
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Extending Event-B with Discrete Timing Properties

by

Mohammad Reza Sarshogh

Thesis for the degree of Doctor of Philosophy

May 2013

mailto:mrs2g09@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

EXTENDING EVENT-B WITH DISCRETE TIMING PROPERTIES

by Mohammad Reza Sarshogh

Event-B is a formal language for systems modelling, based on set theory and predicate

logic. It has the advantage of mechanized proof, and it is possible to model a system in

several levels of abstraction by using refinement. Discrete timing properties are impor-

tant in many critical systems. However, modelling of timing properties is not directly

supported in Event-B. In this work, we identify three main categories of discrete timing

properties for trigger-response patterns, deadline, delay and expiry.

We introduce language constructs for each of these timing properties that augment the

Event-B language. We describe how these constructs have been given a semantics in

terms of the standard Event-B constructs. To ease the process of using timing prop-

erties in a refinement-based development, we introduce patterns for refining the timing

constructs that allow timing properties on abstract models to be replaced by timing

properties on refined models. The language constructs and refinement patterns are

illustrated through some generic examples.

We have developed a tool to support our approach. Our tool is a plug-in to the Rodin

tool-set for Event-B and automates the translation of timing properties to Event-B as

well as the generation of gluing invariants, required to verify the consistency of timing

properties refinement.

In the end, we demonstrate the practicality of our approach, by going through the

modelling and verifying process of two real-time case studies. The main focus will be

the usefulness of the timing refinement patterns in a step-wise modelling and verification

process of a real-time system.

mailto:mrs2g09@ecs.soton.ac.uk

Contents

Acknowledgements xv

Nomenclature xix

1 Introduction 1

1.1 The Contribution . 2

1.2 Thesis Roadmap . 3

2 Background on Formal Reasoning 5

2.1 Dijkstra’s Guarded Command-language 5

2.2 Refinement Calculus . 7

2.3 Temporal Logic . 8

2.4 Transition Systems . 9

2.4.1 Internal State . 10

2.4.2 Refinement . 10

2.5 Action Systems . 11

2.5.1 Action Systems Refinement . 12

2.5.1.1 Stepwise Refinement of Action Systems 13

2.5.1.2 Trace Refinement of Action Systems 14

2.6 Communicating Sequential Processes (CSP) 15

2.6.1 CSP Algebra . 15

2.7 Linking Events and State . 16

2.8 Event-B . 17

2.8.1 Event-B Core Syntax . 18

2.8.2 Event-B Semantics . 19

2.8.3 Refinement in Event-B . 19

2.8.3.1 Horizontal Refinement (Superposition Refinement) 20

2.8.3.2 Vertical Refinement (Data Refinement) 21

2.8.4 Event-B Proof Method . 21

2.8.4.1 Consistency of Machine 21

2.8.4.2 Refining a Machine . 22

2.8.4.3 Adding New Events in a Refinement 23

2.8.4.4 Deadlock Freedom . 24

2.8.5 Decomposition . 25

2.8.5.1 Shared-Variable Decomposition 25

2.8.5.2 Shared-Event Decomposition 27

2.9 Rodin Tool-set . 28

v

vi CONTENTS

2.10 Event Refinement Diagrams . 29

3 Timed Verification and Reasoning 33

3.1 Real-time Systems . 33

3.2 Model Checking . 35

3.3 Timed Automata . 36

3.3.1 UPPAAL . 38

3.3.2 KRONOS . 41

3.3.3 Real-time Promela . 41

3.4 An Old-Fashioned Recipe for Real-time by Lamport 42

3.5 Timed CSP . 43

3.6 Timed Communicating Object-Z (TCOZ) 44

3.7 Circus . 44

3.8 Continuous Action Systems . 45

3.9 Real-time VDM . 45

3.10 VDM++ Combined by Co-simulation . 46

3.11 Modelling Timing in the B-method . 46

3.12 Real-time Event-B . 47

4 Modelling Timing Properties In Event-B 51

4.1 Time Properties Categories . 51

4.2 Semantics of Timing Properties In Event-B 53

4.2.1 Delay Semantics . 53

4.2.2 Expiry Semantics . 56

4.2.3 Deadline Semantics . 57

4.3 Some Patterns to Refine Deadline, Delay and Expiry 61

4.3.1 Refining a Deadline to Sequential Sub-Deadlines 62

4.3.2 Refining an Expiry to a Sequence of an Expiry and a Deadline . . 65

4.3.3 Refining a Response Event of a Deadline by Several Alternative
Responses . 67

4.3.4 Refining An Abstract Deadline to Alternative Sub-deadlines 69

4.3.5 Asymmetric Alternatives . 71

4.3.5.1 Disjunctive Deadlines vs. Deadline and Expiry Combi-
nation . 74

4.4 Alternative Ways of Encoding a Sequential Control Flow in Event-B . . . 75

4.5 Achievements . 78

5 Decomposition of Timed Event-B Models 83

5.1 Timed Event-B Decomposition Process . 84

5.2 The Challenge of Decomposing Timed Control Loops 86

6 Enableness of Response Events and the Tick Tock Event 91

6.1 Effects of Isolated Timing Properties . 91

6.2 Timing Properties Combination to Disable an Event indefinitely 95

6.3 Time Progress Enableness . 96

6.3.1 A Deadline and an Expiry on a Response Event 96

6.3.2 A Delay and a Deadline on a Response Event 97

6.3.3 Deadline Deadlock Freedom . 98

CONTENTS vii

6.4 Strengthening Timing Properties . 99

7 Modelling a Gear Controller 101

7.1 Gear Controller Specification . 101

7.1.1 System Requirements . 104

7.1.1.1 Performance . 104

7.1.1.2 Functionality . 104

7.1.1.3 Error Detection . 105

7.1.1.4 Environment Assumptions 105

7.1.2 Refinement Strategy . 108

7.2 Event-B Model of The Gear Controller . 109

7.2.1 The Most Abstract Machine and Context 109

7.2.2 The Second Level of Abstraction 112

7.2.3 The Third Level of Abstraction . 113

7.2.4 The Fourth Level of Abstraction 114

7.2.5 The Fifth Level of Abstraction . 116

7.2.6 The Sixth Level of Abstraction . 118

7.2.7 The Seventh Level of Abstraction 120

7.2.8 The Eighth Level of Abstraction 122

7.2.9 The Ninth Level of Abstraction . 125

7.2.10 The Tenth Level of Abstraction . 128

7.2.11 The last Refinement and Decomposition Process 132

7.3 Proof Statistics . 134

7.4 UPPAAL Model of Gear Controller . 136

8 Modelling Parametrized Timing Properties In Event-B 139

8.1 Parametrized Timing Properties Syntax 139

8.2 Semantics of Parametrized Timing Properties 142

8.2.1 Semantics of Parametrized Delay and Expiry 142

8.2.2 Semantics of Parametrized Deadline 144

8.3 Some Patterns to Refine Parametrized Timing Properties 145

8.3.1 Refining a Parametrized Deadline to Sequential Parametrized Sub-
Deadlines . 145

8.3.2 Refining An Abstract Deadline to An Iterative Sub-Deadline . . . 148

8.4 Decomposition of Parametrized Timing Properties 151

8.5 Achievements . 151

9 Message Passing Case-study 153

9.1 Requirements of the Message Passing Case-study 154

9.1.1 Environment Assumptions . 154

9.1.2 Functional . 154

9.1.3 Performance . 155

9.1.4 Error Detection . 156

9.2 Refinement Strategy . 157

9.3 Event-B Model of the Message Passing System 158

9.3.1 The Most Abstract Machine and Context 158

9.3.2 The Second Level of Abstraction 161

viii CONTENTS

9.3.2.1 Refining an Event by Single Occurrence of an Iterative
Event . 161

9.3.3 The Third Level of Abstraction . 163

9.3.4 The Forth Level of Abstraction . 164

9.3.5 The Fifth Level of Abstraction . 165

9.3.6 The Sixth and Seventh Levels of Abstraction 168

9.3.7 The Eighth Levels of Abstraction 170

9.3.8 The Ninth Levels of Abstraction and Decomposition 172

9.4 Achivements . 172

10 Timing Properties Plug-in 175

10.1 Timing Plug-in’s Features . 175

10.1.1 Adding a New Timing Property . 176

10.1.2 Advantages & Disadvantages of the Timing Plug-in 179

11 Conclusions 183

11.1 Related Work . 184

11.2 Future Work . 185

A Event-B Models 187

A.1 Event-B Model of the Gear Controller Case-study (Manual) 187

A.2 Event-B Model of the Gear Controller Case-study (Plug-in) 187

A.3 Event-B Model of the Gear Controller Case-study (Improved Plug-in) . . 187

A.4 Event-B Model of the Message Passing Case-study (Manual) 188

References 189

List of Figures

2.1 Shared variable decomposition of an Event-B Machine 26

2.2 Decomposing machine A into A1 and A2 27

2.3 The default user interfaces of the Rodin tool-set. 28

2.4 Refinement diagram example . 30

2.5 Application of XOR in a refinement diagram. 31

2.6 Expressing a loop in a refinement diagram. 31

3.1 An example of a timed automaton . 37

3.2 A cardiac pacemaker HTA model. In this model off is a basic location
and On is the superstate. 40

3.3 Events SendM, Receive and ReceiveLate according to Bryans approach. . 48

4.1 In these diagrams, t is the timing property’s duration, A is the trigger
event and B is its response event, and the horizontal axis is the time line. 52

4.2 Semantics of a delay property in Event-B. 54

4.3 Semantics of an expiry property in Event-B. 56

4.4 Semantics of a deadline property in Event-B. 57

4.5 Refining an abstract deadline to two sub-deadlines is presented by the
refinement diagram on the left. DL(x) presents a deadline property with
a period of x in the timing diagrams. 62

4.6 Events A and B plus their deadline property in the abstract Machine
in 4.6(a), followed by event A , events B1 and B2 in the concrete machine
plus their concrete timing properties in 4.6(b). As mentioned before, the
Tick Tock event is part of the semantics, but we have presented it to
clarify the refinement. 63

4.7 The proof of the property that the concrete deadlines’ guards on the
Tick Tock event, preserve the abstract deadline’s guard. 65

4.8 Refining an abstract expiry by a sequence of an expiry and a deadline is
presented by a refinement diagram on the left. EX(x) presents an expiry
property with a period of x in the timing diagrams. 65

4.9 Events A and B plus their expiry property in the abstract Machine
in 4.9(a), followed by event A , events B1 and B2 in the concrete ma-
chine plus their concrete timing properties in 4.9(b). 66

4.10 Refining an event by two alternative events. XOR in the refinement dia-
gram represents the fact that either of B1’s occurrence, or B2’s occurrence
in the refinement, is equivalent to the occurrence of event B in the abstract. 68

4.11 Refining a trigger-response pattern and its timing properties to two al-
ternative responses plus the concrete timing property. 69

ix

x LIST OF FIGURES

4.12 How a single trigger-response sequence can be refined to several trigger-
response cases. XOR in the refinement diagram, represents the fact that
the occurrence of either of those sequences, in the concrete level, is equiv-
alent to the occurrence of the abstract sequence. 69

4.13 Refining a trigger-response pattern and its timing property, by two al-
ternative trigger-response cases, and their corresponding concrete timing
properties. 70

4.14 Refining each alternative response, by a sequence of two sub-steps. In
this diagram DL(t3) constraints events B3 and B5, DL(t4) constraints
event B6, DL(t2) constraints event B4, and E(t1) constraints event B3. . 72

4.15 Events B3, B4, B5 and B6 of the most concrete model, and their timing
properties. Plus the Tick Tock event in the most concrete and its abstract
machines. 73

4.16 Two existing approaches to model a sequential order has been shown for
an order between generic events A and B 76

4.17 Effects of adding a skip event in a refinement, to a sequential order,
modelled by using an occurrence history set. 77

4.18 Refining a timing properties to two sequential sub-timing properties,
where timing properties have been enforced based on Cansell’s [44] ap-
proach. 79

4.19 Semantic of a delay property in Event-B, where the occurrence time vari-
ables have been used to detect events’ occurrences. 81

5.1 Decomposing a machine with three events into two machines. 85

5.2 Sequence of four events in a loop, modelled by resetting the occurrence
flags at the end of each iteration by occurrence of the FINAL event. . . . 87

5.3 Semantic of a delay property in Event-B. 88

5.4 Breaking the FINAL event into two sub-resetting events. 88

6.1 Indirect triggering state diagram. 92

6.2 Deadline enableness diagram. 92

6.3 Delay enableness diagram. 93

6.4 Expiry enableness diagram. 93

6.5 How to model alternative trigger events in Event-B (event traces diagram). 94

6.6 A response event which is constrained by timing properties based on dif-
ferent trigger events. 94

6.7 Combination of a deadline and a delay. 97

6.8 Trigger event A and its response event B, plus their timing properties . . 99

7.1 Interactions Between Gear Controller Components 103

7.2 The most abstract machine . 109

7.3 Representing the relation of the concrete and abstract events, based on
the first refinement. 112

7.4 Adding the clutch use, in order to change the engaged gear to another. . . 113

7.5 Refinement Diagram: Introducing the required steps to change an en-
gaged gear to another gear. 115

7.6 Refinement diagram of changing from/to neutral gear. 115

7.7 Refinement diagram of setting the requested gear, when the gear was
neutral before the request. 119

LIST OF FIGURES xi

7.8 Refinement diagram of releasing the currently engaged gear, when the
neutral gear is requested. 121

7.9 Adding required steps to release the currently engaged gear, and set the
request gear. 123

7.10 Refining the open clutch process. 125

7.11 Partial refinement diagram of the tenth refinement. 129

7.12 UPPAAL Model of Clutch . 136

8.1 An example of a generic parametrized trigger-response pattern. 140

8.2 Semantics of a parametrized delay property in Event-B. 143

8.3 Semantics of parametrized deadline in Event-B. 144

8.4 Refining an abstract paramtrized deadline to two parametrized sub-deadlines,
is presented by the refinement diagram on the left. DL(x) presents a dead-
line property with a period of x in the timing diagrams 146

8.5 Events A and B plus their deadline property in the abstract Machine
in 8.5(a), followed by event A , events B1 and B2 in the concrete machine
plus their concrete timing properties in 8.5(b). 147

8.6 Refining a deadline to an iterative deadline. 149

8.7 Events A and B plus their deadline property in the abstract machine
presented in 8.7(a), followed by events A , B1, and B2, in the concrete
machine, accompanied by their concrete timing properties in 8.7(b). . . . 150

9.1 Control Flow Diagram of Sending a Packet 156

9.2 Refining an abstract event by the last step of a sequence of concrete sub-
steps. 161

9.3 How an abstract event A has been refined by the first occurrence of an
iterative concrete event B. 162

9.4 The refinement diagram of the first refinement. 163

9.5 Refinement diagram of the forth refinement 165

9.6 The fifth level of abstraction. 166

9.7 The refinement diagram of the fifth and sixth refinements 168

10.1 Refining a timing property of type X, to a sequence of two concrete sub-
timing properties of type Y and Z. 177

10.2 Refining a trigger-response pattern, by two alternative trigger-responses . 178

List of Tables

7.1 The constants, used as the timing properties’ durations of the gear con-
troller case-study. 108

7.2 This table shows the share events between the channel and the engine. . . 133

7.3 This table shows the share events between the channel and the clutch. . . 133

7.4 This table shows the share events between the channel and the gearbox. . 133

7.5 This table shows the share events between the controller and the channel. 133

7.6 This table shows the share events between all the components. 134

7.7 Number of generated proof obligations for each machine and how they
have been proved . 134

9.1 Number of generated proof obligations for each machine and how they
were proved . 173

xiii

Acknowledgements

It is with immense gratitude that I acknowledge the support and help of my supervisor,

Professor Michael Butler. Apart from supporting me throughout my PhD with his

kindness and knowledge, our meetings were always enlightening the problem domain for

me, and proving me with the sufficient guidance to investigate the best possible solution.

This research would not have been possible without the financial support of DEPLOY

project. Besides, in my daily work I have been blessed with a friendly and cheerful group

of fellow colleges in ESS research group.

In the end I cannot find words to express my gratitude to my parents and brother for

their continues support and encouragement.

xv

To my mother and father for their continuous support.

xvii

Nomenclature

GCL The abbreviation of Guarded Command-language

CSP The abbreviation of Communicating Sequential Processes

IDE The abbreviation of Integrated Development Environment

MUI The abbreviation of Proof Modelling User Interface

PUI The abbreviation of Proof Proving User Interface

JSD The abbreviation of Jackson System Development

LTL The abbreviation of Linear-time Logic

CTL The abbreviation of Computation Tree Logic

TCTL The abbreviation of Timed Computation Tree Logic

HTA The abbreviation of Hierarchical Timed Automata

V DM The abbreviation of Vienna Development Method

PO The abbreviation of Proof Obligation

xix

Chapter 1

Introduction

Computers are rapidly becoming an important part of everyday life. Nowadays many

infrastructures of our civilization partially or completely depend on information systems

and we let computers manage and control most of our safety critical systems. A failure

of these systems can end up tragically for their users and owners. As a result, reliability

and accuracy of these systems are very important.

A software failure is a condition that causes a system to fail in performing its required

functionalities [79]. Most software failures are caused by humans, during the design and

implementation phases, and a few are caused by compilers. Mistakes are inevitable in

humans’ activities. It is possible to reduce human errors by changing the work envi-

ronment and increasing the concentration of the user, but it is impossible to eliminate

it.

Testing is defined as activities which aim at evaluating an attribute or capability of a

program or a system to determine whether it meets its requirements [36]. Currently,

in IT industry, the common approach is the problem testing which does not guarantee

a faultless system, since in a real-size system, it is usually not possible to test all the

possible scenarios. In a software system, a solution validation, is only concerned about

validating some software properties (e.g., null pointers, overflow, etc.) of a constructed

software [13]. Many experts in this area such as Abrial [13] and Jackson [78] believe in

the problem verification as a way of developing faultless systems. Based on the problem

verification approach, the goal is to verify the software as a part of a system. So, the

environment in which the software is preforming is as important as the software itself,

in the verification process.

In the problem verification, modelling of a system becomes an important development

phase in order to validate the overall purpose of that system [14]. Event-B [13, 6] is

a step-wise formal modelling language which uses set theory as the modelling notation

1

2 Chapter 1 Introduction

for system level modelling and analysis. The idea is to develop a method which com-

bines modelling and validation, uses refinement to represent systems in different level of

abstraction, and verifies their consistency by mathematical proof.

Most of safety-critical systems are real-time. In real-time systems it is not enough to just

have a correct reaction to a user’s requests or the environment changes, but the correct

reaction, should happen in a specific period of time. Hence, the specifications of real-

time systems, include many time related requirements. Time plays an important role

in distributed embedded systems. Embedded systems are computing systems, intimately

coupled to their target environments, which they monitor and control [111].

A large portion of a real-time system development costs is devoted to ensure the product

is fit-for-purpose [81]. Time is one of the things, which makes this process more complex

for real-time systems than others. The time-based scheduling of real-time systems, adds

extra details to the ordering of events’ occurrences. So extra properties are required to

be verified about a real-time system’s behaviour.

1.1 The Contribution

Event-B lacks explicit support for expressing and verifying timing properties. In a time-

critical system, timing properties specify timing boundaries on the system reactions and

responses.

Modelling time-critical systems, using Event-B has been investigated in several studies.

Our contribution is the categorization of the discrete timing properties in three groups:

deadline, delay and expiry, augmenting Event-B with some language constructs for them,

introducing some patterns for refining timing properties and proving the consistency

of their refinements. Plus, investigating the decomposition process of timed Event-B

models. Also, a plug-in has been developed to support the approach (adding timing

properties and refining them) in the Rodin tool-set.

Defining a semantics based on the standard Event-B constructs for timing properties,

helped us to benefit from the existing features of Event-B such as refinement and de-

composition, with no change or adaptation required.

Event-B refinement allows atomic events at the abstract level to be broken down into

sub-steps at the concrete level. The goal of our refinement patterns is to provide an easy

way to model the timing properties on the abstract atomic events, and then correctly

refine them, with more elaborate timing properties on the concrete events.

In any system analysis, there always exists a level of granularity which will not be bro-

ken to a finer one. In a time-critical system, there are assumptions about the maximum

Chapter 1 Introduction 3

duration required to establish each step at the concrete level such as individual assign-

ments or signal transmissions. Based on those assumptions it is possible to analyse the

required time for a composite process to respond to a request or react to a change in that

system. In our approach there is a top-bottom analysis. So, we start from the abstract

behaviours of a system and model their properties and timing assumptions, then by each

refinement, we introduce the sub-steps of the abstract behaviours and replace their tim-

ing assumptions with the timing assumptions of the sub-steps. As a result, by verifying

the consistency of the refinement, we prove the consistency of the timing assumptions

in different levels of abstraction. Hence, when the modeller verifies the consistency of

the last refinement, he/she has verified the satisfaction of the abstract timing properties

based on the timing assumptions of the most concrete behaviours.

In order to evaluate our approaches, two real-time case studies have been selected to be

modelled in Event-B, and the result is presented in this report.

1.2 Thesis Roadmap

In the following chapter, the concepts required for following the discussion of modelling

real-time systems in Event-B, will be explained.

In Chapter 3, some of the existing works on modelling real-time systems and reasoning

about them, will be introduced briefly.

In Chapter 4, the discrete timing properties we want to extend Event-B with will be

introduced and their semantics will be presented and proved. Besides, their refinement

will be explained in forms of some refinement patterns.

In Chapter 5 decomposition of timed Event-B models will be explained.

In Chapter 6, the effect of adding timing properties on events’ enableness will be dis-

cussed.

In Chapter 7 the automatic gear controller case study will be explained, before introduc-

ing parametrized timing properties in Chapter 8. In Chapter 8 the syntax and semantics

of parametrized timing properties will be discussed and some of their refinement patterns

will be explained.

In Chapter 9 a case study will be discussed which aims to evaluate the practicality of

parametrized timing properties.

In Chapter 10, the plug-in developed for the Rodin tool-set, to support discrete timing

properties extension will be discussed. Finally, in Chapter 11 our conclusions will be

presented.

Chapter 2

Background on Formal Reasoning

Refinement, decomposition and the consistency verification of an Event-B model, play

an important role in this work. Event-B inherited these features from its predecessor

formal languages. As a result, in this chapter we will go through some of these languages

which their modelling and verification approaches affected the existing modelling and

verification features of Event-B. Beside, Event-B and Refinement Diagrams will be dis-

cussed to provide the required background to follow the discussion of extending Event-B

by timing properties.

Section 2.1 looks at Dijkstra’s Guarded Command-language. Section 2.2 looks at the re-

finement calculus which has been developed for Dijkstra’s Guarded Command-language

to transform it to a runnable code. Section 2.3 talks about temporal logic which plays

an important role in specifying reactive systems’ properties. Section 2.4 discusses tran-

sition systems, which are the state-based modelling approaches. Section 2.5 looks at

action systems, which have had a great influence on Event-B method. Section 2.6

talks about communicating sequential processes method, which is an event-based mod-

elling approach and its parallel composition has inspired share-event decomposition in

Event-B. Section 2.7 looks at some approaches to bridge between event and state based

modelling approaches, which is one of the main Event-B targets. Section 2.8 looks at

Event-B method and some of its key features. Section 2.9 talks about existing tool sup-

port for Event-B method. Finally, Section 2.10 talks about refinement diagram notation,

which is helpful in constructing atomicity decomposition refinements in Event-B.

2.1 Dijkstra’s Guarded Command-language

As mentioned before, action systems have some major influences on modelling ap-

proaches of Event-B. But since action systems are partially based on Dijkstra’s guarded

command-language (GCL) [55], before we talk about them, it is useful to briefly intro-

duce GCL and its associated weakest-precondition calculus.

5

6 Chapter 2 Background on Formal Reasoning

Programs in GCL have three main characteristics, they act on variables, they are se-

quential, and they are intended to terminate. The behaviour of a program is specified

by describing a condition of the initial values of the program variables, as precondition,

and a condition of their final values, as postcondition.

Dijkstra has introduced weakest precondition semantics to deal with the termination

of programs’ models. Based on weakest precondition semantics for a statement S and

a postcondition post, wp(S, post) represents all those initial states from which S is

guaranteed to terminate in a state which satisfies the post condition [43]. As a result,

statement S satisfies a specification (pre, post) if:

pre⇒ wp(S, post).

Based on the notion of total correctness in GCL, a statement S is totally correct with

respect to precondition p, and postcondition q, if it guarantees to terminate in a state

that satisfies q, whenever the initial state satisfies p. Besides, Dijkstra presented a

calculus for verifying the satisfaction of a programme’s specifications in GCL which can

be found in [55].

The syntax of GCL can be expressed as follow based on [59]:

〈guarded command〉 ::= 〈guard〉 → 〈guarded list〉
〈guard〉 ::= 〈boolean expression〉

〈guard list〉 ::= 〈statement〉 {; 〈statement〉}
〈guarded command set〉 ::= 〈guarded command〉{[]〈guarded command〉}
〈alternative construct〉 ::= if〈guarded command set〉fi
〈repetitive construct〉 ::= do〈guarded command set〉od

〈statement〉 ::= if〈alternative construct〉 | 〈repetitive construct〉
| “other statements′′

Where the braces {..} should be read as followed by zero or more instances of the

enclosed, “other statements” can be assignment statements and procedure calls, and the

semicolons specify the order of statements’ execution in a guarded list. When a guarded

list is selected for execution, its statements will be executed successively from left to

right [59]. If a guarded command set, consists of more than one statement, statements

will be executed in a non-deterministic order. This arbitrarily order of execution has

been presented by the separator [] in the syntax.

Action systems have inherited the semicolons and loop constructs from GCL, but guards

have replaced the pre-conditions which will be explained in more details in Section 2.5.

As explained, emphasis in GCL is the termination of programs’ models. In timed Event-

B, some of the timing properties, such as deadline, act as the local termination condi-

tions. This feature will be discussed in Chapter 4.

Chapter 2 Background on Formal Reasoning 7

2.2 Refinement Calculus

Since the refinement calculus has affected the refinement approach in action systems, a

short introduction to it will be presented in this section based on the Back’s book [31].

Refinement calculus is a logical framework for reasoning about program correctness

introduced by Back and Wright in [29, 24, 92]. It focuses on two main questions:whether

a program is correct based on a given specification, and how it can be improved, or

refined, while preserving its correctness.

Refinement calculus has been originated from stepwise refinement method for program

construction by Dijkstra [53] and Wirth [112], the transformational approach to pro-

gramming [66, 39], and the early works of Hoare on program correctness and data

refinement [71, 72], in which data refinement transforms a program of one data type

to another [91]. The purpose of the refinement calculus is to provide a solid logical

framework for all of these methods, based on Dijkstra’s weakest pre-condition approach

to total correctness of programs [54].

Consider the components of a system, where each of them can change the system state in

different ways. What regulates the behaviour of these components and their cooperation

is called a contract. So a contract can specify the order of actions that a component

has to carry out. A program usually consists of a collection of interacting components.

When we program a specific component, we assume that other components are controlled

by other agents. A specification of a program component is a contract in which some

constraints on that component’s behaviour have been declared, without constraining the

subcontractor or the implementer on how the actual behaviour of the component may

be realized.

In order to define correctness, assume a contract statement S, a pre-condition p, and a

post-condition q, then S is correct with respect to p and q, denoted by p {| S |} q if for

every σ that satisfies p, then σ {| S |} q. Since program statements are special kinds

of contract statements, this definition of correctness can also be applied for program

statements.

Based on the definition of program statement correctness, p {| S |} q expresses that for

any initial state in p, the agent can choose any execution of S that either satisfies q, or

leads to the violation of some of its assumptions.

The main application of refinement calculus is to prove the correctness preservation of

the stepwise refinement of a program that satisfies a given specification. In stepwise

refinement, we start from a high-level specification of a program requirements. This

specification is then replaced by program statements which implement what has been

described by it, but contains some sub-specifications(not implemented) parts. This

process is then repeated for those sub-specification, and it will continue until all the

8 Chapter 2 Background on Formal Reasoning

specifications have been implemented by program statements, and an executable pro-

gram has been produced. Refining a program is done by applying transformation, which

changes the program in a way that preserve its correctness.

The refinement relation between contract statements is defined as follows:

S v S′ ∧ p {| S |} q ⇒ p {| S′ |} q (2.1)

and this is the case for any choice of p and q. As mentioned before, in stepwise refine-

ment, we start with an initial statement S0, which satisfies some correctness criteria.

Then it will be evolved by a sequence of successive refinements

S0 v S1 v · · · v Sn . (2.2)

Based on transitivity, we know S0 v Sn, and since the refinement preserves the

correctness, it is guaranteed that Sn will satisfy the correctness criteria of S0.

Refinement calculus is based on high-order logic and lattice theory, which provide the

means to prove the correctness of programs and calculate a program refinements in a

precise mathematically manner.

As it will be discussed in Section 2.8, we have correctness in Event-B which has been

defined based on discharging proof obligations, and the correctness preservation by the

concrete model has to be proved.

2.3 Temporal Logic

Originally, temporal logic was developed to be used in philosophy, and it has been

proposed to be used in computer science by Burstall [38] and Pnueli [99]. By using

temporal logic, it is possible to model dynamic behaviours in a simple fashion [93]. The

main goal of using temporal logic in computer science is to appropriately formalizing

the semantics of reactive systems [99].

Reactive systems [1] are computer systems that continually react to their environments

at the speed in which their environments change. Some of their main features are,

existence of concurrency, having strict timing requirements, and the importance of their

reliability [2]. These systems have an ongoing interaction with their environments and

their role is to maintain this interaction and to perform a desired computational role.

Because of this ongoing interaction, a language is required to describe the desirable

behaviour of a reactive system, without referencing to its details of implementation [90].

Temporal logic defines predicates over infinite sequence of states, so it can be satisfied by

some sequences and can be violated by some others. For example, consider a system with

Chapter 2 Background on Formal Reasoning 9

two processes P1 and P2, where there is a mutually exclusion between them on a shared

resource. Three examples of temporal properties for this system are as follows [90]:

• For all state of the system, it is never the case that P1 and P2 use the shared

resource in a same time,

• Whenever P1 wishes to use the shared resource, it will eventually do so,

• If there is a sequence where in position j > 0, P2 is waiting to have access to

shared resource, there is a position s > j in that sequence where P2 is using the

shared variable (Another way of expressing the previous property for P2).

As shown in the above examples, the expressed properties refer to all the possible exe-

cution sequences or some of them. So it is possible to specify the access policy for the

shared resource between P1 and P2 independent of their detailed behaviours.

2.4 Transition Systems

Transition systems [100, 82] are typically used to model state-based reactive systems [43].

A transition system T may be defined in terms of a tuple (S, I,R) where S is a set of

possible states, I is the subset of S and contains the initial states, and R is a set of

transition relations. T starts in one of the specified initial states in I such as s0. Then

a transition relation will be selected from R such as r where s0 ∈ dom(r) and causes T

to go to another state s1, where (s0, s1) ∈ r. This process of selecting and occurrence

of transition relations continues until T reaches a terminating state. Terminating states

do not exist in any of the transition relations’ domains.

Consider a state-trace st of a transition system T = (S, I,R) as follows:

st = s0 → s1 → · · ·

Where s0 ∈ I, and for each transition, there is a ri ∈ R (i ≥ 0) such that (si, si +1) ∈ ri.
A state-trace such as st represents a possible behaviour of T . A transition system can

be specified by expressing its properties. A property is a set of state-traces. A transition

system T satisfies a property P , if all the state-traces of T exist in P . Properties can

be categorized in two groups, liveness and safety properties. Safety properties specify

that something bad will never happen, and liveness properties specify that something

desirable will eventually happen. These properties can be specified using temporal logic

instead of state-traces, as explained in Section 2.3.

10 Chapter 2 Background on Formal Reasoning

2.4.1 Internal State

One of the challenges to model a reactive system is its complexity. A possible approach

to deal with it, is abstraction. By hiding some of the details and specifying the system

based on its high-level properties. This can be done in transition systems by hiding some

parts of the state by using Abadi & Lamport’s internal and external state notion [11].

Based on this approach each element of the state space is a pair of the form (e, i) where

e is the external component and i is the internal component. As a result a state-trace

will have the following form:

(e0, i0)→ (e1, i1)→ · · ·

In this way, a system specification, should describe the externally visible components

of that system. However it is convenient to have the description of its unobservable

internal components’ behaviour. By having internal components, transition may be

allowed in which just the internal state will be changed. Since for a transition system T ,

only the external behaviour is of interest, tre(T) is assumed to strips away the internal

components of the state-trace. As a result a state-trace in tre(T) will look as follows:

e0 → e1 → · · · . (2.3)

By hiding internal components in a state-trace, some stuttering will appear, because

of transitions between internal states. But finite stuttering in external state is not

considered significant. Besides two external state-trace are equivalent if they are distin-

guishable only by finite number of stuttering [43].

2.4.2 Refinement

Property P ′ refines property P if P ′ ⊆ P . However, if properties are describe in temporal

logic then the refinement can be proved by temporal proof rules such as those introduced

by Manna and Pnueli in [89].

Proving the satisfaction of a property by a transition system is a form of refinement

too. By separating properties into safety and liveness, it will be possible to prove safety

properties by using invariance arguments, and liveness properties by well-foundedness

arguments [17].

A transition system T ′ refines a transition system T if tre(T
′) ⊆ tre(T). As a result, the

external states of T ′ and T will be the same but their internal ones can be different by

assuming the finite amount of stuttering.

Refinement mappings of transition systems are defined on more general components

than those already explained. Other than (S, I,R) which have been presented before,

Chapter 2 Background on Formal Reasoning 11

an extra component L is required too, which is a liveness property. So, the full state-

traces of a transition system T = (S, I,R, L) are defined as tr(S, I,R)∩L [43]. Function

f from S′ to S which preserves the external components, is a refinement mapping from

T ′ to T if it satisfies the following conditions:

1. f(I ′) ⊆ I

2. (s0, s1) ∈ R′ ⇒ (f(s0), f(s1)) ∈ R ∨ f(s0) = f(s1) (A transition in T ′ either

corresponds to a transition in T , or it just causes a stutter)

3. f(tr(T ′)) ⊆ L.

Conditions 1 and 2 ensure satisfaction of the safety properties of T by T ′, which can be

proved by reasoning about states and individual transitions. Condition 3 ensures that

the liveness properties of T are satisfied by T ′. Proving condition 3 is not as easy as

conditions 1 and 2 because it involves state-traces.

2.5 Action Systems

Action systems are transition systems in which the state space may be represented

by more than one variable, and the initialisation and transitions are represented by

statements in Dijkstra’s guarded command-language [43]. Since this thesis is about

modelling approaches for Event-B, we will just talk about Back’s action system [25]

which Event-B has been influenced by.

In Back’s action systems, an action (transition) is a guarded-command as follows:

g → com,

where g is a condition on state variables and com is a program statement. An ac-

tion is considered enabled if the state variables satisfy its guard. An action system

starts by initialization and continues by selecting an enabled action and executing it.

Actions are atomic and if several actions are enabled, one of them will be selected none-

deterministically. Termination of an action system happens when it gets to a state where

no action is enabled. Hence, based on Back’s formalism, an action system is explicitly

specified with an initialisation and a set of guarded-commands (actions).

An action system is a statement of the following form [32]

A :: |[var x· p; do A od]| : z (2.4)

Where x and z are the tuples of local and global variables, p is their initialisation

condition, and A is an action (can be a compound one). Since the action is inside a

12 Chapter 2 Background on Formal Reasoning

loop, it is executed repeatedly. A is an atomic statement, so there will be no interruption

in each of its iterations.

As explained the main difference of action systems and GCL, is that the preconditions

have not been adopted by action systems, but we still have semicolons to specify the order

of statements’ execution. As it will explained in Section 2.8, there will be no semicolon

in Event-B, and the order can be modelled by state variables. In this way, it will be

possible to have invariants on the order of events’ occurrences. By this introduction to

the action systems, their refinement will be discussed in the following.

2.5.1 Action Systems Refinement

In order to show that one action system refines another in Back’s formalism, the tech-

nique of data refinement for sequential programs is used [22, 24]. In data refinement, the

aim is to prove that an abstract program P (A) based on a data type A, is implemented

correctly by a concrete program P (C), where operations Aj from A are replaced by

operations Cj , which are based on a more concrete data type C [52].

Similar to what has been explained in Section 2.4.1, the state variables of action systems

are categorized into internal and external sets. Then if an action system T ′ refines

another action system T , the internal state variables of T are regarded as the abstract

variables, and the internal variables of T ′ as the concrete variables.

Based on Back’s formalism, if Rep is a relation between the actions in T ′ = (I ′, A′) and

T = (I, A), then T ′ refines T under Rep, if [43]:

1. I is data refined by I ′ under Rep,

2. A is data refined by A′ under Rep,

3. Rep ∧ gd(A) ⇒ gd(A′).

Where I and I ′ are the initial states, and A and A′ represents the sets of actions in T and

T ′. Conditions 1 and 2 ensure that the concrete system preserve the safety properties

of the abstract one. Data refinement is the transformation of a data type to another.

Condition 3 ensures that T ′ terminates only if T terminates, which will guarantee the

preservation of the liveness properties of T by T ′.

Based on Back’s refinement rules, a one to one correspondence between the actions of a

concrete system and its abstract system’s actions is required, in order to guarantee the

preservation of the reactive behaviour of the abstract system by the concrete system’s

reactive behaviour. So it prevents any stuttering. But, this relation is more restrictive

than what is usually needed [24]. So Back introduced a more general refinement rule

which allows for stuttering actions in the concrete system. As a result, a concrete action

Chapter 2 Background on Formal Reasoning 13

system T ′ is allowed to have some auxiliary actions H ′, which cause stuttering steps, as

well as the main actions A′. In this way, T ′ = (I ′, A′, H ′) is a refinement of T = (I, A) if

besides holding conditions 1 and 2 as before, it also holds the following conditions [43]:

4. Rep ∧ gd(A)⇒ gd(A′) ∨ gd(H ′),

5. skip is data refined by H ′ under Rep,

6. Rep implies termination of do H ′ od.

Condition 4 ensure the termination of T ′ if and only if T terminates. Condition 5 ensures

that actions in H ′ just cause stuttering transitions, while condition 6 ensures that only

finite amount of stuttering can be caused by T ′.

Based on Condition 3 the guards in the concrete system are stronger than the abstract

ones, which can cause deadlock, because if an abstract guard holds, does not imply an

enabled statement in the concrete machine. This issue has been resolved by replacing

Condition 3 with Condition 4, where an enabled statement in the abstract system always

imply one or more enabled statements in the concrete system.

Auxiliary actions have inspired skip events in Event-B which will be discussed in details

in Section 2.8. As mentioned, auxiliary actions cause stuttering steps in the concrete

system. Similarly, skip events refines skip in their abstract Event-B machine, since the

transitions they present, are hidden in the abstraction.

2.5.1.1 Stepwise Refinement of Action Systems

In action systems, the behaviours of the parallel and distributed systems are modelled

in terms of atomic actions. Atomicity of actions means if an action is executing, it is

without interference of other actions in that system. Because of this characteristic, a

parallel execution and a nondeterministic sequential execution of an action system have

the same result[28]. As a result, it is possible to use the refinement calculus in order to

model a parallel action system.

Based on this approach several actions can occur in parallel, if there is no common

variables between them. There are two possible approaches to execute an action system

in parallel, concurrent and distributed. In the case of a concurrent action system, actions

are partitioned between processes. As a result, the communication and synchronization

between actions in different processes is based on shared variable model. Any variable

that is referenced by the actions of more than one process is shared, and the rest, which

are just referenced by the actions of one process, are the private variables of that process.

Hence, actions which do not share any variable can be executed in parallel, and those

share a common variable cannot be executed in a same time.

14 Chapter 2 Background on Formal Reasoning

On the other hand, based on the distributed model of parallel execution, the variables of

an action systems are partitioned among processes. Consequently, the communication

and synchronization between processes is modelled by the shared event model. An event

is a shared one, if it refers to variables of two or more processes. As a result, processes

can synchronize by executing a shared event and the communication between processes

is provided by updating a variable of a process based on the value of a variable in another

process, by the occurrence of a shared event. Similar to concurrent action system, events

without common variable can be executed in parallel and those with common variables

cannot happen in the same time.

Stepwise refinement of action systems has been introduced by Back in [28]. As mentioned

before, action systems are a special case of sequential statements. So, Back uses the

refinement calculus to develop the stepwise refinement of action system in order to

transform a semi-sequential algorithm or an algorithm’s specification into an action

system which can be executed in a parallel fashion.

To transform the centralized model to a distributed one, as mention before (concurrent

and parallel action systems), we need to replace single variable with several variables,

which keep the same information but allow a distributed access to it. By this technique,

the dependency between actions will be reduced and parallel execution becomes possible.

2.5.1.2 Trace Refinement of Action Systems

Trace refinement of action systems is introduced by Back in [22, 30]. The trace refinement

is based on state-traces, where the trace can be infinite.

An action system A defined as

z := z0 ; begin var x := x0 ; do B od end : z

Where x represents the local variables of A, which has been initialized to x0 and, z

represents the global variables and B is a guarded command. A computation of A is

either finite sequence

(x0, z0), (x1, z1), · · · , (xn, zn)

Where (xn, zn) satisfies the exit condition (a successful computation), or it is a finite

sequence

(x0, z0), (x1, z1), · · · , (xn, zn),⊥,

Where ⊥ indicate the occurrence of abortion (a failed computation), or it is a infinite

sequence

(x0, z0), (x1, z1), (x2, z2), · · ·

Chapter 2 Background on Formal Reasoning 15

Where no abortion occurs and no exit condition is satisfied all through the sequence. A

computation is a trace of an action system, if:

• All the local variables (x) are removed,

• All the finite stuttering, caused by the local variables, are removed,

• ⊥ is left if exists.

The set of traces of an action system A is represented by tr(A).

A trace specification of an action system A is a set of sequences of its global variables

values, without trailing element ⊥. System A satisfies a trace specification T if

tr(A) ⊆ T

An action system A′ is a trace refinement of an action system A if

∀ T · tr(A) ⊆ T ⇒ tr(A′) ⊆ T.

By this kind of refinement the set of different traces of an action system may decrease.

Based on what has been discussed in this section, refinement of reactive systems is a

special case of the data refinement with some extra conditions, explained in [22].

2.6 Communicating Sequential Processes (CSP)

Hoare’s Communicating Sequential Processes (CSP) [73] is an event-based theory that

aims to provide a notation for expressing and reasoning about systems of concurrent

processes [103]. Expressing includes designing, specifying and implementing. During

reasoning, the system description can be modified and developed in order to verify its

correctness. To do that, a formal notation is required, otherwise, it will be difficult to

describe a process, precisely enough, to modify it or to contrast it with other possible

designs [103].

In this approach, a process communicates with its environment, through atomic events [43].

As a result, its behaviour is defined in terms of the temporal ordering of events.

2.6.1 CSP Algebra

The set of events in which process P can engage is presented by αP and is called its

alphabet. Process P behaviour can be specified by P =̂ E, where E is an algebraic

16 Chapter 2 Background on Formal Reasoning

expression [43]. E is constructed from elements of αP , basic processes, and CSP op-

erations. More information about basic processes and CSP operations can be found

in [3].

In order to present the sequencing of events the prefix operator (→) is required. For

example, a→ P express a process that engages in event a and then behaves as process

P . Besides, internal and external choices of behaviour can be describe by the choice

operators ([],u). An external choice, describes a choice of behaviour towards the en-

vironment, whereas, an internal choice as P u Q represents the process which chooses

between behaving as P or Q, internally.

In a parallel composition of processes, composed processes can interact by synchronizing

over their common events and other events can occur independently. A common event

between two composed processes becomes a single event in their parallel composition

and it can be only offered if all the composed processes are ready to offer it. The parallel

composition of processes P and Q is expressed as P ‖ Q.

It is convenient to hide interaction between composed processes from their environment.

This feature is provided by the hiding operator in CSP (\). For example, if C ⊆ αP ,

then P\C is a process that behaves as P when all events in C are hidden. How hiding

may affect a process is illustrated as follows:

(a→ P)\C = a→ (P\C) ifa /∈ C
(c→ P)\C = P\C ifc ∈ C

Hiding an infinite behaviour causes a process to diverge.

2.7 Linking Events and State

A labelled transition-system is a transition system where a label is assigned to each

transition, and it may be considered as a CSP process if the labels of transitions are

treated as events [43]. Morgan [63] has defined failures-divergences semantics for labelled

action systems in terms of weakest-precondition formula.

In [63], Morgan explains that in a typical state-based formalism like action systems, a

state is shared between several actions. These actions are either enabled or disabled

based on that state. The occurrence of an action changes the state, which cause some

changes on the set of enabled events.

On the other hand, in a typical event-base framework like CSP, actions do not have any

structure, and do not manipulate any state. As a result, the behaviour of a process is

described in terms of sequences of actions.

Chapter 2 Background on Formal Reasoning 17

Combining sate-based and event-based approaches is useful in practice, because there

are some aspects of behaviour best described by state, and there are others, best to be

described in terms of explicit sequencing.

2.8 Event-B

Event-B [13, 6] is a formal modelling framework, based on set-theory as a modelling

notation, use of refinement in order to model a system in different levels of abstraction,

and first-order logic to verify consistency of different refinement levels [14]. The fun-

damental idea is to gradually introduce some simple features during a system design

process, that together will eventually result in a global precision of the design.

Usually, in the beginning of modelling, modeller information is incomplete about the

system. Event-B helps the modeller to improve his/her understanding in two ways,

reasoning about the model, and refinement.

Refinement helps the modeller to handle the complexity by introducing details of a

system, gradually, in a rate that ease the understanding. So the model is improved by

each refinement until it capture all the important properties.

Besides, reasoning makes it possible for a modeller to verify properties of a model, to

analyse a model, and it guides him/her to improve the model.

Our main intention of using formal modelling framework such as Event-B, is to develop

a correct system. So the first step is to carefully define the correctness criteria of a

system in the definitions and requirements document. After producing the definitions

and requirements document, there is no guarantee that specified properties of our system

can be satisfied. The next step is to model the system based on the definitions and

requirements document. Modelling is different than programming. In programming we

are constructing a formal set of instructions for the computer, to perform some tasks.

But our intention in modelling is to formalize a system in which there is a certain piece

of software (the final product), as well as its environment. The system (software and

its environment) has to be carefully modelled, to understand the exact assumptions in

which our final product is going to behave. Based on this methodology the modelling

will be the main task of system engineering, and programming will be its sub-task

(may be automated). The modelling process in Event-B, is not just about formalizing

our mental representation of the future system, but it also includes proving that the

described properties in the definitions and requirements document, are preserved by

that representation.

Since modelling timing properties in Event-B, is the focus of this thesis, we will present

an introduction to some of Event-B’s main features, in the following sections.

18 Chapter 2 Background on Formal Reasoning

2.8.1 Event-B Core Syntax

Abrial [14] defines Event-B in terms of a few simple concepts to model a discrete event

system, and proof obligations to verify properties of that system.

An Event-B model consist of contexts and machines. A context contains the static parts

of a model, and a machine contains the dynamic parts. A machine has a state which is

represented in terms of its variables. These variables correspond to simple mathematical

objects (set, binary relation, numbers, etc). Variables are constrained by invariants I(v),

where v represents the constrained variables. These constraints have to hold whenever

the values of the variables are changed.

Beside state, an Event-B machine has several events, which describe how its state may

evolve. An event has two parts; guards and actions. All the guards of an event should

hold when that event occurs. The action part of an event specifies how its occurrence

changes state variables. Because events are atomic, if the guards of several events hold

at the same time, at most one of them could occur at any given time. The order in

which those events will be executed is non-deterministic.

It is very important to express the dynamic parts of a system in two ways, in terms

of events (state transitions), and in terms of invariants which despite the state changes

over time, caused by events’ occurrences, the conditions they describe always remain

true. During writing the events’ actions, modellers do not necessary take into account

the invariants. Accordingly, there is no guarantee for the invariants to be preserved by

those events, and it has to be proved. So by just expressing a property through some

events, there will be no reason for that property to be preserved by them.

An event (evt) can be specified in one of the following three forms:

evt =̂ begin S(v) end,

evt =̂ when P(v) then S(v) end,

evt =̂ any t where P(t,v) then S(t,v) end,

Where P (· · ·) represents a predicate specifying the event’s guard. S(· · ·) represents the

action in which some variables are updated. Also, v denotes the machine variables and

the event’s parameters are represented by t which are local to the event.

A collection of assignments which modifies the state of a machine simultaneously, builds

the action section of an event. An assignment may have one of the following forms:

Assignment Before-After Predicate

x := E(t, v) − x′ = E(t, v)

x :∈ E(t, v) − x′ ∈ E(t, v)

x :| Q(t, v, x′) − Q(t, v, x′),

Chapter 2 Background on Formal Reasoning 19

Where E(· · ·) represents an expression, Q(· · ·) a predicate, and x some variables. The

before-after predicate shows the relation between variables before and after an assign-

ment. In the left hand side x′ represent the value of variable x after the assignment. In

the following section we will talk about Event-B semantics.

2.8.2 Event-B Semantics

The developers of Event-B claim that it is suitable for diverse modelling domains. Each

modelling domain has an appropriate semantics. In order to have semantics appropriate

for different models, Event-B semantics is provided implicitly by proof obligations as-

sociated with a model. Hallerstede in [67] explains how this approach can be beneficial

for modelling. Event-B semantics will be discussed briefly based on Hallerstede’s work

in the following.

In Event-B, reasoning is considered an essential part of modelling, since it is the necessity

to understand complex models, and the meaning of a model arises from what is proved

about it. Besides, a systematic support for reasoning is embedded into the Event-B

language. What needs to be proved is called a proof obligation of a model in Event-B,

which are essential to the method.

Proof obligations verify soundness of a model, in respect to some specified behavioural

semantics. They also guide the modeller, since when a proof obligation is failed to be

discharged, the proof attempts provide some hints about how the model can be improved.

It is not an exaggeration to consider this, as the major importance of proof obligations

during modelling process. As a result, modelling in Event-B is substantially based on

the interaction of editing a model, and analysing its proof obligations.

In each modelling domain, we want to prove the right facts about the model, and the

criterion for the right facts, is a particular behavioural semantics. In Event-B, the sound

proof obligations have been evolved to cover semantics of different modelling domains.

2.8.3 Refinement in Event-B

As explained in Abrial’s book [13], refinement means to learn and build the model

of a system gradually, since people in the stepwise modelling community believe that,

practically, it is not possible to build a single model representing once and for all, the

reality. In a real world system, the structural complexity (i.e. number and structure

of variables and the relationship between them) of its model, makes the modelling and

verification processes extremely challenging.

Besides, understanding a single model of the reality is much harder than learning it,

step by step, and part by part. In Event-B, the modeller constructs an ordered sequence

20 Chapter 2 Background on Formal Reasoning

of models, where each model refines its preceding model in the sequence. Two types of

refinement is imaginable for an Event-B model. These two types will be discussed in the

following.

2.8.3.1 Horizontal Refinement (Superposition Refinement)

As mentioned, usually it is not possible to model a large system in one shot, and it

needs to be done by a step-wise process. During this gradual improvement, the states

and the transitions of a system’s components are first created very abstractly and then

be enriched by introduction of concrete elements. This process is called horizontal

refinement [13].

By each refinement, we expose the model to more details, which increase the accuracy of

the model. In this process, some parts of the system which were invisible before, will be

revealed. In an Event-B model, the revealing of the hidden parts, causes the appearance

of new variables.

There is another extension corresponding to this, called temporal extension [13]. Tem-

poral extensions add some new transitions, in order to only modify the new variables.

This will appear in an Event-B model by the means of new events. Since the concrete

variables, these new events manipulate, do not exist in the previous abstract levels, the

new events refine some implicit events doing nothing (refining skip), in those abstract

levels. So, a refinement ends up as a discrete observation, which is performing in a

finer time granularity in comparison to its abstraction. These new events are similar to

auxiliary actions in Back’s formalism of action systems explained in section 2.5.1. Same

as auxiliary actions which cause finite amount of stuttering, the new events should not

diverge. As it will be explained in Section 2.8.4.3, we use variants to guarantee that new

events will not be enabled indefinitely.

During horizontal refinement, a modeller goes through the specification and requirements

of a system, and gradually chooses some elements from them to be formalized, until

there is no property and requirement left. One of the useful outcomes of this process

is the traceability of specification and requirements. Often, the modeller finds some

incompleteness or inconsistency in the system’s specification and requirements during

it.

By performing horizontal refinement, it is required to verify that a more concrete refine-

ment step does not invalidate what has been done in a more abstract ones. We will talk

about refinement consistency proofs in Section2.8.4.2.

Chapter 2 Background on Formal Reasoning 21

2.8.3.2 Vertical Refinement (Data Refinement)

There is another kind of refinement in which we transform some states and events of the

model in order to ease the implementation of the model (based on solution specification).

This type of refinement is called vertical refinement. Usually, vertical refinements are

preformed when all horizontal refinement steps have been performed, but a modeller

may decide to have intervals of horizontal and vertical refinements.

A typical example of vertical refinement is to replace finite sets by boolean arrays, which

is transformation of a model’s data type to another (data refinement).

Same as horizontal refinement, modellers need to perform refinement consistency proofs,

in order to verify that the implementation choices are coherent with their abstract view.

In this section the refinement feature in Even-B has been covered. In the following,

proof obligations in Event-B will be discussed.

2.8.4 Event-B Proof Method

Event-B is a formal modelling method, so usually the main concern of its users is to

learn about the model and to understand it, not be concerned with the technicality of

the proving process. To provide a formal modelling environment which satisfies this

need, the method has to have a systematic support for generating proof obligations.

Then it will be possible to mechanize the process. But this is not the only reason to

atomize generating proof obligations. Usually there are thousands of proof obligations

associated to a model, and any change in that model can affect many of them. As a

result, writing and maintaining them manually, is a time consuming and an error prone

process.

In the following, we will present some of the default proof obligations associated with

Event-B models, based on [14].

2.8.4.1 Consistency of Machine

An Event-B machine is consistent if all of its invariants are preserved by each event of

that machine. As a result, for each invariant, it must be proved that if the invariant

holds when an event is enabled (its guards hold), the actions of that event, change state

variables in such a way, that their new values will satisfy that invariant.

According to what has been explained, one of the standard proof obligation for each

event and each invariant is for checking machine consistency. Assume an event evt as

follows:

22 Chapter 2 Background on Formal Reasoning

evt

any x where

G(s, c, v, x)

then

v :| BA(s, c, v, x, v′)

end

Where s denotes the seen sets (in the context), c the seen constants, v the variables of

the machine, x represents the event’s parameters, and BA is the before-after predicate.

In the before-after predicate the primed values is equal to some expression depending

on the non-primed value. If A(s, c) represents the axioms and theorems seen by the

machine, and I(s, c, v) denotes the invariants and local theorems of it, the consistency

PO of an invariant inv(s, c, v) for event evt will be as follows:

Axioms and theorems

Invariants and theorems

Guards of the event

Before-after predicate of the event

`
Modified specific invariant

A(s, c)

I(s, c, v)

G(s, c, v, x)

BA(s, c, v, x, v′)

`
inv(s, c, v′)

The above proof sequence has two parts which are separated by ` sign. The left hand

side of the sequence is the hypotheses of the proof, and the left hand side is the goal of

the proof.

2.8.4.2 Refining a Machine

As explained in Section 2.8.3, a machine may be refined by enriching its states or tran-

sitions. The predicates which specify the relation between the concrete states and the

abstract ones are called gluing invariants.

An event of an abstract machine may be refined by one or more events in the concrete

machine. If an event A is refining an event B, then the guards of event A have to be

stronger than the guards of event B, and the conjoined action of both events A and B

should not violate the gluing invariant.

Some of the default proof obligations in Event-B are responsible to verify these two

characteristics of refinements. For a concrete event con and its abstract event abs as

follows:
abs =̂ when P(v) then v := E(v) end,

con =̂ when Q(w) then w := F(w) end,

Chapter 2 Background on Formal Reasoning 23

If I(v) represents the abstract invariant and J(v,w) is the gluing invariant, the following

proof obligation needs to be proved:

I(v) ∧ J(v, w) ∧Q(w)

` (2.5)

P (v) ∧ J(E(v), F (w)).

If the abstract and concrete events are parametrized as follows:

abs =̂ any t where P(t,v) then v := E(t,v) end,

con =̂ any u with t = W(u,w) where Q(u,w) then w := F(u,w) end,

then the statement to prove is the following:

I(v) ∧ J(v, w) ∧Q(u,w)

` (2.6)

P (W (u,w), v) ∧ J(E(W (u,w), v), F (u,w)).

In the above statement W(u,w) is called witness. Witnesses specify the relation between

abstract and concrete parameters. Witnesses are like local gluing invariants.

In this section, the refinement POs for deterministic assignments have been discussed.

Since we just use this type of assignment in this work, POs for non-deterministic assign-

ments have not been mentioned. For further read, the refinement POs for events with

non-deterministic assignments, have been discussed in [13].

2.8.4.3 Adding New Events in a Refinement

As mentioned before, in a horizontal refinement, some variables and transitions, which

represent the invisible parts of the system in the abstraction, will be revealed in the

concrete model. Such transitions have to be proved to refine a dummy event (skip),

which does nothing in the abstract machine.

Besides, it may be proved that it is not possible for the new events to take the control

forever. The reason is that the behaviour of refining machine should include the abstract

one. If the abstract events do not have the chance to have the control, then the concrete

machine does not have the abstract machine behaviour. In order to verify this, a variant

expression V (w) has to be provided which is decreased by each occurrence of a new event.

So, it will be guaranteed that the new events cannot occur infinitely. The associated

proof obligation is called convergence. For a new event evt

evt =̂ where R(w) then w := G(w) end,

24 Chapter 2 Background on Formal Reasoning

the required proof obligations to be proved, are as follows:

I(v) ∧ J(v, w) ` J(v,G(w)), (2.7)

I(v) ∧ J(v, w) ` V (w) ∈ N ∧ V (G(w)) < V (w). (2.8)

In the above statements, the variant expression is assumed to be a natural number for

simplicity, but it can be more complex. Proof obligation 2.7 checks whether the actions

of the new event do nothing in the abstract machine, by proving that its corresponding

gluing invariant will hold, after the new event’s occurrence. Proof obligation 2.8 checks

if the new event can only occur finite number of time, because by each occurrence of it

the corresponding variant expression will be reduced.

Variant expression can be express in terms of a finite set. In this case proof obligation 2.8

will be changed as follows:

I(v) ∧ J(v, w) ` V (G(w)) ⊂ V (w). (2.9)

So by each occurrence of the event, the set will shrinks, and since it is finite, the eventual

disabling of the new event is guaranteed.

2.8.4.4 Deadlock Freedom

By guarding the events of an Event-B model, it is possible to reach a state where none

of the guards are true (deadlock). Sometimes, this a desirable behaviour of the system,

but if one of the desired system properties is deadlock freedom, then it should be verified

that there will be an enabled event all through the life cycle of the system.

In DFL (2.10), for a model with constants c, set of axioms A(c), and set of invariants

I(c, v), we prove that the guard of at least one of the events, G1(c, v), · · · , Gm(c, v),

always hold.

A(c)

I(c, v)

`

G1(c, v) ∨ · · · ∨Gm(c, v) (2.10)

By proving DLF for a machine, we prove that there is some enabled event in every

reachable state of that model. This proof obligation will not be generated by the Rodin

tool-set automatically, since for a complex model it will be very complex and challenging

to be discharged.

Chapter 2 Background on Formal Reasoning 25

Some of the main standard proof obligations of Event-B proof method have been intro-

duced in this section. In the next section, the model decomposition in Event-B will be

discussed.

2.8.5 Decomposition

Modelling a large system, will end up with a complex model with unmanageable number

of states and transitions. Proofs in large models are more difficult to do. One of the

approaches to deal with this matter is decomposition. Abrial [16] and Butler [40] have

introduced two possible approaches to decompose an Event-B model of a system to its

various components. We will go through these two approaches in this section based on

their works.

As explained in Section 2.8.3, although a modeller starts with a simple model of a

system, containing a few numbers of state variables and events, but by each refinement,

new state variables and events will be added to the model. This process usually causes

the model to end up with so many events and state variables that performing refinement

becomes difficult to manage. Besides, as the model contains more details of the system

specification, refinements may not involve the entire system any more, and they are just

concern a few variables and events. In this situation, decomposition comes to help the

modeller, by breaking a large model into smaller pieces. These smaller pieces can be

refined independently which makes the process more scalable.

Decomposition has to be done in a way that independent pieces, can always be re-

composed easily. Besides, the re-composed model has to be guaranteed, to be a refine-

ment of the original model. As a result, decomposition is a kind of divide-and-conquer

approach, to solve complex problems.

An Event-B model can be decomposed either by event-based synchronization or state-

based synchronization.

2.8.5.1 Shared-Variable Decomposition

In this approach, the independent pieces of a decomposed model, interact based on a

shared state (represented by one or several state-variables). Imagine an Event-B machine

M with four events, e1, e2, e3 and e4, which we want to decompose to two machines,

M1 and M2. In order to do that, it is required to split the state-variables too. Suppose

v1, v2 and v3 are the state-variables of M , where v1 is involved in e1 and e2, v2 in e2

and e3, and v3 in e3 and e4.

In order to split the variables, v1 will goes to M1 and v3 goes to M2, but v2 is a shared

variable and cannot be split. The only way to decompose the model, is to replicate the

26 Chapter 2 Background on Formal Reasoning

shared variable. The replicated shared variables in each component, are referred to as

external variables.

Figure 2.1: Shared variable decomposition of an Event-B Machine

Since they can be refined independently, it is possible that the shared variable be data-

refined in different manners in each component, which will end up with components that

cannot be re-composed. To solve this problem, the shared variable should not be date

refined.

But this is not enough, since in a component that just reads the shared variable and does

not modify it, shared variable becomes a constant. To solve this problem, we need some

events, in each component, in which the use of shared variable before decomposition is

mimicked (simulate how shared variables are modified in other decomposed components).

These events are referred to as external events. In our example, suppose event e2 with

guard G2(v1, v2) and before-after predicates E2(v1, v1′, v2, v2′). Then event e2M2 in

machine M2, is an external event if the following predicate can be proved:

G2(v1, v2) ∧ E2(v1, v1′, v2, v2′)

⇒ (2.11)

G2M1(v2) ∧ E2M1(v2, v2′).

Since an external event in a component, mimics how the shared variables are modified

in other components, it cannot be refined.

Chapter 2 Background on Formal Reasoning 27

2.8.5.2 Shared-Event Decomposition

Butler [40] has introduced the shared-event decomposition of Event-B models, inspired

by the synchronous parallel composition of processes, which can be found in process

algebra such as CSP.

A parallel composition of machines M and N , is represented as M || N . Based on

shared-event decomposition, M and N should have no common state variable, and the

synchronization must happen through shared events. For machines M and N with

shared events ev1 and ev2

evt1 = any y where G(y,m) then S(y,m) end

evt2 = any z where H(z, n) then T (z, n) end,

Where m is the state variable of M and n is the state variable of N , to achieve the

synchronization effect between them, events evt1 and evt2 will be fused by using the

parallel operator for events,

evt1 || evt2 =̂ any y, z where

G(y,m) ∧ H(z, n)

then

S(y,m) || T (z, n)

end.

The parallel operator represents a simultaneous occurrence of the shared events’ actions

in the composed event, only when the guards of both events hold. As a result, the

synchronization between M and N happens when the composite system engages in

event evt1 || evt2, which can only happen if both machines are willing to engage in it.

To provide a better understanding of the shared-event decomposition, we will go through

a simple example. Consider an Event-B machine A with three events e1, e2 and e3, and

two state variables v1 and v2, as shown in Figure 2.2.

Figure 2.2: Decomposing machine A into A1 and A2

28 Chapter 2 Background on Formal Reasoning

Variable v1 is used in events e1 and e2, and variable v2 in events e2 and e3. So, if A

is decomposed in two sub-machines, A1 and A2, where v1 goes to A1, and v2 goes to

A2, then event e2 will be the share-event, since it uses both of those variables. After

decomposition of A into A1 and A2, e2 will appear in both of them, but its guards and

actions related to v1 will just appear in A1, and those related to v2 will appear in A2.

The biggest advantage of shared-event approach is that it is possible to refine shared-

events independently in each component. Besides, since there is no shared variable,

there is no restriction on data refinements either.

There is a tool support for both types of decomposition in the Rodin tool-set [107],

which has been used in this work.

So far, Event-B features related to this work, such as refinement, decomposition and

proof obligations, have been covered. The following section will talk about Rodin tool-

set.

2.9 Rodin Tool-set

Rodin [8] is an Eclipse-based [5] integrated development environment (IDE) for Event-B,

which supports refinement and mathematical proof. The Event-B language is developed

with extendibility in mind, and since Rodin is Eclipse-based, it can be easily extended

for different problem domains by Plug-in development.

(a) Modelling user interface perspective (b) Proving user interface perspective

Figure 2.3: The default user interfaces of the Rodin tool-set.

There are two interfaces available by default, in the Rodin tool-set, the modelling user

interface (MUI), and the proving user interface (PUI). These two interfaces have been

developed by extending the Eclipse perspectives, and they are strongly integrated, since

reasoning is considered as a part of modelling process in Event-B method. The screen

shots of both interfaces are shown in Figure 2.3.

Chapter 2 Background on Formal Reasoning 29

PUI can be used to do interactive proofs. Sometimes some of the POs of a model

cannot be discharged by the automatic prover, either because it is not possible to imply

the proof’s goal from its hypothesis, or a time-out occurrence. To discharge a PO,

the automatic prover applies a set of tactics to the the proof’s goal and the selected

hypothesis in order to prove that either there is a contradiction in hypothesis, or the

goal appears in the hypothesis, or the goal predicate has a true value. But if the model

is complex, all the relevant hypothesis may not be selected, or it is not possible to find a

correct combination of proof tactics, in order to discharge the PO in a reasonable period

of time. As a result, a time-out has been defined in which the proving process of a PO

will be aborted, to continue the proof for the next one. In this way the automatic prover

can go through all the POs in a reasonable period of time, and then the modeller can

investigate the undischarged POs, one by one.

The proof manager which is responsible to maintain proofs status and proofs associated

with the POs in the Rodin tool-set, builds a partial/complete proof for a PO by con-

structing proof trees [14]. Proof trees are recursive structures, consisting of proof tree

nodes. A proof node is built of three components, a sequent, a proof rule and a list of

child nodes. Proof rules [14] in their pure mathematical form are tools to perform formal

proof. A proof tree node is either pending if no proof rule has been applied to it, or

non-pending otherwise. An important property of the proof tree is that both the proof

manager and the modeller can calculate the proof dependency based on the hypotheses

and goals at each node of the proof tree.

The automatic prover creates an initial pending node for each PO, and then applies some

predefined automatic tactics in order to discharge it. Tactics [14] provide convenient

ways of constructing and manipulating proofs. A tactic’s input is a proof tree node, and

its output is a boolean which shows whether the tactic modified the node successfully

or not.

In the PUI, the modeller is able to add new hypotheses and apply tactics on the proof’s

goal and hypothesis. If a new hypothesis has been added by the modeller, its correctness

has to be proved. Besides, the modeller can manipulate a proof tree by removing nodes.

In this work, the Rodin tool-set has been extended in order to support modelling timing

properties based on our approaches. How it can help modeller to add timing properties

will be discussed in Chapter 10. In the next section we will look at refinement diagrams.

2.10 Event Refinement Diagrams

The Event Refinement Diagram notation has been introduced by Butler [40]. It has

been inspired by the structural diagrams of Jackson System Development (JSD) [78].

The aim of this notation is to help the modeller, in structuring of the refinements, in

30 Chapter 2 Background on Formal Reasoning

which, new events are introduced to decompose the atomicity of some abstract events,

into the smaller concrete sub-atomic steps (atomicity decomposition).

In this report there will be several refinement diagrams. It was a helpful tool, while

applying our approaches on different case studies. It helped us to handle the complexity

of the refinement relations between abstract and concrete machines.

During a stepwise modelling process of a system, the modeller needs to be concerned

about the consistency of the model. This involves a lot of invariants, variables and

guards. The refinement diagrams are helpful to trace the relation of the concrete and

the abstract events (the abstraction of each concrete event, and the relation of skip and

abstract events).

The refinement diagram has a tree form structure. An abstract event is positioned on

the top of a diagram as its root, and its concrete events or the new events, which model

the pre or post steps of the abstract event, are located at the bottom of the structure, as

the leaves of the tree. Besides, the concrete events are ordered from left to right based

on their occurrence order.

Figure 2.4: Refinement diagram example

As mentioned in Section 2.8.3, in a refinement, some new events may be introduced

which are invisible in the abstract machine. Although they are not refining any abstract

event, but they represent the required pre and post steps of some abstract events. Other

events extend or refine the abstract events.

In a refinement diagram, the relation of an abstract event with the newly introduced

events in the concrete machine, is distinguished from its relation with the events, refining

it. The first group must be connected to their corresponding abstract event by dash lines,

whereas, the refining events are associated to their abstract event by solid lines.

As shown in Figure 2.4, event ReleaseCurrentGear is a new event in the concrete

machine, which represents the required pre step of changing the engaged gear, in a

car. So it is connected by dashed line to the abstract event. On the other hand, event

Chapter 2 Background on Formal Reasoning 31

SetRequestedGear refines the abstract event, and it is connected by a solid line to its

abstract event.

Figure 2.5: Application of XOR in a refinement diagram.

The other construct used in this report is XOR. Refinement of an event by several

alternative events in the concrete machine can be presented by using XOR. In the

example of Figure 2.5, the refinement diagram represents a refinement where either

of occurrences of the concrete events (A1 and A2) will be equivalent to the abstract

event’s occurrence (A).

The final construct to be explained is the loop construct. By using it, it is possible

to present finite or infinite loops of events in a refinement diagram. In Figure 2.6 the

abstract event has been refined by an iterative concrete event. The star in the diagram

represents an infinite loop.

Figure 2.6: Expressing a loop in a refinement diagram.

In this section refinement diagram and its constructed, used in this report, have been

introduced and briefly explained.

In this chapter, the concepts required for following the discussion of modelling real-time

systems in Event-B, have been explained. The next chapter will provide a brief overview

of what real-time systems are, as well as existing works on modelling them and reasoning

about them.

Chapter 3

Timed Verification and Reasoning

Since the focus of this study is modelling and verifying of the timing properties of real-

time systems, in this chapter a range of real-time related works will be investigated.

In Section 3.1 some general information about real-time systems is given. Section 3.2

talks about model checking approach to verify real-time systems. Besides, some existing

model checking methods and tools will be discussed briefly. Section 3.3 talks about the

Timed Automata approach, used in model checking of real-time systems. Section 3.4,

briefly introduces Lamport approach to model the physical continuity of real-time sys-

tems, in terms of discrete events. Sections 3.5, 3.6, and 3.8 talk about the real-time

extensions of CSP and action systems. Section 3.9 introduces Real-time VDM, an state-

based modelling language for real-time systems, followed by Section 3.10, which talks

about combining VDM and Co-Simulation to model continuous processes. Section 3.11

talks about some works on modelling timing properties in classical B, which have influ-

enced our work. In the end, in Section 3.12 some of the existing works on modelling

timing properties in Event-B will be mentioned.

3.1 Real-time Systems

Before going through the discussion of Real-time Systems modelling and verification, it

is essential to have some definitions about time related concepts. These definitions have

been elicited from Kopetz book on real-time systems [81].

Assume the time flow as a direct time line, from past to future, based on Newtonian

model of time [9]. Then an instant is a cut of a time line. The present point in time, is

called now, which separates the past from the future. A duration is an interval on a time

line which is defined by a start event and a terminating event of the interval. A discrete

clock partitions the time line into granules of clock. Granules are sequence of equal

33

34 Chapter 3 Timed Verification and Reasoning

spaced durations, and the tick event of a clock is a periodic event, which determines the

granules of the clock.

A real-time system, changes as a function of time, where the correctness of a system

behaviour depends not only on its sequence of events, but also on when these events

occurred. In a distributed real-time system, different components interact through a

real-time communication network. As a result, what distinguish real-time systems, is

the precise emphasis on their temporal specifications.

Real-time systems have to react to their environments’ changes within the time intervals

forced by their environments. A deadline is a instant by when a result must be produced

in a real-time system. There are two kinds of deadline, if a result is useless, if its deadline

is passed, its deadline is classified as hard, otherwise it is soft. A system with at least one

hard deadline is called a hard real-time system or a safety-critical real-time system. As

a result, a hard real-time system has to guarantee a specific temporal behaviour under

all the specified states. On the other hand, a soft real-time system may miss a deadline,

one in a while. An example of soft real-time system is an airline reservation system. In

this system, if the system cannot keep up with the demands, the response time will be

extended and it will just cause the users to slow down. But in a hard real-time system

such as a pressure controller of a boiler, missing a deadline can cause an explosion.

There are others classification of real-time systems. We will briefly go through some

of them in the following. The first categorization is based on a system behaviour in a

failure state. A system failure is a condition that causes a system to fail in performing

its required functionalities, when it is required to perform it [35]. Many hard real-time

systems have some safe states, which can be reached in case of a system failure. If a real-

time system can identify and quickly reach such a safe state, then it will be classified as a

fail-safe real-time system. But, there are real-time systems which can not identify safe-

states. In the case of failure, these systems remain operational by providing a minimal

level of service. As a result, they are categorized as fail-operational. An example if

fail-safe real-time system is railway signalling system, in which if a failure is detected,

all the signals can be set to red an stop all the trains in order to bring the system to a

safe state. But the flight control system of an airplane must always remain operational

and provide a minimal level of service to avoid a crash.

The other categorization of real-time system is based on the stimuli of a real-time sys-

tem. Real-time systems are classified based on the type of the triggers of their internal

behaviour. So it is not about the external behaviour of a real-time system. An event

that causes the start of some actions in a system is called trigger. As a result, based

on the triggering mechanism for the start of communications and processing actions,

real-time systems can be classified into event-triggered or time-triggered systems. In an

event-triggered system, all the communications and processes are triggered by events’

occurrences other than the tick event. Whereas, in a time-triggered one, all activities

Chapter 3 Timed Verification and Reasoning 35

are initiated by the progression of real-time. An example of an event-triggered system,

is when a button such as call button of an elevator is implemented by an interrupt event

in the controller system. On the other hand, if the button is implemented by being

sensed periodically, then it will be a timed-triggered request, since a button push will

be recognized by the next iteration of the sensing event.

As mentioned, real-time systems may change as a function of time. In a model, based

on continuous time, the domain of this function is continuous. As a result, it is possible

to specify the state of the model for any given time (Real number). On the other hand,

it is possible to model a system based on discrete time, where the domain of the time’s

function, is provided by a finite iterative sampling of the time line. Our focus in this

thesis will be modelling and verifying discrete timing properties.

3.2 Model Checking

Model Checking [47] is a computational method for verifying systems’ properties, intro-

duced by Clarke and Emerson [48, 46] for automatic verification of the reactive systems,

modelled in terms of finite state-machines. Based on their method, system specifica-

tion is expressed in a propositional temporal logic and the system is expressed as a

state transition model. To verify a system, whether or not its model (M) satisfies its

specification (φ) must be computed (M |= φ) [76].

Temporal logic can be categorized in two groups based on its particular view of time,

Linear-time Logic (LTL) and Computation Tree Logic (CTL). LTL treats time as a set

of paths, where each path is a sequence of time instances, whereas CTL has a tree form

structure to present time, where the present is the root and future is branching out of

it [76].

To have a better understanding of temporal logic the syntax of CTL, and LTL will be

explained briefly. The minimal syntax of CTL [76] is as follows:

φ ::= ⊥ | > | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) | AXφ | EXφ | (3.1)

AFφ | EFφ | AGφ | EGφ | A[φ U φ] | E[φ U φ] (3.2)

Where p ranges over a set of atomic formulas, A means along all paths (inevitably),

E means along at least one path (possibly), X means next sate, F means some future

state, G means all future states (globally), and finally U means until.

Based on CTL, the examples of temporal properties in Section 2.3 can be expressed as

follows:

36 Chapter 3 Timed Verification and Reasoning

• For all state of the system, it is never the case that P1 and P2 use the shared

resource x in a same time,

AG ¬(P1ux ∧ P2ux)

• Whenever P1 wishes to use the shared resource, it will eventually do so,

AG (P1wx
→ AF(P1ux))

• If there is a sequence where in position j > 0, P2 is waiting to have access to

shared resource, there is a position s > j in that sequence where P2 is using the

shared variable (Another way of expressing the previous property for P2).

AG (P2wx
→ AF(P2ux))

Where Piwx
means process Pi wishes to use resource x, and Piux means process Pi is

using resource x.

The LTL formulas are built from predicates with the usual propositional connectives,

∨,∧,⇒,¬ plus two temporal operators, ◦ and U [109]. Operator ◦ is read as next, so

LTL formula ◦ϕ means ϕ is satisfied at the next time instant. On the other hand, the

operator U is read as until and φUϕ means that formula φ is satisfied until formula ϕ

is satisfied.

By using the until operator two applicable operators, ♦ (eventually) and � (always),

can be defined as follows:

♦ϕ = trueUϕ (3.3)

�ϕ = ¬♦¬ϕ (3.4)

�ϕ means that formula ϕ holds for all future times, whereas ♦ϕ means formula ϕ will

hold at some time in the future.

So far, temporal logic and its categorization based on its model of time have been

explained. In the following, one of the important formalisms in real-time model checking,

will be discussed.

3.3 Timed Automata

Timed automata [21] is a formalism for modelling real-time systems, which annotates

state-transition systems, with timing constraints, related to a finite set of clocks. In

timed automata, each state is related to clocks [18]. A timed automaton TA is a six-

tuple (Σ, S, S0, SF , X, 4) where [95]:

Chapter 3 Timed Verification and Reasoning 37

• Σ is a finite set of events,

• S is a finite set of states,

• S0 is a finite set of initial states where S0 ⊆ S,

• SF is a finite set of accepting states where SF ⊆ S,

• X is a finite set of clocks,

• 4 is a finite set of transitions where 4 ⊆ S × S ×
∑
× ΦX × 2X .

As shown above, in timed automata, each transition contains five parts where ΦX is the

timing constraints on that transition. For example transition T = (s, s′, a, φ,R) causes

a jump from state s to state s′, when the specified timing constraints φ on clocks R,

are met, and event a ∈
∑

occurs. After occurrence of this transition, the clocks in R

will be reset. In this example it can be seen how a real-time system could be modelled

by using timed automata formalism, where transitions may have timing constraints on

some declared clock variables.

Figure 3.1: An example of a timed automaton

To have a better understanding of the formalism, let us assume a transition of a timed

automaton A =̂ (Σ, S, S0, SF , X,4), presented in Figure 3.1. Based on what has been

explained so far, the presented transition can be formalized as follows:

T = (n,m, a, x ≥ 5 ∧ y > 3, {x, y})

Where T belongs to 4, n,m are members of S, x, y belong to X, and a is a member of

Σ.

In timed automata, a time sequence τ = τ1τ2 · · · is an infinite sequence of time values

τi ∈ R with τi > 0 where

• Monotonicity: ∀i·i ≥ 1⇒ τi < τi+1,

• Progress: ∀t·∃i·t ∈ R ∧ i ≥ 1 ∧ τi > t [21].

38 Chapter 3 Timed Verification and Reasoning

A timed word [21] over an alphabet
∑

, is a pair (σ, τ) where σ = σ1σ2 · · · is an infinite

word over
∑

and τ is a time sequence. Based on these definitions, a timed language [21]

over alphabet
∑

, will be a set of timed words over it.

By considering a timed word (σ, τ) as an input to an automata, each member of σ will

be interpreted as an event occurrence, and its corresponding component in τ will be its

occurrence time.

For a better understanding of timed automata, based on these definitions, an example

of a timing property, is given in the following. Assume the alphabet {a, b} where no b

may happen after time 5. This property can be modelled by defining a timed language

L1 such that:

L1 = {(σ, τ) | ∀ i·((τi > 5)⇒ (σi = a))} (3.5)

Based on (3.5), there is no timed word in L1 where b has occurred sometime after 5.

In the following, some of the popular real-time model checkers, which use timed au-

tomata, will be introduced briefly.

3.3.1 UPPAAL

UPPAAL [85, 34] is a product of a cooperation between University of Uppsala and

University of Aalborg. It has been developed to model, simulate and verify real-time

systems that can be modelled as a collection of processes, which have finite controlling

states, real-valued clocks. These processes communicate through channels or shared

variables.

This framework has three main features, required for verification of a real-time system.

The first one is a modelling environment based on a non-deterministic guarded-command

language, facilitated by real-valued clock variables and simple data types, where a real-

time system can be modelled as networks of timed automata, and data variables. Second

feature is a simulator to examine dynamic behaviour of a model in its early stage of

design by the user. Finally, UPPAAL has a model checker to validate the specification

of a system, in the model, by automatically checking invariants and bounded liveness

properties.

In order to model the timing properties of a system, state transitions can be guarded

based on the values of the clocks. Besides, a transition from a state, can be forced to

happen within a duration, by declaring a timing invariant on that state.

Chapter 3 Timed Verification and Reasoning 39

UPPAAL is able to check invariants and reachability properties by exploring the system

state-space. Its state explorer is designed to have efficient algorithms and data struc-

tures. One of the advantages of the UPPAAL model checker, is its ability to provide

diagnostic traces for invariants that have not been satisfied.

The properties specification language of UPPAAL, is a restricted subset of timed compu-

tation tree logic (TCTL) [20], which provides the required notation to express the safety,

the liveness, the deadlock, and the response properties of a system [69]. The following

temporal operators have been supported in UPPAAL specification language:

• E : exists a path,

• A : for all paths,

• [] : all states in a path,

• <> : some state in a path,

By using these operators the following queries can be declared in the UPPAAL’s simu-

lator to be checked:

• A[]p,A <> p,E <> p,E[]p, and p −→ q (followed by)

where p and q are local properties

A local property p can be declared as follows:

p ::= a.l | gd | gc | p and p | p or p | not p | p imply p | (p) (3.6)

Where a represents a process name, l represents an automaton location (state of a

process), gd represent a data guard, and gc represents a clock guard.

UPPAAL provides parallel composition, by modelling a system as a collection of pro-

cesses, and provides some synchronization mechanism for them. But, as explained be-

fore, modelling a large system as a single step process does not seems to be practical.

So, supporting hierarchical modelling structure is important for a useful method in real

world practises. Hierarchical timed automata (HTA) formalism has been introduced

by David and Moller [49] as a hierarchical real-time formalism, which enforces some

strong well-formedness constraints on UPPAAL syntax to guarantee the consistency of

the hierarchy.

40 Chapter 3 Timed Verification and Reasoning

Figure 3.2: A cardiac pacemaker HTA model. In this model off is a basic

location and On is the superstate.

Hierarchical timed automata are hierarchical state machines where basic units of control

are called locations, which are either basic states or superstates. The relation between

a superstate and its sub-states can be a XOR where if a super state is active one and

only one of its sub-states is active, or it can be an AND relation where activation of a

super states is equivalent to activation of all of its sub-states. There is no tool support

for HTA, but some approaches have been introduced in [49] to transform a HTA to a

flat UPPAAL model, but this process needs to be done manually.

A hierarchical timed automaton [49] is a tuple 〈S, S0, δ, σ, V, C,Ch, T 〉 where

• S is a finite set of locations,

• S0 ⊂ S is a set of initial locations,

• δ : S → 2S maps abstract locations to their concrete locations,

• σ : S → {AND,XOR,BASIC,ENTRY,EXIT,HISTORY } is a type function

on locations,

• V,C,Ch are sets of variables, clocks, and channels.

• T is the set of transitions.

Chapter 3 Timed Verification and Reasoning 41

As shown δ and σ have been added to provide the means of constructing hierarchical

structures. Since hierarchical timed automaton are not the focus of this work we will not

go into the details of locations’ types. An example of a hierarchical timed automaton

has been presented in Figure 3.2, in order to give a better understanding of how states

can be evolved in this formalism. The example has been elicited from [49].

3.3.2 KRONOS

KRONOS [117] is a tool for formal model checking of real-time systems based on timed

automata and temporal logic. Similar to UPPAAL it has an integrated verification

engine with its modelling environment, and embodies a shared clock, which timing con-

straints of a model are based on its value (e.g., execution times, deadlines, propagation

delay).

A real-time system may be modelled in KRONOS, as a composition of timed automata

executing in parallel. To model inter-process communications, its transitions are labelled

by sets of identifiers. Those identifiers are interpreted as synchronization channels.

The specification framework of KRONOS, let us to define the correctness criteria of a

system in two different ways. It can be declared as formulas of the timed computation

tree Logic (TCTL) [20], which is a type of timed temporal logic [19, 68]. This is a logical

approach and to verify the satisfaction of those formulas, KRONOS applies some model

checking algorithm. The other approach is to declare the properties of a system in terms

of timed automata, which is a behavioural approach.

3.3.3 Real-time Promela

Real-time Promela (Process Meta Language) [110] is an extension of the Promela lan-

guage [75, 102] to support timing information and clocks. Promela is a specification

language for interactive concurrent systems, consists of a finite number of components.

These components act independently and communicate through shared variables or mes-

sage channels. Message channels may be defined synchronous or asynchronous.

A Promela model consists of type declarations, channel declarations, variable declara-

tions, and process declaration (including the initialization process). Each processes is

defined based on a type, defined by a protype, which is similar to a class in an object-

oriented language. All the processes are executed concurrently. A process can be created

at any time, within any process. The body of a process consists of a sequence of atomic

statements. At any given point, a process may have several enabled executable state-

ments, which will be scheduled non-deterministically to be executed.

42 Chapter 3 Timed Verification and Reasoning

Two types of properties can be specified by Promela, safety and liveness properties.

Liveness properties are specified by using LTL formulas, and safety properties are defines

in terms of invariants.

SPIN (Simple Promela Interpreter) [74] is a tool-set for analysing the consistency of

concurrent systems, which are described in Promela specification language. The safety

properties in SPIN are checked by trying to find a trace leading to a violation of the

properties. If none has been found the properties have been satisfied by the system

specification. On the other hand, a liveness property is checked by looking for an infinite

loop which does not satisfy the property. If none has been found, then the liveness

property is satisfied.

Tool support is provided for real-time Promela by extending the SPIN tool-set. In the

extended SPIN, in addition to what can be expressed in standard Promela, it is possible

to constrain a statement, based on the possible values of a clock, or the relative values

of two clocks. But, by adding time, the size of the state space is significantly increased

in most of the cases.

In this section, some of the real-time model checkers, based on timed automata have

been introduced, and whether they support some of the features we are interested in,

such as refinement and decomposition have been discussed.

3.4 An Old-Fashioned Recipe for Real-time by Lamport

An Old-Fashioned Recipe for Real-time [12] has been introduced by Lamport to model

real-time systems by using the traditional methods of specifying and reasoning about

concurrent systems. In his approach, the temporal logic of actions (TLA) [83] is used

to express the untimed version of a real-time system, joined by its timing properties,

expressed in terms of parametrized predicates.

In TLA, temporal logic and the logic of actions have been combined, in order to provide

a formal framework for specifying and reasoning about concurrent systems. In TLA,

systems and their properties are represented in the same logic. To express formulas in

TLA, other than mathematical operators (such as ∧), three new operators have been

introduced: ′ (prime), � (read always), ♦ (read eventually), and the hidden operator

Chapter 3 Timed Verification and Reasoning 43

(used to exclude some variables from a property). TLA syntax is as follows:

〈formula〉 =̂ 〈predicate〉 | �[〈action〉]〈state function〉 | ¬〈formula〉

| 〈formula〉 ∧ 〈formula〉 | �〈formula〉

〈action〉 =̂ boolean-valued expression containing constant symbols,

variables, and primed variables

〈predicate〉 =̂ 〈action〉 with no primed variables | Enabled〈action〉

〈state function〉 =̂ nonboolean expression containing constant symbols

and variables

An atomic operation in a concurrent program is expressed in terms of action. An action

is an expression consisting of variables, primed variables, and constant symbols, where

unprimed variables represent the old state and the primed ones refer to the new state.

One of the main feature of TLA is its support for fairness requirements. Lamport has

introduced two types of fairness, strong and weak

strong fariness : �((♦ executed) ∨ (♦ impossible)) (3.7)

weak fariness : �((♦ executed) ∨ (♦� impossible)) (3.8)

Based on strong fairness, an operation must be executed if it is often enough possible

to do so, where often enough means infinitely often. On the other hand, weak fairness

asserts that an operation must be executed if it remains possible to do so, for a long

enough time, where long enough means until the operation is executed.

Lamport’s approach is based on the idea, that the physical continuity of real-time sys-

tems can be modelled in terms of discrete events, in a same way that we model continuous

processes such as changes in the real-pressure or the real-temperature by using discrete

actions and ordinary variables. So, for example, if there is no system change between

time x and time x + 10, we can pretend that time has progressed, 10 time-units in a

single event.

3.5 Timed CSP

Timed CSP [96, 51] has been introduced by Reed and Roscoe [101] as a real-time ex-

tension of the CSP. In the initial version, the only change was adding WAIT t for any

time t, to the primitives of CSP language.

Then, Schneider [105] and Davies [50] developed a proof systems for Timed CSP and

added some new features to it such as time-outs and interrupts. Besides, Jackson [77]

44 Chapter 3 Timed Verification and Reasoning

has developed an approach for model checking timed CSP, by restricting the language

to a finite-state version, and providing a temporal logic for it.

Refinement and parallel composition features are available in timed CSP and the FDR

tool can be used for model checking some versions of finite-state timed CSP [97].

3.6 Timed Communicating Object-Z (TCOZ)

TCOZ [88, 4] is an integral formalism for complex systems. It has been developed by

integrating the Z language [57] and Communicating Sequential Processes (CSP) [73].

Object-Z is an extension of Z language in order to facilitate formal specification, in an

object oriented style. The Z notation [113] is based upon set theory and first-order

predicate calculus. As mentioned in Section 2.6, in CSP a process is described by its

possible interactions with its environment [98]. In TCOZ the Timed CSP has been used

which is an extension of CSP process algebra notation for real-time systems [88].

Each of these modelling approaches has some advantages and disadvantages. The idea

behind this combination, is that these two methods will complete each other’s incom-

pleteness. Object-Z has strong data and state modelling facilities, which have been

gained by extending Z by the object oriented structuring techniques [56], but it has

a single threaded semantic where operations are atomic. Whereas, timed CSP has a

strong process control modelling capability, and its multi threads and synchronization

primitives have been extended by timing primitives [56], but in compare to Z, it has not

been sufficiently suited to modelling complex data structures, required for representing

the states of a complex system.

A model in TCOZ has the same structure as an Object-Z model, which consists of a

sequence of types and constants definitions in Z. But each operation should be defined

in terms of a CSP process, which describes how that operation changes the state of that

system.

Same as CSP (Section 2.6.1), each process in TCOZ can engage in a set of events. The

CSP view of an operation in TCOZ, describes all the sequences of events, which change

a system state. As a result, an update in a system state can have timing primitives.

Since TCOZ mostly preserves the syntax and semantics of each notation, it benefits from

their methods and the tool supports, such as refinement and verification techniques.

3.7 Circus

Circus [114, 94] is a unified programming language containing both Z (model-based)

and CSP (behavioural) constructs, specification statements and guarded commands.

Chapter 3 Timed Verification and Reasoning 45

Similar to TCOZ explained in Section 3.6, the idea is to combine two main approaches

of applying formal techniques for precise and correct software development, in order to

benefit from their advantages in a unified framework.

In Circus, concurrent programs can be modelled in terms of communicating abstract

data types, by having all the existing combinations of Z with a process algebra. Besides,

refinement feature is included, based on weakest preconditions and CSP.

In order to specify the timing aspects of real-time systems, Circus has been extended to

includes the operators of Timed CSP [96, 51]. Timed Circus [94] only inherits the CSP

part of Circus. Its syntax is very similar to timed CSP, but its semantics is based on a

complete lattice in the implication ordering, which provides the required means to deal

with temporal behaviours with multiple time scales.

3.8 Continuous Action Systems

Continuous action systems [26, 27] extend the action system approach to formalize hybrid

systems. A hybrid system uses discrete control, over continuously evolving processes,

whereas action systems use a discrete control upon a discrete state space.

This approach supports modelling of the real-time behaviours of a system, by ranging

the state variables over time, based on some functions. As a result, a variable is not just

a representation of the current state, but it captures the whole history of the values, it

ever had, as well as the default values it will receive in the future. Consequently, updates

are restricted to just changing the future behaviour of a variable.

In a continuous action system, reasoning about properties is based on refinement calcu-

lus, and the stepwise development is supported.

3.9 Real-time VDM

Vienna Development Method (VDM-SL) [80] is a formalism for specification of com-

puter systems, where mathematical notations is used to precisely describe the desirable

functionalities of a system. A system is modelled in terms of a state with a collection

of operations, described as pre and post- conditions. Refinement is supported in VDM

and the consistency of different abstract levels can be proved by discharging a number

of proof obligations provided by the method.

VDM-SL is a flat language which is not sufficient for real-size systems specifications,

whereas VDM++ [58, 86] extends it to support object oriented designs. In VDM++,

a system is modelled as a collection of classes, where each class may contain values,

46 Chapter 3 Timed Verification and Reasoning

types, instance variables, functions and operations. In VDM++ concurrent processes are

modelled by using threads, and their real-time behaviours can be analysed dynamically.

There are some tool supports for VDM++ such as VDMTools and Overture. These tools

are model checkers which evaluate invariants and pre/post-conditions, and supporting

static analysis of models.

Some scheduling algorithms are supported by VDMTools and Overture. For example,

it is possible to specify an execution period for a statement or define a periodic thread.

In order to evaluate the real-time properties of a model, information of its real-time

behaviour is gathered during its execution. The objective of performing timing analysis

in these tools, is to specify those parts of a system, which their performances have the

potential to cause a deadline violation. This is done by having Cycle/Duration tags,

which can be used to specify the required duration in order to execute a segment of

a model. A Cycle tag specifies the required CPU’s cycles, in order to accomplish the

corresponding segment. So it is a relative constraint based on the strength of the CPU.

But the Duration tag specify a specific duration of time for a segment to be executed.

There is no support for the refinement feature in VDM++ real-time modelling. Exist-

ing works on modelling real-time systems in VDM++, mostly focus on validating the

potential candidate of a system’s architect, in the early stages of system development

process [108].

3.10 VDM++ Combined by Co-simulation

VDM++ Combined by Co-simulation is introduced by Verhoef [111] which supports

modelling of both discrete and continuous behaviours. So, it is possible to model a

control system discretely, and have a continuous representation of its environment. Also,

VDM++ is extended to support asynchronous actions and parallel processes too.

By this approach, each process unite in the controller, is modelled by a process in the

VDM++ and its timing properties is specified in a discrete timing system. A controller

model is connected to a model of the target environment which has been modelled in

a Co-simulator by a set of continues timing properties and behaviours. As a result the

environment changes are continuous in a model, and the controller traces those changes

by sampling the environment periodically and reacts, based on its internal discrete clock.

3.11 Modelling Timing in the B-method

B [106] is a step-wise formal method for specification and development of computer

software systems. Functionality of a system is modelled in terms of a collection of

Chapter 3 Timed Verification and Reasoning 47

operations. There are a lot of similarities between B method and Event-B, both in

modelling and proofing methods. Butler in [41] introduced an approach in order to

model timing constraints in classical-B. In his work the only timing constraint which

has been investigated is deadline. His approach to model time and deadline in B had an

effect on our approach represented in this thesis.

Based on Butler’s approach, a variable is required to represent the current value of time,

and there is an event which represent the tick. This event increases the current value of

time by a time-unit in each execution.

In order to enforce an event to occur before a specific time, the tick event is guarded

according to the occurrence of the restricted event. Consequently, if that event has not

occurred yet and by occurrence of the tick event, the current time value will exceed the

specified upper bound, the tick event will be disabled.

By this approach, a system’s global clock and its deadlines can be encoded in a B

method, but their refinement has not been investigated.

3.12 Real-time Event-B

There are some existing works on modelling timing properties in Event-B. Cansell et

al. [44] modelled a real-time leader election protocol in Event-B. In that study Time

Constraint Pattern (TCP) was introduced in order to model time and express timing

constraints in Event-B. In TCP, the time progress is an event and no modification has

been done on the underlying language of Event-B. According to this approach, for each

event which has to happen in a specific time, a set will keep track of its activation times.

The event which increase time is guarded by those sets to prevent it from happening,

if its occurrence will makes the current time value, greater than the minimum of those

sets’ union.

48 Chapter 3 Timed Verification and Reasoning

EVENT SendM =̂

any m WHERE

m ∈MSG

m /∈ dom(timesent)

THEN

timesent := timesent ∪
{m 7→ now}

deadline := deadline ∪
{m 7→ now + limit}

q rcv := q rcv ∪ {m}
END

(a) Event SendM represents the send

message process

EVENT Receive =̂

any m WHERE

m ∈ q rcv

deadline(m) ≥ now

THEN

deadline := deadline \
{m 7→ deadline(m)}

ontime := ontime ∪ {m}
q rcv := q rcv \ {m}

END

(b) Event Receive represents the on-time re-

ceiving of the message

EVENT ReceiveLate =̂

any m WHERE

m ∈ q rcv

deadline(m) < now

THEN

deadline := deadline \
{m 7→ deadline(m)}

late := late ∪ {m}
q rcv := q rcv \ {m}

END

(c) Event ReceiveLate represents the late

receiving of the message

Figure 3.3: Events SendM, Receive and ReceiveLate according to Bryans ap-

proach.

When time gets to the activation time of an event, the event will become eligible to

occur and by its occurrence the activation time will be removed from the corresponding

set. In this way, when all the events whose activation time is equal to the current time

value have happened, the time progressing event becomes eligible to happen again. An

activation time is added by the event which triggers the corresponding timing constraint.

By using TCP and modifying it according to the needs of a specific communication

protocol, Bryans et al.[37] modelled a message passing protocol and its timing properties,

which has upper bound, lower bound, and recovery scenarios for the messages which have

not been received by their expiry time. The base of the approach is similar to the TCP,

the only difference is that the activation time mechanism has been changed to the upper

and lower bounds, where events are not forced to happen in a specific time, and if they

do not occur by their upper bound, they will not be eligible to occur any more, and their

alternative event which is constraint by a minimum delay (lower bound) will become

eligible to happen. Besides, the time forwarding event is not guarded anymore and

timing constraints encoded as guards on their corresponding constrained events.

In their case study, the value of the deadline set for each message, acts as an expiry

limitation for the event which represent the normal scenario, and acts as a delay for the

Chapter 3 Timed Verification and Reasoning 49

recovery scenario. As a result, by this approach it is possible to model upper bounds (in

our approach is called expiry) or delays for events’ occurrences. As shown in Figure 3.3,

event SendM adds the time of each message to the deadline set, then, if event Receive

for that message, does not happen before the added time, event Receive will be disabled

and event ReceiveLate will be eligible to occur.

In this chapter some of the existing works on modelling real-time systems and reasoning

about them, have been introduced briefly. In the following chapters, our approach of

modelling timing properties in Event-B, and the developed case studies based on them

will be discussed in details.

Chapter 4

Modelling Timing Properties In

Event-B

In this Chapter, first three groups of timing properties which are the main focus of this

research will be introduced. Then our approach to formulate their Event-B representa-

tion, will be discussed in details. The formulation approach consists of some constructs,

to express the timing properties, and their translation to invariants, guards and actions.

In the end, since refinement is one of the most important features of Event-B, some

patterns to refine abstract timing properties to concrete ones based on the control flow

refinement, will be introduced.

4.1 Time Properties Categories

In order to explicitly represent timing properties we extend the Event-B syntax with

constructs for deadlines, delays and expiries. A typical pattern is a trigger followed by

its possible responses, thus each of our timing constructs specifies a constraint between

a trigger event A, and either a response event B, or a set of response events B1..Bn.

The syntax for each of these properties is as follows:

(4.1a)Deadline(A,B1 ∨ .. ∨Bn, t) ,

(4.1b)Delay(A,B, t) ,

(4.1c)Expiry(A,B, t) .

Deadline(A,B1 ∨ .. ∨Bn, t) (4.1a) means that one and only one of the response events

(B1..Bn) must occur within time t of trigger event (A) occurrence (Figure 4.1(a)). We

use a disjunction symbol between the possible responses, to indicate the alternative

nature of the property, where any of the responses’s occurrence will satisfy the property.

51

52 Chapter 4 Modelling Timing Properties In Event-B

(a) Timing diagram of a deadline property.

(b) Timing diagram of a delay property.

(c) Timing diagram of an expiry property. Event B may
only occur before the expiry duration (t). That is why it
is represented by a dash line.

Figure 4.1: In these diagrams, t is the timing property’s duration, A is the
trigger event and B is its response event, and the horizontal axis is the time
line.

In the case of delay (4.1b), the response event can only happen if the delay period

has passed following an occurrence of the trigger event (Figure 4.1(b)). Finally the

expiry (4.1c) means that the response event cannot happen if the expiry period has

been passed following an occurrence of the trigger event (Figure 4.1(c)).

Our experiences in modelling of real-time case-studies, show that the focus, in the ab-

stract levels, is deadline properties, and sometimes some expiry properties are required

to prove the consistency of the refinements of those deadlines. Whereas, delay properties

usually appear in the more concrete levels to present the detailed properties of a sys-

tem’s control flow. For example in the automatic gear controller case study, explained

in Chapter 7, in the most abstract level, the maximum duration required for the system

to respond a gear change request has been modelled, and the following refinements aim

to prove that the deadlines of concrete sub-steps required in a gear changing process are

consistent with the overall deadline. In the end, when all the concrete steps have been

added to the model, some delays have been introduced to precisely express the order of

alternative steps.

The syntax presented in this section to express the timing properties of a system, help

to systematise the process of specifying discrete timing properties in Event-B models,

and hide the complexity of encoding timing properties in an Event-B model from the

modeller. As a result, a timed-Event-B machine from modeller point of view, will be a

non-timed-Event-B machine plus a list of its timing properties, declared by the intro-

duced constructs.

Chapter 4 Modelling Timing Properties In Event-B 53

In the following sections, the semantics of these timing extensions of Event-B will be

discussed.

4.2 Semantics of Timing Properties In Event-B

We give a semantics to our timing constructs by translating them into Event-B variables,

invariants, guards and actions. In particular, these timed-Event-B elements constrain the

order between trigger event, response events and the time-progressing event (Tick Tock).

In each case we assume there is already a partial order between the trigger event and

the corresponding response events. The assumption is that the response events are

only enabled if the trigger event has already happened. This ordering assumption for a

sequential control flow, is encoded by using boolean flags for unparametrized events. As

shown in Figure 4.2(a), event A sets the boolean variable fA as one of its actions. So

when variable fA has the value of TRUE, indicates that event A has already happened.

Also, one of the response events’ guards, checks the occurrence of trigger event A, by

evaluating its occurrence flag.

It has not been assumed that the trigger and response events will occur only once.

Typically the trigger and the response events are part of an iterative behaviour. When

the steps’ sequence of an iterative behaviour, have been modelled by boolean flags, those

flags have to be reset at the end of each iteration, to provide the required initial state,

for the following iteration. Imagine a model consists of a request event and a response

event, where an occurrence of the request event has to be followed by an occurrence of

the response event and this process may iterate indefinitely. To model this behaviour by

boolean flags, we add another event which happens after the response event and reset

the occurrence flags of the request and response event. The resetting event provides the

initial states of the next iteration.

In Section 2.8.4.1 we talked about the consistency of Event-B machines, and the cor-

responding PO. Based on that, in the following sections we will prove the consistency

of each timing property’s semantics. For each timing property, how the corresponding

POs of its invariants will be discharged will be explained in details.

4.2.1 Delay Semantics

In this section we explain how delay is encoded in an Event-B model. As mentioned

before, in order to have discrete time in Event-B a natural number variable is declared

to represent the current value of time, and an event is added to model the progress of

time.

54 Chapter 4 Modelling Timing Properties In Event-B

In order to explain the semantics of delay in Event-B, we assume a generic trigger event

A and a generic response event B. In the Patterns of this section, GX(c, v) represents

the guards of event X, and ActX represents its actions, where c denotes the constants

and v the variables of the corresponding model.

A delay property is structured as follows:

(4.2)Delay(A,B, t) .

There are three parts to the Event-B semantics of a delay property. First the occurrence

time of the trigger event is recorded in a variable (tA). Second, in the response event (B),

a guard is needed which disables the response event if the stated delay duration has not

been passed, from the occurrence of the trigger event, and an action is added to record

its occurrence in a variable (tB). The occurrence time of the response event is required

for the delay invariants which is the last part of a delay semantics.

TIMING
Delay(A,B, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
GB(c, v)

THEN
fB := TRUE
ActB

END

(a) Event A and B plus a delay

INVARIANTS
(inv1) ¬fA⇒¬fB
(inv2) fB⇒ tB ≥ tA+ t

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
tA := time
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
time ≥ tA + t
GB(c, v)

THEN
fB := TRUE
tB := time
ActB

END

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
THEN

time := time + tick
END

(b) Encoded delay for events A and B.

Figure 4.2: Semantics of a delay property in Event-B.

In Figure 4.2(a) shows the generic trigger-response pattern plus a delay property, and in

Figure 4.2(b) shows how the delay is represented in terms of standard Event-B elements.

As shown in Figure 4.2(b), delay semantics included two invariants, inv1 specifies that

the response event always happens after the trigger event, and inv2 express the property

that if response B has happened, its occurrence time must exceed the occurrence time

of trigger event A by at least t. inv1 is required to discharge the corresponding POs of

inv2. Besides, the Tick Tock event is a part of the semantics of timing properties which

models the progress of time based on the tick duration.

Chapter 4 Modelling Timing Properties In Event-B 55

In the following, the consistency of the delay semantics will be proved. In the proofs, we

will just presents the selected hypothesis, required to discharge the PO. For a machine

The consistency of invariant inv1 in Figure 4.2(b), can be proved as follows:

For event INITIALISATION: (From left to right)

fA′ =FALSE

fB′ =FALSE

`
fA′ =FALSE ⇒fB′ =FALSE

fA′ = FALSE

fB′ = FALSE

`
FALSE=FALSE ⇒ FALSE=FALSE

fA′ = FALSE

fB′ = FALSE

`
>⇒>

For event A: (From left to right)

fA =FALSE

fA′ =TRUE

`
fA′ =FALSE ⇒fB =FALSE

fA =FALSE

fA′ =TRUE

`
TRUE=FALSE ⇒fB =FALSE

fA =FALSE

fA′ =TRUE

`
⊥⇒ fB =FALSE ≡ >

For event B: (From left to right)

fA =TRUE

fB =FALSE

fB′ =TRUE

`
fA =FALSE ⇒fB′ =FALSE

(Deduction)

fA =TRUE

fB =FALSE

fB′ =TRUE

fA =FALSE

`
fB′ =FALSE

Contradiction in hypothesis

Since event Tick Tock does not change any of the variables involve in the invariant,

there is no need to prove the invariant preservation.

For invariant fB⇒ tB ≥ tA+ t (inv2) the consistency proof will be as follows:

For event INITIALISATION:

tA′ = 0

tB′ = 0

fB′ = FALSE

t > 0

`
fB′ = TRUE⇒ tB′ ≥ tA′+ t

tA′ = 0

tB′ = 0

fB′ = FALSE

t > 0

`
FALSE=TRUE⇒ 0 ≥ 0 + t

tA′ = 0

tB′ = 0

fB′ = FALSE

t > 0

`
⊥⇒⊥ ≡ >

For event A: (From left to right)

fA = FALSE

fA = FALSE⇒fB = FALSE

fA′ = TRUE

tA′ = time

`
fB = TRUE⇒ tB ≥ tA′ + t

(Deduction)

fA = FALSE

fA = FALSE⇒fB = FALSE

fA′ = TRUE

tA′ = time

fB = TRUE

`
tB ≥ time + t

fA = FALSE

>⇒ fB = FALSE

fB = TRUE

`
tB ≥ time + t

fA = FALSE

fB = FALSE

fB = TRUE

`
tB ≥ time+ t

Contradiction in hypothesis

56 Chapter 4 Modelling Timing Properties In Event-B

For event B: (From left to right)

fA = TRUE

fB = FALSE

fB′ = TRUE

tB′ = time

`
fB′ = TRUE⇒ tB′ ≥ tA + t

fA = TRUE

fB = FALSE

time ≥ tA + t

fB′ = TRUE

tB′ = time

`
TRUE = TRUE⇒ time ≥ tA+ t

(Deduction)

time ≥ tA + t

`
time ≥ tA + t

Appearance of the goal

in the hypothesis

Again, since the Tick Tock event does not change any of the variables involve in the

invariant, the will be preserved by its occurrence, and no proof is required.

So far the semantics of delay has been presented and its consistency has been proved.

In the next section the semantics of expiry will be introduced.

4.2.2 Expiry Semantics

Expiry is given an Event-B semantics similar to delay, guarding the response events

according to the recorded occurrence time of the trigger event and the specified expiry

period.

TIMING
Expiry(A,B, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
GB(c, v)

THEN
fB := TRUE
ActB

END

(a) Events A and B plus an expiry

INVARIANTS
(inv1)¬fA⇒¬fB
(inv2)fB⇒ tB ≤ tA + t

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
tA := time
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
time ≤ tA + t
GB(c, v)

THEN
fB := TRUE
tB := time
ActB

END

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
THEN

time := time + tick
END

(b) Encoded expiry for events A and B.

Figure 4.3: Semantics of an expiry property in Event-B.

In order to explain how expiry is represented in Event-B, we assume a generic trigger

event A and its generic response event B, with an expiry as shown in Figure 4.3(a).

Chapter 4 Modelling Timing Properties In Event-B 57

As shown in Figure 4.3(b), in order to have an expiry on a trigger-response pattern,

an action is needed to record the occurrence time, in the trigger event (event A), and

a guard on the response event, to prevent it from happening, if the expiry period has

been passed. Besides, the occurrence time of the response event is recorded which will

be used in the expiry invariants.

Similar to the delay semantics, we have two invariants as a part of expiry semantics, one

express the order between trigger and response event, and the other express that if the

response B has happened, its occurrence time should not exceed the occurrence time of

A by at most t. These two invariants can be proved in a same way the delay’s invariants

have been proved.

4.2.3 Deadline Semantics

As explained in the introduction section, in time-critical systems, there are assumptions

about the maximum duration required to establish different processes. These assump-

tions can be modelled by deadlines in our approach.

TIMING

Deadline(A,B1 ∨ .. ∨Bn, t)

EVENT A =̂

WHERE

fA = FALSE

GA(c, v)

THEN

fA := TRUE

ActA

END

EVENT Bx =̂

WHERE

fA = TRUE

fB1 = FALSE
...

fBn = FALSE

GBx (c, v)

THEN

fBx := TRUE

ActBx

END

(a) Events A and Bx plus a deadline

INVARIANTS

(inv1) ¬fA⇒¬fB1 ∧ · · · ∧ ¬fBn

(inv2) fA∧ (¬fB1∧· · ·∧¬fBn)⇒
time ≤ tA + t

(inv3) fB1⇒ tB1 ≤ tA + t
...

(invn+2) fBn⇒ tBn ≤ tA + t

EVENT A =̂

WHERE

fA = FALSE

GA(c, v)

THEN

fA := TRUE

tA := time

ActA

END

EVENT Bx =̂

WHERE

fA = TRUE

fB1 = FALSE
...

fBn = FALSE

GBx (c, v)

THEN

fBx := TRUE

tBx := time

ActBx

END

EVENT T ick Tock =̂

any

tick

WHERE

tick > 0

fA = TRUE∧
(fB1 = FALSE ∧ · · ·
∧ fBn = FALSE)⇒
time + tick ≤ tA + t

THEN

time := time + tick

END

(b) Encoded deadline for Event A and Bx.

Figure 4.4: Semantics of a deadline property in Event-B.

Based on the semantics of delay and expiry, it is the response event, which will be guarded

based on time. However, according to the deadline semantics, the Tick Tock event is

58 Chapter 4 Modelling Timing Properties In Event-B

guarded instead. If the trigger event has happened, we want to force one and only one of

the response events to occur, before passing the deadline. Guarding the Tick Tock event

is a way of enforcing one of the response events to occur, before passing the deadline.

So, by guarding the Tick Tock event, the upper bounds assumption can be enforced to

a model.

Assume a deadline property, structured as follows:

(4.3)Deadline(A,B1 ∨ .. ∨Bn, t) .

The guard on the Tick Tock event to enforce deadline (4.3), prevents reaching the

deadline (time+ tick ≤ tA+ t), if trigger event A has occurred but a response event Bx

has yet to occur (Figure 4.4(b)).

Similar to delay and expiry, deadline semantics contains several invariants. As shown

in Figure 4.4(b), inv1 expresses the order between trigger event and its alternative

responses. Based on this invariant, none of the responses can happen unless the trigger

event has already happened. inv2 specifies the deadline property that if the trigger

event A has happened, but none of its responses has happened yet, then time should

not exceed the occurrence time of A by at most t.

inv2 talks about the value of the current time based on the state of trigger and response

events. On the other hand, inv3 · · · invn+2 express the deadline property for the occur-

rence time of each response event. Based on these invariants, if any of the response

events has happened, its occurrence time should not exceed the occurrence time of A by

at most t.

In the following the proofs of the deadline semantics consistency will be presented in

details. For invariant inv1 based on Figure 4.4(b), the proof is as follows:

For event INITIALISATION: (From left to right)

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

`
fA′ = FALSE ⇒fB′1 =FALSE

∧ · · · ∧ fB′n = FALSE

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

`
FALSE = FALSE ⇒ FALSE = FALSE ∧ · · · ∧ FALSE = FALSE

≡ >

For event A: (From left to right)

fA =FALSE

fA′ =TRUE

`
fA′ = FALSE ⇒fB1 =FALSE

∧ · · · ∧ fBn = FALSE

fA =FALSE

fA′ =TRUE

`
TRUE=FALSE

⇒fB1 =FALSE ∧ · · · ∧ fBn =

FALSE

fA =FALSE

fA′ =TRUE

`
⊥⇒fB1 =FALSE ∧ · · ·∧fBn =

FALSE

≡ >

Chapter 4 Modelling Timing Properties In Event-B 59

For event Bx: (From left to right)

fA =TRUE

fBx =FALSE

fB′x =TRUE

`
fA = FALSE⇒fB′x =FALSE ∧
none-primed flags of all the

other responses are FALSE

(Deduction)

fA =TRUE

fBx =FALSE

fB′x =TRUE

fA = FALSE

`
fB′x =FALSE ∧
none-primed flags of all the

other responses are FALSE

Contradiction in hypothesis

Since the Tick Tock event does not modify any state variables involved in this invariant,

the invariant will be preserved.

For invariant inv2 which expresses a property of the current time based on the deadline,

the consistency proof is as follows:

For event INITIALISATION: (From left to right)

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

tA′ =0

time′ =0

t > 0

`
fA′ = TRUE ∧fB′1 =FALSE

∧ · · · ∧ fB′n = FALSE ⇒
time′ ≤ tA′ + t

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

tA′ =0

time′ =0

t > 0

`
FALSE = TRUE ∧ FALSE =

FALSE ∧ · · · ∧ FALSE = FALSE

⇒0 ≤ 0 + t

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

tA′ =0

time′ =0

t > 0

`
⊥⇒>

For event A: (From left to right)

fA = FALSE

fA′ = TRUE

tA′ = time

t > 0

`
fA′ = TRUE ∧ fB1 = FALSE ∧ · · · ∧ fBn = FALSE⇒
time ≤ tA′ + t

(Deduction)

fA = FALSE

fA′ = TRUE

tA′ = time

t > 0

fB1 = FALSE ∧ · · · ∧ fBn = FALSE

`
time ≤ time + t ≡ >

For event Bx: (From left to right)

fA = TRUE

fB1 = FALSE
...

fBn = FALSE

fB′x = TRUE

t > 0

`
fA = TRUE ∧ fB′x = FALSE∧
none-primed flags of all the

other responses are FALSE ⇒
time ≤ tA + t

fA = TRUE

fB1 = FALSE
.
..

fBn = FALSE

fB′x = TRUE

t > 0

`
fA = TRUE ∧ TRUE = FALSE∧
none-primed flags of all the other re-

sponses are FALSE ⇒ time ≤ tA + t

fA = TRUE

fB1 = FALSE
...

fBn = FALSE

fB′x = TRUE

t > 0

`
⊥⇒ time ≤ tA+ t ≡ >

60 Chapter 4 Modelling Timing Properties In Event-B

For event T ick Tock: (From left to right)

tick > 0

fA = TRUE ∧ fB1 =FALSE ∧ · · · ∧
fBn = FALSE ⇒ time+ tick ≤ tA+ t

time′ = time + tick

`
fA = TRUE ∧fB1 = FALSE ∧ · · · ∧
fBn = FALSE ⇒time′ ≤ tA + t

tick > 0

fA = TRUE ∧ fB1 =FALSE ∧ · · · ∧
fBn = FALSE ⇒ time+ tick ≤ tA+ t

time′ = time + tick

`
fA = TRUE ∧fB1 = FALSE ∧ · · · ∧
fBn = FALSE ⇒time + tick ≤ tA + t

Appearance of the

proof goal in the

hypothesis

For invariants inv3 to invn+2, the proof will be similar. So we will just go through the

proof of the invariant which expresses a property of response event Bx occurrence time

(x ∈ 3..n+ 2).

For event INITIALISATION: (From left to right)

fA′ =FALSE

fB′1 =FALSE

.

..

fB′n =FALSE

tA′ =0

time′ =0

t > 0

`
fB′x = TRUE ⇒tB′x ≤ tA′ + t

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

tA′ =0

time′ =0

t > 0

`
FALSE = TRUE ⇒0 ≤ 0 + t

fA′ =FALSE

fB′1 =FALSE

...

fB′n =FALSE

tA′ =0

time′ =0

t > 0

`
⊥⇒> ≡ >

For event A: (From left to right)

fA =FALSE

fA = FALSE ⇒ fB1 = FALSE

∧ · · · ∧ fBn = FALSE

fA′ =TRUE

tA′ = time

`
fBx = TRUE ⇒tBx ≤ tA′ + t

(Deduction)

fA =FALSE

> ⇒ fB1 = FALSE ∧
· · · ∧ fBn = FALSE

fA′ =TRUE

tA′ = time

fBx = TRUE

`
tBx ≤ time + t

fA =FALSE

fB1 = FALSE ∧ · · ·
∧ fBn = FALSE

fA′ =TRUE

tA′ = time

fBx = TRUE

`
tBx ≤ time + t

Contradiction in

the hypothesis

For event Bx: (From left to right)

fA =TRUE

fB1 = FALSE
...

fBn = FALSE

fA = TRUE ∧fB1 = FALSE

∧ · · · ∧ fBn = FALSE

⇒ time ≤ tA + t

fB′x =TRUE

tB′x = time

`
fB′x = TRUE⇒tB′x ≤ tA+t

fA =TRUE

fB1 = FALSE
...

fBn = FALSE

> ⇒ time ≤ tA + t

fB′x =TRUE

tB′x = time

`
TRUE = TRUE ⇒
time ≤ tA + t

fA =TRUE

fB1 = FALSE
...

fBn = FALSE

time ≤ tA + t

fB′x =TRUE

tB′x = time

`
time ≤ tA + t

Appearance of the goal

in the hypothesis

For any response event By (y 6= x), since the event will not change any of the variables

included in the invariants, it will be preserved by the response event. The same is true

Chapter 4 Modelling Timing Properties In Event-B 61

about the Tick Tock event. Based the proofs presented in this section, we have shown

that the deadline semantics is consistent.

Multiple deadline properties may be added to a model. In this case, a deadline guard

similar to what has been shown in Figure 4.4(b), should be added to the Tick Tock

event, for each deadline property.

So far the syntax and the semantics of delay, expiry, and deadline have been presented.

As mentioned before, one of the most important features of Event-B is refinement, and

it has been our intention to provide a semantics for timing properties which supports

this feature. In the following we will present some refinement patterns, in which the

timing properties of an abstract behaviour, have been replaced by the timing properties

of its concrete behaviour, while the refinement consistency has been preserved.

4.3 Some Patterns to Refine Deadline, Delay and Expiry

In this section, some patterns to refine an abstract deadline or an abstract expiry, to

more detailed timing properties will be explained. It should be mentioned that these

are not modelling patterns, rather they are refinement patterns; the aim of our patterns

is to explain how timing properties can be refined based on some specific control flow

refinement patterns.

Each refinement pattern will be explained by applying it to a generic control flow re-

finement pattern. Besides, the gluing invariants, required to discharge the refinement

consistency POs will be discussed for each refinement pattern. The assumption is that

the control flow refinement without the timing properties is consistent. For example, if

an abstract response event has been refined by two sequential concrete sub-responses,

we assume that the refinement has been consistent, and its correctness has been already

proved. So we will be focusing on how the timing properties can be refined accordingly,

and what gluing invariants are required to prove the preservation of the abstract timing

properties by the concrete ones.

In the rest of this report timed-Event-B models will be shown from a modeller point

of view. So, each timed-machine will be a list of its timing properties specified by the

introduced constructs in Section 4.2, plus the non-timed Event-B machine. In each

refinement pattern, for the constants c and set of variables v of a machine, GX(c, v)

presents the guards of event X in that machine and ActX presents the actions of that

event.

Besides, in this section, refinement diagrams (Section 2.10) have been used to present

the refinement relations of events, in different levels of abstraction.

62 Chapter 4 Modelling Timing Properties In Event-B

4.3.1 Refining a Deadline to Sequential Sub-Deadlines

Consider an abstract model of a system where there is a deadline between event A

and event B. As shown in Figure 4.5, event B can only occur if event A has already

happened. The deadline property of this level of abstraction, is shown in Figure 4.6(a).

As shown in Figure 4.5, event B has been broken to two sequential steps, in the refine-

ment. By breaking event B to B1 followed by B2, its related deadline needs to be broken

too. The other important issue in this pattern is that, the abstract event has been re-

fined by the second step, because the accomplishment of the second step is equivalent

to accomplishment of the abstract event (B). So the first step should refine skip.

Figure 4.5: Refining an abstract deadline to two sub-deadlines is presented by

the refinement diagram on the left. DL(x) presents a deadline property with a

period of x in the timing diagrams.

Now, in order to respond to the trigger event, two steps have to be accomplished, where

each of them has its own deadline. In the concrete level, the trigger event of the deadline

property for event B1 is event A and the trigger event for the deadline of event B2 is

event B1. Hence, the abstract deadline should be broken into two new deadlines, in a

way that their combination, based on the concrete order, does not violate the abstract

deadline (t1 + t2 ≤ t).

We need to prove that the concrete machine refines the behaviour of its abstract one.

For the refinement pattern, presented in Figure 4.5, it is necessary to prove the abstract

deadline holds in the concrete machine.

As shown in Figure 4.6, in the concrete machine, the abstract deadline between event A

and event B is refined by the following deadlines:

(4.4a)Deadline (A, B1, t1) ,

(4.4b)Deadline (B1, B2, t2) .

Based on deadline (4.4b) if event B1 has happened and event B2 has not happened yet,

then the current value of time should be less than or equal to the occurrence time of

Chapter 4 Modelling Timing Properties In Event-B 63

TIMING
Deadline(A,B, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
GB(c, v)

THEN
fB := TRUE
ActB

END

(a) Events A and B

TIMING
Deadline(A,B1, t1)
Deadline(B1, B2, t2)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B1 =̂

WHERE
fA = TRUE
fB1 = FALSE
GB1

(c, v)
THEN

fB1 := TRUE
ActB1

END

EVENT B2 refines B =̂
WHERE

fB1 = TRUE
fB2 = FALSE
GB2

(c, v)
THEN

fB2 := TRUE
ActB2

END

(b) Events A, B1 and B2

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ fB = FALSE⇒
time + tick ≤ tA + t

THEN
time := time + tick

END

EVENT T ick Tock refines
T ick Tock =̂

any
tick

WHERE
tick > 0
fA = TRUE ∧ fB1 = FALSE⇒
time + tick ≤ tA + t1
fB1 = TRUE ∧ fB2 = FALSE⇒
time + tick ≤ tB1 + t2

THEN
time := time + tick

END

(c) Event T ick Tock in abstract and concrete machines.

Figure 4.6: Events A and B plus their deadline property in the abstract Machine
in 4.6(a), followed by event A , events B1 and B2 in the concrete machine plus
their concrete timing properties in 4.6(b). As mentioned before, the Tick Tock
event is part of the semantics, but we have presented it to clarify the refinement.

event B1 plus the deadline period (t1). By having this timing property the relation

between the occurrence time of event B2 and event B1 has been specified. But we are

interested on the relation of the occurrence time of event B2 and event A. So it is enough

to specify the relation of the occurrence time of event B1 and event A.

The relation between the concrete states and the abstract ones is expressed by gluing

invariants [13] in Event-B, in order to verify a refinement. Two kinds of gluing invariants

are needed, in order to prove that the concrete deadlines satisfy their abstract. The first

type is needed to clarify the relation between the order in the abstract machine and the

order in the concrete machine, which has not been modelled by explicit guards. For

example based on the guards in the presented refinement pattern (Figure 4.6), B2 can

only happen after B1 occurrence and B1 can only happen after A occurrence, accordingly

B2 can only happen after A, but this property has not been mentioned explicitly in the

guards of B2. The other type of gluing invariants is needed to specify the relation

64 Chapter 4 Modelling Timing Properties In Event-B

between the new deadlines in the concrete machine and the abstract deadline. For the

refinement pattern presented in Figure 4.6, these invariants should be as follows:

• The relation between the abstract event and its refining event (B2 and B are the

boolean variables which act as the occurrence flags of events B2 and B):

(4.5)fB2 = fB ,

• The order between the concrete events (part of deadline semantics):

(4.6)fA = FALSE ⇒ fB1 = FALSE

• The relation between the abstract trigger event’s occurrence time, and the occur-

rence times of the concrete trigger events (parts of deadline semantics):

(4.7a)fB1 = TRUE ⇒ tB1 ≤ tA+ t1 ,

(4.7b)fA = TRUE ∧ fB1 = FALSE ⇒ time ≤ tA+ t1 .

In the above invariants, tA is an integer variable which records the occurrence time of

event A, and tB1 does the same thing for event B1. Invariant (4.5) specifies that the

occurrence of event B2 is equivalent to the occurrence of event B. This invariant is

required for the control flow refinement, and it will be required in the untimed model

too.

The relation of the occurrence time of event B1 and event A has been specified by the

gluing invariant (4.7a) based on deadline (4.4a). Based on invariant (4.7a) we know that

if B1 has occurred, then the duration between A, and B1 does not exceed t1.

Invariant (4.7b) which is equivalent to the required guard on the Tick Tock event for

deadline (4.4a) provides the required information to discharge the proof obligation of

invariant (4.7a) for event B1.

As mention in Section 4.2.3, both of invariants (4.7a) and (4.7b) are part of the deadline

semantics, and their consistency has been demonstrated in that section. In this refine-

ment the main challenge is to show that the deadline guard of the abstract model, will

be satisfied by the deadline guards of the concrete machine. In Figure 4.7 the proof of

this property will be presented to demonstrate how the introduced invariants facilitate

the process.

It should be noted that the abstract deadline can be broken into more than two sub-

deadlines either by successive refinement steps or by refining the abstract event with

more than two sub-sequential events in one refinement step. For these refinement cases,

it is possible to follow a similar approach.

In an Event-B model of this refinement, 14 POs have been generated for the abstract

machine which all were proved automatically. For the concrete machine, 29 POs have

been generated from which only one has been discharged interactively.

Chapter 4 Modelling Timing Properties In Event-B 65

tick > 0
fA =TRUE ∧ fB1 =FALSE ⇒
time + tick ≤ tA + t1
fB1 =TRUE ∧ fB2 =FALSE ⇒
time + tick ≤ tB1 + t2
fB2 = fB
fB1 = TRUE ⇒ tB1 ≤ tA + t1
t1 + t2 ≤ t
`
fA = TRUE ∧ fB =FALSE ⇒
time + tick ≤ tA + t

(Deduction)
tick > 0
fA =TRUE ∧ fB1 =FALSE ⇒
time + tick ≤ tA + t1
fB1 =TRUE ∧ fB2 =FALSE ⇒
time + tick ≤ tB1 + t2
fB2 = fB
fB1 = TRUE ⇒ tB1 ≤ tA + t1
t1 + t2 ≤ t
fA = TRUE ∧ fB =FALSE
`
time + tick ≤ tA + t

(Case1: fB1 = FALSE)
tick > 0
> ⇒ time + tick ≤ tA + t1
fB2 = fB
t1 > 0 ∧ t2 > 0
t1 + t2 ≤ t
fA = TRUE ∧ fB =FALSE
`
time + tick ≤ tA + t

(Case1: fB1 = FALSE)
time + tick ≤ tA + t1
t1 < t
`
time + tick ≤ tA + t

(Case1: fB1 = FALSE)
time + tick ≤ tA + t
`
time + tick ≤ tA + t
(Appearance of the goal
in the hypothesis)

(Case2: fB1 = TRUE)
tick > 0
> ⇒
time + tick ≤ tB1 + t2
> ⇒ tB1 ≤ tA + t1
fB2 = fB
t1 + t2 ≤ t
fB =FALSE
`
time + tick ≤ tA + t

(Case2: fB1 = TRUE)
tick > 0
time + tick ≤ tB1 + t2
tB1 ≤ tA + t1
t1 + t2 ≤ t
`
time + tick ≤ tA + t

(Case2: fB1 = TRUE)
tick > 0
time+tick ≤ tA+t1+t2
t1 + t2 ≤ t
`
time + tick ≤ tA + t

(Case2: fB1 = TRUE)
tick > 0
time + tick ≤ tA + t
`
time + tick ≤ tA + t

(Case2: fB1 = TRUE)
Appearance of the goal
in the hypothesis

Figure 4.7: The proof of the property that the concrete deadlines’ guards on
the Tick Tock event, preserve the abstract deadline’s guard.

4.3.2 Refining an Expiry to a Sequence of an Expiry and a Deadline

Consider an abstract model of a system, where there is an expiry between a trigger event

A, and its response event B. The expiry property of this level of abstraction, is shown in

Figure 4.9. In the next refinement, event B has been broken into two sequential steps,

as shown in Figure 4.8.

Figure 4.8: Refining an abstract expiry by a sequence of an expiry and a deadline

is presented by a refinement diagram on the left. EX(x) presents an expiry

property with a period of x in the timing diagrams.

By breaking event B to B1 followed by B2, its related expiry needs to be satisfied by

their timing properties. Since the concrete events are sequential, the accomplishment of

66 Chapter 4 Modelling Timing Properties In Event-B

the last event (B2), is equivalent to the occurrence of the abstract response event, and

the first step refines skip.

Now, in order to respond to the trigger event, two steps have to be accomplished, where

the first step has an expiry and the second one has a deadline. In the concrete level,

the trigger event of the expiry property for event B1 is event A, and the trigger event

for the deadline on event B2, is event B1. Hence, the abstract expiry is broken into a

concrete expiry, and a concrete deadline, as shown in Figure 4.9(b), in such a way that

their sequence, does not violate the abstract expiry (t1 + t2 ≤ t).

TIMING
Expiry(A,B, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
GB(c, v)

THEN
fB := TRUE
ActB

END

(a) Events A and B

TIMING
Expiry(A,B1, t1)
Deadline(B1, B2, t2)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B1 =̂

WHERE
fA = TRUE
fB1 = FALSE
GB1

(c, v)
THEN

fB1 := TRUE
ActB1

END

EVENT B2 refines B =̂
WHERE

fB1 = TRUE
fB2 = FALSE
GB2

(c, v)
THEN

fB2 := TRUE
ActB2

END

(b) Events A, B1 and B2

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
THEN

time := time + tick
END

EVENT T ick Tock refines
T ick Tock =̂

any
tick

WHERE
tick > 0
fB1 = TRUE ∧ fB2 = FALSE⇒
time + tick ≤ tB1 + t2

THEN
time := time + tick

END

(c) Event T ick Tock in abstract and concrete machines.

Figure 4.9: Events A and B plus their expiry property in the abstract Machine
in 4.9(a), followed by event A , events B1 and B2 in the concrete machine plus
their concrete timing properties in 4.9(b).

We need to prove that the concrete machine refines the behaviour of its abstract one.

For the refinement pattern, presented in Figure 4.8, it is necessary to prove the abstract

expiry holds in the concrete machine.

As shown in Figure 4.9, in the concrete machine, the abstract expiry between event A

and event B is refined by the following timing properties:

(4.8a)Expiry (A, B1, t1) ,

Chapter 4 Modelling Timing Properties In Event-B 67

(4.8b)Deadline (B1, B2, t2) .

Based on deadline (4.8b) if event B1 has happened then event B2 has to happen within

t2 time-units. By having this timing property, the relation between occurrence times of

event B1 and event B2, has been specified. But we need to specify the relation between

the occurrence time of event B2, and event A occurrence time. This can be achieved,

by specifying the relation between the occurrence times of event B1 and event A.

On the other hand, based on expiry (4.8a) we know that if B1 does not happen before

it expires (tA + t1), then B2 will never be enabled, since its trigger event (B1) cannot

happen. So event A in the concrete machine, triggers an expiry which may eventually

cause event B2 to never become enabled.

Two kinds of gluing invariants are needed, in order to prove that the concrete expiry

and the concrete deadline, satisfy their abstract expiry. One to specify the relation of

the abstract and the concrete events’ occurrences, and another to specify the relation

between the occurrence times of the concrete trigger and response events, with their

abstract event’s occurrence times. The ordering invariants are the same as the invariants

presented in the refinement pattern of Section 4.3.1. The timing gluing invariants for

the refinement pattern, presented in Figure 4.8, are as follows:

(4.9)fB1 = TRUE ⇒ tB1 ≤ tA + t1,

The relation of the occurrence time of event B1 and event A has been specified by the

gluing invariant (4.9) which is part of the expiry semantics as explained in Section 4.2.2.

Based on expiry (4.8a), it is guaranteed that if event B1 has happened it was within

t1 time-units of event A occurrence. As a result, based on the deadline and expiry, the

occurrence time of event B2 has a following relation with occurrence time of event A:

(4.10)fB2 = TRUE ⇒ tB2 ≤ (tA + t1) + t2,

So, if B1 happens before its expiry, it is guaranteed that B2 will happen within t1 + t2

time-units of event A’s occurrence. Since t1 + t2 ≤ t the timing refinement is consistent.

In an Event-B model of this refinement, 10 POs have been generated for the abstract

machine which all were automatically. For the concrete machine, 25 POs have been

generated from which only one has been discharged interactively.

4.3.3 Refining a Response Event of a Deadline by Several Alternative

Responses

In a stepwise modelling process, sometimes, it is useful to generalize, the possible re-

sponses of a request, as a single response event, in order to express, and verify, their

68 Chapter 4 Modelling Timing Properties In Event-B

common properties in the abstraction, and then talk about their exclusive properties,

in a more concrete model, where they have been distinguished.

For instance, consider a case, where instead of refining event B, in the refinement pattern

of Section 4.3.1, by two sequential sub-steps, it has been refined by two alternative events,

B1 and B2, as shown in Figure 4.10. Event B1 represents the main response scenario,

and event B2 represents the alternative one.

Figure 4.10: Refining an event by two alternative events. XOR in the refinement

diagram represents the fact that either of B1’s occurrence, or B2’s occurrence

in the refinement, is equivalent to the occurrence of event B in the abstract.

Based on the refinement, either of event B1’s occurrence, or event B2’s occurrence, are

equivalent to occurrence of the abstract event (B). So the abstract deadline between

event A and event B, satisfies by the occurrence of either of the refining events, before

the deadline.

As shown in Figure 4.11(b), the concrete deadline is based on event A, as its trigger

event, and either of event B1, or event B2, as the response events. The concrete deadline

duration, is the same as its abstract deadline.

The only kind of invariant required to discharge refinement proof obligations of the

timing property in this pattern, specifies the relation between the occurrences of the

abstract and the concrete response events. For this generic refinement pattern, this

invariant will be as follows:

(4.11)fB1 = TRUE ∨ fB2 = TRUE ⇔ fB = TRUE .

Based on invariant (4.11) either of event B1 or event B2 occurrences, is equivalent to

the occurrence of event B. This invariant is required for control flow refinement.

In an Event-B model of this refinement, 14 POs have been generated for the abstract

machine which all were automatically. For the concrete machine, 25 POs have been

generated which all proved automatically.

Chapter 4 Modelling Timing Properties In Event-B 69

TIMING
Deadline(A,B, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
GB(c, v)

THEN
fB := TRUE
ActB

END

(a) Events A and B and their timing
property.

TIMING
Deadline(A,B1 ∨B2, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B1 refines B =̂

WHERE
fA = TRUE
fB1 = FALSE
fB2 = FALSE
GB1

(c, v)
THEN

fB1 := TRUE
ActB1

END

EVENT B2 refines B =̂
WHERE

fA = TRUE
fB1 = FALSE
fB2 = FALSE
GB2

(c, v)
THEN

fB2 := TRUE
ActB2

END

(b) Events A, B1 and B2 and their timing property

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ fB = FALSE⇒
time + tick ≤ tA + t

THEN
time := time + tick

END

EVENT T ick Tock refines T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ fB1 = FALSE ∧ fB2 = FALSE⇒
time + tick ≤ tA + t

THEN
time := time + tick

END

(c) Event T ick Tock in abstract and concrete machines.

Figure 4.11: Refining a trigger-response pattern and its timing properties to
two alternative responses plus the concrete timing property.

4.3.4 Refining An Abstract Deadline to Alternative Sub-deadlines

Based on the same principles, mentioned in Section 4.3.3, it may also be useful to

generalize, several alternative request-response sequences of a system, as a single request-

response sequence. In this way, the general and exclusive properties of those sequences,

can be verified in different levels of abstraction.

Figure 4.12: How a single trigger-response sequence can be refined to several

trigger-response cases. XOR in the refinement diagram, represents the fact that

the occurrence of either of those sequences, in the concrete level, is equivalent

to the occurrence of the abstract sequence.

70 Chapter 4 Modelling Timing Properties In Event-B

The difference between this case and the refinement pattern, explained in Section 4.3.3,

is just about the trigger event. In Section 4.3.3 the trigger event has not been refined,

but in this case the trigger event has been refined to several alternative cases, and each

concrete trigger event is related to one of the alternative responses.

Consider the generic refinement pattern of Section 4.3.3, where also event A has been

refined by two alternative events A1 and A2, as shown in Figure 4.12. In this refinement,

event A1 triggers event B1 and event A2 triggers event B2. As a result, the abstract

deadline between event A and event B, should be refined by the timing properties of

the concrete alternative trigger-response sequences.

TIMING
Deadline(A,B, t)

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END
EVENT B =̂

WHERE
fA = TRUE
fB = FALSE
GB(c, v)

THEN
fB := TRUE
ActB

END

(a) Events A and B and their timing
property.

TIMING
Deadline(A1, B1, t)
Deadline(A2, B2, t)

EVENT A1 refines A=̂
WHERE

fA1 = FALSE
fA2 = FALSE
GA1

(c, v)
THEN

fA1 := TRUE
ActA1

END
EVENT B1 refines B =̂

WHERE
fA1 = TRUE
fB1 = FALSE
GB1 (c, v)

THEN
fB1 := TRUE
ActB1

END

EVENT A2 refines A=̂
WHERE

fA1 = FALSE
fA2 = FALSE
GA2

(c, v)
THEN

fA2 := TRUE
ActA2

END
EVENT B2 refines B =̂

WHERE
fA2 = TRUE
fB2 = FALSE
GB2 (c, v)

THEN
fB2 := TRUE
ActB2

END

(b) Events A1, A2, B1 and B2 and their timing properties

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ fB = FALSE⇒
time + tick ≤ tA + t

THEN
time := time + tick

END

EVENT T ick Tock refines T ick Tock =̂
any

tick
WHERE

tick > 0
fA1 = TRUE ∧ fB1 = FALSE⇒
time + tick ≤ tA1 + t
fA2 = TRUE ∧ fB2 = FALSE⇒
time + tick ≤ tA2 + t

THEN
time := time + tick

END

(c) Event T ick Tock in abstract and concrete machines.

Figure 4.13: Refining a trigger-response pattern and its timing property, by
two alternative trigger-response cases, and their corresponding concrete timing
properties.

The only difference between the concrete deadlines and the abstract one, is the name of

trigger and response events. As shown in Figure 4.13(b), there is a concrete deadline for

each concrete trigger-response sequence, with a same duration as the abstract deadline.

Chapter 4 Modelling Timing Properties In Event-B 71

To discharge the refinement proof obligations of the presented timing properties, two

types of gluing invariants are required for each concrete trigger-response sequence:

1. Invariants to specify the relation between occurrences of the abstract events, and

their concrete ones, which are required for the control flow refinement (required in

the untimed model),

2. Invariants to specify the relation between the abstract trigger event’s occurrence

time and the occurrence times of the alternative concrete trigger events.

Based on our generic refinement pattern the required invariants should be as follows:

(4.12a)fA1 = TRUE ∨ fA2 = TRUE ⇔ fA = TRUE (Type 1) ,

(4.12b)fA1 = TRUE ⇒ fA2 = FALSE (Type 1) ,

(4.12c)fB1 = TRUE ∨ fB2 = TRUE ⇔ fB = TRUE (Type 1) ,

(4.12d)fA1 = TRUE ⇒ tA1 = tA (Type 2) ,

(4.12e)fA2 = TRUE ⇒ tA2 = tA (Type 2) .

In an Event-B model of this refinement, 14 POs have been generated for the abstract

machine which all were automatically. For the concrete machine, 48 POs have been

generated from which only one required to be proved interactively.

4.3.5 Asymmetric Alternatives

Developing this pattern was triggered, when we were working on an automatic gear

controller case study. Based on the case study, there were two conditions, assumed for

the system, normal and difficult. After receiving a gear-changing request, controller tries

to establish a synchronized speed between the engine and the gearbox, in order to release

the currently engaged gear. But in a difficult situation, it is not possible to accomplish

the first step in time, so after struggling to achieve the synchronized speed for a while,

the controller will try to open the clutch instead, and then release the current gear by

an open clutch.

In order to explain this refinement pattern, the example of Section 4.3.3, will be con-

tinued. In the current state, we have a trigger event A, and two alternative responses,

events B1 and B2, which have replaced the abstract response event (event B). These two

levels of abstraction have been constrained by some deadlines, presented in Figure 4.11.

In the next refinement, each of event B1 and event B2, have been replaced by two

sequential sub-steps. Accordingly, the deadline of each alternative abstract response, will

72 Chapter 4 Modelling Timing Properties In Event-B

be replaced by two sequential sub-deadlines, in a same way, presented in Section 4.3.1

(event B1 will be replaced by events B3 and B4 sequence, and event B2 will be replaced

by events B5 and B6 sequence).

Figure 4.14: Refining each alternative response, by a sequence of two sub-steps.
In this diagram DL(t3) constraints events B3 and B5, DL(t4) constraints event
B6, DL(t2) constraints event B4, and E(t1) constraints event B3.

In this refinement, an occurrence of A will be followed by one of its abstract responses

(B1 or B2), as follows:

• The first step of B1, represented by B3, can only occur within time t1 of A, and

then its second step, B4 occurs within time t2 of B3,

• if B3 does not occur within time t1 of A, instead the first step of B2, represented

by B5, must occur within time t3 of A, and then its following step (B6), must

occur within time t4 of B5 occurrence.

As a result, within t3 time-units of the A’s occurrence, either the first response case has

been activated, or the second one has been activated (by the occurrence of their first

steps).

The challenging timing property we want to model in this level, is that either B3 has

to happen by t1 or B5, have to happen by t3. Based on the type of timing properties

introduced in this work, this property can only be modelled, by a deadline and an expiry.

The main reason for having the expiry, is that we are not necessarily assuming that,

the sequence of the concrete deadlines, between event A, event B3, and B4, satisfies the

abstract deadline between event A and event B (t3 + t2 ≤ t ∨ t3 + t2 > t). Based on

the expiry on event B3, after a specific time, it cannot happen anymore, and the only

possible response will be the alternative one, modelled by events B5 and B6.

Chapter 4 Modelling Timing Properties In Event-B 73

TIMING
Expiry(A,B3, t1)
Deadline(B3, B4, t2)
Deadline(A,B3 ∨B5, t3)
Deadline(B5, B6, t4)

EVENT B3 =̂
WHERE

fA = TRUE
fB3 = FALSE
fB5 = FALSE
GB3

(c, v)
THEN

fB3 := TRUE
ActB3

END
EVENT B4 refines B1 =̂

WHERE
fA = TRUE
fB3 = TRUE
fB4 = FALSE
GB4 (c, v)

THEN
fB4 := TRUE
ActB4

END

EVENT B5 =̂
WHERE

fA = TRUE
fB3 = FALSE
fB5 = FALSE
GB5 (c, v)

THEN
fB5 := TRUE
ActB5

END
EVENT B6 refines B2 =̂

WHERE
fA = TRUE
fB5 = TRUE
fB6 = FALSE
GB6 (c, v)

THEN
fB6 := TRUE
ActB6

END

(a) Events B3, B4, B5 and B6.

EVENT T ick Tock refines T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ fB1 = FALSE∧
fB2 = FALSE⇒
time + tick ≤ tA + t

THEN
time := time + tick

END

EVENT T ick Tock refines T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ fB3 = FALSE∧
fB5 = FALSE⇒
time + tick ≤ tA + t3
fB3 = TRUE ∧ fB4 = FALSE⇒
time + tick ≤ tB3 + t2
fB5 = TRUE ∧ fB6 = FALSE⇒
time + tick ≤ tB5 + t4

THEN
time := time + tick

END

(b) Event T ick Tock in the second and third levels of abstractions.

Figure 4.15: Events B3, B4, B5 and B6 of the most concrete model, and their
timing properties. Plus the Tick Tock event in the most concrete and its ab-
stract machines.

For example, imagine in a car, there are two possible scenarios to release the currently

engaged gear, scenarios R1 and R2, and each of them consists of two sequential steps.

Whichever scenario that its first step happens first, will be the one the system goes with.

Besides there is a deadline to force one and only one of these two first steps to happen

by at most t2 of triggering the releasing process. The second steps are constrained by

deadlines from the occurrence of their corresponding first step. But in scenario R1 the

sequence of its first and second steps’ deadlines (t1 + t2) is greater than the deadline of

the whole releasing process (t). Instead its first step has an expiry (t1) which followed

by the deadline of the second step (t2), satisfies the deadline of the whole process. As

a result, if the first step of scenario R1 does not happen by its expiry, the only possible

scenario of releasing the currently engaged gear will be R2.

74 Chapter 4 Modelling Timing Properties In Event-B

By enforcing this property with an expiry as shown in Figure 4.15, the concrete timing

properties will satisfy their abstract ones. By having an expiry property, between events

A and B3, for a period of t1, it will be guaranteed that if event B3 has occurred, it was

within time t1 of A occurrence (Formulated in invariant (4.13)).

(4.13)fB3 = TRUE ⇒ tB3 ≤ tA+ t1 .

From event B3 occurrence, event B4 has t2 time-units, to happen based on the exist-

ing deadline between them. As a result, the abstract deadline has been contained, by

the concrete timing properties. Invariant (4.13), plus the invariants, presented in Sec-

tion 4.3.1, will be required to prove the consistency of the refinement. This pattern

shows how combination of deadline and expiry can be used to model timing properties

of a time-critical system.

To prove the correctness preservation by the last refinement, we need the following

invariants other than those included in the semantics of deadline and expiry:

(4.14a)fB4 = fB1 ,

(4.14b)fB6 = fB2 ,

(4.14c)fB3 = TRUE ⇒ fB5 = FALSE .

These invariants correspond to the control flow refinement, so they will be required

in the untimed model too. Invariant 4.14c express the property that only one of the

alternative scenarios can be activated. As a result, one and only one of the first steps

has to happen.

Some combinations of timing properties my cause deadlock, or disable an event indef-

initely. For example, in the refinement pattern explained in this section, we have a

combination of expiry and deadlines, which may cause the Tick Tock event to be dis-

abled forever. The effects of timing properties on events’ enableness and how they can

cause a deadlock in an Event-B model, will be discussed in chapter 6.

In an Event-B model of this refinement, 14 POs have been generated for the abstract

machine which all were proved automatically. For the second level of abstraction, 25

POs have been generated, and all of them were discharged automatically. For the most

concrete machine, 59 POs have been generated from which only one required to be

proved interactively.

4.3.5.1 Disjunctive Deadlines vs. Deadline and Expiry Combination

The reader may ask, why we do not use two disjunctive deadlines, instead of a deadline

and an expiry, for timing properties similar to events A, B3, and B4, in the example

Chapter 4 Modelling Timing Properties In Event-B 75

of Section 4.3.5. To explain why two disjunctive deadlines do not enforce the desirable

behaviour, in this section, we will go through the refinement process of an abstract

deadline by two disjunctive deadlines, on a same control flow refinement pattern.

Suppose we want to encode timing properties of events A, B3 and B5, as follows:

(4.15a)Deadline(A,B3, t1) ∨Deadline(A,B5, t3)

Where

t1 < t3

To encode these properties in an Event-B model, the required guard on the Tick Tock

event will be as follows, based on the introduced deadline semantics in Section 4.2.3:

(fA = TRUE ∧ fB3 = FALSE⇒ time+ tick ≤ tA+ t1)

∨ (4.16)

(fA = TRUE ∧ fB5 = FALSE⇒ time+ tick ≤ tA+ t3)

A deadline of t3, between event A, as the trigger, and events B3 and B5, as its responses,

as follows:

(4.17)Deadline (A, B3 ∨ B5, t3) ,

Will enforce the following guard, on the Tick Tock event, based on the deadline seman-

tics, explained in Section 4.2.3:

(4.18)fA = TRUE ∧ fB3 = FALSE ∧ fB5 = FALSE ⇒ time+ tick ≤ tA+ t3 .

It is easy to prove that guard (4.17), is logically equivalent to guard (4.18), since t1 < t3.

Accordingly, disjunctive deadlines (4.15a), allow event B3 to occur after time t1 of A

occurrence. As a result, by having two disjunctive deadlines, the expiry property on

event B3 will not be enforced.

In this section some approaches have been introduced in order to refine timing properties,

based on several generic control flow refinement patterns. These patterns do not contain

all the possible cases of refining timing properties, and other possible refinement patterns

are part of the future works.

4.4 Alternative Ways of Encoding a Sequential Control

Flow in Event-B

As explained in Section 4.1, our approach to model timing properties in Event-B, is

based on the assumption, that sequential control flow is encoded by using boolean flags.

76 Chapter 4 Modelling Timing Properties In Event-B

This assumption is the result of our investigation on existing approaches to model a

sequential order in an Event-B model.

The control flow can be presented as sequences of events, or as sequences of states. Since,

Event-B, is an event based method, it is natural to model the control flow, based on the

order of events.

Other than using boolean flags to model the sequential order between trigger events

and their response events, it can be modelled by a set too. It is possible to dedicate a

constant to each event, and declare a set, which is empty in the initialization, and the

occurrence of each event causes its corresponding constant, to be added to that set, as

demonstrated for an order between event A and event B, in Figure 4.16(b). Based on

this approach, if event B has to happen after event A, then event B has to check if the

corresponding constant of event A, has been already added to the set.

EVENT A =̂
WHERE

A = FALSE
GA(c, v)

THEN
A := TRUE
ActA

END
EVENT B =̂

WHERE
A = TRUE
B = FALSE
GB(c, v)

THEN
B := TRUE
ActB

END

(a) Modelling a sequential order
by using boolean flags.

EVENT A =̂
WHERE

A /∈ order
GA(c, v)

THEN
order := order∪{A}
ActA

END
EVENT B =̂

WHERE
A ∈ order
B /∈ order
GB(c, v)

THEN
order := order∪{B}
ActB

END

(b) Modelling a sequential order by
using a set.

Figure 4.16: Two existing approaches to model a sequential order has been
shown for an order between generic events A and B

This approach becomes problematic, during horizontal refinements. If a skip event

is added in a refinement, a new set has to be declared, because it is not possible to

manipulate an abstract variable in a skip event. As shown in Figure 4.17(b) because of

adding a new event (preB), between events A and B, in the refinement, the previous

event occurrence history set (order), has been replaced by a new one (newOrder).

Declaring a new ordering set, requires the modeller to provide the relation between the

abstract ordering set, and the concrete one, for all the possible members of these two

sets. Based on the extent of a refinement, and the number of existing events in the

corresponding machine, this process can be time consuming and impractical.

For a control flow refinement pattern, where the order between events A and B, has

been refined to an order between events A, preB and B, the following gluing invariants

Chapter 4 Modelling Timing Properties In Event-B 77

EVENT A refines A =̂
WHERE

A = FALSE
GA(c, v)

THEN
A := TRUE
ActA

END
EVENT preB =̂

WHERE
A = TRUE
preB = FALSE
GpreB(c, v)

THEN
preB := TRUE
ActpreB

END
EVENT B refines B =̂

WHERE
preB = TRUE
B = FALSE
GB(c, v)

THEN
B := TRUE
ActB

END

(a) Refining a sequential order mod-
elled by boolean flags.

EVENT A refines A =̂
WHERE

A /∈ newOrder
GA(c, v)

THEN
newOrder := newOrder ∪ {A}
ActA

END
EVENT preB =̂

WHERE
A ∈ newOrder
preB /∈ newOrder
GpreB(c, v)

THEN
newOrder := newOrder ∪ {preB}
ActpreB

END
EVENT B refines B =̂

WHERE
preB ∈ newOrder
B /∈ newOrder
GB(c, v)

THEN
newOrder := newOrder ∪ {B}
ActB

END

(b) Refining a sequential order modelled by a set.

Figure 4.17: Effects of adding a skip event in a refinement, to a sequential order,
modelled by using an occurrence history set.

are required, plus the type invariants of the new ordering set (newOrder):

(4.19a)newOrder \ {preB} ⊆ order ,

(4.19b)preB ∈ newOrder ⇒ A ∈ newOrder .

Invariant 4.19a specifies the relation between occurrence of the refining events, and

their abstracts. Whereas invariant 4.19b specifies the order between an occurrence of

new event (preB), and an occurrence of event A. Besides, modeller needs to replace

the abstract ordering set with the new one in the guards and actions of all the refining

events.

On the other hand, based on the boolean flags approach, each flag is independent of the

others, and adding a skip event, or refining an existing one, does not affect others.

By adding a new event, only the immediate neighbours of the new event, in the control

flow sequence, will be affected, since their guard should be changed based on the concrete

order. For the example of Figure 4.17(a), the only required gluing invariant, is as follows:

(4.20)preB = TRUE ⇒ A = TRUE

As shown in these two examples, using a set, in order to model the sequential control

flow of a model, instead of boolean flags, makes horizontal refinements more complex,

since it requires more gluing invariants, to prove the consistency of a refinement.

78 Chapter 4 Modelling Timing Properties In Event-B

Causing fewer changes, during horizontal refinements (since a boolean flag is just shared

between immediate neighbours of a control flow sequence), and requiring fewer gluing

invariants, in order to prove the consistency of a control flow refinement, have convinced

us to assume this approach to encoding timing properties in an Event-B model.

4.5 Achievements

In this chapter three groups of timing properties have been defined, and some constructs

have been introduced to express them. Then the semantics of those timing properties

have been defined, and some patterns to refine them, based on some generic control flow

refinement patterns, have been explained.

In Section 3.12 some of the existing works on modelling real-time systems in Event-B

have been mentioned. Now, based on what has been presented in this chapter, it is

possible to compare them to our approach. The downside of Cansell’s [44] approach is

that it only covers timing properties that force an event to happen in a specific time. So

it is not possible to model different varieties of timing properties (e.g. delay and expiry).

In Bryans’s [37] case study, the value of the activation set for each message acts as an

expiry constraint for the event which represent the normal scenario, and acts as a delay

for the recovery scenario. In the receive on-time event, the guard disables the event if the

value of the current time is greater than the corresponding added value, which represents

the receiving time. On the other hand, the guard of the receive late event disables it if

the current time is less than the added activation time for the corresponding message.

Although this approach covers more timing properties than the Cansell’s [44] approach,

but it is not able to model timing properties, which force events to occur before specific

times (Deadline in our approach). As mentioned in Section 3.1, having hard deadlines

distinguishes safety critical real-time systems. As a result, this approach cannot be used

for modelling and verification of safety critical real-time systems.

None of these works tackle the refinement or decomposition of timing properties. In

Cansell [44] and Bryans [37] works, time and timing properties have been added to a

model as a refinement, but refining the timing properties have not been investigated.

Even though they have not examine the refinement of timing properties, we modelled

several simply case-studies to evaluate the refinement process of timing properties, mod-

elled in these approaches. Based on Cansell’s [44] approach, since a timing property is

modelled by adding and removing an integer to an activation set, after refining it by

several concrete timing properties, in order to discharge the refinement consistency POs,

we have to prove the following properties of the refinement:

• If the abstract activation set is not empty, then the concrete one is not empty,

Chapter 4 Modelling Timing Properties In Event-B 79

• If the abstract and the concrete activation sets are not empty, then the minimum

of the concrete set, is less than or equal to the minimum of the abstract one.

Proving these properties is challenging, and requires several gluing invariants, and some

of them are hard to be specified in a complex system. To demonstrate the problem,

we will go through the refinement of a timing property by two sequential sub-timing

properties in the following.

Assume a trigger event A and its response event B, where B has to happen 10 times-units

after occurrence of A. As shown in Figure 4.18, B has been refined by two sequential

sub-responses, B1 and B2, where B1 has to happen 5 time-units after A, and B2 has to

happen 5 time-units after B1.

EVENT A =̂
WHERE

A = FALSE
THEN

A := TRUE
tA := time
at := at ∪ {time + 10}

END
EVENT B =̂

WHERE
A = TRUE
B = FALSE
time = tA + 10

THEN
B := TRUE
at := at \ {time}

END

EVENT T ick Tock =̂
any

tm
WHERE

tm > time
at 6= ∅⇒ tm ≤ min(at)

THEN
time := tm

END

(a) Events A and B plus their timing properties

EVENT A =̂
WHERE

A = FALSE
THEN

A := TRUE
tA := time
cat := cat ∪ {time+ 5}

END
EVENT B1 =̂

WHERE
A = TRUE
B1 = FALSE
time = tA + 5

THEN
B1 := TRUE
tB1 := time
cat := (cat \ {time})

∪ {time + 5}
END

EVENT B2 =̂
WHERE

B1 = TRUE
B2 = FALSE
time = tB1 + 5

THEN
B2 := TRUE
cat := cat \ {time}

END
EVENT T ick Tock =̂

any
tm

WHERE
tm > time
cat 6= ∅⇒tm ≤ min(cat)

THEN
time := tm

END

(b) The concrete machine.

Figure 4.18: Refining a timing properties to two sequential sub-timing prop-
erties, where timing properties have been enforced based on Cansell’s [44] ap-
proach.

As shown in Figure 4.18(b), the abstract activation-times’ set ac, has been refined by

cat. As a result, the following gluing invariants are required to prove the consistency of

80 Chapter 4 Modelling Timing Properties In Event-B

the timing refinement:

(4.21a)at 6= ∅ ⇒ Cat 6= ∅ ,

(4.21b)Cat 6= ∅ ∧ at 6= ∅ ⇒ min(Cat) = min(at) .

In order to discharge the corresponding POs of invariants (4.21a) and 4.21b, some in-

variants need to be added to the model. These additional invariants are as follows:

(4.22a)A = FALSE ⇒ at = ∅ ,

(4.22b)B = TRUE ⇒ at = ∅ ,

(4.22c)A = TRUE ∧B = FALSE ⇒ at = {tA+ 10} .

Proving the added invariants, to discharge the POs of invariant (4.21b) is not a straight-

forward process. The problematic invariant is (4.22c). In order to prove that the min-

imum of the concrete activation-times is always less than or equal to the abstract one,

we need to specify the exact state of the abstract set, within the duration between the

occurrences of the abstract trigger and response events.

Using the same variable to model all the timing properties of a system has made the

invariants’ proving process more complex. On the other hand, in our approach, each

timing property has its own variables, which are only manipulated by the corresponding

events of that property. As explained in [42], keeping separate structures separate eases

the proof effort.

Assume a model where there are some events which their occurrences change the set of

activation-times, and they can happen between the abstract trigger and response events

non-deterministically, number of possible states for the activation set in this period will

depend on how many of those events exist in the model, and how many alternative

sequences can be assumed for their occurrences.

In Sections 3.5 and 3.9, real-timed CSP and VDM were introduced. Their downside

in comparison to our approach is the lack of tool support for the refinement of timing

properties.

Besides all of these related works, one possible alteration to the approach introduced in

this chapter, is to use the occurrence time variables, instead of boolean flags, to check

whether an event has happened or not. In this way, we set the current time value to 1

in the initialization, and all the occurrence time variables to 0. As a result, time starts

from 1 in the model and goes up, and if an event has not happened yet, its occurrence

time value is 0, otherwise it is greater than 0. For example, how the delay semantics

will be changed based on this approach has been presented in Figure 4.19.

Chapter 4 Modelling Timing Properties In Event-B 81

INVARIANTS
(inv1) tA = 0⇒ tB = 0
(inv2) tB > 0⇒ tB ≥ tA+ t

EVENT A =̂
WHERE

tA = 0
GA(c, v)

THEN
tA := time
ActA

END
EVENT B =̂

WHERE
tA > 0
tB = 0
time ≥ tA + t
GB(c, v)

THEN
tB := time
ActB

END

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
THEN

time := time + tick
END

Figure 4.19: Semantic of a delay property in Event-B, where the occurrence
time variables have been used to detect events’ occurrences.

Since the variable which records the occurrence time of an event is going to be used

to check whether it has happened or not, to model control loops, by the end of each

iteration, all the occurrence time variables should be set to 0. The main advantage of

this approach, is that the semantics of timing properties is based on fewer variables,

which makes it much simpler. This alteration can be investigated as part of future

works.

In the following Chapter, how a timed Event-B model can be decomposed, and some

of the challenges, we were facing during its application, in our case-studies, will be

explained.

Chapter 5

Decomposition of Timed Event-B

Models

As mentioned in Section 2.8.5, one of the approaches to dealing with the complexity of

a system model is decomposition. In this work, we have explored the use of shared-event

decomposition to decompose timed Event-B models, which lets us refine the timing

properties of the resulting sub-components independently.

By decomposing a timed Event-B model, to two sub-components, one representing the

environment, and the other the controller, we will be able to refine the timing properties

of the controller independent from the environment. Since the timing properties will be

decomposed too, the Tick Tock event of the controller, will be much simpler (deadlines’

guards are decomposed). As a result, deadlines’ refinements will be less complex to per-

form. For example, in the automatic gear controller case study, explained in Chapter 7,

Before decomposition, we had 54 deadline guards in the Tick Tock event, but after de-

composing the model to the controller and its environment, the Tick Tock event of the

controller had 21 deadline guards.

Treating both shared variables and shared events, is important in timed Event-B de-

composition, because time is a shared variable and its progress is a shared event. What

we want is a decomposition approach, in which timing properties of each components

can be refined or enhanced independently.

In the following, we discuss how a timed Event-B model can be decomposed.

83

84 Chapter 5 Decomposition of Timed Event-B Models

5.1 Timed Event-B Decomposition Process

In order to decompose a timed Event-B model, some changes, in terms of a refinement,

are required to be applied. What we want to get out of the decomposition, is a set of sub-

components’ timed models, where the progress of time is synchronous, and each model

can be refined independently, and it just includes its corresponding timing properties.

Since there should be no common state variable between the components of a shared-

event decomposition, and the semantics of timing properties is based on state variables,

which keep track of events’ occurrences and their occurrence-times, a timed Event-B

model has to have the following characteristics before the decomposition:

1. For each shared event, there should be a state variable in each component recording

its occurrence,

2. For each shared event, involved in a timing property, there should be a state

variable in each component recording its occurrence time,

3. The current time value, should be available in every component,

4. The corresponding component of each timing property, has to be specified,

5. Each timing property has to be encoded by using the variables of its corresponding

component.

For items 1 and 2, the occurrence flag variable and the occurrence time variable of a

shared event, involved in a timing property, should be replicated as many as the number

of sub-components, sharing that event. Since these variables are modified only by the

shared events, these replication will be a valid refinement. Based on the same principle,

the time variable should be replicated for all the sub-components (item 3).

The owner of a timing property can be specified based on its trigger and response events.

A timing property, belongs to the machine, containing all the events involved in that

timing property (item 4).

Finally to satisfy item 5, in the encoding of each timing property, the replicas of the

current time variable, which belongs to the owner of that timing property has to be used.

Besides, if a shared event is involved in a timing property, the corresponding replica of

its occurrence flag and occurrence time has to be used in the encoding of that timing

property, according to the sub-component it belongs to.

To have a better understanding of the process, we will go through the decomposition

process of a simple example in the following.

Chapter 5 Decomposition of Timed Event-B Models 85

EVENT A =̂
WHERE

fA = FALSE
GA(c, v)

THEN
fA := TRUE
ActA

END

EVENT B =̂
WHERE

fB = FALSE
fA = TRUE
GB(c, v)

THEN
fB := TRUE
ActB

END

EVENT C =̂
WHERE

fC = FALSE
fB = TRUE
GC(c, v)

THEN
fC := TRUE
ActC

END

(a) Events A, B and C, before decomposing machine M.

EVENT A =̂
WHERE

fA = FALSE
GA(c, vM1)

THEN
fA := TRUE
ActA

END

EVENT BM1 =̂
WHERE

fBM1 = FALSE
fA = TRUE
GBM1

(c, vM1)

THEN
fBM1 := TRUE
ActBM1

END

EVENT BM2
=̂

WHERE
fBM2

= FALSE
GBM2

(c, vM2)

THEN
fBM2 := TRUE
ActBM2

END

EVENT C =̂
WHERE

fC = FALSE
fBM2

= TRUE
GC(c, vM2)

THEN
fC := TRUE
ActC

END

(b) Machine M1 in left, and machine M2 in right.

Figure 5.1: Decomposing a machine with three events into two machines.

Assume a machine M with three events A, B and C. As shown in Figure 5.1(a), these

event happen in the same order, they have been introduced. If two deadlines constrain

the occurrence of these events as follows:

(5.1a)Deadline(A,B, x) ,

(5.1b)Deadline(B,C, y) .

In order to decompose M into two machines M1 and M2, where A belongs to M1, C

belongs to M2, and B is the shared event (Figure 5.1(b)), there should be two copies

of the current time, the occurrence flag of event B, and its occurrence time variable

(items 1, 2, and 3).

Based on this decomposition pattern, deadline (5.1a) is the timing property of M1,

because both A and B appear in M1, and deadline (5.1b) belongs to M2, since its events

appear there (item 4). As mentioned before, the Tick Tock event will be shared by all

the sub-components.

According to the semantics of deadline, the corresponding guards of (5.1a) and (5.1b),

before applying the changes required for a decomposition, are as follows:

(5.2a)fA = TRUE ∧ fB = FALSE ⇒ time+ tick ≤ tA+ x ,

(5.2b)fB = TRUE ∧ fC = FALSE ⇒ time+ tick ≤ tB + y .

86 Chapter 5 Decomposition of Timed Event-B Models

After replicating the occurrence flags and occurrence times, based on the ownership of

the timing properties, the deadlines guards will be changed as follows (item 5):

(5.3a)fA = TRUE ∧ fBM1 = FALSE ⇒ timeM1 + tick ≤ tA+ x ,

(5.3b)fBM2 = TRUE ∧ fC = FALSE ⇒ timeM2 + tick ≤ tBM2 + y .

Where BM1 and BM2 are the replicas of event B’s occurrence flag, and BM1t and BM2t

are the replicas of its occurrence time. Besides, timeM1 and timeM2 are replicas of the

current time for each component. By these changes, the Tick Tock event becomes a

parallel composition of two events:

Tick Tock1 || Tick Tock2 =̂

any tick

where

fA = TRUE ∧ fBM1 = FALSE⇒ timeM1 + tick ≤ tA+ x

∧
fBM2 = TRUE ∧ fC = FALSE⇒ timeM2 + tick ≤ tBM2 + y

then

timeM1 := timeM1 + tick || timeM2 := timeM2 + tick

end.

Now this event can be decomposed into M1 and M2 where the corresponding guard of

deadline (5.1a) will appear in the Tick Tock of M1, and the corresponding guard of

deadline (5.1b) will appear in the Tick Tock event of M2.

5.2 The Challenge of Decomposing Timed Control Loops

After decomposing the timed Event-B model of the gear controller case study (Chap-

ter 7), we found out that the approach we used to model a control loop has caused

an undesirable behaviour in the decomposed machines. As mentioned before, in a se-

quential control flow, we use boolean flags, which keep track of events’ occurrences.

Consequently, in a control loop, after each iteration, these flags have to be reset for the

next iteration. We introduced an event, named FINAL, which happens at the end of

each iteration and resets all the flags.

Having the FINAL event, has a disadvantage. In the decomposition, FINAL will be

shared by all the components, since it resets all the existing occurrence flags. Sharing

FINAL event between all the components, means that their reset is synchronous, which

is not necessarily the case.

This is caused because of the way the timing properties are encoded. We need a his-

tory of events’ occurrences to check whether the trigger has happened or not, and if it

Chapter 5 Decomposition of Timed Event-B Models 87

has, whether its response has happened in the specified period of time or not. These

properties have been express through the invariants and guards included in the timing

properties’ semantics. In the controller, the environment’s changes are tracked by some

variables (e.g. boolean flags), but there is no occurrence flag in the real world. As ex-

plained in Section 2.8, in Event-B our intention of modelling is to formalized a system in

which there is a certain piece of software (the final product), as well as its environment.

Besides, as mentioned in Chapter 2, there is no semicolon in Event-B, like other formal

languages such as GCL and action systems, to specify the order of events. As a result

we need occurrence flags to express the order of environment’s events in Event-B.

For example in the automatic gear controller case study (Chapter 7), in response to a

gear change request the clutch may be opened to release the currently engaged gear.

Based on the mechanic of the clutch, it takes some specific period of time for it to be

opened. This continues process has to be modelled by two events in a discrete modelling

enviornment such as Event-B, one representing the beginning of the process, and one

the end of it. As a result, to model the order of events and their timing properties, there

should be a mechanism to keep track of the occurred events during a gear changing

process.

Based on what has been explained, the occurrence flags of the environment’s events are

the means of modelling. So the FINAL event in an Event-B model of environment is

not a representation of a real world event, and its synchronization with the FINAL

event in the controller, is just the consequence of how the order of events is modelled in

Event-B.

But if we do not want to have this synchronization between the FINAL events, breaking

it before the decomposition, can solve the problem. In this approach, before decomposing

the model, based on the propagation pattern of the events among the decomposed

components, the FINAL event will be broken, in order to have an independent reset

event for each component after the decomposition. To do that, the occurrence flags

needs to be replicated. In the following, we will go through this process for the example

of Figure 5.2.

Figure 5.2: Sequence of four events in a loop, modelled by resetting the occur-

rence flags at the end of each iteration by occurrence of the FINAL event.

88 Chapter 5 Decomposition of Timed Event-B Models

As shown in Figure 5.2, the most concrete model has five events, A, B, C, D and FINAL,

which happen in the same order in each iteration. As explained before, based on the

approach we use to model the control flow of the events, each of them will have a boolean

occurrence flag (except the FINAL event), which has to be reset by the FINAL event at

the end of each iteration (Figure 5.3).

EVENT FINAL =̂

WHERE

fD = TRUE

THEN

fA := FALSE

fB := FALSE

fC := FALSE

fD := FALSE

END

Figure 5.3: Semantic of a delay property in Event-B.

If we want to decompose the model into two components, M1 and M2, where event A

belongs to M1 and event C belongs to M2, and events B and D are shared, the boolean

flags will be refined as follows:

• Event A occurrence flag will be replaced by a new occurrence flag A1,

• Event B occurrence flag will be replaced by two new occurrence flags B1 and B2,

• Event C occurrence flag will be replaced by a new occurrence flag C2,

• Event D occurrence flag will be replaced by two new occurrence flags D1 and D2.

Based on these changes the reset event can be broken into two independent resetting

events. As shown in Figure 5.4, event FINAL1 resets the occurrence flags of M1’s events,

and event FINAL2 does it for the events of M2.

EVENT FINAL1

refines FINAL =̂

WHERE

fD1 = TRUE

THEN

fA1 := FALSE

fB1 := FALSE

fD1 := FALSE

END

EVENT FINAL2 =̂

WHERE

fD2 = TRUE

THEN

fB2 := FALSE

fC2 := FALSE

fD2 := FALSE

END

Figure 5.4: Breaking the FINAL event into two sub-resetting events.

In this example, we assumed that the abstract FINAL event will be refined by FINAL1.

Based on this refinement pattern, the required gluing invariants to prove its consistency

Chapter 5 Decomposition of Timed Event-B Models 89

are as follows:

(5.4a)fA = fA1 ,

(5.4b)fD = fD1 ,

(5.4c)fB = fB1 ,

(5.4d)fB2 = TRUE ∧ fC2 = FALSE ⇒ fB = TRUE ,

(5.4e)fD2 = TRUE ⇒ fC2 = TRUE ,

(5.4f)fD1 = TRUE ∧ fD2 = FALSE ⇒ fB2 = FALSE ,

(5.4g)fB2 = TRUE ∧ fC2 = FALSE ⇒ fC = FALSE ,

(5.4h)fC2 = TRUE ∧ fD2 = FALSE ⇒ fC = TRUE ,

(5.4i)fC2 = TRUE ⇒ fB2 = TRUE .

Factors such as the FINAL event’s refinement pattern, the control-flow of the events, and

the decomposition pattern, affect the required gluing invariants to prove the consistency

of breaking the FINAL event. Because of the number of factors influencing the process,

it is not possible to introduce some specific patterns for the required gluing invariants,

in order to mechanize this process.

For the Event-B model of the simple example we explained above, 20 POs were generated

for the abstract machine, and 49 POs for the refining machine in the Rodin tool-set,

which all have been discharged automatically. But the most challenging part was coming

up with the gluing invariants, which was only possible by simulating the model, and

tracing the changes of abstract flags in respect to their concrete ones.

Since breaking the FINAL event manually, is a complex process, which requires a consid-

erable amount of effort for a real-size model, not being able to atomize it, is a considerable

disadvantage.

In this chapter the required pre-steps of decomposing a timed Event-B model has been

explained and demonstrated. Besides, the issue of decomposing a control loop was

discussed and some possible solutions, accompanied by their advantages and disadvan-

tages have been explained. By supporting the decomposition feature of Event-B by

the introduced timing properties semantics, we can decomposed the controller from its

environment, and then add the timing properties of its implementation independently.

Decomposing the timing properties of a model, decreases the its complexity consider-

able, and makes it much easier to be refined. As mentioned before, usually we have

deadlines and expiries in the more abstract models, and delays are introduced in the

more concrete models, where there is no more horizontal refinement to do. Besides as

it will be discussed in Chapter 6, composition of timing properties may cause deadlock.

By decomposing the controller from its environment and then introducing the delay

90 Chapter 5 Decomposition of Timed Event-B Models

properties, investigating the effects of timing properties on events’ enableness will be

less complex to perform.

In the next chapter, the effect of the timing properties of a machine, on its events’

enableness will be investigated.

Chapter 6

Enableness of Response Events

and the Tick Tock Event

In this chapter, we introduce an approach to verify two important properties of a timed

Event-B model. These two properties are as follows:

P1. Adding timing properties still allows a response event to occur, at least for a certain

period of time,

P2. Time is not prevented from progressing indefinitely.

It is trivial to consider that an untimed Event-B model S is refined by its timed one as

follows:

S v tS

skip v Tick Tock (6.1)

Where tS represents the events of S plus the corresponding guards and actions of its

timing properties based on their semantics. So by checking the above properties for a

timed Event-B model, we are actually verifying the enableness preservation in refine-

ment, where the refinement is adding the timing properties. By adding timing properties

we are strengthening the guards which can cause a deadlock.

6.1 Effects of Isolated Timing Properties

In order to verify P1 and P2, we have made another assumption about the enableness of

a trigger-response pattern. We are assuming that in S (the untimed Event-B model of

a system), if a trigger event has happened, at least one of its responses will be enabled

eventually.

91

92 Chapter 6 Enableness of Response Events and the Tick Tock Event

Figure 6.1: Indirect triggering state diagram.

Assume a trigger event A and its response event B. Either A enables B directly, in which

B will be enabled immediately after the occurrence of A:

(6.2)A ∧ ¬B ⇒ gd(B) ,

Or the enabling relation between the trigger and its response events is transitive. In the

later case, there are finite possible sequences of intermediate events, which eventually

enable B, as shown in Figure 6.1.

So, for a set of intermediate events C1..Cn, ensuring the eventual enabling of response

event B can be formulated as follows:

(6.3a)A ∧ ¬B ⇒ gd(C1) ∨ .. ∨ gd(Cn) ∨ gd(B) ,

(6.3b)C1..Cn are convergent .

We are assuming that Predicate (6.3a) has already been verified, and the convergence

of the intermediate events means that eventually there will be no enabled intermediate

event. As a result, based on Predicates (6.3a) and (6.3b), after occurrence of A, if B has

not happened yet, eventually B will become enabled

(6.4)AG(A→ AF (gd(B))) .

More information about convergence in Event-B can be found in [13].

By this assumption, a deadline by itself does not violate any of P1 or P2. First of all,

the added guard of a deadline, will be on the Tick Tock event, so it will not affect the

enableness of the response events (P1). Secondly, there will be an enabled response to

satisfy the deadline’s guard, and enable the progress of time (P2).

Figure 6.2: Deadline enableness diagram.

Chapter 6 Enableness of Response Events and the Tick Tock Event 93

In the case of a delay, the response event will be guarded, but the Tick Tock event is

unguarded (P2). So, eventually the delay guard will be satisfied by the progress of time

and the response event will be enabled (P1).

Figure 6.3: Delay enableness diagram.

Similar to a delay, an expiry will just guard the response event (P2), and even if its

duration is zero, the response event will have the chance to happen at the same time as

the trigger event (P1).

Figure 6.4: Expiry enableness diagram.

The combination of a delay and an expiry can violate P1, and combinations of a deadline

with either of delay or expiry can violate P2. In the following we will go through these

two cases.

The semantics of timing properties, introduced in Section 4.2, does not support having

timing properties on a response event, which are triggered by alternative events. As

mentioned, some of the invariants in the semantics of delay, deadline, and expiry express

the order between the trigger event and its responses. Based on them if the trigger

event has not happened, then none of its responses have happened neither. If we have

alternative triggers, then this property will not hold anymore, and without it the POs

of other invariants of timing properties’ semantics cannot be discharged (e.g. check the

proof of inv2 for event A in Section 4.2.1).

Besides there is no condition on the guards of delay and expiry, to check whether the

trigger event has happened or not. It is assumed that the trigger always happens before

its response. As it will be explained in Chapter 8, in parametrized timing properties, the

guards of delays and expiries are conditioned, since a timing property may just include

some of the possible parameters of its trigger event.

In general, the timing properties of a response event may have different trigger events,

but they should not be alternative, and the response event should only be enabled, if all

of its timing properties’ trigger events have already happened. If there are alternative

94 Chapter 6 Enableness of Response Events and the Tick Tock Event

Figure 6.5: How to model alternative trigger events in Event-B (event traces
diagram).

trigger events in a system, it can be modelled by duplicating the response event for each

alternative trigger event, as shown in Figure 6.5.

If the timing properties of a response event are triggered by different events, it should be

possible to specify the relation of their occurrence times, based on the timing properties

of the system. Otherwise, the enableness preservation cannot be checked, since the

duration in which a timing property will be satisfied, can be specified based on the

occurrence-time of its trigger event. As a result, if the relation between the occurrence-

times of the trigger events of two timing properties cannot be specified, the duration in

which both of them are satisfied cannot be specified.

Assume a model with the following timing properties on its events:

(6.5a)Delay(A,C, t1) ,

(6.5b)Expiry(B,C, t2) .

Based on delay (6.5a), event C is enabled if at least t1 time-units have passed from the

occurrence of A. Whereas based on expiry (6.5b), event C will not be enabled if at least

t2 time-units have passed from the occurrence of B.

Figure 6.6: A response event which is constrained by timing properties based

on different trigger events.

As shown in Figure 6.6, if we cannot specify the relation between occurrence times of

A and B, it will not be possible to determine if the enableness durations of (6.5a) and

Chapter 6 Enableness of Response Events and the Tick Tock Event 95

(6.5b) overlap or not. So it will not be possible to check whether event C will have the

chance to happen or not.

To simplify the problem, each combination of timing properties, investigated in this

chapter, will be based on the same trigger event.

6.2 Timing Properties Combination to Disable an Event

indefinitely

If a response event is constrained by a delay and an expiry, a guard will be added to

it, for each of those properties. If the enableness duration of the delay does not have

any overlap with the enableness duration of the expiry, the response event will have no

chance of occurrence.

Imagine a trigger event A and a response event B, constrained by a delay of t1 duration

and an expiry of t2 duration. The enableness duration of B based on these two timing

properties will be as follows:

To verify whether response event B will have the chance to happen based on these timing

properties, the model should satisfy the following predicate:

(6.6)∃ t · tA+ t1 ≤ t ≤ tA+ t2

Predicate (6.6) checks whether, there is an overlap between the enableness duration of

two timing properties. In this predicate tA is the integer variable which records the

occurrence time of event A (trigger). This predicate can be simplified as follows:

(6.7)t1 ≤ t2

Based on (6.7) in the case of a delay and an expiry on a response event, from the same

trigger event, the delay period should be less than or equal to the expiry duration.

In our case-studies, these types of properties have been expressed in terms of axioms in

the context, because they specify the properties of timing properties’ duration, which

are all constants.

96 Chapter 6 Enableness of Response Events and the Tick Tock Event

6.3 Time Progress Enableness

A badly specified deadline can disable the Tick Tock event forever. To prevent this, by

the end of each deadline, at least one of its response events should be enabled, if none

of them has already happened.

In this section, some approaches will be introduced to detect whether a deadline will be

satisfied or not. Our work in time progress enableness has been inspired by deadlock

freedom proof obligation by Abrial [13] which has been explained in Section 2.8.4.4.

6.3.1 A Deadline and an Expiry on a Response Event

The only sensible scenario where, a response event is constrained by a deadline and an

expiry is when that deadline is based on several response events. Otherwise, either the

deadline duration (d) should be within the expiry duration (e), which makes the expiry

useless since the response event always happens before it has been expired,

or the expiry duration ends before the deadline duration (e < d),

A ∧ ¬ B ∧ time > tA+ e ⇒ ¬ gd(B) (6.8)

where the expiry can be passed before the occurrence of response event B, and disables

it forever (gd(X) represents the guards of event X).

A ∧ ¬ B ∧ time = tA+ d ⇒ ¬gd(Tick Tock) (6.9)

As shown in (6.9), since the only response event has been disabled by its expiry (shown

in (6.8)), when the current time gets to the end of the deadline duration, the Tick Tock

event will be disabled forever.

Chapter 6 Enableness of Response Events and the Tick Tock Event 97

A practical combination of expiry and deadline, is when the deadline has several alter-

native responses, and some of them will be expired after sometimes. So some possible

responses will be eliminated by the progress of time. In this case, the expiries have

shorter durations than the deadline.

6.3.2 A Delay and a Deadline on a Response Event

If a response event B has been constrained by a deadline (t1), and a delay (t2), from an

occurrence of a trigger event A, and the deadline does not have any alternative responses,

the Tick Tock event and B will be constrained as follows:

(6.10a)A ∧ ¬ B ∧ time = tA+ t1 ⇒ ¬ gd(Tick Tock) ,

(6.10b)A ∧ time < tA+ t2 ⇒ ¬ gd(B) .

Based on (6.10a) if B has not happened and the deadline duration has ended, then the

Tick Tock event is disabled. On the other hand, because of constraint (6.10b), if the

delay duration has not passed yet, then B is not enabled.

Figure 6.7: Combination of a deadline and a delay.

For event B to happen, the Tick Tock event has to be enabled in order to progress the

time, and eventually satisfy its delay:

(6.11)A ∧ time < tA+ t2 ⇒ time < tA+ t1 .

Predicate (6.11) can be rewritten as follow:

A ⇒ tA+ t2 ≤ time ∨ time < tA+ t1 (6.12)

Which follows from:

t2 ≤ t1 (6.13)

As a result, the delay duration has to end before the deadline. Even, if the deadline has

alternative responses, having a delay longer than a deadline on a response event, makes

that response useless in the deadline, since it will be disabled throughout the deadline

duration.

98 Chapter 6 Enableness of Response Events and the Tick Tock Event

6.3.3 Deadline Deadlock Freedom

A generic deadline Deadline(A,B1 ∨ ..∨Bn, t), prevents the progress of time, if none of

its response events have happened by the end of the deadline duration,

A ∧ ¬ B1 ∧ .. ∧ ¬ Bn ∧ time = tA+ t⇒ ¬ gd(Tick Tock). (6.14)

For the Tick Tock event to be eventually enabled again, at least one of the response

events has to be enabled. So we need to be sure that the other timing properties of the

response events do not affect this property (delay and expiry). Based on what has been

explained in Sections 6.3.1 and 6.3.2 the following properties can be concluded:

DF1. The response event of a deadline which does not have alternative responses, should

not be constrained by an expiry,

DF2. The response events of a deadline should not be constrained by delays, longer than

the deadline.

The satisfaction of DF1 for a deadline between a trigger event A and a response event

B, can be checked by a deadlock freedom proof obligation as follow:

time ≤ tA+ t ∧ A ∧ ¬B⇒ gd(B) (6.15)

Discharging proof obligation 6.15 for the Tick Tock event, does not guarantee that the

only response event of a deadline has not constrained by an expiry, but it will show that

the deadline is satisfiable, and the timing progress will not be indefinitely disabled by

it.

DF2 can be forced by having axiom (6.13), for every combination of a delay and a

deadline. So, if the durations of all the combined delays and deadlines, satisfy (6.13),

then the model holds DF2.

In general, whether a generic deadline, such as the one introduced in the beginning of the

section, disables the progress of time indefinitely or not, can be checked by the following

deadlock freedom proof obligation:

(6.16)time ≤ tA+ t ∧ A∧ ¬ B1 ∧ ..∧ ¬ Bn ⇒ gd(B1) ∨ .. ∨ gd(Bn)

But proof obligation 6.16 can be very complex and hard to be discharged. So, a more

practical approach to tackle the enableness issue, is to enforce the introduced properties,

which guarantee the eventual progress of time in the model.

In the following we will go through an example to demonstrate how PO (6.16) can be

used. Assume a trigger event A and its response event B as follows:

Chapter 6 Enableness of Response Events and the Tick Tock Event 99

TIMING

Delay(A,B, t1)

Deadline(A,B, t2)

Where t1 > t2

EVENT A =̂

WHERE

fA = FALSE

THEN

fA := TRUE

END

EVENT B =̂

WHERE

fA = TRUE

fB = FALSE

THEN

fB := TRUE

END

(a) Events A and B plus a deadline

and a delay.

INVARIANTS

(inv1) ¬fA⇒¬fB
(inv2) fB⇒ tB ≥ tA + t1

(inv3) fA∧¬fB⇒ time ≤ tA+ t2

(inv4) fB⇒ tB ≤ tA + t2

EVENT A =̂

WHERE

fA = FALSE

THEN

fA := TRUE

tA := time

END

EVENT B =̂

WHERE

fA = TRUE

fB = FALSE

time ≥ tA + t1

THEN

fB := TRUE

tB := time

END

EVENT T ick Tock =̂

any

tick

WHERE

tick > 0

fA = TRUE∧
fB = FALSE⇒
time + tick ≤ tA + t2

THEN

time := time + tick

END

(b) Encoded delay and deadline for events A and B.

Figure 6.8: Trigger event A and its response event B, plus their timing proper-

ties

Since the delay duration is longer than the deadline of B (t1 > t2), this combination of

timing properties will cause a deadlock. So we should not be able to discharge PO (6.16)

for this model.

Axioms and theorems

Invariants and theorems

`
time ≤ tA + t2 ∧ fA = TRUE ∧
fB = FALSE ⇒ gd(B)

(Deduction)

time ≤ tA + t2

fA = TRUE

fB = FALSE

t1 > t2

`
fA = TRUE ∧ fB = FALSE ∧
time ≥ tA + t1

(Deduction)

time ≤ tA + t2

t1 > t2

`
time ≥ tA + t1

⊥

As shown in the above proof, since the PO (6.16) cannot be discharged for this model,

it is guaranteed that this combination of timing properties has caused a deadlock in our

example.

6.4 Strengthening Timing Properties

In the refinement patterns, introduced in Section 4.3, the abstract timing properties

are replaced by the concrete ones. But this is not always the case, sometimes in a

100 Chapter 6 Enableness of Response Events and the Tick Tock Event

refinement, we are just adding some new timing properties in order to strengthen the

timing properties of a model.

These new timing properties may describe the properties of a new behaviour, added in

the refinement, or they may be hidden in the abstraction. Based on our experience,

delays are usually hidden in the abstraction and they will be added to a model, when it

includes the detailed behaviour of the corresponding system.

The same principle applies to the expiries, which strengthen the control flow of some

alternative responses. By adding this type of expiries, we do not want to prove a timing

refinement’s consistency, such as asymmetric alternatives, explained in Section 4.3.5,

but we are presenting a more concrete control flow of the events.

These new timing properties, added to a model, may affect the enableness of the events,

because of the possible conflicts they may have with the existing abstract timing prop-

erties. As a result, the approaches explained in this chapter have to be applied on them,

in order to guarantee the satisfaction of P1 and P2.

In the following chapter, how the approaches, we have explained so far, is used to add

timing specification to an automatic gear controller case study, will be discussed.

Chapter 7

Modelling a Gear Controller

In order to check the practicality of our approach, an automatic gear controller system

with several timing properties has been chosen to be model, based on what has been

discussed in Chapter 4. The gear controller case study has been chosen from the UP-

PAAL official website [10]. The goal of modelling and verifying this case study, is to

investigate the convenience of the Event-B refinement feature, in terms of modelling a

real-time system. This experience helped us to enrich our refinement patterns and the

semantics of deadline, delay, and expiry.

In the following sections, first the system requirements of the case study will be outlined,

then our approach to model the system in Event-B, will be discussed in details. The

complete Event-B model of the case study is available in Appendix A.1. In the end, how

it has been modelled in UPPAAL will be explained briefly.

7.1 Gear Controller Specification

The system specification, presented in this section, is mostly based on the Lindahl etc.

paper [87] on modelling and analysing a gear controller in UPPAAL. So, it will not be

referenced further.

Some parts of the system specification, have been generalized based on our expectations

of the case study. For example, instead of having specific values for the durations of

timing properties, we just have some constants, representing the durations, and some

axioms, defining their relations. In this way, the model is more generic, in a sense that

it covers all the possible values of the timing properties’ durations, which satisfy those

axioms.

The gear controller interacts with four components of a car: the gearbox, the clutch, the

engine, and the user-interface. The gear controller is responsible for synchronization of

101

102 Chapter 7 Modelling a Gear Controller

these components, in order to set or release a gear, without causing any damage. The

interactions between these components and the gear controller, happen through the car

communication network, which is assumed fault free. This communication process has

been modelled in terms of synchronous Channels in the UPPAAL model. But in our

model, they will be asynchronous, since realistically, these components are connected

through a communication system, which has its own delays (e.g. transfer delay).

A brief explanation of each component’s functionality, will be given in the following

paragraphs.

Interface

The interface is responsible for receiving the user’s requests. Its user can be a driver or

any component which implements the gear changing algorithm. The interface can only

receive a new service request, when the previous requested service has been delivered

successfully.

Gearbox

The considered gearbox is an electric one, with an electric controller. It sets a gear in 100

to 300 ms, and releases the currently engaged gear in 100 to 200 ms. If either of these

two processes, takes more than the specified time, the gearbox will stop its operation,

and will go to an unrecoverable error state.

Clutch

In this case-study, we have an electrically controlled clutch. It can be opened/closed in

100 to 150 ms, and if either of these two processes, takes more than 150 ms, the clutch

will go to an unrecoverable error state.

Engine

The engine has the following operating modes:

• Zero Torque Difference mode is when the engine, and the gearbox have the

same torque,

• Synchronous Speed mode is when the engine, and the gearbox have the same

speed,

• Normal Torque mode is the normal mode, when the engine has the specified

torque by the driver. This mode exists in the UPPAAL model, but since its

accomplishment, is not part of the gear changing process (not required), and it is

part of the detailed behaviour of the engine, it has been excluded (abstracted), in

our Event-B model.

As for the other components, there are some time properties on the accomplishment of

the engine’s operation modes. The maximum acceptable latency to accomplish a zero

Chapter 7 Modelling a Gear Controller 103

Figure 7.1: Interactions Between Gear Controller Components

torque difference is 400ms, and this duration is 200ms for the speed synchronization

process, otherwise the process will be aborted.

Gear Controller

When the gear controller receives a request from the interface, it tries to accomplish the

service (changing the gear), in four steps. Those steps are as follows:

1. Gaining the zero torque difference between the engine, and the gearbox,

2. Releasing the currently engaged gear,

3. Gaining the synchronous speed between the engine, and the gearbox,

4. Setting the requested gear.

After setting the requested gear, system is ready to receive the next request. These steps

are required to accomplish a gear-change, in a normal situation. In difficult situations,

the engine may not gain the zero-torque difference, or the synchronous speed, in time.

This internal fault of the system can be overcome by opening the clutch. Opening the

clutch disengages the engine from the gearbox, and makes it possible to release the cur-

rent gear or set the requested gear, without gaining the zero torque or the synchronous

speed. In this case closing the clutch will safely bridge the speed, and the torque differ-

ence, between the gearbox and the engine. So, there are some levels of fault tolerance

in this system.

Figure 7.1 shows how the concerned components, interact with each others during the

gear-changing process.

104 Chapter 7 Modelling a Gear Controller

This section aimed to explain the functionality of the four effective components, in the

process of changing the currently engaged gear, to the requested one. In the following,

the requirements of the gear controller system, will be presented.

7.1.1 System Requirements

In this section, the requirements of the gear controller case-study, will be discussed in five

categorizes, performance requirements, functional requirements, error detection require-

ments, and the environment assumptions. Since, timing properties play an important

role in synchronization, and error detection in this system, many of the requirements

focus on them.

7.1.1.1 Performance

These requirements, specify the tolerable latencies of the system’s responses.

P1. The gear change request should be responded within 1.5 second either by accom-

plishment of the requested gear or occurrence of an unrecoverable error,

P2. The controller should be deadlock free,

P3. The controller has to ask for an opened clutch, if the zero torque difference has

not been gained by the engine, within 255 ms,

P4. The controller has to ask the clutch to be opened, if the speed synchronization has

not been provided by the engine within 155 ms.

7.1.1.2 Functionality

The following requirements aim to specify the desirable functionality of the gear con-

troller system.

F1. It should be possible to set any requested gear, unless an unrecoverable error has

happened,

F2. There are three gear changing scenarios:

Changing from the neutral gear,

Changing to the neutral gear,

Changing an engaged gear to another,

F3. To change the gear, first the currently engaged gear should be released, unless the

gear is neutral,

Chapter 7 Modelling a Gear Controller 105

F4. To change the gear, the requested gear should be set after releasing the current

gear, unless the neutral gear is requested,

F5. To release the currently engaged gear, a zero torque difference between the engine

and the gear box should be gained,

F6. To set the requested gear, the speed of the gearbox and the engine should be

synchronized,

F7. Clutch may be used to set or release gears,

F8. By Opening the clutch, there is no need to have a zero torque difference between

the engine and the gearbox, to release the currently engaged gear,

F9. By Opening the clutch, there is no need to have a synchronous speed between the

engine and the gearbox, in order to set the requested gear,

7.1.1.3 Error Detection

These requirements specify the unrecoverable error states, which may happen in the

controller during the gear changing process.

E1. If opening the clutch has not been accomplished within 200ms,

E2. If releasing the current gear has not been accomplished within 250ms,

E3. If setting the requested gear has not been accomplished within 350ms,

E4. If closing the clutch has not been accomplished within 200ms.

7.1.1.4 Environment Assumptions

These assumptions specify the behaviour of the gear controller’s environment and its

properties. These assumptions are critical in developing the right controller.

The Engine Assumptions:

EA1. It should be possible to use the engine, to gain the synchronous speed between the

engine and the gearbox,

EA2. It should be possible to use the engine, to gain the zero torque difference between

the engine and the gearbox,

The Gearbox Assumptions:

106 Chapter 7 Modelling a Gear Controller

EA3. It should be possible to use the gearbox, in order to set or release a gear, unless

an unrecoverable error has happened in the gearbox,

EA4. When gearbox has not been successful to set the gear within 300ms, it goes to an

unrecoverable error state,

EA5. When gearbox has not been successful to release the gear within 200ms, it goes to

an unrecoverable error state,

The Clutch Assumptions:

EA6. It should be possible to open or close the clutch, unless the clutch reaches an

unrecoverable error state,

EA7. When clutch has not been opened within 150ms, it goes to an unrecoverable error

state,

EA8. When clutch has not been closed within 150ms, it goes to an unrecoverable error

state.

In this case study, to generalize the model, symbolic values have been used for the timing

properties’ durations. As the result, the timing properties’ durations are constants which

their relations have been specified in terms of axioms. Table 7.1 presents the constant,

we have used in our model.

Constant Description Component

ChangeDL Deadline duration for responding a

gear change request

Controller

S FN Deadline duration for accomplishing

the setting step (changing from the

neutral)

Controller

R NN Deadline duration for accomplishing

the releasing step (changing from a

gear to another)

Controller

S NN Deadline duration for accomplishing

the setting step (changing from a gear

to another)

Controller

S NN RC Deadline duration for accomplishing

the setting step when the clutch is open

(changing from a gear to another)

Controller

R TN Deadline duration for accomplishing

the releasing step (changing to the neu-

tral)

Controller

Chapter 7 Modelling a Gear Controller 107

R NN EX Expiry duration for accomplishing re-

leasing step, without penning the

clutch (changing from a gear to an-

other)

Controller

SyncOpen DL Deadline duration for gaining the sync

speed or opening the clutch

Controller

Sync EX Expiry duration for gaining the sync

speed

Controller

SetGear DL Deadline duration for setting the re-

quested gear or an error occurrence

Controller

CloseClutch DL Deadline duration for closing the clutch

or an error occurrence

Controller

ZeroOpen DL Deadline duration for gaining the zero-

torque or opening the clutch

Controller

Zero EX Expiry duration for gaining the zero-

torque

Controller

Release DL Deadline duration for releasing the cur-

rent gear or an error occurrence

Controller

OpenClutch Sync DE Delay duration of asking for an open

clutch, instead of the sync speed

Controller

OpenClutch Zero DE Delay duration for asking an open

clutch instead of the zero-torque

Controller

Sync DL Deadline duration for synchronizing

the speed or asking for an open clutch

Controller

Zero DL Deadline duration for gaining the zero-

torque difference or asking for an open

clutch

Controller

OpenClutch DL Deadline duration for the opening the

clutch or an error occurrence

Controller

Channel DL Deadline duration of transferring mes-

sages through the communication sys-

tem

Channel

Enigne Sync DL Deadline duration for synchronizing

the speed or giving up

Engine

Enigne Zero DL Deadline duration for gaining zero-

torque difference or giving up

Engine

Clutch Open DL Deadline duration for opening the

clutch or an error occurrence

Clutch

Clutch Close DL Deadline duration for closing the clutch

or an error occurrence

Clutch

108 Chapter 7 Modelling a Gear Controller

Gear Set DL Deadline duration for setting a gear or

an error occurrence

Gearbox

Gear Release DL Deadline duration for releasing a gear

or an error occurrence

Gearbox

Table 7.1: The constants, used as the timing properties’ durations of the gear
controller case-study.

In this section, the system requirements of the gear-controller system have been ex-

plained.

7.1.2 Refinement Strategy

So far the requirements of the case-study have been introduced. In this section our

strategy of including those requirements in the model, step by step, by each refinement

will be explained.

In the most abstract level, P1, F1 have been included, by having three events, repre-

senting the request, successful change, and error occurrence, plus their timing property.

The first refinement adds F2 to the model by adding the three possible changing sce-

narios. The second refinement introduced the use of clutch which covers F7. The third

refinement adds F3, F4 , and F7 by introducing the required steps to respond a change

for each scenario (F2). In the fourth refinements the timing properties of the required

steps, replaces the abstract ones. The fifth, the sixth, the seventh, and the eighth re-

finements add P3, P4, F5, F6, F8, F9, and the error detection requirements explained

in Section 7.1.1.3 to the model, for all the introduced changing scenarios in F2. By the

ninth refinement, all the environment assumptions introduced in Section 7.1.1.4 have

been included in the model by adding the clutch, gear, and the engine events to the

model. As it will be explained in Section 7.2.11, the last refinement has been dedicated

to provide the required changes, before the decomposition.

The deadlock freeness (exP2) has been checked in the untimed model, by using the

model checker in Rodin tool-set, and then in the timed model based on what has been

explained in Chapter 6, some axioms have been declared on timing properties duration,

which guarantee the satisfaction of enableness properties P1 and P1.

In the following we will go through the stepwise process of modelling, and verifying the

gear-controller system in Event-B.

Chapter 7 Modelling a Gear Controller 109

7.2 Event-B Model of The Gear Controller

The first thing to do in order to model the gear-controller system, is to decide on the

scope of the most abstract machine. Then in each refinement we have to decide on

the details, we want to add to the model. The timed gear controller system has been

modelled in 10 levels of abstraction in Event-B.

In the following, the stepwise process of modelling the gear controller system and its

timing properties, in Event-B, based on the approaches introduced in Chapter 4, will be

explained.

7.2.1 The Most Abstract Machine and Context

In the most abstract machine, the main functionality of the gear controller, which is

responding to a gear change request, has been modelled by three events. The Request

event represents the occurrence of a gear change request, the Response event represents

the successful accomplishment of a change, and the Error event represents the occurrence

of an unrecoverable error, during the response process.

Figure 7.2: The most abstract machine

As shown in Figure 7.2, there is a non-deterministic choice between the successful and

unsuccessful responses. In the timed model, there is a deadline on successful and unsuc-

cessful events, from the occurrence of the request event, as follows:

Deadline(Request, Response ∨ Error, ChangingDL) (7.1)

Where ChangingDL is a constant, representing the possible durations of the deadline.

This timing property specifies the maximum acceptable latency to respond to a gear

change request.

110 Chapter 7 Modelling a Gear Controller

In order to give an idea of a typical Event-B machine, and how the most abstract model

has been constructed in this study, the most abstract machine and context of the gear

controller system, is presented in the following:

An Event-B Specification of c0

Creation Date: 12Jul2012 @ 00:45:52 PM

CONTEXT c0

CONSTANTS

ChangeDL
AXIOMS

axm1 : ChangeDL > 0
END

An Event-B Specification of m0

Creation Date: 5Jul2012 @ 04:33:34 PM

MACHINE m0

VARIABLES

Request

Response

Error
INVARIANTS

inv1 : Request ∈ BOOL
inv2 : Error ∈ BOOL
inv3 : Response ∈ BOOL

TIMING

tim1 : Deadline(Request,Response ∨ Error, ChangingDL)

EVENTS

Initialisation

begin

act1 : Error := FALSE

act2 : Request := FALSE

act3 : Response := FALSE
end

Event Request =̂

when

Chapter 7 Modelling a Gear Controller 111

grd1 : Request = FALSE
then

act1 : Request := TRUE
end

Event Response =̂

when

grd1 : Request = TRUE

grd2 : Error = FALSE

grd3 : Response = FALSE
then

act1 : Response := TRUE
end

Event Error =̂

when

grd1 : Error = FALSE

grd2 : Request = TRUE

grd3 : Response = FALSE
then

act1 : Error := TRUE
end

Event FINAL =̂

when

grd1 : Response = TRUE
then

act1 : Request := FALSE

act2 : Response := FALSE
end

END

Axiom axm1 in the context, which expresses a deadline duration greater than zero, is

not required for the proofs. It has been added, because it is a property of the system.

As shown, beside the INITIALISATION event, which specifies the initial values of

the system state variables, and the FINAL event, which resets the occurrence flags, if a

request has been responded successfully, there are 3 other events, which model the most

abstract transitions, between different states of the gear controller, in order to gain the

requested gear.

The main reason, to have a separate event to reset the flags and not to do it in the

response event (as the last event of each iteration), is the deadline semantics. As ex-

plained in Section 4.2.3, based on deadline semantics, the response event has to have

112 Chapter 7 Modelling a Gear Controller

an occurrence flag to define the guard of the Tick Tock event. Since it is not possible

to reset the flags, in an event which itself has a flag, we need to have a separate event

to do it. Besides, as Salehi’s work [61] shows, by resetting the occurrence flags in the

last event of an iteration, if later on that event is refined by several alternative events,

the resetting actions has to be repeated in each of them, which can cause redundancy.

As a result, we suggest a separate event for this mean. But, this event has not been

considered as a part of timing properties’ semantics, because it is an order related event.

7.2.2 The Second Level of Abstraction

In this level of abstraction, the three possible scenarios of changing a gear have been

introduced. Consequently the abstract deadline has been refined by three alternative

concrete deadlines, based on the approach explained in Section 4.3.4 (refining an abstract

deadline by alternative concrete deadlines).

These three scenarios are based on whether the currently engaged gear, or the requested

gear, are neutral. As mentioned before, in order to change the gear, first the currently

engaged gear should be released, and then the requested one has to be engaged. If no

gear is engaged currently (neutral), the releasing step will be irrelevant. If the neutral

gear is requested, then just by releasing the currently engaged gear, the request has

been satisfied. As show in Figure 7.3, the three possible gear-changing scenarios are as

Figure 7.3: Representing the relation of the concrete and abstract events, based
on the first refinement.

follows:

• FromNeu: Changing from the neutral gear to an engaged gear,

• NoNeu: Changing the currently engaged gear to another,

• ToNeu: Changing the currently engaged gear to neutral.

Chapter 7 Modelling a Gear Controller 113

As shown, the abstract sequence of request-response has been refined by three alternative

sequences. As a result, the concrete deadlines will be as follows:

(7.2a)Deadline(RequestFromNeu, FromNeu ∨
Error FromNeu,ChangingDL) ,

(7.2b)Deadline(RequestNoNeu, NoNeu ∨ Error NoNeu, ChangingDL) ,

(7.2c)Deadline(RequestToNeu, ToNeu ∨ Error ToNeu, ChangingDL) .

Based on which sequence is activated by the occurrence of its request event, the corre-

sponding concrete deadline will satisfy the abstract deadline (7.1).

7.2.3 The Third Level of Abstraction

As mentioned before the gear-changing process can be done with or without opening the

clutch. In this refinement, these two possible cases have been added to the model. So

each event, representing the successful accomplishment of a change, will be refined by

two alternative cases, with opening the clutch or without it. Accordingly, the abstract

deadlines will be refined based on the approach explained in Section 4.3.3 (case split of

response).

Figure 7.4: Adding the clutch use, in order to change the engaged gear to
another.

The refinement diagram of changing the engaged gear to another (NoNeu scenario),

presented in Figure 7.4. The NoNeu NoClutch event represents a successful change

without using the clutch, and event NoNeu Clutch represents the case where the clutch

has been opened, in order to change a gear successfully. The same refinement pattern

114 Chapter 7 Modelling a Gear Controller

was used for the refinement of the other scenarios. Based on the introduced cases, the

concrete deadlines will be as follows:

(7.3a)Deadline(RequestFromNeu, FromNeu NoClutch

∨ FromNeu Clutch ∨Error FromNeu, ChangingDL) replaces (7.2a) ,

(7.3b)Deadline(RequestNoNeu, NoNeu NoClutch ∨ NoNeu Clutch

∨ Error NoNeu, ChangingDL) replaces (7.2b) ,

(7.3c)Deadline(RequestToNeu, ToNeu NoClutch ∨ ToNeu Clutch
∨ Error ToNeu, ChangingDL) replaces (7.2c) .

As shown above, based on the introduced refinement approach in Section 4.3.3, disjunc-

tion of alternative concrete responses, have replaced the abstract successful response, in

each concrete deadline.

7.2.4 The Fourth Level of Abstraction

In the fourth level of abstraction, the sequence of releasing the current gear and setting

the requested gear replaces the abstract successful gear-change. As mentioned before,

when the gear is currently neutral (FromNeu NoClutch or FromNeu Clutch), the re-

leasing step is irrelevant, and when the neutral gear is requested (ToNeu NoClutch or

ToNeu Clutch), the releasing step is sufficient.

Changing from an engaged gear to another gear is the most complex scenario, since

both of the concrete steps are required and using the clutch in the first step, affects

the following one. As shown in Figure 7.5, if the releasing step has been accomplished

without opening the clutch (NoNeu Releasing NoClutch), the setting step can be done

with or without opening the clutch. Whereas, if the clutch has been opened to release the

engaged gear, it will remain open during the setting process. Besides, the occurrence

of an unrecoverable error has been refined by two alternative cases, occurrence of an

unrecoverable error during the releasing process (Error Releasing NoNeu), or during

the setting process (Error Setting NoNeu).

As shown in Figure 7.6, each of the abstract events FromNeu NoClutch and From-

Neu Clutch, representing a successful change, when the gear was initially neutral, is

refined by two events, representing the setting process with or without using the clutch

(FromNeu Setting NoClutch or FromNeu Setting Clutch). Accordingly, each of the ab-

stract events ToNeu NoClutch and ToNeu Clutch, is refined by two events representing

the releasing process with or without using the clutch, when the neutral gear has been

requested (ToNeu Releasing NoClutch or ToNeu Releasing Clutch).

Chapter 7 Modelling a Gear Controller 115

(a) Changing the currently en-
gaged gear to another, without
opening the clutch.

(b) Changing the currently engaged gear to another, by opening the
clutch.

(c) Error refinement diagram.

Figure 7.5: Refinement Diagram: Introducing the required steps to change an
engaged gear to another gear.

Figure 7.6: Refinement diagram of changing from/to neutral gear.

Since the control flow refinement is complex by itself, in this level of abstraction, apply-

ing the timing refinement makes the model overly complicated. As a result, replacing

the abstract timing properties, by sequential concrete sub-timing properties, has been

postponed until the next refinement. This feature is one of the advantages of our ap-

proach.

When an abstract event has been replaced by a sequence of concrete events, the occur-

rence of the last event in the concrete sequence, is equivalent to the occurrence of the

116 Chapter 7 Modelling a Gear Controller

abstract event. As a result, if a response event of an abstract timing property, is refined

by a sequence of concrete sub-responses, replacing it by the last event of the concrete

sequence, in the concrete timing property, will satisfy the abstract one. Consequently,

breaking the overall timing property into a sequence of concrete timing properties, can

be done in the following refinements.

Accordingly, the abstract timing properties will be changed as follows in this refinement:

(7.4a)Deadline(RequestFromNeu, FromNeu Setting NoClutch

∨ FromNeu Setting Clutch

∨ Error FromNeu,ChangingDL) replaces (7.3a) ,

(7.4b)
Deadline(RequestNoNeu, NoNeu Setting NoClutch

∨ NoNeu Setting Clutch ∨NoNeu Setting ReleasingClutch
∨ Error Releasing NoNeu
∨ Error Setting NoNeu,ChangingDL) replaces (7.3b) ,

(7.4c)Deadline(RequestToNeu, ToNeu Releasing NoClutch

∨ ToNeu Releasing Clutch
∨ Error ToNeu,ChangingDL) replaces (7.3c) .

As shown in deadline (7.4b), instead of breaking the abstract deadline, to sequential

sub-deadlines,

1. Deadline between the occurrence of the request, and the occurrence of the releasing

or the occurrence of an unrecoverable error,

2. Deadline between the occurrence of the releasing, and either of the setting or an

error occurrences,

The abstract successful responses (NoNeu NoClutch and NoNeu Clutch), have been re-

placed by the last sub-response events of the concrete sequences (NoNeu Setting NoClutch,

NoNeu Setting Clutch, and NoNeu Setting ReleasingClutch). Besides, the error occur-

rence has been replaced by its alternative concrete events (Error Releasing NoNeu or

Error Setting NoNeu), based on the refinement pattern, explained in Section 4.3.3.

7.2.5 The Fifth Level of Abstraction

In the fifth level of abstraction, the abstract deadline of changing the currently engaged

gear to another, is replaced by its concrete sub-deadlines. What makes this refinement

challenging, is the need for a concrete expiry in order to satisfy the abstract deadline.

The timing refinement has been done based on the approach explained in Section 4.3.5

(Asymmetric Alternatives). The concrete deadlines of NoNeu scenario (changing the

currently engaged gear to another) are as follows:

Chapter 7 Modelling a Gear Controller 117

From Neutral (FromNeu Scenario):

(7.5a)Deadline(RequestFromNeu, FromNeu Setting NoClutch

∨ FromNeu Setting Clutch ∨ Error FromNeu, S FN) replaces (7.4a) ,

Where

(7.5b)S FN ≤ ChangingDL .

From Gear to Another Gear (NoNeu Scenario):

(7.6a)Deadline(RequestNoNeu, NoNeu Releasing NoClutch

∨ NoNeu Releasing Clutch

∨ Error Releasing NoNeu,R NN) replaces (7.4b) ,

(7.6b)Deadline(NoNeu Releasing NoClutch, NoNeu Setting NoClutch

∨ NoNeu Setting Clutch

∨ Error Setting NoNeu, S NN) replaces (7.4b) ,

(7.6c)Deadline(NoNeu Releasing Clutch, NoNeu Setting ReleasingClutch

∨ Error Setting NoNeu, S NN RC) replaces (7.4b) ,

Where

(7.6d)R NN + S NN RC ≤ ChangingDL .

To Neutral (ToNeu Scenario):

(7.7a)Deadline(RequestToNeu, ToNeu Releasing NoClutch

∨ ToNeu Releasing Clutch ∨ Error ToNeu,R TN) replaces (7.4c) ,

Where

(7.7b)R TN ≤ ChangingDL .

Deadlines (7.5a) and (7.7a) replace the abstract durations with the concrete ones based

on the required time, for releasing or setting processes. On the other hand deadlines

(7.6a), (7.6b) and (7.6c) are the sequential sub-deadlines, which replace the NoNeu

scenario’s abstract deadline. Based on how the current gear is released, there are two

alternative sequences of concrete deadlines, as follows:

1. If the currently engaged gear is released, without using the clutch, then the se-

quence of sub-deadlines (7.6a) and (7.6b) has to satisfy the abstract deadline,

118 Chapter 7 Modelling a Gear Controller

2. If the clutch has been opened during the releasing process, then the sequence of

sub-deadlines (7.6a) and (7.6c) has to satisfy the abstract deadline.

In case 1, the refinement is consistent, since the sequence of the concrete deadlines does

not exceed the abstract deadline (R NN + S NN ≤ ChangingDL).

But, case 2 is more complex. In this case, we are not necessarily assuming, the sat-

isfaction of the abstract deadline 7.4b, by the sequence of the concrete sub-deadlines

(7.6a) and (7.6b). As a result, during the proof, the modeller will recognize that more

properties are required to satisfy the consistency of the refinement.

Based on the system specification, the controller first tries to accomplish the neutral

gear (releasing the current gear) without using the clutch. After putting some efforts, if

it has not been successful, it tries to open the clutch. So, after some duration, releasing

without opening the clutch will be expired.

Deadline (7.6a) specifies the maximum duration in which, either of error, or gear dis-

engagement, with or without opening the clutch, has to happen. By having the expiry

for releasing the current gear without opening the clutch, sufficient details of the system

timing properties will be available to satisfy the abstract deadline. This expiry will be

as follows:

Epiry(RequestNoNeu, NoNeu Releasing NoClutch, R NN EX) replaces (7.4b) ,

(7.8a)

Where

(7.8b)R NN EX + S NN ≤ ChangingDL .

Based on expiry (7.8a) it is guaranteed that if the NoNeu Releasing NoClutch event has

happened, it was within R NN EX time-units of the request, which followed by dead-

line (7.6c), will satisfy the abstract deadline (deadline (7.4b)). As a result, deadline 7.4b

has been replaced by concrete timing properties 7.6a, 7.6b, 7.6c and 7.8a.

7.2.6 The Sixth Level of Abstraction

Based on the system specification, some steps are needed to be accomplished in order to

release the currently engaged gear, and set the requested gear. Concerning the complex-

ity of the refinements, the sub-steps of each scenario, have been added to the model in

different refinements. The following three refinements are dedicated to add these steps.

In this level of abstraction, the steps needed to be accomplished by the gear controller

to set the requested gear, when the gear is currently neutral have been added to the

model. The corresponding abstract timing properties have been refined accordingly.

Chapter 7 Modelling a Gear Controller 119

As shown in Figure 7.7, and explained in the requirements (Section 7.1.1), first the engine

has to synchronize its speed with the gearbox (FromNeu SyncSpeed), or the clutch has to

be opened (FromNeu OpenClutch). If the synchronous speed has been gained in time, ei-

ther the requested gear will be engaged successfully (FromNeu SetGear NoClutch), or an

unrecoverable error will happen (Error FromNeu SetGear NoClutch). But if the clutch

has been opened, and the gear has been set successfully (FromNeu SetGear Clutch), in

order to accomplish the service, the clutch has to be closed (FromNeu CloseClutch).

So, if no error happens during the closing process (Error FromNeu CloseClutch), the

requested service will be provided successfully.

(a) Introducing the steps re-
quired to set the requested
gear without the clutch.

(b) Introducing the steps required to set
the requested gear with the clutch.

(c) Introducing the unrecoverable errors, which may
occur during setting the requested gear.

Figure 7.7: Refinement diagram of setting the requested gear, when the gear
was neutral before the request.

Since the abstract successful responses have been refined by sequential concrete events,

their timing properties can be refined based on the approach, explained in Section 4.3.1.

The concrete deadlines of the FromNeu scenario (changing gear, when initially the gear

was neutral), are as follows:

(7.9a)Deadline(RequestFromNeu, FromNeu SyncSpeed

∨ FromNeu OpenClutch

∨ Error FromNeu OpenClutch, SyncOpen DL) replaces 7.5a ,

(7.9b)Deadline(FromNeu SyncSpeed, FromNeu SetGear NoClutch

∨ Error FromNeu SetGear NoClutch, SetGear DL) replaces 7.5a ,

120 Chapter 7 Modelling a Gear Controller

(7.9c)Deadline(FromNeu OpenClutch, FromNeu SetGear Clutch

∨ Error FromNeu SetGear Clutch, SetGear DL) replaces 7.5a ,

(7.9d)Deadline(FromNeu SetGear Clutch, FromNeu CloseClutch

∨ Error FromNeu CloseClutch, CloseClutch DL) replaces 7.5a ,

Where

(7.9e)SyncOpen DL + SetGear DL + CloseClutch DL ≤ S FN .

Since the sequence of the sequential sub-deadlines, satisfies the abstract deadline, the

timing refinement is consistent.

Besides refining the abstract deadline, an expiry has been introduced to strengthen the

timing properties of event FromNeu SyncSpeed, as explained in Section 6.4. This expiry

property is as follows:

(7.10a)Expiry(RequestFromNeu, FromNeu SyncSpeed, Sync EX) ,

Where

(7.10b)Sync EX ≤ SyncOpen DL .

Based on expiry (7.10a), waiting for engine to gain a synchronous speed with the gearbox

will be expired after sometimes and the only possible responses will be opening the clutch

or an occurrence of an unrecoverable error. This timing property is not required in order

to satisfy an abstract timing property. By adding it, we just present a more precise model

of the control flow.

Axiom 7.10b, is not required to prove the consistency of the refinement, it is just a trivial

specification of the system. As explained in Section 6.3.1, having an expiry on an event,

longer than its deadline, is useless.

7.2.7 The Seventh Level of Abstraction

Similar to what has been explained in previous section, the required steps to release the

currently engaged gear, in response to the user’s neutral gear request, are added in this

level of abstraction.

As shown in Figure 7.8, first the controller tries to synchronize the speeds of the engine

and the gearbox (ToNeu ZeroTorque), or open the clutch (ToNeu OpenClutch). If the

synchronous speed is gained, or the clutch has been opened successfully, either the

currently engaged gear will be released before its deadline or an unrecoverable error will

Chapter 7 Modelling a Gear Controller 121

(a) Introducing the steps
required to release the
currently engaged gear
without the clutch.

(b) Introducing the steps required
to release the current gear with the
clutch.

(c) Introducing the unrecoverable errors,
which may occur during the gear chang-
ing process.

Figure 7.8: Refinement diagram of releasing the currently engaged gear, when
the neutral gear is requested.

happen. If the clutch is opened, the clutch has to be closed, in order to finalize the gear-

changing process. If the clutch has not been closed by its deadline, an unrecoverable

error will happen, and consequently the requested service cannot be delivered.

In the end, if the clutch has been opened, it should be closed (ToNeu CloseClutch),

and if no error (Error ToNeu CloseClutch) has happened during the closing process, the

service is successfully delivered.

Since the successful response has been refined by sequential concrete sub-responses, the

abstract deadlines has been refined based on the approach, explained in Section 4.3.1.

The concrete deadlines are as follows:

(7.11a)Deadline(RequestToNeu, ToNeu ZeroTorque ∨ ToNeu OpenClutch

∨ Error ToNeu OpenClutch, ZeroOpen DL) ,

(7.11b)Deadline(ToNeu ZeroTorque, ToNeu Release NoClutch

∨ Error ToNeu Release NoClutch,Release DL) ,

(7.11c)Deadline(ToNeu OpenClutch, ToNeu Release Clutch

∨ Error ToNeu Release Clutch,Release DL) ,

122 Chapter 7 Modelling a Gear Controller

(7.11d)Deadline(ToNeu Release Clutch, ToNeu CloseClutch

∨ Error ToNeu CloseClutch, CloseClutch DL) ,

Where

(7.11e)ZeroOpen DL + Release DL + CloseClutch DL ≤ R TN .

Similar to previous refinement, since the sequence of the FromNeu scenario’s concrete

deadlines, satisfies its abstract deadline, the refinement is consistent.

Besides, an expiry is added in this refinement, which strengthens the timing properties,

on the occurrence of the ToNeu ZeroTorque event (based on Section 6.4). This expiry

is constructed as follows:

(7.12a)Expiry(RequestToNeu, ToNeu ZeroSpeed, Zero EX) ,

Where

(7.12b)Zero EX ≤ ZeroOpen DL .

Axiom (7.12b), is not required to prove the consistency of the refinement. It is a trivial

specification of the expiry duration. As explained in Section 6.3.1, having an expiry on

a response event, longer than its deadline, is useless.

7.2.8 The Eighth Level of Abstraction

In this level of abstraction, the required steps to release the currently engaged gear and

set the requested gear have been added to the model. These steps are similar to what

have been explained, in two previous refinements. In the NoNeu scenario (changing

the currently engaged gear to another), Opening the clutch during the releasing process,

causes some complexities on the setting process, which will be discussed in the following.

As shown in Figure 7.9, what is different compare to the introduced steps, in two previous

refinements, is that if the clutch has been opened during the releasing process, there will

be no need to synchronize the speed of the engine and the gearbox, in order to set the

requested gear.

Based on the control flow refinement, the timing properties have been refined according

to the patterns, explained in Sections 4.3.1 (refining deadline to sub-deadlines) and 4.3.2

(refining expiry to expiry then deadline). The concrete timing properties, replacing the

abstract timing properties of the NoNeu scenario, are as follows:

Chapter 7 Modelling a Gear Controller 123

(a) Adding the required steps in order to release the cur-
rent gear.

(b) Adding the required steps in order to set the requested gear.

(c) The refinement diagram of the unrecover-
able errors, which may occur during the releas-
ing process.

(d) The refinement diagram of the unrecoverable errors,
which may occur during the setting process.

Figure 7.9: Adding required steps to release the currently engaged gear, and set
the request gear.

Releasing Process:

(7.13a)Deadline(RequestNoNeu, NoNeu ZeroTorque

∨NoNeu OpenClutch Releasing
∨ Error NoNeu OpenClutch Releasing, ZeroOpen DL) ,

(7.13b)Expiry(RequestNoNeu, NoNeu ZeroSpeed, Zero EX) ,

(7.13c)Deadline(NoNeu ZeroTorque, NoNeu Release NoClutch

∨ Error NoNeu Release NoClutch, Release DL) ,

(7.13d)Deadline(NoNeu OpenClutch Releasing, NoNeu Release Clutch

∨ Error NoNeu Release Clutch,Release DL) ,

124 Chapter 7 Modelling a Gear Controller

Where

(7.13e)ZeroOpen DL + Release DL ≤ R NN

(7.13f)Zero EX + Release DL ≤ Release EX

(7.13g)Zero EX ≤ ZeroOpen DL .

Setting Process:

(7.14a)Deadline(NoNeu Release NoClutch, NoNeu SyncSpeed

∨ NoNeu OpenClutch Setting

∨ Error NoNeu OpenClutch Setting, SyncOpen DL) ,

(7.14b)Expiry(NoNeu Release NoClutch, NoNeu SyncSpeed, Sync EX) ,

(7.14c)Deadline(NoNeu SyncSpeed, NoNeu SetGear NoClutch

∨ Error NoNeu SetGear NoClutch, SetGear DL) ,

(7.14d)Deadline(NoNeu OpenClutch Setting, NoNeu SetGear SettingClutch

∨ Error NoNeu SetGear SettingClutch, SetGear DL) ,

(7.14e)Deadline(NoNeu SetGear SettingClutch, NoNeu CloseClutch Setting

∨ Error NoNeu CloseClutch Setting, CloseClutch DL), ,

(7.14f)Deadline(NoNeu Release Clutch,NoNeu SetGear ReleasingClutch

∨ Error NoNeu SetGear ReleasingClutch, SetGear DL), ,

Deadline(NoNeu SetGear ReleasingClutch, NoNeu CloseClutch Releasing

∨ Error NoNeu CloseClutch Releasing, CloseClutch DL), ,

(7.14g)

Where

(7.14h)SyncOpen DL + SetGear DL + CloseClutch DL ≤ S NN ,

(7.14i)SetGear DL + CloseClutch DL ≤ S NN RC ,

(7.14j)Sync EX ≤ SyncOpen DL .

As shown above the abstract expiry on releasing process without using the clutch, has

been refined by expiry (7.13b) and deadline (7.13c), based on the approach explained in

Section 4.3.2. On the other hand the abstract deadlines, on the releasing and the setting

processes, have been refined by concrete sequential sub-deadlines. Since the overall effect

of the concrete timing properties, satisfies the abstract timing properties, the refinement

is consistent.

Similar to the previous refinements, axiom 7.14j is not necessary for the refinement

consistency, and it is a trivial property of the expiry property.

Chapter 7 Modelling a Gear Controller 125

7.2.9 The Ninth Level of Abstraction

In this level, the existing non-deterministic choices, between opening the clutch or gain-

ing the zero torque difference, during the releasing process, and opening the clutch or

synchronizing the speed of the engine and the gearbox, during the setting process, are

refined to be deterministic.

By strengthening the timing properties of the system, as explained in Section 6.4, events’

occurrences can be ordered based on their occurrence times. For example in the case of

gaining the zero-torque difference or opening the clutch, by having an expiry on gaining

the zero-torque difference, and a delay on starting the clutch opening process, if the

delay forces the opening process to start, when gaining the zero-torque difference is

expiries, the non-deterministic choice between these two events, will be replaced by a

deterministic choice based on time. First the zero-torque process will have the chance

of accomplishment, if it has not accomplished before its expiry, it will be disabled, and

the clutch opening process will be activated.

(a) Opening the clutch
for the FromNeu sce-
nario

(b) Opening the clutch
for the ToNeu scenario

(c) Opening the clutch
for the NoNeu scenario,
during the releasing pro-
cess

(d) Opening the clutch
for the NoNeu scenario,
during the setting pro-
cess

Figure 7.10: Refining the open clutch process.

As shown in Figure 7.10, before each event, representing the accomplishment of the

clutch-opening process, a new event is added, which represents the beginning of the

process. Based on the concrete timing properties, if the clutch-opening process has been

initiated, the alternative response (zero-torque/sync-speed) has already been expired.

Based on the system specification, during the releasing process, the controller first tries

to gain the zero torque difference, and after some duration, if it has not been successful,

it will give up and ask the clutch to be opened. Same scenario has been applied to the

speed synchronization, before setting the request gear. The delays and expiries, added

in this refinement, to enforce this behaviour, are as follows:

FromNeu Scenario:

126 Chapter 7 Modelling a Gear Controller

(7.15a)Expiry(RequestFromNeu, FromNeu SyncSpeed, Sync EX) ,

Delay(RequestFromNeu, FromNeu RequestOpenClutch, OpenClutch Sync DE) ,

(7.15b)

Where

(7.15c)Sync EX < OpenClutch Sync DE ,

(7.15d)OpenClutch Sync DE ≤ SyncOpen DL .

ToNeu Scenario:

(7.16a)Expiry(RequestToNeu, ToNeu ZeroTorque, Zero EX) ,

Delay(RequestToNeu, ToNeu RequestOpenClutch, OpenClutch Zero DE) ,

(7.16b)

Where

(7.16c)Zero EX < OpenClutch Zero DE ,

(7.16d)OpenClutch Zero DE ≤ ZeroOpen DL .

Releasing of NoNeu Scenario:

(7.17a)Expiry(RequestNoNeu, NoNeu ZeroTorque, Zero EX) ,

(7.17b)Delay(RequestNoNeu, NoNeu RequestOpenClutch Releasing,

OpenClutch Zero DE) ,

Where

(7.17c)Zero EX < OpenClutch Zero DE ,

(7.17d)OpenClutch Zero DE ≤ ZeroOpen DL .

Setting of NoNeu Scenario:

(7.18a)Expiry(NoNeu Release NoClutch, NoNeu SyncSpeed, Sync EX) ,

(7.18b)Delay(NoNeu Release NoClutch,

NoNeu RequestOpenClutch Setting, OpenClutch Sync DE) ,

Where

(7.18c)Sync EX < OpenClutch Sync DE ,

(7.18d)OpenClutch Sync DE ≤ SyncOpen DL .

Chapter 7 Modelling a Gear Controller 127

As shown above, for each of the events representing the accomplishment of the zero

torque difference between the engine and the gearbox, there is an expiry (7.16a, 7.17a),

and the corresponding clutch-opening’s trigger event, has been constrained by a delay

(7.16b, 7.17b), where the duration of the expiry is less than the delay (7.16c, 7.17c). It

is the same case for all the events, representing the synchronization of the engine and

the gearbox speeds, and their corresponding clutch-opening’s trigger events.

Axioms 7.17d and 7.18d, are not necessary to prove the consistency of the refinement.

They have been added, to preserve the enableness of time-progression. As explained in

Section 6.3.2, if a response event has a delay longer than its deadline, it will never be

enabled during the deadline period. As a result, if it is the only response event, by the

end of the deadline, the time-progressing event will be disabled for ever.

Besides, the deadlines on the open clutch events have to be broken to two sequential

sub-deadlines, based on the refinement pattern, explained in Section 4.3.1. The concrete

deadlines are as follows:

FromNeu Scenario:

(7.19a)Deadline(RequestFromNeu, FromNeu SyncSpeed

∨ FromNeu RequestOpenClutch, Sync DL) ,

(7.19b)Deadline(FromNeu RequestOpenClutch, FromNeu OpenClutch

∨ Error FromNeu OpenClutch, OpenClutch DL) .

ToNeu Scenario:

(7.20a)Deadline(RequestToNeu, ToNeu ZeroTorque

∨ ToNeu RequestOpenClutch, Zero DL) ,

(7.20b)Deadline(ToNeu RequestOpenClutch, ToNeu OpenClutch

∨ Error ToNeu OpenClutch, OpenClutch DL) .

Releasing of NoNeu Scenario:

(7.21a)Deadline(RequestNoNeu, NoNeu ZeroTorque

∨ NoNeu RequestOpenClutch Releasing, Zero DL) ,

(7.21b)Deadline(NoNeu RequestOpenClutch Releasing,

Error NoNeu OpenClutch Releasing

∨ NoNeu OpenClutch Releasing, OpenClutch DL) .

128 Chapter 7 Modelling a Gear Controller

Setting of NoNeu Scenario:

(7.22a)Deadline(NoNeu Release NoClutch, NoNeu SyncSpeed

∨ NoNeu RequestOpenClutch Setting, Sync DL) ,

Deadline(NoNeu RequestOpenClutch Setting, NoNeu OpenClutch Setting

∨ Error NoNeu OpenClutch Setting, OpenClutch DL) ,

(7.22b)

Where

(7.22c)Zero DL + OpenClutch DL ≤ ZeroOpen DL ,

(7.22d)OpenClutch Zero DE ≤ Zero DL ,

(7.22e)Sync DL + OpenClutch DL ≤ SyncOpen DL ,

(7.22f)OpenClutch Sync DE ≤ Sync DL .

Based on the sequential concrete sub-deadlines, during the releasing process, within

Zero DL time-units of the request, either the zero torque difference has been gained, or

the clutch has been asked to be opened. Besides, within OpenClutch DL time-units of

asking the clutch to be opened, it is either opened, or it has gone to an unrecoverable

error state. Based on axiom (7.22c) the timing refinement is consistent. Same thing

holds for concrete sequential sub-deadlines of setting process.

Axioms such as (7.22d) and (7.22f) are important for the enableness of the response

events and the Tick Tock event, as explained in Chapter 6.

7.2.10 The Tenth Level of Abstraction

This refinement is the last horizontal refinement. In this level, the events of the engine,

the clutch, and the gearbox are introduced, and the maximum acceptable latency of their

communications with the controller, are added to the model. As it has been discussed

in Section 6.4, since some new behaviours have been introduced in this refinement, their

timing properties, will be added to the existing abstract timing properties of the model.

In Figure 7.11, event Engine Request ZeroTorqure represents the start of gaining the

zero-torque difference process in the engine, and event Engine ZeroTorqure models the

accomplishment of zero-torque difference by the engine. In a similar pattern the pro-

cesses in the gearbox and the clutch have been modelled by request (start of the process)

and accomplishment events.

As a result, for example all the open clutch accomplishment events of the controller

will be guarded by the occurrence of the event which represents the accomplishment of

Chapter 7 Modelling a Gear Controller 129

Figure 7.11: Partial refinement diagram of the tenth refinement.

the opening process in the clutch, instead of the occurrence of the previous step in the

controller. Besides, each event which represents the accomplishment of a required step

in the controller, triggers the next process in the corresponding component, except the

accomplishment of the last step.

As shown in Figure 7.11, for a sequence of steps in the NoNeu scenario, NoNeu ZeroTorque

only happens if the Engine ZeroTorque has already happened in the engine. Besides the

Gear RequestRelease event which represent the beginning of releasing the currently en-

gaged gear in the gearbox, can only happen if the previous step has been accomplished

in the controller (NoNeu ZeroTorque).

Also, if an unrecoverable error happens in the gearbox, an unrecoverable error event

will occur in the controller, too. The relation of the error events, has been provided

by the timing properties. For example, since the deadline of the gearbox is less than

the controller (axiom (7.29c)), after requesting neutral gear, if the controller does not

hear anything from the gearbox, by the end of its deadline, it can assume that an

unrecoverable error has happened there, and it will go to an error state, too. This is

true for all the other steps too. The concrete timing properties of the gearbox, the

clutch, the engine, and the communication channel are as follows:

Engine-Controller Communication Deadlines:

(7.23a)Deadline(RequestFromNeu,Engine Request SyncSpeed,

Channel DL) ,

(7.23b)Deadline(NoNeu Release NoClutch, Engine Request SyncSpeed,

Channel DL) ,

(7.23c)Deadline(RequestToNeu,Engine Request ZeroTorque, Channel DL) ,

(7.23d)Deadline(RequestNoNeu,Engine Request ZeroTorque, Channel DL) ,

(7.23e)Deadline(Engine ZeroTorque, ToNeu ZeroTorque

∨NoNeu ZeroTorque, Channel DL) ,

130 Chapter 7 Modelling a Gear Controller

(7.23f)Deadline(Engine SyncSpeed, FromNeu SyncSpeed

∨NoNeu SyncSpeed, Channel DL) .

Clutch-Controller Communication Deadlines:

Deadline(FromNeu RequestOpenClutch,Clutch Request Open, Channel DL) ,

(7.24a)

Deadline(ToNeu RequestOpenClutch,Clutch Request Open, Channel DL) ,

(7.24b)

(7.24c)Deadline(NoNeu RequestOpenClutch Releasing, Clutch Request Open,

Channel DL) ,

(7.24d)Deadline(NoNeu RequestOpenClutch Setting, Clutch Request Open,

Channel DL) ,

(7.24e)Deadline(FromNeu SetGear Clutch, Clutch Request Close, Channel DL) ,

Deadline(NoNeu SetGear ReleasingClutch, Clutch Request Close, Channel DL) ,

(7.24f)

Deadline(NoNeu SetGear SettingClutch, Clutch Request Close, Channel DL) ,

(7.24g)

(7.24h)Deadline(ToNeu Release Clutch, Clutch Request Close, Channel DL) ,

(7.24i)Deadline(Clutch Open, FromNeu OpenClutch

∨ ToNeu OpenClutch ∨ NoNeu OpenClutch Releasing

∨ NoNeu OpenClutch Setting, Channel DL) ,

(7.24j)Deadline(Clutch Close, FromNeu CloseClutch

∨ ToNeu CloseClutch ∨ NoNeu CloseClutch Releasing

∨ NoNeu CloseClutch Setting, Channel DL) .

Gear-Controller Communication Deadlines:

Chapter 7 Modelling a Gear Controller 131

(7.25a)Deadline(ToNeu ZeroTorque,Gear Request Release, Channel DL) ,

(7.25b)Deadline(ToNeu OpenClutch,Gear Request Release, Channel DL) ,

(7.25c)Deadline(NoNeu ZeroTorque,Gear Request Release, Channel DL) ,

Deadline(NoNeu OpenClutch Releasing,Gear Request Release, Channel DL) ,

(7.25d)

(7.25e)Deadline(NoNeu SyncSpeed,Gear Request Set, Channel DL) ,

(7.25f)Deadline(NoNeu OpenClutch Setting,Gear Request Set, Channel DL) ,

(7.25g)Deadline(NoNeu Release Clutch,Gear Request Set, Channel DL) ,

(7.25h)Deadline(FromNeu SyncSpeed,Gear Request Set, Channel DL) ,

(7.25i)Deadline(FromNeu OpenClutch,Gear Request Set, Channel DL) ,

(7.25j)Deadline(Gear Release, ToNeu Release Clutch

∨ ToNeu Release NoClutch ∨ NoNeu Release NoClutch

∨ NoNeu Release Clutch, Channel DL) ,

(7.25k)
Deadline(Gear Set, FromNeu SetGear Clutch

∨ FromNeu SetGear NoClutch ∨ NoNeu SetGear NoClutch

∨ NoNeu SetGear ReleasingClutch

∨ NoNeu SetGear SettingClutch, Channel DL) .

Engine’s Deadlines:

(7.26a)Deadline(Engine Request SyncSpeed,Engine SyncSpeed

∨ Engine WaitForSyncClutch, Engine Sync DL) ,

(7.26b)Deadline(Engine Request ZeroTorque,Engine ZeroTorque

∨ Engine WaitForZeroClutch, Engine Zero DL) .

Clutch’s Deadlines:

(7.27a)Deadline(Clutch Request Open,Clutch Open

∨ Error Clutch Open,Clutch Open DL) ,

(7.27b)Deadline(Clutch Request Close, Clutch Close

∨ Error Clutch Close, Clutch Close DL) .

Gearbox’s Deadlines:

132 Chapter 7 Modelling a Gear Controller

(7.28a)Deadline(Gear Request Release,Gear Release

∨ Error Gear Release,Gear Release DL) ,

(7.28b)Deadline(Gear Request Set,Gear Set ∨
Error Gear Set,Gear Set DL) .

Where

(7.29a)2 ∗ Channel DL + Engine Zero DL ≤ Zero EX ,

(7.29b)2 ∗ Channel DL + Engine Sync DL ≤ Sync EX ,

(7.29c)2 ∗ Channel DL + Gear Release DL < Release DL ,

(7.29d)2 ∗ Channel DL + Gear Set DL < SetGear DL ,

(7.29e)2 ∗ Channel DL + Clutch Open DL < OpenClutch DL ,

(7.29f)2 ∗ Channel DL + Clutch Close DL < CloseClutch DL .

By adding the details of how long it takes that a controller’s request gets to the corre-

sponding component (Channel DL), how long it takes for that component to process

it (deadlines (7.26a) to (7.28b)), and how long it takes that the result gets to the

controller (Channel DL), and the relation of these duration with controller deadlines

(axioms (7.29a) to (7.29f), the most concrete model of the gear controller system, has

been provided in this level of abstraction.

7.2.11 The last Refinement and Decomposition Process

As explained in Chapter 5, in order to decompose a timed Event-B model, the variable

representing the current time, plus the occurrence times, and the occurrence flags of the

shared events, have to be replicated. This refinement has been dedicated to achieve this.

The model is decomposed to five components, controller, communication channel, en-

gine, clutch, and gearbox. The interface has been considered as a part of the controller.

Engine, clutch, and gearbox does not communicate with each other, and it is the con-

troller responsibility to synchronize them. The engine, the clutch, and the gearbox,

communicate with the controller through the channel. As a result, the share events

between these components are as follows:

Chapter 7 Modelling a Gear Controller 133

• Channel-Engine:

Engine SyncSpeed Engine ZeroTorque

Engine Request SyncSpeed Engine Request ZeroTorque

Table 7.2: This table shows the share events between the channel and the engine.

• Channel-Clutch:

Clutch Request Open Clutch Request Close

Clutch Open Clutch Close

Table 7.3: This table shows the share events between the channel and the clutch.

• Channel-Gearbox:

Gear Request Release Gear Request Set

Gear Release Gear Set

FINAL Tick Tock

Table 7.4: This table shows the share events between the channel and the

gearbox.

• Controller-Channel:

FromNeu SyncSpeed FromNeu RequestOpenClutch

FromNeu OpenClutch FromNeu SetGear NoClutch

FromNeu SetGear Clutch FromNeu CloseClutch

RequestToNeu ToNeu ZeroTorque

ToNeu RequestOpenClutch ToNeu OpenClutch

ToNeu Release NoClutch ToNeu Release Clutch

ToNeu CloseClutch RequestNoNeu

NoNeu ZeroTorque NoNeu Release NoClutch

NoNeu RequestOpenClutch Releasing NoNeu OpenClutch Releasing

NoNeu Release Clutch NoNeu SyncSpeed

NoNeu RequestOpenClutch Setting NoNeu OpenClutch Setting

NoNeu SetGear NoClutch NoNeu SetGear ReleasingClutch

NoNeu SetGear SettingClutch NoNeu CloseClutch Releasing

NoNeu CloseClutch Setting

Table 7.5: This table shows the share events between the controller and the

channel.

• All the components:

134 Chapter 7 Modelling a Gear Controller

FINAL Tick Tock

Table 7.6: This table shows the share events between all the components.

As shown above, none of the error events are shared, and the Tick Tock and the FI-

NAL events are shared between all the components. Decomposing the FINAL event,

the corresponding issues, and possible soloutions have been discussed in detailes, in

Section 5.2.

After the decomposition, to present the possibility of refining the timing properties of

each component independently, the clutch component has been refined, by adding two

expiries and two delays.

7.3 Proof Statistics

Many proof obligations have been generated for the Event-B model of this case study

(Table 7.7), but the important achievement is that more than 95% of them have been

proved automatically. The interactively proved ones, are mostly refinement consistency

POs, when an abstract timing property (mostly deadline) has been replaced by a se-

quence of concrete timing properties. We have elicited a systematic approach, to perform

these interactive proofs.

Machine Number of Generate PO Automatically Proved Automatically Proved %

m0 4 4 100
m1 156 155 99
m2 44 44 100
m3 103 103 100
m4 21 20 95
m5 130 129 99
m6 131 124 94
m7 324 291 89
m8 123 118 95
m9 64 64 100
m10 302 286 94
Total 1404 1339 95

Table 7.7: Number of generated proof obligations for each machine and how
they have been proved

When a deadline has been broken to several sequential sub-deadlines, we need to show

that after each step, the abstract deadline holds. We start from the first step, which

can be proved automatically, then as explained in Section 4.3.1, based on the invariants

which connect the occurrence of the concrete trigger events to the abstract one, all the

other steps can be proved, too.

Chapter 7 Modelling a Gear Controller 135

In order to explain the process in more details, we will go through the proving process

of the seventh refinement (Section 7.2.8), where, releasing with or without opening the

clutch is refined by its sub-steps. The concrete sequential sub-steps after receiving the

request are, gaining the zero torque difference between the gearbox and the engine, or

opening the clutch, and then releasing the currently engaged gear. The abstract deadline

is as follow:

(7.30)Deadline(RequestNoNeu, NoNeu Releasing NoClutch

∨ NoNeu Releasing Clutch ∨ Error Releasing NoNeu, R NN) .

The sequential sub-deadlines are as follow:

(7.31a)Deadline(RequestNoNeu, NoNeu ZeroTorque

∨ NoNeu OpenClutch Releasing

∨ Error NoNeu OpenClutch Releasing, ZeroOpen DL) ,

(7.31b)Deadline(NoNeu ZeroTorque, NoNeu Release NoClutch

∨ Error NoNeu Release NoClutch, Release DL) ,

(7.31c)Deadline(NoNeu OpenClutch Releasing, NoNeu Release Clutch

∨ Error NoNeu Release Clutch,Release DL) .

In order to prove the satisfaction of abstract deadline (7.30), by its refining deadlines,

modeller has to go through the following steps:

1. Case distinction of events NoNeu ZeroTorque and NoNeu OpenClutch Releasing

occurrences (two cases each, occurred or not),

2. In the case where none of them have happened, based on concrete deadline (7.31a)

abstract deadline is satisfied,

3. In the case where event NoNeu ZeroTorque has happened:

(a) Case distinction of event NoNeu Release NoClutch occurrence,

(b) In the case where event NoNeu Release NoClutch has not happened, based

on the invariant, which specifies the relation of event NoNeu ZeroTorque

occurrence time, and the request event’s occurrence time, plus the concrete

deadline (7.31b), the satisfaction of the abstract deadline guard can be proved,

4. In the case where event NoNeu OpenClutch Releasing has happened:

(a) Case distinction of event NoNeu Release Clutch occurrence,

136 Chapter 7 Modelling a Gear Controller

(b) In the case where event NoNeu Release Clutch has not happened, based on

the invariant which specifies the relation of

event NoNeu OpenClutch Releasing occurrence time, and the request event

occurrence time, plus the concrete deadline (7.31c), the satisfaction of the

abstract deadline guard can be proved.

In the above steps, occurrences of the error events, and the concrete releasing events

have not be considered, because their occurrence will satisfy the deadline, and those

cases will be discharged by the automatic provers.

7.4 UPPAAL Model of Gear Controller

So far, the specification of the gear controller case-study, and how it has been modelled

in Event-B, have been explained. In this section, in order to have a better understand

of the UPPAAL model of this case study, how the clutch has been modelled in [87], will

be presented and briefly explained.

Figure 7.12: UPPAAL Model of Clutch

As shown in Figure 7.12, there are 6 operating states in the clutch. Close is the initial

state, in which the clutch is closed and no request has been received. Opening is the next

possible state, where an open clutch request has been received through the OpenClutch

channel, and the clutch has started the opening process. As soon as the request is

received the dedicated clock will be reset, to measure the duration of the opening process.

If the clutch cannot accomplish the open state in less than 150 time-units (millisecond in

here), the state’s invariant will non-deterministically force one of the enabled transitions

to happen. If the opening process has been accomplished before the deadline, other

components will be informed through the ClutchIsOpened channel, and the clutch will

Chapter 7 Modelling a Gear Controller 137

go to the Open state. A similar process will happen for the closing process, if a closing

request is received in the Open state through CloseClutch channel.

As explained, the message passing, and synchronization happen through channels in an

UPPAAL model, and timing properties can be specified either on states (as invariants),

or on transitions (as guards).

In the model of the clutch, it is possible to check its timing properties. For example, it

is possible to verify that if CTimer is greater than 150, the model is not in the Opening

or the Closing states. This property can be verified by the following query:

A[] CTimer > 150 imply not (Clutch.Closing and Clutch.Opening) (7.32)

In query (7.32), A[] means that, the following predicate is true in all reachable states.

As shown in Figure 7.12, to model the timing properties of a state, or a transition, the

timer needs to be reset. Based on the control flow of a system, and the arrangement of

its timing properties, modeller has to decide how many timers are required, and where

each of them has to be reset. Mostly, these decisions have to be made heuristically, since

there is no specific pattern for them. On the other hand, in our approach, there is a

mechanized process to encode the timing properties of a model.

This is not the only difference between these two approaches. In a timed Event-B model,

durations have symbolic values, which provide a more generic model, in compare to using

specific numbers (the UPPAAL’s approach).

Besides, based on the refinement feature of Event-B, the consistency of the timing prop-

erties, in different levels of abstraction, can be verified in a timed Event-B model.

This example, aimed to give an idea of how the explained requirements in this chapter,

can be modelled by using UPPAAL features. Besides, some of the differences between

a timed Event-B model, and an UPPAAL model have been explained.

In this chapter, how the real-time automatic gear controller case-study has been mod-

elled based on our approaches, have been explained. It was aimed to demonstrate the

practicality of the introduced timing properties, and their refinement. In the next chap-

ter, how the same principles explained in Chapter 4, can be used to model and refine

the timing properties of parametrized events, will be explained.

Chapter 8

Modelling Parametrized Timing

Properties In Event-B

Events may have parameters in Event-B. If either of the trigger, or the response events,

are parametrized, the relation between their parameters and their timing properties, has

to be specified. For example in a deadline, the sub-set of trigger event’s parameters,

which trigger the timing property, and the corresponding parameters of the response

events, which satisfy the timing property, have to be specified.

So what will be explained in this chapter, is a generalization of the approach introduced

in Chapter 4. In the following we will show how the same timing properties of Chapter 4

can be enforced to an occurrence of a trigger-response sequence for a specific parameter.

8.1 Parametrized Timing Properties Syntax

Before introducing the syntax of parametrized timing properties, the importance of the

relation between parameters of trigger and response events in a trigger-response pattern,

will be demonstrated through a simple example.

Assume a parametrized event T and its parametrized response event R, as shown in

Figure 8.1. As represented in the model, for an occurrence of T for a parameter x ∈
X, there will be an occurrence of R for parameter jR(x), in response. jR is a total

injection function, which specifies the correlation between the parameters of T and R.

For example, in transferring a message, packet by packet, a packet can be transferred if

the previous one has been already transferred. In this case jR(x) will be as follows:

(8.1a)jR ∈ X �X ,

(8.1b)jR(x) = x+ 1 .

139

140 Chapter 8 Modelling Parametrized Timing Properties In Event-B

As a result, if a timing property is supposed to constrain the occurrence-times of

parametrized trigger and response events, it should be based on their order of occur-

rences.

EVENT T =̂
any

pT
WHERE

pT ∈ X
pT /∈ fT
GT (c, v, pT)

THEN
fT := fT ∪ {pT }
ActT

END

EVENT R =̂
any

pT , pR
WHERE

pT ∈ fT
pR = jR(pT)
pR /∈ fR
GR(c, v, pR)

THEN
fR := fR ∪ {pR}
ActR

END

Figure 8.1: An example of a generic parametrized trigger-response pattern.

In the case of parametrized trigger-response events, in order to enforce the order between

the trigger event and its possible responses, a set will be dedicated to each event, which

keeps track of the parameters, the event has happened for. So when a trigger event T

happens for a parameter pT , the parameter will be added to a set T , and then set T will

be used to enable the corresponding response events.

For example, a deadline of t time-units, between the occurrence of event T for a param-

eter p ∈ X as the trigger, and event R for the same parameter as its response, can be

specified as follows:

(8.2a)∀p·p ∈ X | Deadline(T (p), R(jR(p)), d)

(8.2b)Where

jR ∈ X �X

∀p·p ∈ dom(jR)⇒ jR(p) = p

Based on deadline (8.2a), there should not be a gap longer than d between occurrence

of T and R, for a parameter p.

Based on our approach of modelling the control-flow, each parameter can only appear

once, unless the occurrence set has been reset (Similar to FINAL). That is why the

relation of the trigger and response parameters (jR), has been modelled by an injection

function. In the case of hierarchical iterations, such as sending several messages, part

by part, the occurrence sets, should be reset by the end of each external iteration (end

of a message), to provide the required initial state, for the next iteration (sending the

next message).

Chapter 8 Modelling Parametrized Timing Properties In Event-B 141

The parametrized syntax of deadline, delay and expiry, is as follows:

(8.3a)∀ a · Pa | Deadline (A(a), B1(jB1(a)) ∨ · · · ∨Bn(jBn(a)), t) ,

(8.3b)∀ a · Pa | Delay (A(a), B(jB(a)), t) ,

(8.3c)∀ a · Pa | Expiry (A(a), B(jB(a)), t) ,

Where

a ∈ X

jB ∈ X �X

jB1 ∈ X �X

...

jBn ∈ X �X

Deadline (8.3a) means that within a duration t time-units from occurrence of event

A for a parameter a, which satisfies predicate Pa, one and only one of the response

events Bx (x ∈ 1..n) has to happen for a parameter jBx(a). jBx(a) is an injection from

the parameters of the trigger event to the parameters of the response event Bx. This

relation is based on the existing order of the trigger event, and its responses. Predicate Pa

specifies the range of parameters, the timing property is based on.

Delay (8.3b) means that, within t time-units of the trigger event’s occurrence (A), for

a parameter a, which satisfies predicate Pa, response event B cannot happen for a

parameter jB(a). Similar to the deadline, jB(a) is an injection from trigger event’s

parameters to its response’s parameters based on their order.

Finally, expiry (8.3c) means that the response event, can only happen for a parameter

jB(a), within t time-units of the trigger event’s occurrence (A), for a parameter a, which

captures predicate Pa.

In this work, there are cases of timing properties, between the occurrence of a parametrized

event, for a specific parameter, and the occurrence of an unparametrized event. If the

trigger event, or all of the response events, are unparametrized, the syntax will be similar

to what has been presented in Section 4.2. The only difference is that the parameter

value will appear in front of the corresponding event. For example a delay of t time-

units, between an unparametrized trigger event A and the occurrence of a parametrized

event B for a parameter b will be expressed as follows:

(8.4)Delay(A,B(b), t) .

142 Chapter 8 Modelling Parametrized Timing Properties In Event-B

By using parametrized timing properties, it is possible to model timing properties on

events, such as transferring a message, part by part. In the following, the semantics of

parametrized timing extensions of Event-B will be discussed.

8.2 Semantics of Parametrized Timing Properties

Similar to unparametrized timing properties, based on the semantics of our parametrized

timing constructs, they will be translated into Event-B variables, invariants, guards and

actions.

In each case we assume there is already an order between the occurrence of the trigger

event and the corresponding response events, for their parameters. The assumption is

that for a response event to happen for a parameter, there is one and only one parameter

in the trigger event, which has to happen before hand. As shown in Figure 8.1, event

A add the current parameter to set A as one of its actions. So when a parameter x

belongs to A, indicates that event A has already happened for it. Also, one of the

response events’ guards, checks the occurrence of trigger event A for the corresponding

parameter, by evaluating its occurrence set.

It has not been assumed that the trigger and response events will occur only once for

each parameter. Similar to what has been explained in Chapter 4, by having an event

by the of each iteration, which resets all the corresponding occurrence sets (the FINAL

event), iterative behaviours can be modelled.

8.2.1 Semantics of Parametrized Delay and Expiry

To give an Event-B semantics to a delay on a parametrized trigger-response pattern, the

variable which records the trigger event occurrence times, is a function from the event’s

parameters to their occurrence times. Besides, the trigger and the response events, have

occurrence sets, which are used to enforce the order. A generic parametrized trigger-

response pattern with a delay property is shown in Figure 8.2(a) and Figure 8.2(b)

presents how the delay property is enforced by using standard Event-B constructs.

In Figure 8.2, X specifies the range of the parameters of A, and Pa specifies the range

of its parameters, the timing property is concerned with. As shown in Figure 8.2(b),

event B can only occur for a parameter jB(a), if event A has already happened for

parameter a.

Similar to what we have in the unparametrized semantics, there are two invariants in

the parametrized delay semantics. inv1 expresses the order of trigger and response

events, and inv2 express the property that if the response has happened for a parameter

Chapter 8 Modelling Parametrized Timing Properties In Event-B 143

TIMING
∀a·Pa |
Delay(A(a), B(jB(a)), t)

EVENT A =̂
any

a
WHERE

a ∈ X
a /∈ fA
GA(c, v, a)

THEN
fA := fA ∪ {a}
ActA

END
EVENT B =̂

any
a, b

WHERE
a ∈ fA
b = jB(a)
b /∈ fB
GB(c, v, b)

THEN
fB := fB ∪ {b}
ActB

END

(a) Event A and B plus a delay

INVARIANTS
(inv1) ∀a·Pa ∧ a /∈ fA⇒

jB(a) /∈ fB
(inv2) ∀a, b·b ∈ fB∧

a ∈ j−1
B (b) ∧ Pa⇒

tB(b) ≥ tA(a) + t
EVENT A =̂

any
a

WHERE
a ∈ X
a /∈ fA
GA(c, v, a)

THEN
fA := fA ∪ {a}
tA(a) := time
ActA

END
EVENT B =̂

any
a, b

WHERE
a ∈ fA
b = jB(a)
b /∈ fB
Pa⇒ time ≥ tA(a) + t
GB(c, v, b)

THEN
fB := fB ∪ {b}
tB(b) := time
ActB

END

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
THEN

time := time + tick
END

(b) Encoded delay for events A and B.

Figure 8.2: Semantics of a parametrized delay property in Event-B.

included in the delay, its occurrence time for that parameter must exceed the occurrence

time of trigger event for the corresponding parameter by at least t.

The consistency proof will be similar to what has been explained in Section 4.2.1. For

the Rodin model of the delay semantics, presented in Figure 8.2, 20 POs were generated,

from which 18 were discharged automatically and the rest were discharged interactively.

(8.5)∀ a · Pa | Expiry(A(a), B(jB(a)), t)

Semantics of the expiry is similar to the delay semantics. On a same generic trigger-

response example, shown in Figure 8.2(a), if we want to have expiry (8.5) instead of the

delay, the timing guard in the response event, in Figure 8.2(b), will be changed to the

following predicate:

Pa ⇒ time ≤ tA(a) + t (8.6)

And the invariants will be as follows:

∀a · Pa ∧ a /∈ fA ⇒ jB(a) /∈ fB (8.7)

∀a, b · b ∈ fB ∧ a ∈ j−1
B (b) ∧ Pa ⇒ tB(b) ≥ time+ tA(a) (8.8)

144 Chapter 8 Modelling Parametrized Timing Properties In Event-B

Similar to the delay semantics, invariant (8.7) expresses the order of trigger and response

events, and invariant (8.8) expresses the expiry property. In the Rodin development of

the expiry semantics 20 POs were generated, where 18 have been discharged automati-

cally, and the reset have been discharged interactively.

Based on guard (8.6), if the trigger event’s parameter, satisfies predicate Pa, then the

response event may be enabled, if its expiry duration has not been passed.

8.2.2 Semantics of Parametrized Deadline

To explain the semantics of deadline for a parametrized trigger-response pattern, a

generic trigger-response with n (n > 0) alternative responses, will be explained in the

following.

TIMING
∀a·Pa |
Deadline(A,B1(jB1

(a))∨ ..∨
Bn(jBn (a)), t)

EVENT A =̂
any

a
WHERE

a ∈ X
a /∈ fA
GA(c, v, a)

THEN
fA := fA ∪ {a}
ActA

END
EVENT Bx =̂

any
a, b

WHERE
a ∈ fA
b = jBx (a)
jB1

(a) /∈ fB1

...
jBn (a) /∈ fBn

GBx (c, v, b)
THEN

fBx := fBx ∪ {b}
ActBx

END

(a) Event A and Bx (x ∈ 1..n) plus a
deadline. X is the range of events A
parameters.

INVARIANTS
(inv1) ∀a·Pa ∧ a /∈ fA⇒

jB1 (a) /∈ fB1 ∧ · · · ∧
jBn (a) /∈ fBn

(inv2) ∀ a ·Pa ∧ a ∈ fA ∧
jB1

(a) /∈ fB1 ∧ .. ∧
jBn (a) /∈ fBn⇒
time ≤ tA(a) + t

(inv3) ∀a, b·b ∈ fB1∧
a ∈ j−1

B1
(b) ∧ Pa⇒

tB1(b) ≤ tA(a) + t
...

(invn+2) ∀a, b·b ∈ fBn∧
a ∈ j−1

Bn
(b) ∧ Pa⇒

tBn(b) ≤ tA(a) + t
EVENT A =̂

any
a

WHERE
a ∈ X
a /∈ fA
GA(c, v, a)

THEN
fA := fA ∪ {a}
tA(a) := time
ActA

END

EVENT Bx =̂
any

a, b
WHERE

a ∈ fA
b = jBx (a)
jB1

(a) /∈ fB1

...
jBn (a) /∈ fBn

GBx (c, v, b)
THEN

fBx := fBx ∪ {b}
ActBx

END
EVENT T ick Tock =̂

any
tick

WHERE
tick > 0

∀ a ·Pa ∧ a ∈ fA ∧
jB1

(a) /∈ fB1 ∧ .. ∧
jBn (a) /∈ fBn⇒
time + tick ≤ tA(a) + t

THEN
time := time + tick

END

(b) Encoded deadline for Event A and Bx.

Figure 8.3: Semantics of parametrized deadline in Event-B.

As shown in Figure 8.3(a), a response event Bx can only happen for a parameter jBx(a),

if A has already happened for parameter a. The parametrized deadline of Figure 8.3(a),

is based on the parametrized trigger event (A), and its possible parametrized responses

(B1..Bn). If event A has happened for a parameter a, which satisfies predicate Pa, then

the guard on the Tick Tock event, enforces one of the response events Bx (x ∈ 1..n) to

happen, for parameter jBx(a), before passing the deadline duration.

Chapter 8 Modelling Parametrized Timing Properties In Event-B 145

Similar to unparametrized deadline semantics explained in Section 4.2.3, inv1 expresses

the order of trigger and response events, inv2 expresses the property of the current

time value, when the trigger event has happened, but no response event has happened

yet. Finally invariants inv3..invn+2 express the property that, if a response event Bx

happens for a parameter included in the deadline, its occurrence time will not exceed

the occurrence time of A for the corresponding parameter by more than t.

For a Rodin development of a deadline as follows:

Deadline(A,B1(jB1(a)) ∨B2(jB2(a)), t) (8.9)

38 proof obligations were generated from which 2 were discharged interactively and

the rest were discharged automatically. The consistency proof is similar to the un-

parametrized deadline explained in Section 4.2.3.

8.3 Some Patterns to Refine Parametrized Timing Prop-

erties

All the refinement patterns, introduced in Section 4.3 for unparametrized timing prop-

erties, can be used for the parametrized one, with some changes.

In order to apply those patterns on parametrized timing properties, instead of occurrence

flags, the occurrence sets should be used, and all the occurrence-time variables, will be

relations from the parameters of the corresponding event to their occurrence time. In

the following we go through some of the main ones, mostly used in our case-study.

Besides, in Section 8.3.2 how an unparametrized deadline can be refined by an iterative

parametrized deadline will be explained. Unlike the unparametrized timing proper-

ties, it is possible to have the same event as the trigger and the response events, in

a parametrized one, where the occurrence of that event for a parameter, triggers its

occurrence for another parameter. Based on this feature it is possible to have iterative

parametrized timing properties, on iterative parametrized events.

8.3.1 Refining a Parametrized Deadline to Sequential Parametrized

Sub-Deadlines

Consider an abstract model of a system where there is a deadline between event A and

event B. As shown in Figure 8.4, event B can only occur for a parameter b, if event A

has already happened for it. The deadline property of this level of abstraction, is shown

in Figure 8.5(a).

146 Chapter 8 Modelling Parametrized Timing Properties In Event-B

As shown in Figure 8.4, event B has been broken into two sequential steps, in the

refinement. By breaking event B to B1 followed by B2, its related deadline needs to be

broken too. Similar to pattern 4.3.1, the abstract event has been refined by the second

step, and the first step refines skip.

Figure 8.4: Refining an abstract paramtrized deadline to two parametrized sub-
deadlines, is presented by the refinement diagram on the left. DL(x) presents a
deadline property with a period of x in the timing diagrams

Now, in order to respond to the trigger event, two steps have to be accomplished, where

each of them has its own deadline. In the concrete level, the trigger event of the deadline

property for event B1 is event A and the trigger event for the deadline of event B2 is

event B1. Hence, the abstract deadline should be broken into two new deadlines, in a

way that their combination, based on the concrete order, does not violate the abstract

deadline (t1 + t2 ≤ t).

As shown in Figure 8.5, in the concrete machine, the abstract deadline between event A

and event B is refined by the following deadlines:

(8.10a)∀a·a ∈ X
| Deadline(A(a), B1(a), t1) ,

(8.10b)∀b·b ∈ X
| Deadline(B1(b), B2(b), t2) .

As shown in Figure 8.5(c), based on the guard of deadline (8.10b) on the Tick Tock

event, if event B1 has happened for a parameter b, and event B2 has not happened for it

yet, then the current value of time should be less than or equal to the occurrence time of

event B1 for parameter b, plus the deadline period (t2). By having this timing property

the relation between the occurrence time of event B2 and event B1 has been specified.

Based on the same principle explained in refinement pattern 4.3.1, we need to specify

the relation of the occurrence time of event B2 and event A, by specifying the relation

of the occurrence-time of events B1 and A.

The gluing invariants required to prove the consistency of this refinement, are as follows:

Chapter 8 Modelling Parametrized Timing Properties In Event-B 147

TIMING
∀a·a ∈ A |
Deadline(A(a), B(a), t)

EVENT A =̂
any

a
WHERE

a ∈ X
a /∈ fA
GA(c, v, a)

THEN
fA := fA ∪ {a}
ActA

END
EVENT B =̂

any
a, b

WHERE
a ∈ fA
b = a
b /∈ fB
GB(c, v, b)

THEN
fB := fB ∪ {b}
ActB

END

(a) Events A and B

TIMING
∀a·a ∈ A |
Deadline(A(a), B1(a), t1)
∀b·b ∈ B1 |
Deadline(B1(b), B2(B), t2)

EVENT A =̂
any

a
WHERE

a ∈ X
a /∈ fA
GA(c, v, a)

THEN
fA := fA ∪ {a}
ActA

END

EVENT B1 =̂
any

a, b
WHERE

a ∈ fA
b = a
b /∈ fB1

GB1
(c, v, b)

THEN
fB1 := fB1 ∪ {b}
ActB1

END

EVENT B2 refines B =̂
any

b1, b2
WHERE

b1 ∈ fB1

b2 = b1
b2 /∈ fB2

GB2
(c, v, b2)

THEN
fB2 := fB2 ∪ {b2}
ActB2

END

(b) Events A, B1 and B2

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
∀a·a ∈ fA ∧ a /∈ fB⇒

time+tick ≤ tA(a)+t
THEN

time := time + tick
END

EVENT T ick Tock refines T ick Tock =̂
any

tick
WHERE

tick > 0
∀a·a ∈ fA ∧ a /∈ fB1⇒

time + tick ≤ tA(a) + t1
∀b·b ∈ fB1 ∧ b /∈ fB2⇒

time + tick ≤ tB1(b) + t2
THEN

time := time + tick
END

(c) Event T ick Tock in abstract and concrete machines.

Figure 8.5: Events A and B plus their deadline property in the abstract Machine
in 8.5(a), followed by event A , events B1 and B2 in the concrete machine plus
their concrete timing properties in 8.5(b).

• The relation between the abstract event and its refining event (fB2 and fB are

the occurrence sets of the corresponding events):

(8.11)fB2 = fB ,

• The order between the concrete events:

(8.12)∀b·b ∈ fB1 ⇒ b ∈ A ,

• The relation between the abstract trigger event’s occurrence-times, and the occurrence-

times of the concrete trigger events:

(8.13a)∀b·b ∈ fB1 ⇒ tB1(b) ≤ tA(b) + t1 ,

(8.13b)∀b·b ∈ fA ∧ b /∈ fB1 ⇒ time ≤ tA(b) + t1 .

148 Chapter 8 Modelling Parametrized Timing Properties In Event-B

In the above invariants, tX is a total function from the occurrence-set of event X to

its occurrence-times. Invariant (8.11) specifies that the occurrence of event B2 for a

parameter, is equivalent to the occurrence of event B for that parameter.

The relation of the occurrence time of event B1 and event A has been specified by the

gluing invariant (8.13a) based on deadline (8.10a). Based on invariant (8.13a) we know

that if B1 has occurred for a parameter b, event A had happened at most t1 times ago

for b.

Invariant (8.13b) which is equivalent to the required guard on the Tick Tock event for

deadline (8.10a) provides the required information to discharge the corresponding POs

of invariant (8.13a).

For the Rodin development of this refinement pattern, 23 POs were generated for the

abstract machine, which all were discharged automatically, and 67 POs were generated

for the concrete machine, from which only one needed interactive prove.

It should be mentioned that the abstract deadline can be broken into more than two

sub-deadlines either by successive refinement steps or by refining the abstract event with

more than two sub-sequential events in one refinement step. For these refinement cases,

it will be possible to follow a similar approach.

8.3.2 Refining An Abstract Deadline to An Iterative Sub-Deadline

Sometimes there is an iterative event in a system, which happens for a finite number

of times, and completes a task gradually. This behaviour usually has some properties,

related to the overall effects of the iterations, and some properties, focused on each

iteration. For example, transferring a message part by part in a system, may have some

overall timing properties, and some timing properties on transferring each part.

In stepwise modelling and reasoning, one possible way of dealing with these types of

behaviour, is to abstract them by two events, representing the start and the end of an

iterative behaviour. As a result, the overall properties can be verified for these two

events, and then by adding the iterations in a refinement, it will be possible to express

and verify, the properties of each iteration, and their consistency with those abstract

overall properties (similar to the loop correctness [71] in Hoare logic).

From timing point of view, we will be able to verify the consistency of each occurrences

deadline, with the overall deadline of the task accomplishment In this way, the overall

timings of a system is abstract, and it is refined by timing properties on parts.

Assume a case where in the abstraction, we have a trigger event A and its response

event B, which has to happen within t time-units of its trigger’s occurrence. Then, a

new iterative event B1, with n times iteration, will be added in a refinement. Event B1

Chapter 8 Modelling Parametrized Timing Properties In Event-B 149

represents the required pre-steps of abstract event B, and eventB will be refined by event

B2, based on the new order (Figure 8.6).

In the refinement diagram, presented in Figure 8.6, 0..n− 1 in the circle represents the

fact that event B1 has to happen n times before event B can happen.

Figure 8.6: Refining a deadline to an iterative deadline.

Based on the concrete order of events, the abstract deadline will be refined by a sequence

of concrete deadlines, as follows (Figure 8.7):

• A deadline of t1 time-units, between the trigger event (A) and the first occurrence

of the iterative event (B1),

• A deadline of t1 time-units, between each occurrence of the iterative event and the

next one,

• A deadline of t1 time-units, between the last occurrence of the iterative event and

occurrence of event B2,

For the sequence of the concrete deadlines, to satisfy the abstract deadline, the sum of

their durations, should not be exceeding the abstract deadline’s duration (t = (n+1)∗t1).

As shown in Figure 8.7(b), the deadline between occurrence of A and occurrence of

B1 for parameter 0, and the deadline between occurrence of B1 for parameter n − 1

and occurrence of B2, are timing properties between an unparametrized event and a

single occurrence of a parametrized one. Consequently, as explained at the beginning of

this chapter, their syntax is a combination of the parametrized and the unparametrized

syntaxes.

To prove the consistency of the timing properties’ refinement, we need to show that,

based on the iterative deadline, n times occurrence of B1, will not take more than

(n− 1) ∗ t1 time-units, which combined with the deadline duration, between occurrence

of A and the first occurrence of B1, and the maximum gap between the last occurrence

of B1 and the occurrence of B2 ((n − 1) ∗ t1 + t1 + t1), will not exceed the abstract

150 Chapter 8 Modelling Parametrized Timing Properties In Event-B

TIMING
Deadline(A,B, t)

EVENT A =̂
WHERE

A = FALSE
GA(c, v)

THEN
A := TRUE
ActA

END
EVENT B =̂

WHERE
A = TRUE
B = FALSE
GB(c, v)

THEN
B := TRUE
ActB

END

(a) Events A and B

TIMING
Deadline(A,B1(0), t1)
∀b·b ∈ 0..n− 2
| Deadline(B1(b), B1(b + 1), t1)
Deadline(B1(n− 1), B2, t1)

EVENT A extends A
EVENT B1 =̂

any
b

WHERE
b ∈ 0..n− 1
b = 0⇒A = TRUE
b > 0⇒ b− 1 ∈ B1

b /∈ B1

GB1 (c, v, b)
THEN

B1 := B1 ∪ {b}
ActB1

END

EVENT B2 refines B =̂
WHERE

n− 1 ∈ B1

B2 = FALSE
GB2 (c, v)

THEN
B2 := TRUE
ActB2

END

(b) Events B1 and B2

EVENT T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE∧
fB = FALSE⇒
time+ tick ≤ tA+ t

THEN
time := time + tick

END

EVENT T ick Tock refines T ick Tock =̂
any

tick
WHERE

tick > 0
fA = TRUE ∧ 0 /∈ fB1⇒

time + tick ≤ tA + t1
∀b·b ∈ 0..8∧b ∈ fB1∧b+1 /∈ fB1⇒

time + tick ≤ tB1(b) + t1
9 /∈ fB1 ∧ fB2 = FALSE⇒

time + tick ≤ tB1(9) + t1
THEN

time := time + tick
END

(c) Event T ick Tock in abstract and concrete machines.

Figure 8.7: Events A and B plus their deadline property in the abstract machine
presented in 8.7(a), followed by events A , B1, and B2, in the concrete machine,
accompanied by their concrete timing properties in 8.7(b).

deadlines duration. To prove this, we need to prove the following invariants for the

occurrence of event B1 for a parameter b ∈ 0..n - 1:

(8.14a)∀ b · b ∈ B1 ∧ b > 0 ⇒ b− 1 ∈ B1 ,

(8.14b)∀ b · b ∈ B1 ⇒ 0..b ⊆ B1 .

Invariants (8.14a) and (8.14b) show the sequential order of the iterative occurrences.

Based on (8.14b), the occurrence of B1 for a parameter, applies that it has already

happened for all the previous parameters.

Based on the ordering invariants and the timing properties, it is possible to express the

overall effects of the concrete timing properties as follows:

(8.15a)A = TRUE ∧ 0 ∈ B1 ⇒ B1t(0) ≤ tA+ t1 ,

(8.15b)A = TRUE ∧ 0 /∈ B1 ⇒ time ≤ tA+ t1 ,

Chapter 8 Modelling Parametrized Timing Properties In Event-B 151

(8.15c)∀ b · b < n ∧ b ∈ B1 ∧ b+ 1 /∈ B1 ⇒ time ≤ tB1(b) + t1 ,

(8.15d)∀ b · b ≥ 0 ∧ b ∈ B1 ⇒ tB1(b) ≤ tB1(0) + ((b) ∗ t1) .

Invariant (8.15a) connects the occurrence time of event A (abstract trigger), to the first

occurrence of the iterative event, and invariant (8.15b) is required to discharged its

corresponding proof obligations. Invariant (8.15c) is the iterative deadline, and invari-

ant (8.15d) is what can be proved based on invariants (8.15c) and (8.14b).

By having invariants (8.15d) and (8.15a), we can prove that the concrete deadlines are

consistent with their abstract one. This proof needs to be done interactively, by breaking

the possible cases in three groups as follows:

1. A happened but B1 has not happened for any parameter yet,

2. B1 happened for a parameter x < n− 1 but has not happened for x+ 1,

3. B1 happened for n− 1 but B2 has not happened yet.

Invariant (8.15a) is required for case 1. Both Invariants (8.15d) and (8.15a) are required

for cases 2 and 3.

By using this approach, it is possible to model an iterative event, in two levels of ab-

straction, and verify the satisfaction of its overall accomplishment’s deadline, based on

our assumptions of each occurrence.

In the Rodin development of this refinement pattern, 14 POs were generated for the

abstract machine, and all of them were discharged automatically. For the concrete

machine, 69 POs were generated from which 63 were discharged automatically, and the

rest were discharged interactively.

8.4 Decomposition of Parametrized Timing Properties

By applying the same approach, explained in Chapter 5, a model with parametrized

timing properties can be decomposed. Similar to the unparametrized timing properties,

in a parametrized model, the occurrence sets and occurrence-time relations of shared

events have to be replicated.

8.5 Achievements

In this chapter how deadline, delay, and expiry, can be used to specify the timing prop-

erties of parametrized events has been explained. Besides, a new syntax has been intro-

duced, in order to express the parametrized timing properties, and how we have encoded

152 Chapter 8 Modelling Parametrized Timing Properties In Event-B

them in Event-B were explained. In the end some patterns to refine the parametrized

timing properties, based on some generic control flow refinement patterns, have been

explained.

In the following Chapter, a message passing case-study will be explained. This case-

study have been designed to evaluate the practicality of parametrized timing properties

and their refinement patterns.

Chapter 9

Message Passing Case-study

This case-study is designed to investigate the practicality of the parametrized timing

properties, their refinement patterns, and decomposition. The corresponding system of

this case-study, consists of a sender, a receiver and a two-way channel between them.

The goal is to transfer a fixed size message from sender to receiver, piece by piece.

In respect of demonstrating the practicality of our approach, this case-study has several

advantages. Despite its simplicity, it covers iterative timing properties, timing properties

between unparametrized and parametrized events, and parametrized timing properties.

In the following, the functionality of each component, involved in this case-study, is

briefly explained.

• Sender

A message is partitioned to several packets. Each packet has two parts, a unique

id, and data. There is an incremental order between ids. The sender is responsible

for sending the message, packet by packet, through the channel, and keeping track

of the transferred packets. Besides, it will resend a packet, if it has not received

the packet’s acknowledgement, within a specific period of time.

• Receiver

The receiver listens to the other side of the channel, to collect the arriving packets,

and send back their acknowledgements to the sender. In the case of a redundant

packet, just its acknowledgement will be sent.

• Channel

The channel connects the sender and the receiver. At any given time, a specific

amount of data can be transferred by the channel, and the received data will

be removed from the channel. In order to simplify the case-study, the channel’s

capacity is assumed to be a packet of data. Besides, packets may be lost by the

channel, and do not get to their destinations.

153

154 Chapter 9 Message Passing Case-study

An overview of the system has been presented so far. In the following the requirements

of this case-study will be discussed in details.

9.1 Requirements of the Message Passing Case-study

The requirements of the message passing case-study are categorized in four groups,

environment assumptions, performance, functional, and error detection requirements.

Since our focus is the modelling of timing properties, there will be more emphasis on

the time-related requirements.

To have a more generic model, instead of real values, symbolic values have been used

as the timing properties’ durations. Some of the requirements, specify the existing

relations, between these symbolic values.

9.1.1 Environment Assumptions

These assumptions specify the behaviour, and the properties of the channel, which is

our environment in this system. These assumptions are critical for developing the right

controller.

EA1. It should be possible to use the channel to transfer a packet,

EA2. Packets may be lost by the channel,

EA3. Transferring a packet should not take more than ChannelDL time-units, if it has

not been lost.

9.1.2 Functional

The functional requirements specify the desirable behaviours of the sender and the re-

ceiver.

F1. A message sent by the sender should be received by the receiver, unless the con-

nection is faulty,

F2. It should be possible to use the sender to send a message,

F3. It should be possible to use the receiver to receive the packets, sent by the sender,

F4. It should be possible to use the receiver to send the acknowledgement of the re-

ceived packets,

Chapter 9 Message Passing Case-study 155

F5. An acknowledgement packet has to have the same id as its corresponding received

packet,

F6. Each acknowledgement packet has to be marked by ACK,

F7. The packets has to be sent in an incremental order, starting by the first packet,

F8. The sender should not send the next packet, if the acknowledgement of the previous

one is yet to be received,

F9. It should be possible to use the sender to resend a message,

F10. A packet should not be resent more than MaxResend times (MaxResend > 1),

F11. The receiver should resend the acknowledgement, if it receives a packet which has

been already received,

F12. End of a message has to be marked by a FIN packet,

F13. The sending process is over by receiving the acknowledgement of FIN,

9.1.3 Performance

The performance requirements specify the tolerable latencies of the processes of the

sender and the receiver.

P1. A successful transferring process of a message, consists of last+1 packet, should be

accomplished within DataTDL time-units (DataTDL ≥ (last+1) ∗ PacketTDL),

P2. The process of transferring a packet (from the first sending attempt, to receiving

the acknowledgement), should not take more than PacketTDL (PacketTDL ≥
(MaxResend+1) ∗ ResendingDL), if the packet or its acknowledgement have not

been lost,

P3. A packet acknowledgement should be received within 2∗ChannelDL time-units of

its sending, unless either of the sent packet or its acknowledgement is lost,

P4. A packet must be resend within ResendingDL time-units (ResendingDL> 2∗ChannelDL),

if its acknowledgement has not been received, and no unrecoverable error has hap-

pened in the sender,

P5. A packet can be resend if at least 2∗ChannelDL time-units is passed from the

previous attempt,

P6. The next packet has to be sent at the same time as the previous packet acknowl-

edgement is arrived,

P7. An acknowledgement has to be sent at the same time as its packet is arrived,

156 Chapter 9 Message Passing Case-study

9.1.4 Error Detection

The error detection requirements specify the unrecoverable error states of the sender

and the receiver.

E1. When the sender has not received the acknowledgement of the last transferring

attempt of a packet, within its deadline (δ),

E2. When the receiver has not received the next packet, within MaxResend∗ δ+ 2 ∗α
time-units of the previous one,

In Figure 9.1 the sequence of processes to accomplish, in order to transfer a packet has

been presented. The transferring process of a packet starts by sending it, and finishes

by receiving its acknowledgement, or the occurrence of an unrecoverable error.

Figure 9.1: Control Flow Diagram of Sending a Packet

Since, each component has no direct awareness about the state of the others, they

synchronize based on time and message passing. How the timing properties of the system

(Sections 9.1.3, 9.1.4, and 9.1.1) help to synchronize these components, is explained

briefly in the following:

• After sending a packet, sender wait as long as it takes for the packet to be trans-

ferred, plus the duration required for its acknowledgement to arrive (α+α). If no

acknowledgement has arrived within this period, the packet will be resend,

Chapter 9 Message Passing Case-study 157

• Same process will be repeated for each resend, except the final one,

• After the final resend, if the sender has not received the acknowledgement within

2 ∗ α, it assumes a faulty connection and goes to an error state,

• When a packet is received by the receiver, and it is not FIN (the last packet), if

the receiver does not receive anything, within the required duration to transfer its

acknowledgement back to the sender (α), plus the duration required to receive a

packet, which has been tried to be sent by the sender, for MaxResend+1 times

(((MaxResend − 1) ∗ δ) + α), the receiver will assume a faulty connection, and

goes to an error state.

As explained, the combination of timing properties, enforces the desirable behaviour of

the system. For example, by considering how long it takes for a packet to be trans-

ferred through the channel, and how soon the receiver sends the acknowledgement after

receiving a packet, the sender knows how long it has to wait before resending a packet.

9.2 Refinement Strategy

So far the requirements of the case-study have been introduced. In this section our

strategy of including those requirements in the model, step by step, by each refinement

will be explained.

In the most abstract level, P1, F1, F6, and F12 have been included, by having three

events, representing the start of transferring process by the sender, successful transfer,

and error occurrence, plus their timing property. Requirements F6 and F12 have been

included in the context, since the characteristics of a message have been explained in

terms of axioms. The first refinement explained in Section 9.3.2, adds F7, and F13 to

the model by adding an iterative event, representing the packet by packet transferring

of data. In the next refinement explained in Section 9.3.3, P2 has been added to the

model, by adding the timing properties of the iterative behaviour. In the third refinement

explained in Section 9.3.4, F2 has been added by introducing the iterative sending event.

As it will be explained in Section 9.3.5, the forth refinement adds F9, F10, and P4 to the

model, by introducing the resending of a lost packet to the model. In the fifth refinement,

explained in Section 9.3.6, requirements EA1 and EA2 will be added, by introducing the

loss of data in the channel. The sixth refinement explained in Section 9.3.6, requirements

F3, F4, F5, F8, F11,P3, P5, P6, P7, E1, E2, and EA3 have been added to the model,

by introducing the receiver’s events and their timing properties.

The final two refinement have been dedicated to provide the required changes to decom-

posed a timed Event-B model as explained in Chapter 5.

158 Chapter 9 Message Passing Case-study

In the following, based on the explained requirements and properties of the system, we

will explain how the system is modelled, step by step in Event-B. The main focus will

be on the process of modelling, refining and decomposing the timing properties of this

case-study.

9.3 Event-B Model of the Message Passing System

For the clarity of the case-study, a fixed size message is assumed. The structure of a

message is modelled in the context, and properties such as the order of the ids, are

specified as axioms. The Event-B model of the case-study consists of 10 machines and 4

contexts. In the following, how the model is developed gradually, and how the abstract

timing properties are replaced by the concrete ones, will be explained in details.

9.3.1 The Most Abstract Machine and Context

As mentioned, the construct of messages is specified in the context. The most abstract

context is mostly dedicated to this.

An Event-B Specification of c00

Creation Date: 6Nov2012 @ 00:28:39 PM

CONTEXT c00

SETS

NET MESSAGE
CONSTANTS

Data

ACK

FIN

Send Message

last Last sequence number of sendable message

DataTDL Deadline duration to transfer Send Message

AP DATA Application Data
AXIOMS

axm1 : partition(NET MESSAGE,Data, {ACK}, {FIN})
axm2 : AP DATA ⊆ Data
axm3 : Send Message ∈ N 7→NET MESSAGE

axm4 : ran(Send Message) = Data ∪ {FIN}

Chapter 9 Message Passing Case-study 159

axm5 : finite(Send Message) ∧ Send Message 6= ∅
axm6 : last = card(Send Message)− 1

axm7 : ∀n·n ∈ dom(Send Message)⇒ 0 .. n ⊆ dom(Send Message)

axm8 : dom(Send Message) = 0 .. last

axm9 : ∀m·m ∈ dom(Send Message) ∧m 6= last⇒ Send Message(m) 6= FIN

axm10 : Send Message(last) = FIN

axm11 : ∀n·n ∈ N ∧ n < last⇒ Send Message(n) ∈ Data
axm12 : DataTDL ∈ N
axm13 : DataTDL > 0

axm14 : ∀m,x, y ·m ∈ Send Message ∧m = x 7→ y ∧ y = FIN ⇒ x = last

axm15 : ∀x·x ∈ dom(Send Message)⇒ x ∈ 0 .. last

axm16 : ∀x·x ⊆ N ∧ finite(x) ∧ x 6= ∅⇒max(x) + 1 /∈ x
END

As shown, Send Message represents the message which is supposed to be transferred.

Its first packet’s id is 0, and there is an incremental order between the packets’ ids. As a

result, the last packet which is marked by FIN has an id, which is the same as the total

number of packets minus one (since the ids start from 0). The last packet’s id is kept by

constant last. Based on the axioms axm6, the message is not empty, so the minimum

value of last is 0.

In the most abstract machine, the system is modelled by three events, Start Transferring,

representing the beginning of the transferring process, Transferred, representing the ac-

complishment of the process, and Error which represents the occurrence of an unrecov-

erable error, during this process.

An Event-B Specification of m00

Creation Date: 13Jun2012 @ 06:43:34 PM

MACHINE m00

SEES c00

VARIABLES

transferred {Whole transferred Message}
Transferred {Flag}
Start Transferring {Flag}
Error {Flag}

INVARIANTS

inv1 : transferred ⊆ Send Message

inv2 : Start Transferring ∈ BOOL

160 Chapter 9 Message Passing Case-study

inv3 : Transferred ∈ BOOL
inv4 : Error ∈ BOOL
inv5 : time ∈ N

inv6 : dom(Send Message) = 0 .. last

TIMING

tim1 : Deadline(Start Transferring, Transferred ∨ Error,DataTDL)

EVENTS

Initialisation

begin

act1 : transferred := ∅
act2 : Transferred := FALSE

act3 : Start Transferring := FALSE

act4 : Error := FALSE
end

Event Start Transferring =̂

when

grd1 : Start Transferring = FALSE
then

act1 : Start Transferring := TRUE
end

Event Transferred =̂

when

grd1 : Transferred = FALSE

grd2 : Start Transferring = TRUE

grd3 : Error = FALSE
then

act1 : Transferred := TRUE

act2 : transferred := Send Message
end

Event Error =̂

when

grd1 : Start Transferring = TRUE

grd2 : Transferred = FALSE

grd3 : Error = FALSE
then

act1 : Error := TRUE
end

END

Chapter 9 Message Passing Case-study 161

As shown, In this level of abstraction, there is only a deadline, forcing event Transferred

or event Error to happen, within DataTDL time-units of event Start Transferring ’s oc-

currence. So if the transferring process has not finished by its deadline, an unrecoverable

error will occur in the system.

Besides, since events are not parametrized in this level, the order is modelled by using

boolean flags.

9.3.2 The Second Level of Abstraction

In the first refinement, the gradual nature of the transferring process is introduced, in the

model. After initiating the transferring process, concrete iterative event Transferring,

models the process of transferring a message, packet by packet. So the last occurrence of

the iterative event, which represents the successful transferring of the last packet refines

the abstract event Transferred.

9.3.2.1 Refining an Event by Single Occurrence of an Iterative Event

Based on the refinement consistency verification mechanism of Event-B, if an abstract

event A, is refined by the last step (or the first) of a sequence of concrete sub-steps, and

all of those sub-steps are modelled by a concrete iterative event B , two refinements are

required to replace A, by B. As shown in Figure 9.2, in the first refinement, the last step

will be modelled by a separate event.

In the first refinement, the guards and the actions of A, will be replaced by the guards and

the actions of B, for the corresponding occurrence. The consistency of this refinement can

be proved in the usual way using gluing invariants. The second refinement, represented

in Figure 9.3(c), is the refinement where events A (LastB) and B are merged.

Figure 9.2: Refining an abstract event by the last step of a sequence of concrete
sub-steps.

162 Chapter 9 Message Passing Case-study

EVENT A =̂
WHERE

A = FALSE
GA(c, v)

THEN
A := TRUE
ActA

END

(a) The most abstract ma-
chine.

EVENT B =̂
any b
WHERE

b ∈ 0..n− 1
b > 0⇒b−1 ∈ B
b /∈ B
GB(c, v, b)

THEN
B := B ∪ {b}
ActB

END

EVENT LastB refines A =̂
any b
WHERE

b = n
b > 0⇒ b− 1 ∈ B
b /∈ B
GB(c, v, b)

THEN
B := B ∪ {b}
ActB

END

(b) First refinement.

EVENT B refines B LastB
=̂

any b
WHERE

b ∈ 0..n
b > 0⇒ b− 1 ∈ B
b /∈ B
GB(c, v, b)

THEN
B := B ∪ {b}
ActB

END

(c) Second refinement.

Figure 9.3: How an abstract event A has been refined by the first occurrence of
an iterative concrete event B.

If in the example of Figure 9.3, we refine the abstract machine, represented in 9.3(a),

by the concrete machine of Figure 9.3(c), without using the intermediate refinement

of 9.3(b), the refinement consistency proof obligations cannot be discharged. This is

because the guards of the abstract event do not hold for all the occurrences of B. 1

The same process has to be performed, in order to replace the abstract Transferred

event, with the last occurrence of concrete event Transferring. The concrete timing

property will be as follows:

(9.1)Deadline(Start Transferring, TransferringLast ∨ Error, DataTDL) .

This refinement highlights one of the disadvantages of assuming a fixed approach to

encoding event sequencing, in the semantics of timing properties. As shown in the gear

controller case-study (Chapter 7), the assumed approach, is practical in most cases.

But in a refinement such as this, where an unparametrized event’s sequencing has to

be enforced by a set (last ∈ Trasnferring), instead of a boolean flag, the semantics is

not flexible enough. But this problem can be solved by letting the modeller specify the

predicate that determines the occurrence state of a trigger or a response event. As a

future work, the approach can be improved by adding more flexibility such as this.

1This is just the technicality of the refinement in Event-B

Chapter 9 Message Passing Case-study 163

Figure 9.4: The refinement diagram of the first refinement.

So in this level of abstraction, the guard of deadline (9.1), will be as follows:

(9.2)Start Trasnfering = TRUE

∧ last /∈ Trasnferring ⇒ time+ tick ≤ tStart Trasnfering +DataTDL ,

Since the occurrence of TransferringLast, has to be determined by checking whether last

has been added to the Trasnferring set or not.

9.3.3 The Third Level of Abstraction

This refinement aims at replacing the abstract deadline, by a concrete iterative deadline,

constraining each packet transferring process. Beside, as mentioned in previous section,

abstract event TransferringLast, will be replaced by the occurrence of event Transferring

for parameter last. Accordingly, the concrete timing properties, replacing the abstract

deadline, are as follows:

(9.3a)Deadline(Start Transferring, Transferring(0)

∨ Error, PacketTDL) replaces 9.1 ,

(9.3b)∀x · x < last

| Deadline(Transferring(x), T ransferring(x+ 1)

∨ Error, PacketTDL) replaces 9.1 .

Deadline (9.3a) is a timing property between an unparametrized event, and the first

occurrence of a parametrized one. This deadline specifies the maximum latency between

the beginning of the process, and the accomplishment of the first packet’s transferring.

164 Chapter 9 Message Passing Case-study

Deadline (9.3b) is an iterative timing property, specifying the maximum latency between

each packet’s transferring and the next one. As mentioned before, last represents the

last packet’s id.

As explained in Section 8.3.2, in order to replace an abstract deadline with an iterative

concrete deadline, we need to prove that the overall effect of the iterative deadline,

satisfies its abstract. As a result, we need invariants which specify the overall effect,

based on the order of sending packets (a packet with the lower id will be sent earlier

than a packet with a higher id), and the concrete deadlines. These invariants are as

follows:

(9.4a)Start Transferring = TRUE ∧ 0 /∈ Transferring
∧ Error = FALSE ⇒ time ≤ Start TransferringT + PacketTDL ,

(9.4b)0 ∈ Transferring ∧ Error = FALSE ⇒ TransferringT (0)

≤ Start TransferringT + PacketTDL ,

(9.4c)∀x · x < last ∧ x ∈ Transferring ∧ x+ 1 /∈ Transferring
∧ Error = FALSE ⇒ time ≤ TransferringT (x) + PacketTDL ,

(9.4d)∀x · x ∈ Transferring ∧ Error = FALSE ⇒ TransferringT (x)

≤ Start TransferringT + (x+ 1) ∗ PacketTDL .

Invariant (9.4a) is required to prove invariant (9.4b), which specifies the relation between

the first transfer’s occurrence-time, and the beginning of the process. Invariant (9.4c)

(based on deadline(9.3b)) and invariant (9.4b), are required to prove invariant (9.4d).

Invariant (9.4d) is the key invariant which connect the occurrence time of each packet’s

transferring, to the initiation of the message transferring process.

Based on invariant (9.4d) all the packets should be transferred within PacketTDL*(last+1)

time-units of the beginning of the process, if no error has occurred.

DataTDL ≥ PacketTDL ∗ (last+ 1). (9.5)

So, if the iterative concrete deadline’s duration, satisfies property (9.5), then the concrete

timing properties will satisfy their abstract deadline.

9.3.4 The Forth Level of Abstraction

In this level, the Sending event as the pre-step of each packet transferring is added to

the model. Event Sending represents the process of sending a packet by the sender.

Chapter 9 Message Passing Case-study 165

Besides, as shown in Figure 9.5, sending the first packet, which is equivalent to the

occurrence of the Sending event for 0, refines the Start Transferring event’s occurrence.

Similar to the refinement process explained in Section 9.3.2.1, In the next refinement

sending the 0 packet, will be refined by the Sending event.

Figure 9.5: Refinement diagram of the forth refinement

Based on the concrete order, sending a packet triggers its Trasnferring event. The effect

of this change on the abstract deadlines are as follows:

(9.6a)∀x · x ∈ N
| Deadline(Sending(x), T ransferring(x)

∨ Error, PacketTDL) replaces(9.3b) ,

(9.6b)∀x · x < last

| Deadline(Transferring(x), Sending(x+ 1) ∨ Error, 0) replaces(9.3b) .

Since event Sending0 has the same guards and actions as the occurrence of the Sending

event for the first packet, having Sending(x) as a response, where x can be 0, will includes

the deadline between event Sending0, and the Transferring event.

Deadline (9.6b) enforces a zero latency between accomplishment of a packet transferring,

and sending the next packet. As a result, based on the refinement pattern introduced

in Section 8.3.1, the abstract iterative deadline between each packet transferring, and

the next one (deadline (9.3b)), has been replaced by two sequential iterative concrete

deadlines, one between each sending and its corresponding transferring event (deadline

(9.6a)), and another between each transferring occurrence and the sending of the next

packet (deadline (9.6b)).

9.3.5 The Fifth Level of Abstraction

By this refinement, the resending process is added to the model, represented by the

ResendingProcess event. This event can only happen, if the Sending event had already

166 Chapter 9 Message Passing Case-study

happened for a packet, but the Transferring event has not. Besides, the Resending-

Process event cannot iterate more than MaxResend times. Constant MaxResend is

declared in the context and it is a natural number.

Figure 9.6: The fifth level of abstraction.

As shown in Figure 9.6, after an occurrence of the Sending event, either the Transfer-

ring event’s occurrence will follow it or the ResendingProcess event’s occurrence. The

ResendingProcess event iterates until either the Transferring event happens, or it hits

its iteration’s upper-bound. After, the last resend, if the Transferring does not happen,

the Error event will happen, representing the occurrence of an unrecoverable error. As

a result, either the packet will be transferred successfully by an occurrence of the Trans-

ferring event, or the system will go to an unrecoverable error state by an occurrence of

the Error event.

Based on the concrete order, and the refinement pattern explained in Section 8.3.2,

the abstract deadline between the Sending, the Transferring, and the Error events, is

replaced by deadlines 9.7a, 9.7b, and 9.7c, as follows:

(9.7a)∀x · x ∈ N
| Deadline(Sending(x 7→ 0), T ransferring(x

7→ 0) ∨ ResendingProcess(x 7→ 1), ResendingDL) replaces(9.6a) ,

(9.7b)∀x, y · x ∈ N ∧ y < MaxResending

| Deadline(ResendingProcess(x 7→ y), T ransferring(x 7→ y)

∨ ResendingProcess(x 7→ y + 1), ResendingDL) replaces(9.6a) ,

(9.7c)
∀x · x ∈ N

| Deadline(ResendingProcess(x 7→MaxResending),

T ransferring(x 7→MaxResending)

∨ Error,ResendingDL) replaces(9.6a) ,

∀x, y · x < last ∧ y ∈ N
| Deadline(Transferring(x 7→ y), Sending(x+ 1 7→ 0), 0) replaces(9.6b) .

(9.7d)

Chapter 9 Message Passing Case-study 167

Deadline (9.7a) is between event Sending as the trigger, and the first occurrence of the

ResendingProcess event, or the corresponding occurrence of the Transferring event, as

the response events. Deadline (9.7b) is an iterative deadline between each occurrence of

the ResendingProcess, and the corresponding occurrence of the Transferring event, or

the next occurrence of the ResendingProcess, for the same packet. The (9.7c) deadline

is between the last occurrence of the ResendingProcess as the trigger event, and either

occurrences of the Error event, or the Transferring event, as the deadline’s responses.

These deadline have replaced the abstract deadline (9.6a).

A new parameter (represented by y in some of the deadlines) exists in some of the

concrete timing properties, used to show which sending attempt, a timing property is

about. Concrete deadline (9.7d) refines abstract deadline (9.6b), by including the new

parameter.

Similar to what has been explained, in the refinement pattern 8.3.2, the timing property

refinement, presented in this section, is consistent if:

PacketTDL ≥ ResendingDL ∗ (MaxResending + 1) (9.8)

So the overall deadline duration, resulted by the concrete deadlines, has to be less than

or equal to the abstract deadline’s duration.

But these are not all of the concrete timing properties. In this level, some delays,

constraining the occurrence of the ResendingProcess, and the Error events, have been

introduced too. These delays give enough time to a packet, and its acknowledgement,

to travel through the channel. So the resending only happens, if the sender believes, the

transferring process for the previously sent packet was not successful (based on time).

For the last resending attempt, the delay prevents the occurrence of an unrecoverable

error, if there is still time for the packet to be transferred. These delays are as follows:

∀x · x ∈ N | Delay(ResendingProcess(x 7→MaxResend), Error,ResendingDL) ,

(9.9a)

(9.9b)∀x, y · x ∈ N ∧ y < last

| Delay(Sending(x 7→ y), ResendingProcess(x 7→ y + 1), ResendingDL) ,

(9.9c)∀x, y · x ∈ N ∧ y < last | Delay(ResendingProcess(x 7→ y),

ResendingProcess(x 7→ y + 1), ResendingDL) .

Delay (9.9a) is between the last resending attempt, and the error occurrence. De-

lays (9.9b) and (9.9c) are on the ResendingProcess event, the Sending event and the

first occurrence of the ResendingProcess event, and the other between the previous

resend and the next one.

168 Chapter 9 Message Passing Case-study

9.3.6 The Sixth and Seventh Levels of Abstraction

In these two refinements, first the DataLost event, representing the loss of a packet,

and ACKLost event, representing the loss of an acknowledgement, in the channel, are

added to the model. By having these two events, in the next refinement, the abstract

event Transferring is refined by the RecevingACK event, representing the arrival of an

acknowledgement in the sender.

Besides, the receiver’s events, Receiving and Rereceiving are added. The Receiving

event represents the arrival of a packet in the receiver, and the Rereceiving event repre-

sents the arrival of a packet in the receiver, which has been already received. By having

these receiver’s events, its error event can be added to the model too. As explained in

the requirements section (9.1.4), the receiver will goes to an unrecoverable error state,

if the last packet has not been received, and the receiver does not hear from the sender,

within ReceivingDL time-units of the previous data arrival.

Figure 9.7: The refinement diagram of the fifth and sixth refinements

Chapter 9 Message Passing Case-study 169

As shown in Figure 9.7 after MaxResend+ 1 times, transferring attempts of a packet,

the sender will give up, and the receiver will eventually go to an error state. In the

diagram there is an intermediate event Acknowledgement Lost, which does not exist

in the Event-B model presented in Appendixes (Section A.4). It is just added to the

diagram, in order to improve its readability.

Since abstract event ResendingProcess, has been refined by concrete event Resending

(the abstract event’s name, has been changed), it will be replaced by it, in all the abstract

timing properties.

Besides, by adding these concert events, it is now possible to specify the timing properties

of the channel and the receiver. Their timing properties does not replace any abstract

timing property, since they are the properties of behaviours, hidden in the abstraction.

In the abstraction, the transferring process was modelled from the sender perspective.

As a result all of the abstract timing properties, belongs to the sender. On the other

hand, the newly added timing properties in these two refinements, express the properties

of the receiver and the channel. These concrete timing properties are as follows:

The channel’s timing properties

(9.10a)∀x · x ∈ N
| Deadline(Sending(x 7→ 0), Receiving(x 7→ 0)

∨DataLost(x 7→ 0), ChannelDL) ,

(9.10b)∀x, y · x ∈ N ∧ y ∈ N | Deadline(Resending(x 7→ y), Receiving(x 7→ y)

∨ Rereceiving(x 7→ y)∨DataLost(x 7→ y), ChannelDL) ,

(9.10c)∀x, y · x ∈ N ∧ y ∈ N | Deadline(Receiving(x 7→ y), ReceivingACK(x 7→ y)

∨ACKLost(x 7→ y), ChannelDL) ,

∀x, y · x ∈ N ∧ y ∈ N | Deadline(Rereceiving(x 7→ y), ReceivingACK(x 7→ y)

∨ACKLost(x 7→ y), ChannelDL) .

(9.10d)

The receiver’s timing properties

(9.11a)∀x, y1, y2, z · x < last ∧ z > 0

| Deadline(Receiving(x 7→ y1), Rereceiving(x 7→ y1 + z)

∨Receiving(x+ 1 7→ y2), ReceivingDL) ,

(9.11b)∀x, y1, y2, z · x < last ∧ z > 0

| Deadline(Rereceiving(x 7→ y1), Rereceiving(x 7→ y1 + z)

∨Receiving(x+ 1 7→ y2), ReceivingDL) ,

(9.11c)∀x, y · x < last | Delay(Receiving(x 7→ y), Error,ReceivingDL) .

170 Chapter 9 Message Passing Case-study

Deadlines (9.10a), (9.10b), (9.10c), and (9.10d), specify the maximum duration required

for a data packet, or an acknowledgement packet, to travel through the channel. So

after ChannelDL time-units, of sending a packet, it has either arrived to its destination,

or has been lost.

Deadlines (9.11a)and (9.11b) specify the maximum duration, the receiver waits to hear

from the sender, before it goes to an error state. At last, delay (9.11c) specified the

minimum duration, the receiver waits, before assuming a faulty connection, and going

to an unrecoverable error state.

There is no mechanism to inform the sender about a lost in the channel. As a result,

the sender activates its packet-loss’s strategies, based on time. Similarly, there is no

mechanism to inform the receiver about a faulty connection, either caused by an error

in the sender, or the channel being out of order. So, the receiver decides about going to

an unrecoverable error state, based on time too.

To do this efficiently and effectively, there should be some relations between the timing

properties of these three components. These relations are as follows:

(9.12a)ReceiverDL ≥MaxResend ∗ResendingDL+ 2 ∗ ChannelDL ,

(9.12b)ResendingDL > 2 ∗ ChannelDL .

Based on (9.12a) the maximum duration, the receiver waits before going to an unrecov-

erable error state is longer than sequence of the following durations:

1. the duration required for the acknowledgement to get to the sender (ChannelDL),

2. the duration required for the sender, to try transferring a packet MaxResedning

times (MaxResend * ResendingDL),

3. the maximum duration required for the last sending attempt of a packet, to get

to the receiver (ChannelDL).

Based on (9.12b) the required time for a packet and its acknowledgement to travel

through the channel should be less than the duration the sender waits before resending

that packet. So, the sender just resends a packet if it has already been lost. The

satisfaction of this property, by this model, has been proved as an invariant, in the next

refinement, explained in the following section.

9.3.7 The Eighth Levels of Abstraction

To prevent an overly complex machine, in the previous refinement, how the timing

properties of the channel, the sender, and the receiver, synchronize them has been verified

Chapter 9 Message Passing Case-study 171

in this refinement. In this level, the aim is to prove that by the time, the sender resends

a packet, its previous attempt has been already failed, either by losing the packet itself

before getting to the receiver, or by the loss of its acknowledgement. This has been done

by adding an invariant. This invariant is not a gluing invariant, so it is not required to

prove the consistency of a refinement.

As mention in Section 9.3.6, based on the relation of the timing properties’ durations,

the sender can recognize whether a resend is required or not. The following invariant

encodes this property:

(9.13)∀x, y · x 7→ y ∈ Resending ⇒ (x 7→ y − 1 ∈ Receiving ∪ Rereceiving
∧ x 7→ y − 1 ∈ ACKLost) ∨ (x 7→ y − 1 ∈ DataLost)

Invariant (9.13) can be proved based on the timing properties of the system. But first,

we need some other invariants which specify the relation of the events’ occurrence-times,

in different components. These invariants are as follow:

(9.14a)∀x·x 7→ 0 ∈ Sending ∧ x 7→ 0 ∈ Receiving ⇒ ReceivingT (x 7→ 0)

≤ SendingT (x 7→ 0) + ChannelDL ,

(9.14b)∀x, y ·x 7→ y ∈ Resending ∧ x 7→ y ∈ Receiving ⇒ ReceivingT (x 7→ y)

≤ ResendingT (x 7→ y) + ChannelDL ,

(9.14c)∀x, y ·x 7→ y ∈ Rereceiving ⇒ x ∈ dom(Receiving) ,

(9.14d)∀x, y ·x 7→ y ∈ Resending ∧ x 7→ y ∈ Rereceiving ⇒
RereceivingT (x 7→ y) ≤ ResendingT (x 7→ y) + ChannelDL ,

(9.14e)∀x, y ·x 7→ y ∈ Rereceiving ⇒ x 7→ y ∈ Resending .

As shown, most of these invariants are about the channel’s deadlines. Based on the

channel deadlines, and the fact that the acknowledgement will be sent at the same time

as the packet is received, it is possible to prove that, if the sender waits more than

2*ChannelDL, and does not receive any acknowledgement, the only possibility is the

loss of the packet, or its acknowledgement. These invariants mostly specify how long it

takes for a packet to travel through the channel. As a result if it has not arrived by that

time, the only possibility is that it has been lost.

So far, all of the details of the system specification have been added to the model. To

evaluate the practicality of the introduced decomposition approach in Section 5, the

following section goes through the process of decomposing the most concrete model of

this case-study.

172 Chapter 9 Message Passing Case-study

9.3.8 The Ninth Levels of Abstraction and Decomposition

As explained in Section 5, in order to decompose a timed Event-B model, the ordering

sets or flags, and the occurrence time variables of the shared events, need to be replicated,

and the time variable needs to be replicated for each component. Besides, in the timing

properties of each component, its corresponding replicate of the time variable should be

used. This is what has been done in the ninth level of abstraction. Three components

are assumed for this system, the sender, the receiver and the channel. As a result, there

are three copies of the time variable. In this decomposition, the shared events are as

follows:

• Between the sender and the channel:

Sending

Resending

ReceivingACK

Tick Tock

• Between the receiver and the channel:

Receiving

Rereceiving

ReceivingACK

Tick Tock

• Between the Sender and the Receiver:

Tick Tock

The Tick Tock event is shared between all three components. Other than that, the

sender and receiver are not connected directly, and all the communications are done

through the channel. After decomposition, the timing properties will be decomposed

too, so in the Tick Tock event of each component, only the deadline guards of that

component will appear.

9.4 Achivements

In this case-study, a message passing protocol between a sender and a receiver, through

a channel have been modelled. The case-study has demonstrated the capability of the

approach to model interconnected iterative processes. It has done by starting from

an abstract machine, in which hides the iterations and reflects the overall effects, and

Chapter 9 Message Passing Case-study 173

properties of them (including timing properties), and evolving it to include the itera-

tive behaviours of the system ,and their properties by using the refinement patterns,

introduced in Sections 4.3 and 8.3.

Machine
Number of

Generate PO
Automatically

Proved
Automatically

Proved%

m00 8 8 100
m01 44 39 88
m02 26 23 88
m03 70 66 94
m04 66 56 84
m05 8 8 100
m06 82 74 90
m07 49 38 77
m08 47 45 95

Total 406 362 89

Table 9.1: Number of generated proof obligations for each machine and how
they were proved

In this way, the consistency between the overall properties, and the properties of each

iteration has been proved. We have presented how the timing properties, and the order of

events’ occurrences, provide the desirable overall behaviour of the system. The number

of generated proof obligations and how they have been proved in each machine have

been presented in Table 9.1.

Although the portion of interactively proved POs is not low, but most of those POs

have been proved by using the new prover plug-in MetaProver. The advantage of the

MetaProver, is its ability to collect the more relevant hypothesises, in order to discharge

a PO. This is caused by the occurrence sets, since the Atelier B prover, is not effective

enough to prove the invariants, containing sets.

Chapter 10

Timing Properties Plug-in

As mentioned in Section 4.2, based on the semantics of timing properties, several vari-

ables, invariants, guards and actions are needed to be added to an Event-B model in

order to encode them. Besides, in order to verify the consistency of the timing properties’

refinements, as it was discussed in Section 4.3, some gluing invariants are required.

Going through this process manually, is time consuming and fallible. By automation of

this process, since the semantics will be implemented automatically, the modeller just

needs to know the syntax of timing properties, in order to use the approach.

To achieve this level of practicality, we have extended the Rodin tool-set [8] to support

the timing properties based on this work. Since Rodin is an Eclipse-based IDE [5], it

can be extended with plug-ins.

In this report we will not go into the details of the Rodin extension process, but there

are some useful information available in the Event-B wiki page [7]. In the following,

the features of the timing properties plug-in, and how they can facilitate the process of

modelling and verifying a real-time system in the Rodin tool-set, will be discussed.

10.1 Timing Plug-in’s Features

The plug-in is supporting unparametrized timing properties in this stage. Our goal is

to hide the details of encoding timing properties from the modeller. A special interface

has been designed for the timing, which offers the following facilities:

• Presenting the existing timing properties of the corresponding machine,

• Providing the delete function for the timing properties,

• Editing the existing timing properties (changing the trigger or response events, or

changing the timing properties duration),

175

176 Chapter 10 Timing Properties Plug-in

• Adding a new timing property,

• Sorting the events alphabetically in order to improve the search experience when

the modeller wants to choose the trigger and response events.

In the following, some of these facilities will be explained in more details.

10.1.1 Adding a New Timing Property

In order to add a new timing property, the modeller has to choose the type of the property

from a list (deadline, delay or expiry), a trigger event from a list of all the existing events

of the corresponding machine, except the Tick Tock and INITIALIZATION events, a

response event (or several in the case of deadline) for the similar list, and a duration from

a list of all the integer constants, visible to the machine (declared in the contexts seen by

the machine). Then the tool will generate all the required time related variables, typing

invariants, initialization actions, timing guards, occurrence recording actions, and the

Tick Tock event.

In addition, the required time related gluing invariants, in order to discharge the re-

finement consistency proof obligations, will be generated by the tool. But, some com-

promises have been made in terms of generated gluing invariants. Since, during the

process of adding a timing property, the the overall timing paradigm of the correspond-

ing machine, may not be available, we are generating the invariants which connect the

occurrence time of a response event to its trigger event based on the timing property,

whether they are required based on the refinement, or not.

We do not believe that, because they are making the model more complex, having them

is a disadvantage. Those invariants, specify the timing properties of the system, and

discharging their corresponding POs, verify the satisfaction of those properties by the

model. Besides, their corresponding POs can be discharged by the automatic prover, so

their existence does not cause any inconvenience.

As explained in Section 4.3, if a timing property is refined by a sequence of several

sub-timing properties, some gluing invariants will be required to specify the correlation

between the occurrence times of the intermediate trigger events and the occurrence time

of the abstract trigger event, based on those concrete sequential sub-timing properties.

Similar to what has been explained in refinement pattern 4.3.1, if in a trigger-response

pattern, the response event is refined by several sequential sub-responses, in order to

prove the consistency of the refinement, the relation between the occurrence-time of the

last sub-response, in the concrete sequence of responses, and the abstract trigger event

has to be specified. This is done, by specifying the relation between the occurrence-times

of each sub-response, and its trigger event (for the first sub-response, it is the abstract

Chapter 10 Timing Properties Plug-in 177

Figure 10.1: Refining a timing property of type X, to a sequence of two concrete
sub-timing properties of type Y and Z.

trigger event, and for the rest, it is the previous sub-response, in the sequence of concrete

sub-responses), based on their timing property, in terms of an invariant.

For the refinement pattern of Figure 10.1, the relation between the occurrence-times of

A and B1, will be specified based on timing property Y, and the relation between the

occurrence-times of B1 and B2, will be specified based on Z.

These type of invariant will be generated for all the timing properties of a model, by the

timing plug-in, whether they are required to prove the consistency of a timing refinement,

or not. As a result despite the timing properties’ semantics, introduced in Section 4.2,

where just the occurrence-time of a trigger event is recorded, our plug-in will generate

the required component to recorded the occurrence-time of each response event, too.

By considering the amount of effort required to generate these invariants by hand, this

change seems to be an acceptable compromise. Besides, it does not affect anything,

which has been explained so far.

(10.1a)Deadline(A,B, t) ,

(10.1b)Delay(A,B, t) ,

(10.1c)Expiry(A,B, t) .

The generated invariants by the plug-in, for a deadline such as (10.1a), are as follows:

(10.2a)A = TRUE ∧B = TRUE ⇒ tB ≤ tA+ t ,

(10.2b)A = TRUE ∧B = FALSE ⇒ time ≤ tA+ t .

As explained in Section 4.3.1, invariant (10.2b) is required to prove invariant (10.2a) for

event B, since the timing property has guarded the Tick Tock event, and the required

information about time to discharge the corresponding POs of invariant (10.2a) is not

available in the guards of B.

178 Chapter 10 Timing Properties Plug-in

Since, delays and expiries guard the corresponding response event, we just need the

invariant which connect the occurrence time of the response event to the trigger one,

based on their timing property, and there is no need for any other timing invariant

to discharge its POs. As a result, the generated invariants to specify the correlation

between the occurrence time of a trigger event and its response event’s occurrence time

for a delay and an expiry such as (10.1b) and (10.1c) are as follow:

A = TRUE ∧B = TRUE⇒ tB ≥ tA+ t, (10.3)

A = TRUE ∧B = TRUE⇒ tB ≤ tA+ t. (10.4)

Invariant (10.3) will be generated for a generic delay (10.1b), and invariant (10.4) for

expiry (10.1c).

The other invariant that may be generated by the timing plug-in, specify the correlation

between occurrence time of an alternative concrete trigger event and its abstract one.

Figure 10.2: Refining a trigger-response pattern, by two alternative trigger-

responses

Similar to what has been explained in Section 4.3.4, if a timing property of type X is

refined by two alternative timing properties of the same type as shown in Figure 10.2,

the following invariant is required to connect the abstract trigger event occurrence time

and the concrete occurrence times of the alternative trigger events:

tA = tA1 ∧ tA = tA2 (10.5)

Invariant (10.5) will be generated, if the trigger event of the added timing property,

refines an event, which has a timing property and a different name.

The gear controller case-study, has been remodelled, by using the plug-in, and no time

related invariant was required to be declared by the modeller in order to discharge

the refinement consistency POs. Since the case-study covers a wide range of timing

properties and their refinement, it can be claimed that the tool at least supports all the

unparametrized refinement patterns, introduced in Section 4.3. In the next section the

advantage and disadvantage of the timing plug-in will be discussed in more details.

Chapter 10 Timing Properties Plug-in 179

10.1.2 Advantages & Disadvantages of the Timing Plug-in

The biggest advantage of having a tool support for the approach, is the improvement

of practicality. By using the plug-in, adding a timing property to an Event-B model,

removing one or editing it, can be done in a matter of a minute. Whereas, if it is supposed

to be done manually, it requires a lot of effort. Other than the time, the modeller has to

spend in order to learn the semantics of the timing properties and the require invariants

to discharge the refinement consistency POs, encoding timing properties is a hassle

Based on our experiences, a timing property can be added to a simple Event-B model

with a pair of trigger-response events, in two and half minutes by hand if the modeller is

well experienced with the approach and Event-B, whereas it takes less than ten seconds to

do it by using the plug-in. Considering, the simplicity of the machine and consequently

its timing properties, this figure will be more impressive for a complex model, with

complex timing properties (deadlines with several alternative responses). Besides, it

should be considered that in this example, there is no refinement. Adding the abstract

timing properties to a concrete machine and declaring the required gluing invariants is a

complex and error prone process by its own, which can be done in a matter of a second

by the plug-in.

The gear controller case-study was one of the early case-studies we have done during this

work. For this report, based on the mature semantics (improved gradually, by applying

them on different examples), it had to be redo. Since I was completely familiar with

the specification of the system, I just needed to think about the modelling process and

decide about different levels of abstractions and their timing properties. First, I added

the timing properties by hand, and it took me about two weeks to do the whole thing.

Then I removed all the timing properties and their related variables, guards, actions,

invariants and events from the model, and this time we added the timing properties by

using the plug-in. The whole process of adding the timing properties and proving their

consistency, just took me a day.

Even by considering the required time to model the untimed model of the system in

the first attempt, which was about a week, there is an impressive difference between the

required time with and without the plug-in. Besides, it should not be forgotten that as

the designer of the approach I am well familiar and comfortable with it, so I can add

timing properties by hand much faster than a typical Event-B modeller. As a result, it

can be claimed that these results will be much better for a typical Event-B modeller.

But there are some issues too. First of all, after adding timing properties to an abstract

machine and its refinement, if a new timing property is added to the abstract machine,

or an existing one is changed, the concrete machine will not be updated accordingly.

Besides, the unparametrized timing properties are not supported yet. The other issue

which may be considered as a problem, is the number of generated invariants. As

180 Chapter 10 Timing Properties Plug-in

explained in Section 10.1.1, since the overall picture is not available in the process of

adding a timing property, some invariants will be generated which are not necessarily

required. But, since they all can be discharged by the automatic prover, the complexity

they add to the model, is not really an issue.

For the tenth levels of abstraction, in which the gear controller case-study has been

modelled (minus the level required for the decomposition), the model generated by

hand has 1100 POs, from which 1052 of them have been discharged automatically (95%

were automatically dischahrged). In the model which the timings have been added by

using the plug-in, 2257 proof POs have been generated, from which 2202 (97% of POs

have been discharged automatically). As these numbers show, although the number of

generated proof obligations is much higher in the case of using the plug-in, but the ratio

of automatically discharged POs is still better when the plug-in is used, since all the

corresponding POs of those unneccessary invariants (which do not exist in the manually

generated model), have been discharged automatically.

The automatic provers have some limitations. For example, in complex models, with so

many events and invariants, the automatic provers cannot find the relevant hypotheses

to discharge a PO, before their time-out. In the last machine, because of the complexity

of the model (consist of more than 50 events) and its timing properties (more than 50

timing properties) the automatic provers were unable to discharge some of the POs. The

only thing modeller can do, is to open the interactive interface, and run the ML prover

from there. So it is not actually an interactive prove, it is just running an automatic

prover without any time-out. Each PO which has not been discharged by the automatic

provers, has been discharged in less than 15 seconds in this way.

In the model, where timing properties have been added by hand, since the timing gluing

invariants were generated more heuristically, there were less of them. Consequently

the model was less complex and the automatic provers were able to discharge the POs

of the gluing invariants before the time-out. This kind of problem can be solved by

improvement of the automatic provers in the future.

Besides, as explained in Section 4.2, we have proved the consistency of the timing prop-

erties semantics. As a result, there is no need to prove the timing properties invariants,

in every model. So, another improvement of the tool can be extending the POs gener-

ator, to prevent the consistency POs of those invariant to be generated, based on the

assumption that they are consistent by construct. By this improvement, number of POs

of a timed Event-B will be reduced considerable, and there will be less time related POs

which modeller has to discharge interactively.

In this chapter, the features of the plug-in developed to support our approach have

been discussed and how they improve the modelling experience in Event-B, has been

explained. The down-sides of using the tool have been mentioned and a comparison of

the gear controller case-study (Chapter 7) modelling experience, with and without the

Chapter 10 Timing Properties Plug-in 181

plug-in has been presented. The developed model by using the plug-in is available in

the Appendix (Sections A.2 and A.3).

Chapter 11

Conclusions

This work has been based on Event-B formal modelling and verification language [13].

We have extended the language by several definable discrete timing properties and

demonstrated their usefulness and practicality with two case studies.

In Chapter 4, The Event-B syntax was extended by three discrete unparametrized tim-

ing properties, based on the trigger-response pattern, and how they are encoded by

using the standard constructs of Event-B was discussed. We believe the main contri-

bution of this work is the introduced semantics for timing properties, which supports

refinement, decomposition, and mechanized process of extending an untimed Event-B

model by timing properties. Besides, in this work, several types of timing properties

have been covered. By benefiting from the refinement feature, it is possible to verify

the consistency of timing properties in different levels of abstraction, and decomposition

helps the modeller to independently refine the timing properties of a component in a

large system.

In Chapter 5, our approach to decomposed a timed Event-B model was explained. Based

on this approach, it is possible to extend and refine the timing properties of each de-

composed machine, independently. Besides, time progresses synchronously in the de-

composed machines.

In Chapter 6, we investigated the timing properties’ effects on the enableness of response

events. The aim is to show that by adding timing properties, response events still have

the chance to occur, and the progress of time will not be disabled indefinitely. In

most cases, having some simple relations between the durations of timing properties,

guarantees the satisfaction of those properties, but proving that the eventual enabling

of time progressing event can be challenging.

In Chapter 7, the gear controller case study was presented. This is a reasonably complex

and large system, which benefits from different means of synchronization, mainly time.

183

184 Chapter 11 Conclusions

Our aim was to demonstrate, how timing refinement can be beneficial during the mod-

elling process of a complex real-time system. As presented, most of the proof obligations

were discharged automatically. Although, some of the timing properties refinements’

POs needs modeller interactions to be discharge, we believe the prover improvement can

solve this issue.

In Chapter 8, The Event-B syntax was extended by three discrete parametrized timing

properties, based on the trigger-response pattern, and similar to the unparametrized

ones, how they are encoded was discussed. Besides, how the introduced refinement

patterns, and the decomposition process of unparametrized timing properties can be

applied on parametrized ones, were explained.

In Chapter 9 another case study was discussed, in order to demonstrate the practicality

of our approach, for parametrized events. Similar to the gear controlling system, the

practicality of the timing refinement and decomposition were the focus of the chapter.

In Chapter 10, the features of the timing extension of the Rodin tool-set, developed to

support our approach, have been discussed. The chapter aimed to demonstrate, how a

tool support can make the approach even more piratical, in terms of the required effort

to add timing properties to an untimed Event-B model.

11.1 Related Work

Many studies have been dedicated to formalize and verify timing properties of real-time

systems. Delay, deadline and expiry can be seen in many of those works, sometimes

with different names.

In real-time calculus TCCS of Wang [116] there is a delay construct ε(d) ·P , which forces

the model to wait for d time-units and then behave as process P and time cannot proceed

if d time-units have passed and process P has yet to happen. The similar mechanism

has been used in Timed Modal Specification of Cerans et al. in [45] to model maximal

progress assumptions, where there is a must modality which enforces the maximum delay

to a model.

Delay in TCCS [116], and maximal progress in Timed Modal Specification [45], present

the same property as deadline in our work. Also, what is called a loose delay in Timed

Modal Specification forces the same behaviour as a delay does in our work.

Urgent Events in Evans and Schneider work [60] have been encoded by preventing time

proceeding, if an urgent event is eligible to occur. This behaviour of urgent event is the

same as response events of a deadline in our work, when the current time is equal to the

deadline and none of the responses have occurred.

Chapter 11 Conclusions 185

In Timed CSP [3], time-out presents the same property as expiry does in our work and

a delay in Timed CSP causes a similar behaviour to what can be modelled by combining

a delay and a deadline in our work.

Modelling time-critical systems by using Event-B has been investigated in several stud-

ies. Butler et al. in [41] explained how it is possible to model discrete time in B, by

having a natural number variable which represents the current time and an operation

which forwards the time. In that study a deadline has been modelled by disabling the

time progress, if the current time is equal to the deadline. This work does not investi-

gate different kinds of timing properties and timing property refinement has not been

discussed.

Cansell and Rehm in [44] have modelled a message passing algorithm in Event-B by

using similar principles, having a natural number variable representing the current time,

and an event which forwards the time, and guarded by some sets of activation times.

Again in here, other kinds of timing properties have not been mentioned, but more

importantly, as explained in Section 4.5, refining a timing property to finer ones based

on this approach is a challenging process. Because, in order to do that, some new values

should be added to the activation set in the refinement which is not possible without

declaring a new activation set. The problem will be specifying the relation between

the new activation set and its abstract one. The User has to show in any given time,

the minimum of the concrete activation set is less than or equal to the minimum of its

abstract set, which is a complex proof to be done.

Bryans et al. in [37] have introduced an approach to keep track of timing boundaries

between different events in a model by adding them to a set, and guarding events based

on it. In their study, the deadline has not been modelled. Similar to the previous

approach, refining the timing property will be an issue because of the set which tracks

the timing boundaries.

A more detailed comparison of our approach and the existing works in modelling and

verifying time-critical systems, has been presented in Sections 4.5 and 7.4. Section 7.4,

demonstrate the differences of our approach and UPPAAL based on the gear controller

case-study, which has been modelled in both approaches.

11.2 Future Work

As mentioned in Chapter 10, a plug-in has been developed which let the modeller to

specify the unparametrized timing properties of an Event-B machine, based on the

introduced syntaxes, then it will encode them based on the semantics of the timing

properties. Besides the required gluing invariants to prove the consistency of the timing

refinements will be added by the tool automatically.

186 Chapter 11 Conclusions

The tool is in its early stage, and there are many areas to be improved. For exam-

ple, generating gluing invariants can be improved to be done more heuristically, and

an explicit support for the decomposition of timed Event-B models should be added.

Besides, the tool has to be extended to support the parametrized timing properties too.

As mentioned in Chapter 10, a possible improvement is to extend the proof obligation

generator based on the semantics of timing properties. As shown in Section 4.2, we

have proved the consistency of the semantics for generic trigger-response event. As a

result there is no need to generate the corresponding POs anymore. In this way, number

of POs in a timed Event-B model will be reduced, and the user will not be forced to

do the interactive proves of timing invariants anymore. Besides, by standardizing the

refinement patterns the same thing can be done for them too.

In Section 3.4, we talked about fairness in TLA. Another possible area of improvement

is to investigate fairness in timed Event-B models.

In a real-time program, the sensing and the actuating happen periodically, and the

durations of their interleaves provide the abstract timing properties of the controller,

which is expressed in terms of deadlines and delays in our approach. As a result, whether

the refinement of these timing properties by periodic behaviours is a valid one, can be

investigated as a part of future works. In this way, it will be possible to have a concrete

machine which represents the implementation in more details.

Appendix A

Event-B Models

In this section the Event-B models of the case-studies, discussed in this report, are

presented.

A.1 Event-B Model of the Gear Controller Case-study (Man-

ual)

The model is available in the following address:

http://eprints.soton.ac.uk/345075/1.hasCoversheetVersion/GearManual.pdf

A.2 Event-B Model of the Gear Controller Case-study (Plug-

in)

The timing properties, added manually in the most concrete machine (m9) of the the

model presented in Section A.1, have been added in three levels of abstraction (m9, m10,

m11) by using the plug-in, in order to decrease the complexity of each machine (less

timing gluing invariants per machine).

The model is available in the following address:

http://eprints.soton.ac.uk/344946/1.hasCoversheetVersion/GearPlugin.pdf

A.3 Event-B Model of the Gear Controller Case-study (Im-

proved Plug-in)

As mentioned in Chapter 10, the plug-in have been improved to generate the gluing in-

variants more efficiently. In the following model of gear controller case-study, the timing

187

http://eprints.soton.ac.uk/345075/1.hasCoversheetVersion/GearManual.pdf
http://eprints.soton.ac.uk/344946/1.hasCoversheetVersion/GearPlugin.pdf

188 Appendix A Event-B Models

properties have been added by the improved plug-in. So the number of generated invari-

ants is closer to the manual model. In this model, just the first 5 levels of abstraction

have been included.

The model is available in the following address:

http://eprints.soton.ac.uk/344950/1.hasCoversheetVersion/GearImpPlugin.pdf

A.4 Event-B Model of the Message Passing Case-study

(Manual)

The model is available in the following address:

http://eprints.soton.ac.uk/342272/4.hasCoversheetVersion/MessagePassing.pdf

http://eprints.soton.ac.uk/344950/1.hasCoversheetVersion/GearImpPlugin.pdf
http://eprints.soton.ac.uk/342272/4.hasCoversheetVersion/MessagePassing.pdf

References

[1] Linear and Branching Structures in the Semantics and Logics of Reactive Systems,

volume 194 of Lecture Notes in Computer Science. Springer, 1985.

[2] Synchronous Programming of Reactive Systems, volume 1427 of Lecture Notes in

Computer Science. Springer, 1998.

[3] Concurrent and Real Time Systems: The CSP Approach (Worldwide Series in

Computer Science). John Wiley & Sons, September 1999.

[4] TCOZ. http://www.comp.nus.edu.sg/~dongjs/tcoz.html, August 2010.

[5] Eclipse website. http://www.eclipse.org/, February 2012.

[6] Event-B website. http://www.event-b.org/, February 2012.

[7] Rodin developer support wiki. http://wiki.event-b.org/index.php/Rodin_

Developer_Support, February 2012.

[8] Rodin website. http://wiki.event-b.org/index.php/Rodin_Platform, Febru-

ary 2012.

[9] Time. http://plato.stanford.edu/entries/time/#3, June 2012.

[10] UPPAAL website. http://www.uppaal.org, March 2012.

[11] Mart́ın Abadi and Leslie Lamport. The Existence of Refinement Mappings. Theor.

Comput. Sci., 82(2):253–284, 1991.

[12] Mart́ın Abadi and Leslie Lamport. An old-fashined recipe for real-time. ACM

Trans. Program. Lang. Syst., 16(5):1543–1571, 1994.

[13] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering.

Cambridge University Press, New York, NY, USA, 1st edition, 2010.

[14] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang,

Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and

reasoning in Event-B. Int. J. Softw. Tools Technol. Transf., 12:447–466, Novem-

ber 2010.

189

http://www.comp.nus.edu.sg/~dongjs/tcoz.html
http://www.eclipse.org/
http://www.event-b.org/
http://wiki.event-b.org/index.php/Rodin_Developer_Support
http://wiki.event-b.org/index.php/Rodin_Developer_Support
http://wiki.event-b.org/index.php/Rodin_Platform
http://plato.stanford.edu/entries/time/#3
http://www.uppaal.org

190 REFERENCES

[15] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, and Laurent Voisin.

An Open Extensible Tool Environment for Event-B. In ICFEM, pages 588–605,

2006.

[16] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and

Instantiation of Discrete Models: Application to Event-B. Fundam. Inform., 77(1-

2):1–28, 2007.

[17] Bowen Alpern and Fred B. Schneider. Recognizing Safety and Liveness. Distributed

Computing, 2(3):117–126, 1987.

[18] Rajeev Alur. Timed automata. In CAV, pages 8–22, 1999.

[19] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-

time. Information and Computation, 104:2–34, 1993.

[20] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for real-time

systems. pages 414–425, 1990.

[21] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, April 1994.

[22] R. J.R. Back. Refinement of Parallel and Reactive Programs. Technical report,

Pasadena, CA, USA, 1992.

[23] Ralph-Johan Back. On the Correctness of Refinement Steps in Program Develop-

ment. Ph.D. thesis Report A-1978-4, Department of Computer Science, University

of Helsinki, Helsinki, Finland, Oct 1978.

[24] Ralph-Johan Back. Refinement Calculus, Part II: Parallel and Reactive Programs.

In REX Workshop, pages 67–93, 1989.

[25] Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of Process Nets with

Centralized Control. In PODC, pages 131–142, 1983.

[26] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Generalizing action systems to

hybrid systems. In FTRTFT, pages 202–213, 2000.

[27] Ralph-Johan Back, Luigia Petre, and Ivan Porres. Continuous action systems as

a model for hybrid systems. Nord. J. Comput., 8(1):2–21, 2001.

[28] Ralph-Johan Back and Kaisa Sere. Stepwise Refinement of Action Systems. Struc-

tured Programming, 12(1):17–30, 1991.

[29] Ralph-Johan Back and Joakim von Wright. Refinement Calculus, Part I: Sequen-

tial Nondeterministic Programs. In REX Workshop, pages 42–66, 1989.

[30] Ralph-Johan Back and Joakim von Wright. Trace Refinement of Action Systems.

In CONCUR, pages 367–384, 1994.

REFERENCES 191

[31] Ralph-Johan Back and Joakim von Wright. Refinement calculus - a systematic

introduction. Undergraduate texts in computer science. Springer, 1999.

[32] Ralph-Johan Back and Qiwen Xu. Refinement of fair action systems. Acta Inf.,

35(2):131–165, 1998.

[33] R.J.R. Back. Correctness preserving program refinements: proof theory and appli-

cations. Mathematical Centre tracts. Mathematisch Centrum, 1980.

[34] Gerd Behrmann, Alexandre David, Kim G. Larsen, Oliver Mller, Paul Pettersson,

and Wang Yi. UPPAAL - present and future. In Proc. of 40th IEEE Conference

on Decision and Control. IEEE Computer Society Press, 2001.

[35] J. Berk. Systems Failure Analysis. Asm International, 2009.

[36] Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[37] Jeremy W. Bryans, John S. Fitzgerald, Alexander Romanovsky, and Andreas

Roth. Patterns for Modelling Time and Consistency in Business Information Sys-

tems. In ICECCS, pages 105–114, 2010.

[38] Rod M. Burstall. Program Proving as Hand Simulation with a Little Induction.

In IFIP Congress’74, pages 308–312, 1974.

[39] Rod M. Burstall and John Darlington. A Transformation System for Developing

Recursive Programs. Journal of the ACM, 24(1):44–67, 1977.

[40] Michael Butler. Decomposition Structures for Event-B. In Integrated Formal

Methods iFM2009, Springer, LNCS 5423, volume LNCS. Springer, February 2009.

[41] Michael Butler and Jerome Falampin. An Approach to Modelling and Refining

Timing Properties in B. In Refinement of Critical Systems (RCS), January 2002.

[42] Michael Butler and Divakar Yadav. An incremental development of the mondex

system in event-b. Formal Aspects of Computing, 20(1):61–77, January 2008.

[43] M.J. Butler. A CSP Approach to Action Systems. 1992.

[44] Dominique Cansell, Dominique Méry, and Joris Rehm. Time Constraint Patterns

for Event-B Development. In Olga Kouchnarenko Jacques Julliand, editor, B

2007: Formal Specification and Development in B 7th International Conference of

B Users, January 17-19, 2007, volume 4355 of Lecture Notes in Computer Science,

pages 140–154, Besançon France, 2007. Springer-Verlag. ISSN : 0302-9743 (Print)

; 1611-3349 (Online) ; ISBN : 978-3-540-68760-3.

[45] Karlis Cerans, Jens Chr. Godskesen, and Kim Guldstrand Larsen. Timed modal

specification - theory and tools. In CAV, pages 253–267, 1993.

192 REFERENCES

[46] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program.

Lang. Syst., 8(2):244–263, April 1986.

[47] Edmund Clarke. Model checking. In S. Ramesh and G Sivakumar, editors, Foun-

dations of Software Technology and Theoretical Computer Science, volume 1346

of Lecture Notes in Computer Science, pages 54–56. Springer Berlin / Heidelberg,

1997. 10.1007/BFb0058022.

[48] Edmund Clarke and E. Emerson. Design and synthesis of synchronization skeletons

using branching time temporal logic. In Dexter Kozen, editor, Logics of Programs,

volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer Berlin /

Heidelberg, 1982. 10.1007/BFb0025774.

[49] A. David, M.O. Möller, and Dansk Grundforskningsfond. BRICS. From HUP-

PAAL to UPPAAL: a translation from hierarchical timed automata to flat timed

automata. BRICS report series. BRICS, 2001.

[50] J. Davies and Oxford University Computing Laboratory. Programming Research

Group. Specification and proof in real-time systems. Oxford Technical Monograph

PRG. Oxford University Computing Laboratory, Programming Research Group,

1991.

[51] Jim Davies and Steve Schneider. A Brief History of Timed CSP. Theor. Comput.

Sci., 138(2):243–271, 1995.

[52] W.P. De Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof

Methods and Their Comparison. Cambridge Tracts in Theoretical Computer Sci-

ence. Cambridge University Press, 2008.

[53] Edsger W. Dijkstra. Notes on structured programming. In Structured Program-

ming, chapter 1, pages 1–82. Academic Press, London, 1972.

[54] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., October

1976.

[55] Edsger W. Dijkstra. Executional abstraction. Prentice-Hall, 1976.

[56] Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang Yi. Timed au-

tomata patterns. IEEE Trans. Softw. Eng., 34(6):844–859, 2008.

[57] Roger Duke, Gordon Rose, and Graeme Smith. Object-z: a specification language

advocated for the description of standards. COMPUTER STANDARDS AND

INTERFACES, 17, 1995.

[58] E. Durr and J. van Katwijk. VDM++, a formal specification language for object-

oriented designs. In CompEuro ’92 . ’Computer Systems and Software Engineer-

ing’,Proceedings., pages 214 –219, may 1992.

REFERENCES 193

[59] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation

of Programs. Commun. ACM, 18(8):453–457, 1975.

[60] Neil Evans and Steve Schneider. Analysing Time Dependent Security Properties

in CSP Using PVS. In ESORICS, pages 222–237, 2000.

[61] Asieh Salehi Fathabadi. An Approach to Atomicity Decomposition in the Event-B

Formal Method. PhD thesis, Electronic and Software Systems Group, June 2012.

[62] Asieh Salehi Fathabadi and Michael Butler. Applying Event-B Atomicity Decom-

position to a Multi Media Protocol. In FMCO, pages 89–104, 2009.

[63] W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra. Beauty Is Our

Business: A Birthday Salute to Edsger W. Dijkstra. Monographs in Computer

Science. Springer, 1990.

[64] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and

Plugins. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,

2003.

[65] Marie-Claude Gaudel. Formal methods and testing: Hypotheses, and correctness

approximations. In FM, pages 2–8, 2005.

[66] Susan L. Gerhart. Correctness-preserving program transformations. In POPL,

pages 54–66, 1975.

[67] Stefan Hallerstede. On the Purpose of Event-B Proof Obligations. In Proceedings

of the 1st international conference on Abstract State Machines, B and Z, ABZ ’08,

pages 125–138, Berlin, Heidelberg, 2008. Springer-Verlag.

[68] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic

model checking for real-time systems. Information and Computation, 111:394–406,

1992.

[69] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, Paul

Pettersson, and Arne Skou. Testing Real-Time Systems Using UPPAAL. pages

77–117, 2008.

[70] Thai Son Hoang, Alexei Iliasov, Renato Silva, and Wei Wei. A Survey on Event-B

Decomposition. ECEASST, 46, 2011.

[71] C. A. R. Hoare. An axiomatic basis for computer programming. COMMUNICA-

TIONS OF THE ACM, 12(10):576–580, 1969.

[72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,

1(4):271–281, December 1972.

[73] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

194 REFERENCES

[74] Gerard J. Holzmann. Basic SPIN Manual. Technical report, 1994.

[75] Gerard J. Holzmann, Gerard J. Holzmann, and Gerard J. Holzmann. Tutorial: De-

sign and validation of protocols. Tutorial Computer Networks and ISDN Systems,

25:981–1017, 1991.

[76] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling and

reasoning about systems (2. ed.). Cambridge University Press, 2004.

[77] D.M. Jackson, University of Oxford. Board of the Faculty of Mathematical Sci-

ences, University of Oxford. Mathematical, and Physical Sciences Division. Logical

verification of reactive software systems. Oxford University, 1992.

[78] M.A. Jackson. Michael Jackson System Development. Englewood Cliffs, N.J. :

Prentice/Hall., New York, NY, USA, 1983.

[79] Pankaj Jalote. An integrated approach to software engineering. Springer-Verlag

New York, Inc., New York, NY, USA, 1991.

[80] Cliff B. Jones. Systematic Software Development using VDM. Prentice-Hall, Upper

Saddle River, NJ 07458, USA, 1990.

[81] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-

plications. Real-Time Systems. Springer, 2011.

[82] Leslie Lamport. A Simple Approach to Specifying Concurrent Systems. Commun.

ACM, 32(1):32–45, 1989.

[83] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,

16(3):872–923, 1994.

[84] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online Testing of Real-

Time Systems Using UPPAAL: Status and Future Work. In Ed Brinksma, Wolf-

gang Grieskamp, and Jan Tretmans, editors, Perspectives of Model-Based Testing,

number 04371 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. In-

ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss

Dagstuhl, Germany.

[85] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.

STTT, 1(1-2):134–152, 1997.

[86] Peter Gorm Larsen, John S. Fitzgerald, and Sune Wolff. Methods for the Develop-

ment of Distributed Real-Time Embedded Systems Using VDM. Int. J. Software

and Informatics, 3(2-3):305–341, 2009.

[87] Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a

gear controller. STTT, 3(3):353–368, 2001.

REFERENCES 195

[88] Brendan Mahony and Jin Song Dong. Blending Object-Z and Timed CSP: an

introduction to TCOZ. In Proceedings of the 20th international conference on

Software engineering, ICSE ’98, pages 95–104, Washington, DC, USA, 1998. IEEE

Computer Society.

[89] Zohar Manna and Amir Pnueli. Adequate Proof Principles for Invariance and

Liveness Properties of Concurrent Programs. Sci. Comput. Program., 4(3):257–

289, 1984.

[90] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent

systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[91] Carroll Morgan. Data refinement by miracles. Inf. Process. Lett., 26(5):243–246,

1988.

[92] Carroll Morgan. Programming from specifications. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1990.

[93] Ben C. Moszkowski. Executing temporal logic programs. Cambridge University

Press, 1986.

[94] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. A utp semantics for circus.

Formal Asp. Comput., 21(1-2):3–32, 2009.

[95] Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verifi-

cation. In CONCUR 2009: Proceedings of the 20th International Conference on

Concurrency Theory, pages 496–510, Berlin, Heidelberg, 2009. Springer-Verlag.

[96] Joël Ouaknine and Steve Schneider. Timed CSP: A Retrospective. Electronic

Notes in Theoretical Computer Science, 162:273–276, September 2006.

[97] Joël Ouaknine and James Worrell. Timed CSP = Closed Timed Safety Automata.

Electr. Notes Theor. Comput. Sci., 68(2):142–159, 2002.

[98] Jan Peleska. Design and verification of fault tolerant systems with CSP. Distrib.

Comput., 5(2):95–106, 1991.

[99] Amir Pnueli. The Temporal Semantics of Concurrent Programs. In Semantics of

Concurrent Computation, pages 1–20, 1979.

[100] Amir Pnueli. Specification and Development of Reactive Systems (Invited Paper).

In IFIP Congress, pages 845–858, 1986.

[101] G. M. Reed and A. W. Roscoe L. A timed model for communicating sequential

processes. In Theoretical Computer Science, pages 314–323, 1988.

[102] Theo C. Ruys. SPIN Tutorial: How to Become a SPIN Doctor. In SPIN, pages

6–13, 2002.

196 REFERENCES

[103] J.W. Sanders. An introduction to CSP. Oxford Technical Monograph PRG. Oxford

University Computing Laboratory, Programming Research Group, 1988.

[104] Mohammad Reza Sarshogh and Michael Butler. Specification and refinement of

discrete timing properties in event-b. ECEASST, 46, 2011.

[105] S.A. Schneider, University of Oxford. Mathematical, Physical Sciences Division,

and University of Oxford. Board of the Faculty of Mathematical Sciences. Cor-

rectness and communication in real-time systems. University of Oxford, 1989.

[106] Steve Schneider. The B-Method: An Introduction. Cornerstones of Computing.

Palgrave Macmillan, October 2001.

[107] Renato Silva, Carine Pascal, T. Son Hoang, and Michael Butler. Decomposition

Tool for Event-B. In Workshop on Tool Building in Formal Methods - ABZ Con-

ference, January 2010.

[108] R.A. Sørensen and J.M. Nygaard. Evaluating Distributed Architectures Using

VDM++Real-Time Modeling with a Proof of Concept Implementation. Aarhus

Universitet, 2007.

[109] P. Tabuada and G.J. Pappas. Linear time logic control of discrete-time linear

systems. Automatic Control, IEEE Transactions on, 51(12):1862 –1877, dec. 2006.

[110] Stavros Tripakis and Costas Courcoubetis. Extending Promela and Spin for Real

Time. In TACAS, pages 329–348, 1996.

[111] Marcel Verhoef. Modeling and Validating Distributed Embedded Real-Time Control

Systems. PhD thesis, Radboud University Nijmegen, 2008. ISBN 978-90-9023705-

3.

[112] Niklaus Wirth. Program development by stepwise refinement. Communications

of the ACM, 14(4):221–227, April 1971.

[113] J. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof. Series

in Computer Science. Prentice Hall International, 1996.

[114] Jim Woodcock and Ana Cavalcanti. The semantics of circus. In ZB, pages 184–203,

2002.

[115] Sanaz Yeganefard, Michael Butler, and Abdolbaghi Rezazadeh. Evaluation of a

guideline by formal modelling of cruise control system in Event-B. In César Muñoz,

editor, Proceedings of the Second NASA Formal Methods Symposium (NFM 2010),

NASA/CP-2010-216215, pages 182–191, Langley Research Center, Hampton VA

23681-2199, USA, April 2010. NASA.

[116] Wang Yi. Real-Time Behaviour of Asynchronous Agents. In CONCUR, pages

502–520, 1990.

REFERENCES 197

[117] Sergio Yovine. Kronos: A verification tool for real-time systems. STTT, 1(1-

2):123–133, 1997.

