.Tukey.Corr.Hajek

The Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient using the Hajek point estimator
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Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient of two variables using the Hajek (1971) point estimator.

Usage

VE.Jk.Tukey.Corr.Hajek(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size. Note that this information is utilised for the finite population
correction only.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C, assuming that N is unknown (see Sarndal et al., 1992, Sec. 5.9), is:

ĈHajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)√∑

k∈s wk(yk − ˆ̄yHajek)2
√∑

k∈s wk(xk − ˆ̄xHajek)2

where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of ĈHajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (ĈHajek) =
(

1− n

N

) n− 1

n

∑

k∈s

(
ĈHajek(k) − ĈHajek

)2

where ĈHajek(k) has the same functional form as ĈHajek but omitting the k-th element from the
sample s. Note that we are implementing the Tukey (1958) jackknife variance estimator using the
‘ad hoc’ finite population correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007).
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Value

The function returns a value for the estimated variance.

References

Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in
Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353–360.

Sarndal, C.-E. and Swensson, B. and Wretman, J. (1992) Model Assisted Survey Sampling. Springer-
Verlag, Inc.

Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.

Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Math-
ematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

VE.Jk.CBS.HT.Corr.Hajek
VE.Jk.CBS.SYG.Corr.Hajek
VE.Jk.B.Corr.Hajek
VE.Jk.EB.SW2.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.Tukey.Corr.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.Tukey.Corr.Hajek(y2[s==1], x[s==1], pik.U[s==1], N)

VE.Jk.Tukey.Corr.NHT The Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient using the Narain-Horvitz-Thompson point esti-
mator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a
correlation coefficient of two variables using the Narain (1951); Horvitz-Thompson (1952) point
estimator.
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Usage

VE.Jk.Tukey.Corr.NHT(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population correlation coefficient of two variables y and x:

C =

∑
k∈U (yk − ȳ)(xk − x̄)√∑

k∈U (yk − ȳ)2
√∑

k∈U (xk − x̄)2

the point estimator of C is given by:

Ĉ =

∑
k∈s wk(yk − ˆ̄yNHT )(xk − ˆ̄xNHT )√∑

k∈s wk(yk − ˆ̄yNHT )2
√∑

k∈s wk(xk − ˆ̄xNHT )2

where ˆ̄yNHT is the Narain (1951); Horvitz-Thompson (1952) estimator for the population mean
ȳ = N−1

∑
k∈U yk,

ˆ̄yNHT =
1

N

∑

k∈s
wkyk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of Ĉ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator
(implemented by the current function):

V̂ (Ĉ) =
(

1− n

N

) n− 1

n

∑

k∈s

(
Ĉ(k) − Ĉ

)2

where Ĉ(k) has the same functional form as Ĉ but omitting the k-th element from the sample s.
Note that we are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’
finite population correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007).

Value

The function returns a value for the estimated variance.
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See Also

Est.Corr.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the corr. coeff. point estimator using y1
VE.Jk.Tukey.Corr.NHT(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the corr. coeff. point estimator using y2
VE.Jk.Tukey.Corr.NHT(y2[s==1], x[s==1], pik.U[s==1], N)

VE.Jk.Tukey.Mean.Hajek

The Tukey (1958) jackknife variance estimator for the Hajek estimator
of a mean

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the Hajek (1971)
estimator of a mean.

Usage

VE.Jk.Tukey.Mean.Hajek(VecY.s, VecPk.s, N)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of ȳ is given by:

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of ˆ̄yHajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (ˆ̄yHajek) =
(

1− n

N

) n− 1

n

∑

k∈s

(
ˆ̄yHajek(k) − ˆ̄yHajek

)2

where

ˆ̄yHajek(k) =

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

Note that we are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’
finite population correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007).

Value

The function returns a value for the estimated variance.
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and Winston.
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See Also

VE.Jk.CBS.HT.Mean.Hajek
VE.Jk.CBS.SYG.Mean.Hajek
VE.Jk.B.Mean.Hajek
VE.Jk.EB.SW2.Mean.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek mean point estimator using y1
VE.Jk.Tukey.Mean.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek mean point estimator using y2
VE.Jk.Tukey.Mean.Hajek(y2[s==1], pik.U[s==1], N)

VE.Jk.Tukey.Ratio The Tukey (1958) jackknife variance estimator for the estimator of a
ratio

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of a
ratio of two totals/means.

Usage

VE.Jk.Tukey.Ratio(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the numerator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecX.s. There
must not be any missing value.

VecX.s vector of the denominator variable of interest; its length is equal to n, the sample
size. Its length has to be the same as the length of VecPk.s and VecY.s. There
must not be any missing value. All values of VecX.s must be greater than zero.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.
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Details

For the population ratio of two totals/means of the variables y and x:

R =

∑
k∈U yk/N∑
k∈U xk/N

=

∑
k∈U yk∑
k∈U xk

the ratio estimator of R is given by:

R̂ =

∑
k∈s wkyk∑
k∈s wkxk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s. The
variance of R̂ can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance estimator
(implemented by the current function):

V̂ (R̂) =
(

1− n

N

) n− 1

n

∑

k∈s

(
R̂(k) − R̂

)2

where

R̂(k) =

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wlxl

Note that we are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’
finite population correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007).

Value

The function returns a value for the estimated variance.

References

Quenouille, M. H. (1956) Notes on bias in estimation. Biometrika, 43, 353–360.

Shao, J. and Tu, D. (1995) The Jackknife and Bootstrap. Springer-Verlag, Inc.

Tukey, J. W. (1958) Bias and confidence in not-quite large samples (abstract). The Annals of Math-
ematical Statistics, 29, 2, p. 614.

Wolter, K. M. (2007) Introduction to Variance Estimation. 2nd Ed. Springer, Inc.

See Also

VE.Jk.CBS.HT.Ratio
VE.Jk.CBS.SYG.Ratio
VE.Jk.B.Ratio
VE.Jk.EB.SW2.Ratio

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
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N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the numerator variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the numerator variable of interest y2
x <- oaxaca$HOMES10 #Defines the denominator variable of interest x
#Computes the var. est. of the ratio point estimator using y1
VE.Jk.Tukey.Ratio(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the ratio point estimator using y2
VE.Jk.Tukey.Ratio(y2[s==1], x[s==1], pik.U[s==1], N)

VE.Jk.Tukey.RegCo.Hajek

The Tukey (1958) jackknife variance estimator for the estimator of the
regression coefficient using the Hajek point estimator

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the estimator of the
regression coefficient using the Hajek (1971) point estimator.

Usage

VE.Jk.Tukey.RegCo.Hajek(VecY.s, VecX.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest Y; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecX.s. There must not
be any missing value.

VecX.s vector of the variable of interest X; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s and VecY.s. There must not
be any missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size. Note that this information is utilised for the finite population
correction only.

Details

From Linear Regression Analysis, for an imposed population model

y = α+ βx

the population regression coefficient β, assuming that the population size N is unknown (see Sarn-
dal et al., 1992, Sec. 5.9), can be estimated by:

β̂Hajek =

∑
k∈s wk(yk − ˆ̄yHajek)(xk − ˆ̄xHajek)∑

k∈s wk(xk − ˆ̄xHajek)2
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where ˆ̄yHajek is the Hajek (1971) point estimator of the population mean ȳ = N−1
∑

k∈U yk,

ˆ̄yHajek =

∑
k∈s wkyk∑
k∈s wk

and wk = 1/πk with πk denoting the inclusion probability of the k-th element in the sample s. The
variance of β̂Hajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (β̂Hajek) =
(

1− n

N

) n− 1

n

∑

k∈s

(
β̂Hajek(k) − β̂Hajek

)2

where β̂Hajek(k) has the same functional form as β̂Hajek but omitting the k-th element from the
sample s. Note that we are implementing the Tukey (1958) jackknife variance estimator using the
‘ad hoc’ finite population correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007).

Value

The function returns a value for the estimated variance.

References
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See Also

VE.Jk.CBS.HT.RegCo.Hajek
VE.Jk.CBS.SYG.RegCo.Hajek
VE.Jk.B.RegCo.Hajek
VE.Jk.EB.SW2.RegCo.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
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x <- oaxaca$HOMES10 #Defines the variable of interest x
#Computes the var. est. of the regression coeff. point estimator using y1
VE.Jk.Tukey.RegCo.Hajek(y1[s==1], x[s==1], pik.U[s==1], N)
#Computes the var. est. of the regression coeff. point estimator using y2
VE.Jk.Tukey.RegCo.Hajek(y2[s==1], x[s==1], pik.U[s==1], N)

VE.Jk.Tukey.Total.Hajek

The Tukey (1958) jackknife variance estimator for the Hajek estimator
of a total

Description

Computes the Quenouille(1956); Tukey (1958) jackknife variance estimator for the Hajek (1971)
estimator of a total.

Usage

VE.Jk.Tukey.Total.Hajek(VecY.s, VecPk.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

N the population size.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the approximately unbiased Hajek (1971) estimator of t (implemented by the current function) is
given by:

t̂Hajek = N

∑
k∈s wkyk∑
k∈s wk

where wk = 1/πk and πk denotes the inclusion probability of the k-th element in the sample s.
The variance of t̂Hajek can be estimated by the Quenouille(1956); Tukey (1958) jackknife variance
estimator (implemented by the current function):

V̂ (t̂Hajek) =
(

1− n

N

) n− 1

n

∑

k∈s

(
t̂Hajek(k) − t̂Hajek

)2
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where

t̂Hajek(k) = N

∑
l∈s,l 6=k wlyl∑
l∈s,l 6=k wl

Note that we are implementing the Tukey (1958) jackknife variance estimator using the ‘ad hoc’
finite population correction 1− n/N (see Shao and Tu, 1995; Wolter, 2007).

Value

The function returns a value for the estimated variance.

References
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Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart
and Winston.
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See Also

VE.Jk.CBS.HT.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2
#Computes the var. est. of the Hajek total point estimator using y1
VE.Jk.Tukey.Total.Hajek(y1[s==1], pik.U[s==1], N)
#Computes the var. est. of the Hajek total point estimator using y2
VE.Jk.Tukey.Total.Hajek(y2[s==1], pik.U[s==1], N)
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VE.SYG.Mean.NHT The Sen-Yates-Grundy variance estimator for the Narain-Horvitz-
Thompson point estimator for a mean

Description

Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); Horvitz-
Thompson (1952) point estimator for a population mean.

Usage

VE.SYG.Mean.NHT(VecY.s, VecPk.s, MatPkl.s, N)

Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

N the population size.

Details

For the population mean of the variable y:

ȳ =
1

N

∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of ȳ is given by:

ˆ̄yNHT =
1

N

∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of ˆ̄yNHT is
given by:

V (ˆ̄yNHT ) =
1

N2

∑

k∈U

∑

l∈U
(πkl − πkπl)

yk
πk

yl
πl

which, if the utilised sampling design is of fixed-size, can therefore be estimated by the Sen-Yates-
Grundy variance estimator (implemented by the current function):

V̂ (ˆ̄yNHT ) =
1

N2

−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(
yk
πk
− yl
πl

)2
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Value

The function returns a value for the estimated variance.

References
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Indian Society of Agricultural Statistics, 3, 169–175.

Sen, A. R. (1953) On the estimate of the variance in sampling with varying probabilities. Journal
of the Indian Society of Agricultural Statistics, 5, 119–127.

Yates, F. and Grundy, P. M. (1953) Selection without replacement from within strata with probability
proportional to size. Journal of the Royal Statistical Society B, 15, 253–261.

See Also

VE.HT.Mean.NHT
VE.Hajek.Mean.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
N <- dim(oaxaca)[1] #Defines the population size
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approx. is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.SYG.Mean.NHT(y1[s==1], pik.U[s==1], pikl.s, N)
#Computes the var. est. of the NHT point estimator for y2
VE.SYG.Mean.NHT(y2[s==1], pik.U[s==1], pikl.s, N)

VE.SYG.Total.NHT The Sen-Yates-Grundy variance estimator for the Narain-Horvitz-
Thompson point estimator for a total

Description

Computes the Sen (1953); Yates-Grundy(1953) variance estimator for the Narain (1951); Horvitz-
Thompson (1952) point estimator for a population total.

Usage

VE.SYG.Total.NHT(VecY.s, VecPk.s, MatPkl.s)
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Arguments

VecY.s vector of the variable of interest; its length is equal to n, the sample size. Its
length has to be the same as the length of VecPk.s. There must not be any
missing value.

VecPk.s vector of the first-order inclusion probabilities; its length is equal to n, the sam-
ple size. Values in VecPk.s must be greater than zero and less than or equal to
one. There must not be any missing value.

MatPkl.s matrix of the second-order inclusion probabilities; its number of rows and columns
is equal to n, the sample size. Values in MatPkl.s must be greater than zero and
less than or equal to one. There must not be any missing value.

Details

For the population total of the variable y:

t =
∑

k∈U
yk

the unbiased Narain (1951); Horvitz-Thompson (1952) estimator of t is given by:

t̂NHT =
∑

k∈s

yk
πk

where πk denotes the inclusion probability of the k-th element in the sample s. Let πkl denotes the
joint-inclusion probabilities of the k-th and l-th elements in the sample s. The variance of t̂NHT is
given by:

V (t̂NHT ) =
∑

k∈U

∑

l∈U
(πkl − πkπl)

yk
πk

yl
πl

which, if the utilised sampling design is of fixed-size, can therefore be estimated by the Sen-Yates-
Grundy variance estimator (implemented by the current function):

V̂ (t̂NHT ) =
−1

2

∑

k∈s

∑

l∈s

πkl − πkπl
πkl

(
yk
πk
− yl
πl

)2

Value

The function returns a value for the estimated variance.
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See Also

VE.HT.Total.NHT
VE.Hajek.Total.NHT

Examples

data(oaxaca) #Loads the Oaxaca municipalities dataset
#Reconstructs the 1st order incl. probs. for the example
pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00)
s <- oaxaca$sHOMES00 #Defines the sample to be used for the example
y1 <- oaxaca$POP10 #Defines the variable of interest y1
y2 <- oaxaca$HOMES10 #Defines the variable of interest y2
#This approximation is only suitable for large-entropy sampling designs
pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s
#Computes the var. est. of the NHT point estimator for y1
VE.SYG.Total.NHT(y1[s==1], pik.U[s==1], pikl.s)
#Computes the var. est. of the NHT point estimator for y2
VE.SYG.Total.NHT(y2[s==1], pik.U[s==1], pikl.s)

188 Chapter 4: Some R software implementations



Chapter 5

Future research work

Abstract

Here we briefly discuss some possible extensions to the manuscripts of earlier chapters

of this dissertation. Some future research work involve combining manuscripts.

Keywords and phrases: future research, variance estimation.
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5.1 The importance of the research on variance

estimation

Research on variance estimation is a crucial area within survey sampling. We can

say that there is no doubt that estimating sampling variances is probably the most

important way of improving a survey. For example, we need variance estimates

to compute coefficients of variations and design effects. These two statistics are

very important to improving survey sampling strategies as they indicate the gain

or loss in precision when estimating certain attributes in a population.

5.2 Future work and extensions

5.2.1 On combining manuscripts from chapters 1 and 2

The variance estimator from chapter 1 is derived from the Campbell (1980); Berger

and Skinner (2005) variance estimator that is defined for functions of Hájek (1971)

means. One possible line of future research is to derive a similar variance estima-

tor as the one in chapter 1 but this time from the proposed replication variance

estimator in chapter 2 that is designed for functions of Narain (1951); Horvitz and

Thompson (1952) totals.

5.2.2 On extending the manuscript from chapter 2 to ac-

count for imputation

In a similar fashion as the Berger and Skinner (2005) article was extended to

account for imputation in Berger and Rao (2006), a possible extension for future

research work is to extend the variance estimator proposed in chapter 2 to account

for imputation.
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5.2.3 On extending the manuscript from chapter 2 to ease

its practical implementation (current research)

Another option of future research work, is to extend the variance estimator from

chapter 2 in a similar way as the variance estimator from Berger and Skinner

(2005) is extended in Berger (2007). This is current research already submitted.

5.2.4 On combining manuscripts from chapters 2 and 3

It would be interesting to combine the variance estimators utilised in chapters 2

and 3, to obtain a replication variance estimator for measures of change of complex

statistics with rotating surveys.
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