
Social simulation comparison in arbitrary

problem domains: first steps towards a more

principled approach

Stuart Rossiter1, Jason Noble1, and Keith R.W. Bell2

1 University of Southampton, UK
sr1@ecs.soton.ac.uk, jn2@ecs.soton.ac.uk

2 University of Strathclyde, UK
keith.bell@eee.strath.ac.uk

Abstract. We outline a simulation development process, backed by a
software framework, which focuses on developing and using a partial con-
ceptual model as a ‘lens’ to compare and possibly re-implement existing
models in a chosen problem domain (as well as to design new models).
To make this feasible for existing models of arbitrary structure and back-
ground social theory, we construct our (partial) conceptual model in a
way that acknowledges that it is a base representation which any indi-
vidual model will typically add detail to, and abstract away from, in
various ways which we argue can be formalised. A given model’s design
is fitted to the conceptual model to capture how its structural architec-
ture (and selected aspects of the system’s state and driving processes)
map to the conceptual model. This fit can be used to produce incom-
plete skeleton code which can then be extended to produce a simulation.
Along the way, we use robust decision-making to provide a useful frame
and discuss how our approach differs from others. This is inevitably a
preliminary approach to a broad and difficult problem, which we explore
in the conclusions.

Keywords: modelling process, model comparison, M2M analysis, soft-
ware framework, model-driven-design, robust decision-making, LTPA

1 Motivation

Model comparison is a key process needed to help mature social simulation as
a discipline, and encompasses related interests in model reuse, alignment and
replication [3,2,7,20]. It is also highly relevant for the use of social simulations in
long-term policy analysis (LTPA). The robust decision-making approach [11,12]
has focused on interactive scenario exploration, as part of a process whereby
policy options can be developed which are robust to as wide a range of plausi-
ble scenarios as possible.3 The scenarios are produced by a scenario genera-
tor, which could be a single model (varied parametrically to produce scenarios)

3 The authors also term it Computer-Assisted Reasoning (CAR), but we feel this is
too general a term to be useful, and prefer ‘robust decision-making’.



2 Rossiter, Noble & Bell

or some ensemble of models.4 The inherent deep uncertainty in social systems
means that attempting to assign ‘likelihoods’ to each scenario is inappropriate,
and thus the generator aims only for plausibility and variety of scenarios. (The
devil is, of course, in the detail of how one assesses plausibility, and when a
policy is ‘robust enough’.)

In our view, the scenario generator should really be some ensemble of mod-
els that represents theoretical plurality, not just parametric variation of a single
model or family of related models. This is vitally important because, even if we
ignore (or refute) the deep uncertainty of socal systems, the reality is that there
is a lack of consensus on valid theory, and the predictive accuracy of social sim-
ulation is extremely limited, particularly across longer timeframes. (Moss [15]
takes a strong stance on this.) Thus, although time and funding often precludes
it, a scientifically honest approach would include simulations covering a wide
range of theoretical alternatives. In concrete terms, this means that variation
in model structure is equally, or more, important than the variation of parame-
ters (and the related focus on the accuracy of any empirical data used). Robust
decision-making has focused much more on the scenario exploration tools and
process than on how to construct a good scenario generator. Their extended
example for sustainable development [12] uses a single system dynamics (SD)
model. Bankes [4] used an ensemble of models, but using bootstrap resampling of
training data to create a family of neural net models (i.e., although the differing
neural nets created different model ‘structures’, there is still a single overarching
theoretical backdrop).

One of the reasons why we are interested in this robust-decision-making frame
is that it also represents a reasonable analogue for the field of social simulation
in general. For a given problem domain, models in the literature that investigate
it can be identified (assuming we can decide what is ‘close enough’ to the chosen
domain to count). This set of models effectively acts as a scenario generator, pro-
ducing a variety of possible future scenarios. Our aim as scientists is ideally to be
able to compare all these models, and advance our understanding of the domain
by adding, extending and combining theoretical elements of them (as well as
validating and replicating their results).5 However, this is made very difficult by
aspects such as disciplinary (or paradigm-specific) silos, a multiplicity of imple-
mentation languages and frameworks, lack of access to model code, overly brief
documentation in papers and, perhaps above all, radically differing theoretical or
conceptual frameworks. (Different modelling paradigms tend to exist because of
differences in overarching conceptual tenets, though these historical differences
may be weakening as hybrid modelling becomes more common.) In contrast,
this is unlike robust-decision-making, in that the exact ‘levers’ (interventions)
to be investigated, and the measures by which the outcomes are judged, may

4 Boundaries between a model and models can begin to blur where, for example, a
model has parameters which act as switches to turn on and off different structural
alternatives (e.g., alternative decision-making algorithms).

5 Indeed, the ultimate aim of this understanding is often to inform policy, and thus
there is the same idea of designing policy robust to a range of theories.



Social simulation comparison in arbitrary problem domains 3

differ considerably amongst different pieces of research; robust-decision-making
sets these up as part of the process, and the scenario generator has to conform
to them.6

Therefore, in general, it is important to be able to compare a plurality of
models for the same problem domain. However, this plurality makes model com-
parison more difficult: we really need ways to compare alternative model designs
via some common ‘lens’, even when they appear to radically differ structurally.
Ideally, this comparative process would also extend into the realm of model
implementation, where it also facilitates code reuse.

1.1 Existing Approaches

Conceptual frameworks exist for specific problem domains which aid model as-
sessment, understanding and comparison; e.g., Chappin & Dijkemma’s for energy
transitions [5], AMES for particular forms of electricity markets [22], and MR
POTATOHEAD for land use models [16]. All of these provide some support for
translating this conceptual model into software: what software engineering terms
model-driven design [8, §4]. However, all these examples are tied to an agent-
based paradigm, and focus more on a minimal representation level. This does not
meet our intuitive idea of a lens as some potentially-incomplete base represen-
tation which does not constrain how a model might be mapped to it. That is, we
would expect individual models to both add detail to, and abstract away from,
this base representation in arbitrary ways. This is a key principle we attempt
to include (inevitably in a limited fashion), and we term it representational
flexibility.

We can also regard modelling paradigms and their software frameworks simi-
larly (as conceptual frameworks supporting model-driven design), but where the
conceptual framework is a generalised one for any system. We would like some
process which does not restrict the modelling paradigms of the models compared.

Finally, there has been some research on protocols that try to standardise how
models are described [18,17], which should definitely aid in model comparison.
However, much of this is tied to modelling paradigm and focuses on cross-cutting
aspects of models (such as the treatment of time or the representation of space)
rather than how the theory-driven structure relates to the real-world system. It
is also, by its nature, a textual process unrelated to model construction.

2 High-Level Approach

The overall proposed process is shown in figure 1, which we attempt to explain
in what follows.

6 They use the XLRM analysis framework. The ‘relationships’ (R) comprise the model,
which takes into account externalities (X) and the policy levers (L) in place to
produce outcomes, where we are interested in particular measures (M) of scenario
desirability.



4 Rossiter, Noble & Bell

Fig. 1. A summary of the overall proposed modelling process, as a UML activity di-
agram with partitioning for different roles (vertical) and stages (horizontal) in the
process. Shaded boxes represent code. The diamond, triangle, and circle represent in-
stances of each of the main types of domain model element. The square in the Domain
Model Structural Fit box (parameter) highlights how the behavioural fit can result in
new entities, as well as existing entities.



Social simulation comparison in arbitrary problem domains 5

In simulation terms, the envisaged common lens can be regarded as a partial
conceptual model of a system, where the system’s scope is determined by the
problem domain: “The art of model building is knowing what to cut out, and
the purpose of the model acts as the logical knife. [...] Always model a problem.
Never model a system” [21, §3.5.1].7 Unlike other model-driven approaches, it is
not a complete model design: it focuses only on those aspects which can realisti-
cally be generalised, limiting itself to the structural ‘architecture’ of the system,
and selected aspects of system state and driving processes. The structural ar-
chitecture defines behavioural classifications, but no further behavioural details
(which will necessarily differ in ways which we cannot capture in a prescribed
way). Our process defines ways to build this conceptual model and fit existing
models to it, incorporating the required representational flexibility.

Setting its partial nature aside, this conceptual model is almost exactly what
is termed a domain model in software engineering [8], and we use this term
henceforth (with the ‘partial’ implicit). Evans’ book [8] does a good job of char-
acterising the benefits that it can bring (such as a “ubiquitious language” for
shared discussion).

2.1 Domain Model Structure

Intuitively, these generalisable details will often be structures that are imposed
by legal, technical, political or social constraints that we do not envisage chang-
ing over simulation timescales (roughly ‘medium-term’: very few, if any, social
simulation researchers would think it appropriate to go beyond this).8 Such fea-
tures are also ones which presuppose as little social theory as possible, which is
what we should expect since social theory is the main mechanism by which mod-
els differ (and thus is not generalisable).9 They are aspects that concretely exist
‘out there’ and would be included in an expert participant’s account when no
conceptually-constraining elicitation method (such as systems thinking’s causal
loop diagrams [21, §5]) was used. This lends itself to an object-oriented repre-
sentation, with object classes corresponding to real-world entities, and is similar
to a systems-theoretic design [23, §1.1.1]. We supplement this with workflows
[1] to model system processes.

In practice, the approach will work best for problem domains where there are
enough of these constraints for the conceptual model to be ‘meaty’ enough to
be useful. Two good examples are (a) electricity markets, where the physics of
electricity flow and the difficulty of storing it mean that electricity markets and
infrastructure have to work in a certain way (at least unless radical disruptive

7 Theory also drives system scope to some degree, and we explain why this is less
problematic than it might seem later.

8 That is, there will not be any changes over the course of the simulation which
are fundamental and disruptive enough to change these ‘structural goalposts’. This
assumption is implicitly embedded in all simulation models, unless they are explicitly
trying to model such change. (Even then, they can only cover a set of possibilities
which the modeller can conceive of.)

9 See section 4 for some discussion on the use of the word ‘theory’.



6 Rossiter, Noble & Bell

technologies emerge); (b) healthcare, where the biological constraints of disease
pathologies and available treatments are allied to structures of health systems
that tend to define generalised care pathways. We use the example of electricity
markets in what follows.

The entities whose behaviour drives the system are termed behavioural en-
tities. In the real-world, this behaviour is often governed by processes, some
of which can also be generalised in the same way as the entities. For example,
because electricity cannot easily be stored, it has to be generated in real-time as
it is consumed (and this demand can only be approximated beforehand). Thus,
all electricity markets have ‘balancing markets’ where generators make bids and
offers to increase or decrease generation as required in real-time. Equally, con-
structing a new power plant requires planning permission, consent from the
transmission network operator, and local work to physically connect it to the
grid.

In addition, there is often specific information in the real-world that is con-
sulted by many actors to guide decision-making. This typically relates to the
shared environment in which the participants are operating. In our electricity
markets example, one obvious candidate is information on the topology of the
electricity transmission network and what is attached to it, since that governs
who can use and supply electricity, and thus the strategic options for buyers and
sellers in the market. If we abstract away the access to this information (and
aspects such as unreliable transmission of it), we can view this as core system
state shared as information.

These distinctions (behavioural entity, process and core system state) are
also made with one eye on model implementation. They corresponds to aspects
we typically see in an object-oriented simulation: a set of object classes, some
form of schedule to centrally drive object behaviour, and objects encapsulating
system state which are often visualised and/or have statistics derived from them.
The latter are typically where we derive our measures of scenario favourability
from.

2.2 Analysing Models Using The Domain Model

The domain model can then be used either to design new models or, more com-
monly, to analyse and compare existing models. As a general scientific principle,
all models should be able to explain how their theory relates to a more athe-
oretical understanding of the real-world system. (Indeed, many computational
sociologists reject orthodox economics precisely because they feel it fails on this
count [14].) Thus, they should be able to explain themselves in terms of the
domain model, and the process of doing so is a valuable scientific exercise as
well as being extremely useful for model comparison. We refer to this step as
structural domain model fitting (of the individual model in question).

This does not mean some kind of 1–1 mapping, or that the model must only
extend the basic building blocks of the domain model: it means that the model’s
design can be derived from the domain model via a series of extensions and
abstractions, which could be more or less ‘radical’ depending on the model. (The



Social simulation comparison in arbitrary problem domains 7

domain model is a partial, ‘atheoretical’ view of the domain, not some normative
design for any model of it.)

Both domain models and the fitting process have a particular form and set of
design heuristics which makes this possible in a relatively formal way. Because
we are trying to model entities and some of the processes which drive their inter-
actions, we are necessarily building up a causal-mechanism view of the system.
Thus, we should expect that models which abstract away the causal mechanism
(e.g., statistical regression models) or abstract away the entity-instance aspect of
reality (e.g., system dynamics) will necessarily require a more ‘involved’ fit: such
models have to work harder to explain themselves in real-world terms. Since a re-
gression model has the core relationship between its independent and dependent
variables as an ‘unknowable’ statistically-fitted set of associations, the process
will make that clear whilst mapping the variables to existing or new parts of the
system that they relate to (see section 3.3).

This is also why our technically-incorrect assumption that only the problem
domain defines the system’s scope is acceptable. Although theory also drives
system scope to some degree (as well as driving the representation of that sys-
tem), representational flexibility means we are not excluding anything outside
our domain model and thus theory-driven differences in scope will come out in
the fitting process.

2.3 Model Implementations

Model implementations are based on a shared implementation of the domain
model. The domain model fit provides ways to formally specify the main struc-
tural extensions and abstractions, which can then be used to produce skeleton
model code from the domain model code; i.e., a partial implementation for the
model which is then fleshed out by the modeller with code for the detailed be-
haviour of entities within the structure.

For existing models, one can either re-implement them in this mapped-to-
the-domain-model way or extend this skeleton code to act as a ‘wrapper’ for the
existing model (i.e., code which controls the execution of the existing model, and
manipulates its inputs and outputs so as to conform to the domain model fit).10

Primarily due to space limitations, we focus on analysis and design in the
remainder of this paper, making some passing comments on implementation
aspects. (Section 4 gives a summary of what we have actually realised to date.)

2.4 Possible Usage Modes for the Process

There are different ways in which the process could be used, some of which repre-
sent grander visions than others. At the simpler scale, a domain model could be
constructed just to guide the design and development process for a single model
(or a closely related set of models). It may prove valuable later, unexpectedly or

10 In software design pattern terminology, this wrapper code acts as a gateway [9,
p.466].



8 Rossiter, Noble & Bell

not, in trying to compare this model with others, or in developing new models
for the same domain.

In a more comparative mode, a domain model could be produced to help
understand and compare a set of existing models. If done convincingly, this
could influence subsequent research, with those in agreement ensuring that their
model designs can be mapped to it.

Finally, in a policy mode, a domain model could be defined by, or with, policy-
makers. It would be used to state the ‘lens’ that is expected, so that ‘real world’
concepts and data definitions understood by the stakeholders were used. This
would then allow competing models (say from different groups of academics),
which could be compared at this shared level.

3 Details via an Abstracted Example

Figures 2 and 3 provide representational summaries of the ‘whole picture’ for
a hypothetical domain model (figure 2) and a particular model implementation
which is being fitted to it (figure 3). We explain this detail in stages below, but
space restrictions mean we omit many subtleties.

3.1 Core System State

The domain model provides a set of core information entities (CIEs), which
capture state that conceptually acts as information many actors would tend to
want to consult for decision-making if it was available. (Models may or may
not model the accessibility of information that exists in reality.) This state is
supported by metadata and visualisations that reflect the statistics and trends
which are of interest (both to system actors and to the researcher running the
simulation).

If we consider the example of electrical power generation system topology
discussed earlier, there are obvious useful visualisations of the network and
metadata such as the total theoretical supply and demand capacities. Repre-
sentational flexibility is supported in various ways: representing the system as
a network of zones allows differing levels of abstraction (including a single zone
where network structure is not required); configuration options allow certain
levels of detail (e.g., voltage levels) to be omitted; and flexible technology defini-
tions for power plants allow models to define their own technology classification,
whilst still getting the benefits of shared visualisations and metadata.

In the domain model implementation, CIEs are a set of runnable-as-is objects.
A user model implementation will configure these as required, and may extend
them (perhaps with extra objects). Areas labelled A in figures 2 and 3 show this
schematically.

3.2 System Processes (Scheduling)

Generalisable processes in the real-world system are represented as workflows,
which allows the conceptual design and implementation to be closely related:



Social simulation comparison in arbitrary problem domains 9

Fig. 2. An example representational domain model, showing the conceptual elements
of the process. The terminology and lettered areas are explained in the main text. To
avoid clutter, some of the workflow tasks are not ‘expanded out’.



10 Rossiter, Noble & Bell

Fig. 3. An example representational model implementation, showing how one possible
existing model might be fitted to the domain model of figure 2. The terminology and
lettered areas are explained in the main text. The key extends that of figure 2.



Social simulation comparison in arbitrary problem domains 11

workflows can be designed conceptually in the same tool used to implement
them (in our case the YAWL [10] platform). Workflows provide a rich set of
scheduling patterns and, crucially, can conceptually represent the parallelism
that almost always exists in the real-world system.

Representational flexibility is achieved by allowing user models to merge
workflow tasks, extend existing ones, and control the ordering of task execution
(thus specifying how conceptual parallelism translates into sequential computa-
tion); there are also various related design heuristics. User models thus specify
a set of workflows derived from the domain model ones; see areas labelled B in
figures 2 and 3. Since merging tasks may mean that there is now no well-defined
sub-model to call, special mediating roles (similar to those in section 3.3) may
be required.

At the implementation level, the HAWSER framework [19] provides the
bridge from these to behavioural entities, with the latter using the MASON [13]
agent-based framework. This separation of concerns (behaviour and its orches-
tration) is a core software engineering concept [6], promoting reuse and layered
design.

3.3 Scheduled Behaviour

We classify the behaviour into a set of well-defined sub-models, with sets of
sub-model dependencies which define the main interactions and informa-
tional dependencies that occur in the real-world system.11 The detail within
these sub-models is unspecified. There are general restrictions on what sub-
models can represent, which help avoid some particular conceptual difficulties;
this just means that such things are part of the ‘full’ detail outside the scope
and/or resolution of the domain model. (We do not discuss this further here.)

As is generally required in causal-mechanism-based models, we define a con-
ceptual boundary between internal and external sub-models (e.g., Sterman [21,
§3]), though this can be ‘overridden’ during the fitting process. Internal ones
are generally more fine-grained, and are expected to provide most of the mod-
elled interaction.12 They are related to roles, which are taken up by individuals
or well-defined groups of such (e.g., firms). As in the real world, implementing
entities can take on multiple roles (and this provides some modelling flexibil-
ity). External sub-models have no associated roles. They may be relatable to
groups of individuals (e.g., an industry sector) or environmental processes (e.g.,
weather).

The domain model fit will result in an adjusted set of sub-models and depen-
dencies. Models may break down ‘external’ sub-models into much more detail,

11 The dependencies specify only what interactions of information and possible action
occur (i.e., that a dependency exists), not when and how these occur (i.e., not how
the dependency should play out in implementation terms). Dependencies also have
types, but we do not discuss that here.

12 This does not necessarily mean that they are the main drivers of system-level pat-
terns: that is a question of sensitivity analysis.



12 Rossiter, Noble & Bell

and these may interact extensively with ‘internal’ ones; thus, which behaviour is
endogeneous and which exogeneous is still up to the model. More importantly,
the fit may include new sub-models which are merges of others, and behaviour
originally in one domain sub-model may be split amongst new ones.

Workflow tasks normally call behavioural sub-models directly. However, there
are occasions when the temporal flow of actions is, by its nature, unspecifiable as
a meaningful generalisation. For example, consider modelling the trading of elec-
tricity in some time period. In the real world, buyers and sellers interact via var-
ious market mechanisms, depending on the country (e.g., centralised spot/pool
markets, government tenders, or decentralised bilateral contracts). We can gener-
ically model the roles and behaviours involved, but not the ‘control logic’ of what
would drive what in a computational model. Thus, we support artificial medi-
ating roles, which workflow tasks can call in such circumstances. It is then this
role’s responsibility to orchestrate the actions of a defined set of sub-models.13

Figures 2 and 3 show these ideas schematically (areas labelled C). The top-
left C area in figure 2 shows a mediating role.

A More Concrete Example. Figure 4 shows an example of some explicitly
named sub-models, roles and dependencies. The Net Consumer role represents
net consumers of electricity.14 Their main behaviour is to produce demand for
electricity (Electricity Demand sub-model), but this is also a role where the set
of instances of the role typically changes as consumers enter or leave the system;
the Instance Management sub-model is a convention to represent this.15

In this case, Instance Management includes things such as changes in numbers
of households (hence demographic factors and the dependency on social groups)
and industrial consumers (hence the dependencies on supplier price schemes,
connection criteria by operators, and non-electricity markets).

Figure 5 provides an illustrative example of a fit to the domain model con-
cepts in figure 4. Let us assume the existing model has a component calculating
total electricity demand for each new time step, where this is: the previous value,
plus a term representing relative gas prices, plus some fitted constant; all mul-
tiplied by a value representing the number of consumers via some population
projection data.

Firstly, we can still consider this as explicitly modelling a Net Consumer role,
just with only a single instance (for the whole system). Secondly, the structure
of the demand function cleanly separates out into a term for electricity demand
(Electricity Demand sub-model) and a multiplier for the number of consumers
(Instance Management sub-model). The latter uses only population projection

13 This idea has analogues with concepts in theory, such as Adam Smith’s ‘invisible
hand’.

14 They may have small amounts of generation, such as a household with photovoltaic
panels, but they are a consumer on balance.

15 This convention is appropriate here because the process governing changes in con-
sumer instances is largely independent from that governing electricity demand per
consumer. If it were not, there is an alternative convention.



Social simulation comparison in arbitrary problem domains 13

Fig. 4. Sub-model dependencies and role relationships for two sub-models of the Net
Consumer role (called as part of a workflow task representing the real-time operation
of the power system). The symbols used are as in figure 2. Sub-models without owning
roles are external ones. Only direct dependencies are shown.

Fig. 5. The fit of (a component of) an example model to the Net Consumer sub-models
shown in figure 4. The symbols used are as in figure 3.



14 Rossiter, Noble & Bell

figures, which thus relate only to household changes and do not separate out
household level decisions from the social groups those households are part of.
Therefore, we can take the model as making an assumption of no-influence (a
‘null assumption’) for the industrial-user-related dependencies, and we have to
merge Instance Management with Other Social Groups.

In terms of the Electricity Demand sub-model, the relative gas price term
relates to the External Markets dependency (the gas market). This models the
fuel price drivers of shifts from electricity to gas (or vice versa) in terms of both
domestic and industrial users. The remainder (fitted constant) is not separa-
ble into any other sub-models, it being a black-box numeric fit. This therefore
merges ‘unknowable’ assumptions from all other dependencies, but the Electric-
ity Demand sub-model still remains a well-defined thing in itself.16

Note how Other Social Groups is split; i.e., different aspects of behaviour
relating to it are included in separate merged sub-models.

The modelling process more formally defines the different types of fit which
are possible. As a very brief further example, imagine if this demand function was
just a linear function over time (with the angle and intercept fitted to historical
data). A single role instance still exists, but the actions of consumers are not
separable from the external changes which affect them, nor from changes in the
set of consumers. Thus, there is a single new ‘artificial’ sub-model which merges
both Net Consumer sub-models and all their dependencies.

4 Conclusions

We have outlined the rationale for the approach and the main design princi-
ples (via some examples). Outside of this paper, we have currently (a) defined
the process, and the required implementation features, in detail; (b) tested it in
conceptual fits to several published models; and (c) developed partial implemen-
tations of the software framework and some domain-model-conformant models.
This has currently focused on the electricity markets domain, but we are working
on applying it to a health and social care domain.

Future Work. There are still some features to build into the implementation,
which we hope to release as open source. Given the approach’s inherent abstrac-
tion and generality, there is also a clear need for future work to publish detailed,
practical examples which give demonstrable benefits in various areas: conceptual
comparison, especially when transdisciplinary; model reuse and alignment; and
engagement with policy-makers. With regards to the latter, our ultimate aim
is to help move towards model-centric, comparative debate (à la Lempert et al.
[12]), using scenario generators encapsulating theoretical plurality. The fine-level
detail of the process is also difficult to capture in a single paper, so we intend on

16 There is always some subjectivity in this fitting process. We assume here, for exam-
ple, that there are no other external-market-related factors which could be folded
into this fitted constant.



Social simulation comparison in arbitrary problem domains 15

releasing a ‘user-guide-style’ technical report which provides a definitive working
reference.

Our object-oriented domain model design does not seem particularly com-
mensurate with paradigms such as system dynamics, but we currently believe
that it is usable. At the conceptual level, this boils down to translating the ab-
stract system-level attributes (stocks) into the entities that they relate to, with
their flows relating to workflows. This will typically involve many merges, which
just reflects the general abstraction of system dynamics from individual real-
world entities. The implementation level is trickier, since the model is a set of
continuous coupled differential equations (albeit resolved numerically with an
implicit dependency graph), but we have some ideas on things we can do here
which we hope to try out soon.

Difficulties with the ‘Atheoretical’ Design Criteria. There are potential commu-
nication difficulties due to the slippery meaning of ‘social theory’. Our restric-
tions on what can go into a domain model (and how models are mapped to it)
obviously constitute a theoretical framework in one sense, and the things in a
particular domain model constitute some view on the (partial) structure of a
real-world system which one could label a social theory (despite our informally-
defined intention to include ‘as little social theory as possible’).

The bottom line is that the domain model tries to include elements that
it would be hard to argue as not existing and generalisable in the real-world,
whether one wishes to label this as a theory or not. Attempting to fit existing
models will show how much their conception differs from this partial base one.
If all models fitted end up with very large numbers of merges and new entities,
this might suggest that our domain model is lacking in some regard. Or it might
suggest that existing models are all based on very abstract theory as regards
the system’s structure (which may or may not be a bad thing). The process at
least forces us to make these judgements and compare with some more ‘common
sense’ view, which is a valuable scientific endeavour in itself (and promulgates
things such as shared vocabularies in the process).

References

1. van der Aalst, W., van Hee, K.: Workflow management models, methods, and
systems. MIT Press (2002), http://www.worldcat.org/isbn/9780262720465

2. Axelrod, R.: Advancing the art of simulation in the social sciences. In: Conte, R.,
Hegselmann, R., Terna, P. (eds.) Simulating Social Phenomena, Lecture Notes in
Economics and Mathematical Systems, vol. 456, pp. 21–40. Springer (1997)

3. Axtell, R., Axelrod, R., Epstein, J., Cohen, M.: Aligning simulation models: A
case study and results. Computational & Mathematical Organization Theory 1(2),
123–141 (1996)

4. Bankes, S.: Improving the utility and the rigor of agent-based modeling through en-
sembles of models. In: Proceedings of Agent 2003: Challenges in Social Simulation.
pp. 155–168 (Oct 2003)

5. Chappin, E.J.L., Dijkema, G.P.J.: Agent-based modelling of energy infrastructure
transitions. International Journal of Critical Infrastructures 6(2), 106–130 (2010)

http://www.worldcat.org/isbn/9780262720465


16 Rossiter, Noble & Bell

6. DeRemer, F., Kron, H.: Programming-in-the large versus programming-in-the-
small. In: Proceedings of the international conference on Reliable software. pp.
114–121 (1975)

7. Edmonds, B., Hales, D.: Replication, replication and replication: Some hard lessons
from model alignment. Journal of Artificial Societies & Social Simulation (JASSS)
6(4), 11 (2003), http://jasss.soc.surrey.ac.uk/6/4/11.html

8. Evans, E.: Domain-Driven Design: tackling complexity in the heart of software.
Addison-Wesley (2004)

9. Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R.: Patterns of
Enterprise Application Architecture. Addison-Wesley (2003)

10. ter Hofstede, A., van der Aalst, W., Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its Support Environment. Springer (2010)

11. Lempert, R.: A new decision sciences for complex systems. Proceedings of the
National Academy of Sciences (PNAS) 99, 7309–7313 (2002)

12. Lempert, R., Popper, S., Bankes, S.: Shaping the next one hundred years: new
methods for quantitative, long-term policy analysis. Tech. Rep. MR-1626, RAND
Corporation (2003)

13. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

14. Moss, S.: Relevance, realism and rigour: A third way for social and economic re-
search. Tech. Rep. 99, Centre for Policy Modelling (CfPM), Manchester Metropoli-
tan University (1999)

15. Moss, S.: Alternative approaches to the empirical validation of agent-based models.
Journal of Artificial Societies & Social Simulation 11(1), 5 (2008), http://jasss.
soc.surrey.ac.uk/11/1/5.html

16. Parker, D.C., Brown, D.G., Polhill, J.G., Deadman, P.J., Manson, S.M.: Illustrating
a new “conceptual design pattern” for agent-based models of land use via five case
studies—the MR POTATOHEAD framework., chap. 2, pp. 23–51. INSISOC, Spain
(2008)

17. Polhill, J.G., Parker, D., Brown, D., Grimm, V.: Using the ODD protocol for
describing three agent-based social simulation models of land-use change. Journal
of Artificial Societies & Social Simulation 11(2), 3 (2008), http://jasss.soc.
surrey.ac.uk/11/2/3.html

18. Richiardi, M., Leombruni, R., Saam, N., Sonnessa, M.: A common protocol for
agent-based social simulation. Journal of Artificial Societies & Social Simulation
9(1), 15 (2006), http://jasss.soc.surrey.ac.uk/9/1/15.html

19. Rossiter, S., Bell, K.R.W.: A workflow hybrid as a multi-model, multi-paradigm
simulation framework. In: Janssens, G.K., Ramaekers, K., Caris, A. (eds.) ESM
2010: The 2010 European Simulation and Modelling Conference. pp. 37–41. Eurosis
(2010)

20. Rouchier, J., Cioffi-Revilla, C., Polhill, J., Takadama, K.: Progress in model-to-
model analysis. Journal of Artificial Societies & Social Simulation 11(2), 8 (2008),
http://jasss.soc.surrey.ac.uk/11/2/8.html

21. Sterman, J.: Business Dynamics: Systems Thinking and Modeling for a Complex
World. McGraw-Hill (2000)

22. Sun, J., Tesfatsion, L.: Dynamic testing of wholesale power market designs: An
open-source agent-based framework. Computational Economics 30(3), 291–327
(Oct 2007)

23. Zeigler, B.P., Gon Kim, T., Praehofer, H.: Theory of modeling and simulation
: integrating discrete event and continuous complex dynamic systems. Academic
Press, 2nd edn. (2000)

http://jasss.soc.surrey.ac.uk/6/4/11.html
http://jasss.soc.surrey.ac.uk/11/1/5.html
http://jasss.soc.surrey.ac.uk/11/1/5.html
http://jasss.soc.surrey.ac.uk/11/2/3.html
http://jasss.soc.surrey.ac.uk/11/2/3.html
http://jasss.soc.surrey.ac.uk/9/1/15.html
http://jasss.soc.surrey.ac.uk/11/2/8.html

	Social simulation comparison in arbitrary problem domains: first steps towards a more principled approach
	Motivation
	Existing Approaches

	High-Level Approach
	Domain Model Structure
	Analysing Models Using The Domain Model
	Model Implementations
	Possible Usage Modes for the Process

	Details via an Abstracted Example
	Core System State
	System Processes (Scheduling)
	Scheduled Behaviour
	A More Concrete Example.


	Conclusions


