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1 Abstract

UNIVERSITY OF SOUTHAMPTON
FACULTY OF SOCIAL AND HUMAN SCIENCES
Department of Mathematics

Doctor of Philosophy

Aspects of G-Complete Reducibility

by Daniel Gold

Let G be a connected reductive algebraic group, and ¢ a Frobenius morphism
of G. Corresponding to the notion of G-complete reducibility, due to J.-P.
Serre, we introduce a new notion of (G, o)-complete reducibility. We show
that a o-stable subgroup of G is (G, o)-completely reducible if and only if it
is G-completely reducible. We also strengthen this result in one direction to
show that if H is a o-stable non G-completely reducible subgroup of GG, then
it is contained in a proper o-stable parabolic subgroup P of G, and in no
Levi subgroup of P. We go on to introduce another new notion, that of G-
complete reducibility for subgroups of G?. We show that a subgroup of G
is G7-completely reducible if and only if it is (G, o)-completely reducible.
Finally, we introduce the notion of strong o-reductivity in G for o-stable
subgroups of (G, and show that this is an analogue to the notion of strong
reductivity in G in the setting of o-stability.

We discuss a notion of G-complete reducibility for Lie subalgebras of
Lie(G), which was introduced by McNinch. We show that if H is a subgroup
of G that is contained in C(S), where S is a maximal torus of C¢(Lie(H)),
then H is G-completely reducible if and only if Lie(H) is G-completely
reducible. We give criteria for a Lie subalgebra of Lie(G) to be G-completely
reducible. For example, an ideal in Lie(G) is G-completely reducible if it is

invariant under the adjoint action of G.
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4 Introduction

Let G be a connected reductive algebraic group, over the algebraic closure
k =T, of the field F, of characteristic p with ¢ = p® elements, for a prime
p and positive integer a. The notion of G-complete reducibility, which is
central to this thesis, was introduced by J.-P. Serre, see [46]. We define this

notion as follows.

Definition 6.10. Let H be a subgroup of G.

(1) H is called G-irreducible (or G-ir) if H is not contained in any
proper parabolic subgroup of G.

(2) H is called G-completely reducible (or G-cr) if whenever H is con-
tained in a proper parabolic subgroup P of G, then H is contained in

a Levi subgroup of P.

Let H be an algebraic group, then H can be embedded in the general
linear group GL(V) for some finite dimensional vector space V', say via the
map ¢. In standard representation theory, one investigates the properties of
the homomorphism ¢ : H — GL(V'). The vector space V can be regarded
as a module over the group ring kH, which we refer to simply as an H-
module. In this case, H is GL(V)-completely reducible if and only if V'
is a semisimple H-module. The notion of GL(V')-complete reducibility is

therefore equivalent to the notion of V' being a semisimple H-module.

The notion of G-complete reducibility is defined in greater generality,
and in this sense it provides results which extend those from the standard
representation theory of algebraic groups. This enables a new set of tools to
be employed in the study of representation theory, as well as opening a new
branch of mathematics which provides its own interesting and attractive

theory.



In his paper [42], Richardson introduced the notion of strong reductivity
in G. A closed subgroup H of G is called strongly reductive in G if H
is not contained in any proper parabolic subgroup of Cg(S), where S is a
maximal torus of Cq(H). Suppose that H is topologically generated by the
elements x1,...,z,. Richardson showed that H is strongly reductive in G
if and only if the orbit of G on the n-tuple (z1,...,x,) by simultaneous
conjugation is closed in G™. Since the strongly reductive subgroups of G
classify the closed G-orbits in G", strong reductivity can be viewed as a
geometric notion, see [42, Theorem 16.4]. Bate, Martin and Réhrle showed,
in [1, Theorem 3.1], that the notion of G-complete reducibility is equivalent
to the notion of strong reductivity in G. This result is remarkable because it
provides an equivalence between the geometric notion of strong reductivity,
and the group theoretic notion of complete reducibility. One implication of
this result is that it enables the use of methods from the field of geometric

invariant theory in the study of G-complete reducibility.

As an example of such a use of geometric invariant theory, in [35] Mar-
tin showed that a normal subgroup of a strongly reductive subgroup in G
is strongly reductive in G, and from the above remarks this implies that a
normal subgroup of a G-completely reducible subgroup of G is G-completely
reducible. If we consider the special case where G = GL(V), then we see
that this striking result is in fact a direct analogue of Clifford’s Theory in
representation theory, see [14]. Given a normal subgroup N of G, Clifford’s
Theory asserts that if V' is a semisimple kG-module, then V is a semisimple
kN-module. Since semisimplicity of the module V' and complete reducibility
are equivalent for subgroups of GL(V'), and in turn as we have equivalence
between complete reducibility and strong reductivity, the required equiva-
lence between Clifford’s Theory and Martin’s normal subgroup result in this

setting follows.

In characteristic zero, a subgroup H of G is G-completely reducible if



and only if H? is reductive as noted in [42, §16]. By [1, Theorem 3.48], if H is
connected and the characteristic of k is larger than the Coxeter number of G,
then we have that H is G-completely reducible if and only if H is reductive.
However, for small positive characteristic there are examples of connected
reductive groups which are not G-completely reducible, for instance see [1,
Example 3.45]. In this example we take the field k to have characteristic 2
and let n > 4 be even. By using a diagonal embedding of Sp,,(k) in Sp,, (k) x
Sp,, (k) it is shown that Sp,,(k) is not Spy,, (k)-completely reducible, however
Sp,,(k) is connected and reductive. Therefore, the study of G-complete
reducibility provides some interesting examples when the characteristic of

the underlying field, k, is positive and small.

Let G be a subgroup of GL, (k). A homomorphism ¢ : G — G is a
Frobenius morphism if some power of ¢ is the map which sends the matrix
(i) — (xfj) This definition can easily be extended to algebraic groups
isomorphic to G. When G is simple, a surjective homomorphism of GG is a
Frobenius morphism if, and only if, it fixes finitely many points, that is the
subgroup G° = {g € G | o(g) = g} is finite. Frobenius morphisms are of
general interest because the finite groups of Lie type arise as groups of the

form G° when G is simple.

Let o be a Frobenius morphism of G. We say that a subgroup H of G
is o-stable if o(H) = H. In their paper [33], Liebeck and Seitz consider
the case when G is simple and of exceptional type, and H C G is a finite
subgroup of o-fixed points of G which is G-completely reducible. In this
case they showed that if H is contained in a o-stable parabolic subgroup P
of G, then H is contained in a o-stable Levi subgroup of P. This motivates

the following definition, which is one of the main definitions in this thesis.

Definition 8.1. Let H be a o-stable subgroup of G.

(1) We say H is (G, 0)-completely reducible (or (G,o0)-cr) if whenever



H is contained in a o-stable parabolic subgroup P of G, then H is

contained in a o-stable Levi subgroup of P.

(2) We say H is (G,0)-trreducible (or (G,o)-ir) if H is not contained

i any proper a-stable parabolic subgroup of G.

The following is the first important result in this thesis, and provides
one direction of our investigation of the connection between the notions of

G-complete reducibility and (G, o)-complete reducibility.

Theorem 8.6. A o-stable G-completely reducible subgroup of G is (G,0)-

completely reducible.

Theorem 8.6 is an extension of part of Liebeck and Seitz’s result [33,
Theorem 9] in that we have removed several conditions that were imposed,
namely that G is of exceptional type, and H is contained in G7; we only

need that H is o-stable.

Liebeck, Martin and Shalev showed in [31, Proposition 2.2] that in the
case G is simple and not of type Ba (p =2),Fy (p =2) or G2 (p=3), and o
is a Frobenius morphism of G, then a finite o-stable subgroup of G is either
strongly reductive in G, or is contained in a o-stable parabolic subgroup P
of G and in no Levi subgroup of P. In other words, this result shows that
if a finite o-stable subgroup of G is not G-completely reducible, then it is
not (G, o)-completely reducible. This result provides a partial converse to

Theorem 8.6.

In Section 9 and Section 10 we explore the converse to Theorem 8.6 more
generally. In Section 9.2 we present Theorem 9.12 which provides a converse
to Theorem 8.6 for finite o-stable subgroups of G. The proof follows the
methods of [31, Proposition 2.2], however, for the cases where G? is a Ree
or Suzuki group, we need to perform a case-by-case analysis. In particular,

the equivalence presented in Theorem 9.12 holds for all Frobenius morphisms



of the simple group G, and is therefore a significant generalisation of [31,

Proposition 2.2].

Theorem 9.12. Let G be a simple algebraic group, and let o be a Frobenius

morphism of G. Suppose that F' is a finite o-stable subgroup of G, then

(1) F is G-completely reducible if and only if it is (G, o)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper
o-stable parabolic subgroup P of G and not in any Levi subgroup of P.

In Section 9.3 we provide a further generalisation of [31, Proposition 2.2]
by extending Theorem 9.12 to include the case where G is reductive. We

present this result in Theorem 9.15.

Theorem 9.15. Let G be a reductive algebraic group, and let o be a Frobe-
nius morphism of G. Suppose that F is a finite o-stable subgroup of G,
then

(1) F is G-completely reducible if and only if it is (G, o)-completely re-

ducible, and

(2) iof F is not G-completely reducible, then F is contained in a proper
o-stable parabolic subgroup P of G and not in any Levi subgroup of P.

Theorem 9.15 is proved by using the techniques of Liebeck, Martin and
Shalev [31], in addition to a novel method of pulling back to the o-orbits
of the simple groups that occur in G. By looking at these o-orbits we
can focus on the behaviour inside each of the simple factors of G, which is
well understood by Theorem 9.12. Let H be one such g-orbit. This method
allows us to switch between the H-complete reducibility and (H, o)-complete

reducibility cases inside these o-orbits, and hence using the results of [1, §2]

10



we provide a way to consider all the o-orbits together to return to the
situation inside G itself, and thereby obtain the result.

In Section 10 we introduce the notion of a finite-o-structure, and using
it show that an infinite o-stable subgroup of G can be modelled as a finite
subgroup, in that a finite o-stable subgroup can be found which shares the
same G-complete reducible properties as the original group. The following
statement is the main result of this section and shows that Theorem 9.15

holds in the case F' is replaced with an arbitrary o-stable subgroup H of G.

Theorem 10.6. Let G be a reductive algebraic group, and let o be a Frobe-
nius morphism of G. Suppose that H is a o-stable subgroup of G, then

(1) H is G-completely reducible if and only if it is (G, o)-completely re-

ducible, and

(2) iof H is not G-completely reducible, then H is contained in a proper
o-stable parabolic subgroup P of G and not in any Levi subgroup of P.

Theorem 10.6 is our main theorem in the study of (G, o)-complete re-
ducibility, and shows that the notions of G-complete reducibility and (G, o)-
complete reducibility are equivalent for o-stable subgroups of G. This is a
startling result because neither implication is obvious, and in one direction
it gives information about a subgroup H of G with respect to its contain-
ment in general parabolic and Levi subgroups of G, based only upon its
containment in o-stable parabolic and o-stable Levi subgroups of G.

We provide examples of (G, o)-completely reducible subgroups of G. For
instance, a o-stable Levi subgroup of G is (G, o)-completely reducible. For
a Frobenius morphism o of G, the finite group of Lie type G? is (G, 0)-
completely reducible.

In the case that o is a standard Frobenius morphism, and G is a reductive
group, then Theorem 10.6 is equivalent to [1, Theorem 5.8]. When ¢ is any
Frobenius morphism of G then part (1) of Theorem 10.6 is proved in [18].

11



In Section 10.2 we introduce another notion related to G-complete re-
ducibility, that of G?-complete reducibility. In Proposition 10.19, we show
that a subgroup of G? is G?-completely reducible if and only if it is (G, 0)-
completely reducible. This leads us to more examples of (G, o)-completely
reducible subgroups of G, and of G-completely reducible subgroups of G, as
in Examples 10.21 and 10.22.

We conclude Section 10 by discussing an analogue in the setting of o-
stability to the notion of strong reductivity in G. We introduce the following

definition.

Definition 10.23. A o-stable subgroup H of G is strongly o-reductive in
G if H is not contained in any proper o-stable parabolic subgroup of Cg(S),

where S is a o-stable maximal torus of Cq(H).

We go on to show that the notions of strong o-reductivity in G and
(G, 0)-complete reducibility are equivalent, and this is analogous in the o-

stability setting to [1, Theorem 3.1].

Theorem 10.25. Let H be a o-stable subgroup of G. Then, H is strongly

o-reductive in G if, and only if, it is (G, o)-completely reducible.

In [37], McNinch introduced the notion of G-complete reducibility for
Lie subalgebras of g = Lie(G). This is the analogous notion in the Lie

subalgebra setting to that of G-complete reducibility for subgroups of G.
Definition 11.3. Let G be a reductive algebraic group, and let ) be a Lie

subalgebra of Lie(G).

(1) We say that b is G-completely reducible (or G-cr) if whenever h C
Lie(P) for some parabolic subgroup P of G, then b C Lie(L) for some

Levi subgroup L of P.

(2) We say that by is G-irreducible (or G-ir) if b is not contained in the

Lie algebra of any parabolic subgroup of G.

12



(3) We say that b is G-indecomposable (or G-ind) if b is not contained

in the Lie algebra of any proper Levi subgroup of G.

McNinch showed, in [37, Theorem 1], that if H is a G-completely re-
ducible subgroup of G, then h = Lie(H) is a G-completely reducible Lie
subalgebra of g = Lie(G). However, the converse does not hold in general
for both the connected and non-connected cases. The simplest way to see
this is in the non-connected case, where we take a finite non-G-completely
reducible subgroup F' of G. Then Lie(F) is trivial and so is G-completely
reducible. Indeed, counterexamples to the converse of [37, Theorem 1] exist
even in the connected case, and in all positive characteristics, as shown in
[37, p.1].

We show, in Remark 11.5, that if b is a Lie subalgebra of Lie(GL(V)),
then b is GL(V')-completely reducible if and only if V' is a semisimple b-
module. Remark 11.29 shows the corresponding result holds for Lie subal-
gebras of Lie(SO(V')) and Lie(Sp(V)).

We obtain, in Example 11.27, that if H is a subgroup of G that is not
G-completely reducible, such that Lie(H) is G-completely reducible, then
no maximal torus of Cg(Lie(H)) normalises H. We provide a criterion for
a subgroup K of G, and a Levi subgroup L of G such that we have the

following equivalences:

K is G -completely reducible < K is L -completely reducible
& Lie(K) is G -completely reducible

& Lie(K) is L -completely reducible.

As in the group case, we define a notion, that of strong reductivity in G
for Lie subalgebras of g and, in Corollary 11.20, we show that a Lie subalge-
bra b of g is strongly reductive in G if and only if it is G-completely reducible.

This definition is important in that this approach leads to the following

13



proposition, which gives a sufficient condition for H to be G-completely

reducible if and only if h is G-completely reducible.

Proposition 11.24. Let H be a closed subgroup of G such that H is con-
tained in Cg(S) where S is a mazximal torus of Cg(h). Then H is G-

completely reducible if and only if b is G-completely reducible.

We give a number of criteria for a Lie subalgebra of g to be G-completely
reducible. For instance in Section 11.2, by Theorem 11.35, if b is a separable
Lie subalgebra of g, and g is a semisimple h-module, then § is G-completely
reducible. In Section 11.3, as one of the main results of this section we
have the following result which is an analogue in the Lie algebra setting of
Martin’s result on normal subgroups of strongly reductive subgroups of G,

see [35, Theorem 2].

Theorem 11.38. Let H C G and suppose that b = Lie(H ) is a G-completely
reducible Lie subalgebra of g. Then, any H-invariant Lie subalgebra of b is

G-completely reducible.

In order to prove this result we exploit the geometric invariant theory in

a similar manner to that done by Martin in [35, Theorem 2].

In Section 11.4, we present the following corollary about ideals in g, again

giving a new criterion for a Lie subalgebra to be G-completely reducible.

Corollary 11.40. Let G be a simple algebraic group over k. Let m be
an ideal in g. If m is G-invariant, then m is G-completely reducible. In

particular, if char(k) > 3, then any ideal in g is G-completely reducible.

Using Hogeweij’s list of G-invariant ideals in g for simple G, see [21],
Corollary 11.40 gives a new method of finding G-completely reducible sub-
algebras of g.

This thesis is divided into three parts. Part I provides an introduction

to the theory of affine varieties and algebraic groups and includes an outline

14



of the classification of simple algebraic groups into the classical and excep-
tional types. Later in Part I we discuss the structure of reductive algebraic
groups. Reductive groups are interesting and important as they possess
a rich structure. In a reductive group we can ask whether a subgroup is
G-completely reducible by looking at its properties of containment within
parabolic subgroups and Levi subgroups. We also provide a short survey
of some of the relevant and interesting results in the theory of G-complete
reducibility to emerge over the past 10 years. We go on to discuss Frobenius
morphisms of algebraic groups, and remark that the finite groups of Lie type

arise as the fixed point groups of Frobenius morphisms.

In Part II we introduce the notion of (G, o)-complete reducibility and
discuss it in depth. We draw some parallels with the theory of G-complete
reducibility. We go on to introduce the notion of G?-complete reducibility,
again drawing parallels with G-complete reducibility, and show how these

notions provide examples of G-completely reducible subgroups of G.

In Part IIT we discuss the notion of G-complete reducibility for Lie subal-
gebras of Lie(G). We show that G-complete reducibility has an analogue in
the form of strong reductivity in G for Lie algebras. We use this to provide
a criterion for a subgroup to be G-completely reducible if and only if its Lie

algebra is.

15
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5 Introduction to Algebraic Groups

In this section we introduce algebraic varieties and define what an alge-
braic group is. We go on to sketch the classification of the simple algebraic
groups. Throughout we let k be an algebraically closed field of arbitrary

characteristic, unless stated otherwise.

5.1 Affine Sets and the Zariski Topology

View k™ as an n-dimensional vector space, and let k[T| = k[T1,...,T,] be
the polynomial algebra of k-valued functions in n variables. Elements of
E[T] may be viewed as functions f : k™ — k, that is k-valued functions
on k. We define a point x € k™ to be a zero of the function f if
f(x) = 0. We say that = is a zero of the ideal I C k[T] if f(z) = 0
for all f € I. We denote the set of zeros of the ideal I by ¥(I), that is
V() ={x ek | f(x)=0forall fel}. If XCEk" then we denote the
ideal of all f € k[T] whose zero set contains X by Z(X), that is Z(X) :=
{f €k[T)]| f(z) =0 for all z € X}.

For an ideal I C E[T], the radical of I, denoted v/I, is defined to be
the set of all f € k[T] such that f™ € I for some m > 1.

There is a topology on k", called the Zariski topology, whose closed
sets are the ¥ (I). We call the closed sets in this topology affine sets. If we
take I = {0}, then ¥ (I) = k™, hence k™ is a closed set and its complement ()
is open. Similarly, if we take I = k[T, then ¥(I) = (), hence the empty set
is a closed set and its complement k™ is open. These are important examples
of affine sets. We denote k" when viewed as an affine set by the symbol A",

For a subset X C A™ we have ¥ (Z(X)) 2 X, and for an ideal I C k[T
we have Z(¥(I)) O I. A famous theorem called Hilbert’s Nullstellensatz
(‘Theorem of Zeros’), see for example [29, Theorem 1.5] or [23, Theorem

1.1], provides the equality Z(# (1)) = v/I, giving a bijective correspondence

18



between the affine sets in A™ and the set of radical ideals of k[T"]. Examples
of radical ideals in k[T] are prime ideals. One corollary is that if I is a
proper ideal in k[T, then ¥/(I) is not empty, and this is the motivation for

the name of the theorem.

Let I be a maximal ideal in k[T]. From Hilbert’s Nullstellensatz, we can
conclude that I € Z({z}) € k[T] for some x € A"™. Hence, I = Z({z}).
Conversely, if z € A", then f(T) — f(x) is a surjective homomorphism
E[T] — k with kernel Z({z}). Therefore, to each point in A" there exists a

corresponding unique maximal ideal in k[T].

Definition 5.1. A topological space is called irreducible if it is not the

union of two proper closed subsets.

A point (ay,...,ay,) in A", is closed in the Zariski topology, being the
unique zero of the polynomials 1 — ay,...,z, — a,. In A", finite sets of
at least two points are reducible, being the union of finitely many points.
The zero set of 22 + x3 = ¢, for a constant ¢ € k* (a circle), or a line in A2
are irreducible. The union of two intersecting but non-parallel affine lines
in A2, however, is a reducible topological space, since it is the union of two

different lines each of which is an affine set.

Definition 5.2. A topological space is connected if it is not the union of

two proper closed disjoint subsets.

Immediately from Definition 5.2, we see that an irreducible space is con-
nected. Therefore, the examples for irreducible sets are connected. However,
in the converse, the union of two intersecting but non-parallel affine lines in

A2 is connected but not irreducible.

The following is [23, Proposition 1.3 C].

Lemma 5.3. A subset X of A" is irreducible if and only if its ideal Z(X)

s prime. In particular, A™ is irreducible.
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Proof. Let I =Z(X). Suppose X is irreducible. Let fi(T)f2(T) € I. Then,
each z € X is azero of f1(T') or fo(T'), so that X is covered by ¥ (I1)U¥ (I2),
for I; the ideal generated by f;(T"). As X is irreducible, it lies completely
within one of these two sets, so that fi(T) € I, or fo(T) € I. Thus, I is

prime.

Conversely, suppose that I is prime, and that X = X; U X, for X;
a closed subset of X. If both X; are properly contained within X, then
there exists some f;(T) € Z(X;), such that f;(T) ¢ I. However, fi1(T)f2(T)

vanishes on all of X, contradicting the primeness of I. O

We now consider how to construct products of affine sets. Let {f;}
be a set of polynomials in n variables that generate the ideal (f1, fo,...)
in the ring k[T1,...,T,], and {g;} be a set of polynomials in m variables
that generate the ideal (g1, g2,...) in the ring k[Tp41,..., Tntm). If X =
V(f1, f2,.-.) € A" and Y = ¥(91,92,...) € A™, then it is natural to
consider X x Y to be the zero set of all the f; and g; viewed as polynomials
in n + m variables in A x A" := A"*"_ The following is [23, Proposition

1.4].

Proposition 5.4. If X C A™ and Y C A™ are closed irreducible sets, then

X x Y is closed and irreducible in AMT™.

The Zariski topology on R” differs from euclidean topology in that far
fewer sets are closed. For example, in R the only Zariski closed sets are R and
finite sets of points, since points are the common zeros of linear polynomials.
However, unlike in euclidean topology the interval [0, 1], for example, is not

closed.

In the Zariski topology every non-empty open set is infinite, and in an
irreducible variety a non-trivial open set intersects non-trivially with every
other non-trivial open set. Therefore, non-empty open sets are dense in their

ambient space. For more information see, for instance, [23, §1.3]. Examples
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of open sets in A" are (), A" itself and the so-called principal open sets A’},
which are defined as the non-vanishing of a single polynomial f € k[T (this
notion is formalised in Definition 5.8), that is A} := {z € A" | f(z) # 0}
for some f € k[T]. For further discussion on these fact see [23, §1.2], for

instance.

Definition 5.5. A topological space is said to satisfy the descending chain
condition (or DCC) if each non-empty chain of inclusions of closed subsets

Vi D VoD .- stabilises.

Definition 5.6. A topological space is Noetherian if each non-empty col-

lection of closed subspaces has a minimal element relative to inclusion.

An affine set is Noetherian if and only if it satisfies the DCC. Let X =
¥ (I) for some I C k[T]. Hilbert’s Basis Theorem ([23, §0 0.1], for instance)
asserts that k[T] is Noetherian, that is it satisfies the ascending chain
condition on ideals (each non-empty chain of inclusions of ideals in k[T] has
a maximal element), or equivalently that each ideal in k[T has a finite set
of generators. Therefore, as the radical ideals correspond to the affine sets
in A™, each non-empty collection of closed subsets of X contains a minimal

element. Hence, X is Noetherian.

The following is [23, Proposition 1.3 B], where a proof of this result can
be found.

Theorem 5.7. Let X be a Noetherian topological space. Then X has finitely

many maximal irreducible closed subspaces whose union is X.

Consider the union X = X; U---UX,,, where the X; are the irreducible
affine sets such that there are no inclusions within the set {X1,..., X,}, and
which exists by Theorem 5.7. The X; are uniquely determined, and are called
the irreducible components of X. They are the maximal irreducible

subspaces of X. For example, the group M, (k), of monomial n x n matrices
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over k, consists of the matrices (z;;) with exactly one non-zero entry in each
row and column. This is an affine set because its underlying set determined

by the polynomial conditions as follows:

Tijjly = 0 if 4 7é k
> ;Tij =c1 foreach j, and ¢; € k*
Zj xijj = cp for each i, and ¢ € k*.

The group M, (k) has n! irreducible components. If n = 2, these irreducible
components are comprised of the sets of the diagonal matrices and the anti-
diagonal matrices over k.

The polynomials in k[T, which when restricted to the set X are distinct,
are in one-to-one correspondence with the k-algebra k[T]/Z(X). We denote
this algebra k[ X ] and call it the affine algebra of X. We have that whenever
X is irreducible k[X] is an integral domain, since Z(X) is a prime ideal. We
form the field of fractions of k[X], that is the smallest field containing k[X]
as a sub-ring, and denote it k(X). The field k(X)) is the function field of
X, and consists of rational functions of the form f = g/h for g,h € k[X]
such that h(z) # 0 for some = € X.

Definition 5.8. Let X be a closed affine set, and let f be a function in
E[X]. The set Xy :={x € X | f(x) # 0} is called a principal open set in
X.

The principal open subsets form a basis of the Zariski topology on X.
This can be seen because ¥ (I + J) = ¥ (I)N ¥ (J) and so ¥ (I + J)¢ =
V(1)U ¥ (J)°, where the ¢ denotes the complement.

Hilbert’s Nullstellensatz can be adapted to k[X], giving that closed sub-
sets of X correspond one-to-one with the radical ideals in k[X], and the
irreducible subsets of X correspond to the prime ideals in k[X]. Further-
more, points of X correspond one-to-one with maximal ideals in k[X], see

[48, §1.3.2.]. In this sense, all the geometric information about X is trans-

ferred to k[X].
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5.2 Affine Varieties and Morphisms

Let X be an irreducible affine set with field of functions k(X). For x € X

define the ring,
Oy ={f€k(X)|f=g/h, where g,h € k[X] and h(z) # 0}.

Associated to Oy, is an evaluation function ¢ given by ¢(f) = f(x) for all
f € O,. Therefore, ¢ is a surjective ring homomorphism from O, onto k
whose kernel is the ideal m, of all polynomial quotients g/h € O,, with
g(x) = 0. Hence, we have that O,/m, = k. Therefore, m, is a maximal
ideal in O,. A local ring is one which has a unique maximal ideal. In fact,
m, is the unique maximal ideal in O,, see [23, §2.1] for instance. The ring
O, is called the local ring of x on X.

Let V be an open neighbourhood of x in X, and let f : V — k be a
function. Then f is called regular at x if there exists g, h € k[X] and an
open set U C V containing x such that f(y) = g(y)/h(y) and h(y) # 0,
for all y € U. Furthermore, f is called regular on V if it is regular at all
x € V. The ring of functions regular on V' is denoted Ox (V).

Every polynomial f € k[X] is a regular function on X, in particular the
zero polynomial is regular.

We can view Ox as a function assigning to each open subset U C X a
k-algebra Ox (U) of k-valued functions on U, which is non-trivial by the last

remark. In fact Ox is a sheaf of functions on X in that:
(1) if U C V are open sets and f € Ox (V) then f|y € Ox(U), and

(2) if U is covered by open sets U;, given f; € Ox(U;) such that f; = f;
on U; NUj, then there exists a unique f € Ox(U) such that f|y, = f;.

The notion of a sheaf of functions for affine sets is well defined for arbi-
trary topological spaces. Let X be a topological space, then we call the pair

(X,0x) aringed space.
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Definition 5.9. Let (X,Ox) and (Y, Oy) be ringed spaces.

(1) We call the map ¢ : (X,0x) — (Y,Oy) a morphism if

(a) ¢ : X =Y is continuous, and

(b) whenever V.CY is open and U = ¢~ 1(V), then foo|ly € Ox(U)
for any f € Oy (V).

(2) We say (X,0x) and (Y, Oy) are isomorphic if there are morphisms
¢ : (X,0x) = (Y,Oy), and ¢! : (Y,0Oy) — (X,Ox) such that
po¢~! =idy oy and o7 o ¢ = idix o).

Definition 5.10. The ringed space (X, Ox) is called an affine variety if
it is isomorphic to (Y,Oy) where Y is an affine set. We frequently denote
this affine variety (X,Ox) by X, and implicitly have in mind its sheaf of

functions.

The group GL,, (k) is the set of all n x n matrices with entries in the field
k and whose determinant is non-zero, and can be identified with the prin-
cipal open set in A™ determined by the non-vanishing of the determinant
function det. For each matrix g € GLy (k) we set ay = det( 5- Then GL, (k)
can be embedded in A"**! via the map g — (g, ay), for g € GLy(k), aq € k*.
We then identify GL, (k) with the zero set in A"+ of the ideal of polynomi-
als (det(g)ag —1). This is a polynomial map, and so sends regular functions
to regular functions. The inverse of g is defined by ¢! = det(g) (Adj(g))
where Adj(g) is the adjugate matrix of g, which is determined by the matrix
of minors of g, and the matrix of minors is determined by polynomial condi-
tions. We have that det( j = g is a polynomial in the n? + 1th coordinate,

-1

so this shows that ¢ — ¢~ is a polynomial map, and hence a morphism.

1

Therefore, the map (g, ay) — g~ is a polynomial map and is the required

inverse to show that GL, (k) is identified as an affine variety.
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Another example of non-isomorphic affine varieties is A! and k*, where
the latter is the multiplicative group of the field k£ and is identified with the
affine variety GL; (k).

At this point we mention that the affine variety SL, (k) is defined by
SLy (k) = {g € GL, (k) | deg(g) = 1}, and is a normal subgroup of GLy, (k).

We introduce some more examples in §5.6.

For any function f € k[Y], and a morphism ¢ : X — Y of varieties, the
second condition in Definition 5.9 implies that the function f o ¢ € k[X] is
regular on X. The map ¢* : k[Y] — k[X], defined by ¢*(f) = fo ¢, is a
k-algebra homomorphism, called the comorphism of ¢. If ¢(X) is dense
in Y, then ¢* : k[Y] — k[X] is injective, see [23, §1.5].

Let ¢ : X — Y be a morphism of affine varieties. The affine varieties
X and Y are defined by the zeros of polynomial functions, and ¢ maps
each polynomial function f € k[Y] to the polynomial function fo ¢ € k[X].
Therefore, when we consider morphisms between varieties, we have in mind
functions defined by polynomial conditions, that is a polynomial function ¢

that act on the polynomial f.

For two irreducible affine varieties X and Y, with coordinate rings k[ X]
and k[Y], the product variety is endowed with the Zariski topology and is
irreducible as described in Proposition 5.4. By [23, §2.4], the coordinate
ring k[X X Y] of X x Y is k[X] ®; k[Y], and the function field of X x Y is
the field of fractions of the integral domain k[X| @y k[Y] (see [17, p.182] for
a proof that k[X] ®j k[Y] is an integral domain).

5.3 Projective Varieties and Complete Varieties

In this section, we introduce the notion of projective and complete vari-
eties. More information on the following can be found in [23, §1.6] and [6,

§AG.4,5AC.7).
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A prevariety over k is a topological space X, which has a sheaf Ox
of k-valued functions, so that (X, Ox) is a ringed space, and is the union
of finitely many open subsets U;, where each U; is isomorphic to an affine
variety whose sheaf of functions is Ox (U;). We have a notion of a morphism
between prevarieties that is analogous to that in the case of affine varieties.
A prevariety need not be an affine variety. We proceed by introducing the
notion of projective varieties, and these are important examples of prevari-
eties that are not affine varieties. However, we do have the converse, that
an affine variety is a prevariety.

Projective n-space P"(k) (or P") over k is defined to be the set of
equivalence classes in k"' — {0} under the equivalence relation ~ defined
by (zo,...,Zn) ~ (Yo,---,Yyn) if and only if (zg,...,x,) = (ayo,...,ayy),
for some a € k*. We denote the equivalence class of x = (xg, ..., zy,) by [z].
The underlying set of the projective n-space P"(k) can be identified with
the set of 1-dimensional subspaces of k"1,

Let 7 : k" — {0} — P"™(k) be the map = — [z], for each x € k™. A subset
U C P*(k) is declared open if 771(U) is open in k™. This defines a topology
on P"(k). The projective n-space P"(k) can be covered by the open sets

Pi:={[z] |z = (z0,...,2,) € K" with z; # 0},

for each i = 0,...,n. Moreover, there is a bijection between the underlying
set of each P; and the affine variety A™. For each (xg,...,x,) € P;, this

bijection is given by the map

~1 -1 ~1 ~1
(z0, .o, xn)] — (] @0, ..., T @1, T, Tip1-..,T; Tp).
A monomial in n+ 1 variables g, z1, ..., Zy is a product zg’z]" - - - xl»

where the indices a; are all non-negative integers, and their sum ag + a1 +
-+ 4 ay is called the degree of the monomial. Let f be a homogeneous
polynomial in k[Xy, ..., X,], that is a polynomial in n + 1 variables whose

monomials that have non-zero coeflicients all have the same degree.
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Consider an ideal I of homogeneous polynomials in k[Xp,..., X,]. We
use the notation f[x] when considering the zero set of the homogeneous
polynomial f € I since f(zo,...,x,) = 0if, and only if f(axo,...,azx,) =0,
for all non-zero scalars a.

The set ¥ (I) = {[z] € P" | flz] = 0 for all f € I} is closed in P".
A closed subset in P” is called a projective set. If X is a projective set
defined by the ideal I of homogeneous polynomials in k[ Xy, ..., X,], then the
coordinate ring of X is k[X]| = k[Xo,..., X,]/I. Let L={f/g | f,g € k[X]
are homogeneous polynomials of the same degree, and g # 0}. For [z] € X
we write O] = {f/g € L | g(z) # 0}. For an open set U C X define
Ox(U) = n[x}eU Olu), and for open subsets of U the restriction maps are
taken to be inclusions. This defines a sheaf on the projective set X. For

further details see, for instance [6, §AG.7].

Definition 5.11. The ringed space (X, Ox) is called a projective variety
if it is isomorphic to (Y,Oy) where Y is an projective set. We frequently
denote the projective variety (X, Ox) by X, and implicitly have in mind its

sheaf of functions.

We have that a projective variety is a prevariety, but not an affine variety
(except in the trivial case). According to [10, p.1l], the product of two

prevarieties is again a prevariety.

Definition 5.12. (1) A prevariety X is called an algebraic variety if
the diagonal map A(X) = {(z,x) | x € X} is closed in the prevariety
X x X.

(2) An algebraic variety X is said to be complete if for any algebraic
variety Y the projection map my : Y X X — Y sends closed sets to
closed sets, i.e. my s a closed map.

The notion of a completeness is an analogue for varieties to the notion
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of compactness for topological spaces, see [6, §7] for instance, for further

discussion.

The following theorem is given in [6, Theorem 7.4].

Theorem 5.13. A projective variety is a complete variety.

In the following we will be interested in linear algebraic groups, and
these arise from affine varieties. The notions of projective and complete
varieties are needed to describe the structure of reductive algebraic groups.
In particular we use these notions to describe the parabolic subgroups of a

reductive algebraic group, see §6.1.

5.4 Dimension

The dimension dim(X) of an irreducible variety X is the transcendence
degree of k(X) over k, it is equal to the maximum number of algebraically
independent rational functions on X (that is, the rational functions that
satisfy no non-trivial polynomial with coefficients in k), see [23, §3.1]. In
general, the dimension of a variety X is defined to be the supremum of the
dimensions of the irreducible components of X. The dimension of affine
line A' is 1. The union of two different affine lines which intersect in A2
is 1-dimensional because its irreducible components are 1-dimensional affine

lines. A finite set of points is 0-dimensional.

A hypersurface is the zero set in A™ of a single non-scalar polynomial.
For instance in A" the hypersurface defined by the polynomial det(x;;) =1
is SLy, (k).

The following result is [23, Proposition 3.2].

Proposition 5.14. Let X be an irreducible variety, Y a proper closed irre-

ducible subvariety of X. Then dimY < dim X.
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The dimension of A" is equal to the transcendence degree of k(A") =
k(Xy,...,X,) over k. This field consists of rational functions generated by
the n independent variables X1, ..., X,, and hence the degree of A™ is equal

to n.

From Proposition 5.14 we see that if Y is an irreducible subvariety of

the irreducible variety X and dimY = dim X, then Y = X.

5.5 Tangent Spaces

Intuitively, the tangent space of a curve at a point is a line passing through
that point that is tangential to the curve at that point, and the tangent
space to a surface at a point is a plane passing through that point that
is tangential to the surface at that point. For example, a sphere resting
on a plane C' at the origin O has as a tangent space at O the plane C.
Geometrically, the tangent space of a variety X at a point x is given by the
vanishing of all partial derivatives of the functions f at x as f ranges over

Z(X). Algebraically, this is expressed in the following way.

Let X be an irreducible variety over k. Let x € X, and recall the
definition of the local ring of x on X. A point derivation of O, is a
k-linear map ¢ : O, — k satisfying 6(fg) = f(x)d(g9) + 6(f)g(x), for all
f,9 € Oz. The k-vector space of all point derivations of O, is the tangent
space of X at z, denoted by T, (X). Recall, given a morphism ¢ : X — Y
of varieties, the comorphism of ¢ is the map ¢* : k[Y]| — k[X] defined
by ¢*(f) = f o ¢. Given a derivation § € T,(X), by [48, §4.1], 6 o ¢*
is a derivation in Ty, (Y). This map is into the tangent space of Y at
¢(x) because if f is regular at x, then ¢* o f is regular at ¢(z). So we
obtain a linear map 0,¢ : Ty(X) — Ty(;)(Y) of tangent spaces, given by
0:9(6) = d o ¢* for all 6 € T,(X), and this map is called the differential
of ¢ at .
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For any variety X, by [48, Theorem 4.3.3.(iii)], we have that dim 7, (X) >
dim X. A point z € X is called simple if dim7,(X) = dim X, and [23,
Theorem 5.2] shows that simple points exist in all irreducible varieties. If
every point of X is simple then we say that X is smooth. For example,
affine n-space A" is smooth, however, the union Y of two non-parallel affine
lines in A? is not smooth because at the intersection point y € Y of the two

lines we have 2 = dim7,(Y) > dimY = 1.

5.6 Affine Algebraic Groups

Throughout this section we assume that k is an algebraically closed field of

arbitrary characteristic, unless stated otherwise.

An affine algebraic group G is a group whose underlying set is an
affine variety over k, such that the product map 7 : G x G — G given by
(x,y) = zy, and inverse map ¢ : G — G given by x — 271, for z,y € G, are

both morphisms of the underlying varieties.

Given algebraic groups G and H, a map f : G — H is a morphism
of algebraic groups if f is both a group homomorphism and a morphism
of the underlying varieties of G and H. The map f is an isomorphism
of the algebraic groups G and H if there exists an inverse morphism
f~1:H — G, such that f~'o f =idg, and fo f~! =idy.

A G-variety is a variety X defined over the field k& equipped with a
G-action G x X — X which is a morphism of varieties. The G-orbit of a

point x € X is the set {g -z | g € G}, denoted by G - x.

It is shown in [40, §3] that, for a G-variety X and some z € X, the orbit
G - x is open in its closure G - x, and the boundary of this closure G - z\G - =
is a union of G-orbits each of which has dimension strictly less than dim(G).

Furthermore, by [39, No.8]|, there is a unique closed orbit in G - x.
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We call a subvariety Y of X, G-invariant if G x Y — Y. The set of
fixed points of X under the action of G is denoted X©. Clearly, X< is

G-invariant.

Let H be a subgroup of G. We wish to define the structure of an algebraic
variety on the coset space G/H. We view G as an H-variety, and we let Y
be an algebraic variety for which there is a surjective morphism 7 : G — Y
of varieties. We define the fibre of m over y € Y to be the subvariety
7 1({y}) in G. We say that 7 is a quotient morphism if 7 is surjective
and open (that is, the image of every G-invariant open subset of G is open),
and if U C G is open then the comorphism 7* of 7 induces an isomorphism

from k[m(U)] onto the set {f € k[U] | f is constant on the fibres of 7|¢/}.

A quotient of G by H, denoted G/H, is a surjective morphism 7 :
G — Y of varieties such that the fibres of 7 are the orbits of H in G, and
such that 7 is a quotient morphism. By [6, §6.3], the quotient is uniquely

determined up to isomorphism, if it exists.

If H is a normal subgroup of G, then the quotient has the structure of
an algebraic group, see [6, Theorem 6.8] for instance. For more details on

quotients of varieties, see [6, §6.3] for instance.

Many of the affine varieties encountered so far are also algebraic groups,
for example affine space A™ with respect to coordinatewise addition of points.
In §5.2, we saw that the underlying set of GL,, (k) forms an affine variety. The
product map GL, (k) x GL, (k) — GL, (k) is clearly a morphism. To show
that the inverse map is a morphism, recall that we identify the underlying
set of GL, (k) with an affine set in A" *1 via the map g — (g,a,), for
g € GL,(k),ay € k*. We have seen that the inverse of g is defined by
g~ = ay(Adj(g)), which is a matrix determined by polynomial conditions,

1

and so g — ¢~ is a morphism. Therefore, GL, (k) is an example of an

algebraic group.
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Clearly, a closed subgroup of an algebraic group is again an algebraic
group, for example the closed subgroup SL, (k) of GL, (k) is an algebraic
group. Since any finite set of points is closed, a finite subgroup of GL, (k)

is an algebraic group.

The following is [23, Corollary 8.2].

Proposition 5.15. Let H be a closed subgroup of the algebraic group G.
Then, both the centraliser Cq(H) and normaliser Ng(H) in G of H are
closed subgroups of G. In addition the centraliser Cg(x) for all x € G is

also a closed subgroup of G.

Using Proposition 5.15 we can construct many more algebraic groups.
For instance, we now have a method to construct infinite algebraic groups
from finite ones. For an example of this consider the element x =
( (1) _11 > € GLg(k). Then x generates a finite subgroup of GLy(k). By
Proposition 5.15 the subgroup Car,(x)(z) of GLa(k) is closed. It is straight-
forward to verify this as Cqr, () is comprised of matrices of the form
( CCL b > with non-zero determinant, such that ¢ = 0,d = a — 2b. The fact

d
that Car,, k() is infinite also follows from [30, Theorem 1.2].

We present other important examples of algebraic groups. For exam-
ple, T, (k), the group of upper triangular matrices in GL,,(k), and U, (k)
called the group of upper unitriangular matrices in GL,,(k), consisting of

the elements of T, (k) whose diagonal entries are all 1s.

We denote by “+ 7 and “.” the additive and multiplicative field oper-
ations on k, and by “0” and “1” the additive and multiplicative identities,
respectively.

The additive group G, is the affine line A' with group operation “+”
and identity element “0”, and is isomorphic to the subgroup Us(k) of upper

unitriangular 2 x 2 matrices in GLa (k).
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The multiplicative group G,, is the affine open subset k* C A!, with

wom

group operation and identity element “1”, and is isomorphic to GLj (k).

Note that the results already given allow us to construct new algebraic
groups from old ones. For instance, Proposition 5.4 shows that the direct
product of two algebraic groups A and B forms an affine variety A x B. As
described in Section 5.2, the function field of A x B is the field of fractions
of the integral domain k[A] ®j k[B]. Since the inverse maps on A and B
are individually morphisms, it is clear that so is the inverse map A x B —
A x B given by (a,b) = (a=1,671). Also the product maps on A and B are
individually morphisms, and so the product map (Ax B)x (AxB) - Ax B
given by (a,b) x (a’,V') = (ad’, bb’) is a morphism. Therefore, since AXx B is a
group, it is an algebraic group. For example, we may take the direct product
of n copies of G,,. The resulting group is isomorphic to the subgroup D, (k)

of GL, (k) consisting of diagonal matrices.

We refer to an affine algebraic group as a linear algebraic group, and
the motivation for this terminology is given by the following theorem, which

is [23, Theorem 8.6].

Theorem 5.16. Let G be an affine algebraic group over k, then G is iso-

morphic to a closed subgroup of GLy,(k), for n a positive integer.

Let G be an algebraic group and Xy, ..., X, be those irreducible com-
ponents of G that contain e, the identity of G. The product X7 x --- x X,
is irreducible by Proposition 5.4. Let f; : X; — G be the inclusion map
from each X; into G. Consider the map f : X3 x --- x X,, = G given by
(x1y...yxn) — fi(x1) -+ folzn), for z; € X;. By [6, Proposition 14.10] this
map is a homomorphism, therefore the image under f of X1 x---x X, in G
is irreducible. We will comment further on this map in Remark 5.22. This
image contains e, so Xj --- X, C X; for some ¢. Conversely X; C X --- X,

for all ¢, therefore we conclude that n = 1. From this we imply that there is
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a unique irreducible component of G containing e, which we denote by GP.
In fact G° is a normal subgroup of finite index in G whose cosets are the
connected and irreducible components of G. Furthermore any closed sub-
group of G of finite index contains GY. We say G is connected if G = GP.

Proofs of these facts can be found in [23, Proposition 7.3], for instance.

The groups Gg, Gy, GL,, (k) and SLy, (k) are connected. For G,, we have
that G, = A!, which is clearly irreducible as a variety. We have that GL,, (k)
is identified with the principal open set {z € A" | det(z) # 0} in the
irreducible variety A"”. Thus, the closure in A" of GLy, (k) is the whole
space, and by [48, Lemma 1.2.3 (i)] GL,(k) is an irreducible variety, and
hence a connected algebraic group. The connectedness of G,,, follows since
G = GL1 (k).

It can be shown that SL, (k) is generated by groups U, ; (for i # j)
having 1s on the main diagonal, an arbitrary entry in the (i, 7)-th position
and zeros everywhere else. There are finitely many such groups U; ;, each
isomorphic to G,, and for each we have a morphism f; ; : U;; — GL, (k)
such that e € f; j(U; ;). If we set M = U” fi,;(Ui ;), then we can apply [23,
Proposition 7.5] to obtain that the intersection of all the closed subgroups

of GL,, (k) containing M is connected. This shows that SLy, (k) is connected.

Any non-trivial finite subgroup of GL,, (k) is disconnected. The identity
component of the group M, (k) of n x n monomial matrices is the group of
n x n diagonal matrices. In this case, M, (k)/M,(k)? = S,,.

We call a group that is isomorphic to a direct product of n copies of G,
a torus of rank n. For example, D,,(k) is isomorphic to a torus of rank
m in GLy(k), for all m <n. A torus is called a maximal torus if it is not
contained in any other torus. A maximal torus in GL, (k) is the group of
diagonal matrices D, (k).

The following is [23, Corollary 16.3].
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Lemma 5.17. Let S be a torus in an algebraic group G. Then, Ng(S)? =
Ca(9)".

The following description of the Jordan decomposition is from [48, §2.4].

Let V be a finite dimensional vector space over k, and let 1 represent the
identity map in GL(V). An element x5 of GL(V) is called semisimple if V
admits a basis consisting of eigenvectors of z5. An element x, of GL(V) is
called unipotent if x,, — 1 is nilpotent, that is, there exists some positive
integer k, for which (x, — 1)¥ = 0.

In GL(V') any element = can be written uniquely as a commuting product
of a unipotent element x,, and of a semisimple element xs, see [48, Theorem

2.4.5.]. This is known as the abstract Jordan decomposition of z.

In the linear algebraic group G, let p(g) : k[G] — k[G] denote the right

translation by the element g given by

(r(9)f)(x) = f(zg)

for each f € k[G],x € G. Then p(g) can be viewed as an element of
GL(k[G]). Hence, p(g) has the Jordan decomposition p(g) = p(g)sp(9)w-

There is an equivalent notion, the Jordan decomposition in G, to that
of endomorphisms of a vector space, see [48, Theorem 2.4.8.]. This states
that there exist unique elements g, and g5 in G such that p(g)s = p(gs) and
p(9)u = p(gu), and g is equal to the commuting product of g, and gs. We

say that g, is the unipotent part of g, and g, is the semisimple part of g.

The homomorphic image of a unipotent element (resp. semisimple ele-
ment) in G is unipotent (resp. semisimple) in the homomorphic image of G.
An algebraic group is called unipotent if all its elements are unipotent.

For any group G, the commutator [g, h] of the elements g,h € G is
defined by [g,h] = ghg~'h~!. We define the commutator [H, K| for sub-

groups H, K of G to be the group generated by all commutators of the form
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[h,k] for h € H and k € K. An important example of the commutator of
two groups is [G, G], the so-called derived subgroup of G which, by [23,
Proposition 17.2] is a closed normal subgroup of G (and connected if G is).

The descending central series of a group G is defined to be the series
¢°(G) D €1G) D ---, where €°(G) = G, and €TH(G) = [G,€(Q)].
The derived series of a group G is defined to be the series 2°(G) D
PYG) D -+, where 2°(G) = G, and 271(Q) = [2Y(G), 2(G)]. Clearly
P4(G) C €HG), for all 4.

Let G be an algebraic group. Then G is called nilpotent if its descending
central series reaches e in finitely many steps, and solvable if its derived
series reaches e in finitely many steps. Clearly, a nilpotent group is solvable.
The homomorphic image of a solvable (resp. nilpotent) group is solvable
(resp. nilpotent). The product of two normal solvable subgroups of a group

is also solvable. For proofs of these results see [23, §17].

Theorem 5.18 (Borel’s fixed point theorem). Let G be a connected solvable

algebraic group, and let X be a complete G-variety. Then X© is non-empty.

A proof of Borel’s Fixed Point Theorem can be found in, for example,
[23, Theorem 21.2]. As we shall see, this result is crucial in showing that
the maximal closed connected solvable subgroups of G' (the so called “Borel

subgroups”) are all conjugate in G.

Theorem 5.19 (Lie-Kolchin theorem). Let G = GL (k) and let H be a
unipotent subgroup of G. Then there exists some © € GL,(k) such that
xHx~ 1 is a subgroup of Uy (k).

In fact, any closed connected solvable subgroup of GL, (k) is conjugate
to a subgroup of T), (k). This is sometimes what is known as the Lie-Kolchin
Thoerem, see for instance [10, §1.6].

The groups U, (k) and T, (k) are solvable. To see this first observe that

[Ty (k), Tn(k)] = Up(k). The commutator of two upper triangular matrices
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with the same number of non-zero diagonals above the lead diagonal, is
an upper triangular matrix with at least one more diagonal above the lead
diagonal that contains all zero entries, thus we have the solvability of U, (k)
and T, (k). Examples of nilpotent groups are commutative group because
the commutator of two commuting matrices results in the identity matrix.
The group U, (k) is nilpotent, but T, (k) is not nilpotent for n > 2. This
shows that a solvable group need not be nilpotent. For further discussion

and proofs see [23, §17].

We now discuss some important types of algebraic group. For a more

extensive account of the following material, see [23, Chapter VII].

We call G simple if every proper closed normal subgroup of G is finite.
For example, for n > 1, we have GL, (k) is not simple since it has SL,, (k) as
a normal subgroup, being the kernel of the det homomorphism. Clearly any
1-dimensional group is simple, hence G, = k* is simple. From the discussion
in [23, p.164] we see that SL, (k) is simple, although it does contain the finite

normal subgroup of scalar multiples of the identity al,, such that a™ = 1.

Evidently a simple group is connected, however the converse does not

hold as is shown, for example, with the group GL,, (k).

Let G be an algebraic group.

(1) The closed connected normal solvable subgroup R(G) of G containing

any other such subgroup is called the radical of G.

(2) The closed connected normal unipotent subgroup R, (G) of G con-

taining any other such subgroup is called the unipotent radical of

G.

Given two normal solvable subgroups A and B of GG, their product AB
is also normal and solvable, by [23, Lemma 17.3]. Therefore, we have that

R(G), the radical of G, is uniquely defined. The group R,,(G) is the subgroup
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of R(G) consisting of all its unipotent elements, see [23, §19.5]. This shows
that R(G) and R, (G) are well-defined.

If G is connected and R(G) is trivial we call G semisimple. For example,
SL,, (k) is semisimple because it is simple. If G is connected and R,(G) is
trivial we call G reductive. For example, as GL, (k) is the product of
SL,, (k) and its centre Z, we have R(GL,(k)) = Z and hence, R, (GL,(k)) =
e. Therefore, GL,, (k) is reductive. Since R, (G) C R(G), a semisimple group
is reductive. By [23, Lemma 19.5] the derived subgroup |G, G] of a reductive
group G is semisimple.

Although the notion of a reductive group G is well-defined for non-
connected GG, much of our work holds only for connected G. Therefore,
we shall assume that by a reductive group we mean a connected reductive
group.

A simple algebraic group is reductive since its only proper normal sub-
groups are disconnected (not connected). If G is a simple algebraic group,
then G/Z(Q) is a simple abstract group, by [23, Corollary 29.5].

Reductive groups are of particular interest so we record some important
properties. Let G be reductive with centre Z(G), then G = Z(G)[G, G|
and Z(G)? = R(G) is a torus and [G,G] is a semisimple group with a
finite intersection with Z(G). Furthermore, we can decompose G as G =
G1---G,Z(G) with G; simple so that G; N G is finite for all i # j, and
[Gi, Gj] = e. The G; occurring in this decomposition are called the simple

components of G. For an account of this see [10, §1].

Definition 5.20. Let G be a reductive algebraic group, and let X1, ..., X, be
subgroups of G. Let f; : X; — G be maps, then the map f: X1 x---xX,, = G
given by (x1,...,x,) — fi(z1) - fu(zyn), for z; € X; is called the product
map of the f;s.

Definition 5.21. Let G be a reductive algebraic group, and let G1,...,G,

be normal subgroups of G. We say that G is an almost direct product of
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the G;s if the product map of the inclusions G; — G is a homomorphism of

the direct product G1 X --- X Gy, onto G, with a finite kernel.

Remark 5.22. Let G be a semisimple algebraic group. According to [6,
Proposition 14.10] we have that G is an almost direct product of its simple
components G1,...,Gy. In particular, if the f; : G; — G are inclusion maps,
then the product map Gy x --- x G,, — G of the f;s given by (g1,...,9n) —

fi(g1) - -+ fn(gn) is a homomorphism with finite kernel.

Definition 5.23. We call the group G topologically finitely generated
if it is the Zariski closure of a group generated by finitely many elements,

that is G = (x1,...,xy) for a finite list x1,...,Ty.

For any subgroup S of G' we have that the closure S in the Zariski
topology is a subgroup of GG. In particular if z1,...,z; € G then the Zariski
closure H of the group H := (z1, ..., x;) generated by the elements z1, . .., x;
is a closed subgroup of G. Suppose k = F, for some prime p. By Theorem
5.16, each x; may be viewed as a matrix with entries in Fp. Since Fp =
Um21Fpm!, we have that each x; is a matrix with entries in Fpmy, for m large
enough. Since each element of the group H generated by zi,...,x; is a
matrix with entries Fmi, the group H lies in GLy,(F,m ), by Theorem 5.16.
Since GLy(Fymi) is a finite group, (v1,...,2;) is a finite group. That is,
H = H is finite.

As just seen if k = F, then every topologically finitely generated group
is finite. However, as we will see, it is crucial to some of the results in this
exposition to be able to work with topologically finitely generated subgroups
of G when G is an algebraic group over the field F,,. Therefore an alternative
approach is required, and is given by [1, Lemma 2.10]. This lemma allows
us to reduce to the case that a subgroup H of G is topologically finitely
generated within the field of study of this thesis. We discuss this result

further in Lemma 6.24.
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5.7 The Lie Algebra of an Algebraic Group

The study of Lie algebras is extensive, and the field is often treated as a
self-contained subject. However, its relevance to other areas, in particular
to Lie groups and algebraic groups, is fundamental. Here we provide an
introduction relevant for our purposes. For a more extensive account, see
[6, §3].

A Lie algebra is a vector space g over a field k with an operation

g X g — g denoted (z,y) — [z,y] such that:
L1 The bracket operation [, | is bilinear.
L2 [z,2] =0 for all z € g.
L3 [z,[y, 2]] + [y, [z, 2]] + [2, [z, y]] = 0 for all z,y, 2 € g.

Property L1 ensures that g is a k-algebra with respect to [, |.

Given a k-algebra A, we say that the linear map D : A — A is a deriva-
tion of A if D(ab) = aD(b) + D(a)b for all a,b € A. Let D(A) denote the
space of all derivations of A. Let G be an algebraic group with affine algebra
A = k[G], then we may consider the space of all derivations of A. For g € G
define \j : A — A via

(Aga)(z) = a(g™'2)

for each a € A,z € G. Now set
g={DeD(A)|DoXg=As0D, forall g€ G}

We define [Dy, D3] = Dj o Dy — Dy o Dy for Dy, Dy € g, and this defines
a Lie algebra structure on g. We call g the Lie algebra of GG, denoted by
Lie(G).

As an example, for char(k) # 2 consider the following standard basis of
the Lie algebra sla(k), which is the Lie algebra of the group SLa(k), that is
sla(k) = Lie(SLa(k)). See [23, §9.4] for details. Set

40



0 1 0 0 1 0
(o) r=(Va) =00 h)
It is easy to check that under the bracket operation these basis vectors
obey [H,X]| =2X,[H,Y] = —2Y and [X,Y] = H. It is also straightforward

to check that these vectors satisfy L1, L2 and L3 above, thus sly(k) is a Lie

algebra.

By [6, Theorem 3.4], we have an isomorphism § of vector spaces g —
T.(G) given by the map 0 : D(f) — D(f)(e) € Te(G) for any f € O, D € g.
Since D(fg)(e) = £(e)D((g)(€)) + D(()(e))g(e) € , we have that 6(D(f))
is a point derivation of Q.. In fact the tangent space at any point of G is
isomorphic to this Lie algebra because if f is regular at e, then A\, f is regular
at x, so a point derivation at e becomes a point derivation at x under the

translation map ;.

For example, the tangent space 17, (GL,(k)) to GL, (k) at the point I,
is the Lie algebra g = Lie(GL,(k)) = Mat,, (k) of n X n matrices over k. For
a proof of this fact see, for example, [6, Examples 3.9 (c)]. The Lie algebra
of GL, (k) is denoted gl,, (k).

We now have associated to each algebraic group G a Lie algebra g. Next

we associate to the Lie algebra of each reductive group a root system.

5.8 The Adjoint Representation

In this section we let G be a reductive algebraic group. By [23, §5.4], the
differential map (introduced in §5.5) has functorial properties. Let g € G,

and g = Lie(G). Consider the automorphism Int(g) : G — G given by

Int(g)(z) = gzg~".

algebra, by [6, §3.12], and is denoted Ad(g). That is, Ad(g) € GL(g). We
call the map Ad : G — GL(g) the adjoint representation of G. The
differential of Ad at e is the endomorphism 0. Ad : g — Lie(GL(g)) =

Its differential d.Int(g) is an automorphism of the Lie
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End(g) given by 9. Ad(X) : Y — [X,Y] of g for all X,Y € g, see [6, §3.14],
and we denote this endomorphism by ad. We call ad : g — gl(g) the adjoint

representation of the Lie algebra g.

Given a torus T in G, we have that T acts on g via the adjoint repre-

sentation Ad, that is Ad(¢) :g — g for allt € T.

Since T is diagonalisable, so is its homomorphic image under Ad and so

we can write the vector space g as a direct sum of weight spaces:
go ={X €g|Ad(t)(X) =a(t)X, forallt e T},

where a € Hom(T, G,,,) =: X(T') - the group of algebraic group morphisms
from T to G,,. The group X (T') is called the character group of T, its
elements are called characters of 7. The « for which g, # 0 are called
weights of T in g. The non-zero weights are called roots of G relative
to T, and the set of these is called the root system of G relative to T,
denoted ®(G,T).

The set Y (G) := Hom(G,,, G) of algebraic group morphisms from G,,

to G is called the set of one-parameter subgroups of G.

Let o € X(T) and let § € Y(T). Since awo 8 € Hom(Gyy,, G,y,) = Z there

is some [, a] € Z such that a0 f(z) = z8 for all = € G,y,.

5.9 More on Lie Algebras

A subspace § of g is called a Lie subalgebra of g if §j is closed under the Lie
bracket operation. A Lie subalgebra i of g is called an ideal of g if [i,g] C i,
that is [[,X] €iforall I €i,X € g. A homomorphism ¢ : g — g’ of Lie
algebras is a linear map ¢ such that ¢[X,Y] = [¢(X), p(Y)] for all X, Y € g.

Let b be a Lie subalgebra of the Lie algebra g, then ad(X)(Y) € g for
all X € h,Y € g. Therefore, ad(h) C End(g). Thus g can be viewed as an
h-module (see [22, §6.1]).
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Similarly, if g = Lie(G), then we have an action of G on g via the adjoint
map Ad : G — GL(g). A Lie subalgebra b of g is called G-invariant if it
is Ad(G)-invariant, that is if Ad(g)h C b for all g € G.

5.10 Root Systems

The study of root systems is, like that of Lie algebras, a self-contained
subject; for which we give a brief introduction. More details can be found
in [22, §9].

Let E be an [-dimensional vector-space over R (for [ a positive integer)
together with an inner product (, ): E x E — R. For any vectors u,v € E

the magnitude of u is given by ||u|| = /(u,u), and the angle between u
(u,v)

[lllfoll*

and v is given by 6 = arccos

For each non-zero vector v € FE define a reflection relative to v to be
a linear transformation from FE to itself sending v to —v which fixes the
subspace P, := {u € E | (u,v) = 0} of codimension 1 orthogonal to v. Now,

for any u € E the reflection relative to v is given by the formula

2(u, v
ou(u) =u— (i;,,u))v'
As a matter of convenience, we write
2(u,v)

(1)

Definition 5.24. A root system in the real vector space E is a subset ®

of E, whose elements are called roots, satisfying the following conditions:

(1) @ is finite, spans E, and does not contain 0.
(2) If v € @, then the only multiples of v in ® are +v.
(3) Ifv € @, the orthogonal reflection with respect to v leaves ® invariant.

(4) If v,u € ® then o,(u) — u is an integer multiple of v.
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By Definition 5.24 (4), we have (u,v) € Z.

Note that since o, leaves the finite generating set ® of E stable, the

reflection is uniquely determined by v. Denote by [ = dim E the rank of ®.

The group W(®) C GL(E) generated by the o, for v € & is finite by
[23, p.229], and is called the Weyl group of ®.

Two root systems ®, ®’ in the real vector spaces E, E’ respectively are
said to be isomorphic if there is an isomorphism of « : £ — E’ of vector
spaces with a(®) = @', such that (a(u),a(v)) = (u,v), for all u,v € ®.

The root system @ is called irreducible if it cannot be partitioned into
the union of two mutually orthogonal proper subsets. Every root system is

the disjoint union of irreducible root systems.

A subset A of ® is called a base if A is a basis of F, and if each root
in ® can be written as a sum Y ,canqa of roots in ®, where the n, are
integers, all non-positive, or all non-negative. The roots in A are called
simple. Suppose that the root £ is equal to the sum ) nqa, of the simple
roots a € A. If all the coefficients n, in the sum are non-negative, then ¢
is called positive, otherwise £ is called negative. By [22, Theorem 10.1],

every root system ® has a base.

The subset of ® consisting of positive roots is denoted ®*, and the subset
of ® consisting of negative roots is denoted ®~. The root system ® can be
written as the disjoint union ® = ®+ U ®~ of positive and negative roots.

The following is [23, Theorem 27.1]. This result shows that every reduc-

tive algebraic group has a root system.

Theorem 5.25. Let G be a semisimple algebraic group. Let T be a mazimal
torus of G and set E = R ®z X(T') together with an inner product ( , ) on
E. Then the root system ® = ®(G,T) of G relative to T is a root system
in E in the sense defined above, and the Wely group of ® is isomorphic to

Ne(T)/Ca(T).
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By [23, Proposition 24.1 B], we see that the root systems of G and (G, G)

are in one-to-one correspondence.

Theorem 5.25 provides a link between the abstract notion of a root sys-
tem and the notion of the root system of an algebraic group introduced in
§5.8 by showing that they coincide. This link is crucial in section §5.11
because it enables us to classify the simple algebraic groups by looking at
their root systems.

Let & = ®(G,T) be the root system of G relative to the maximal torus
T of G. By Theorem 5.25 we have that the Weyl group W (®) of ® is
isomorphic to Ng(T)/Cq(T), so from now on we denote the Weyl group
by W. As we shall see in §6.1, W is independent of ® and T, and so this

notation is justified.

The following is [23, Corollary 27.5].

Lemma 5.26. Let G be a semisimple algebraic group. The decomposition
G = G1---Gy, of G into its simple components (as in §5.6) corresponds

precisely to the decomposition of ® into its irreducible components.

We have that if G is a reductive group, then we can decompose G as
G = Gy---G,Z(G)°, where the Gy,...,G, are the simple components of

(G, Q) as in Lemma 5.26, and the root system of each G; is irreducible.

5.11 Classification of Simple Algebraic Groups

See Chapter XI of [23] for a more extensive account of the following.

Let g = Lie(G) for G a reductive algebraic group, and let 7' be a maximal
torus of G. As introduced in §5.10, consider the real vector space E =
R ®z X(T'), with an inner product (, ) on E, and let ® = ®(G,T) be the
root system of G with respect to T

A lattice in F is the Z-span of an R-basis of E, and its rank is the

dimension of E. Define the root lattice A, be the Z-span of the elements
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of ®. Define the weight lattice A to be the Z-span of all the vectors v € F,
such that (v, a) € Z for all « € . The v € A are called abstract weights.
Both A and A, are lattices in E of finite rank, and A contains A, as a

subgroup of finite index.

Given a base A = {ai,...,qq} of the root system ®, the elements
{20 /(cvi, ;) | 1 < i <1} form a basis of F, called the dual basis of ®. Let
Y1, ..., Y be the dual basis of E relative to (, ) such that (y;, ;) = d;;. It
can be shown (see [22, p. 67]) that A is a lattice with basis consisting of the
Yi-

The Cartan matrix of ® is defined to be the matrix ((a;, «;)), with
(ay, ) in its (i,7)-th entry. As described in [22, §13.1], the dual basis of
A can be obtained by multiplying the original basis {«;} by the inverse of
the Cartan matrix. This inverse introduces a denominator, which is the
determinant of the Cartan matrix, and which measures the index of A, in

A. In fact A/A, is a cyclic group whose structure is described in [22, §13.1].

We call the invariant A/X(T) the fundamental group of G. If
X(T) = A, we say that G is adjoint, and if X(T') = A we say that G
is simply connected. For example, SLy(k) is a simply connected group,
and PGLa(k) := GLa(k)/Z(GL2(k)) is an adjoint group. For any semisim-
ple group G, the adjoint representation Ad(G) of G in GL(g) is an adjoint
group, see [23, §31.1].

For any irreducible root system, [23, §33.6] shows that there exists a
simple algebraic group having that root system. However, each root sys-
tem does not necessarily give rise to a unique algebraic group. For in-
stance, as we remark after Theorem 5.27, SL,y1(k) and PGL,1i(k) =
GLy41(k)/Z(GLy+1(k)) have the same root system, but the former is simply
connected and the latter is adjoint. As we are about to see in Theorem 5.29,
in most cases the root system and fundamental group of a simple algebraic

group G are enough to uniquely determine it up to isomorphism. The simple
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algebraic groups are classified by their root systems, and we determine all

the irreducible root systems below.

Given the base A = {a1,...,a;} of ®(G), we consider the range of pos-

sible values that («;, o) = 2((0402201;-)) can take in Z. We have (o, o) (e, o) =

4 cos? f. This number is a positive integer and each factor on the left has like
sign so the only possibilities are shown in [22, p45, Table 1]. This number
is therefore 0, 1, 2 or 3. If we draw a graph with [ vertices corresponding
to the roots «; of the base A, and join the ¢-th vertex to the j-th vertex
by (o, a;)(aj, ;) edges, the result is known as a Coxeter graph. By [22,
Lemma 10.4 C], for ® irreducible, at most two different root lengths can
occur in ®. By putting an arrow pointing to the shorter root on any dou-
ble or triple edge, then the graph is called a Dynkin diagram. There are
nine types of connected Dynkin diagram, and each one corresponds to a

particular class of irreducible root system.

In order to classify the possible Coxeter graphs we assume that
{vi,...,u} is a set of [ linearly independent unit-vectors in F for which
(vi,vj) <0, for i # j and 4(v;,v;)? is equal to 0,1,2 or 3. The elements
a/||al| for a € A satisfy these criteria. From these assumptions we are able
to classify the Coxeter graphs, and then the classification of possible Dynkin
diagrams follows easily as they have the same shapes as the Coxeter graphs,
but by putting in the relevant arrows we see that a double or triple edge

occurs, we obtain the Dynkin diagrams.
Working out all the irreducible (i.e. connected) Coxeter graphs uses
mainly euclidean geometric ideas. Details are given in [22, §11.4], for in-

stance.

Theorem 5.27. The connected Dynkin diagrams are classified by the four
classical types An, Bn, Cn, Dy and the five exceptional types Eg, B, Eg, Fy
and Ga. The subscript is the number of roots in a basis of the corresponding

root system.
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What is remarkable about Theorem 5.27 is that the classification of
the simple algebraic groups, which are topological and group theoretic con-
structions, is achieved using euclidean geometry. This is one example of the

elegance of the theory of algebraic groups.

Terminology 5.28. A simple algebraic group is said to be of classical type if
its root system is of type A,, By, Cp or D, and is said to be of exceptional

type otherwise.

With reference to [23, §33.6] and [28, §25.A.], we list some examples of

semisimple and adjoint classical simple algebraic groups.

In type A,,n > 1, we have the special linear group SL, (k) of
determinant 1 matrices in GL,;(k) is a simply connected group of this
type. The adjoint representation Ad : SL,4+1(k) — GL(sl,41(k)), where
sl,41(k) = Lie(SLy,(k)), has as its kernel pip,+1, the group of n + 1-th roots
of unity. The group SLy+1(k)/pin+1 := PGLyp41(k) is an adjoint group of
this type.

In type B,,n > 1, a simply connected group of this type is the spinor
group Spin,, ,;(k), and an adjoint group of this type is the special or-
thogonal group SOg,41(k).

According to [23, §7.2], if char(k) # 2, the group SOgy,+1 can be defined

as the matrices in © € SLg,11(k) such that zTsz = s, where 27 is the

1 00
transpose of z, and s=| 0 0 J | for J the n x n matrix consisting of
0 J 0

1s on the antidiagonal, and zeros elsewhere. A definition of this group in

characteristic two can be found in [11, §1], for instance.

In general, the orthogonal groups, denoted O,(k), are defined in [28,
p.348]. These groups preserve a non-degenerate quadratic form on an n-
dimensional k-vector space. The normal subgroup of determinant 1 matrices
is the special orthogonal group SO, (k). The definition of Spin,, (k) is given
in [28, p.349].
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In type Cn,n > 1, a simply connected group of this type is the sym-
plectic group Sp,,, (k), and an adjoint group of this type is the projective
symplectic group PGSp,,, (k).

The symplectic group Sp,,, (k) is defined in [23, §7.2] as the € GLa, (k)
such that 27 ( _OJ g ) T = ( _OJ g ) where J is the n by n matrix con-
sisting 1s on its antidiagonal and zeros elsewhere. The definition PGSp,,, (k)

is given in [28, p.347], for instance, where we are given the isomorphism

In type Dy,n > 2, a simply connected group of this type is the spinor
group Spin,,, (k), and an adjoint group of this type is the special orthogo-
nal group SOg, (k). If n is odd we have the intermediate group the orthog-
onal group Oz, (k), and if n is even there are two more intermediate groups,
the half-spinor groups Spinétn(k:).

If char(k) # 2 we have that SOg, (k) is defined as the = € SLg, (k) such
0 J
J 0
in characteristic two can be found in [11, §1], for instance.

that 7 sz = s where s = < ) As before, the definition of this group

The groups Spinfn(k) are defined in [28, p.359], and these two groups

are isomorphic to each other, but are not isomorphic to Oz, (k).

Now we state [23, Theorem 32.1].

Theorem 5.29. If G, G’ are simple algebraic groups having isomorphic root
systems and isomorphic fundamental groups, then G and G’ are isomorphic
as algebraic groups with the exception of when the root system is of type Dy,
where | > 6 is even and the fundamental group has order two, then there

may be two distinct isomorphism types.

Remark 5.30. In type D; for [ > 6 and even, the two non-isomorphic groups
which arise are Og,, (k) and Spini, (k).

The connected Dynkin diagrams associated to simple groups are pre-

sented in [22, p.58], for instance.
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Remark 5.31. Let G be a reductive group. By Theorem 5.25, each root
a € (G,T) of G with respect to T can be written as an integral sum of
simple roots. Let p be a prime number. If p does not divide any of the
coefficients in this sum, p is said to be good for GG, and otherwise is said to
be bad for G. If G is simple, then the bad primes p are as follows; for type
A, there are no bad primes, p = 2 for types B,,C, and D,, p = 2,3 for
types Go, Fy, Eg and E7, p = 2,3 and 5 for type Eg.

By Lemma 5.26, the root system ® of G = G - - - G,, decomposes into a
disjoint union ® = ®;U- - -UP,,, where ®; is a root systems of ;. Therefore,
the set of bad primes for a reductive group G is the union of the sets of bad

primes for the G;.

The prime p is said to be very good for G if p is good for G and p does
not divide n + 1 for any of the simple components of type A, that occur in

the decomposition of G into its simple factors.
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6 (G-Complete Reducibility

6.1 The Structure of Reductive Groups

Let G be a connected algebraic group over the algebraically closed field k.

A Borel subgroup of G is defined to be a maximal connected solvable
subgroup of G. One-dimensional connected subgroups of G are isomorphic
to G4 or Gy, and so are commutative and hence solvable. Therefore, Borel
subgroups exist in G. The Lie-Kolchin Theorem gives that every Borel sub-
group of GL, (k) is conjugate to T, (k). Furthermore, by Theorem 5.16 we
have that every Borel subgroup of the algebraic group GL, (k) is conjugate
to a subgroup of T, (k).

The following is [6, Theorem 11.1].

Theorem 6.1. Let B be a Borel subgroup of G, then G/B is a projective

variety.

Our next result shows that all the Borel subgroups of G are conjugate,
and that all the maximal tori of G are conjugate. This is an important result

and is used many times throughout this thesis, for example in Corollary 7.14.

Proposition 6.2. The set of Borel subgroups of G forms one G-conjugacy

class, and the set of maximal tori of G forms one G-conjugacy class.

Proof. Let B be a Borel subgroup of G and suppose that G is not solvable
to avoid the trivial case, so G # B. By Theorem 6.1, the quotient G/B is
thus a non-trivial projective variety, and hence non-affine. Suppose that B’
is another Borel subgroup of G. In particular, B’ is a connected solvable
algebraic group which acts on the complete variety G/B. Applying Theorem
5.18, the action of B’ on G/ B leaves a point, ¢B say, of G/B fixed. Therefore
B'¢gB = ¢gB. Hence, g-'B’g C B. By the maximality of B’, we have the

equality ¢~ 'B'g = B.
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Since a torus is connected and solvable it lies in a Borel subgroup. Let
T be a maximal torus G, and without loss suppose T is contained in B (so
T is a maximal torus of B). Suppose T” is another maximal torus of G’,
contained in the Borel subgroup B’ = gBg~! for some g € G. Then, g~ 'T"g
is a maximal torus of G contained in B and by [23, Theorem 19.3] g7"¢g~*

(and hence T") is conjugate to T', giving the result. O

We define a parabolic subgroup to be a subgroup P for which G/P
is a projective variety. By [23, Corollary B 21.3|, a subgroup P of G is a
parabolic subgroup of G if and only if it contains a Borel subgroup of G.
Note that this means G itself and B are examples of parabolic subgroups of
G.

In the case G = GL(V), by the Lie-Kolchin Theorem 5.19 we see that
a Borel subgroup of G is conjugate to the group T, (k), and is hence the
stabiliser of a complete flag {0} # Vi C --- C V;;, = V of V, where the
V; are subspaces of V and m = dim V. In this case, a parabolic subgroup
P C @ is the stabiliser of a partial flag {0} #V; C --- C V,y CV of V, for
m <dimV.

Suppose that G is a reductive group. We can now show that the Weyl
group of G is independent of the choice of maximal torus of G. Let T be
a maximal torus in G. Then [6, §13.17 Corollary 2(c), and Corollary 11.19]
give that Cg(T) = T = Ng(T)°. Thus the Weyl group is equal to W =
Ng(T)/T. Suppose that S is another maximal torus of G. By Proposition
6.2 79 = S, for some g € G. We have an isomorphism Ng(TY) = Ng(T')¢
given by h — h9 ' for h € Ng(T). Hence, Ng(S)/S = Na(T9)/T9 =
Na(T)9/T9. Furthermore, Ng(T')/T is isomorphic to Ng(T)9/T9 via the
map hT — h97T9. The Weyl group W of the root system @, as defined in
§5.10, acts on the root system ® = ®(G,T). Let a € ®,t € T,n € Ng(T)
then n - a(t) = a(ntn™1) is again a root since n - « is not the zero map and

its weight space is non-zero.
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Let T be a maximal torus of G, so that we have the root system ® =
®(G,T). Let B be a Borel subgroup of G containing T'. Let A be a base of ®.
As remarked earlier, such bases exist and each root of ® can be written as a
linear combination of elements of A with all non-negative or all non-positive
coefficients. The roots which can be written with non-negative coefficients

are called positive and the others negative.

We have that [6, Theorem 14.1] implies that there exists a unique Borel
subgroup of G opposite to B with respect to 7', which we denote by B,
for which BNB~ = T. Also, the system of roots ®(B,T') consists of positive
roots which we denote ®*, and ®(B~,T) consists of negative roots denoted
&~ and by [48, 7.4.5.(b)] &~ = —PT.

For example, in GL,,(k) the group of upper triangular matrices T, (k) is a
Borel subgroup and so is its opposite, the group of lower triangular matrices
T, (k)~. The intersection of these two Borel subgroups is the group D, (k)

of diagonal matrices, and is a maximal torus of GL, (k).

This is indicative of the more general situation. For any Borel subgroup
B of G, BN B~ =T where T is a maximal torus of G. We also have that
B = UT where U = R,(B) is the unipotent radical of B, and B~ =U"T
where U™ = R, (B~) and UNU™ = e. Again, using the case of G = GL,,(k)
as an example clarifies the situation. Then the Borel subgroup T, (k) of
upper-triangular matrices clearly has such a decomposition as U, (k)D,,(k),
where U, (k) = R,(Ty(k)) is the group of upper unitriangular matrices, and
D, (k) is the group of diagonal matrices. Clearly, we also have T, (k) =
U,, (k)Dy(k), where U, (k) = R,(T,, (k)) is the group of lower unitriangular

matrices, and T, (k) NT,, (k) = D, (k), and also U, (k) N U, (k) = IL,.

The following is [48, 8.1.1 (i)].

Lemma 6.3. Let G be a reductive group and T a maximal torus of G.

For any root a € ®(G,T) there exists an isomorphism u, from G, onto
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a uniquely determined closed subgroup U, of G such that tug(z)t™ =

ug(a(t)x) for allt € T,z € k.

By Lemma 6.3, each root a € ® gives rise to a root subgroup of G
relative to T, denoted U,, and contained in U. Similarly, —« gives rise to
the opposite root subgroup U_,, in U~. We have that G = (T, U, | a € ®),

for a proof see for instance [48, Proposition 8.1.1 (ii)].

The U, and U_, are the minimal proper subgroups of U and U~ which
are normalised by T. They are one dimensional subgroups of GG, each iso-
morphic to G,. Each such root subgroup is determined by a distinct root,
by [48, Proposition 8.1.1].

Let P be a parabolic subgroup of G. Then, by [48, Theorem 8.4.3],
P can be written as a semi-direct product P = L x R, (P), where L is a
reductive group called a Levi subgroup of G. The Levi subgroup in this
decomposition of P is unique up to conjugation by an element of P, by [15,
Proposition 1.22]. If L is a Levi subgroup of G such that P = L x R, (P),
for some parabolic subgroup P of G, then L is called a Levi subgroup of
P. A parabolic subgroup P~ of G is said to be opposite to the parabolic
subgroup P of G if P N P~ is a Levi subgroup of both P and P~. For
each parabolic subgroup P of GG, and a Levi subgroup L of P, there exists a
unique opposite parabolic subgroup P~ of G such that P~ NP = L by [6,
Proposition 14.21].

We continue our illustration of the general situation using G = GL,,(k),
with maximal torus T = Dy(k). Then, Ngr,)(T) is the group of
monomial matrices in GL,(k), and the Weyl group W is the group
Nar, (k)(Dn(k)) /Dy (k), which is isomorphic to the symmetric group Sy, on n
letters. Given the Borel subgroup B = T,,(k), then any subgroup containing
B is a parabolic subgroup P of G. With respect to a suitable basis of V,
where V' is the natural module for GL,(k), a parabolic subgroup P of G is

of block diagonal form having arbitrary entries above the blocks and zeros
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below. For example, if the diagonal part of P consists of s blocks, then the

matrices in P have the form:

GL, (k) *

0 [CLu)]

Then, a Levi subgroup L of P consists of blocks on the diagonal, with
each block isomorphic to some GL,,(k), for m; corresponding to the i-th

block, where ¢ < s. The entries above and below these blocks are all zero.

The unipotent radical R, (P) of P is then of the following form:

I
0 [T

where I,,,, for i < s is the m; x m; identity matrix in GLy,, (k).

The root subgroups in G = GLy, (k) are the subgroups U,,; = {I,+aE;; |
a € k}, where E;; is the matrix with a 1 in the (4, j)-position and zeros
everywhere else. The «;; are the roots of GL, (k) relative to the maximal

torus Dy, (k), and are elements of Hom(D,,(k), G,,) of the form:

a1
a2 _1 . .
Qj . = aia; for i # 7.
an

We present some useful results about these groups.

Proposition 6.4. For a reductive algebraic group G, and a parabolic sub-

group P of G, the following hold:

(1) Any Levi subgroup L C P is of the form Cg(S) where S is a maximal
torus of R(P), the radical of P (see §5.6). Furthermore, S = Z(L)°.

(2) For any torus S of G, the group Cg(S) is a Levi subgroup of some
parabolic subgroup of G. This implies that C(S) is reductive. Every
Levi subgroup of G has this form.
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(3) The set of Levi subgroups of P forms one conjugacy class under the

action of Ry (P).

(4) Every parabolic subgroup P of G is connected, and self-normalising,

i.e. Ng(P) = P.

These are all standard results. By the definition of Levi subgroup of P
we see that it is isomorphic to P/R,(P), hence is reductive. Observe that
part (4) is [6, Theorem 11.16]. Parts (1) - (3) follow from [6, Proposition
11.23).

6.2 Standard Parabolic and Levi Subgroups

We now proceed with a characterisation of parabolic and Levi subgroups of

the reductive group G.

Let T be a maximal torus of G, and let W be the Weyl group Ng(T')/T.
Suppose that A = {aq,...,o} is a base for & = (G, T), and let K =
{1,...,1}. For I C K let Aj:={a; | oy € Ayi € I}. Let Wy = (0q, | 0o, €
W,i € I) be the subgroup of the Weyl group W generated by the o,,, where
the o,, are elements of a generating set of W as defined in §5.10, labeled
such that o,, corresponds to a reflection sending «o; to —c;. Let @1 be the
set of roots that are linear combinations of the roots in Aj. Define Ny as
the pre-image of W with respect to the projection Ng(T) — W, that is
N;/T = W;. Then, according to [10, §2.1], we define P; to be Pr = BN B,
where B is the Borel subgroup of G determined by A (for the uniqueness
of B, see for instance [23, §27.3]). By [48, Lemma 8.4.3|, P; is a parabolic
subgroup of G, called the standard parabolic subgroup of G relative to
I (with respect to B). Then Px = G and By = B. By the proof of [10,
Proposition 2.8.4], we have that Ry (Pr) = (Uy | @ € @7, ¢ ®}). The Py
are the subgroups of G containing B. By [23, Theorem 30.1], every parabolic

subgroup of G is conjugate to some Pr.
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Recall that a G-variety is a variety V over k equipped with an action
G xV — V of the group G on the variety V, such that this action is a
morphism of varieties, and the G-orbit of a point v € V is the set {g- v |
g€ G}

Let V be an affine G-variety, and let A be an element of the set of
one-parameter subgroups Y (G) of G. Let v € V. We say that the limit
limg_,0 A(x) - v exists and is equal to w if there is a morphism M, (\) : k& — V

such that M,(\)(z) = A(z) - v for all = # 0 and M, (N)(0) = u.

The following lemma is obtained from [38, p11], for instance.

Lemma 6.5. The set Py := {g € G | lim,_,o \(x)g\(z) L ezists} is a sub-

group of G.

Proof. For g € Py, set ¢g(A) : k* — G to be the map z — A(z)gA(z)~! for
all z € k*, and define the map My(\)(z) : K — G by:

D)) if x € k*
e = { ) et e

Let g1,92 € Py. Define (Mg, (X), Mg, (X)) : K = G x G to be map
x = (Mg, (N)(x), Mg,(X)(x)) for all € k. Define the multiplication map
m:GxG— Gbyn(g,9)=gq.

Clearly we have My, 4,(\)(x) = 7(Mg, (M) (), Mg, (N)(z)), for all z € k*.

If z =0, we have
Mgy, (M)(0) = lim A(x)g192A(x) ™"
= lim M@)giA(2) "' A(2)g2A ()
= (lim Mx)giA(z) ™) (lim A(x)g2A(2) )

= (Mg, (A\)(0), My, (N)(0)),

where the product of limits can be taken for the g; individually in the

third equality above because of the continuity of the morphism A : £* — G.
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Hence, we obtain My,g,(N)(x) = 7(My, (N) (), My, (A)(2)), for all @
k. Therefore lim, .0 A(x)g1goA(x) ™! exists and so g1go € Py. A similar
argument shows g, e P,. So P, is a group and now we have to show that

it is a parabolic subgroup of G. O

The following lemma is [48, Proposition 8.4.5], and shows that for each

A € Y(G), there is a corresponding parabolic subgroup Py of G.

Lemma 6.6. The group P\ := {g € G | lim,_o \(@)g\(z) Lezists} is a
parabolic subgroup of G.

Proof. A proofis provided in [48, Proposition 8.4.5], in which it is shown that
it is possible to pick a Borel subgroup B, all of whose generators (namely,
a maximal torus T of G and the root subgroups U, for a € ®(G,T)") are
contained in Py. Hence B C P, and is therefore P) is a parabolic subgroup

of G. O

According to [48, Theorem 8.4.3, Theorem 8.4.5], for any A € Y (G),
there is a unique subset I C K such that P\, = P;. We define ®(P;,T) to
be the union of the positive roots and the negative roots which come from
Ar. By [23, Theorem 30.1 (b)], this is the root system of Pj relative to 7.
Suppose that B is a Borel subgroup of G contained in P; and containing
T, then Pr is generated by B and the U_, for o € I. This is also seen
intuitively, since B is generated by all the positive root groups, therefore
a group containing B must be generated by the positive root groups in
addition to some other generators, which can be any set of negative root
groups.

By [6, Proposition 14.18] we have that Pr = L; x R,(Pr), where L
is called the standard Levi subgroup of G relative to I, and L; =
Ca(Naer ker ). By [42, 2.3], Ly = Ca(\(k*)), so we write Ly := Ly.
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The map cy : P, — Ly given by g + lim,_,o A(x)g\(x) ! is a surjective
homomorphism of algebraic groups with kernel R, (Py).

For any reductive subgroup H of G we have a natural inclusion of sets of
one-parameter subgroups Y (H) C Y (G). Therefore, for A € Y (H) we obtain
a parabolic subgroup of H and one of G by using the construction given in
Lemma 6.6. We denote these by P\(H) and Py(G) respectively. Similarly,
we have corresponding Levi subgroups of H and G, denoted Ly(H) and
L, (G), respectively.

Clearly we have that Py(H) = P,\(G) N H, and so every parabolic sub-
group of H is the intersection of a parabolic subgroup of G with H. Further-
more, R, (Px(H)) = Ry(P\(G))NH, and Ly(H) = L\(G)NH. Let M be any
Levi subgroup of P\(H). Then, by Proposition 6.4 (3), there exists some
u € Ry(Py(H)) such that uLy(H)u=! = M. If we set L := uL\(G)u™!,
then M = L N H and so every Levi subgroup of H is the intersection of a
Levi subgroup of G with H. Combining these results, we have the following

corollary.

Corollary 6.7. Let H be a reductive subgroup of G. Then for each parabolic
subgroup @Q of H, there exists a parabolic subgroup P of G such that ) =
PNH, and R,(Q) = R, (P)N H. Moreover for any Levi subgroup M of Q,
there exists a Levi subgroup L of P such that M = LN H.

The following is a result of Borel and Tits, see [7, Proposition 3.1].

Theorem 6.8. Let U be a closed unipotent subgroup of G. Then there exists
a parabolic subgroup P of G such that Ng(U) C P and U C Ry (P).

The following lemma is a standard result about parabolic subgroups of
connected reductive algebraic groups which can be inferred from [8, Propo-

sition 4.10].

Lemma 6.9. Let G be a connected reductive algebraic group, and let P and

P’ be two parabolic subgroups of G. Then the following are equivalent.
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(1) PN P is reductive, and

(2) P and P’ are opposite parabolic subgroups of G.

6.3 G-Complete Reducibility

Let G be a connected reductive algebraic group over the algebraically closed
field k. We introduce the notion of G-complete reducibility and we will
show, using [1, Theorem 3.1], that it is equivalent to Richardson’s geometric

notion of strong reductivity, see [42].

The notion of G-complete reducibility was introduced by J.-P. Serre in
[46]. The equivalence between the notions of G-complete reducibility and
strong reductivity in G is significant because the former is a group theoretic
notion, while the latter is geometric. This equivalence enables new methods

to be employed in the theory of G-complete reducibility.

Let V be a kG-module (or a G-module for short).

e V is irreducible if no proper subspace of V', other than the trivial

subspace, is G-stable.

e 1/ is semisimple if it is a direct sum of irreducible submodules.

The following definition is due to J-P. Serre, see [45].

Definition 6.10. Let H be a subgroup of G.

(1) H is called G-irreducible (or G-ir) if H is not contained in any
proper parabolic subgroup of G.

(2) H is called G-completely reducible (or G-cr) if whenever H is con-
tained in a proper parabolic subgroup P of G, then H is contained in

a Levi subgroup of P.
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Note that G itself is trivially G-completely reducible. However, a reduc-
tive subgroup of GG is not necessarily G-completely reducible, as shown by
the counter-example given in [1, Example 3.45] which we will discuss again

in Example 10.16.

To determine whether a subgroup of G is G-completely reducible, we
need to examine its containment inside various parabolic subgroups and
Levi subgroups of G. Let P be a parabolic subgroup of G, and L a Levi
subgroup of G. For a subgroup H of G, we note that H C P if and only if
the Zariski closure H of H is contained in P, since P is closed. Similarly,
H C L if and only if H is contained in L. Therefore, we may assume without

loss that H is closed.

Lemma 6.11. Let G = GL(V), where V is finite dimensional, and let H
be a subgroup of G, so that V is an H-module. Then V is a semisimple

H-module if and only if H is G-completely reducible.

Proof. A parabolic subgroup P of GL(V) is the stabiliser of a flag F :=
(Vi,..., Vi) of subspaces {0} # Vi C Vo C --- C V, of V, where m <
dim(V).

For each g € P we have gV; = V;. Hence, g induces an automorphism
of V;/Vi_1, for i = 1,...,m. We may choose a complement W; to V;_;
in V; such that V; = V;_1 & W;. Then a Levi subgroup L of P consists
of the g € P that stabilise each of the W;. We have L is isomorphic to
GLy, (k) x - -+ x GLy,, (k), where each n; = dim(W;). To each subspace U
of V that is stabilised by L, there is a complement to U in V that is also
stabilised by L. Thus V is a semisimple L-module.

Suppose that H is G-completely reducible, and that H stabilises a sub-
space U of V. Then H is contained in a parabolic subgroup P of G that also
stabilises U. Each Levi subgroup of P stabilises U, and a complement to U.

As H is G-completely reducible, H is contained in some Levi subgroup L
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of P. As H C L, and U has an L-stable complement, then U has the same

H-stable complement. Thus, V' is a semisimple H-module.

Conversely, suppose that V is a semisimple H-module and that H is
contained in a parabolic subgroup P of G. Since P acts on V by stabilising
a flag (V1,...,V,), we have that H also stabilises (V1,...,V},). Since V is a
semisimple H-module H is of block diagonal form, and so is contained in a

Levi subgroup of P. O

Remark 6.12. Tt is not difficult to show that since SL(V') = [GL(V), GL(V)]
we have that a subgroup of SL(V') is SL(V)-completely reducible if and
only if it is GL(V)-completely reducible, see for instance Lemma 9.7 later

in this thesis for more details. Therefore, we have that Lemma 6.11 holds

for G = SL(V)).

The corresponding situation, when the characteristic of k is different
from 2 and G = Sp(V') or SO(V'), holds analogously, and is discussed in [1,
Example 3.23], and [45, Example 3.2.2(b)].

This result shows that the notions of G-complete reducibility and
semisimplicity of modules coincide when working in GL(V'), however the
notion of G-complete reducibility clearly extends to an arbitrary reductive
group (5, and is in this sense a generalisation of the notion of reducibility of

linear representations.

We now introduce an important invariant for simple algebraic groups.

Definition 6.13. Let G be a simple algebraic group, with mazimal torus
T. Let ®(G,T) be the root system of G relative to T with a base A =
{on,...,an} for a; € ®(G,T). Let 0o, € W(P) be the reflection corre-
sponding to o;. Let I' be the group generated by the element o4, - 0aq,,-

The Coxeter number h of G is the order of the group .

The Coxeter number of GG is an invariant of G, and this can be seen by
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[9, Theorem 1(ii) Ch.V, §6] which shows that the number of roots of G is

equal to hl where [ is the rank of G.

Let V be a finite dimensional vector space, and let G be GL(V'). Then,
as we noted in Lemma 6.11, a subgroup H of G is G-completely reducible if,
and only if, V' is a semisimple H-module. By Remark 6.12 we can replace
GL(V) with SL(V') and the corresponding result holds. Now let G be either
Sp(V), or SO(V), where as above V is a finite dimensional vector space. In
this case if char(k) > 2, then a subgroup H of G is G-completely reducible
if, and only if, V' is a semisimple H-module, see [45, Example 3.2.2(b)].

There is a counterexample for char(k) = 2 which is described in [1,
Example 3.45]. In this example we take n to be an even integer, greater
than or equal to 4. By embedding Sp,,(k) diagonally in Sp,,(k) x Sp,,(k) it
is shown that Sp,,(k) is not Sps,, (k)-completely reducible, however Sp,, (k)
is connected and reductive. Consider Sp(V & V'), where V, V' are natural
modules for the Sp,, (k) factors of Sp,, (k) xSp,,(k), then V&V is a semisimple
Sp,, (k)-module.

Let G be an exceptional group, then G can be embedded in GL(g).
Let h be the Coxeter number of G, and let H be a subgroup of G. If
char(k) > 2h — 2, then the Lie algebra g of G is a semisimple H-module
(via Ad|g) if and only if H is G-completely reducible, for details see [45,
Corollary 5.5]. The bound on the forward implication can be improved. In
the case G is an adjoint simple group of exceptional type, by [1, Remark

3.43], we only need char(k) to be good for G.

The following is a result of Serre, see [47, Property 4].

Lemma 6.14. If H C G is G-completely reducible, then H° is reductive.

Proof. Suppose by way of contradiction that R,(H) # e. Then, by Theorem
6.8, we have R,(H) C Ry(P) for some parabolic subgroup P of G with

H C Ng(R,(H)) € P. Now H is G-cr, so it is contained in some Levi
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subgroup L of P. Then R,(H) C HN R,(P) C LN R,(P) =e. This is a

contradiction, therefore R,(H) = e and HY is reductive. O

We have the reverse implication to Lemma 6.14 under certain circum-
stances. If the characteristic of k is larger than the Coxeter number of G,
then a closed connected subgroup H of G is G-completely reducible if and
only if H is reductive, see [1, Theorem 3.48]. If char(k) = 0, then a closed
subgroup H of G is G-completely reducible if and only if H is reductive,
by [45, Proposition 4.2]. To avoid the non-interesting case, from now on we

assume k has positive characteristic.

We conclude this section with a result about reductive subgroups of

parabolic subgroups.

Lemma 6.15. Let P be a parabolic subgroup of G. Suppose that H is
a connected reductive subgroup of G contained in P. Then, H intersects

R, (P) trivially.

Proof. Let U = HN R,(P). Then, U is a normal unipotent subgroup of H.

Since H is reductive, U must be finite.

Then U is a finite normal subgroup of the connected group H. By [23,
Proposition 8.1], H acts trivially on U, and so U is central in H. However,
the centre of H is a torus consisting of only semisimple elements. Thus,

HNRy(P)=e. O
6.4 Strong Reductivity

In this section we introduce the notion of strong reductivity in G, which
is due to Richardson [42]. We also describe some important work of Bate,
Martin and Réhrle [1], which provides a link between Richardson’s geometric
notion of strong reductivity and the group theoretic notion of G-complete

reducibility.
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In much of the following we have a group G acting on the variety G™
for some integer n in the following manner. We let G act on itself by
conjugation, and extend this action to G" by considering the action by
simultaneous conjugation defined by g (z1,...,7,) = (971974, ..., gTng™!)
for g € G, (z1,...,z,) € G™. In this sense, the variety G™ is a G-variety.

Set x := (x1,...,2,). For a one-parameter subgroup A\ € Y(G), we say

that the limit lim,_,o A(z) - x exists if lim,_,o A(z) - z; exists for each i.

The following definition is due to Richardson, see [42, Definition 16.1].

Definition 6.16. Let G be a reductive group. A subgroup H of G is said to
be strongly reductive in G if H is not contained in any proper parabolic

subgroup of C(S) where S is a maximal torus of Cq(H).

Remark 6.17. It is clear that Definition 6.16 does not depend on the choice
of S. To see this, fix the maximal torus S of Cg(H), and suppose that H
is contained in a proper parabolic subgroup P of C(S). Let S be another
maximal torus of Cg(H). As tori are connected, and both S and S; are
maximal tori in Cg(H)°, by Proposition 6.2 S; = S9 for some g € Cq(H).
Therefore, H = H9 C P9 C Cg(S)? = Cq(59) = Ci(S1), where P9 is a
proper parabolic subgroup of C(S1). The same argument works in the other
direction, hence H is contained in a proper parabolic subgroup of C(S) if,

and only if, it is contained in a proper parabolic subgroup of Cg(S7).

The following result provides an equivalence between the notions of
strong reductivity in G and G-complete reducibility. This link was proved
in [1, Theorem 3.1]. We restate this result and sketch its proof below and
note that the methods employed are similar to those used in other results

that follow, for example in Theorem 10.25.

Theorem 6.18. Let G be a reductive group and H a closed subgroup of G.
Then H is G-completely reducible if and only if H is strongly reductive in
G.
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Proof. For the forward direction we have that H is G-cr and suppose by
way of contradiction that H is contained in a proper parabolic subgroup @
of Cg(S5), where S is a maximal torus of Cg(H). by Corollary 6.7, there
exists a parabolic subgroup P of G such that Q@ = Cg(S) N P, where P
contains S and H. Since H is G-cr it is contained in a Levi subgroup L
of P, where L = Cg(T') for some torus 1" € Cp(H). Since S is a maximal
torus of Cp(H), there is some g € Cp(H) such that 7Y is contained in
S. Therefore, C(S) is contained in L9. Thus, Cg(S) C P, however this
implies that @ = Cg(S) which is a contradiction. We conclude that H is
strongly reductive in G.

For the reverse, suppose that H is strongly reductive in G, and let S
be a maximal torus of Cg(H). Then, H is not contained in any proper
parabolic subgroup of C¢(S). By Proposition 6.4 (2), Cg(S) := L is a Levi
subgroup of G. Let @ be a parabolic subgroup of G containing L as a Levi
subgroup. By [8, Proposition 4.4(c)], @ is a minimal parabolic subgroup of
G with respect to containing H.

Let P be a parabolic subgroup of G containing H. By [8, Proposition
4.4(b)] and the minimality of @ we have @ = (P N Q)R,(Q). Similarly,
we have (P N Q)R,(P) is a parabolic subgroup of G contained in P. For
any parabolic subgroup P’ C P, and a Levi subgroup M’ of P’, by [8,
Proposition 4.4], there is a Levi subgroup M of P such that M’ C M.
Therefore, we may assume that P is minimal with respect to containing H,
and thus P = (PN Q)R,(P).

By [8, Proposition 4.4(b)], P contains a Levi subgroup, Mg say, of @,
and () contains a Levi subgroup, Mp say, of P. By choosing Levi subgroups
Lp and Lg of P and @ respectively such that Lp N Lg contains a maximal
torus of G, we have the standard decomposition of PN, as given by in the

proof of [1, Theorem 3.1]:

PNQ = (LpNLg)(Lp N Ru(Q))(Ru(P) N Lg)(Ru(P) N Ru(Q)).  (2)
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Then R, (P N Q) is the product of the last three factors of equation (2).
Since Mp is reductive and is contained in P N @, we have Mp N R, (P N Q)
is trivial. Therefore, Mp is isomorphic to a subgroup of Lp N Lg. It then
follows that M := Lp = Lq is a common Levi subgroup of both P and Q.

Let P~ be the opposite parabolic subgroup to P with respect to M.
We have that L and M are both Levi subgroups of @, hence are R,(Q)-
conjugate. Our goal is to show that L is R,(P~)-conjugate to a Levi
subgroup of P~, for then we could conclude that H C P~, and hence

H C PN P~ = M. This would give that H is G-cr.

We have that

Therefore, yzMz"1y= = L for y € R,(Q) N R,(P~) and z € R,(Q) N
Ry (P). Since zMz~! C P, we can take z = e without loss. This gives that
L =yMy ' C P~. Hence, H C PN P~ = M, as required. O

We see from Lemma 6.14 and Theorem 6.18 that a strongly reductive
subgroup of G is reductive. Without appealing to the notion of G-complete
reducibility, Richardson proves that a strongly reductive subgroup of G is

reductive in [42, Lemma 16.3].

Strong reductivity is a geometric notion, in that strongly reductive sub-
groups correspond to closed orbits, as the following theorem, [42, Theorem

16.4] due to Richardson, shows.

Theorem 6.19. Let x = (z1,...,%,) € G". Then the orbit G - x is closed

in G™ if and only if H = (x1,...,xy,) is strongly reductive in G.

In order to prove Theorem 6.19 we need the following, which is the

Hilbert-Mumford Theorem as presented in [26, Theorem 1.4].
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Theorem 6.20. Let G be a reductive group and V' a G-variety and letv € V.
Let U be a closed G-subvariety of V. which meets the closure of G -v. Then
there exists a one-parameter subgroup A\ € Y (G) such that limg_o A(x) - v

exists and belongs to U.

Definition 6.21. Let X be a G-variety. Let Z = NyexCq(x) be the kernel
of the action of G on X. We say x € X is a stable point for the action of
G if the orbit G - x is closed in X and Cq(x)/Z is finite.

Lemma 6.22. Let x € X and let S be a mazimal torus of Cq(x). Then
G - x is closed if and only if x is a stable point for the action of Cg(S) on
X5,

Proof. If G - z is closed then Cg(S) - x is closed by [43, Theorem C], and is
therefore an affine variety. Let H = Cg,(5)(7). As Cg(S) -z is closed, [43,
Lemma 10.1.3] implies that C(S)/H is an affine variety. Therefore, by [41,
Theorem A], H is reductive. We have that S is central in H and therefore
also in H?, since S is connected. The group S is a maximal torus of H as
S is a maximal torus of Cg(x), and H C Cg(z). Hence, Cpo(S) = S = HC.
Finally, H/S is finite and S C Z, for Z the kernel of the action of C¢(.S) on

X5, so x is a stable point.

Conversely if z is a stable point for the action of Cg(S) on X¥, then
Cc(S) - z is closed and, by [43, Theorem C], G - z is closed. O

The following proposition, due to Richardson [43], is essential in proving
Theorem 6.19.

Proposition 6.23. Let (z1,...,2,) € G". Then (x1,...,2,) is a stable
point of G™ if and only if (x1, ..., x,) is not contained in any proper parabolic

subgroup of G.

Proof. Set x := (x1,...,z,) and H := (r1,...,x,). Suppose that H is

not contained in any proper parabolic subgroup of G. Suppose G - x is not
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closed. Let y = (y1,...,yn) € G -x\G-x such that G-y is the unique closed
orbit in this boundary, which exists by [39, No.8]. Then by Theorem 6.20
there exists A € Y(G) such that lim,_,o A(x) - x exists and belongs to G -y
(which is closed by hypothesis). But then H C Py. If P\ were proper in
G this would be a contradiction, therefore A must be central in G giving

lim, 0 A(x) -x =x. Thus x € G-y, so G - x is closed and therefore affine.

As G - x is closed, [43, Lemma 10.1.3] implies that G/Cg(x) is an affine
variety. Therefore, by [41, Theorem A], Cg(x)° is reductive. Let S be a
maximal torus of C(x), and let A be a one-parameter subgroup of S. Then
x € Cg(S)™ € Co(M(k*))". So H C Cg(A(k*)) C Py. Therefore Py = G,
hence all the one-parameter subgroups of S are central in G. Therefore,
S C Z(@)°. The group Cg(x)? is reductive and S is a central maximal
torus in C(x)?, s0 Cop,x)0(S) = 8 = Ca(x)°.

Set Z = NxegnCa(x). For x to be a stable point we require Cg(x)/Z to
be finite. We have that C(x)/S is finite. However Z O S. This can be seen
since S C Z(G)° and so S commutes with all z € G™ under the diagonal
action. Therefore S C Cg(z) for each z € G™, and so S is contained in
their intersection. Hence Cg(x)/Z is no bigger than Cg(x)/S, and so is

also finite.

Conversely, suppose there exists some non-central one-parameter sub-
group A € Y(G) with H C Py. Set y = (ca(z1),...,cx(zn)), where cy
is the map defined in §6.2. Then, each c)(z;) € Ly = Cg(A(k*)). So
ex(x;) € Ca(A(k*)) for each 4, and so Ca(y) 2 Ca(Ca(A(E*))) 2 A(K¥).
This means that A € Y (Cg(y)). However, A ¢ Z(G), so Z(G)° € Cq(y)°.
The two groups Z(G)? and Cg(y)? must therefore have different dimen-
sions because they are connected, and so Cg(y)/Z(G) is infinite. Since
NycanCa(y) is the kernel of the action of G on G", it is contained in Z(G).

Thus, Ca(y)/ Nyegn Ca(y) is infinite and y is not a stable point.

Ify € G-x, theny = ¢g-x for some g € G. Let h € Cg(x). Then
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ghg™l -y =gh-x=g-x=ysoh? € Cq(y). Hence, Cg(x) and Cg(y) are
conjugate groups. The quotient Cg(x)/Z(G) is thus infinite and x is also
not a stable point. Now suppose y ¢ G - x, then the orbit of x is not closed
because it does not contain the limit y. Again, we conclude that x is not

stable. O
We now present a proof of Theorem 6.19.

Proof. Set X = G™, and let x = (z1,...,2,) € X. Recall that H =

(x1,...,2yn). Fix a maximal torus S of Cq(H) = Cg(x).

Suppose G -x is closed. Then, by Lemma 6.22, x is a stable point for the
action of Cg(S) on X*. But then, by Proposition 6.23, H is not contained
in any proper parabolic subgroup of Cg(S), because Cg(H) C N;Cq(x;)
and clearly S C Cg(H). So H is strongly reductive in G.

Conversely, let S be a maximal torus of N;Cg(x;). Assume H is strongly
reductive in GG. By Proposition 6.23, x is a stable point for the action of
Ca(S) on (Cg(S))™. The orbit C(S) - x is closed in X and hence, by [43,
Theorem C], G - x is closed. O

6.5 Topologically Finitely Generated Groups

The following is [1, Lemma 2.10], and we include its proof here because we

use it as the basis for the proof of Lemma 10.4 later on.

Lemma 6.24. Let H be a closed subgroup of G. Then, there exists a topolog-
ically finitely generated subgroup I' of H such that for any parabolic subgroup
P of G and any Levi subgroup L of P, P contains H if and only if P contains
I', and L contains H if and only if L contains T.

Proof. Recall that each parabolic subgroup containing a Borel subgroup B
of G is of the form P; for some subset I of an indexing set {1,...,l} of the [
roots in A C ®(B,T) and each subset I of {1,...,1} gives rise to a parabolic
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subgroup containing B. Moreover, P is conjugate to P if and only if
I = J. Then since each Borel subgroup of GG is conjugate to B, any parabolic
subgroup of G has a conjugate containing B and is therefore conjugate to
a parabolic subgroup of the form P; for some I. Since A is a finite set
there are only finitely many conjugacy classes of parabolic subgroups of GG
with representatives Pi,..., P,, say. Each P; has one conjugacy class of
Levi subgroups since all Levi subgroups of a parabolic P; are conjugate by
R,(P). Let Lq,..., L, be representatives of the set of conjugacy classes of
Levi subgroups. Note that although to each parabolic subgroup P; there
is one conjugacy class of Levi subgroups, by Proposition 6.4, some of these

classes may coincide so that in general n < m.

Now for any subgroup H' C H set
Ci(H'):={g€ G| H' C gPyg"}

and

Dj(H"):={geG|H CgLjg'}.

forall 1 < i < mand 1 < j < n. By [23, Proposition 8.2 (a)], each
of these sets is closed and, for any subgroup H” containing H’, we have
C;(H") C C;(H') and Dj(H") C D;j(H'). For each i,j set C;, D; to be the
set of all C;(H'), Dj(H') for H' C H topologically finitely generated. For
an increasing chain of topologically finitely generated subgroups of H, we
get that C;,D; contain decreasing chains of closed sets for each 7 and j,
each of which must terminate by the descending chain condition on closed
sets. By Zorn’s Lemma we can find minimal elements in C;, Dj, for each 1, j,
and these minimal elements arise from finitely generated subgroups of H.
Take I" to be the subgroup of H generated by all of these finitely generated
subgroups.

We have that C;(I') € C;(H’) and D;(T") € D;(H') for all 4,5 and all
topologically finitely generated subgroups H' C H. Then, C;(T") = C;(H)
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and D;(I") = D;j(H) for all 4, j since if C;(H) C C;(I"), then there exists some
g € C;(T") and h € H with ghg~' ¢ P,. But then the group I" topologically
generated by I' and h has C;(I") € C;(T"), which is a contradiction.

Now suppose H C P. As mentioned P is G-conjugate to some P;, so for
some g € G we have gPg~! = P, and gHg™! C P;, so g € Ci(H) = C;(T)
and so gI'g~! C P, and so I' C P. Conversely, suppose that ' C P. Then
gl'g~' C P,. Hence, g € C;(I') = C;(H). Therefore, gHg~' C P;, and so

H C P. The argument is similar for Levi subgroups. O

Lemma 6.24 shows that for the purposes of studying G-complete re-
ducibility, we only need to consider topologically finitely generated sub-
groups of . This is because we may replace a subgroup H of G with
the group I', as in Lemma 6.24, which has exactly the same properties as
H in terms of its G-complete reducibility. This is an important observa-
tion because in order to investigate whether H is G-completely reducible,
we examine the G-orbit of a tuple (g1,...,9n) in G™ which generates T
As described by Theorem 6.19 this orbit determines whether I is strongly
reductive in G, and hence, by Theorem 6.18, whether I' is G-completely
reducible. Therefore, in order to exploit the benefits of this geometric ap-

proach to G-complete reducibility, we rely on Lemma 6.24.

6.6 Normal Subgroups

In this section we follow the argument of Martin to prove [35, Theorem 2],
which shows that a normal subgroup of a G-completely reducible subgroup
of GG is itself G-completely reducible. We introduce some terminology and

initial results.

Let V be an affine G-variety, and let A be an element of the set of
one-parameter subgroups Y (G) of G. Let v € V. Recall that the limit

lim, 0 A(x)-v is said to exist and equal u if there is a morphism M, () : k —
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V such that M, (\)(x) = A(x)-v for every x € k* and M, (\)(0) = u. Denote
by |V,v| the set of one-parameter subgroups A such that lim, ,o A(z) - v

exists.

Let U be a closed G-invariant subvariety of V' such that v ¢ U. Then
M,(N)(k*)NU = 0. Therefore, M,(A\)(k) N U is non-empty if and only if
M,(X)(0) e U.

For a commutative ring A we denote the set of all proper prime ideals
of A by Spec(A). Suppose that M,(A\)(0) € U. We have that U C V and so
k[U] = k[V]/I for some ideal I C k[V]. Hence, we have that the comorphism
M,(A)* maps k[V] to k[A!]. Therefore, the ideal generated by M,(\)*(I),
denoted [I], is an ideal in k[Al]. The pre-image M,(A\)~1(U) of U under the
map M,(])) is a closed subvariety of A! determined by Spec(k[A!]/[I]), and
which as a set is just {0}. Therefore, there is some positive integer m such
that M,(\)~1(U) is determined by Spec(k[T]/(T™)) for an indeterminate
T. The integer m depends on U,v and A, so we denote it by ap,(A). Note
this is non-negative in general, and positive if and only if M, ())(0) € U.

A length function on Y (G) is a G-invariant function || — || : Y(G) —
R>( such that for any maximal torus 7' of G there is a positive definite
Z-valued bilinear form (-,-) on Y (T') such that for all A\ € Y(T') we have
IIAI| = /(X A). Tt is shown in [26] that length functions on Y (G) exist.

Let W be the Weyl group Ng(T')/T of G, in particular W is finite. We
have Ng(T') acts on T by conjugation, and so we have an action of W on
Y (T) defined by nT - A\(z) = nA(z)n~! for A € Y(T),n € Ng(T),z € k*.
For any positive definite Z-valued bilinear form (-,-) on Y (7T'), we can form
a W-invariant length function || - ||y in the following way. Since W is finite,

we define a W-invariant positive definite Z-valued bilinear form (-,-)y on

Y (T) by setting:

<)‘?:U>W = EwEVV<w A w - ,u>7 for A€ Y(T)
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By [26, Lemma 2.1 (a)], there is a bijective correspondence between G-
orbits of Y (G) and W-orbits of Y(T'). For any g € G,\ € Y(T), we have
g- A € Y(G) can be identified with some n-\ € Y(T') for n € Ng(T'). Since
(-, yw is W-invariant, we can set ||g - X||w = (A, A)w.

Let |V, v|y denote the set of one-parameter subgroups A of G, such that

lim,_,0 A(x) - v exists and belongs to U.

We call a one-parameter subgroup A € Y(G) indivisible if it is not of

the form nu for any u € Y(G) and any integer n greater than 1.

The Hilbert—-Mumford Theorem, Theorem 6.20, asserts that, for V,v
and U as above, a one-parameter subgroup A € Y (G) can be chosen so
that the integer ag,(A) is non-zero. The following theorem of Kempf is
[26, Theorem 3.4], and shows that the a7, () reach a certain upper bound,
and that the A reaching this upper bound give rise to a particular class of

parabolic subgroups of GG, see Notation 6.26.

Theorem 6.25. Let G be a reductive algebraic group, V a G-variety con-
taining v and U a closed G-stable subvariety of V' which does not contain v,

and satisfies U NG -v # (. Then the following hold:

(1) The function |V,vly — R given by A — ayy(N)/||A||w reaches an

upper bound.

(2) There exists a mon-trivial indivisible one-parameter subgroup \ €
|V,v|y which attains this upper bound. For any other one-parameter

subgroup p with this property we have:
(a) P)\ = P,u,'

(b) X and p are conjugate by some element of Ry, (Py).

Notation 6.26. The parabolic subgroup P, of G arising in this theorem is

determined uniquely by V,v and U, so we can denote Py by Py, and Py, is
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called the destabilising parabolic subgroup of G with respect to U and v.
We call the indivisible one-parameter subgroup A optimal with respect to
V,v and U. Define Ay, to be the subset of |V, v| containing the indivisible

optimal one-parameter subgroups of G with respect to U and v.

Lemma 6.27. We have gPy,g~' = Py g, for all g € G.

Proof. Let x : G x G — G denote the action of conjugation, given by
g*h = ghg~t. We first show that for any g € G we have g * Ay, = Ay g
Note that by the calculation given in the proof of [42, Lemma 2.7], the limit
g - (limgz_,0 A(x) - v) exists if and only if the limit lim,_,o g - (A(z) - v) exists.

Let g € G, we have:

V.,g-v|={\: G, > G| lin%)\(a:) - (g - v) exists}
T—

={A:G,—=G|gt: (lirrb Az) - (g -v)) exists}
z—

) (g-v
={\:G,, = G| ii_r)r})g_l -(Mx) - (g-v)) exists}
={\:G,, — G| }:ig[l)(g_l)\(x)g) - v exists}
={\:G,, — G| iig})(gil * A(z)) - v exists}
={gx\N:G, = G| il_)l% N(x) - v exists}

=gx*|V,v|.

By the proof of [26, Corollary 3.5] we have apg.,(g * A) = ap,(A). As
|| - ||w is G-invariant we have Ay g, = g * Ay,. Now we can show that
g* Pyy = g* P\ = Py, for A € Ay,,. But since g x Ay, = Ay g.p, we have

that gx A € AU,g-v- So Pg*)\ = PU,g~v- ]

If we consider the induced action of G on the G-variety V", for some n,
then the obvious action of S,, on V" commutes with the G-action. As noted
in [35], this can be used to show that Ay v = Ay, and Py~ = Py, for

weS,veVm
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Theorem 6.28. Let H be a closed subgroup of the reductive group G, and
let N be a normal subgroup of H. Suppose H is G-completely reducible, then
N is also G-completely reducible.

Proof. By Theorem 6.18 all we need to show is that if H is strongly reductive
in G, then so is N. Therefore, suppose by way of contradiction that H is
strongly reductive in GG, and that N is not. By Lemma 6.24, we may assume
without loss that H? and N are topologically finitely generated by hy, ..., hm

and nq,...,n, respectively.

By [36, Proposition 3.2] there exists a finite subgroup F = {f1,..., fs}
of H such that H = HF. Define the tuple n € N™ by

-1 -1 -1 -1
n:(nla"'anﬂf?nlfQ 7"'7f2n7“f2 7---7fsn1fs 7"'afsn7“fs )

and the tuple h € H™T™ by
h = (n17° . 'anr7f2n1f2_17" . 7f2n7‘f2_17"')fsn1f§17"')fsnrfglvhla"' 7hm)

Since N is not strongly reductive in G, by Theorem 6.19, the orbit G -n
is not closed in G™. By [39, No.8] the closure of this orbit contains a unique
closed orbit, O; say. Set O := U,eg, . w - O1, where S,s acts on G™ in the
obvious way. Then O is a union of finitely many closed G-orbits, hence is
closed. Furthermore, since each w - O; has dimension less than dim(G - n),
none of them contain n, hence O does not contain n. We have that G"*, O
and n satisfy the criteria of Theorem 6.25. Therefore, there is an optimal
indivisible one-parameter subgroup A € Y'(G) such that Py = Pp n.

Since A € |G*",n|, the limit lim, o A(z) - n exists. This means that
lim, 0 A(z) - n; exists for all i € {1,...,r}, therefore each n; € Po . As the
elements nq,...,n, topologically generate IV, we have that N C Pp p.

By [36, Lemma 6.8], we have H® = Ny (N)? = (NCy(N))°. If c €
Cu(N), then Pp cn = Pon, and by Lemma 6.27, ¢- Pon = Ppcn. Hence,
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c-Pon = Pon. Since Pp , is its own normaliser, (NCy(N))? = HY C Pon.
For each f € F, we have f - Ppn = Pp f.n. Since each f acts in the same
way as some w € Sy, we have f- Pon = Pown = Pon, and so F' C Pp .
Therefore H = HOF C FPon.

This means that lim,_,o A(z) - h exists in G"™*™. Since lim,_,0 A(z) - n
does not belong to G - n, and the orbit G - n is the projection of the first
rs entries of the orbit G - h, we have that the limit lim,_,o A(z) - h does not
belong to G-h. Therefore, the orbit G-h is not closed, and by Theorem 6.19,
this implies that H is not strongly reductive in G, which is a contradiction,

as required. O

Remark 6.29. When G = GL(V'), Theorem 6.28 is just a special case of
Clifford’s Theorem, see [14, Theorem 1.11(i)]. For N normal in G, Clifford’s
Theorem asserts that if V' is a semisimple kG-module, then V' is a semisimple
kN-module, and Theorem 6.28 follows from this since semisimplicity of the
module V' and complete reducibility are equivalent for subgroups of GL(V),

as noted in Lemma 6.11. An account of this observation is given in [35, §3].
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7 Frobenius Morphisms

7.1 Basic Facts About Rationality

Let k C K be fields of positive characteristic with K algebraically closed. In
this section we introduce the notion of an algebraic group G over K being
defined over the subfield k. We discuss this first in a general setting, then
focus on the fields F, C F,, where F, is the finite field of characteristic p
with ¢ = p® elements for some prime p and positive integer a. For further

details regarding the following refer to [6, AG.11].

Let V' be a vector space over K (not necessarily finite dimensional). A

k-structure on V is a k-module V), C V such that the homomorphism:

KoV —V

given by (z,v) — zv, for all x € K,v € Vj, is an isomorphism of vector
spaces. The elements of V}, are said to be rational over k. For a subspace
U of V, we define the set Uy := U NV}, and say that U is rational over k
if Uy, is a k-structure on U.

A K-linear map f : V — W of K-vector spaces V, W with k-structures
Vi, Wi, on V' and W, respectively, is called a k-morphism if f(V}) C Wy.

For a K-algebra A, we define a k-structure on A to be k-structure Ay
that is a k-subalgebra of A. An ideal of A is k-ideal if it is generated by its
restriction to Ay.

It is shown in [6, AG. 11.3] how to define a k-structure on the K-ringed
space (V,Oy). It consists of a topology on V' in which the open sets are
defined over k, and are also open in V in the standard sense, such that when
Oy is restricted to this topology it is a sheaf of K-algebras with k-structures.

A morphism ¢ : X — Y of k-ringed spaces X and Y is a k-morphism

(or is said to be defined over k) if ¢ is continuous when restricted to
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the k-topologies, and if V'.C Y and ¢(U) C V are k-open subspaces, then
¢* : Oy (V) = Ox(U) is a k-morphism.

If an affine variety over K has a k-structure, we call it a k-variety.
Let X be an affine k-variety and let A be its coordinate ring with a k-
structure Ay. Then the k-rational points X (k) of X consists of the points
corresponding to the maximal k-ideals of A. We say that X is defined over
k. This notion extends the correspondence between the points of an affine
variety and the maximal ideals of its affine algebra. For further details see

[6, §AG.13], for instance.

Example 7.1. Let V = Al. Its coordinate algebra satisfies

Fq [T] = IE‘q [T] ®Fq ]Fq-

We have that V' is defined over F,, and V(IF,) is the set of points correspond-
ing to the maximal ideals generated by the polynomials 7' — a, for a € FFy.
That is, V(F,) = F,.

An algebraic group G is called a k-group, or is said to be defined over
k, if its coordinate algebra has a k-structure and the product and inverse
maps on G are defined over k. As noted in [23, §34.2], if G is a k-group,

then the k-rational points G(k) is a subgroup of G.

Ezample 7.2. Let G = GL,(F,). Then its coordinate algebra satisfies,
Fy[T; 5, det(Tig) '] = Fy[Tr 5, det(Tij) ™) @, Fy.

We have that G is defined over Fy, and its group of rational points G(Fy) is
equal to GL,(IF;). This is because, the maximal k-ideals are generated by

the polynomials T; ; — a; ; where a; ; € Fy and det(a; ;) # 0.
7.2 Frobenius Morphisms

From now on set k = F,, and K = F,. We restrict our attention to these

fields because it enables us to examine the so-called Frobenius morphisms.
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This is the name given to a class of morphisms that are prominent in the
field of algebraic groups. They are used to construct the finite groups of
Lie type in the classification of finite simple groups. For a more extensive

account of the following, see [30, §1.2].

Definition 7.3. We define Aut(G) to be the group of all automorphisms of
G as an abstract group, and Autyy(G) to be the automorphism group of G

when G is viewed as an algebraic group.

For the abstract automorphism ¢ : G — G to belong to Aut,,(G), both
¢ and its inverse need to be morphisms of the underlying variety of G.

Example 7.4. An example of a non-algebraic morphism is the inverse of the

map o, : GL,(F,) — GL,(F,) given by (z;;) — (#3;). Tt is easily checked
that o, is a homomorphism given by polynomial conditions, however its
inverse involves taking the ¢-th root, which is not an operation defined by
polynomial conditions.

The comorphism of o, is the map o : k[GLy(F,)] — k[GL,(F,)] given
by oi(f) = f o aq, for f € k[GL,(F,)]. Therefore, o} is not invertible since

04 is not invertible.

If we let G be a simple algebraic group over the algebraically closed field
F, of characteristic p, then we have the following description of Aut,,(G).
By [51, Theorem 30], Auta,(G) is generated by inner automorphisms and
graph automorphisms of type A,, D,,, D4, or Eg (which have order 2,2, 3,
or 2 respectively), so called as they arise from symmetries of the Dynkin
diagrams of these types. The group Aut(G) is generated by the elements
of Aut,e(G), together with non-trivial field automorphisms which are of
the form uqy(x) — uqn(x?) for ¢ a p-power, where u,, is as defined in §6.1,
as well as automorphisms 7/ of order 2 of type By (p = 2),Fy (p = 2), or

G2 (p = 3) arising from symmetries in the Dynkin diagrams of these types,
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and corresponding to the formula:
Ua (x) upl(a)(eaxp(a)). (3)

In the above p(a) = 1 if « is a long root, p(a) = p if a is a short root,
€ = £1 is defined in [51, p156], and where p’ is a permutation of the root
system of G which interchanges long and short roots giving rise to an order

2 symmetry of the Dynkin diagram.

The following theorem is [50, 10.13].

Theorem 7.5. Let G be a simple algebraic group, and let o € Aut(G) be an

automorphism of G as an abstract group. Then one of the following holds:

(i) o is in Autyy(G), or

(1) G (the group of fixed points) is finite.

Definition 7.6. In the setting of Theorem 7.5, if we are in the latter case
then we call o a Frobenius morphism of G. We say that a subgroup H

of G is o-stable if o(H) = H.

By [50, §11], any Frobenius morphism o of G is G-conjugate to either o,
or To, where o, is a non-trivial field automorphism of the form oy : uq(z) —
uq(z9) for ¢ a p-power (i.e. ¢ # 1) and 7 is a graph automorphism of type
Ay, Dy, Dy, Eg (of order 2,2,3 and 2 respectively) or By (p = 2),Fy (p =
2),Gy (p = 3). In addition, in types B2 (p = 2), Fy (p = 2), G2 (p = 3) there
are additional Frobenius morphisms 7 as described above.

Now let G be an arbitrary linear algebraic group over ﬁq. We define a

Frobenius morphism of G as follows. Consider the map o, : GL,(F,) —

GL,,(Fy), given by

Oq: (wlj) — (l'gj)
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A homomorphism ¢ : G — G is called a standard Frobenius morphism

if there exists an injective homomorphism ¢ : G — GL,,(F,) for some n and

some q = p® such that

t(o(g)) = 04(e(g)) for all g € G.

By [15, Proposition 3.3 (ii),(iii)], we see that G is defined over I, if and
only if G is o4-stable. Recall Example 7.2 from Section 7.1. This example
shows that GL,,(F,) is defined over F, and, from the above, this means that

GL,,(F,) is o4-stable. The same is true for other classical algebraic groups.

A homomorphism ¢ : G — G is called a Frobenius morphism if some

power of ¢ is a standard Frobenius morphism.

Definition 7.7. Let G and H be algebraic groups, and let f: G — H be a
group homomorphism and a morphism of algebraic groups. Then f is called

an tsogeny if it has finite kernel.

The following proposition is a compilation of results that can be found

in [10, §1.17].
Proposition 7.8. Let o be a Frobenius morphism of G.

(1) If H is a o-stable closed subgroup of G, then the restriction of o to H

is a Frobenius morphism of H.

(2) If H is a o-stable closed normal subgroup of G, then o induces a
homomorphism from G/H to itself which is a Frobenius morphism

of G/H.
(3) o is bijective.
(4) G? is finite.

(5) If G is semisimple and ¢ : G — G is any surjective homomorphism

for which G® is finite, then ¢ is a Frobenius morphism of G.
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(6) As o is a bijection, it is an isogeny.

Remark 7.9. We have introduced two notions of Frobenius morphism.

(1) When G is simple, any surjective morphism o : G — G which has a

finite fixed-point group is called a Frobenius morphism.

(2) When G an arbitrary algebraic group any homomorphism o : G — G,
such that there exists an embedding ¢ of G in some GL(V'), and some
power n of ¢ for which t(0"(g)) = 04(t(g)) for all g € G, is called a

Frobenius morphism.

When G is simple, these two definitions coincide, and this can be seen
as follows. If ¢ is a Frobenius morphism of the simple algebraic group G in
the second sense, by Proposition 7.8 (4), the fixed point set G7 := {g € G |
o(g) = g} is a finite group.

Conversely, if G is a simple algebraic group and ¢ is a Frobenius mor-
phism of GG in the first sense, that is a surjective morphism o : G — G for
which G7 is finite, then by Proposition 7.8 (5), ¢ is a Frobenius morphism

in the second sense.

As noted in Proposition 7.8 (6), if 0 : G — G is a Frobenius morphism,
then it is an isogeny. By Proposition 7.8 (4) G is finite. For example,
set G = SL,(F,) and o is the Standard Frobenius morphism, raising each
element in the matrices (z;;) € SLy,(F,) to the g-th power (:cfj) Then
G° = SL,(F,) — its group of Fy-points is finite. We give some more examples

of groups of the form G in §7.3.

Remark 7.10. In the case G is simple, [50, §11] provides a way of decompos-
ing automorphisms of G into elementary automorphisms, and shows that
a Frobenius morphism is the product of certain inner, graph and field au-

tomorphisms of G. However, in general we can have Frobenius morphisms
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arising in more exotic ways. For example, suppose that char(k) = 2, and let

B and C be simple groups of types B,, and C),, respectively.

Chevalley describes in [12, 24-05] how to construct isogenies ch : B — C'
and ch® : C — B, which are called special isogenies, such that the com-
position ch*ch : B — B is the 2-power map o2 (see [13, Lemma 7.3.2] for
proof). This composition is clearly a Frobenius morphism on B, but fac-
tors through the special isogenies ch and ch*, neither of which are Frobenius
morphisms, in particular they are not automorphisms.

The morphism (ch,ch*) : B x C — B x C given by (ch,ch*) : (b,¢c) —
(ch*(c),ch(b)) is a Frobenius morphism of B x C' because its square is the
standard Frobenius morphism. However, (ch, ch*) does not decompose into

the elementary automorphism types as listed in [50, §11].

The following is part of the Lang—Steinberg Theorem, see for example

[48, Theorem 4.4.17]. It is an important tool in much of what follows.

Theorem 7.11 (Lang—Steinberg). Let G be a connected algebraic group,
and o : G — G a surjective endomorphism of G. Then the map g > o(g)g™*

from G to G is surjective.

We now state an important consequence of Theorem 7.11. This result

can be found in, for example [49, I, 2.7].

Corollary 7.12. Let G be a connected algebraic group acting transitively
on a set A, and let o be a Frobenius morphism of G which acts on A such
that o(gz) = o(g)o(z) for all g € G,x € A. Then A contains an element
fized by o.

Proof. Let x € A. By the transitivity of the action of G on A, there exists
some g € G with o(x) = gz. Now by Theorem 7.11 we can write g =
o(h)h~! for some h in G. Therefore, o(h~'z) = o(h")o(z) = o(h™)gz =
o(h ™ Ho(h)h~tz = h=lx, so h™lx € A has the desired property. O
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Corollary 7.13. A connected algebraic group, with a Frobenius morphism

o, contains a o-stable Borel subgroup.

Proof. Let G be a connected algebraic group, and let ¢ be a Frobenius
morphism of G. Set A to be the set of Borel subgroups in G. Since the
Borel subgroups of G are conjugate, by Proposition 6.2 A forms one G-
conjugacy class, and so G acts transitively on A. As the homomorphic
image of a Borel subgroup is a Borel subgroup, A is o-stable. Thus, we
are in the setting of Corollary 7.12. Hence, A contains an element fixed by

o. O

Corollary 7.14. An algebraic group, with a Frobenius morphism o, con-

tains a o-stable maximal torus.

Proof. Let G be an algebraic group, and let ¢ be a Frobenius morphism of
G. A maximal torus of G is also a maximal torus of G° due to the fact
that tori are connected. Set A to be the set of maximal tori in G°. By
Proposition 6.2 the maximal tori in G° form one G-conjugacy class. Thus,
GY acts transitively on A. As G is a characteristic subgroup of G, it is o-
stable. As the homomorphic image of a maximal torus is a maximal torus, A
is o-stable. Thus, we are in the setting of Corollary 7.12. Hence, A contains

an element fixed by o. O

Corollary 7.15. Let G be a reductive algebraic group, with a Frobenius
morphism o. Then, each o-stable parabolic subgroup of G contains a o-

stable Levi subgroup.

Proof. Let P be a parabolic subgroup of G, and set A to be the set of Levi
subgroups in P. The set of Levi subgroups of P forms one P-orbit. Thus,
P acts transitively on A. As P is o-stable, the homomorphic image of a

Levi subgroup of P is a Levi subgroup of P, hence A is o-stable. As P is
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connected, we are in the setting of Corollary 7.12. Hence, A contains an

element fixed by o. O

The converse of Corollary 7.15 does not hold in general, as we shall see

in Example 10.7.

We conclude this section with a general lemma about Frobenius mor-

phisms.

Lemma 7.16. If H is a o-stable subgroup of G, then so is H.

Proof. Since H is o-stable, H C ¢~ !(H). Furthermore, as o : G — G is
a morphism, o~ !(H) is closed and thus, H C ¢~ !(H). Applying o gives

o(H) C H. Since o is bijective, we must have equality. O
7.3 The Finite Groups of Lie Type

Let G be a simple algebraic group over ﬁq and let o be a Frobenius morphism

of G. Consider the finite fixed point group G” := {g € G | o(g) = g}.

These finite groups G are called the finite groups of Lie type and
are classified in [30, Corollary 1.5]. In particular, for each type of simple
algebraic group there exists a family of finite groups of Lie type, depend-
ing on the choice of field and Frobenius morphism. Further details on the

following can be found in, for example, [10, §1.19].

Let B be a o-stable Borel subgroup of GG, which exists by Corollary 7.13.
Let T be a o-stable maximal torus of GG, which exists by Corollary 7.14.
Then, R,(B) is also o-stable, and is generated by the root subgroups U, for
a € (G, T), the positive roots in G relative to T'. Therefore, o determines
a permutation p of these positive root subgroups such that o(Us) = Up(q)-

By extension, o determines a permutation p of the root system ® = ®(G,T))

of G.
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The groups G for which p acts trivially on the Dynkin diagram of G are
called Chevalley groups. The groups G? for which the Dynkin diagram

has only single bonds and p acts non-trivially are called twisted groups.

In types Bs (p = 2),Fy (p = 2) and G2 (p = 3) we have Frobenius
morphisms which arise as graph automorphisms of the corresponding Dynkin
diagram, each of which has a symmetry of order 2, giving a permutation of
the root system of G. In each case the graph automorphism corresponds to

the permutation p of the root system given by
Ua () > Up(a) (€aa? ), (4)

where p(a) = 1if « is a long root, p(«) = p if « is a short root, and €, = +1,
see [51, p156] for more details. Note that it is sufficient to describe the action
of a graph automorphism of G by its action on the root subgroups U, since
G is generated by the U, and a maximal torus T of GG, where T can be

chosen to be o-stable, by Corollary 7.14.

The fixed points of such Frobenius morphisms give rise to the Suzuki
and Ree groups, which we will briefly describe here. Let o be such a
graph automorphism in type By (p = 2), Fy (p =2) or Gy (p = 3), then the
Suzuki and Ree groups arise as G° where GG is of one of these types. We
follow the convention of [24] when denoting these groups, in that we define
the Suzuki and Ree groups over a field of ¢® elements where ¢ is an odd
power of 2 or 3. In particular, this means that ¢ is not an integer, and we
use this convention to indicate that the square of ¢ is a standard Frobenius
morphism. As Humphreys notes, this convention is also convenient as it

resembles the group order formulas given in [24, §20.1 Table 1].

In type By a group G° only occurs when p = 2 and ¢? = 22"*! for some
n > 0. The groups arising in this way are Suzuki groups denoted ?Ba(q?).
In type Fy a group G only occurs when p = 2 and ¢? = 22"*! for some

n > 0. The groups arising in this way are Ree groups of type Fj denoted
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*Fu(q®).

In type G a group G only occurs when p = 3 and ¢? = 32"*! for some
n > 0. The groups arising in this way are Ree groups of type G2 denoted
G (q?).

For each of these types, there exists one isomorphism class of groups
for each ¢®. The smallest ones, 2B2(2),2 F4(2) and 2G2(3) are not simple,
however for all other ¢2, these groups are simple.

We see that the group G7 is frequently a simple finite group, but it is not
always. If we take the quotient group G?/Z(G7) for G simple and simply
connected we obtain a finite simple group, and these groups are called the

finite simple groups of Lie type.
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Part 11

Complete Reducibility and
Frobenius Morphisms
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8 Introduction to (G, 0)-Complete Reducibility

In this chapter we let G be a connected reductive algebraic group over the
algebraically closed field k = F,, where F, is the finite field with ¢ elements
of characteristic p, where ¢ is some positive power of the prime p, unless

otherwise stated, and let o : G — G be a Frobenius morphism of G.
8.1 (G, 0)-Complete Reducibility

In this section we define analogues of Serre’s notions of G-complete reducibil-
ity and G-irreducibility, from [45], which we introduced in Definition 6.10.
Recall that a subgroup H of G is called o-stable if o(H) = H.

Definition 8.1. Let H be a o-stable subgroup of G.

(1) We say H is (G, 0)-completely reducible (or (G, o0)-cr) if whenever
H is contained in a o-stable parabolic subgroup P of G, then H is

contained in a o-stable Levi subgroup of P.

(2) We say H is (G,o0)-irreducible (or (G,o)-ir) if H is not contained

in any proper o-stable parabolic subgroup of G.

Recall that, according to Serre [45], a subgroup H of G is called G-
completely reducible if whenever H is contained in a proper parabolic
subgroup P of G it is contained in a Levi subgroup of P. Also H is said to
be G-irreducible if it is not contained in any proper parabolic subgroup of

G, see [47, Part 11, Lecture 1].

Clearly, a o-stable G-irreducible subgroup is trivially (G, o)-irreducible,
and a (G, o)-irreducible subgroup is trivially (G, o)-completely reducible.
However, a (G, o)-irreducible subgroup need not be G-irreducible, as the

following example shows.
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Example 8.2. Consider the case when G is the group GL;,+, with the Frobe-
nius morphism o where o : g — (0,(g71))T, for all g € G and where T

denotes the transpose map.

GL,, *

The parabolic subgroup P := < 0 Gl

) of GG is sent by the Frobe-

GL,,
of GG, and we have that these are not conjugate if m # n. In this case the

. ([ GL, O
Levi subgroup L := < 0 GL,

thermore, L is a Levi subgroup of a maximal parabolic subgroup of G. Thus

nius morphism o to the opposite parabolic subgroup P~ = < GI:” 0 )
> is a o-stable Levi subgroup of G. Fur-

any of the parabolic subgroups of G containing L actually contain L as a
Levi subgroup and are therefore maximal themselves. But neither of these

is o-stable.

Our ultimate aim in this chapter is to investigate when the notions of
G-complete reducibility and (G, o)-complete reducibility are equivalent for

a o-stable subgroup of G.

In Theorem 8.6 we show that a o-stable G-completely reducible sub-
group H of G is (G, o)-completely reducible. This is a generalisation of [33,
Theorem 9] in that we remove restrictions that were placed on H and G,

namely that H C G? and G is of exceptional type.

We proceed in §9 to investigate the converse of Theorem 8.6 for finite
o-stable subgroups of G. We first state Proposition 9.1 and Proposition 9.3,
which are due to Liebeck, Martin and Shalev, see [31], which show that if F' is
a finite o-stable subgroup of G that is not strongly reductive in G, then F' is
contained in a proper o-stable parabolic subgroup of G. Furthermore, if G°
is not a Ree or Suzuki group, then F' is not contained in any Levi subgroup
of P. Therefore, this is a partial converse to Theorem 8.6. In Lemma 9.9
we partially extend these results to the case G is reductive where we show
that a finite o-stable subgroup F' of G that is not strongly reductive in G is

contained in a proper o-stable parabolic subgroup P of G.
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In §9.2 we extend Proposition 9.1 to include the Ree and Suzuki cases.
We examine the symmetries of the Dynkin diagrams that occur in these
types to identify the conjugacy classes of o-stable parabolic subgroups that
exist in these cases. For G whose fixed point group under the action of o is
a large Ree group, we require Lemma 9.9 because we restrict our attention
to Levi subgroups of GG, and use the fact that Levi subgroups are reductive.
The main result of §9.2 is Theorem 9.12, which shows that when G is simple
o-stable group, a finite o-stable subgroup F' of G is G-completely reducible
if, and only if, it is (G, o)-completely reducible. Furthemore, if F' is not
G-completely reducible then we use Lemma 8.15 to show the stronger result
in one direction that F' is contained in a o-stable parabolic subgroup P of

G and in no Levi subgroup of P.

In §9.3 we extend these results to the reductive case in Proposition 9.15,
whose proof follows a similar methodoloy to Lemma 9.9, however now that
our results about Ree and Suzuki groups are established we can restrict to
any simple factor of G and employ Theorem 9.12. This gives that when G is
a reductive o-stable group, a finite o-stable subgroup of G is G-completely

reducible, if and only if, F' is (G, o)-completely reducible.

In §10 we develop the notion of a finite o-structure which allows us to
pass from an infinite o-stable subgroup of G to a finite o-stable subgroup
of G that shares the infinite group’s (G, o)-complete reducibility properties.
This enables us to extend Proposition 9.15 to the case F' is infinite. We
summarise our main results in our study of (G, o)-complete reducibility in
Theorem 10.6 which gives an equivalence between the notions of G-complete

reducibility and (G, o)-complete reducibility for o-stable subgroups of G.

We also have the stronger result in one direction: if H is a o-stable
subgroup of G that is not G-completely reducible, then H is contained in a
proper o-stable parabolic subgroup P of G, and not in any Levi subgroup

of P.
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We begin by establishing the following basic facts about o-stable sub-
groups of G.

Lemma 8.3. If H is a o-stable subgroup of G, then so are Cg(H) and
Ng(H).

Proof. Let h € H, and let - denote the action of conjugation of elements of

G on G, given by g-h = ghg™!.

Since the map ¢ : H — H is surjective,
there exists some h' € H such that h = o(h'). Let ¢ € Cg(H). Then
o(c)-h=o0(c)-o(h)=0c(ch)=0(h') =handsoo(c) € Cg(H). This shows
that o(Cq(H)) C Cq(H). Since o is bijective we have 0(Cq(H)) = Ca(H).

Now let n € Ng(H). Then o(n) - H = o(n-H) = o(H) = H and so
o(n) € Ng(H) and hence o(Ng(H)) € Ng(H). Again, since o is bijective
o(Ng(H)) = Na(H). O

The next proposition states that (G, o)-completely reducible subgroups
of G are reductive. This is an analogue of [47, Property 4] by Serre, showing
that a closed G-completely reducible subgroup of G is reductive. The proof
uses a construction given in [23, 30.3] and shows that we need H to be
o-stable in Definition 8.1, for if not we would not be able to construct a

o-stable parabolic subgroup of G containing H.

Proposition 8.4. If H is (G, o)-completely reducible, then H is reductive.

Proof. Suppose that H is (G,o0)-cr and U := R,(H) # e. Since H is
o-stable, so is U, being a characteristic subgroup of H. By Lemma 8.3,
Ny := Ng(U) is also o-stable and so is Uy := R,(N1). Inductively define
the o-stable subgroups N; := Ng(U;—1) and U; := R, (N;) of G.

Since U is a connected normal unipotent subgroup of Ny we have U C
R, (N1), and similarly U; C R, (N;4+1). Hence, Ujy; 2 U; D --- D U, and
clearly dim U; 41 > dim U; unless U;+1 = U;. In particular the two sequences

(N;) and (U;) must stabilise, say Uj—1 = U; = --- ,N; = Nj;q1 = --- . Set
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P := N;,V := Uj. We have that Ng(U) normalises P. Since U is connected
and solvable it must lie in some Borel subgroup of G and so [23, Corollary
30.3A] gives that P is a o-stable parabolic subgroup of G with Ng(U) C P
and U C R, (P) and all these groups are o-stable.

Since H is (G, 0)-cr and P is o-stable, H is contained in a o-stable Levi
subgroup, L say, of P. So U C HN R,(P) C LN R,(P) = e which is a

contradiction. O

Remark 8.5. Recall that Theorem 6.8 shows that for a non-trivial unipotent
subgroup U of G, we have a proper parabolic subgroup P of G for which
U C Ry(P) and Ng(U) C P. This result is due to A. Borel and J. Tits,
see [7]. By [7, Theorem 2.5], if U is o-stable, then this construction leads to
a o-stable parabolic subgroup of G that satisfies the same conditions as P
does. Note that we can draw the same conclusion by following the argument
given in the proof of Proposition 8.4. This method for constructing such a
parabolic subgroup of G is used in several places throughout this thesis, and

we refer to this construction as the construction of Borel-Tits.

For the proof of the following theorem we adapt the argument used at

the end of the proof of [33, Theorem 9] to the context of o-stability.

Theorem 8.6. A o-stable G-completely reducible subgroup of G is (G,0)-

completely reducible.

Proof. Let H be a closed o-stable G-cr subgroup of G, and suppose that
H C P, for some proper o-stable parabolic subgroup P of G. Since H is
G-cr, H C L for a Levi subgroup L of P, and P = R, (P)L.

If H C L* for some u € Ry(P), then H* ' C LN (R, (P)H) = H, so
u € Ng,(p)(H). Define the non-empty set

A= {L"|u€ Ry,(P), HC L"}.
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Now let u be any element of Np, (py(H) and h € H. Then huh=tu=! €
R,(P)N H = e, since H C L. Therefore, N, (p)(H) = Cg,(py(H). Thus
C := Cg,(p)(H) acts transitively on A by conjugation.

Next we show that C is connected. Let S = Z(L)°, then by Proposition
6.4 Cq(S) = L and so H C Cg(S). We claim that S € Ng(C). This can
be seen since S C Cg(H) and S normalises R, (P), therefore we have that

S normalises Cq(H) N R, (P) = C. Thus S acts on C.

The torus S acts on C°, because C? is characteristic in C, and hence S

acts trivially on the finite group C'//C?, by [23, Proposition 8.2].

Since S centralizes C/C°, we have scs~! € ¢C? for some s € S,c € C.

Therefore,

c(C°9)et = C%eSct) = (s = V5.

Where the first equality holds because C° is normal in C, and the second
equality holds because sc 's™! € ¢ 'C? and hence csc™! € CUs, for all
s € S. Thus, C acts on CS. There is just one class of maximal tori in
C°S. We have that C°S is normal in C'S. Therefore, if z € C'S, then S* is a
maximal torus in C°S, so % = S¢ for some a € C°. Hence, za~! € Nog(9)
and x € Ngg(S9)C? = C'Ngs(S).

As z was arbitrary, we now have C'S = C°Ngs(S), and as Nog(S) =
SN¢(S) this gives CS = CYSN¢(S). However, [No(S),S] CCNS =e, so
that No(S) = Ce(9).

Suppose that C/C? is non-trivial, then it follows that C(S) is not triv-
ial. Hence, this argument produces elements in C' fixed by S.

However Cc(S) C Cg,(p)(S) = Ca(S) N Ry(P) = LN R,(P) = e, this
is a contradiction. Therefore, C' = C".

Next we claim that A is o-stable. Let H C L" € A. Note that R, (P)
is o-stable since R, (P) is characteristic in P. Then H = o(H) C o(L"*) =
o(L)’™. But P = o(P) = o0(Ry(P)L) = Ry(P)o(L). Thus o(L) = LV for
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some v € R, (P). Hence o(L)°™ = LV € A for v/ = o(u) € R,(P) and
so A is o-stable. It now follows from Corollary 7.12, that A contains an

element fixed by o. O

Remark 8.7. Theorem 8.6 provides one direction of the desired equiva-
lence between the notions of G-complete reducibility and (G, o)-complete
reducibility for a o-stable subgroup of the reductive group G. The con-
verse is given in Proposition 9.14 for finite o-stable subgroups of G, and is

extended in Proposition 10.5 to include infinite o-stable subgroups of G.

Remark 8.8. For H C G, with G simple and of exceptional type, Theorem
8.6 is obtained from the proof of the last part of [33, Theorem 9.

Ezample 8.9. A map ¢ : H — GL(V'), for an algebraic group H, is called a
rational representation of H if ¢ is a homomorphism of algebraic groups,

see for example [6, Examples 1.6].

A subgroup H of G is called linearly reductive if all of its rational
representations are semisimple, see for example [42, §1.2]. By [1, Lemma
2.6], if H is linearly reductive, it is G-completely reducible. Therefore, a

o-stable linearly reductive subgroup of G is (G, o)-completely reducible.

Ezample 8.10. Let S be any torus in G. Since S is linearly reductive, by [1,
Lemma 2.6], S is G-completely reducible. Therefore, [1, Theorem 3.14] gives
that Cg(9)? is G-completely reducible. By [6, Corollary 11.12], Cs(S)° =
Ca(S), and by Proposition 6.4 C(S) is a Levi subgroup of G. Moreover,
every Levi subgroup of G is of this form. Hence, Theorem 8.6 shows that

any o-stable Levi subgroup of G is (G, o)-completely reducible.

Example 8.11. A subgroup H of G is called regular if it is normalised by
a maximal torus of G. By [1, Proposition 3.20], if H is regular, it is G-
completely reducible. Therefore, a o-stable regular subgroup of G is (G, 0)-

completely reducible.
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Corollary 8.12. If H is o-stable and G-completely reducible, then H° is

(G, 0)-completely reducible.

Proof. As H is o-stable then so is H® since it is characteristic in H. Since
H is G-cr, by [1, Theorem 3.10] so is H°. Therefore, the result follows from
Theorem 8.6. O

Next we establish a generalisation of [1, Proposition 3.40]. This argument

was provided by Michael Bate, Tim Burness and Martin Liebeck.

Proposition 8.13. Let H be a o-stable G-irreducible subgroup of G such
that HC is not G-irreducible. Then Cg(H") contains a o-stable non-central

mazximal torus.

Proof. Since H is G-ir, it is G-cr and therefore, by [1, Theorem 3.10], H is
G-cr. Since HY is not G-ir, it is contained in a proper parabolic subgroup
P of G, and hence a proper Levi subgroup L of P. By Proposition 6.4 L =
Cg(S9) for some non-central torus S of G. In particular, since HY C Cg(S)
we have S C Cg(H?). In particular, every maximal torus of Cq(H?) is
non-central (because they are all conjugate in Cg(H?)).

Consider the set A = {899 | g € Cq(H®)"} to be the conjugacy class
in Cq(H)? containing its maximal tori. We have that Cq(H?)? acts tran-
sitively on A and A is o-stable. Hence, by Corollary 7.12, Co(H?)°? (and

hence Cg(H")) contains a o-stable maximal torus. O

We conclude this section with the following lemma and its subsequent
corollary, which were provided by Michael Bate, Tim Burness and Martin

Liebeck.

Lemma 8.14. Let G be a reductive algebraic group with a Frobenius mor-
phism o. Let H be a o-stable subgroup of G that is contained in a proper
o-stable parabolic subgroup P of G. Then, H is contained in a Levi subgroup

of P if, and only if, H is contained in a o-stable Levi subgroup of P.
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Proof. Suppose that H is contained in a Levi subgroup L of P, and P =
R, (P)L. Define the non-empty set

A= {L"|u e Ry(P), HC L.

As in the proof of Theorem 8.6, whenever H C L" for some u € R, (P)
we can conclude that u € Ng, (py(H). The arguments of Theorem 8.6 show
that Ng,(p)(H) = Cg,(p)(H). Since any Levi subgroup of P is R,(P)-
conjugate to L, the group Cr,py(H) acts transitively on A. The same

proof shows that this group is connected.

Let H C L* € A. Note that R,(P) is o-stable since R, (P) is char-
acteristic in P. Then H = o(H) C o(L*) = o¢(L)°™. But P = o(P) =
o(Ru(P)L) = Ry(P)o(L). Thus o(L) = L" for some v € R,(P). Hence
o(L)’™ = L € A for v/ = o(u) € Ry(P) and so A is o-stable.

Therefore, by applying Corollary 7.12, we see that A contains an element

fixed by . The converse is immediate, and this gives the lemma. O

Lemma 8.15. Let G be a reductive algebraic group with a Frobenius mor-
phism o. Let H be a o-stable subgroup of G. Then if H is not (G,0)-
completely reducible, it is contained in a o-stable parabolic subgroup P of G,

and in no Levi subgroup of P.

Proof. Since H is not (G, o)-completely reducible, it is contained in a proper
o-stable parabolic subgroup P of GG, and not in any o-stable Levi subgroup
of P. Suppose, by way of contradiction, that H is contained in a Levi
subgroup L of P that is not o-stable. Then Lemma 8.14 implies that H is
contained in a o-stable Levi subgroup of P. However, this contradicts our

hypothesis and therefore H is not contained in any Levi subgroup of P. [J
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9 Finite Subgroups

Let G be a reductive algebraic group over the algebraically closed field k& =
F,, where F, is the finite field with ¢ elements of characteristic p, where ¢
is some positive power of the prime p.

In this section we recall some geometric invariant theory and state an
equivalence result between the notions of G-complete reducibility and (G, o)-
complete reducibility under certain conditions, which follows from work of
Liebeck, Martin and Shalev, [31]. When o is a Frobenius morphism of G and
G is simple, we obtain an equivalence between the notions of G-complete
reducibility and (G, o)-complete reducibility in Theorem 9.12 for finite o-
stable subgroups of G. We generalise this equivalence further in Theorem

9.15 to the case when G is a reductive group.
9.1 A Result of Liebeck, Martin, Shalev

We introduce the same setup as that of §6.6. Much of the following uses
the argument given in [31, Proposition 2.2 and Remark 2.4]. As a brief
reminder, for an arbitrary affine G-variety V, let v € V and A € Y(G),
and let S be a closed G-stable subvariety of V' which does not contain
v. If the limit lim, 0 A(z)vA(z) ! exists and is equal to u, we define the
morphism M,(\) : k — V as in §6.2, that is M,(\)(z) = A(z)vA(z)~! for
every x € k*, and M,(\)(0) = u. Then, because of the G-invariance of
S, we have M,(A\)(k*) NS = 0. Hence M,(\)(k) NS # 0 if and only if
M,(X\)(0) € S. Therefore, M,(A)~1(U) = {0} and we can conclude there is
some integer m such that M,(\)~}(U) is determined by Spec(k[T]/(T™)),
for an indeterminate 7'. Thus, m depends on S,v and A, so we denote the
degree m by ag (), and note this is a non-negative integer in general, and
positive if M,(\)(0) € S.

We use this setup in the following way. Let G be a simple algebraic

group, then we consider the affine G-variety G™, where “-” denotes the
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action of G on G™ by simultaneous conjugation, that is:

g (@1, x) = (92197, .., gTng ™),

for g € G, (x1,...,2,) € G™.

Define a subset Aut™ (G) of Aut(G) to be the group of those abstract au-
tomorphisms of G generated by inner automorphisms, field automorphisms
and graph automorphisms of G which are of type A,, D, or Eg, see §7.2.
Note that these graph automorphisms are automorphisms of G as an alge-
braic group, however the remaining ones, those of type Bs (p = 2), Fy (p = 2)
or G (p = 3), are only automorphisms of G as an abstract group and their

inverses are not morphisms, and they are excluded from Aut™(G).

The group Aut™(G) contains the Frobenius morphisms which are G-
conjugate to either o, a non-trivial field automorphism, or 7o, for 7 a graph
automorphism of G if G is of type A,,, D,, or Eg. The Frobenius morphisms
which are not contained in Aut™(G) are those Frobenius morphisms of G
which are G-conjugate to either 7/, or 7704, where 7’ is an automorphism of
G of the form defined in equation (3) for G of type By (p = 2),Fy (p = 2)
or Gy (p = 3). For details see [30, Theorem 1.4]. Hence, Aut™(G) contains
every Frobenius morphism of G if G is of type A, (n > 1), B,(n > 3),Cp(n >
3), Dp(n > 4), Eg, E7 or Eg, and only those that are G-conjugate to o, when
G is of type By (p=2),Fy (p=2) or G2 (p =3).

We have a component-wise action of Aut®™(G) on G™ given by f -
(x1,...,2,) = (B(z1),...,B8(x,)) for B € Autt(G) and (x1,...,7,) € G™.
The action of Aut*(G) on G™ permutes the G-orbits in G™. The obvious

action of the symmetric group S, on G™ commutes with these two actions.

In [31, §2] it is shown how to construct a length function || —||; on Y(G)

which is invariant under Aut™(G).

Let R be a subgroup of Aut™(G), and let F = {fi,..., f,} be a finite

R-invariant subgroup of G which is not strongly reductive in G. Set f :=
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(fi,.-., fn) € G™. Since F is not strongly reductive in G, Theorem 6.19
gives that the orbit G - f is not closed in G™. By [39, No. 8], the closure
of G - f contains a unique closed orbit, D'(f) say. By [6, Proposition 1.8],
D'(f) has strictly lower dimension that G -f. Set D(f) := Uregs, 7 - D'(f).
We have f ¢ D'(f), because D'(f) is an orbit of lower dimension than G - f.
Furthermore, D(f) is closed, since it is a finite union of closed G-orbits, each

of which does not contain f and so f ¢ D(f).

Hence G", D(f), and f satisfy the hypotheses of Theorem 6.25, thus there
exists a one-parameter subgroup A € Ap ) ¢ such that lim;_o Az) - f exists
and belongs to D(f). To the one-parameter subgroup A we have an associated
optimal destabilising parabolic subgroup Ppg) ¢ of G (see Notation 6.26)
such that Ppg ¢ = Py where, as in Lemma 6.6, Py = {g € G | limy—0 A(z) -
g exists}. Hence we can conclude that F' C Ppg ¢

First, we show Pg.p(g) g.f = Pp(g),¢ for any 8 € R. By construction D(f)
is Sp-invariant, hence an argument of Martin (see [35, p672]), gives that
Ppg)xt = Ppp).r-

As F is finite, 8- f = 7 - f for some 7 € S,,. Furthermore, since Aut™*(G)

and S, act by homeomorphisms on G", and these two actions commute,

B-D(f) = D(B-f) = D(n(f)) = D(f) for all 5 € R. Hence,
Ps.p@,£ = Poie)«t = Pp(e) £ (5)

This equality holds, in fact, even if we take R to be an arbitrary subset
of Aut(G). This is because in the argument used, we only require § to
stabilise F', act by homeomorphisms on G" and to commute with the S,
action, which all the automorphisms of G that stabilise F satisfy. The

following discussion, however, is only proved for subsets of Aut™(Q).

In [31, §2], for all 8 € Aut™(G), it is shown that
B - Pp)f = Ps.np), 8.t (6)
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The way the argument works for any graph automorphism requires that
the inverse morphism is applied. However, in types By (p = 2), Fy (p = 2)
or G2 (p = 3) a graph automorphism does not have an inverse that is a

morphism, and so we cannot apply this argument in these cases.

For inner automorphisms equation (6) is given in [26, Corollary 3.5(a)],
for field automorphisms in [26, Lemma 4.1] and for graph automorphisms
8 which are algebraic automorphisms of G we have the following argument,
further details of which can be found in [31, p.547]. Recall that |G",f|p
is the set of all optimal indivisible one-parameter subgroups A of G whose
limit lim,_,o A(z) - f belongs to the set D(f).

As (3 is an invertible morphism, the limit lim,_,o A(x)-f exists if, and only
if, the limit 8- (limz_0 A(x)-f) exists. Furthermore, the limit 5 (limz_,0 A(x)-

f) exists if, and only if, the limit lim,_,o 5 - (A(x) - f) exists. Hence, we have:

(G" B fls.p = {A € Y(G) | lim A(x) - (8 - f) exists and lies in §- D(f)}
={\eY(Q)|ps!- (lim A(x) - (8- f)) exists and lies in §- D(f)}
={AeY(G)|lim 3 (B Yo X(z)- (8718 f)) exists and lies in 8- D(f)}
={Bo N eY(G)| iii%ﬁ - (N (z) - f) exists and lies in 8- D(f)}
={BoN eY(G)| lim XN(z) - f exists and lies in D(f)}

= B-1G", flpp)-

Because the inverse of 3 features, this argument cannot be applied to
those graph automorphisms in Aut(G) which are not in Aut™(G), since they
are precisely the automorphisms whose inverse is not a morphism.

We also have that 8o M,(\) = M,(8 o)) and that ag.pg ge(B0oA) =
ap)e(A). The function |G™,f|p — R given in Theorem 6.25 by A
ap),£(A)/l[Al|1 reaches an upper bound for some A € Y/(G), and since || — ||
is Aut™ (G)-invariant, reaches the same upper bound at all 3(\) for all 8 €

Aut™(G). This gives that 3 - Ppg ¢ = Ps.p(s) .6 as required.
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Combining (5) and (6) gives that 3 - Ppg ¢ = Ppp ¢ for any 8 € R C
Aut™(G).

Set Pp(p¢ = Py for A in the optimal class App ¢ By the discussion
following Lemma 6.6, every Levi subgroup of P, is of the form Ly for A €
Ap(p) ¢ Suppose that F' is contained in a Levi subgroup Ly of Py. Then
u-fe LY for some u € R, (Py). Since u - f; € Ly for each i, we have A\(k*)

centralises u - f;. Hence

u-fi = glclg% Mz)ufiu A (z)™
= alclg%) Mz ud (@) 7N (@) fid(@) T IA(@)u A (z) 7L
= lim(A\(@)uA(@) ™) lim (A(2) fid(2) ) lim (\(z)u~"Az) ™)

= lim A(z)fi\(z) "L

x—0

Therefore, lim, o A(z) - f = u - f € G which lies inside the orbit G - f.
However, by hypothesis lim,_,o A(x) - f does not lie within the orbit G - f,
hence we have reached a contradiction. Therefore, we conclude that F' is

not contained in any Levi subgroup of Pps) ¢.

The following proposition is [31, Proposition 2.2] combined with the
argument given after its proof, see [31, p. 547], and it follows from the

discussion above.

Proposition 9.1. Let F be a finite subgroup of the simple group G, and let
R be a subgroup of Aut™(G) such that F is R-invariant. Then one of the

ollowing holds:
f 9
(1) F is strongly reductive in G, or

(2) F is contained in a proper R-invariant parabolic subgroup P of G, but

not in any Levi subgroup of P.

Remark 9.2. In [31, Remark 2.4], a partial extension to Proposition 9.1 is

given that takes into account the situation where G is of type Bs (p =
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2),F; (p =2) or Gy (p = 3) where Autt(G) is replaced by (Aut™(G), ¢),
and ¢ is a graph automorphism of G as introduced in equation (4). In these
cases ¢ is a field automorphism, and ¢ normalises Aut™(G).

Suppose that F' is a finite subgroup of G, that is invariant under a
subgroup S of (Aut*(G), ¢). The argument in [31, Remark 2.4] states that
if we set So = SN Aut™(G), then S = (Sy, o), where o2 € S.

Suppose that F' is not strongly reductive in G. By Proposition 9.1, we
have that F' is contained in the Sp-invariant parabolic subgroup P’ of G,
and hence F is also contained in o(P’). If P’ No(P’) is reductive, then by
Lemma 6.9, this intersection is a Levi subgroup of P’. However this is a
contradiction because we showed in Proposition 9.1 that F' is not contained
in any Levi subgroup of P’. Therefore, U := R,(P' No(P')) # e. We
construct the parabolic subgroup P of G from this non-trivial unipotent
radical using the construction of Borel-Tits. Since U is S-invariant, so is
P, and since U is non-trivial we have that P is proper in GG. Although it is
known that F' is not contained in any Levi subgroup of P’, the relationship
between the Levi subgroups of P and those of P’ is not well understood. It
is therefore not trivial to infer from the arguments given in [31, Remark 2.4]
whether F' is contained in a Levi subgroup of P, or not.

We present an argument in §9.2 which shows that in the case S = o
there is a o-stable parabolic subgroup P” of G' containing F', and F is not

contained in any Levi subgroup of P”.
The next result follows from Proposition 9.1 and Remark 9.2.

Proposition 9.3. Let G be a simple algebraic group and let o be a Frobenius
morphism of G. Let F be a finite o-stable subgroup of G. Then one of the

following holds:
(1) F is strongly reductive in G, or

(2) F is contained in a proper o-stable parabolic subgroup P of G.
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In the remainder of this section we will show that Proposition 9.3 can
be extended to the case where G is a reductive algebraic group. This result

is achieved in Lemma 9.9.

Lemma 9.4. Let G1,G2 and G3 be algebraic groups. Given isogenies f :
G1 — G2 and g : Gy — G3, the map h : G1 — Gs where h(z) = g(f(x)) for

all x € G1, is also an isogeny.

Proof. The composition of the map f and g is indeed a morphism from G

to GG3. We have to show that it has a finite kernel.

Set K := ker(h), and let x € K. Then, g(f(z)) = e, and so f(z) € ker(g).
That is, f(K) C ker(g). Therefore, f(K) is finite. Since, K N ker(f) =
ker(f|x) is finite, we have that K is finite. O

Notation 9.5. Let G = G x --- X G,, be a product of n groups, and let ¢ be
a Frobenius morphism of G. We say that o permutes the G; transitively if
for all ¢ we have 0(G;) C Gi11 mod n- That is, for any (g1,...,9,) € G and

each ¢ we have morphisms o; : G; = G411 mod » Such that o is given by the

map (g1, cee 7gn) = (Un(gn)val(gl) ceey Un—1<gn—1))'

Lemma 9.6. Let H = Gy X --- X G, be a direct product of the simple
algebraic groups Gi,...,Gn, and let o be a Frobenius morphism of H that
permutes the G; transitively. Suppose that F' is a finite o-stable subgroup of
H. Then one of the following holds:

(1) F is strongly reductive in H, or

(2) F is contained in a proper o-stable parabolic subgroup P of H.

Proof. Label the G; so that 0(G;) = Gi11 mod n- Let m; : H — Gy, be the
projection of H onto the i-th component G;, and let F; := m;(F). As F' is

o-stable, for f; € F;, we have m;1+1(0(fi)) € Fit1 mod n- Therefore, we have
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0(F;) € Fi11 mod n- Furthermore, 0" ~1(F; ;1) C F;. Since o is bijective, all
the Fjs are finite and of the same order. Hence, o(F;) = Fj11 mod n, for each
7.

For each i, let f; := (fi,,..., fi,,) be a tuple of the m elements of F;. We
write o(f;) for (o(fiy),...,0(fi,,)). Then, o(f;) = w - £i11 mod n, for some
w € S The tuple w - f; generates F; for all 4, and all w € Sy,.

Suppose that F' is not strongly reductive in H. Then, by [1, Theorem
3.1], Fis not H-cr. By [1, Lemma 2.12(i)], there is some j € {1,...,n} such

that F} is not G-cr.

As o0 : H — H is a bijection, it has trivial kernel, hence o is an isogeny.
By Lemma 9.4, 0% : G; — Gj4+ is an isogeny for any positive integer a.
Therefore, [1, Lemma 2.12(ii)(b)] gives that o%(F}) is not Gj;q4-cr. By con-
struction, 0*(F}) = Fjtq mod n- Hence, F; is not Gj-cr for all 1.

In particular F} is not Gi-cr and both are o"-stable. We may apply
Proposition 9.3. Therefore we can construct a parabolic subgroup P; of G
that is o™-stable and contains F7.

Since Pj is o™-stable, the parabolic subgroup P := P X o(P;) x --- X
o™ Y(Py) of H is o-stable. Furthermore, F is contained in P because
0%(F1) = Fai1 mod n 18 contained in 0*(P1) = P11 mod n, for all n. This

gives the result. O

The following lemma shows that in the context of our study of (G, o)-
complete reducibility we can reduce from the case where G is reductive to

the case where G is semisimple.

Lemma 9.7. Let G be a reductive algebraic group and let o be a Frobenius
morphism of G. Suppose F' is a finite o-stable subgroup of G. Then, there
exists a Frobenius morphism o' of |G, G] and a finite o’-stable subgroup F’

of [G, G| such that the following hold:
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is G-completely reducible if and only 1 1s |G, G]-completely re-
1) FisG letely reducible if and only if F' is [G,G letel

ducible, and

(2) F is (G,0)-completely reducible if and only if F' is (|[G,G],o')-

completely reducible.

Proof. Since G is reductive, we have G = [G,G]Z, where Z = Z(G)". Let

a: [G,G] x Z — G be the product map. Then « is an isogeny.

There exists a Frobenius morphism ¢’ on [G,G] x Z which when com-
posed with the multiplication map gives the Frobenius morphism o on G. Set
o’ to be the map defined by (g, z) — (0(g),0(2)) for g € |G,G], 2z € Z. Then,
ker(«v) is a o’-stable normal subgroup of [G, G] x Z. Therefore, by Proposi-
tion 7.8 (2), o’ induces the Frobenius morphism o on [G, G] x Z/ ker(a) = G.

Hence, we have the commutative diagram:

[G,G] x Z =G
Lok
[G,G] x Z —"—=G.
Let F~1:= a~!(F), for a finite o-stable subgroup F of G. We wish to show
that F~! is finite and o’-stable. We have that a(o’(F~!)) = o(a(F™1)) =
o(F) = F. Therefore, a !(a(c’(F71))) = a”1(F) = F~!. Since ker(a)
is o’-stable and ker(a) € F~!, we have that F~! = a~Y(a(co'(F71))) D
o' (F Y ker(a) = o/(F 1 ker(a)) = o/(F~!). Note that, as « is an isogeny,
F~1is finite. Hence, as ¢’ is a bijection we must have equality. This shows
F~!is finite and o’-stable.

By [1, Lemma 2.12(ii)], F is G-cr if and only if F~! is ([G,G] x Z)-
cr. Let mgq : [G,G] x Z — [G,G] be the projection onto [G,G], and
7wz : |G,G] x Z — Z be the projection onto Z.

By [1, Lemma 2.12(i)], if F~ ! is ([G,G] x Z)-cr, then F := mg ¢ (F~1)
is [G,G]-cr. Again, by [1, Lemma 2.12(i)], if F~! is not ([G,G] x Z)-cr,
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then either F’ is not [G,G]-cr, or mz(F~1) is not Z-cr, or both of these
statements hold. Since 7z (F~1) C Z, it is linearly reductive, and hence, by
[25, Lemma 11.24], is G-cr. Hence if F~! is not ([G,G] x Z)-cr, then F’ is
not [G, G]-cr. Therefore, combining the above gives that F' is G-cr if and
only if F' is [G, G]-cr.

Since [G, G] and F~1 are o’-stable, F” is also o’-stable, and since F~! is
finite, so is F’.

Given a parabolic subgroup P of G, we have P’ := W[GVG](a_l(P)) is a
parabolic subgroup of [G, G|, and every parabolic subgroup of [G, G| arises
in this way. Also, if F' is contained in P, then F’ is contained in P’, and
vice-versa. Furthermore, P is o-stable if, and only if, P’ is o/-stable. A

corresponding argument holds for Levi subgroups of P, giving the result. [J

Notation 9.8. Let G be a semisimple algebraic group, and let o be a Frobe-
nius morphism of G. Then G is the almost direct product of n simple factors
(see Definition 5.21), and the image under o of each simple factor is another
simple factor. Therefore, ¢ naturally partitions G into a fixed number, k say,
of o-orbits denoted H; for j € {1,...,k}, k < n. If the j-th such o-orbit H;
is a product of /; simple groups, we say that [; is the length of the o-orbit
H;.

We may assume without loss of generality that the simple factors G; of G,
for i =1,...,n, are labeled such that within the j-th o-orbit ¢ sends G; to
Git1 mod - Thus, for each j € {1,...,k} we may choose a corresponding
number a; € {1,...,n} to denote the index of the first simple factor in
the o-orbit Hj, and o(Ga;) = Gaj41 mod 1;-Therefore, we can write the

Hj =G, Ga;41,-1, where ap = 1 and a + 1 — 1 =n.
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Therefore, we have

G = Hy---H
= (G1+-Gipy—1) -+ (Gap - G)
= GGy

Necessarily, we have E;?:llj = n and the a; are numbers in the set {1,...,n}
such that a; < aj;1 for all j, but are not necessarily consecutive (the two
indices aj, a;41 are consecutive if, and only if, [; = 1).

We will refer to this labeling of the simple factors G; of G, and of its

o-orbits H; as a compatible decomposition of G with respect to o.

No restrictions are placed on G and ¢ in defining this decomposition, and
it is clear that every semisimple algebraic group with a Frobenius morphism
o has a compatible decomposition with respect to o. The objective of defin-
ing this decomposition is to simplify subsequent arguments by considering
a concrete decomposition of G into its o-orbits.

Clearly this decomposition is not unique, for we may begin each o-orbit
at any of the simple factors occurring within that orbit, however for our
purposes it is sufficient to pick any compatible decomposition. It should be
noted that the decomposition into o-orbits is unique up to isomorphism, and
so the number of orbits, their lengths, and the types of groups that occur

as simple factors are all uniquely determined.

Lemma 9.9. Let G be a reductive algebraic group and let o be a Frobenius
morphism of G. Let F be a finite o-stable subgroup of G. Then one of the

following holds:

(1) F is strongly reductive in G, or

(2) F is contained in a proper o-stable parabolic subgroup P of G.
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Proof. By Lemma 9.7 we may assume without loss that G = [G,G]. Ac-
cording to Notation 9.8, let G = G1---G,, = Hy --- H; be a compatible de-
composition of G with respect to . That is, the Gy, for i € {1,...,n}, are
the simple factors of G, and the Hj, for j € {1,...,k}, are the o-orbits each
of length [; of G, and within each o-orbit H; we have 0(G;) = Git1 mod I

Set I:Ij = Ga; X+ X Gg;41;-1, and G = H; x --- x Hg. Then, G is equal
to the product G1 X --- x Gy, of n simple groups. Let ¢; : G; — G be the
inclusion map for each i, and let € : G — G be the product map, defined by
€:(g1y---59n) = t1(91) - - - tn(gn), for g; € G;.

There exists a Frobenius morphism ¢’ on G which when composed with
the product map, €, gives the Frobenius morphism o on G. Define the

Frobenius morphism o; : H G — H ; by

Uj(gaj7 s agaj-l—lj—l) = (a(gaj+lj—1)7 U(gaj)v s U(gaj+lj—2))'

Then define ¢’ : G — G by o'(hy,...,h;) = (o1(hy),...,op(hy)) where
each h; € H j. This defines a Frobenius morphism on G because ojis a
homomorphism and for each j there is some power p; of o; such that aﬁ-}j
acts like the standard Frobenius morphism on each simple factor of H j, for
each 7.

We have ker(e) is a o’-stable normal subgroup of G. Therefore, by Propo-
sition 7.8 (2), ¢/ induces the Frobenius morphism o on G/ ker(e) = G.

Hence, we have the commutative diagram:
€
—_— G

o’ iU

€
e

(Y

-~

)

Note, the product map, ¢, is an isogeny because G is an almost direct
product of the simple groups G;, so there are only finitely many elements in

its kernel.
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Let F be a finite o-stable subgroup of G. Then, by the argument given

in the proof of Lemma 9.7, we have I := ¢ (F) is also finite and o’-stable.

Suppose F' is not strongly reductive in G, then by [1, Theorem 3.1], F' is
not G-cr. By [1, Lemma 2.12 (ii)] we have F' is not G-cr. Let 7; : G — H;
be the projection of G onto the J-th o-orbit I:Ij. Then, by [1, Lemma 2.12
(i)], there exists some j such that F; := m;(F) is not Hj-cr. Furthermore,
we have aj(wj(ﬁ’)) C Wj(F), so F} is oj-stable.

By Lemma 9.6, we have Fj is contained in a proper oj-stable parabolic
subgroup ]5] of H j. Thus, F is contained in the proper o’-stable parabolic
subgroup P := Hj X - -+ X ﬁj,l X 15]- X }NI]-H X -+ x Hy, of G. By [1, Lemma
2.11], we can conclude that F is contained in the proper parabolic subgroup

P := ¢(P) of G. Finally, because P is o’-stable, P is o-stable. O
9.2 Extension to the Ree and Suzuki Case

We now analyse the cases where G is a simple algebraic group of type Bs (p =
2),Fy (p = 2) or G2 (p = 3) with root system ®. Let o be a Frobenius
morphism of G that gives rise to an order two permutation of the roots in
®. Let F be a finite o-stable subgroup of GG that is not strongly reductive in
G. Note that in Remark 9.2 we obtained a partial extension of Proposition
9.1, in that we were able to construct a o-stable parabolic subgroup of G
containing F'. Below we show that F' is contained in a proper o-stable

parabolic subgroup P of G, but not in any Levi subgroup of P.
Case 1 G is of type Ba,p =2 or Go,p =3

Since F is o-stable, it is o?-stable and 02 € Aut™*(G), so by Proposition
9.1, we have F C P C G for P a proper o?-stable parabolic subgroup of G
and F' is in no Levi subgroup of P. Furthermore, FF C P N o(P) and this
intersection is o-stable. We cannot have U := R, (PNo(P)) = e for then the

intersection P N o(P) would be a Levi subgroup of P containing F', which
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contradicts Proposition 9.1. Therefore, U # e, and is o-stable. Hence, by
the construction of Borel-Tits, U gives rise to a o-stable parabolic subgroup
P, of G, which contains F'. Since U is non-trivial, the parabolic subgroup
P, is proper in G.

By Corollary 7.13 P; contains a o-stable Borel subgroup B of GG, and by
Corollary 7.14 this Borel subgroup contains a o-stable maximal torus 7" of
G. We choose a base A of the root system ® of G with respect to B and T'.

Suppose that A = {«, 8}, then o(a) = § and vice-versa.

From §6.2, we see that for each subset I of A, there is a corresponding
conjugacy class Py of parabolic subgroups of G, and U_, C P if, and only
if, v € I. We have A corresponds to G and () corresponds to the Borel
subgroups of G.

By checking the Dynkin diagrams in these types, we see that there are
only two conjugacy classes of proper (non-Borel) parabolic subgroups in G,
and due to our choice of base for ® these correspond to the simple roots a and
o(a) = 8, where o swaps these simple roots. The maximal proper parabolic
subgroup P, = (B,U_,) corresponding to « is sent to the maximal proper
parabolic subgroup Py (o) = (B, UJ(_Q)). Thus, the only o-stable parabolic
subgroups in this case are the o-stable Borel subgroups.

Therefore P; must be a Borel subgroup of G. By Theorem 6.18, F is
not G-cr, hence it is not contained in a torus of P, giving the result. That
is, F' is not (G, o)-completely reducible. In particular, F' is contained in the

o-stable parabolic subgroup P; of G, and in no Levi subgroup of P;.
Case 2 G is of type Fy,p =2

Let F' be a finite o-stable subgroup of , and suppose that F' is not
G-completely reducible, but is (G, o)-completely reducible. By Lemma 9.9
we have that F' C P C G for P a proper o-stable parabolic subgroup of G.
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Since F' is (G, o)-completely reducible we have F' C L C P for L a o-stable

Levi subgroup of P.

By [45, Proposition 3.2], since L is a Levi subgroup, F' is G-completely
reducible if and only if F' is L-completely reducible. Hence F' is not L-

completely reducible.

Therefore, by Lemma 9.9, we can conclude F' C @Q C L, for ) a proper
o-stable parabolic subgroup of L.
By [8, Proposition 4.4 (c)], the subgroup V- = QR,,(P) is also a parabolic

subgroup of G and is contained in P. It is o-stable by construction.

Lemma 9.10. Let G be a simple algebraic group of type Fy, and let o
be a Frobenius morphism of G that induces a non-trivial permutation of its
simple roots. Then, there are no proper inclusions amongst the set of proper,

non-Borel, o-stable parabolic subgroups of G.

Proof. In this case we note that, by [30, Corollary 1.5], G° = 2F,. By [34,
Main Theorem]|, we have that every proper (non-Borel) parabolic subgroup

of 2F, is maximal.

By [32, Theorem 8] the maximal parabolic subgroups of 2Fy are the fixed
point groups of maximal g-stable parabolic subgroups of G. Pick a o-stable
Borel subgroup B of G, containing a o-stable maximal torus 7" of G. Then,
with respect to B and T we can form a base A = {«, 3,7,d} of the root
system of G, giving the following Dynkin diagram.

« B v 1)
Dynkin diagram of type Fj

The Frobenius morphism o acts on these simple roots by o(a) = ¢ and
vice-versa, and also o(f) = v and vice-versa. The conjugacy classes of

o-stable parabolic subgroups of GG correspond to o-stable subsets of these
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simple roots, which are the sets {«, 38,7,0}, {a,d}, {8,7} and 0. As before,
Piapqsy =G and By = B.

Thus, the only conjugacy classes of proper non-Borel parabolic subgroups
of G are represented by Py, s and Pyg.y, and these classes give rise to
the two conjugacy classes of maximal parabolic subgroups in 2F} listed in
[34, Main Theorem|. Therefore, the proper, non-Borel, o-stable parabolic
subgroups of G are maximal, thus we conclude that there are no proper

inclusions among this set of subgroups of G. O

We have three cases to consider:

(1) V = G. This is not possible since VC P # G.

(2) If V = B, a Borel subgroup of G. Then we have FF C B C G and is not
G-completely reducible. Therefore, F' is not contained in a torus of B,
and is therefore not (G, o)-completely reducible. This contradicts our

hypothesis.

(3) If V is another parabolic subgroup of G that is contained in P then,
by Lemma 9.10, we must have V' = P. That is QR,(P) = P. We
have, dim(P) = dim(L) 4+ dim(R,,(P)). However, dim(V) < dim(Q) +
dim(Ry(P)). Since dim(Q) < dim(L), we cannot have the equality

V = P. Thus, we have a contradiction.

None of these cases are possible, and so we have reached a contradiction
to our hypothesis. Therefore, we conclude that F' is not (G, o)-completely
reducible. We complete the argument by applying Lemma 8.15, to obtain
that H is contained in a proper o-stable parabolic subgroup P’ of G, and

not in any Levi subgroup of P’.

Combining the above results and Proposition 9.1 gives the following,

which provides a partial converse to Theorem 8.6.
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Proposition 9.11. Let G be a simple algebraic group and let o be a Frobe-
nius morphism of G. Let F' be a finite o-stable subgroup of G. Then one of
the following holds:

(1) F is strongly reductive in G, or

(2) F is contained in a proper o-stable parabolic subgroup P of G and not

i any Levi subgroup of P.

We can now present our main result about finite subgroups of simple

groups, which follows immediately from Theorem 8.6 and Proposition 9.11

Theorem 9.12. Let G be a simple algebraic group, and let o be a Frobenius

morphism of G. Suppose that F' is a finite o-stable subgroup of G, then

(1) F is G-completely reducible if and only if it is (G, o)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper
o-stable parabolic subgroup P of G and not in any Levi subgroup of P.

9.3 Extension to Reductive Groups

The aim of this section is to generalise Theorem 9.12 to the case where G is
a reductive algebraic group. In the following lemma we extend Proposition
9.11 to the case where G is a direct product of simple groups. This will
be used later on in the proof of our main result in this section, which is

Proposition 9.14.

Lemma 9.13. Let H = G1 X -+ x G, be a direct product of the simple
algebraic groups Gi,...,Gn, and let o be a Frobenius morphism of H that

permutes the G; transitively. Suppose that F' is a finite o-stable subgroup of
H. Then one of the following holds:
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(1) F is strongly reductive in H, or

(2) F is contained in a proper o-stable parabolic subgroup P of H and not

in any Levi subgroup of P.

Proof. Label the G; such that 0(G;) = Gi41 mod n- Let m; : H — G, be the

projection of H onto the i-th component G;, and let F; := m;(F).

Suppose that F is not strongly reductive in H. As in the proof of Lemma
9.6, we can conclude that o(F;) = Fj11 mod n, and that F; is not G;-cr for

each 1.

For all ¢ we have F; and G; are o"-stable. By Proposition 9.11, we
can construct a proper parabolic subgroup P; of G; that is o™-stable that

contains Fj, such that F; is not contained in any Levi subgroup of P;.

Without loss, set ¢ = 1, then Fj is not Gi-cr, and Fj is contained in
the proper ¢"-stable parabolic subgroup P; of G1, and in no Levi subgroup
of P;. The parabolic subgroup P := P; x o(P;) x --- x 0" }(Py) of H is
o-stable, and contains F'.

Suppose that F' is contained in a Levi subgroup L := Ly X --- X L, of
P. We have L; is a Levi subgroup of P; containing Fi, and Lo is a Levi
subgroup of P» containing F5, etc. However, this contradicts the previous

assertion. Hence F' is not contained in any Levi subgroup of P. O

We now extend Proposition 9.11 to the case where G is reductive, and
observe that the following result provides the converse to Theorem 8.6 for

finite o-stable subgroups of G.

Proposition 9.14. Let G be a reductive algebraic group and let o be a
Frobenius morphism of G. Let F' be a finite o-stable subgroup of G. Then
one of the following holds:

(1) F is strongly reductive in G, or
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(2) F is contained in a proper o-stable parabolic subgroup P of G and not

in any Levi subgroup of P.

Proof. By Lemma 9.7 we may assume without loss that G = [G,G]. Ac-
cording to Notation 9.8, let G = G1---G, = Hjy--- Hi be a compatible
decomposition of G with respect to o. That is the G, for i € {1,...,n}, are
the simple factors of G, and the Hj, for j € {1,...,k}, are the o-orbits each
of length [; of G, and within each o-orbit H; we have 0(G;) = Git1 mod -

Set lEIj = Gaj X oo X Ga].+l]._1, and G = ffl X oo X fIk. Then, G is equal
to the product G1 x --- x Gy, of n simple groups. Let ¢; : G; = G be the
inclusion map for each 7, and let € : G — G be the product map, defined by
€:(91,---,9n) = t1(g1) - tnlgn), for g; € Gi.

As in the proof of Lemma 9.9, there exists a Frobenius morphism o’
on G which when composed with the product map, e, gives the Frobenius
morphism o on G. We define the Frobenius morphism o’ : G — G by its

action on each H;. For (ga]., e ,gaj+lj_1) € H; we set:

Uj(gaj7 s ?gaj‘f’lj*l) = (U(gaj‘i’lj*l)? U<gaj)7 R U(gaj+lj72))'

Then we set o/ : G — G by o'(hy,...,hy) = (o1(hy),...,04(hy)) where
each h; € I:Ij.

Let F be a finite o-stable subgroup of G. Then, by the argument given
in the proof of Lemma 9.7, we have F := ¢ 1(F) is also finite and o’-stable.

Suppose F' is not strongly reductive in G, then by [1, Theorem 3.1], F is
not G-cr. By [1, Lemma 2.12 (ii)] we have F is not G-cr. Let m; : G — H;
be the projection map. Then, by [1, Lemma 2.12 (i)], there exists some j
such that F; := m;(F) is not Hj-cr. Since oj(m;(F)) C m;(F), we have that
F} is oj-stable.

Therefore, by Lemma 9.13, we have F} is contained in a proper o;-stable

parabolic subgroup lf’] of H j, and in no Levi subgroup of Pj.
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Thus, F is contained in the ¢’-stable parabolic subgroup P:=H x- X
ﬁj,l X ﬁ] X gj+1 X -+ x Hy, of G. The Levi subgroups of P are of the form
Hy - X ij_l X [ij X ij+1 X -++ x Hy, where i}j a Levi subgroup of ]5]

Therefore, F' is not contained in any Levi subgroup of P.

By [1, Lemma 2.11], we can conclude that F' = ¢(F) is contained in the
proper parabolic subgroup P := ¢(P) of G. Because P is o’-stable, we have
that P is o-stable. Similarly, by [1, Lemma 2.11], F' is not contained in any
Levi subgroup of P. O

It is interesting to note that Proposition 9.14 takes into account Frobe-
nius morphisms of G that are composed of elementary morphisms which are
not necessarily Frobenius morphisms. For example, suppose char(k) = 2
and G = B, x C,. Let 0 : G = G be the homomorphism which acts by
o (z,y) — (ch*(y),ch(x)) where ch, ch* are the isogenies from B,, to C,, and
vice-versa, respectively, as introduced in Remark 7.10 and = € B,,y € C,,.
Then 02 = o9 is a standard Frobenius morphism, and hence ¢ is a Frobe-
nius morphism of G and thus we can apply our results to this case. Another
important feature of the proof of Proposition 9.14, is that it is not necessary

to consider the specific decomposition of ¢ into its elementary components.

We have now arrived at the main result of this section, which follows

immediately from Theorem 8.6 and Proposition 9.14.

Theorem 9.15. Let G be a reductive algebraic group, and let o be a Frobe-
nius morphism of G. Suppose that F is a finite o-stable subgroup of G,
then

(1) F is G-completely reducible if and only if it is (G, o)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper
o-stable parabolic subgroup P of G and not in any Levi subgroup of P.
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Remark 9.16. Alternative proofs of Theorem 9.15, or special cases of it, are

available. For example, part (1) of Theorem 9.15 is proved in [18].

If we take o = 0,4 to be a standard Frobenius morphism, then Theorem
9.12 (1) and Theorem 9.15 (1) are special cases of [1, Theorem 5.8], and this
can be seen as follows. Consider the extension F,/F, of perfect fields. A
group is defined over F, if and only if it is o,-stable. A o-stable subgroup
H of G is said to be G-completely reducible over [, if it is contained in
a parabolic subgroup P of G defined over [, implies that it is contained in
a Levi subgroup L of P defined over F,. In these terms, [1, Theorem 5.8]
states that a o4-stable subgroup H of G is G-completely reducible if and only
if it is (G, 04)-completely reducible, and this is because being G-completely

reducible over F, is the same as being (G, 0,)-completely reducible.

Ezample 9.17. In characteristic p, a finite subgroup F' of G is G-completely
reducible provided p does not divide |F'|. This is the well known Maschke’s
Theorem of representation theory. This gives plenty of examples of G-
completely reducible subgroups. Therefore, by Theorem 8.6, a finite o-stable

subgroup of G is (G, o)-completely reducible if its order is not divisible by

p.

The following example provides numerous examples of finite (G,o)-
completely reducible subgroups of a reductive group G, with Frobenius mor-

phism o.

Ezxample 9.18. Let G be a reductive group, and o an arbitrary Frobenius

morphism of G. The finite group G of G is (G, o)-irreducible.

We can see this as follows. Suppose that G C P, for a proper o-
stable parabolic subgroup P of G. Let L be a o-stable Levi subgroup of
P, which exists by Corollary 7.15. Then, the opposite parabolic subgroup
— P relative to L is also o-stable. Its unipotent radical R, (—P) intersects

trivially with P, yet contains fixed points under the action of o (see [10, p.
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76] for details). This is a contradiction. Therefore, G is not contained in

any proper o-stable parabolic subgroup of G.

Remark 9.19. Let L be a o-stable Levi subgroup of some parabolic sub-
group P of G. One consequence of Example 9.18 is that since L7 is (L, 0)-

irreducible, P is in fact a minimal parabolic subgroup of G containing L°.
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10 Infinite Subgroups

In this section, unless otherwise stated, G will denote a reductive algebraic
group over the field k£ = Fq of characteristic p, and where ¢ is some positive
power of p. Recall that by reductive, we mean a connected reductive group.
Let o be a Frobenius morphism of G. The aim of this section is to generalise
Theorem 9.15 to a result about arbitrary closed subgroups of G. We can do
this once we know Lemma 10.4, which is an analogue of Lemma 6.24 in the
o-stability setting. This is an important step in the generalisation because
within the context of G-complete reducibility it enables us to model any

o-stable subgroup of G as a finite o-stable subgroup of G.

10.1 Extension to Infinite Groups

It is shown in [36, Lemma 3.2] that for a reductive group G there exists an
ascending sequence G; C Go C --- of finite subgroups of G whose union is
dense in G. If G has such a sequence with each G; o-stable then we say that

G has a finite o-structure given by the chain {G;}.

Proposition 10.1. Let G be a reductive algebraic group and o a Frobenius

morphism of G. Then G has a finite o-structure.

Proof. Since o is a Frobenius morphism of G there is an injective homo-
morphism ¢ : G — GL,(F,) such that «(c%(g)) = a4(.(g)) for some positive
power a of o. Therefore, there is a Frobenius morphism ¢’ : 1(G) — (G),
given by o/(x) = (ot (z))) for all x € «(G). Thus, we have t(c(g)) =
a'(1(g)) for all g € G, and 0’*(1(g)) = g4(¢(g))-

A subgroup H of G is o-stable if, and only if, «(H) is o'-stable, and
clearly H is finite if, and only if «(H) is finite. Therefore, G has a finite

o-structure if, and only if, 1(G) has a finite o’-structure. We set:
G(i) := («(G)NGLy(F t))No’ ((G)NGLy (F )N - N0’ ((G)NGLip (F ).
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Each G(i) is o’-stable because ¢’ = 0, and +(G) and GLy,(F ) are o 4-stable.

Let z € «(G). Since F; = UjenF, i, we have that «(G) = Uien(¢(G) N

g
GLn(F ;1)) see [36, Notation 3.3]. Therefore, we have z € (G) N GLy, (Fyir)
for some 4. Furthermore, we have that ((G) = U;a"(4(G) N GLy(Fu)) for
each positive integer b. Therefore, for each such b there exists a correspond-
ing i such that z € o’°(«(G) N GL,(F,1)). By picking i to be sufficiently
large, we have x € G(i) # {1}, and for all ¢ we have G(i) C G(i+ 1). Hence
we obtain an ascending sequence of finite subgroups G(i) of G, such that
each element of ((G) is contained in a finite group G (i), for sufficiently large
7.

The union over i of each of the chains o”(:(G) N GLy(F,u)), for each
b € N, is dense in ¢(G). Therefore, the union U;enyG(7) is also dense in ¢(G)

giving the result. O

Note that in the proof of Proposition 10.1 we require G(i) to be a sub-
group of GL;,(Fut). Since i! divides (i+1)!, we can embed G (i) as a subgroup
in G(i + 1) by canonically embedding F i as a subfield in F 1)

Ezxample 10.2. We present an example of a finite o-structure of a reductive
group. Consider the reductive group G = GL,,(F,) which has a non-standard
Frobenius morphism o given by o(g) = (0,(97!))?, where T denotes the

transpose map.

With respect to a suitable basis, ¢ sends a parabolic subgroup P of
G which is of block upper triangular form to the parabolic subgroup P~
of G which is of block lower triangular form, and leaves P N P~ stable.
Furthermore, 0% = o,2. Thus, the fixed point group GLy(F,)? is the group
of all matrices g € GLy(F,2) for which g = (dq(g~"))”, that is, the group
U, (F,2) of all unitary transformations of Fle. Let us define the finite

groups G(7), as in Proposition 10.1, by
G(i) := GLn(]Fqu!) N O’(GLn(qui!)).
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The G(i) are finite, o-stable, and form a chain {G (%)} with the inclusions
G(i) € G(i + 1). All that needs to be checked is that the union of the
G(i) is dense in G. Consider the chains given by H (i) := GL(F21) and

H'(i) := 0(GLy(F21)). These chains are o,2-structures for G. Therefore,

q
any element of G must simultaneously be in H (i) and H'(7) for sufficiently

large 4. Thus, the chain {G(7)} endows G with a finite o-structure.

In Proposition 10.5, a finite o-structure of an arbitrary closed subgroup
of GG is required. Therefore, as part of our generalisation of Theorem 9.15 to
a statement about arbitrary closed subgroups of G, we extend Proposition
10.1 to arbitrary algebraic groups in the following result, and for the proof

we appeal to [4, Lemma 2.3].

Proposition 10.3. Let G be an algebraic group defined over Fq, and let o

be a Frobenius morphism of G. Then G has a finite o-structure.

Proof. We proceed by induction on dim G. If G is reductive, then Propo-
sition 10.1 gives the result. Suppose that G is not reductive, then Z :=
Z(R,(@G))° is a non-trivial closed connected unipotent normal subgroup of
G, and Z is a characteristic subgroup of Z(R,(G)) and so is o-stable. By [6,
I11.10.6(2)], Z contains a subgroup isomorphic to the additive group G,. Let
C be the subgroup of Z generated by the subgroups of Z that are isomorphic
to G4. Since o is a morphism, the image of each of these subgroups under o
is another subgroup of Z that is isomorphic to G,. By [20, Theorem 5.4], C
is a vector space. Therefore, C' is a o-stable, finite-dimensional vector space

over k which is normal in G.

As in the proof of Proposition 10.1, there is an injective homomorphism
t: G — GL,(F,), such that ¢(c%(g)) = 04(¢(g)) for some positive power a
of 0. Therefore, there is a Frobenius morphism ¢” : 1(G) — +(G), given by
o"(x) = t(o(t=Y(x))) for all z € 1(G). Thus, we have 1(c(g)) = o”(¢(g)) for
all g € G, and 0”"%(u(g)) = oq(e(g)).
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A subgroup H of G is o-stable if, and only if, «(H) is ¢”-stable, and
clearly H is finite if, and only if ((H) is finite. Hence, G has a finite o-
structure if, and only if, ¢(G) has a finite o”-structure. We may therefore

assume that G = +(G) and o = ¢”.

To the group C' we may associate a chain C; C Cy C --- of finite o,-
stable subgroups of C' whose union is dense in C by setting C; := C'N
GLn(F ). We have C} := C; N o(Ci) N--- N o HCy) is a finite o-stable
subgroup of C. As in the proof of Proposition 10.1, there is some i such
that C] # e, and for all i we have that C] C C}, ;. We have that C' = U;C}.

Therefore C' has a finite o-structure given by the set {C/}.

Since C' is a o-stable subgroup of GG, by Proposition 7.8, the morphism
o' on M := G/C defined by ¢’ : gC — o(g)C for g € G is a Frobenius

morphism. Furthermore, we have the commutative diagram

™

G——M
G—=~ M.

By induction M has an ascending sequence of finite o’-stable groups
My C Ms C --- whose union is dense in M. Let 7 : G — M be the

canonical projection. Suppose that M; = {g¢;,C, ... s Gin, C'} for each i.

Denote by G; the subgroup of G generated by the finite set C] U
{gil,...,giki}. We have, 7(G;) 2 M;, and the G; form an ascending se-
quence G; € Gg C --- of subgroups where G; contains C/. Since G; is
finitely generated and G; N C' is of finite index in G;, by [44, Theorem 11.54]
G; N C is finitely generated. Since C' is a vector space, G; N C is finite.
Therefore GG; is finite. We wish to show that the G; are o-stable. If there is
no g;, € G; — C, then the G; coincide with the C] and hence are o-stable.
Therefore, suppose that there is some g;, € G; — C. As M; is o'-stable, we
have 0'(g;,C!) € M;. Since the C! are o-stable, we have o(g;,) € G; — C.
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Thus, G; is o-stable. Therefore we have that the G; form an ascending

sequence of finite o-stable subgroups.

Let G’ be the closure of the union of the G;. Then G’ is a closed o-
stable subgroup of G containing C'. Its image m(G’) is a closed subgroup of

M containing the M; and is therefore equal to M. Therefore G' = G. [

By Proposition 10.3 we can associate a finite o-structure to a closed o-
stable subgroup of G, enabling us to prove the following lemma, which is an

adaptation of Lemma 6.24.

Lemma 10.4. Let G be a o-stable reductive group. Suppose that H is a
closed o-stable subgroup of G with a finite o-structure given by the chain of
subgroups {H;}. Then, there is some a € N such that for all b > a we have

H is G-completely reducible if and only if Hy is G-completely reducible.

Proof. List representatives of the G-conjugacy classes of parabolic subgroups
of G as Pi,..., P, and representatives of the G-conjugacy classes of Levi
subgroups as Li,...,L,. Let j € {1,...,m}, ke {l,...,n} and [ € N.

Since U; H; is dense in H we have that U; H; is contained in a parabolic
subgroup P of G (resp. a Levi subgroup of P) if and only if H is contained in
a parabolic subgroup P of G (resp. a Levi subgroup of P). We may therefore
assume, without loss of generality, that U; H; = H. For any subgroup H’' C
H define the sets C;(H') := {9 € G | H C gP;jg '} and Dy(H') := {g €
G | H C gLg~'} for all j, k, which are closed by [23, Proposition 8.2 (a)].
For any H” C H' we have the inclusions Cj(H') C C;(H") and Dy(H') C
Dy(H").

For each j define C; to be the set of all Cj(H’) where H' ranges over
the set of all finite subgroups of H in the chain {H;} giving H its finite
o-structure, and for each k define Dy to be the set of all Di(H’) corre-

spondingly. By the descending chain condition on closed sets, these two
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chains give rise to a minimal element in each of C; and Dj. Therefore, there
exists some finite group H*, say, in {H;} such that for any other H** in
{H;} with H* C H** we have C;(H*) C Cj(H**) and Dy(H*) C Dy(H*)
for each j and k. The reverse inclusions are noted to hold above, so in fact
we have that C;(H*) = C;(H**) and Dy(H*) = Dy(H**).

It follows that there are some o', a” € N such that C;(H, ) = Cj(H) and
Dy(H,») = Di(H) for all j, k. This can be seen as follows. Suppose, by way
of contradiction, that C;(H) € C;(H,) for some j, then there exists some
g € Cj(Hy) which is not in C;(H). Hence, there exists some g € C;(Hgy),
and some h € H with ghg~! ¢ P;. Since U;H; = H, we have that h € H,/ 4,
for some | € N and so Cj(Hy ;) € Cj(Hy) since g ¢ Cj(Hy41), which is a
contradiction. A similar argument shows that Dy(H,») = Dy(H).

It also follows, from the minimality of Cj(H,) and Dy(H,), and the
fact that C;(Hy) C Cj(Hy 1) and Dy(Hyr) € Dy(Hgrqy) for all | € N, that
Cij(Hy41) = Cj(H) and Dy(Hyr41) = Di(H) for all [ € N.

Suppose that H C P for some parabolic subgroup P of G. Then P is
G-conjugate to P; for some j, so gPg~! = P;, say. Hence gHg™! C P;.
Hence, g € Cj(H) = C;(Hy ;) and so gHyr4197! C Pj, so Hyryy C P for all
I. This argument is reversible and a corresponding argument works for Levi
subgroups of G. Let a = max(a’,a”). The group H, satisfies the conditions

in the statement of the Lemma, giving the result. O

We can now show the converse to Theorem 8.6.

Proposition 10.5. Let G be a reductive algebraic group with Frobenius
morphism o. Let H be a o-stable subgroup of G. Then one of the following
holds:

(1) H is strongly reductive in G, or

(2) H is contained in a proper o-stable parabolic subgroup P of G, and

not in any Levi subgroup of P.
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Proof. Suppose that H is o-stable and not strongly reductive in G. By [1,
Theorem 3.1], H is not G-cr. By Proposition 10.3, H admits a finite o-
structure, {H;} say. By Lemma 10.4, there exists some j such that H;
is not G-cr, for all [ > 0, and hence by Theorem 6.18 Hj;,; is not strongly
reductive in G. Therefore, by Proposition 9.14, for each [ > 0 we have that
each Hj; is contained in some proper o-stable parabolic subgroup of G.
Suppose P is such a o-stable parabolic subgroup of G' containing H;; for

some | > 0.

As in the proof of Lemma 10.4, list representatives of the conjugacy
classes of parabolic subgroups of G by Pi,..., Py. Suppose that P is G-
conjugate to Py, for some k € {1,...,m}, say P = gP,g~! for some g € G.
Then, as in the proof of Lemma 10.4, Cy(H;) = C(Hj4;), hence Hjy C
gP,g~' = P for all [ > 0. We have that H; ; C Pforalll >0 and so
H C P. Furthermore, by Proposition 9.14, each H;y; is not contained in
any Levi subgroup of P, and so H is also not contained in any Levi subgroup

of P, as required. O

We have arrived at our main result, which is an immediate consequence

of Theorem 8.6 and Proposition 10.5.

Theorem 10.6. Let G be a reductive algebraic group, and let o be a Frobe-
nius morphism of G. Suppose that H is a o-stable subgroup of G, then

(1) H is G-completely reducible if and only if it is (G,o0)-completely re-

ducible, and

(2) iof H is not G-completely reducible, then H is contained in a proper
o-stable parabolic subgroup P of G and not in any Levi subgroup of P.

Example 10.7. Care must be taken in applying Theorem 10.6, for the fact
that a (G, o)-irreducible subgroup of G may not be G-irreducible.
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With reference to the notation of Example 8.2, we note that although L is
(G, o)-irreducible, it is not G-irreducible. However, as L is a Levi subgroup
of G it is G-completely reducible, and since it is (G, o)-irreducible, it is

(G, o)-completely reducible.

We now present a collection of corollaries to Theorem 10.6. In each we
assume that G is a reductive algebraic group with Frobenius morphism o.
The first of the corollaries gives an understanding of the geometric nature of
(G, 0)-completely reducible subgroups of G. Each is the result of a combi-
nation of Theorem 10.6 and a corresponding result from [1] or [2]. We have
chosen this collection of results to provide an indication of the properties of a
(G, 0)-completely reducible subgroup of G, and because they are of general

interest.

Corollary 10.8. Let H be a o-stable subgroup of G topologically generated
by {z1,...,xn}. Then H is (G,o)-completely reducible if and only if the

orbit G - (1,...,xy,) is closed in G™.

Proof. Follows from Theorem 10.6 and [1, Corollary 3.7]. O

Corollary 10.9. Assume that p is good for G or p > 3. Let A and B be
o-stable commuting connected (G, o)-completely reducible subgroups of G.

Then AB is (G, o)-completely reducible.

Proof. Follows from Theorem 10.6 and [2, Corollary 4.19]. The bound on p

is a result of the case by case analysis in [2]. O

Corollary 10.10. Let H be a closed o-stable subgroup of G and let N be a
o-stable normal subgroup of H. If H is (G, o)-completely reducible, then so
is N. In particular, H° is (G, o)-completely reducible.

Proof. Follows from Theorem 10.6 and [1, Theorem 3.10]. O
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Corollary 10.11. Let H be a (G, o)-completely reducible subgroup of G and
let K be a o-stable closed subgroup of G satisfying HCq(H)? C K C Ng(H).
Then, K is (G, o)-completely reducible.

Proof. Follows from Theorem 10.6 and [1, Corollary 3.14]. O

The following two results are immediate consequences of Corollaries

10.10 and 10.11.

Corollary 10.12. Let H be a closed o-stable subgroup of G. Then H 1is
(G, 0)-completely reducible if and only if Ng(H) is.

Corollary 10.13. Let H be a closed o-stable subgroup of G. If H is (G, 0)-

completely reducible then so is Cq(H).

The following result is an analogue of [1, Corollary 3.22] in the setting
of o-stability.

Corollary 10.14. Let K be a closed o-stable subgroup of a o-stable Levi
subgroup L of G. Then K is (L, o)-completely reducible if and only if K is

(G, 0)-completely reducible.

Proof. Suppose K is (L,o0)-cr. Then, by Theorem 10.6, K is L-cr. There-
fore, by [1, Corollary 3.22], K is G-cr. Thus K is (G, 0)-cr, again by Theorem
10.6.

Conversely, suppose K is (G, o)-cr. Then, by Theorem 10.6, K is G-cr.
Therefore, by [1, Corollary 3.22], K is L-cr. Thus K is (L, o)-cr, by Theorem
8.6. L]

Recall that a subgroup H of G is called regular if it is normalised by
a maximal torus of G. The following result is an analogue of [1, Corollary
3.26] in the setting of o-stability, and in which the restriction that p is good

for G is required.
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Corollary 10.15. Suppose that p is good for G. Let K be a closed o-stable
subgroup of a o-stable reqular reductive subgroup H of G. Then K is (H,o)-
completely reducible if and only if K is (G, o)-completely reducible.

Proof. Suppose K is (H,o)-cr. Then, by Theorem 10.6, K is H-cr. There-
fore, by [1, Theorem 3.26], K is G-cr. Thus K is (G, 0)-cr, again by Theorem
10.6.

Conversely, suppose K is (G,0)-cr. Then, by Theorem 10.6, K is G-
cr. Therefore, by [1, Theorem 3.26], K is H-cr. Thus K is (H,o)-cr, by
Theorem 10.6. O

Ezxample 10.16. Let char(k) = 2. We embed the group Sp,,(k) diagonally
in the maximal rank subgroup Sp,, (k) X Sp,,,(k) of Spy,, (k). Then, by [1,
Example 3.45], Sp,,,(k) is not Spy,, (k)-cr, even though Sp,, (k) is reductive.
Let 0 = 02« be a standard Frobenius morphism of Spy,,(k), where a € N.
Clearly, the diagonally embedded copy of Sp,,(k) is also o-stable, and by
Theorem 10.6, is not (Spy,,(k), o)-completely reducible.

This provides an example of a reductive subgroup of Sp,,,(k) which is

not (Spy,,(k), o)-completely reducible.
10.2 Groups of Fixed Points

Let G be a connected reductive algebraic group over a field of characteristic
p, with a Frobenius morphism o. In this section we deal with subgroups
of G?. For such groups, we present the following definition, which is an

analogue of Definition 8.1 for subgroups of G°.

Definition 10.17. Let G be a reductive algebraic group, and let o be a
Frobenius morphism of G. Let H be a subgroup of G°.

(1) We say that H is G?-completely reducible (or G -cr) if whenever
H is contained in P° for a o-stable parabolic subgroup P of G, then
H is contained in L°, for a o-stable Levi subgroup L of P.
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(2) We say that H is G?-irreducible (or G7-ir) if H is not contained in

P? for any proper o-stable parabolic subgroup P of G.

Ezxample 10.18. The observation made in Example 9.18 gives that G is

G?-irreducible, and is therefore trivially G°-completely reducible.

Proposition 10.19. Let G be a reductive algebraic group and let H be a
subgroup of G°. Then H is (G, o)-completely reducible if and only if it is
G -completely reducible.

Proof. Let H be (G,o0)-cr. Suppose that H C P?, where P is a o-stable
parabolic subgroup of G. Then H C P. Because H is (G,0)-cr, H C L for

some o-stable Levi subgroup L of P. Therefore H C L°.

Conversely, suppose that H is G?-cr and that H C P for some o-stable
parabolic subgroup P of G. Then H C P?. Because H is G°-cr, H C L? for

some o-stable Levi subgroup L of P. Hence, H C L, giving the result. [

Corollary 10.20. Let G be a reductive algebraic group and o a Frobenius

morphism of G. The following are equivalent for a subgroup H of G:
(1) H is G7-completely reducible,
(2) H is (G, o0)-completely reducible, and

(3) H is G-completely reducible.

Proof. This follows from Theorem 10.6 and Proposition 10.19. O

Using the notion of G?-complete reducibility, we can find more examples

of (G, o)-completely reducible subgroups of G, as shown in the following.

Ezxample 10.21. Let G be a reductive algebraic group with a Frobenius mor-
phism o, and let L be a o-stable Levi subgroup of G. As in Example 10.18,
L7 is L?-completely reducible. By Proposition 10.19, L? is (L, o)-completely
reducible. Therefore, by Corollary 10.14, L7 is (G, o)-completely reducible.
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Example 10.22. Let G be a reductive algebraic group, with a Frobenius
morphism ¢ and suppose that p is good for G. Suppose that H is a closed
o-stable regular reductive subgroup of G. As in Example 10.18, H? is
H?-completely reducible. By Proposition 10.19, H? is (H,o)-completely
reducible. Therefore, by Corollary 10.15, H? is (G, o)-completely reducible.

10.3 Strong o-Reductivity in G

We define an analogue in the setting of o-stability to Richardson’s notion of

strong reductivity, see [42, §16], which we discussed in §6.4.

Definition 10.23. A o-stable subgroup H of G is strongly o-reductive in
G if H is not contained in any proper o-stable parabolic subgroup of Cg(S),

where S is a o-stable maximal torus of Cq(H).

Remark 10.24. Note that in Definition 10.23 it makes sense to require S to
be a o-stable maximal torus of C(H) since such an S exists, by Corollary

7.14.

Theorem 6.18 shows that the notions of G-complete reducibility and
strong reductivity are equivalent. In the following we generalise this result
to the o-stability setting. The proof of the forward direction was provided
by Michael Bate, Tim Burness and Martin Liebeck.

Theorem 10.25. Let H be a o-stable subgroup of G. Then, H is strongly

o-reductive in G if, and only if, it is (G, o)-completely reducible.

Proof. Suppose that H is strongly o-reductive in G; so H is not contained
in any proper o-stable parabolic subgroup of C(S) where S C Cg(H) is a
o-stable maximal torus. Then, H is (Cg(S),0)-ir, and thus is (Cg(S),0)-
cr. Therefore, by Theorem 10.6, H is C(S)-cr, and by [1, Corollary 3.5] is
G-cr. As H is o-stable, by Theorem 8.6, it is (G, o)-cr.
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Suppose that H is (G,0)-cr. By Theorem 10.6, H is G-cr. Pick any o-
stable maximal torus S; of Cg(H), then by [1, Corollary 3.5] H is C(S1)-
ir. Therefore, H is (Cg(S1),0)-ir. This gives that H is not contained in
any proper o-stable parabolic subgroup of C(S1) where S; is any o-stable

maximal torus of Cg(H). Thus, H is strongly o-reductive in G. O

Remark 10.26. We note that the proof of Theorem 10.25 shows that Defini-

tion 10.23 is independent of the choice of o-stable maximal torus of Cq(H).

We have the following analogue of [42, Lemma 16.3], which justifies the

use of the terminology strongly o-reductive.

Lemma 10.27. Suppose that H is strongly o-reductive in G. Then H is

reductive.

Proof. Let S be a o-stable maximal torus of C(H). We have that C(.5)
is reductive. Suppose that R,(H) # e. Since H is o-stable, so is R, (H).
Then, by the construction of Borel-Tits, there is a proper o-stable parabolic
subgroup P of C¢(S) such that R,(H) C R,(P), and H C P. However,

this contradicts the hypothesis. Hence H is reductive. O
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Part 111

Complete Reducibility for
Lie Algebras
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11 Complete Reducibility for Lie Algebras

Let G be a reductive algebraic group. In this section we analyse the notion
of G-complete reducibility for a Lie subalgebra of g = Lie(G), which is due
to McNinch, see [37]. In Theorem 11.38, we obtain an analogue in the Lie
algebra setting of Theorem 6.28. As a consequence of this result, we obtain
Corollary 11.40, which demonstrates that if G is a simple algebraic group
then any Ad(G)-invariant ideal in g is G-completely reducible.

Notation 11.1. In this section algebraic groups will be represented with cap-
ital Roman letters, G, H, K, ..., and to each group the corresponding Lie

algebra will be denoted by the same letter in Gothic g, b,¢,....

From §5.8 we have that the adjoint representation of G gives an action

of G on g given by Ad(g) : X — Ad(g)(X) forallg € G, X € g.

Let g = Lie(G), and let “0” denote the identity element of the Lie algebra
g. A Lie subalgebra of g is called a parabolic (resp. Levi) subalgebra if it is
the Lie algebra of a parabolic (resp. Levi) subgroup of G.

11.1 G-Complete Reducibility for Lie Algebras

Let G be a reductive algebraic group over an algebraically closed field k,
and let H be a closed subgroup of G. Let g = Lie(G) and h = Lie(H), as
defined in §5.7. If H is reductive then b is called reductive.

We combine some definitions and results of [42, §2], and [1, Lemma 2.4].
We note that we originally introduced the definitions of Py, Ly, R, (P)), and

the map ¢y : P, — L) in §6.2.

Definition 11.2. Let A € Y(G), and x € k*.

(1) P\:={g € G|limg_o \(x) - g exists} is a parabolic subgroup of G.

(2) Ly:={g € G|limzoA(x)-g=g} is a Levi subgroup of Py.
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(3) Ur:={g € G |limu0A(x)-g=¢e} =Ry(P)).

(4) pr == {X € g | lim,,0 Ad(\(2))X exists} = Lie(Py) is a parabolic

subalgebra of g.

(5) Ly :={X € g|limy_0Ad(A(z))X = X} = Lie(L)) is a Levi subalgebra

of g.
(6) uy:={X € g|limy_0Ad(A(z))X = 0} = Lie(Uy,).
For g € Py the map c) : P\ — L) given by

ca(g) = lim A(z)gA(z) ™"

z—0
is a surjective homomorphism of algebraic groups. Clearly, R, (P)) is the
kernel of the map c). Corresponding to the group case, for X € p) define

the projection cy : py — [\ given by

ex(X) = lim Ad(A(z))X.

z—0
Since the limit lim, o0 Ad(A(x))X exists we have that Ad(A(z)) € GL(g),
for all z € k, and so Ad(A(x)) is an automorphism of g.
Thus, cy preserves the Lie bracket and as such c¢) is a homomorphism
of Lie algebras. As in the group case, the kernel of the map c) is uy and

we have the decomposition py = [\ @ uy, for details see, for instance, [27,
Equation 5.93(b)].

Suppose that G and H are reductive groups with H C G. Recall that
each one-parameter subgroup A € Y (H) may be considered as a cocharacter
of G. Therefore, corresponding to A is one parabolic subgroup Py(H) of
H and one parabolic subgroup Py(G) of G with Py(H) = P,\(G) N H. For
details see [1, Corollary 2.5]. We will write Py for P\(G), and will only write
P\(H) when H is a proper subgroup of G.

We denote py(H) = Lie(Py(H)) and p)(G) = Lie(P)\(G)). We have
pr(H) is the Lie algebra of a parabolic subgroup of H and p)(G) is the Lie
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algebra of a parabolic subgroup of G. As in the group case, we will write p

for p(G), and will only write p)(H) when H is a proper subgroup of G.

Following [37], we give the following definition.

Definition 11.3. Let G be a reductive algebraic group with Lie algebra g,
and let h be a Lie subalgebra of g.

(1) We say that b is G-completely reducible (or G-cr) if whenever h C
Lie(P) for some parabolic subgroup P of G, then b C Lie(L) for some

Levi subgroup L of P.

(2) We say that by is G-irreductble (or G-ir) if b is not contained in the

Lie algebra of any proper parabolic subgroup of G.

(3) We say that b is G-indecomposable (or G-ind) if b is not contained

in the Lie algebra of any proper Levi subgroup of G.

Remark 11.4. Suppose that G is a non-connected algebraic group, with
subgroup H. Then, the Lie subalgebras of G coincide with those of GP.
Therefore, Lie(H) is G-completely reducible if and only if it is G°-completely

reducible.

Remark 11.5. Let H be a closed subgroup of G = GL(V') where V is a
finite dimensional vector space. Then § is a Lie subalgebra of gl(V). We
claim that b is GL(V')-completely reducible if and only if V' is a semisimple
b-module. This is an analogous result in the Lie algebra case to Lemma

6.11, and can be seen as follows.

A parabolic subgroup P of GL(V) is the stabiliser of a flag F :=
(Vi,..., Vi) of subspaces {0} # V4 C Vo C .- C V,, of V, where
m < dim(V). By [6, Theorem 5.1], the Lie algebra p = Lie(P) also sta-
bilises the flag F of V.

As in Lemma 6.11, we may choose a complement W; to V;_1 in V; such

that V; = V;_1®W,;. Then a Levi subgroup L of P is isomorphic to GL,,, (k) x
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.-+ x GLy,, (k), where each n; = dim(W;). To each subspace U of V' that is
stabilised by L, there is a complement to U in V that is also stabilised by
L. Thus V is a semisimple L-module.

We have [ = Lie(L) is isomorphic to the direct sum &P, gl,,, (k) in p, and
V is a semisimple [-module.

Suppose that h is G-completely reducible, and stabilises a subspace U
of V. Then b is contained in the Lie algebra p of a parabolic subgroup P
of GG that also stabilises U. As b is G-completely reducible, b is contained
in the Lie algebra [ of some Levi subgroup L of P. Each Levi subalgebra of
p stabilises U, and a complement to U. As U has an [-stable complement
and h C [, it has the same b-stable complement. Thus, V is a semisimple

h-module.

Conversely, suppose that V is a semisimple h-module, and that b is
contained in the Lie algebra p of a parabolic subgroup P of G. Since p
acts on V by stabilising a flag (V1,...,V,), we have that bh also stabilises
(V1,...,Vy). Since V is a semisimple h-module b is of block diagonal form,

and so is contained in a Levi subalgebra of p.

We discuss the corresponding situation when G = Sp(V) or SO(V) in
Remark 11.29.

The following is an analogue of [1, Corollary 2.7].

Lemma 11.6. Let H be a reductive subgroup of G. Suppose that € is a Lie
subalgebra of g and is contained in b = Lie(H). Then:

(1) if € is G-irreducible, it is H-irreducible, and

(2) if ¢ is G-indecomposable, it is H-indecomposable.
Proof. (1) Suppose that ¢ is contained in the Lie algebra Lie(Q) of a proper
parabolic subgroup @ of H. Then, since H is reductive in G, by [1, Corollary
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2.5], there exists a proper parabolic subgroup P of G such that Q C P, and
t C Lie(P), a contradiction. Hence, ¢ is in no such Lie algebra of b, i.e. £ is
H-ir.

(2) Suppose that £ is contained in the Lie algebra Lie(M) of a Levi
subgroup M of a proper parabolic subgroup @ of H. Then, since H is
reductive in G, by [1, Corollary 2.5], there exists a proper parabolic subgroup
P of G such that @ C P, and M C L for L a Levi subgroup of P. Thus
t C Lie(L), a contradiction. Hence, ¢ is in no such Lie algebra of b, i.e. ¢ is

H-ind. O

Remark 11.7. Let H be a closed subgroup of G. If § is G-irreducible, then
so is H. This is easy to see. Indeed if H is not G-irreducible then H C P for

some proper parabolic subgroup P of G. Then h C Lie(P), a contradiction.

Notation 11.8. We consider the simultaneous adjoint action of G on g" for

g€ Gand X:=(Xy,...,X,) €g” by:

Ad(g)(X1,..., Xn) = (Ad(g) X1, ..., Ad(g)Xn).

Following Richardson [42], we denote the Lie subalgebra of g generated
by the X; by a(X).

Let X € g" and set h = a(X). Recall the centraliser in G of b is the set
Ca(h) ={9 € G| Ad(g9)X = X for all X € h}. For X € g, we denote the
stabiliser in G of X by Gx. Note that Cg(h) = Gx.

Let H be a closed subgroup of G. Set ¢gn(H) := {X € g" | Ad(h)X =
X for all h € H}. Finally, we set ¢g(h) :={X € g|[Y,X] =0for all Y € h}.

The next result is an adaptation of [37, Theorem 1.1], due to McNinch.
In [37], the tuple X is taken to be a basis of h, however we note that the
result holds also when X is a generating tuple of b (that is for X such that

a(X) = h). This is because the tuple X is used in the proof to generate
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the Lie algebra b, see [37, Proof of Theorem 1], much like we have used a
generating tuple below in Theorem 11.38. Therefore, this result is stated
in this more general form here. See also [3, Theorem 5.30] for a different

approach to part (2) of this theorem.

Theorem 11.9. Let by be a Lie subalgebra of g such that h = a(X) for some
X € g". Then:

(1) The Lie algebra b is G-completely reducible if and only if the G-orbit

of X is closed in g".

(2) Let H be a closed subgroup of G, and let hy = Lie(H). If H is G-
completely reducible, then by is G-completely reducible.

Remark 11.10. Part (1) is proved in [37] using techniques similar to those
of Richardson, see [42].

Once Part (1) is known, Part (2) is proved in the following way. Let S
be a maximal torus of Cq(H). Then, H C L := Cg(S), and so h C Lie(L).
By [37, Lemma 2] it is sufficient to show that b is L-completely reducible.
Since S was chosen to be maximal, we have that H is not contained in any
proper Levi subgroup of L. Since H is G-completely reducible, H is not
contained in any proper parabolic subgroup of L.

By Theorem 11.9 (1), to show that b is L-completely reducible, it is suf-
ficient to show that Ad(L)(X) is closed in Lie(L)", where X = (X1,...,X,)
is a generating tuple of h. If Ad(L)(X) is not closed, then the boundary
S = Ad(L)(X) — Ad(L)(X) is non empty, and we can refer to Theorem
6.25 to obtain that the destabilising parabolic subgroup Psx is a proper
parabolic subgroup of L. Since Ad(H) leaves h invariant, by [37, Corollary
7], we obtain that h- Psx = Ps aq(n).x = Psx, forall h € H. As a parabolic
subgroup is its own normaliser, we conclude that H C Pgx. This contra-
dicts our assumption, and so we conclude that h is L-completely reducible,

and therefore G-completely reducible.
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Ezample 11.11. By [1, Corollary 3.22], any Levi subgroup L of G is G-
completely reducible. Therefore, by Theorem 11.9, any Levi subalgebra [ of
g is G-completely reducible.

Ezample 11.12. Let H be a G-completely reducible subgroup. Then, by
[1, Corollaries 3.16, 3.17|, Cq(H) and Ng(H) are both G-completely re-
ducible. Hence, by Theorem 11.9 (2), Lie(Cq(H)) and Lie(Ng(H)) are

both G-completely reducible.

We present the following examples which show that the converse to The-

orem 11.9 (2) does not always hold even in the case when H is connected.

Ezxample 11.13. Any finite unipotent subgroup U of G is not G-completely
reducible since, by [23, §30.3], U C R, (P) for some parabolic subgroup P of
G, and U is not contained in any Levi subgroup of P. However, as U is finite,

its Lie algebra is trivial and is therefore trivially G-completely reducible.

The following example is taken from [37] and is attributed to Ben Martin.

Ezample 11.14. Let H be a semisimple group. Let p; : H — SL(V;) for i =
1,2, be two representations of H with p; semisimple and p2 not. Consider
the representation p : H — SL(V1 @ V2) given by p(h) = p1(h) ® p2(a(h))
where o is a standard Frobenius morphism, and set G := SL(V; & V2). Then
p(H) is not G-completely reducible, since Vi & V5 is not a semisimple p(H )-
module. Recall that the differential map J.(p) of p at e introduced in §5.5
maps h to Lie(SL(V1 @ V3)). The Lie algebra Lie(p(H)) = im(0ep) lies in the
Lie algebra of M = SL(V;) x SL(V2) (which is the semisimple part of a Levi
subgroup of GG), and im(9ep) = im(Fep1) Bim(Gepr00) = im(ep1) B0 lies in
sl(V1) @ sl(Va). We justify the last equality as follows. By [23, §5.4] 0, acts
on the functions that define o(SL(V2)) by taking all partial derivatives of
these functions, all of which involve a p-power. Hence, this factor vanishes
in the above. By [1, Lemma 2.12 (i)], the image of py x 1 : H — M is M-

completely reducible and, by Theorem 11.9 (i) Lie(p(H)) is M-completely
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reducible. Hence, by [37, Lemma 2] Lie(p(H)) = im(9dep1 x 1)(H) is G-

completely reducible.

The following is an analogue in the Lie algebra setting of the notion of

a strongly reductive subgroup of G due to Richardson, [42].

Definition 11.15. Let b be a subalgebra of g. We say b is strongly re-
ductive in G if b is not contained in the Lie algebra of any proper parabolic

subgroup of Cg(S), where S is a maximal torus of Cg(h).

We follow the argument of Richardson [42, §16] to obtain the following

result.

Theorem 11.16. Let X € g". Then a(X) is strongly reductive in G if and
only if the orbit Ad(G)X is closed in g".

Recall from Definition 6.21, that for a G-variety X, and Z = NzexCq(z),
we say € X is a stable point for the action of G if the orbit G-z is closed
in X and Cg(z)/Z is finite.

Proposition 11.17. Let X € g"™*. Then X is a stable point of g™ if and only
if a(X) is not contained in the Lie algebra of any proper parabolic subgroup

of G.

Proof. We sketch the proof of this result. Suppose a(X) is not contained in
the Lie algebra of any proper parabolic subgroup of G. We can conclude, as
in the proof of Proposition 6.23, that Ad(G)X is closed and affine. Therefore,
by [41, Theorem A], G% is reductive. Let S be a maximal torus of Gx, then

by following the argument in 6.23 we can conclude that G% = S.

To conclude that X is a stable point we need that Gx/Z is finite where
Z = NyegnGy. We have that Gx/S is finite. Because S C Z(G)°, and
Z(@)? is the kernel of the adjoint representation, we have S C Z. Since

Gx/Z is a quotient of Gx /S, it follows that Gx /Z is also finite.
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Conversely, suppose there is some non-central A € Y(G) with a(X)

N

prn = Lie(Py), for Py a proper parabolic subgroup of G. Let X =
(X1,...,X5), and set Y = (limy—,0 Ad(A(2)) X1, ..., lim;,0 Ad(A(x))X,).
Then, we have \(k*) C G¢, and hence \ € Y (Gy).

Since P, is proper in G, so Ly is also proper in G, and hence [, = Lie(L))
is proper in g. We have that [y consists of the elements of g which are fixed
by Ad(A(x)) for all x € k*. As Ad(\(k*)) does not fix all of g, A(k*) is not

contained in Z.

Hence, Z° C G%. These two groups must therefore have different di-
mensions, because they are connected, and so GOY /ZY is infinite. Thus Y is

not a stable point.

If Y € Ad(G)X, then the quotient Gx/Z is also infinite since Gx and
Gy are conjugate in G and, as before, X is not a stable point. Now, suppose
Y ¢ Ad(G)X, then the orbit of X is not closed because it does not contain
the limit Y = lim, 0 Ad(A(x))X. Again, we conclude that X is not a stable

point of g”. O

We state two preliminary results of Richardson before giving the proof
of Theorem 11.16. The first is a special case of [43, Theorem C], and the
second is [42, Lemma 16.6].

Lemma 11.18. Let S be a linearly reductive subgroup of G and let X €
¢gn(S). Then Ad(G)X is closed in g" if and only if Ad(Cq(S))X is closed
in cgn(S).

Lemma 11.19. Let X € g" and S be a mazimal torus of Gx. Then Ad(G)X
is closed in g" if and only if X is a stable point for the action of Cg(S) on
cgn(9).

We now prove Theorem 11.16.
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Proof. Let S be a maximal torus of Gx. Suppose that a(X) is strongly
reductive in G. Since X € ¢4(5)" we have a(X) C ¢4(S) and by [43, Lemma
4.1] ¢4(S) = Lie(Cg(S)). Hence, a(X) C Lie(Cg(S)). As a(X) is strongly
reductive in G, it is not contained in the Lie algebra of any proper parabolic
subgroup of Cg(S). By Proposition 11.17 applied to Cg(S), we have X
is a stable point for the action of Cg(S) on ¢g(S)". Therefore, the orbit
Ad(Cq(S))X is closed in ¢g(S)" = ¢4n(S), and hence by Lemma 11.18,
Ad(G)X is closed in g".

For the converse, suppose that Ad(G)X is closed in g”. Then, by Lemma
11.19, X is a stable point for the action of Cz(S) on ¢gn(S) = ¢4(S)"™. Hence,
by Proposition 11.17, a(X) is not contained in the Lie algebra of any proper
parabolic subgroup of C(S), in other words, a(X) is strongly reductive in
G. O

The three results that follow are corollaries of the preceding results,
and constitute analogues in the Lie algebra setting of [1, Theorem 3.1], [1,

Corollary 3.5] and [1, Corollary 3.21], respectively.

Corollary 11.20. A Lie subalgebra b of g is G-completely reducible if and

only if it is strongly reductive in G.

Remark 11.21. In the algebraic group setting, the equivalence between G-
complete reducibility and strong reductivity in G follows from group the-
oretic methods. The equivalence leads to the ‘geometric approach’ to G-
complete reducibility developed by Bate, Martin and Rohrle, described in
[1]. This constitutes a new method that is available to tackle problems in
G-complete reducibility and gives rise to a number of results, such as the
fact in [1, Corollary 3.7] which links G-completely reducible subgroups of G
to closed G-orbits in G™.

In the Lie algebra setting, we require Theorem 11.16 in order to show

that the equivalence between G-complete reducibility and strong reductivity
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holds. We note that Theorem 11.16 follows from the geometric methods of
Richardson [42].

Corollary 11.22. A Lie subalgebra b of g is G-completely reducible if and

only if it is Cq(S)-irreducible where S is a mazimal torus of Ca(h).

Recall that a subgroup H of G is called linearly reductive if all of its

representations are semisimple.

Corollary 11.23. Let S be a linearly reductive subgroup of G and let X €
¢gn(S). Then, a(X) is G-completely reducible if and only if it is Cq(S)-

completely reducible.

Proof. By Lemma 11.18, Ad(G)X is closed in g" if and only if Ad(Cx(S5))X
is closed in ¢gn (). Thus, since ¢gn(S) = ¢g(S)™ we see that a(X) is G-cr if
and only if it is Cg(5)-cr. O

The reverse direction of the following proposition provides a condition

for the converse of Theorem 11.9 (2) to hold.

Proposition 11.24. Let H be a closed subgroup of G such that H is con-
tained in Cqg(S) where S is a mazimal torus of Cg(h). Then H is G-

completely reducible if and only if b is G-completely reducible.

Proof. Suppose that H is G-cr. Then, by Theorem 11.9, b is G-cr.

For the converse, suppose h is G-cr. By Corollary 11.22, this is true
if and only if h is C(S)-ir, where S is a maximal torus of Cg(h). Since
H C Cg(S) by hypothesis, Remark 11.7 gives that H is Cg(5)-ir. Since
S C Cg(H) we have that S is a maximal torus of Cg(H), and so H is G-cr,

giving the result. O

Remark 11.25. Let G be a reductive group, and let g = Lie(G). Suppose that
H is a subgroup of G, and let S be a torus in Cg(H). Denote Lie(H) =
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h. Then by [6, §8.17] we have that h C ¢4(S) = {X € g | Ad(s)X =
X for all s € S}. That is S C Cg(H) implies S C Cg(h).

Remark 11.26. We can replace the condition that H is contained in Cg(S5)
where S is a maximal torus of Cg(h) with the stronger condition that
Ca(H) = Cg(h) in Proposition 11.24. This is because if S is a maximal
torus of Cg(h), and Cq(H) = Cg(h), then H C Cg(9).

Ezample 11.27. Let H be a connected subgroup of G that is not G-
completely reducible, such that Lie(H) is G-completely reducible. For in-
stance we may take for H and G the setup described in Example 11.14. Let
S be a maximal torus of Cg(H) contained in a maximal torus 7" of Cg(bh).

Then we may conclude that:
(1) S is properly contained in 7', and

(2) H is not contained in the normaliser of T'.

The following result follows immediately from [42, 16.8] together with
Theorem 11.9.

Lemma 11.28. Let G be a reductive algebraic group, and let S be a linearly
reductive group that acts on G. Let g = Lie G, and let X = (X1,...,X,) €
cgn(S) generate the Lie algebra by of g. Then b is G-completely reducible if,
and only if, b is Cq(S)-completely reducible.

Remark 11.29. Suppose that char(k) # 2, and let V' be an n-dimensional vec-
tor space over k. Let 7 : GL(V) — GL(V) be a non-trivial graph automor-

phism. Then 7 is of the form 7(g) = A(g7 )" A~!, where by a suitable choice
0 - e

of basis for V', A has the anti-diagonal form A = A , € = =£1,

e - 0

and A is either skew symmetric or symmetric. In either case 72 = e.

By [51, §11], if A is skew symmetric, then n is even, and GL(V)™ =
Sp(V), and if A is symmetric, then (GL(V)7)? = SO(V).
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Let S = (1) be the subgroup of Aut(GL(V')) generated by the automor-
phism 7. Then Cgr,(S) = {g € GL(V) | 7(g) = g} = GL(V)".

Since |S| does not divide char(k), Maschke’s Theorem gives that all of its
rational representations are semisimple. Therefore S is linearly reductive.
We apply Lemma 11.28 with G = GL(V), and S as above. This gives
that a subalgebra b of Lie(GL(V)7") is GL(V')"-completely reducible if and
only if b is GL(V)-completely reducible, and, by Remark 11.4, b is GL(V)7-
completely reducible if and only b is (GL(V)7)%-completely reducible.

Therefore, by Remark 11.5, when char(k) # 2 we have b is Sp(V) (resp.

SO(V))-completely reducible if and only if V' is a semisimple h-module.

The next proposition shows that for a subgroup K of G, if Ci(€) and
Ca(K) share a common maximal torus, then there is a certain class of
Levi subgroups of G for which the two implications of [37, Lemma 2] are

equivalent. The proof below was provided by Michael Bate and Tim Burness.

Proposition 11.30. Let K be a subgroup of G such that C(€) and Cq(K)
contain a common mazimal torus T. Let H = Cg(S), for S CT. Then the

following are equivalent:

(1) K is G-completely reducible,
(2) K is H-completely reducible,
(3) ¢ is G-completely reducible, and

(4) ¢ is H-completely reducible.

Proof. Let T be a common maximal torus of both Cg(¢) and Cg(K), and
let S C T be a torus of Cq(K).

We have that (1) and (2) are equivalent by [1, Corollary 3.22]. The
equivalence between (1) and (3) is given by Proposition 11.24 applied to

G. Finally, since T' C H, we have that T" is a common maximal torus of
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Cy(K) and Cg(f), and so the equivalence between (2) and (4) is given by
Proposition 11.24. ]

11.2 Separability

In this section we introduce the notion of separability for Lie algebras.

An extension E of a field F', denoted F D F, is said to be separable if
for each z € F, the minimal polynomial of x over F is a separable polynomial
(i.e. has distinct roots in FE).

Consider the morphism ¢ : X — Y of irreducible varieties. As discussed
in §5.2, the comorphism ¢* : k[Y] — k[X] induces an embedding of ¢*(k(Y"))
in k(X). If k(X) 2 ¢*(k(Y)) is a separable extension of fields, then ¢ is
said to be separable.

Suppose that H is topologically generated by the elements x1,...,x, in
G, and let x = (x1,...,2,) € G™. It is shown in [6, Proposition 6.7] that
the orbit map p: G — G - x is separable if and only if (Oep) : g = T (G - x),
the differential map of u at e as introduced in §5.5, is a surjective map, and
if this occurs G - x is isomorphic to G/Cg(x).

By [6, Proposition 6.7], for any subgroup H of G we have Lie(Cg(H)) C
¢g(H). The map (O.p) is surjective if and only if we have equality.

In the next definition we follow [1, §3.5], where the various centralisers

are defined in Notation 11.8.

Definition 11.31. Let H be a closed subgroup of G.
(1) IfLie(Cq(H)) = ¢4(H), then H is said to be separable in G.
(2) If Lie(Cgq(h)) = cg(b), then b is said to be separable in g.

Lemma 11.32. Let H be a closed separable subgroup of G such that g
is semisimple as an H-module. Then c¢g(H) is G-completely reducible. In
particular, if H is a linearly reductive subgroup of G, then ¢g(H) is G-

completely reducible.
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Proof. By [1, Theorem 3.46], H is G-cr and so, by [1, Corollary 3.17], we
have Cg(H) is G-cr. By Theorem 11.9, and since H is separable in G, we
get that Lie(Cq(H)) = ¢g(H) is G-cr. O

The following is an analogue of [1, Lemma 2.17]. The proof translates

over from the group case without major changes.

Lemma 11.33. Let X = (X1,...,X,,) € g". Then a(X) is strongly re-
ductive in G if and only if for every cocharacter A of G with a(X) C
pa(= Lie(Py)), there exists some g € G such that cx(Y) = Ad(g)Y for
allY € a(X).

The following lemma is standard, and can be found, for example, in [10,

§1.5] or [48, Corollary 5.3.3.].

Lemma 11.34. Let G act transitively on an algebraic variety X, and let
x € X. Then dim(G - x) = dim(G) — dim(Stabg(z)). In particular, for any
X € g, we have that dim(Ad(G)X) = dim(G) — dim(Cg(a(X))).

The following is an analogue of [1, Theorem 3.46], and provides a crite-
rion for h to be G-completely reducible. We sketch the proof here, and note

that is closely resembles the argument in the group case.

Theorem 11.35. Let by be separable in g. If g is semisimple as an h-module,

then b is G-completely reducible.

Proof. We sketch the proof of this result. Suppose that b is not G-cr. Choose
X = (Xy,...,X,) to be a generating tuple of h in g" in that h = a(X). Then,
by Theorem 11.9, the orbit Ad(G)X is not closed in g". By Theorem 6.20,
there exists a cocharacter A of G such that lim,_,o Ad(\(x))X =: X’ exists,
and the orbit Ad(G)X' is closed.

Let ' = a(X’). As in the proof of [1, Theorem 3.46], we can show that
dim(Ad(G)X') < dim(Ad(G)X), and dim¢g(h’) > dim cg(h).

156



Let m = ad(h), and m’ = ad(h’). Then m’ = cpgon(m). Since g is
h-semisimple, m is GL(g)-cr. Therefore, by Theorem 11.16, m is strongly
reductive in GL(g), and hence, by Lemma 11.33, and since h C p,, we have
m C ad(py). Hence, m" = cagon(m) = Ad(g)m for some g € GL(g). That is,
m’ is GL(g)-conjugate to m.

We have ¢g(h) (resp. ¢g(h')) is the set of fixed points of m (resp. m’) in g,
and so ¢g(h) is GL(g)-conjugate to ¢4(h’). Therefore, dim ¢g(h) = dim cy(h')

which is a contradiction, and hence § is G-cr. O

Recall that the prime p is said to be good for G is p does not divide any
of the coefficients in the expressions obtained when each root in the root
system of GG is written as a sum of simple roots. Then, p is said to be very
good for G if p is good for G and p does not divide n + 1 for any of the
simple components of type A4,, that occur in the decomposition of G into its

simple factors.

The following is an analogue of [4, Theorem 1.7], and follows immediately

from [4, Theorem 1.2] and Theorem 11.35.

Theorem 11.36. Let G be a connected reductive group, and suppose that
char(k) is very good for G. Let h be a Lie subalgebra of g such that g is

semisimple as an h-module. Then b is G-completely reducible.

11.3 Ad-Invariant Lie subalgebras

We recall some results from geometric invariant theory. Suppose V is an
affine G-variety, and suppose that v € V. Let S be a closed G-stable sub-
variety of V' that does not contain v, but such that S meets the closure of
G-v. We let |V, v|g denote the set of one-parameter subgroups A € Y (G) for
which lim,_,g A(x) - v exists and lies in S. We call a one-parameter subgroup
A € Y(G) indivisible if A = nu for some one-parameter subgroup p € Y(G)
if and only if n = 1.
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Let W be the Weyl group of G, and || — ||y the W-invariant length func-
tion on Y (G), as described in §6.6. We are in the setting of Theorem 6.25.
Let Ag, denote the set of indivisible optimal cocharacters in |V,v|g. The
parabolic subgroup P, arising in this theorem is associated to an indivisible
optimal cocharacter A in Ag,, and is determined uniquely by V,v and S.
We denote P\ by Ps,, and we call Ps, optimal for v and S. Recall also
that, due to Lemma 6.27, we have gPsﬂ,g*1 = Pg 4., for all g € G.

Notation 11.37. For V,S,v and Ps, as above, we denote Lie(Pg,) by pg..

Recall that G acts on g via the adjoint representation Ad, and we call
a Lie subalgebra b of g G-invariant if it is Ad(G)-invariant, that is if
Ad(g)h C b for all g € G.

The following result uses the techniques of B. Martin [35] and McNinch
[37]. Note that the proof below bears many similarities to the proof of [35,
Theorem 2.

Theorem 11.38. Let H C G and suppose that b = Lie(H) is a G-completely
reducible Lie subalgebra of g. Then, any H-invariant Lie subalgebra of b is

G-completely reducible.

Proof. Let £ be an H-invariant Lie subalgebra of h, and let K :=
(Ki,...,Kp) be a generating tuple for £ as a subalgebra of . Suppose
that ¢ is not G-cr. Then, by Theorem 11.9, Ad(G)K is not closed in g™.
By [39, No.8], the closure of this orbit contains a unique closed orbit, O
say, and K ¢ O. Therefore, g"", O and K satisfy the hypothesis of Theo-
rem 6.25. Therefore, there exists a cocharacter A of G contained in |g", K].
Furthermore, the limit lim, ,o Ad(A\(z))K exists, and therefore the limit
lim, 0 Ad(A(x))K; exists for each 4, and so € C py = pok C g, where the

last containment is proper, because po x = Lie(Pp k), and Pox # G.

Consider the proper parabolic subgroup Pp k of G. We apply Lemma

6.27, where the action of G on g" is the adjoint action Ad, to get gPO’Kg_1 =
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Po aqg)k for all g € G. By hypothesis we have that Ad(h)t = & for any
h € H, hence K’ := Ad(h)K is another generating tuple of &. Hence, we
may apply [37, Corollary 7] to K’, for any h € H, to get that |g", K| =
lg", K|, and apx(A) = apk/(\) (where apx()) is defined in §6.6), for
all A € |O,K]|. Therefore Ao x = Ap kg’ and hence Pox = Py /- Thus,
hPQKh_1 = Po adnk = Pox’ = Pok- Since Pp k is its own normaliser,
H C Pp k. We conclude that h C po k.

Let (Hi,...,H;) be a generating tuple for h. Define the tuple H :=
(Hy,...,H;, Ky,...,Ky). The limit lim,_ o Ad(A(z))H exists in g™ since
h C pox. However, this limit is not in Ad(G)H, since lim,_,o Ad(A(z))K ¢
Ad(G)K. Therefore, the orbit Ad(G)H is not closed, so Theorem 11.9

implies that b is not G-cr, which is a contradiction. ]

Corollary 11.39. Suppose that H is a subgroup of G such that b is G-
invariant and H is contained in Cg(S) for S a maximal torus of Cg(h).

Then H is G-completely reducible.

Proof. If § is G-invariant, then by Theorem 11.38 with H = G, b is G-cr.
Hence, by Corollary 11.24, H is G-cr. 0

11.4 Ideals in g

Let G be a simple algebraic group, with Lie algebra g. In our discussion of
ideals in g we chiefly follow the notation of [21]. The reader should be aware
that many authors use the symbols ¢, f, h as generating elements of certain
Lie algebras, however the notation of [21] is unrelated. A complete list of
G-invariant ideals of g is given in [21, Table 1].

In characteristic 2, if G is of type Ay, By or C,,, for any n, then there
are ideals in g that are not G-invariant, which we describe in the following

discussion.
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Let T be a maximal torus of G, and ® be the root system of G with
respect to the lattice X (7T'), see §5.11. The Lie algebra g of G can be realised
as g = t @ [[,ce 0o, Where the g, are the root spaces and t is the 0-weight
space. Let e be the subspace of g generated by the g,. Let &g be the
subset of ® consisting of all the short roots and let eg be the subspace of
g generated by the g, for o € ®g. Similarly let & be the subset of ®
consisting of all the long roots and let ey, be the subspace of g generated by

the g, for a € ®y.

For G of type A; where p = 2, the ideals {t + kX} and {kX} for each
0 # X € ¢ of g, are not G-invariant. For G of type Bs or C,, where p = 2, we
have that any ideal b of g for which [g,g] € b # g is not G-invariant. For G
of type C,, where p = 2, we have that the ideals eg + f + tp with 0 # § C e,
are not G-invariant, where tg is a certain subalgebra of t, as defined in [21,
§1].

In characteristic p, where p > 3, every ideal of g is G-invariant. Without
restriction on p, if G is a simple group of exceptional type, then any ideal
in g is G-invariant.

We may now present the following corollary, which is an analogue in the

Lie algebra setting of [35, Theorem 2].

Corollary 11.40. Let G be a simple algebraic group over k. Let m be
an ideal in g. If m is G-invariant, then m is G-completely reducible. In

particular, if char(k) > 3, then any ideal in g is G-completely reducible.

Proof. Apply Theorem 11.38 with H = G, noting that, when char(k) > 3,

any ideal in g is G-invariant, see [21, Table 1].

Ezxample 11.41. Let G be a simple algebraic group over a field k of charac-
teristic 2. Further, suppose that G is not of type Ay, By or Cp, for any n.
Then, any ideal of g is G-invariant, by [21, Table 1]. Hence, in this case,
any ideal of g is G-completely reducible.
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Ezample 11.42. Let G be a simple algebraic group G over k. By [21, Table
1], the ideal [g, g] of g is G-invariant. Therefore, [g, g] is G-cr.

Corollary 11.43. Let G be a simple algebraic group over k. Let M be a
subgroup of G for which m is a G-invariant ideal in g, and suppose that
M is contained in Cg(S) for S a mazimal torus of Cg(m). Then M is

G-completely reducible.

Proof. Since m is a G-invariant ideal in g, Corollary 11.40 gives that m is

G-cr. By Proposition 11.24, M is G-cr. O

Ezample 11.44. According to [21, Table 1], for G of type Ba, C), for n even
and for char(k) = 2, there exists an ideal i = ¢g + hg which is G-invariant,
where hg is a certain subalgebra generated by semisimple elements. There-

fore, by Corollary 11.40 i is G-completely reducible.
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Part IV

Conclusion
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12 Conclusion and Topics for Further Study

Let G be a reductive algebraic group over a field k = Fq where [, is the
finite field of ¢ = p* elements, for a prime p and positive integer a. Let o be

a Frobenius morphism of G, and let H be a closed o-stable subgroup of G.

In Part I of this thesis we described the structure of reductive alge-
braic groups and provided some background on the theory of G-complete
reducibility, that was introduced by Serre in [46], and later developed by
Bate, Martin and Roéhrle in [1]. Suppose that H is topologically generated
by the elements hj,...,h,. We described how the group-theoretic notion
of G-complete reducibility is equivalent to Richardson’s notion of strong re-
ductivity in G, which is a geometric notion in that it classifies the closed
G-orbits in G™. This link between geometry and group theory enables the

geometric theory of Richardson to be used to study G-complete reducibility.

In Part II we introduced the notion of (G, o)-complete reducibility as an
analogue in the setting of o-stability of the notion of G-complete reducibility.
Our first important result, Theorem 8.6, is to extend part of [33, Theorem
9] to show that a o-stable G-completely reducible subgroup of G is (G, 0)-

completely reducible.

The main result in Part II of this thesis is Theorem 9.15, in which we
demonstrated that a finite o-stable subgroup F' of G is G-completely re-
ducible if and only if it is (G, 0)-completely reducible. This is an attractive
result since neither of the implications in this equivalence are obvious. It is
also a significant generalisation of [31, Proposition 2.2] because we do not
impose any restrictions on the type of Frobenius morphism, and we allow
G to be a reductive group rather than simple. In addition, we show that if
F is not G-completely reducible then it is contained in a o-stable parabolic
subgroup P of GG, and in no Levi subgroup of P. This, in turn, is a signif-

icant improvement of the result of [18], and of [1, Theorem 5.8] in the case
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when ¢ is a standard Frobenius morphism. Finally, in Theorem 10.6 we see

that Theorem 9.15 can be extended to the case F' is not necessarily finite.

In [31], Liebeck, Martin and Shalev used what is reproduced in this
thesis as Proposition 9.1 to investigate the number of conjugacy classes of
maximal subgroups of simple groups. Our Proposition 9.14 is an extension
of this result from simple algebraic groups to reductive algebraic groups,
and it may be possible to infer information about the number of conjugacy
classes of maximal subgroups of the reductive groups we consider using the

methods of [31].

We conclude Part II by discussing an analogue in the setting of o-stability
of the notion of strong reductivity in G. For a closed o-stable subgroup H
of G, we defined the notion of strong o-reductivity in G. In Theorem 10.25
we proved that H is (G, o)-completely reducible if and only if H is strongly

o-reductive in G.

In Part IIT we discuss the notion of G-complete reducibility for Lie sub-
algebras of Lie(G), as introduced by McNinch in [37]. In Proposition 11.24
we provided conditions under which a subgroup of G is G-completely re-
ducible if and only if its Lie algebra is. The equivalence is non-trivial as
there exist non-trivial examples of non-G-completely reducible subgroups of
G whose Lie algebras are G-completely reducible. Thus, we have discovered

an interesting connection between the behaviour a group and its Lie algebra.

We proceed to study ideals in g, and we show that any G-invariant
ideal in g is G-completely reducible, see Corollary 11.40. This result is
therefore an analogue in the Lie algebra setting of Martin’s result about
normal subgroups given in [35], since normal subgroups of G and ideals in
the Lie algebra g are closely related, in fact in characteristic zero, they are in
one-to-one correspondence. Corollary 11.40 does not, however, talk about
other subalgebras of g, and their G-complete reducibility. The question

of how other subalgebras behave, with regard to G-complete reducibility
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remains an open question worthy of further study. One approach to tackle
this could be to investigate under what conditions a closed subgroup H of
G is contained in Cg(S), where S is a maximal torus of C(Lie(H)). This

is a sufficient condition for the equivalence in Proposition 11.24 to hold.

For a simple group G, it would be interesting to explore if a non-G-
completely reducible subgroup of G gives rise to an Ad(G)-invariant Lie
subalgebra of Lie(G), as listed in [21]. In this case, by Corollary 11.40, we

know that such a Lie subalgebra is G-completely reducible.

In order to identify non-normal subgroups of a simple algebraic group G,
one place to look is for non-G-completely reducible subgroups (for any nor-
mal subgroup of G is G-completely reducible, see [35, Theorem 2]). Consider
the situation described in [1, Example 3.45]. Then, for Char(k) = 2, and
n > 4 is even, we have that Sp,, (k) is not Sps,, (k)-completely reducible, and
thus is not a normal subgroup in Sp,,, (k). However, in this case there are no
non-Ad(G)-invariant ideals in Lie(Sp,,(k)). Stewart has surveyed the non-
G-completely reducible subgroups of exceptional groups, see [52] for details.
Again, in these cases there are no non-Ad(G)-invariant ideals in Lie(G).
Such subgroups may give rise to new and interesting examples of non-G-
completely reducible subgroups of GG, whose Lie algebras are G-completely
reducible. The question is, are the Lie algebras of these non-G-completely

reducible subgroups of G ideals in Lie(G)?

It would be interesting to extend Corollary 11.40 to the case where G
is semisimple. In [21, §3] Hogeweij discusses the situation of ideals in the
Lie algebras of semisimple groups. This direction of study could yield a
significant generalisation of the results of §11.4 from the case where G is

simple, to the case of G semisimple.
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