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1 Abstract

UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL AND HUMAN SCIENCES

Department of Mathematics

Doctor of Philosophy

Aspects of G-Complete Reducibility

by Daniel Gold

LetG be a connected reductive algebraic group, and σ a Frobenius morphism

of G. Corresponding to the notion of G-complete reducibility, due to J.-P.

Serre, we introduce a new notion of (G, σ)-complete reducibility. We show

that a σ-stable subgroup of G is (G, σ)-completely reducible if and only if it

is G-completely reducible. We also strengthen this result in one direction to

show that if H is a σ-stable non G-completely reducible subgroup of G, then

it is contained in a proper σ-stable parabolic subgroup P of G, and in no

Levi subgroup of P . We go on to introduce another new notion, that of Gσ-

complete reducibility for subgroups of Gσ. We show that a subgroup of Gσ

is Gσ-completely reducible if and only if it is (G, σ)-completely reducible.

Finally, we introduce the notion of strong σ-reductivity in G for σ-stable

subgroups of G, and show that this is an analogue to the notion of strong

reductivity in G in the setting of σ-stability.

We discuss a notion of G-complete reducibility for Lie subalgebras of

Lie(G), which was introduced by McNinch. We show that if H is a subgroup

of G that is contained in CG(S), where S is a maximal torus of CG(Lie(H)),

then H is G-completely reducible if and only if Lie(H) is G-completely

reducible. We give criteria for a Lie subalgebra of Lie(G) to be G-completely

reducible. For example, an ideal in Lie(G) is G-completely reducible if it is

invariant under the adjoint action of G.
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4 Introduction

Let G be a connected reductive algebraic group, over the algebraic closure

k = Fq of the field Fq of characteristic p with q = pa elements, for a prime

p and positive integer a. The notion of G-complete reducibility, which is

central to this thesis, was introduced by J.-P. Serre, see [46]. We define this

notion as follows.

Definition 6.10. Let H be a subgroup of G.

(1) H is called G-irreducible (or G-ir) if H is not contained in any

proper parabolic subgroup of G.

(2) H is called G-completely reducible (or G-cr) if whenever H is con-

tained in a proper parabolic subgroup P of G, then H is contained in

a Levi subgroup of P .

Let H be an algebraic group, then H can be embedded in the general

linear group GL(V ) for some finite dimensional vector space V , say via the

map φ. In standard representation theory, one investigates the properties of

the homomorphism φ : H → GL(V ). The vector space V can be regarded

as a module over the group ring kH, which we refer to simply as an H-

module. In this case, H is GL(V )-completely reducible if and only if V

is a semisimple H-module. The notion of GL(V )-complete reducibility is

therefore equivalent to the notion of V being a semisimple H-module.

The notion of G-complete reducibility is defined in greater generality,

and in this sense it provides results which extend those from the standard

representation theory of algebraic groups. This enables a new set of tools to

be employed in the study of representation theory, as well as opening a new

branch of mathematics which provides its own interesting and attractive

theory.
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In his paper [42], Richardson introduced the notion of strong reductivity

in G. A closed subgroup H of G is called strongly reductive in G if H

is not contained in any proper parabolic subgroup of CG(S), where S is a

maximal torus of CG(H). Suppose that H is topologically generated by the

elements x1, . . . , xn. Richardson showed that H is strongly reductive in G

if and only if the orbit of G on the n-tuple (x1, . . . , xn) by simultaneous

conjugation is closed in Gn. Since the strongly reductive subgroups of G

classify the closed G-orbits in Gn, strong reductivity can be viewed as a

geometric notion, see [42, Theorem 16.4]. Bate, Martin and Röhrle showed,

in [1, Theorem 3.1], that the notion of G-complete reducibility is equivalent

to the notion of strong reductivity in G. This result is remarkable because it

provides an equivalence between the geometric notion of strong reductivity,

and the group theoretic notion of complete reducibility. One implication of

this result is that it enables the use of methods from the field of geometric

invariant theory in the study of G-complete reducibility.

As an example of such a use of geometric invariant theory, in [35] Mar-

tin showed that a normal subgroup of a strongly reductive subgroup in G

is strongly reductive in G, and from the above remarks this implies that a

normal subgroup of a G-completely reducible subgroup of G is G-completely

reducible. If we consider the special case where G = GL(V ), then we see

that this striking result is in fact a direct analogue of Clifford’s Theory in

representation theory, see [14]. Given a normal subgroup N of G, Clifford’s

Theory asserts that if V is a semisimple kG-module, then V is a semisimple

kN -module. Since semisimplicity of the module V and complete reducibility

are equivalent for subgroups of GL(V ), and in turn as we have equivalence

between complete reducibility and strong reductivity, the required equiva-

lence between Clifford’s Theory and Martin’s normal subgroup result in this

setting follows.

In characteristic zero, a subgroup H of G is G-completely reducible if

7



and only if H0 is reductive as noted in [42, §16]. By [1, Theorem 3.48], if H is

connected and the characteristic of k is larger than the Coxeter number of G,

then we have that H is G-completely reducible if and only if H is reductive.

However, for small positive characteristic there are examples of connected

reductive groups which are not G-completely reducible, for instance see [1,

Example 3.45]. In this example we take the field k to have characteristic 2

and let n ≥ 4 be even. By using a diagonal embedding of Spn(k) in Spn(k)×

Spn(k) it is shown that Spn(k) is not Sp2n(k)-completely reducible, however

Spn(k) is connected and reductive. Therefore, the study of G-complete

reducibility provides some interesting examples when the characteristic of

the underlying field, k, is positive and small.

Let G be a subgroup of GLn(k). A homomorphism σ : G → G is a

Frobenius morphism if some power of σ is the map which sends the matrix

(xij) 7→ (xpij). This definition can easily be extended to algebraic groups

isomorphic to G. When G is simple, a surjective homomorphism of G is a

Frobenius morphism if, and only if, it fixes finitely many points, that is the

subgroup Gσ = {g ∈ G | σ(g) = g} is finite. Frobenius morphisms are of

general interest because the finite groups of Lie type arise as groups of the

form Gσ when G is simple.

Let σ be a Frobenius morphism of G. We say that a subgroup H of G

is σ-stable if σ(H) = H. In their paper [33], Liebeck and Seitz consider

the case when G is simple and of exceptional type, and H ⊆ Gσ is a finite

subgroup of σ-fixed points of G which is G-completely reducible. In this

case they showed that if H is contained in a σ-stable parabolic subgroup P

of G, then H is contained in a σ-stable Levi subgroup of P . This motivates

the following definition, which is one of the main definitions in this thesis.

Definition 8.1. Let H be a σ-stable subgroup of G.

(1) We say H is (G, σ)-completely reducible (or (G, σ)-cr) if whenever

8



H is contained in a σ-stable parabolic subgroup P of G, then H is

contained in a σ-stable Levi subgroup of P .

(2) We say H is (G, σ)-irreducible (or (G, σ)-ir) if H is not contained

in any proper σ-stable parabolic subgroup of G.

The following is the first important result in this thesis, and provides

one direction of our investigation of the connection between the notions of

G-complete reducibility and (G, σ)-complete reducibility.

Theorem 8.6. A σ-stable G-completely reducible subgroup of G is (G, σ)-

completely reducible.

Theorem 8.6 is an extension of part of Liebeck and Seitz’s result [33,

Theorem 9] in that we have removed several conditions that were imposed,

namely that G is of exceptional type, and H is contained in Gσ; we only

need that H is σ-stable.

Liebeck, Martin and Shalev showed in [31, Proposition 2.2] that in the

case G is simple and not of type B2 (p = 2), F4 (p = 2) or G2 (p = 3), and σ

is a Frobenius morphism of G, then a finite σ-stable subgroup of G is either

strongly reductive in G, or is contained in a σ-stable parabolic subgroup P

of G and in no Levi subgroup of P . In other words, this result shows that

if a finite σ-stable subgroup of G is not G-completely reducible, then it is

not (G, σ)-completely reducible. This result provides a partial converse to

Theorem 8.6.

In Section 9 and Section 10 we explore the converse to Theorem 8.6 more

generally. In Section 9.2 we present Theorem 9.12 which provides a converse

to Theorem 8.6 for finite σ-stable subgroups of G. The proof follows the

methods of [31, Proposition 2.2], however, for the cases where Gσ is a Ree

or Suzuki group, we need to perform a case-by-case analysis. In particular,

the equivalence presented in Theorem 9.12 holds for all Frobenius morphisms
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of the simple group G, and is therefore a significant generalisation of [31,

Proposition 2.2].

Theorem 9.12. Let G be a simple algebraic group, and let σ be a Frobenius

morphism of G. Suppose that F is a finite σ-stable subgroup of G, then

(1) F is G-completely reducible if and only if it is (G, σ)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper

σ-stable parabolic subgroup P of G and not in any Levi subgroup of P .

In Section 9.3 we provide a further generalisation of [31, Proposition 2.2]

by extending Theorem 9.12 to include the case where G is reductive. We

present this result in Theorem 9.15.

Theorem 9.15. Let G be a reductive algebraic group, and let σ be a Frobe-

nius morphism of G. Suppose that F is a finite σ-stable subgroup of G,

then

(1) F is G-completely reducible if and only if it is (G, σ)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper

σ-stable parabolic subgroup P of G and not in any Levi subgroup of P .

Theorem 9.15 is proved by using the techniques of Liebeck, Martin and

Shalev [31], in addition to a novel method of pulling back to the σ-orbits

of the simple groups that occur in G. By looking at these σ-orbits we

can focus on the behaviour inside each of the simple factors of G, which is

well understood by Theorem 9.12. Let H be one such σ-orbit. This method

allows us to switch between the H-complete reducibility and (H,σ)-complete

reducibility cases inside these σ-orbits, and hence using the results of [1, §2]
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we provide a way to consider all the σ-orbits together to return to the

situation inside G itself, and thereby obtain the result.

In Section 10 we introduce the notion of a finite-σ-structure, and using

it show that an infinite σ-stable subgroup of G can be modelled as a finite

subgroup, in that a finite σ-stable subgroup can be found which shares the

same G-complete reducible properties as the original group. The following

statement is the main result of this section and shows that Theorem 9.15

holds in the case F is replaced with an arbitrary σ-stable subgroup H of G.

Theorem 10.6. Let G be a reductive algebraic group, and let σ be a Frobe-

nius morphism of G. Suppose that H is a σ-stable subgroup of G, then

(1) H is G-completely reducible if and only if it is (G, σ)-completely re-

ducible, and

(2) if H is not G-completely reducible, then H is contained in a proper

σ-stable parabolic subgroup P of G and not in any Levi subgroup of P .

Theorem 10.6 is our main theorem in the study of (G, σ)-complete re-

ducibility, and shows that the notions of G-complete reducibility and (G, σ)-

complete reducibility are equivalent for σ-stable subgroups of G. This is a

startling result because neither implication is obvious, and in one direction

it gives information about a subgroup H of G with respect to its contain-

ment in general parabolic and Levi subgroups of G, based only upon its

containment in σ-stable parabolic and σ-stable Levi subgroups of G.

We provide examples of (G, σ)-completely reducible subgroups of G. For

instance, a σ-stable Levi subgroup of G is (G, σ)-completely reducible. For

a Frobenius morphism σ of G, the finite group of Lie type Gσ is (G, σ)-

completely reducible.

In the case that σ is a standard Frobenius morphism, and G is a reductive

group, then Theorem 10.6 is equivalent to [1, Theorem 5.8]. When σ is any

Frobenius morphism of G then part (1) of Theorem 10.6 is proved in [18].

11



In Section 10.2 we introduce another notion related to G-complete re-

ducibility, that of Gσ-complete reducibility. In Proposition 10.19, we show

that a subgroup of Gσ is Gσ-completely reducible if and only if it is (G, σ)-

completely reducible. This leads us to more examples of (G, σ)-completely

reducible subgroups of G, and of G-completely reducible subgroups of G, as

in Examples 10.21 and 10.22.

We conclude Section 10 by discussing an analogue in the setting of σ-

stability to the notion of strong reductivity in G. We introduce the following

definition.

Definition 10.23. A σ-stable subgroup H of G is strongly σ-reductive in

G if H is not contained in any proper σ-stable parabolic subgroup of CG(S),

where S is a σ-stable maximal torus of CG(H).

We go on to show that the notions of strong σ-reductivity in G and

(G, σ)-complete reducibility are equivalent, and this is analogous in the σ-

stability setting to [1, Theorem 3.1].

Theorem 10.25. Let H be a σ-stable subgroup of G. Then, H is strongly

σ-reductive in G if, and only if, it is (G, σ)-completely reducible.

In [37], McNinch introduced the notion of G-complete reducibility for

Lie subalgebras of g = Lie(G). This is the analogous notion in the Lie

subalgebra setting to that of G-complete reducibility for subgroups of G.

Definition 11.3. Let G be a reductive algebraic group, and let h be a Lie

subalgebra of Lie(G).

(1) We say that h is G-completely reducible (or G-cr) if whenever h ⊆

Lie(P ) for some parabolic subgroup P of G, then h ⊆ Lie(L) for some

Levi subgroup L of P .

(2) We say that h is G-irreducible (or G-ir) if h is not contained in the

Lie algebra of any parabolic subgroup of G.

12



(3) We say that h is G-indecomposable (or G-ind) if h is not contained

in the Lie algebra of any proper Levi subgroup of G.

McNinch showed, in [37, Theorem 1], that if H is a G-completely re-

ducible subgroup of G, then h = Lie(H) is a G-completely reducible Lie

subalgebra of g = Lie(G). However, the converse does not hold in general

for both the connected and non-connected cases. The simplest way to see

this is in the non-connected case, where we take a finite non-G-completely

reducible subgroup F of G. Then Lie(F ) is trivial and so is G-completely

reducible. Indeed, counterexamples to the converse of [37, Theorem 1] exist

even in the connected case, and in all positive characteristics, as shown in

[37, p.1].

We show, in Remark 11.5, that if h is a Lie subalgebra of Lie(GL(V )),

then h is GL(V )-completely reducible if and only if V is a semisimple h-

module. Remark 11.29 shows the corresponding result holds for Lie subal-

gebras of Lie(SO(V )) and Lie(Sp(V )).

We obtain, in Example 11.27, that if H is a subgroup of G that is not

G-completely reducible, such that Lie(H) is G-completely reducible, then

no maximal torus of CG(Lie(H)) normalises H. We provide a criterion for

a subgroup K of G, and a Levi subgroup L of G such that we have the

following equivalences:

K is G -completely reducible⇔ K is L -completely reducible

⇔ Lie(K) is G -completely reducible

⇔ Lie(K) is L -completely reducible.

As in the group case, we define a notion, that of strong reductivity in G

for Lie subalgebras of g and, in Corollary 11.20, we show that a Lie subalge-

bra h of g is strongly reductive in G if and only if it is G-completely reducible.

This definition is important in that this approach leads to the following

13



proposition, which gives a sufficient condition for H to be G-completely

reducible if and only if h is G-completely reducible.

Proposition 11.24. Let H be a closed subgroup of G such that H is con-

tained in CG(S) where S is a maximal torus of CG(h). Then H is G-

completely reducible if and only if h is G-completely reducible.

We give a number of criteria for a Lie subalgebra of g to be G-completely

reducible. For instance in Section 11.2, by Theorem 11.35, if h is a separable

Lie subalgebra of g, and g is a semisimple h-module, then h is G-completely

reducible. In Section 11.3, as one of the main results of this section we

have the following result which is an analogue in the Lie algebra setting of

Martin’s result on normal subgroups of strongly reductive subgroups of G,

see [35, Theorem 2].

Theorem 11.38. Let H ⊆ G and suppose that h = Lie(H) is a G-completely

reducible Lie subalgebra of g. Then, any H-invariant Lie subalgebra of h is

G-completely reducible.

In order to prove this result we exploit the geometric invariant theory in

a similar manner to that done by Martin in [35, Theorem 2].

In Section 11.4, we present the following corollary about ideals in g, again

giving a new criterion for a Lie subalgebra to be G-completely reducible.

Corollary 11.40. Let G be a simple algebraic group over k. Let m be

an ideal in g. If m is G-invariant, then m is G-completely reducible. In

particular, if char(k) ≥ 3, then any ideal in g is G-completely reducible.

Using Hogeweij’s list of G-invariant ideals in g for simple G, see [21],

Corollary 11.40 gives a new method of finding G-completely reducible sub-

algebras of g.

This thesis is divided into three parts. Part I provides an introduction

to the theory of affine varieties and algebraic groups and includes an outline

14



of the classification of simple algebraic groups into the classical and excep-

tional types. Later in Part I we discuss the structure of reductive algebraic

groups. Reductive groups are interesting and important as they possess

a rich structure. In a reductive group we can ask whether a subgroup is

G-completely reducible by looking at its properties of containment within

parabolic subgroups and Levi subgroups. We also provide a short survey

of some of the relevant and interesting results in the theory of G-complete

reducibility to emerge over the past 10 years. We go on to discuss Frobenius

morphisms of algebraic groups, and remark that the finite groups of Lie type

arise as the fixed point groups of Frobenius morphisms.

In Part II we introduce the notion of (G, σ)-complete reducibility and

discuss it in depth. We draw some parallels with the theory of G-complete

reducibility. We go on to introduce the notion of Gσ-complete reducibility,

again drawing parallels with G-complete reducibility, and show how these

notions provide examples of G-completely reducible subgroups of G.

In Part III we discuss the notion of G-complete reducibility for Lie subal-

gebras of Lie(G). We show that G-complete reducibility has an analogue in

the form of strong reductivity in G for Lie algebras. We use this to provide

a criterion for a subgroup to be G-completely reducible if and only if its Lie

algebra is.
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5 Introduction to Algebraic Groups

In this section we introduce algebraic varieties and define what an alge-

braic group is. We go on to sketch the classification of the simple algebraic

groups. Throughout we let k be an algebraically closed field of arbitrary

characteristic, unless stated otherwise.

5.1 Affine Sets and the Zariski Topology

View kn as an n-dimensional vector space, and let k[T ] = k[T1, . . . , Tn] be

the polynomial algebra of k-valued functions in n variables. Elements of

k[T ] may be viewed as functions f : kn → k, that is k-valued functions

on kn. We define a point x ∈ kn to be a zero of the function f if

f(x) = 0. We say that x is a zero of the ideal I ⊂ k[T ] if f(x) = 0

for all f ∈ I. We denote the set of zeros of the ideal I by V (I), that is

V (I) := {x ∈ kn | f(x) = 0 for all f ∈ I}. If X ⊆ kn, then we denote the

ideal of all f ∈ k[T ] whose zero set contains X by I(X), that is I(X) :=

{f ∈ k[T ] | f(x) = 0 for all x ∈ X}.

For an ideal I ⊆ k[T ], the radical of I, denoted
√
I, is defined to be

the set of all f ∈ k[T ] such that fm ∈ I for some m ≥ 1.

There is a topology on kn, called the Zariski topology, whose closed

sets are the V (I). We call the closed sets in this topology affine sets. If we

take I = {0}, then V (I) = kn, hence kn is a closed set and its complement ∅

is open. Similarly, if we take I = k[T ], then V (I) = ∅, hence the empty set

is a closed set and its complement kn is open. These are important examples

of affine sets. We denote kn when viewed as an affine set by the symbol An.

For a subset X ⊆ An we have V (I(X)) ⊇ X, and for an ideal I ⊆ k[T ]

we have I(V (I)) ⊇ I. A famous theorem called Hilbert’s Nullstellensatz

(‘Theorem of Zeros’), see for example [29, Theorem 1.5] or [23, Theorem

1.1], provides the equality I(V (I)) =
√
I, giving a bijective correspondence

18



between the affine sets in An and the set of radical ideals of k[T ]. Examples

of radical ideals in k[T ] are prime ideals. One corollary is that if I is a

proper ideal in k[T ], then V (I) is not empty, and this is the motivation for

the name of the theorem.

Let I be a maximal ideal in k[T ]. From Hilbert’s Nullstellensatz, we can

conclude that I ⊂ I({x}) ( k[T ] for some x ∈ An. Hence, I = I({x}).

Conversely, if x ∈ An, then f(T ) 7→ f(x) is a surjective homomorphism

k[T ] → k with kernel I({x}). Therefore, to each point in An there exists a

corresponding unique maximal ideal in k[T ].

Definition 5.1. A topological space is called irreducible if it is not the

union of two proper closed subsets.

A point (a1, . . . , an) in An, is closed in the Zariski topology, being the

unique zero of the polynomials x1 − a1, . . . , xn − an. In An, finite sets of

at least two points are reducible, being the union of finitely many points.

The zero set of x2
1 + x2

2 = c, for a constant c ∈ k∗ (a circle), or a line in A2

are irreducible. The union of two intersecting but non-parallel affine lines

in A2, however, is a reducible topological space, since it is the union of two

different lines each of which is an affine set.

Definition 5.2. A topological space is connected if it is not the union of

two proper closed disjoint subsets.

Immediately from Definition 5.2, we see that an irreducible space is con-

nected. Therefore, the examples for irreducible sets are connected. However,

in the converse, the union of two intersecting but non-parallel affine lines in

A2 is connected but not irreducible.

The following is [23, Proposition 1.3 C].

Lemma 5.3. A subset X of An is irreducible if and only if its ideal I(X)

is prime. In particular, An is irreducible.
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Proof. Let I = I(X). Suppose X is irreducible. Let f1(T )f2(T ) ∈ I. Then,

each x ∈ X is a zero of f1(T ) or f2(T ), so that X is covered by V (I1)∪V (I2),

for Ii the ideal generated by fi(T ). As X is irreducible, it lies completely

within one of these two sets, so that f1(T ) ∈ I, or f2(T ) ∈ I. Thus, I is

prime.

Conversely, suppose that I is prime, and that X = X1 ∪ X2 for Xi

a closed subset of X. If both Xi are properly contained within X, then

there exists some fi(T ) ∈ I(Xi), such that fi(T ) /∈ I. However, f1(T )f2(T )

vanishes on all of X, contradicting the primeness of I.

We now consider how to construct products of affine sets. Let {fi}

be a set of polynomials in n variables that generate the ideal (f1, f2, . . .)

in the ring k[T1, . . . , Tn], and {gj} be a set of polynomials in m variables

that generate the ideal (g1, g2, . . .) in the ring k[Tn+1, . . . , Tn+m]. If X =

V (f1, f2, . . .) ⊆ An and Y = V (g1, g2, . . .) ⊆ Am, then it is natural to

consider X ×Y to be the zero set of all the fi and gj viewed as polynomials

in n + m variables in An × Am := An+m. The following is [23, Proposition

1.4].

Proposition 5.4. If X ⊆ An and Y ⊆ Am are closed irreducible sets, then

X × Y is closed and irreducible in An+m.

The Zariski topology on Rn differs from euclidean topology in that far

fewer sets are closed. For example, in R the only Zariski closed sets are R and

finite sets of points, since points are the common zeros of linear polynomials.

However, unlike in euclidean topology the interval [0, 1], for example, is not

closed.

In the Zariski topology every non-empty open set is infinite, and in an

irreducible variety a non-trivial open set intersects non-trivially with every

other non-trivial open set. Therefore, non-empty open sets are dense in their

ambient space. For more information see, for instance, [23, §1.3]. Examples
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of open sets in An are ∅, An itself and the so-called principal open sets Anf ,

which are defined as the non-vanishing of a single polynomial f ∈ k[T ] (this

notion is formalised in Definition 5.8), that is Anf := {x ∈ An | f(x) 6= 0}

for some f ∈ k[T ]. For further discussion on these fact see [23, §1.2], for

instance.

Definition 5.5. A topological space is said to satisfy the descending chain

condition (or DCC) if each non-empty chain of inclusions of closed subsets

V1 ⊇ V2 ⊇ · · · stabilises.

Definition 5.6. A topological space is Noetherian if each non-empty col-

lection of closed subspaces has a minimal element relative to inclusion.

An affine set is Noetherian if and only if it satisfies the DCC. Let X =

V (I) for some I ⊆ k[T ]. Hilbert’s Basis Theorem ([23, §0 0.1], for instance)

asserts that k[T ] is Noetherian, that is it satisfies the ascending chain

condition on ideals (each non-empty chain of inclusions of ideals in k[T ] has

a maximal element), or equivalently that each ideal in k[T ] has a finite set

of generators. Therefore, as the radical ideals correspond to the affine sets

in An, each non-empty collection of closed subsets of X contains a minimal

element. Hence, X is Noetherian.

The following is [23, Proposition 1.3 B], where a proof of this result can

be found.

Theorem 5.7. Let X be a Noetherian topological space. Then X has finitely

many maximal irreducible closed subspaces whose union is X.

Consider the union X = X1 ∪ · · · ∪Xn, where the Xi are the irreducible

affine sets such that there are no inclusions within the set {X1, . . . , Xn}, and

which exists by Theorem 5.7. TheXi are uniquely determined, and are called

the irreducible components of X. They are the maximal irreducible

subspaces of X. For example, the group Mn(k), of monomial n×n matrices

21



over k, consists of the matrices (xij) with exactly one non-zero entry in each

row and column. This is an affine set because its underlying set determined

by the polynomial conditions as follows:

xijxik = 0 if j 6= k
xijxkj = 0 if i 6= k∑

i xij = c1 for each j, and c1 ∈ k∗∑
j xij = c2 for each i, and c2 ∈ k∗.

The group Mn(k) has n! irreducible components. If n = 2, these irreducible

components are comprised of the sets of the diagonal matrices and the anti-

diagonal matrices over k.

The polynomials in k[T ], which when restricted to the set X are distinct,

are in one-to-one correspondence with the k-algebra k[T ]/I(X). We denote

this algebra k[X] and call it the affine algebra ofX. We have that whenever

X is irreducible k[X] is an integral domain, since I(X) is a prime ideal. We

form the field of fractions of k[X], that is the smallest field containing k[X]

as a sub-ring, and denote it k(X). The field k(X) is the function field of

X, and consists of rational functions of the form f = g/h for g, h ∈ k[X]

such that h(x) 6= 0 for some x ∈ X.

Definition 5.8. Let X be a closed affine set, and let f be a function in

k[X]. The set Xf := {x ∈ X | f(x) 6= 0} is called a principal open set in

X.

The principal open subsets form a basis of the Zariski topology on X.

This can be seen because V (I + J) = V (I) ∩ V (J) and so V (I + J)c =

V (I)c ∪ V (J)c, where the c denotes the complement.

Hilbert’s Nullstellensatz can be adapted to k[X], giving that closed sub-

sets of X correspond one-to-one with the radical ideals in k[X], and the

irreducible subsets of X correspond to the prime ideals in k[X]. Further-

more, points of X correspond one-to-one with maximal ideals in k[X], see

[48, §1.3.2.]. In this sense, all the geometric information about X is trans-

ferred to k[X].
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5.2 Affine Varieties and Morphisms

Let X be an irreducible affine set with field of functions k(X). For x ∈ X

define the ring,

Ox := {f ∈ k(X) | f = g/h, where g, h ∈ k[X] and h(x) 6= 0}.

Associated to Ox, is an evaluation function φ given by φ(f) = f(x) for all

f ∈ Ox. Therefore, φ is a surjective ring homomorphism from Ox onto k

whose kernel is the ideal mx of all polynomial quotients g/h ∈ Ox, with

g(x) = 0. Hence, we have that Ox/mx
∼= k. Therefore, mx is a maximal

ideal in Ox. A local ring is one which has a unique maximal ideal. In fact,

mx is the unique maximal ideal in Ox, see [23, §2.1] for instance. The ring

Ox is called the local ring of x on X.

Let V be an open neighbourhood of x in X, and let f : V → k be a

function. Then f is called regular at x if there exists g, h ∈ k[X] and an

open set U ⊂ V containing x such that f(y) = g(y)/h(y) and h(y) 6= 0,

for all y ∈ U . Furthermore, f is called regular on V if it is regular at all

x ∈ V . The ring of functions regular on V is denoted OX(V ).

Every polynomial f ∈ k[X] is a regular function on X, in particular the

zero polynomial is regular.

We can view OX as a function assigning to each open subset U ⊂ X a

k-algebra OX(U) of k-valued functions on U , which is non-trivial by the last

remark. In fact OX is a sheaf of functions on X in that:

(1) if U ⊂ V are open sets and f ∈ OX(V ) then f |U ∈ OX(U), and

(2) if U is covered by open sets Ui, given fi ∈ OX(Ui) such that fi = fj

on Ui ∩Uj , then there exists a unique f ∈ OX(U) such that f |Ui = fi.

The notion of a sheaf of functions for affine sets is well defined for arbi-

trary topological spaces. Let X be a topological space, then we call the pair

(X,OX) a ringed space.
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Definition 5.9. Let (X,OX) and (Y,OY ) be ringed spaces.

(1) We call the map φ : (X,OX)→ (Y,OY ) a morphism if

(a) φ : X → Y is continuous, and

(b) whenever V ⊂ Y is open and U = φ−1(V ), then f ◦φ|U ∈ OX(U)

for any f ∈ OY (V ).

(2) We say (X,OX) and (Y,OY ) are isomorphic if there are morphisms

φ : (X,OX) → (Y,OY ), and φ−1 : (Y,OY ) → (X,OX) such that

φ ◦ φ−1 = id(Y,OY ) and φ−1 ◦ φ = id(X,OX).

Definition 5.10. The ringed space (X,OX) is called an affine variety if

it is isomorphic to (Y,OY ) where Y is an affine set. We frequently denote

this affine variety (X,OX) by X, and implicitly have in mind its sheaf of

functions.

The group GLn(k) is the set of all n×n matrices with entries in the field

k and whose determinant is non-zero, and can be identified with the prin-

cipal open set in An2
determined by the non-vanishing of the determinant

function det. For each matrix g ∈ GLn(k) we set ag = 1
det(g) . Then GLn(k)

can be embedded in An2+1 via the map g 7→ (g, ag), for g ∈ GLn(k), ag ∈ k∗.

We then identify GLn(k) with the zero set in An2+1 of the ideal of polynomi-

als (det(g)ag−1). This is a polynomial map, and so sends regular functions

to regular functions. The inverse of g is defined by g−1 = 1
det(g)(Adj(g))

where Adj(g) is the adjugate matrix of g, which is determined by the matrix

of minors of g, and the matrix of minors is determined by polynomial condi-

tions. We have that 1
det(g) = ag is a polynomial in the n2 + 1th coordinate,

so this shows that g 7→ g−1 is a polynomial map, and hence a morphism.

Therefore, the map (g, ag) 7→ g−1 is a polynomial map and is the required

inverse to show that GLn(k) is identified as an affine variety.
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Another example of non-isomorphic affine varieties is A1 and k∗, where

the latter is the multiplicative group of the field k and is identified with the

affine variety GL1(k).

At this point we mention that the affine variety SLn(k) is defined by

SLn(k) = {g ∈ GLn(k) | deg(g) = 1}, and is a normal subgroup of GLn(k).

We introduce some more examples in §5.6.

For any function f ∈ k[Y ], and a morphism φ : X → Y of varieties, the

second condition in Definition 5.9 implies that the function f ◦ φ ∈ k[X] is

regular on X. The map φ∗ : k[Y ] → k[X], defined by φ∗(f) = f ◦ φ, is a

k-algebra homomorphism, called the comorphism of φ. If φ(X) is dense

in Y , then φ∗ : k[Y ]→ k[X] is injective, see [23, §1.5].

Let φ : X → Y be a morphism of affine varieties. The affine varieties

X and Y are defined by the zeros of polynomial functions, and φ maps

each polynomial function f ∈ k[Y ] to the polynomial function f ◦ φ ∈ k[X].

Therefore, when we consider morphisms between varieties, we have in mind

functions defined by polynomial conditions, that is a polynomial function φ

that act on the polynomial f .

For two irreducible affine varieties X and Y , with coordinate rings k[X]

and k[Y ], the product variety is endowed with the Zariski topology and is

irreducible as described in Proposition 5.4. By [23, §2.4], the coordinate

ring k[X × Y ] of X × Y is k[X]⊗k k[Y ], and the function field of X × Y is

the field of fractions of the integral domain k[X]⊗k k[Y ] (see [17, p.182] for

a proof that k[X]⊗k k[Y ] is an integral domain).

5.3 Projective Varieties and Complete Varieties

In this section, we introduce the notion of projective and complete vari-

eties. More information on the following can be found in [23, §1.6] and [6,

§AG.4,§AG.7].
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A prevariety over k is a topological space X, which has a sheaf OX

of k-valued functions, so that (X,OX) is a ringed space, and is the union

of finitely many open subsets Ui, where each Ui is isomorphic to an affine

variety whose sheaf of functions is OX(Ui). We have a notion of a morphism

between prevarieties that is analogous to that in the case of affine varieties.

A prevariety need not be an affine variety. We proceed by introducing the

notion of projective varieties, and these are important examples of prevari-

eties that are not affine varieties. However, we do have the converse, that

an affine variety is a prevariety.

Projective n-space Pn(k) (or Pn) over k is defined to be the set of

equivalence classes in kn+1 − {0} under the equivalence relation ∼ defined

by (x0, . . . , xn) ∼ (y0, . . . , yn) if and only if (x0, . . . , xn) = (ay0, . . . , ayn),

for some a ∈ k∗. We denote the equivalence class of x = (x0, . . . , xn) by [x].

The underlying set of the projective n-space Pn(k) can be identified with

the set of 1-dimensional subspaces of kn+1.

Let π : kn−{0} → Pn(k) be the map x 7→ [x], for each x ∈ kn. A subset

U ⊂ Pn(k) is declared open if π−1(U) is open in kn. This defines a topology

on Pn(k). The projective n-space Pn(k) can be covered by the open sets

Pi := {[x] | x = (x0, . . . , xn) ∈ kn+1 with xi 6= 0},

for each i = 0, . . . , n. Moreover, there is a bijection between the underlying

set of each Pi and the affine variety An. For each (x0, . . . , xn) ∈ Pi, this

bijection is given by the map

[(x0, ..., xn)] 7→ (x−1
i x0, . . . , x

−1
i xi−1, x

−1
i xi+1 . . . , x

−1
i xn).

A monomial in n+ 1 variables x0, x1, . . . , xn is a product xa00 x
a1
1 · · ·xann

where the indices ai are all non-negative integers, and their sum a0 + a1 +

· · · + an is called the degree of the monomial. Let f be a homogeneous

polynomial in k[X0, . . . , Xn], that is a polynomial in n + 1 variables whose

monomials that have non-zero coefficients all have the same degree.
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Consider an ideal I of homogeneous polynomials in k[X0, . . . , Xn]. We

use the notation f [x] when considering the zero set of the homogeneous

polynomial f ∈ I since f(x0, . . . , xn) = 0 if, and only if f(ax0, . . . , axn) = 0,

for all non-zero scalars a.

The set V (I) = {[x] ∈ Pn | f [x] = 0 for all f ∈ I} is closed in Pn.

A closed subset in Pn is called a projective set. If X is a projective set

defined by the ideal I of homogeneous polynomials in k[X0, . . . , Xn], then the

coordinate ring of X is k[X] = k[X0, . . . , Xn]/I. Let L = {f/g | f, g ∈ k[X]

are homogeneous polynomials of the same degree, and g 6= 0}. For [x] ∈ X

we write O[x] = {f/g ∈ L | g(x) 6= 0}. For an open set U ⊆ X define

OX(U) =
⋂

[x]∈U O[x], and for open subsets of U the restriction maps are

taken to be inclusions. This defines a sheaf on the projective set X. For

further details see, for instance [6, §AG.7].

Definition 5.11. The ringed space (X,OX) is called a projective variety

if it is isomorphic to (Y,OY ) where Y is an projective set. We frequently

denote the projective variety (X,OX) by X, and implicitly have in mind its

sheaf of functions.

We have that a projective variety is a prevariety, but not an affine variety

(except in the trivial case). According to [10, p.1], the product of two

prevarieties is again a prevariety.

Definition 5.12. (1) A prevariety X is called an algebraic variety if

the diagonal map ∆(X) = {(x, x) | x ∈ X} is closed in the prevariety

X ×X.

(2) An algebraic variety X is said to be complete if for any algebraic

variety Y the projection map πY : Y × X → Y sends closed sets to

closed sets, i.e. πY is a closed map.

The notion of a completeness is an analogue for varieties to the notion
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of compactness for topological spaces, see [6, §7] for instance, for further

discussion.

The following theorem is given in [6, Theorem 7.4].

Theorem 5.13. A projective variety is a complete variety.

In the following we will be interested in linear algebraic groups, and

these arise from affine varieties. The notions of projective and complete

varieties are needed to describe the structure of reductive algebraic groups.

In particular we use these notions to describe the parabolic subgroups of a

reductive algebraic group, see §6.1.

5.4 Dimension

The dimension dim(X) of an irreducible variety X is the transcendence

degree of k(X) over k, it is equal to the maximum number of algebraically

independent rational functions on X (that is, the rational functions that

satisfy no non-trivial polynomial with coefficients in k), see [23, §3.1]. In

general, the dimension of a variety X is defined to be the supremum of the

dimensions of the irreducible components of X. The dimension of affine

line A1 is 1. The union of two different affine lines which intersect in A2

is 1-dimensional because its irreducible components are 1-dimensional affine

lines. A finite set of points is 0-dimensional.

A hypersurface is the zero set in An of a single non-scalar polynomial.

For instance in An2
the hypersurface defined by the polynomial det(xij) = 1

is SLn(k).

The following result is [23, Proposition 3.2].

Proposition 5.14. Let X be an irreducible variety, Y a proper closed irre-

ducible subvariety of X. Then dimY < dimX.
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The dimension of An is equal to the transcendence degree of k(An) =

k(X1, . . . , Xn) over k. This field consists of rational functions generated by

the n independent variables X1, . . . , Xn, and hence the degree of An is equal

to n.

From Proposition 5.14 we see that if Y is an irreducible subvariety of

the irreducible variety X and dimY = dimX, then Y = X.

5.5 Tangent Spaces

Intuitively, the tangent space of a curve at a point is a line passing through

that point that is tangential to the curve at that point, and the tangent

space to a surface at a point is a plane passing through that point that

is tangential to the surface at that point. For example, a sphere resting

on a plane C at the origin O has as a tangent space at O the plane C.

Geometrically, the tangent space of a variety X at a point x is given by the

vanishing of all partial derivatives of the functions f at x as f ranges over

I(X). Algebraically, this is expressed in the following way.

Let X be an irreducible variety over k. Let x ∈ X, and recall the

definition of the local ring of x on X. A point derivation of Ox is a

k-linear map δ : Ox → k satisfying δ(fg) = f(x)δ(g) + δ(f)g(x), for all

f, g ∈ Ox. The k-vector space of all point derivations of Ox is the tangent

space of X at x, denoted by Tx(X). Recall, given a morphism φ : X → Y

of varieties, the comorphism of φ is the map φ∗ : k[Y ] → k[X] defined

by φ∗(f) = f ◦ φ. Given a derivation δ ∈ Tx(X), by [48, §4.1], δ ◦ φ∗

is a derivation in Tφ(x)(Y ). This map is into the tangent space of Y at

φ(x) because if f is regular at x, then φ∗ ◦ f is regular at φ(x). So we

obtain a linear map ∂xφ : Tx(X) → Tφ(x)(Y ) of tangent spaces, given by

∂xφ(δ) = δ ◦ φ∗ for all δ ∈ Tx(X), and this map is called the differential

of φ at x.
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For any varietyX, by [48, Theorem 4.3.3.(iii)], we have that dimTx(X) ≥

dimX. A point x ∈ X is called simple if dimTx(X) = dimX, and [23,

Theorem 5.2] shows that simple points exist in all irreducible varieties. If

every point of X is simple then we say that X is smooth. For example,

affine n-space An is smooth, however, the union Y of two non-parallel affine

lines in A2 is not smooth because at the intersection point y ∈ Y of the two

lines we have 2 = dimTy(Y ) ≥ dimY = 1.

5.6 Affine Algebraic Groups

Throughout this section we assume that k is an algebraically closed field of

arbitrary characteristic, unless stated otherwise.

An affine algebraic group G is a group whose underlying set is an

affine variety over k, such that the product map π : G × G → G given by

(x, y) 7→ xy, and inverse map ι : G→ G given by x→ x−1, for x, y ∈ G, are

both morphisms of the underlying varieties.

Given algebraic groups G and H, a map f : G → H is a morphism

of algebraic groups if f is both a group homomorphism and a morphism

of the underlying varieties of G and H. The map f is an isomorphism

of the algebraic groups G and H if there exists an inverse morphism

f−1 : H → G, such that f−1 ◦ f = idG, and f ◦ f−1 = idH .

A G-variety is a variety X defined over the field k equipped with a

G-action G ×X → X which is a morphism of varieties. The G-orbit of a

point x ∈ X is the set {g · x | g ∈ G}, denoted by G · x.

It is shown in [40, §3] that, for a G-variety X and some x ∈ X, the orbit

G ·x is open in its closure G · x, and the boundary of this closure G · x\G ·x

is a union of G-orbits each of which has dimension strictly less than dim(G).

Furthermore, by [39, No.8], there is a unique closed orbit in G · x.
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We call a subvariety Y of X,G-invariant if G × Y → Y . The set of

fixed points of X under the action of G is denoted XG. Clearly, XG is

G-invariant.

Let H be a subgroup of G. We wish to define the structure of an algebraic

variety on the coset space G/H. We view G as an H-variety, and we let Y

be an algebraic variety for which there is a surjective morphism π : G→ Y

of varieties. We define the fibre of π over y ∈ Y to be the subvariety

π−1({y}) in G. We say that π is a quotient morphism if π is surjective

and open (that is, the image of every G-invariant open subset of G is open),

and if U ⊆ G is open then the comorphism π∗ of π induces an isomorphism

from k[π(U)] onto the set {f ∈ k[U ] | f is constant on the fibres of π|U}.

A quotient of G by H, denoted G/H, is a surjective morphism π :

G → Y of varieties such that the fibres of π are the orbits of H in G, and

such that π is a quotient morphism. By [6, §6.3], the quotient is uniquely

determined up to isomorphism, if it exists.

If H is a normal subgroup of G, then the quotient has the structure of

an algebraic group, see [6, Theorem 6.8] for instance. For more details on

quotients of varieties, see [6, §6.3] for instance.

Many of the affine varieties encountered so far are also algebraic groups,

for example affine space An with respect to coordinatewise addition of points.

In §5.2, we saw that the underlying set of GLn(k) forms an affine variety. The

product map GLn(k) × GLn(k) → GLn(k) is clearly a morphism. To show

that the inverse map is a morphism, recall that we identify the underlying

set of GLn(k) with an affine set in An2+1 via the map g 7→ (g, ag), for

g ∈ GLn(k), ag ∈ k∗. We have seen that the inverse of g is defined by

g−1 = ag(Adj(g)), which is a matrix determined by polynomial conditions,

and so g 7→ g−1 is a morphism. Therefore, GLn(k) is an example of an

algebraic group.
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Clearly, a closed subgroup of an algebraic group is again an algebraic

group, for example the closed subgroup SLn(k) of GLn(k) is an algebraic

group. Since any finite set of points is closed, a finite subgroup of GLn(k)

is an algebraic group.

The following is [23, Corollary 8.2].

Proposition 5.15. Let H be a closed subgroup of the algebraic group G.

Then, both the centraliser CG(H) and normaliser NG(H) in G of H are

closed subgroups of G. In addition the centraliser CG(x) for all x ∈ G is

also a closed subgroup of G.

Using Proposition 5.15 we can construct many more algebraic groups.

For instance, we now have a method to construct infinite algebraic groups

from finite ones. For an example of this consider the element x =(
1 1
0 −1

)
∈ GL2(k). Then x generates a finite subgroup of GL2(k). By

Proposition 5.15 the subgroup CGL2(k)(x) of GL2(k) is closed. It is straight-

forward to verify this as CGL2(k)(x) is comprised of matrices of the form(
a b
c d

)
with non-zero determinant, such that c = 0, d = a− 2b. The fact

that CGLn(k)(x) is infinite also follows from [30, Theorem 1.2].

We present other important examples of algebraic groups. For exam-

ple, Tn(k), the group of upper triangular matrices in GLn(k), and Un(k)

called the group of upper unitriangular matrices in GLn(k), consisting of

the elements of Tn(k) whose diagonal entries are all 1s.

We denote by “ + ” and “.” the additive and multiplicative field oper-

ations on k, and by “0” and “1” the additive and multiplicative identities,

respectively.

The additive group Ga is the affine line A1 with group operation “ + ”

and identity element “0”, and is isomorphic to the subgroup U2(k) of upper

unitriangular 2× 2 matrices in GL2(k).
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The multiplicative group Gm is the affine open subset k∗ ⊂ A1, with

group operation “ ·” and identity element “1”, and is isomorphic to GL1(k).

Note that the results already given allow us to construct new algebraic

groups from old ones. For instance, Proposition 5.4 shows that the direct

product of two algebraic groups A and B forms an affine variety A×B. As

described in Section 5.2, the function field of A×B is the field of fractions

of the integral domain k[A] ⊗k k[B]. Since the inverse maps on A and B

are individually morphisms, it is clear that so is the inverse map A× B →

A×B given by (a, b) 7→ (a−1, b−1). Also the product maps on A and B are

individually morphisms, and so the product map (A×B)×(A×B)→ A×B

given by (a, b)×(a′, b′) = (aa′, bb′) is a morphism. Therefore, since A×B is a

group, it is an algebraic group. For example, we may take the direct product

of n copies of Gm. The resulting group is isomorphic to the subgroup Dn(k)

of GLn(k) consisting of diagonal matrices.

We refer to an affine algebraic group as a linear algebraic group, and

the motivation for this terminology is given by the following theorem, which

is [23, Theorem 8.6].

Theorem 5.16. Let G be an affine algebraic group over k, then G is iso-

morphic to a closed subgroup of GLn(k), for n a positive integer.

Let G be an algebraic group and X1, . . . , Xn be those irreducible com-

ponents of G that contain e, the identity of G. The product X1 × · · · ×Xn

is irreducible by Proposition 5.4. Let fi : Xi → G be the inclusion map

from each Xi into G. Consider the map f : X1 × · · · × Xn → G given by

(x1, . . . , xn) 7→ f1(x1) · · · fn(xn), for xi ∈ Xi. By [6, Proposition 14.10] this

map is a homomorphism, therefore the image under f of X1×· · ·×Xn in G

is irreducible. We will comment further on this map in Remark 5.22. This

image contains e, so X1 · · ·Xn ⊆ Xi for some i. Conversely Xi ⊆ X1 · · ·Xn

for all i, therefore we conclude that n = 1. From this we imply that there is
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a unique irreducible component of G containing e, which we denote by G0.

In fact G0 is a normal subgroup of finite index in G whose cosets are the

connected and irreducible components of G. Furthermore any closed sub-

group of G of finite index contains G0. We say G is connected if G = G0.

Proofs of these facts can be found in [23, Proposition 7.3], for instance.

The groups Ga,Gm,GLn(k) and SLn(k) are connected. For Ga, we have

that Ga = A1, which is clearly irreducible as a variety. We have that GLn(k)

is identified with the principal open set {x ∈ An2 | det(x) 6= 0} in the

irreducible variety An2
. Thus, the closure in An2

of GLn(k) is the whole

space, and by [48, Lemma 1.2.3 (i)] GLn(k) is an irreducible variety, and

hence a connected algebraic group. The connectedness of Gm follows since

Gm = GL1(k).

It can be shown that SLn(k) is generated by groups Ui,j (for i 6= j)

having 1s on the main diagonal, an arbitrary entry in the (i, j)-th position

and zeros everywhere else. There are finitely many such groups Ui,j , each

isomorphic to Ga, and for each we have a morphism fi,j : Ui,j → GLn(k)

such that e ∈ fi,j(Ui,j). If we set M =
⋃
i,j fi,j(Ui,j), then we can apply [23,

Proposition 7.5] to obtain that the intersection of all the closed subgroups

of GLn(k) containing M is connected. This shows that SLn(k) is connected.

Any non-trivial finite subgroup of GLn(k) is disconnected. The identity

component of the group Mn(k) of n× n monomial matrices is the group of

n× n diagonal matrices. In this case, Mn(k)/Mn(k)0 ∼= Sn.

We call a group that is isomorphic to a direct product of n copies of Gm

a torus of rank n. For example, Dm(k) is isomorphic to a torus of rank

m in GLn(k), for all m ≤ n. A torus is called a maximal torus if it is not

contained in any other torus. A maximal torus in GLn(k) is the group of

diagonal matrices Dn(k).

The following is [23, Corollary 16.3].
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Lemma 5.17. Let S be a torus in an algebraic group G. Then, NG(S)0 =

CG(S)0.

The following description of the Jordan decomposition is from [48, §2.4].

Let V be a finite dimensional vector space over k, and let 1 represent the

identity map in GL(V ). An element xs of GL(V ) is called semisimple if V

admits a basis consisting of eigenvectors of xs. An element xu of GL(V ) is

called unipotent if xu − 1 is nilpotent, that is, there exists some positive

integer k, for which (xu − 1)k = 0.

In GL(V ) any element x can be written uniquely as a commuting product

of a unipotent element xu and of a semisimple element xs, see [48, Theorem

2.4.5.]. This is known as the abstract Jordan decomposition of x.

In the linear algebraic group G, let ρ(g) : k[G] → k[G] denote the right

translation by the element g given by

(ρ(g)f)(x) = f(xg)

for each f ∈ k[G], x ∈ G. Then ρ(g) can be viewed as an element of

GL(k[G]). Hence, ρ(g) has the Jordan decomposition ρ(g) = ρ(g)sρ(g)u.

There is an equivalent notion, the Jordan decomposition in G, to that

of endomorphisms of a vector space, see [48, Theorem 2.4.8.]. This states

that there exist unique elements gu and gs in G such that ρ(g)s = ρ(gs) and

ρ(g)u = ρ(gu), and g is equal to the commuting product of gu and gs. We

say that gu is the unipotent part of g, and gs is the semisimple part of g.

The homomorphic image of a unipotent element (resp. semisimple ele-

ment) in G is unipotent (resp. semisimple) in the homomorphic image of G.

An algebraic group is called unipotent if all its elements are unipotent.

For any group G, the commutator [g, h] of the elements g, h ∈ G is

defined by [g, h] = ghg−1h−1. We define the commutator [H,K] for sub-

groups H,K of G to be the group generated by all commutators of the form
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[h, k] for h ∈ H and k ∈ K. An important example of the commutator of

two groups is [G,G], the so-called derived subgroup of G which, by [23,

Proposition 17.2] is a closed normal subgroup of G (and connected if G is).

The descending central series of a group G is defined to be the series

C 0(G) ⊇ C 1(G) ⊇ · · · , where C 0(G) = G, and C i+1(G) = [G,C i(G)].

The derived series of a group G is defined to be the series D0(G) ⊇

D1(G) ⊇ · · · , where D0(G) = G, and D i+1(G) = [D i(G),D i(G)]. Clearly

D i(G) ⊆ C i(G), for all i.

LetG be an algebraic group. ThenG is called nilpotent if its descending

central series reaches e in finitely many steps, and solvable if its derived

series reaches e in finitely many steps. Clearly, a nilpotent group is solvable.

The homomorphic image of a solvable (resp. nilpotent) group is solvable

(resp. nilpotent). The product of two normal solvable subgroups of a group

is also solvable. For proofs of these results see [23, §17].

Theorem 5.18 (Borel’s fixed point theorem). Let G be a connected solvable

algebraic group, and let X be a complete G-variety. Then XG is non-empty.

A proof of Borel’s Fixed Point Theorem can be found in, for example,

[23, Theorem 21.2]. As we shall see, this result is crucial in showing that

the maximal closed connected solvable subgroups of G (the so called “Borel

subgroups”) are all conjugate in G.

Theorem 5.19 (Lie-Kolchin theorem). Let G = GLn(k) and let H be a

unipotent subgroup of G. Then there exists some x ∈ GLn(k) such that

xHx−1 is a subgroup of Un(k).

In fact, any closed connected solvable subgroup of GLn(k) is conjugate

to a subgroup of Tn(k). This is sometimes what is known as the Lie-Kolchin

Thoerem, see for instance [10, §1.6].

The groups Un(k) and Tn(k) are solvable. To see this first observe that

[Tn(k),Tn(k)] = Un(k). The commutator of two upper triangular matrices
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with the same number of non-zero diagonals above the lead diagonal, is

an upper triangular matrix with at least one more diagonal above the lead

diagonal that contains all zero entries, thus we have the solvability of Un(k)

and Tn(k). Examples of nilpotent groups are commutative group because

the commutator of two commuting matrices results in the identity matrix.

The group Un(k) is nilpotent, but Tn(k) is not nilpotent for n ≥ 2. This

shows that a solvable group need not be nilpotent. For further discussion

and proofs see [23, §17].

We now discuss some important types of algebraic group. For a more

extensive account of the following material, see [23, Chapter VII].

We call G simple if every proper closed normal subgroup of G is finite.

For example, for n > 1, we have GLn(k) is not simple since it has SLn(k) as

a normal subgroup, being the kernel of the det homomorphism. Clearly any

1-dimensional group is simple, hence Gm = k∗ is simple. From the discussion

in [23, p.164] we see that SLn(k) is simple, although it does contain the finite

normal subgroup of scalar multiples of the identity aIn such that an = 1.

Evidently a simple group is connected, however the converse does not

hold as is shown, for example, with the group GLn(k).

Let G be an algebraic group.

(1) The closed connected normal solvable subgroup R(G) of G containing

any other such subgroup is called the radical of G.

(2) The closed connected normal unipotent subgroup Ru(G) of G con-

taining any other such subgroup is called the unipotent radical of

G.

Given two normal solvable subgroups A and B of G, their product AB

is also normal and solvable, by [23, Lemma 17.3]. Therefore, we have that

R(G), the radical ofG, is uniquely defined. The groupRu(G) is the subgroup
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of R(G) consisting of all its unipotent elements, see [23, §19.5]. This shows

that R(G) and Ru(G) are well-defined.

IfG is connected andR(G) is trivial we callG semisimple. For example,

SLn(k) is semisimple because it is simple. If G is connected and Ru(G) is

trivial we call G reductive. For example, as GLn(k) is the product of

SLn(k) and its centre Z, we have R(GLn(k)) = Z and hence, Ru(GLn(k)) =

e. Therefore, GLn(k) is reductive. Since Ru(G) ⊆ R(G), a semisimple group

is reductive. By [23, Lemma 19.5] the derived subgroup [G,G] of a reductive

group G is semisimple.

Although the notion of a reductive group G is well-defined for non-

connected G, much of our work holds only for connected G. Therefore,

we shall assume that by a reductive group we mean a connected reductive

group.

A simple algebraic group is reductive since its only proper normal sub-

groups are disconnected (not connected). If G is a simple algebraic group,

then G/Z(G) is a simple abstract group, by [23, Corollary 29.5].

Reductive groups are of particular interest so we record some important

properties. Let G be reductive with centre Z(G), then G = Z(G)[G,G]

and Z(G)0 = R(G) is a torus and [G,G] is a semisimple group with a

finite intersection with Z(G). Furthermore, we can decompose G as G =

G1 · · ·GnZ(G) with Gi simple so that Gi ∩ Gj is finite for all i 6= j, and

[Gi, Gj ] = e. The Gi occurring in this decomposition are called the simple

components of G. For an account of this see [10, §1].

Definition 5.20. Let G be a reductive algebraic group, and let X1, . . . , Xn be

subgroups of G. Let fi : Xi → G be maps, then the map f : X1×· · ·×Xn → G

given by (x1, . . . , xn) 7→ f1(x1) · · · fn(xn), for xi ∈ Xi is called the product

map of the fis.

Definition 5.21. Let G be a reductive algebraic group, and let G1, . . . , Gn

be normal subgroups of G. We say that G is an almost direct product of
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the Gis if the product map of the inclusions Gi → G is a homomorphism of

the direct product G1 × · · · ×Gn onto G, with a finite kernel.

Remark 5.22. Let G be a semisimple algebraic group. According to [6,

Proposition 14.10] we have that G is an almost direct product of its simple

components G1, . . . , Gn. In particular, if the fi : Gi → G are inclusion maps,

then the product map G1× · · ·×Gn → G of the fis given by (g1, . . . , gn) 7→

f1(g1) · · · fn(gn) is a homomorphism with finite kernel.

Definition 5.23. We call the group G topologically finitely generated

if it is the Zariski closure of a group generated by finitely many elements,

that is G = 〈x1, . . . , xn〉 for a finite list x1, . . . , xn.

For any subgroup S of G we have that the closure S in the Zariski

topology is a subgroup of G. In particular if x1, . . . , xl ∈ G then the Zariski

closure H of the group H := 〈x1, . . . , xl〉 generated by the elements x1, . . . , xl

is a closed subgroup of G. Suppose k = Fp for some prime p. By Theorem

5.16, each xi may be viewed as a matrix with entries in Fp. Since Fp =

∪m≥1Fpm! , we have that each xi is a matrix with entries in Fpm! , for m large

enough. Since each element of the group H generated by x1, . . . , xl is a

matrix with entries Fpm! , the group H lies in GLn(Fpm!), by Theorem 5.16.

Since GLn(Fpm!) is a finite group, 〈x1, . . . , xl〉 is a finite group. That is,

H = H is finite.

As just seen if k = Fp, then every topologically finitely generated group

is finite. However, as we will see, it is crucial to some of the results in this

exposition to be able to work with topologically finitely generated subgroups

of G when G is an algebraic group over the field Fp. Therefore an alternative

approach is required, and is given by [1, Lemma 2.10]. This lemma allows

us to reduce to the case that a subgroup H of G is topologically finitely

generated within the field of study of this thesis. We discuss this result

further in Lemma 6.24.
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5.7 The Lie Algebra of an Algebraic Group

The study of Lie algebras is extensive, and the field is often treated as a

self-contained subject. However, its relevance to other areas, in particular

to Lie groups and algebraic groups, is fundamental. Here we provide an

introduction relevant for our purposes. For a more extensive account, see

[6, §3].

A Lie algebra is a vector space g over a field k with an operation

g× g→ g denoted (x, y) 7→ [x, y] such that:

L1 The bracket operation [ , ] is bilinear.

L2 [x, x] = 0 for all x ∈ g.

L3 [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Property L1 ensures that g is a k-algebra with respect to [ , ].

Given a k-algebra A, we say that the linear map D : A→ A is a deriva-

tion of A if D(ab) = aD(b) + D(a)b for all a, b ∈ A. Let D(A) denote the

space of all derivations of A. Let G be an algebraic group with affine algebra

A = k[G], then we may consider the space of all derivations of A. For g ∈ G

define λg : A→ A via

(λga)(x) = a(g−1x)

for each a ∈ A, x ∈ G. Now set

g = {D ∈ D(A) | D ◦ λg = λg ◦D, for all g ∈ G}

We define [D1, D2] = D1 ◦ D2 − D2 ◦ D1 for D1, D2 ∈ g, and this defines

a Lie algebra structure on g. We call g the Lie algebra of G, denoted by

Lie(G).

As an example, for char(k) 6= 2 consider the following standard basis of

the Lie algebra sl2(k), which is the Lie algebra of the group SL2(k), that is

sl2(k) = Lie(SL2(k)). See [23, §9.4] for details. Set
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X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
.

It is easy to check that under the bracket operation these basis vectors

obey [H,X] = 2X, [H,Y ] = −2Y and [X,Y ] = H. It is also straightforward

to check that these vectors satisfy L1, L2 and L3 above, thus sl2(k) is a Lie

algebra.

By [6, Theorem 3.4], we have an isomorphism δ of vector spaces g →

Te(G) given by the map δ : D(f) 7→ D(f)(e) ∈ Te(G) for any f ∈ Oe, D ∈ g.

Since D(fg)(e) = f(e)D((g)(e)) +D((f)(e))g(e) ∈ k, we have that δ(D(f))

is a point derivation of Oe. In fact the tangent space at any point of G is

isomorphic to this Lie algebra because if f is regular at e, then λxf is regular

at x, so a point derivation at e becomes a point derivation at x under the

translation map λx.

For example, the tangent space TIn(GLn(k)) to GLn(k) at the point In

is the Lie algebra g = Lie(GLn(k)) = Matn(k) of n×n matrices over k. For

a proof of this fact see, for example, [6, Examples 3.9 (c)]. The Lie algebra

of GLn(k) is denoted gln(k).

We now have associated to each algebraic group G a Lie algebra g. Next

we associate to the Lie algebra of each reductive group a root system.

5.8 The Adjoint Representation

In this section we let G be a reductive algebraic group. By [23, §5.4], the

differential map (introduced in §5.5) has functorial properties. Let g ∈ G,

and g = Lie(G). Consider the automorphism Int(g) : G → G given by

Int(g)(x) = gxg−1. Its differential ∂eInt(g) is an automorphism of the Lie

algebra, by [6, §3.12], and is denoted Ad(g). That is, Ad(g) ∈ GL(g). We

call the map Ad : G → GL(g) the adjoint representation of G. The

differential of Ad at e is the endomorphism ∂e Ad : g → Lie(GL(g)) =
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End(g) given by ∂e Ad(X) : Y 7→ [X,Y ] of g for all X,Y ∈ g, see [6, §3.14],

and we denote this endomorphism by ad. We call ad : g→ gl(g) the adjoint

representation of the Lie algebra g.

Given a torus T in G, we have that T acts on g via the adjoint repre-

sentation Ad, that is Ad(t) : g→ g for all t ∈ T .

Since T is diagonalisable, so is its homomorphic image under Ad and so

we can write the vector space g as a direct sum of weight spaces:

gα := {X ∈ g | Ad(t)(X) = α(t)X, for all t ∈ T},

where α ∈ Hom(T,Gm) =: X(T ) - the group of algebraic group morphisms

from T to Gm. The group X(T ) is called the character group of T , its

elements are called characters of T . The α for which gα 6= 0 are called

weights of T in g. The non-zero weights are called roots of G relative

to T , and the set of these is called the root system of G relative to T ,

denoted Φ(G,T ).

The set Y (G) := Hom(Gm, G) of algebraic group morphisms from Gm

to G is called the set of one-parameter subgroups of G.

Let α ∈ X(T ) and let β ∈ Y (T ). Since α ◦ β ∈ Hom(Gm,Gm) ∼= Z there

is some [β, α] ∈ Z such that α ◦ β(x) = x[β,α] for all x ∈ Gm.

5.9 More on Lie Algebras

A subspace h of g is called a Lie subalgebra of g if h is closed under the Lie

bracket operation. A Lie subalgebra i of g is called an ideal of g if [i, g] ⊆ i,

that is [I,X] ∈ i for all I ∈ i, X ∈ g. A homomorphism φ : g → g′ of Lie

algebras is a linear map φ such that φ[X,Y ] = [φ(X), φ(Y )] for all X,Y ∈ g.

Let h be a Lie subalgebra of the Lie algebra g, then ad(X)(Y ) ∈ g for

all X ∈ h, Y ∈ g. Therefore, ad(h) ⊆ End(g). Thus g can be viewed as an

h-module (see [22, §6.1]).
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Similarly, if g = Lie(G), then we have an action of G on g via the adjoint

map Ad : G −→ GL(g). A Lie subalgebra h of g is called G-invariant if it

is Ad(G)-invariant, that is if Ad(g)h ⊆ h for all g ∈ G.

5.10 Root Systems

The study of root systems is, like that of Lie algebras, a self-contained

subject; for which we give a brief introduction. More details can be found

in [22, §9].

Let E be an l-dimensional vector-space over R (for l a positive integer)

together with an inner product ( , ) : E ×E → R. For any vectors u, v ∈ E

the magnitude of u is given by ||u|| =
√

(u, u), and the angle between u

and v is given by θ = arccos (u,v)
||u||||v|| .

For each non-zero vector v ∈ E define a reflection relative to v to be

a linear transformation from E to itself sending v to −v which fixes the

subspace Pv := {u ∈ E | (u, v) = 0} of codimension 1 orthogonal to v. Now,

for any u ∈ E the reflection relative to v is given by the formula

σv(u) = u− 2(u, v)

(u, u)
v.

As a matter of convenience, we write

〈u, v〉 =
2(u, v)

(u, u)
. (1)

Definition 5.24. A root system in the real vector space E is a subset Φ

of E, whose elements are called roots, satisfying the following conditions:

(1) Φ is finite, spans E, and does not contain 0.

(2) If v ∈ Φ, then the only multiples of v in Φ are ±v.

(3) If v ∈ Φ, the orthogonal reflection with respect to v leaves Φ invariant.

(4) If v, u ∈ Φ then σv(u)− u is an integer multiple of v.
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By Definition 5.24 (4), we have 〈u, v〉 ∈ Z.

Note that since σv leaves the finite generating set Φ of E stable, the

reflection is uniquely determined by v. Denote by l = dimE the rank of Φ.

The group W (Φ) ⊂ GL(E) generated by the σv for v ∈ Φ is finite by

[23, p.229], and is called the Weyl group of Φ.

Two root systems Φ,Φ′ in the real vector spaces E,E′ respectively are

said to be isomorphic if there is an isomorphism of α : E → E′ of vector

spaces with α(Φ) = Φ′, such that 〈α(u), α(v)〉 = 〈u, v〉, for all u, v ∈ Φ.

The root system Φ is called irreducible if it cannot be partitioned into

the union of two mutually orthogonal proper subsets. Every root system is

the disjoint union of irreducible root systems.

A subset ∆ of Φ is called a base if ∆ is a basis of E, and if each root

in Φ can be written as a sum Σα∈∆nαα of roots in Φ, where the nα are

integers, all non-positive, or all non-negative. The roots in ∆ are called

simple. Suppose that the root ξ is equal to the sum
∑

α nαα, of the simple

roots α ∈ ∆. If all the coefficients nα in the sum are non-negative, then ξ

is called positive, otherwise ξ is called negative. By [22, Theorem 10.1],

every root system Φ has a base.

The subset of Φ consisting of positive roots is denoted Φ+, and the subset

of Φ consisting of negative roots is denoted Φ−. The root system Φ can be

written as the disjoint union Φ = Φ+ ∪ Φ− of positive and negative roots.

The following is [23, Theorem 27.1]. This result shows that every reduc-

tive algebraic group has a root system.

Theorem 5.25. Let G be a semisimple algebraic group. Let T be a maximal

torus of G and set E = R⊗Z X(T ) together with an inner product ( , ) on

E. Then the root system Φ = Φ(G,T ) of G relative to T is a root system

in E in the sense defined above, and the Wely group of Φ is isomorphic to

NG(T )/CG(T ).
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By [23, Proposition 24.1 B], we see that the root systems of G and (G,G)

are in one-to-one correspondence.

Theorem 5.25 provides a link between the abstract notion of a root sys-

tem and the notion of the root system of an algebraic group introduced in

§5.8 by showing that they coincide. This link is crucial in section §5.11

because it enables us to classify the simple algebraic groups by looking at

their root systems.

Let Φ = Φ(G,T ) be the root system of G relative to the maximal torus

T of G. By Theorem 5.25 we have that the Weyl group W (Φ) of Φ is

isomorphic to NG(T )/CG(T ), so from now on we denote the Weyl group

by W . As we shall see in §6.1, W is independent of Φ and T , and so this

notation is justified.

The following is [23, Corollary 27.5].

Lemma 5.26. Let G be a semisimple algebraic group. The decomposition

G = G1 · · ·Gn of G into its simple components (as in §5.6) corresponds

precisely to the decomposition of Φ into its irreducible components.

We have that if G is a reductive group, then we can decompose G as

G = G1 · · ·GnZ(G)0, where the G1, . . . , Gn are the simple components of

(G,G) as in Lemma 5.26, and the root system of each Gi is irreducible.

5.11 Classification of Simple Algebraic Groups

See Chapter XI of [23] for a more extensive account of the following.

Let g = Lie(G) for G a reductive algebraic group, and let T be a maximal

torus of G. As introduced in §5.10, consider the real vector space E =

R ⊗Z X(T ), with an inner product ( , ) on E, and let Φ = Φ(G,T ) be the

root system of G with respect to T .

A lattice in E is the Z-span of an R-basis of E, and its rank is the

dimension of E. Define the root lattice Λr be the Z-span of the elements
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of Φ. Define the weight lattice Λ to be the Z-span of all the vectors γ ∈ E,

such that 〈γ, α〉 ∈ Z for all α ∈ Φ. The γ ∈ Λ are called abstract weights.

Both Λ and Λr are lattices in E of finite rank, and Λ contains Λr as a

subgroup of finite index.

Given a base ∆ = {α1, . . . , αl} of the root system Φ, the elements

{2αi/(αi, αi) | 1 ≤ i ≤ l} form a basis of E, called the dual basis of Φ. Let

γ1, . . . , γl be the dual basis of E relative to ( , ) such that 〈γi, αj〉 = δij . It

can be shown (see [22, p. 67]) that Λ is a lattice with basis consisting of the

γi.

The Cartan matrix of Φ is defined to be the matrix (〈αi, αj〉), with

〈αi, αj〉 in its (i, j)-th entry. As described in [22, §13.1], the dual basis of

Λ can be obtained by multiplying the original basis {αi} by the inverse of

the Cartan matrix. This inverse introduces a denominator, which is the

determinant of the Cartan matrix, and which measures the index of Λr in

Λ. In fact Λ/Λr is a cyclic group whose structure is described in [22, §13.1].

We call the invariant Λ/X(T ) the fundamental group of G. If

X(T ) = Λr we say that G is adjoint, and if X(T ) = Λ we say that G

is simply connected. For example, SL2(k) is a simply connected group,

and PGL2(k) := GL2(k)/Z(GL2(k)) is an adjoint group. For any semisim-

ple group G, the adjoint representation Ad(G) of G in GL(g) is an adjoint

group, see [23, §31.1].

For any irreducible root system, [23, §33.6] shows that there exists a

simple algebraic group having that root system. However, each root sys-

tem does not necessarily give rise to a unique algebraic group. For in-

stance, as we remark after Theorem 5.27, SLn+1(k) and PGLn+1(k) =

GLn+1(k)/Z(GLn+1(k)) have the same root system, but the former is simply

connected and the latter is adjoint. As we are about to see in Theorem 5.29,

in most cases the root system and fundamental group of a simple algebraic

group G are enough to uniquely determine it up to isomorphism. The simple
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algebraic groups are classified by their root systems, and we determine all

the irreducible root systems below.

Given the base ∆ = {α1, . . . , αl} of Φ(G), we consider the range of pos-

sible values that 〈αi, αj〉 =
2(αi,αj)
(αi,αi)

can take in Z. We have 〈αi, αj〉〈αj , αi〉 =

4 cos2 θ. This number is a positive integer and each factor on the left has like

sign so the only possibilities are shown in [22, p45, Table 1]. This number

is therefore 0, 1, 2 or 3. If we draw a graph with l vertices corresponding

to the roots αi of the base ∆, and join the i-th vertex to the j-th vertex

by 〈αi, αj〉〈αj , αi〉 edges, the result is known as a Coxeter graph. By [22,

Lemma 10.4 C], for Φ irreducible, at most two different root lengths can

occur in Φ. By putting an arrow pointing to the shorter root on any dou-

ble or triple edge, then the graph is called a Dynkin diagram. There are

nine types of connected Dynkin diagram, and each one corresponds to a

particular class of irreducible root system.

In order to classify the possible Coxeter graphs we assume that

{v1, . . . , vl} is a set of l linearly independent unit-vectors in E for which

(vi, vj) ≤ 0, for i 6= j and 4(vi, vj)
2 is equal to 0, 1, 2 or 3. The elements

α/||α|| for α ∈ ∆ satisfy these criteria. From these assumptions we are able

to classify the Coxeter graphs, and then the classification of possible Dynkin

diagrams follows easily as they have the same shapes as the Coxeter graphs,

but by putting in the relevant arrows we see that a double or triple edge

occurs, we obtain the Dynkin diagrams.

Working out all the irreducible (i.e. connected) Coxeter graphs uses

mainly euclidean geometric ideas. Details are given in [22, §11.4], for in-

stance.

Theorem 5.27. The connected Dynkin diagrams are classified by the four

classical types An, Bn, Cn, Dn and the five exceptional types E6, E7, E8, F4

and G2. The subscript is the number of roots in a basis of the corresponding

root system.
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What is remarkable about Theorem 5.27 is that the classification of

the simple algebraic groups, which are topological and group theoretic con-

structions, is achieved using euclidean geometry. This is one example of the

elegance of the theory of algebraic groups.

Terminology 5.28. A simple algebraic group is said to be of classical type if

its root system is of type An, Bn, Cn or Dn, and is said to be of exceptional

type otherwise.

With reference to [23, §33.6] and [28, §25.A.], we list some examples of

semisimple and adjoint classical simple algebraic groups.

In type An, n ≥ 1, we have the special linear group SLn+1(k) of

determinant 1 matrices in GLn+1(k) is a simply connected group of this

type. The adjoint representation Ad : SLn+1(k) → GL(sln+1(k)), where

sln+1(k) = Lie(SLn(k)), has as its kernel µn+1, the group of n + 1-th roots

of unity. The group SLn+1(k)/µn+1 := PGLn+1(k) is an adjoint group of

this type.

In type Bn, n ≥ 1, a simply connected group of this type is the spinor

group Spin2n+1(k), and an adjoint group of this type is the special or-

thogonal group SO2n+1(k).

According to [23, §7.2], if char(k) 6= 2, the group SO2n+1 can be defined

as the matrices in x ∈ SL2n+1(k) such that xT sx = s, where xT is the

transpose of x, and s =

 1 0 0
0 0 J
0 J 0

 for J the n× n matrix consisting of

1s on the antidiagonal, and zeros elsewhere. A definition of this group in

characteristic two can be found in [11, §1], for instance.

In general, the orthogonal groups, denoted On(k), are defined in [28,

p.348]. These groups preserve a non-degenerate quadratic form on an n-

dimensional k-vector space. The normal subgroup of determinant 1 matrices

is the special orthogonal group SOn(k). The definition of Spinn(k) is given

in [28, p.349].
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In type Cn, n ≥ 1, a simply connected group of this type is the sym-

plectic group Sp2n(k), and an adjoint group of this type is the projective

symplectic group PGSp2n(k).

The symplectic group Sp2n(k) is defined in [23, §7.2] as the x ∈ GL2n(k)

such that xT
(

0 J
−J 0

)
x =

(
0 J
−J 0

)
where J is the n by n matrix con-

sisting 1s on its antidiagonal and zeros elsewhere. The definition PGSp2n(k)

is given in [28, p.347], for instance, where we are given the isomorphism

PGSp2n(k) ∼= Sp2n(k)/µ2.

In type Dn, n ≥ 2, a simply connected group of this type is the spinor

group Spin2n(k), and an adjoint group of this type is the special orthogo-

nal group SO2n(k). If n is odd we have the intermediate group the orthog-

onal group O2n(k), and if n is even there are two more intermediate groups,

the half-spinor groups Spin±2n(k).

If char(k) 6= 2 we have that SO2n(k) is defined as the x ∈ SL2n(k) such

that xT sx = s where s =

(
0 J
J 0

)
. As before, the definition of this group

in characteristic two can be found in [11, §1], for instance.

The groups Spin±2n(k) are defined in [28, p.359], and these two groups

are isomorphic to each other, but are not isomorphic to O2n(k).

Now we state [23, Theorem 32.1].

Theorem 5.29. If G,G′ are simple algebraic groups having isomorphic root

systems and isomorphic fundamental groups, then G and G′ are isomorphic

as algebraic groups with the exception of when the root system is of type Dl,

where l ≥ 6 is even and the fundamental group has order two, then there

may be two distinct isomorphism types.

Remark 5.30. In type Dl for l ≥ 6 and even, the two non-isomorphic groups

which arise are O2n(k) and Spin±2n(k).

The connected Dynkin diagrams associated to simple groups are pre-

sented in [22, p.58], for instance.
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Remark 5.31. Let G be a reductive group. By Theorem 5.25, each root

α ∈ Φ(G,T ) of G with respect to T can be written as an integral sum of

simple roots. Let p be a prime number. If p does not divide any of the

coefficients in this sum, p is said to be good for G, and otherwise is said to

be bad for G. If G is simple, then the bad primes p are as follows; for type

An there are no bad primes, p = 2 for types Bn, Cn and Dn, p = 2, 3 for

types G2, F4, E6 and E7, p = 2, 3 and 5 for type E8.

By Lemma 5.26, the root system Φ of G = G1 · · ·Gn decomposes into a

disjoint union Φ = Φ1∪· · ·∪Φn, where Φi is a root systems of Gi. Therefore,

the set of bad primes for a reductive group G is the union of the sets of bad

primes for the Gi.

The prime p is said to be very good for G if p is good for G and p does

not divide n+ 1 for any of the simple components of type An that occur in

the decomposition of G into its simple factors.
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6 G-Complete Reducibility

6.1 The Structure of Reductive Groups

Let G be a connected algebraic group over the algebraically closed field k.

A Borel subgroup of G is defined to be a maximal connected solvable

subgroup of G. One-dimensional connected subgroups of G are isomorphic

to Ga or Gm, and so are commutative and hence solvable. Therefore, Borel

subgroups exist in G. The Lie-Kolchin Theorem gives that every Borel sub-

group of GLn(k) is conjugate to Tn(k). Furthermore, by Theorem 5.16 we

have that every Borel subgroup of the algebraic group GLn(k) is conjugate

to a subgroup of Tn(k).

The following is [6, Theorem 11.1].

Theorem 6.1. Let B be a Borel subgroup of G, then G/B is a projective

variety.

Our next result shows that all the Borel subgroups of G are conjugate,

and that all the maximal tori of G are conjugate. This is an important result

and is used many times throughout this thesis, for example in Corollary 7.14.

Proposition 6.2. The set of Borel subgroups of G forms one G-conjugacy

class, and the set of maximal tori of G forms one G-conjugacy class.

Proof. Let B be a Borel subgroup of G and suppose that G is not solvable

to avoid the trivial case, so G 6= B. By Theorem 6.1, the quotient G/B is

thus a non-trivial projective variety, and hence non-affine. Suppose that B′

is another Borel subgroup of G. In particular, B′ is a connected solvable

algebraic group which acts on the complete variety G/B. Applying Theorem

5.18, the action of B′ on G/B leaves a point, gB say, of G/B fixed. Therefore

B′gB = gB. Hence, g−1B′g ⊆ B. By the maximality of B′, we have the

equality g−1B′g = B.
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Since a torus is connected and solvable it lies in a Borel subgroup. Let

T be a maximal torus G, and without loss suppose T is contained in B (so

T is a maximal torus of B). Suppose T ′ is another maximal torus of G′,

contained in the Borel subgroup B′ = gBg−1 for some g ∈ G. Then, g−1T ′g

is a maximal torus of G contained in B and by [23, Theorem 19.3] gT ′g−1

(and hence T ′) is conjugate to T , giving the result.

We define a parabolic subgroup to be a subgroup P for which G/P

is a projective variety. By [23, Corollary B 21.3], a subgroup P of G is a

parabolic subgroup of G if and only if it contains a Borel subgroup of G.

Note that this means G itself and B are examples of parabolic subgroups of

G.

In the case G = GL(V ), by the Lie-Kolchin Theorem 5.19 we see that

a Borel subgroup of G is conjugate to the group Tn(k), and is hence the

stabiliser of a complete flag {0} 6= V1 ⊂ · · · ⊂ Vm = V of V , where the

Vi are subspaces of V and m = dimV . In this case, a parabolic subgroup

P ⊂ G is the stabiliser of a partial flag {0} 6= V1 ⊂ · · · ⊂ Vm′ ⊆ V of V , for

m′ ≤ dimV .

Suppose that G is a reductive group. We can now show that the Weyl

group of G is independent of the choice of maximal torus of G. Let T be

a maximal torus in G. Then [6, §13.17 Corollary 2(c), and Corollary 11.19]

give that CG(T ) = T = NG(T )0. Thus the Weyl group is equal to W =

NG(T )/T . Suppose that S is another maximal torus of G. By Proposition

6.2 T g = S, for some g ∈ G. We have an isomorphism NG(T g) ∼= NG(T )g

given by h → hg
−1

for h ∈ NG(T ). Hence, NG(S)/S = NG(T g)/T g ∼=

NG(T )g/T g. Furthermore, NG(T )/T is isomorphic to NG(T )g/T g via the

map hT 7→ hgT g. The Weyl group W of the root system Φ, as defined in

§5.10, acts on the root system Φ = Φ(G,T ). Let α ∈ Φ, t ∈ T, n ∈ NG(T )

then n · α(t) = α(ntn−1) is again a root since n · α is not the zero map and

its weight space is non-zero.
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Let T be a maximal torus of G, so that we have the root system Φ =

Φ(G,T ). Let B be a Borel subgroup of G containing T . Let ∆ be a base of Φ.

As remarked earlier, such bases exist and each root of Φ can be written as a

linear combination of elements of ∆ with all non-negative or all non-positive

coefficients. The roots which can be written with non-negative coefficients

are called positive and the others negative.

We have that [6, Theorem 14.1] implies that there exists a unique Borel

subgroup of G opposite to B with respect to T , which we denote by B−,

for which B∩B− = T . Also, the system of roots Φ(B, T ) consists of positive

roots which we denote Φ+, and Φ(B−, T ) consists of negative roots denoted

Φ−, and by [48, 7.4.5.(b)] Φ− = −Φ+.

For example, in GLn(k) the group of upper triangular matrices Tn(k) is a

Borel subgroup and so is its opposite, the group of lower triangular matrices

Tn(k)−. The intersection of these two Borel subgroups is the group Dn(k)

of diagonal matrices, and is a maximal torus of GLn(k).

This is indicative of the more general situation. For any Borel subgroup

B of G, B ∩ B− = T where T is a maximal torus of G. We also have that

B = UT where U = Ru(B) is the unipotent radical of B, and B− = U−T

where U− = Ru(B−) and U ∩U− = e. Again, using the case of G = GLn(k)

as an example clarifies the situation. Then the Borel subgroup Tn(k) of

upper-triangular matrices clearly has such a decomposition as Un(k)Dn(k),

where Un(k) = Ru(Tn(k)) is the group of upper unitriangular matrices, and

Dn(k) is the group of diagonal matrices. Clearly, we also have T−n (k) =

U−n (k)Dn(k), where U−n (k) = Ru(T−n (k)) is the group of lower unitriangular

matrices, and Tn(k) ∩ T−n (k) = Dn(k), and also Un(k) ∩U−n (k) = In.

The following is [48, 8.1.1 (i)].

Lemma 6.3. Let G be a reductive group and T a maximal torus of G.

For any root α ∈ Φ(G,T ) there exists an isomorphism uα from Ga onto
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a uniquely determined closed subgroup Uα of G such that tuα(x)t−1 =

uα(α(t)x) for all t ∈ T, x ∈ k.

By Lemma 6.3, each root α ∈ Φ gives rise to a root subgroup of G

relative to T , denoted Uα, and contained in U . Similarly, −α gives rise to

the opposite root subgroup U−α in U−. We have that G = 〈T,Uα | α ∈ Φ〉,

for a proof see for instance [48, Proposition 8.1.1 (ii)].

The Uα and U−α are the minimal proper subgroups of U and U− which

are normalised by T . They are one dimensional subgroups of G, each iso-

morphic to Ga. Each such root subgroup is determined by a distinct root,

by [48, Proposition 8.1.1].

Let P be a parabolic subgroup of G. Then, by [48, Theorem 8.4.3],

P can be written as a semi-direct product P = L n Ru(P ), where L is a

reductive group called a Levi subgroup of G. The Levi subgroup in this

decomposition of P is unique up to conjugation by an element of P , by [15,

Proposition 1.22]. If L is a Levi subgroup of G such that P = L n Ru(P ),

for some parabolic subgroup P of G, then L is called a Levi subgroup of

P . A parabolic subgroup P− of G is said to be opposite to the parabolic

subgroup P of G if P ∩ P− is a Levi subgroup of both P and P−. For

each parabolic subgroup P of G, and a Levi subgroup L of P , there exists a

unique opposite parabolic subgroup P− of G such that P− ∩ P = L by [6,

Proposition 14.21].

We continue our illustration of the general situation using G = GLn(k),

with maximal torus T = Dn(k). Then, NGLn(k)(T ) is the group of

monomial matrices in GLn(k), and the Weyl group W is the group

NGLn(k)(Dn(k))/Dn(k), which is isomorphic to the symmetric group Sn on n

letters. Given the Borel subgroup B = Tn(k), then any subgroup containing

B is a parabolic subgroup P of G. With respect to a suitable basis of V ,

where V is the natural module for GLn(k), a parabolic subgroup P of G is

of block diagonal form having arbitrary entries above the blocks and zeros
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below. For example, if the diagonal part of P consists of s blocks, then the

matrices in P have the form:

 GLm1(k) ∗
. . .

0 GLms(k)

 .

Then, a Levi subgroup L of P consists of blocks on the diagonal, with

each block isomorphic to some GLmi(k), for mi corresponding to the i-th

block, where i ≤ s. The entries above and below these blocks are all zero.

The unipotent radical Ru(P ) of P is then of the following form: Im1 ∗
. . .

0 Ims


where Imi for i ≤ s is the mi ×mi identity matrix in GLmi(k).

The root subgroups in G = GLn(k) are the subgroups Uαij = {In+aEij |

a ∈ k}, where Eij is the matrix with a 1 in the (i, j)-position and zeros

everywhere else. The αij are the roots of GLn(k) relative to the maximal

torus Dn(k), and are elements of Hom(Dn(k),Gm) of the form:

αij :


a1

a2

. . .

an

 7→ aia
−1
j , for i 6= j.

We present some useful results about these groups.

Proposition 6.4. For a reductive algebraic group G, and a parabolic sub-

group P of G, the following hold:

(1) Any Levi subgroup L ⊆ P is of the form CG(S) where S is a maximal

torus of R(P ), the radical of P (see §5.6). Furthermore, S = Z(L)0.

(2) For any torus S of G, the group CG(S) is a Levi subgroup of some

parabolic subgroup of G. This implies that CG(S) is reductive. Every

Levi subgroup of G has this form.
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(3) The set of Levi subgroups of P forms one conjugacy class under the

action of Ru(P ).

(4) Every parabolic subgroup P of G is connected, and self-normalising,

i.e. NG(P ) = P .

These are all standard results. By the definition of Levi subgroup of P

we see that it is isomorphic to P/Ru(P ), hence is reductive. Observe that

part (4) is [6, Theorem 11.16]. Parts (1) - (3) follow from [6, Proposition

11.23].

6.2 Standard Parabolic and Levi Subgroups

We now proceed with a characterisation of parabolic and Levi subgroups of

the reductive group G.

Let T be a maximal torus of G, and let W be the Weyl group NG(T )/T .

Suppose that ∆ = {α1, . . . , αl} is a base for Φ = Φ(G,T ), and let K =

{1, . . . , l}. For I ⊆ K let ∆I := {αi | αi ∈ ∆, i ∈ I}. Let WI := 〈σαi | σαi ∈

W, i ∈ I〉 be the subgroup of the Weyl group W generated by the σαi , where

the σαi are elements of a generating set of W as defined in §5.10, labeled

such that σαi corresponds to a reflection sending αi to −αi. Let ΦI be the

set of roots that are linear combinations of the roots in ∆I . Define NI as

the pre-image of WI with respect to the projection NG(T ) → W , that is

NI/T = WI . Then, according to [10, §2.1], we define PI to be PI = BNIB,

where B is the Borel subgroup of G determined by ∆ (for the uniqueness

of B, see for instance [23, §27.3]). By [48, Lemma 8.4.3], PI is a parabolic

subgroup of G, called the standard parabolic subgroup of G relative to

I (with respect to B). Then PK = G and P∅ = B. By the proof of [10,

Proposition 2.8.4], we have that Ru(PI) = 〈Uα | α ∈ Φ+, α /∈ Φ+
I 〉. The PI

are the subgroups of G containing B. By [23, Theorem 30.1], every parabolic

subgroup of G is conjugate to some PI .
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Recall that a G-variety is a variety V over k equipped with an action

G × V → V of the group G on the variety V , such that this action is a

morphism of varieties, and the G-orbit of a point v ∈ V is the set {g · v |

g ∈ G}.

Let V be an affine G-variety, and let λ be an element of the set of

one-parameter subgroups Y (G) of G. Let v ∈ V . We say that the limit

limx→0 λ(x) ·v exists and is equal to u if there is a morphism Mv(λ) : k → V

such that Mv(λ)(x) = λ(x) · v for all x 6= 0 and Mv(λ)(0) = u.

The following lemma is obtained from [38, p11], for instance.

Lemma 6.5. The set Pλ := {g ∈ G | limx→0 λ(x)gλ(x)−1exists} is a sub-

group of G.

Proof. For g ∈ Pλ, set φg(λ) : k∗ → G to be the map x 7→ λ(x)gλ(x)−1 for

all x ∈ k∗, and define the map Mg(λ)(x) : k → G by:

Mg(λ)(x) =

{
φg(λ(x)) if x ∈ k∗
limx→0 λ(x)gλ(x)−1 if x = 0

Let g1, g2 ∈ Pλ. Define (Mg1(λ),Mg2(λ)) : k → G × G to be map

x 7→ (Mg1(λ)(x),Mg2(λ)(x)) for all x ∈ k. Define the multiplication map

π : G×G→ G by π(g, g′) = gg′.

Clearly we have Mg1g2(λ)(x) = π(Mg1(λ)(x),Mg2(λ)(x)), for all x ∈ k∗.

If x = 0, we have

Mg1g2(λ)(0) = lim
x→0

λ(x)g1g2λ(x)−1

= lim
x→0

λ(x)g1λ(x)−1λ(x)g2λ(x)−1

= (lim
x→0

λ(x)g1λ(x)−1)( lim
x→0

λ(x)g2λ(x)−1)

= π(Mg1(λ)(0),Mg2(λ)(0)),

where the product of limits can be taken for the gi individually in the

third equality above because of the continuity of the morphism λ : k∗ → G.
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Hence, we obtain Mg1g2(λ)(x) = π(Mg1(λ)(x),Mg2(λ)(x)), for all x ∈

k. Therefore limx→0 λ(x)g1g2λ(x)−1 exists and so g1g2 ∈ Pλ. A similar

argument shows g−1
1 ∈ Pλ. So Pλ is a group and now we have to show that

it is a parabolic subgroup of G.

The following lemma is [48, Proposition 8.4.5], and shows that for each

λ ∈ Y (G), there is a corresponding parabolic subgroup Pλ of G.

Lemma 6.6. The group Pλ := {g ∈ G | limx→0 λ(x)gλ(x)−1exists} is a

parabolic subgroup of G.

Proof. A proof is provided in [48, Proposition 8.4.5], in which it is shown that

it is possible to pick a Borel subgroup B, all of whose generators (namely,

a maximal torus T of G and the root subgroups Uα for α ∈ Φ(G,T )+) are

contained in Pλ. Hence B ⊆ Pλ and is therefore Pλ is a parabolic subgroup

of G.

According to [48, Theorem 8.4.3, Theorem 8.4.5], for any λ ∈ Y (G),

there is a unique subset I ⊆ K such that Pλ = PI . We define Φ(PI , T ) to

be the union of the positive roots and the negative roots which come from

∆I . By [23, Theorem 30.1 (b)], this is the root system of PI relative to T .

Suppose that B is a Borel subgroup of G contained in PI and containing

T , then PI is generated by B and the U−α for α ∈ I. This is also seen

intuitively, since B is generated by all the positive root groups, therefore

a group containing B must be generated by the positive root groups in

addition to some other generators, which can be any set of negative root

groups.

By [6, Proposition 14.18] we have that PI = LI n Ru(PI), where LI

is called the standard Levi subgroup of G relative to I, and LI =

CG(∩α∈I kerα)0. By [42, 2.3], LI = CG(λ(k∗)), so we write LI := Lλ.
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The map cλ : Pλ −→ Lλ given by g 7→ limx→0 λ(x)gλ(x)−1 is a surjective

homomorphism of algebraic groups with kernel Ru(Pλ).

For any reductive subgroup H of G we have a natural inclusion of sets of

one-parameter subgroups Y (H) ⊆ Y (G). Therefore, for λ ∈ Y (H) we obtain

a parabolic subgroup of H and one of G by using the construction given in

Lemma 6.6. We denote these by Pλ(H) and Pλ(G) respectively. Similarly,

we have corresponding Levi subgroups of H and G, denoted Lλ(H) and

Lλ(G), respectively.

Clearly we have that Pλ(H) = Pλ(G) ∩H, and so every parabolic sub-

group of H is the intersection of a parabolic subgroup of G with H. Further-

more, Ru(Pλ(H)) = Ru(Pλ(G))∩H, and Lλ(H) = Lλ(G)∩H. Let M be any

Levi subgroup of Pλ(H). Then, by Proposition 6.4 (3), there exists some

u ∈ Ru(Pλ(H)) such that uLλ(H)u−1 = M . If we set L := uLλ(G)u−1,

then M = L ∩H and so every Levi subgroup of H is the intersection of a

Levi subgroup of G with H. Combining these results, we have the following

corollary.

Corollary 6.7. Let H be a reductive subgroup of G. Then for each parabolic

subgroup Q of H, there exists a parabolic subgroup P of G such that Q =

P ∩H, and Ru(Q) = Ru(P ) ∩H. Moreover for any Levi subgroup M of Q,

there exists a Levi subgroup L of P such that M = L ∩H.

The following is a result of Borel and Tits, see [7, Proposition 3.1].

Theorem 6.8. Let U be a closed unipotent subgroup of G. Then there exists

a parabolic subgroup P of G such that NG(U) ⊆ P and U ⊆ Ru(P ).

The following lemma is a standard result about parabolic subgroups of

connected reductive algebraic groups which can be inferred from [8, Propo-

sition 4.10].

Lemma 6.9. Let G be a connected reductive algebraic group, and let P and

P ′ be two parabolic subgroups of G. Then the following are equivalent.
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(1) P ∩ P ′ is reductive, and

(2) P and P ′ are opposite parabolic subgroups of G.

6.3 G-Complete Reducibility

Let G be a connected reductive algebraic group over the algebraically closed

field k. We introduce the notion of G-complete reducibility and we will

show, using [1, Theorem 3.1], that it is equivalent to Richardson’s geometric

notion of strong reductivity, see [42].

The notion of G-complete reducibility was introduced by J.-P. Serre in

[46]. The equivalence between the notions of G-complete reducibility and

strong reductivity in G is significant because the former is a group theoretic

notion, while the latter is geometric. This equivalence enables new methods

to be employed in the theory of G-complete reducibility.

Let V be a kG-module (or a G-module for short).

• V is irreducible if no proper subspace of V , other than the trivial

subspace, is G-stable.

• V is semisimple if it is a direct sum of irreducible submodules.

The following definition is due to J-P. Serre, see [45].

Definition 6.10. Let H be a subgroup of G.

(1) H is called G-irreducible (or G-ir) if H is not contained in any

proper parabolic subgroup of G.

(2) H is called G-completely reducible (or G-cr) if whenever H is con-

tained in a proper parabolic subgroup P of G, then H is contained in

a Levi subgroup of P .
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Note that G itself is trivially G-completely reducible. However, a reduc-

tive subgroup of G is not necessarily G-completely reducible, as shown by

the counter-example given in [1, Example 3.45] which we will discuss again

in Example 10.16.

To determine whether a subgroup of G is G-completely reducible, we

need to examine its containment inside various parabolic subgroups and

Levi subgroups of G. Let P be a parabolic subgroup of G, and L a Levi

subgroup of G. For a subgroup H of G, we note that H ⊆ P if and only if

the Zariski closure H of H is contained in P , since P is closed. Similarly,

H ⊆ L if and only if H is contained in L. Therefore, we may assume without

loss that H is closed.

Lemma 6.11. Let G = GL(V ), where V is finite dimensional, and let H

be a subgroup of G, so that V is an H-module. Then V is a semisimple

H-module if and only if H is G-completely reducible.

Proof. A parabolic subgroup P of GL(V ) is the stabiliser of a flag F :=

(V1, . . . , Vm) of subspaces {0} 6= V1 ⊆ V2 ⊆ · · · ⊆ Vm of V , where m ≤

dim(V ).

For each g ∈ P we have gVi = Vi. Hence, g induces an automorphism

of Vi/Vi−1, for i = 1, . . . ,m. We may choose a complement Wi to Vi−1

in Vi such that Vi = Vi−1 ⊕ Wi. Then a Levi subgroup L of P consists

of the g ∈ P that stabilise each of the Wi. We have L is isomorphic to

GLn1(k) × · · · × GLnm(k), where each ni = dim(Wi). To each subspace U

of V that is stabilised by L, there is a complement to U in V that is also

stabilised by L. Thus V is a semisimple L-module.

Suppose that H is G-completely reducible, and that H stabilises a sub-

space U of V . Then H is contained in a parabolic subgroup P of G that also

stabilises U . Each Levi subgroup of P stabilises U , and a complement to U .

As H is G-completely reducible, H is contained in some Levi subgroup L
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of P . As H ⊆ L, and U has an L-stable complement, then U has the same

H-stable complement. Thus, V is a semisimple H-module.

Conversely, suppose that V is a semisimple H-module and that H is

contained in a parabolic subgroup P of G. Since P acts on V by stabilising

a flag (V1, . . . , Vn), we have that H also stabilises (V1, . . . , Vn). Since V is a

semisimple H-module H is of block diagonal form, and so is contained in a

Levi subgroup of P .

Remark 6.12. It is not difficult to show that since SL(V ) = [GL(V ),GL(V )]

we have that a subgroup of SL(V ) is SL(V )-completely reducible if and

only if it is GL(V )-completely reducible, see for instance Lemma 9.7 later

in this thesis for more details. Therefore, we have that Lemma 6.11 holds

for G = SL(V ).

The corresponding situation, when the characteristic of k is different

from 2 and G = Sp(V ) or SO(V ), holds analogously, and is discussed in [1,

Example 3.23], and [45, Example 3.2.2(b)].

This result shows that the notions of G-complete reducibility and

semisimplicity of modules coincide when working in GL(V ), however the

notion of G-complete reducibility clearly extends to an arbitrary reductive

group G, and is in this sense a generalisation of the notion of reducibility of

linear representations.

We now introduce an important invariant for simple algebraic groups.

Definition 6.13. Let G be a simple algebraic group, with maximal torus

T . Let Φ(G,T ) be the root system of G relative to T with a base ∆ =

{α1, . . . , αn} for αi ∈ Φ(G,T ). Let σαi ∈ W (Φ) be the reflection corre-

sponding to αi. Let Γ be the group generated by the element σα1 · · ·σαn.

The Coxeter number h of G is the order of the group Γ.

The Coxeter number of G is an invariant of G, and this can be seen by
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[9, Theorem 1(ii) Ch.V, §6] which shows that the number of roots of G is

equal to hl where l is the rank of G.

Let V be a finite dimensional vector space, and let G be GL(V ). Then,

as we noted in Lemma 6.11, a subgroup H of G is G-completely reducible if,

and only if, V is a semisimple H-module. By Remark 6.12 we can replace

GL(V ) with SL(V ) and the corresponding result holds. Now let G be either

Sp(V ), or SO(V ), where as above V is a finite dimensional vector space. In

this case if char(k) > 2, then a subgroup H of G is G-completely reducible

if, and only if, V is a semisimple H-module, see [45, Example 3.2.2(b)].

There is a counterexample for char(k) = 2 which is described in [1,

Example 3.45]. In this example we take n to be an even integer, greater

than or equal to 4. By embedding Spn(k) diagonally in Spn(k)× Spn(k) it

is shown that Spn(k) is not Sp2n(k)-completely reducible, however Spn(k)

is connected and reductive. Consider Sp(V ⊕ V ′), where V, V ′ are natural

modules for the Spn(k) factors of Spn(k)×Spn(k), then V⊕V ′ is a semisimple

Spn(k)-module.

Let G be an exceptional group, then G can be embedded in GL(g).

Let h be the Coxeter number of G, and let H be a subgroup of G. If

char(k) > 2h − 2, then the Lie algebra g of G is a semisimple H-module

(via Ad |H) if and only if H is G-completely reducible, for details see [45,

Corollary 5.5]. The bound on the forward implication can be improved. In

the case G is an adjoint simple group of exceptional type, by [1, Remark

3.43], we only need char(k) to be good for G.

The following is a result of Serre, see [47, Property 4].

Lemma 6.14. If H ⊆ G is G-completely reducible, then H0 is reductive.

Proof. Suppose by way of contradiction that Ru(H) 6= e. Then, by Theorem

6.8, we have Ru(H) ⊆ Ru(P ) for some parabolic subgroup P of G with

H ⊆ NG(Ru(H)) ⊆ P . Now H is G-cr, so it is contained in some Levi
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subgroup L of P . Then Ru(H) ⊆ H ∩ Ru(P ) ⊆ L ∩ Ru(P ) = e. This is a

contradiction, therefore Ru(H) = e and H0 is reductive.

We have the reverse implication to Lemma 6.14 under certain circum-

stances. If the characteristic of k is larger than the Coxeter number of G,

then a closed connected subgroup H of G is G-completely reducible if and

only if H is reductive, see [1, Theorem 3.48]. If char(k) = 0, then a closed

subgroup H of G is G-completely reducible if and only if H0 is reductive,

by [45, Proposition 4.2]. To avoid the non-interesting case, from now on we

assume k has positive characteristic.

We conclude this section with a result about reductive subgroups of

parabolic subgroups.

Lemma 6.15. Let P be a parabolic subgroup of G. Suppose that H is

a connected reductive subgroup of G contained in P . Then, H intersects

Ru(P ) trivially.

Proof. Let U = H ∩Ru(P ). Then, U is a normal unipotent subgroup of H.

Since H is reductive, U must be finite.

Then U is a finite normal subgroup of the connected group H. By [23,

Proposition 8.1], H acts trivially on U , and so U is central in H. However,

the centre of H is a torus consisting of only semisimple elements. Thus,

H ∩Ru(P ) = e.

6.4 Strong Reductivity

In this section we introduce the notion of strong reductivity in G, which

is due to Richardson [42]. We also describe some important work of Bate,

Martin and Röhrle [1], which provides a link between Richardson’s geometric

notion of strong reductivity and the group theoretic notion of G-complete

reducibility.
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In much of the following we have a group G acting on the variety Gn

for some integer n in the following manner. We let G act on itself by

conjugation, and extend this action to Gn by considering the action by

simultaneous conjugation defined by g · (x1, . . . , xn) = (gx1g
−1, . . . , gxng

−1)

for g ∈ G, (x1, . . . , xn) ∈ Gn. In this sense, the variety Gn is a G-variety.

Set x := (x1, . . . , xn). For a one-parameter subgroup λ ∈ Y (G), we say

that the limit limx→0 λ(x) · x exists if limx→0 λ(x) · xi exists for each i.

The following definition is due to Richardson, see [42, Definition 16.1].

Definition 6.16. Let G be a reductive group. A subgroup H of G is said to

be strongly reductive in G if H is not contained in any proper parabolic

subgroup of CG(S) where S is a maximal torus of CG(H).

Remark 6.17. It is clear that Definition 6.16 does not depend on the choice

of S. To see this, fix the maximal torus S of CG(H), and suppose that H

is contained in a proper parabolic subgroup P of CG(S). Let S1 be another

maximal torus of CG(H). As tori are connected, and both S and S1 are

maximal tori in CG(H)0, by Proposition 6.2 S1 = Sg for some g ∈ CG(H).

Therefore, H = Hg ⊂ P g ⊂ CG(S)g = CG(Sg) = CG(S1), where P g is a

proper parabolic subgroup of CG(S1). The same argument works in the other

direction, hence H is contained in a proper parabolic subgroup of CG(S) if,

and only if, it is contained in a proper parabolic subgroup of CG(S1).

The following result provides an equivalence between the notions of

strong reductivity in G and G-complete reducibility. This link was proved

in [1, Theorem 3.1]. We restate this result and sketch its proof below and

note that the methods employed are similar to those used in other results

that follow, for example in Theorem 10.25.

Theorem 6.18. Let G be a reductive group and H a closed subgroup of G.

Then H is G-completely reducible if and only if H is strongly reductive in

G.
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Proof. For the forward direction we have that H is G-cr and suppose by

way of contradiction that H is contained in a proper parabolic subgroup Q

of CG(S), where S is a maximal torus of CG(H). by Corollary 6.7, there

exists a parabolic subgroup P of G such that Q = CG(S) ∩ P , where P

contains S and H. Since H is G-cr it is contained in a Levi subgroup L

of P , where L = CG(T ) for some torus T ∈ CP (H). Since S is a maximal

torus of CP (H), there is some g ∈ CP (H) such that T g is contained in

S. Therefore, CG(S) is contained in Lg. Thus, CG(S) ⊆ P , however this

implies that Q = CG(S) which is a contradiction. We conclude that H is

strongly reductive in G.

For the reverse, suppose that H is strongly reductive in G, and let S

be a maximal torus of CG(H). Then, H is not contained in any proper

parabolic subgroup of CG(S). By Proposition 6.4 (2), CG(S) := L is a Levi

subgroup of G. Let Q be a parabolic subgroup of G containing L as a Levi

subgroup. By [8, Proposition 4.4(c)], Q is a minimal parabolic subgroup of

G with respect to containing H.

Let P be a parabolic subgroup of G containing H. By [8, Proposition

4.4(b)] and the minimality of Q we have Q = (P ∩ Q)Ru(Q). Similarly,

we have (P ∩ Q)Ru(P ) is a parabolic subgroup of G contained in P . For

any parabolic subgroup P ′ ⊆ P , and a Levi subgroup M ′ of P ′, by [8,

Proposition 4.4], there is a Levi subgroup M of P such that M ′ ⊆ M .

Therefore, we may assume that P is minimal with respect to containing H,

and thus P = (P ∩Q)Ru(P ).

By [8, Proposition 4.4(b)], P contains a Levi subgroup, MQ say, of Q,

and Q contains a Levi subgroup, MP say, of P . By choosing Levi subgroups

LP and LQ of P and Q respectively such that LP ∩LQ contains a maximal

torus of G, we have the standard decomposition of P ∩Q, as given by in the

proof of [1, Theorem 3.1]:

P ∩Q = (LP ∩ LQ)(LP ∩Ru(Q))(Ru(P ) ∩ LQ)(Ru(P ) ∩Ru(Q)). (2)
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Then Ru(P ∩ Q) is the product of the last three factors of equation (2).

Since MP is reductive and is contained in P ∩Q, we have MP ∩Ru(P ∩Q)

is trivial. Therefore, MP is isomorphic to a subgroup of LP ∩ LQ. It then

follows that M := LP = LQ is a common Levi subgroup of both P and Q.

Let P− be the opposite parabolic subgroup to P with respect to M .

We have that L and M are both Levi subgroups of Q, hence are Ru(Q)-

conjugate. Our goal is to show that L is Ru(P−)-conjugate to a Levi

subgroup of P−, for then we could conclude that H ⊂ P−, and hence

H ⊆ P ∩ P− = M . This would give that H is G-cr.

We have that

Ru(Q) = (Ru(Q) ∩Ru(P−))(Ru(Q) ∩Ru(P )).

Therefore, yzMz−1y−1 = L for y ∈ Ru(Q) ∩ Ru(P−) and z ∈ Ru(Q) ∩

Ru(P ). Since zMz−1 ⊂ P , we can take z = e without loss. This gives that

L = yMy−1 ⊆ P−. Hence, H ⊆ P ∩ P− = M , as required.

We see from Lemma 6.14 and Theorem 6.18 that a strongly reductive

subgroup of G is reductive. Without appealing to the notion of G-complete

reducibility, Richardson proves that a strongly reductive subgroup of G is

reductive in [42, Lemma 16.3].

Strong reductivity is a geometric notion, in that strongly reductive sub-

groups correspond to closed orbits, as the following theorem, [42, Theorem

16.4] due to Richardson, shows.

Theorem 6.19. Let x = (x1, . . . , xn) ∈ Gn. Then the orbit G · x is closed

in Gn if and only if H = 〈x1, . . . , xn〉 is strongly reductive in G.

In order to prove Theorem 6.19 we need the following, which is the

Hilbert–Mumford Theorem as presented in [26, Theorem 1.4].
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Theorem 6.20. Let G be a reductive group and V a G-variety and let v ∈ V .

Let U be a closed G-subvariety of V which meets the closure of G · v. Then

there exists a one-parameter subgroup λ ∈ Y (G) such that limx→0 λ(x) · v

exists and belongs to U .

Definition 6.21. Let X be a G-variety. Let Z = ∩x∈XCG(x) be the kernel

of the action of G on X. We say x ∈ X is a stable point for the action of

G if the orbit G · x is closed in X and CG(x)/Z is finite.

Lemma 6.22. Let x ∈ X and let S be a maximal torus of CG(x). Then

G · x is closed if and only if x is a stable point for the action of CG(S) on

XS.

Proof. If G · x is closed then CG(S) · x is closed by [43, Theorem C], and is

therefore an affine variety. Let H = CCG(S)(x). As CG(S) · x is closed, [43,

Lemma 10.1.3] implies that CG(S)/H is an affine variety. Therefore, by [41,

Theorem A], H0 is reductive. We have that S is central in H and therefore

also in H0, since S is connected. The group S is a maximal torus of H0 as

S is a maximal torus of CG(x), and H ⊆ CG(x). Hence, CH0(S) = S = H0.

Finally, H/S is finite and S ⊆ Z, for Z the kernel of the action of CG(S) on

XS , so x is a stable point.

Conversely if x is a stable point for the action of CG(S) on XS , then

CG(S) · x is closed and, by [43, Theorem C], G · x is closed.

The following proposition, due to Richardson [43], is essential in proving

Theorem 6.19.

Proposition 6.23. Let (x1, . . . , xn) ∈ Gn. Then (x1, . . . , xn) is a stable

point of Gn if and only if 〈x1, . . . , xn〉 is not contained in any proper parabolic

subgroup of G.

Proof. Set x := (x1, . . . , xn) and H := 〈x1, . . . , xn〉. Suppose that H is

not contained in any proper parabolic subgroup of G. Suppose G · x is not

69



closed. Let y = (y1, . . . , yn) ∈ G · x\G ·x such that G ·y is the unique closed

orbit in this boundary, which exists by [39, No.8]. Then by Theorem 6.20

there exists λ ∈ Y (G) such that limx→0 λ(x) · x exists and belongs to G · y

(which is closed by hypothesis). But then H ⊆ Pλ. If Pλ were proper in

G this would be a contradiction, therefore λ must be central in G giving

limx→0 λ(x) · x = x. Thus x ∈ G · y, so G · x is closed and therefore affine.

As G · x is closed, [43, Lemma 10.1.3] implies that G/CG(x) is an affine

variety. Therefore, by [41, Theorem A], CG(x)0 is reductive. Let S be a

maximal torus of CG(x), and let λ be a one-parameter subgroup of S. Then

x ∈ CG(S)n ⊆ CG(λ(k∗))n. So H ⊆ CG(λ(k∗)) ⊆ Pλ. Therefore Pλ = G,

hence all the one-parameter subgroups of S are central in G. Therefore,

S ⊆ Z(G)0. The group CG(x)0 is reductive and S is a central maximal

torus in CG(x)0, so CCG(x)0(S) = S = CG(x)0.

Set Z = ∩x∈GnCG(x). For x to be a stable point we require CG(x)/Z to

be finite. We have that CG(x)/S is finite. However Z ⊇ S. This can be seen

since S ⊆ Z(G)0 and so S commutes with all z ∈ Gn under the diagonal

action. Therefore S ⊆ CG(z) for each z ∈ Gn, and so S is contained in

their intersection. Hence CG(x)/Z is no bigger than CG(x)/S, and so is

also finite.

Conversely, suppose there exists some non-central one-parameter sub-

group λ ∈ Y (G) with H ⊆ Pλ. Set y = (cλ(x1), . . . , cλ(xn)), where cλ

is the map defined in §6.2. Then, each cλ(xi) ∈ Lλ = CG(λ(k∗)). So

cλ(xi) ∈ CG(λ(k∗)) for each i, and so CG(y) ⊇ CG(CG(λ(k∗))) ⊇ λ(k∗).

This means that λ ∈ Y (CG(y)). However, λ /∈ Z(G), so Z(G)0 ( CG(y)0.

The two groups Z(G)0 and CG(y)0 must therefore have different dimen-

sions because they are connected, and so CG(y)/Z(G) is infinite. Since

∩y∈GnCG(y) is the kernel of the action of G on Gn, it is contained in Z(G).

Thus, CG(y)/ ∩y∈Gn CG(y) is infinite and y is not a stable point.

If y ∈ G · x, then y = g · x for some g ∈ G. Let h ∈ CG(x). Then
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ghg−1 · y = gh · x = g · x = y so hg ∈ CG(y). Hence, CG(x) and CG(y) are

conjugate groups. The quotient CG(x)/Z(G) is thus infinite and x is also

not a stable point. Now suppose y /∈ G · x, then the orbit of x is not closed

because it does not contain the limit y. Again, we conclude that x is not

stable.

We now present a proof of Theorem 6.19.

Proof. Set X = Gn, and let x = (x1, . . . , xn) ∈ X. Recall that H =

〈x1, . . . , xn〉. Fix a maximal torus S of CG(H) = CG(x).

Suppose G ·x is closed. Then, by Lemma 6.22, x is a stable point for the

action of CG(S) on XS . But then, by Proposition 6.23, H is not contained

in any proper parabolic subgroup of CG(S), because CG(H) ⊆ ∩iCG(xi)

and clearly S ⊆ CG(H). So H is strongly reductive in G.

Conversely, let S be a maximal torus of ∩iCG(xi). Assume H is strongly

reductive in G. By Proposition 6.23, x is a stable point for the action of

CG(S) on (CG(S))n. The orbit CG(S) · x is closed in X and hence, by [43,

Theorem C], G · x is closed.

6.5 Topologically Finitely Generated Groups

The following is [1, Lemma 2.10], and we include its proof here because we

use it as the basis for the proof of Lemma 10.4 later on.

Lemma 6.24. Let H be a closed subgroup of G. Then, there exists a topolog-

ically finitely generated subgroup Γ of H such that for any parabolic subgroup

P of G and any Levi subgroup L of P , P contains H if and only if P contains

Γ, and L contains H if and only if L contains Γ.

Proof. Recall that each parabolic subgroup containing a Borel subgroup B

of G is of the form PI for some subset I of an indexing set {1, . . . , l} of the l

roots in ∆ ⊆ Φ(B, T ) and each subset I of {1, . . . , l} gives rise to a parabolic
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subgroup containing B. Moreover, PI is conjugate to PJ if and only if

I = J . Then since each Borel subgroup of G is conjugate to B, any parabolic

subgroup of G has a conjugate containing B and is therefore conjugate to

a parabolic subgroup of the form PI for some I. Since ∆ is a finite set

there are only finitely many conjugacy classes of parabolic subgroups of G

with representatives P1, . . . , Pm, say. Each Pi has one conjugacy class of

Levi subgroups since all Levi subgroups of a parabolic Pi are conjugate by

Ru(P ). Let L1, . . . , Ln be representatives of the set of conjugacy classes of

Levi subgroups. Note that although to each parabolic subgroup Pi there

is one conjugacy class of Levi subgroups, by Proposition 6.4, some of these

classes may coincide so that in general n ≤ m.

Now for any subgroup H ′ ⊆ H set

Ci(H
′) := {g ∈ G | H ′ ⊆ gPig−1}

and

Dj(H
′) := {g ∈ G | H ′ ⊆ gLjg−1}.

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. By [23, Proposition 8.2 (a)], each

of these sets is closed and, for any subgroup H ′′ containing H ′, we have

Ci(H
′′) ⊆ Ci(H

′) and Dj(H
′′) ⊆ Dj(H

′). For each i, j set Ci,Dj to be the

set of all Ci(H
′), Dj(H

′) for H ′ ⊆ H topologically finitely generated. For

an increasing chain of topologically finitely generated subgroups of H, we

get that Ci,Dj contain decreasing chains of closed sets for each i and j,

each of which must terminate by the descending chain condition on closed

sets. By Zorn’s Lemma we can find minimal elements in Ci,Dj , for each i, j,

and these minimal elements arise from finitely generated subgroups of H.

Take Γ to be the subgroup of H generated by all of these finitely generated

subgroups.

We have that Ci(Γ) ⊆ Ci(H
′) and Dj(Γ) ⊆ Dj(H

′) for all i, j and all

topologically finitely generated subgroups H ′ ⊆ H. Then, Ci(Γ) = Ci(H)
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and Dj(Γ) = Dj(H) for all i, j since if Ci(H) ( Ci(Γ), then there exists some

g ∈ Ci(Γ) and h ∈ H with ghg−1 /∈ Pi. But then the group Γ′ topologically

generated by Γ and h has Ci(Γ
′) ( Ci(Γ), which is a contradiction.

Now suppose H ⊆ P . As mentioned P is G-conjugate to some Pi, so for

some g ∈ G we have gPg−1 = Pi and gHg−1 ⊆ Pi, so g ∈ Ci(H) = Ci(Γ)

and so gΓg−1 ⊆ Pi and so Γ ⊆ P . Conversely, suppose that Γ ⊆ P . Then

gΓg−1 ⊆ Pi. Hence, g ∈ Ci(Γ) = Ci(H). Therefore, gHg−1 ⊆ Pi, and so

H ⊆ P . The argument is similar for Levi subgroups.

Lemma 6.24 shows that for the purposes of studying G-complete re-

ducibility, we only need to consider topologically finitely generated sub-

groups of G. This is because we may replace a subgroup H of G with

the group Γ, as in Lemma 6.24, which has exactly the same properties as

H in terms of its G-complete reducibility. This is an important observa-

tion because in order to investigate whether H is G-completely reducible,

we examine the G-orbit of a tuple (g1, . . . , gn) in Gn which generates Γ.

As described by Theorem 6.19 this orbit determines whether Γ is strongly

reductive in G, and hence, by Theorem 6.18, whether Γ is G-completely

reducible. Therefore, in order to exploit the benefits of this geometric ap-

proach to G-complete reducibility, we rely on Lemma 6.24.

6.6 Normal Subgroups

In this section we follow the argument of Martin to prove [35, Theorem 2],

which shows that a normal subgroup of a G-completely reducible subgroup

of G is itself G-completely reducible. We introduce some terminology and

initial results.

Let V be an affine G-variety, and let λ be an element of the set of

one-parameter subgroups Y (G) of G. Let v ∈ V . Recall that the limit

limx→0 λ(x)·v is said to exist and equal u if there is a morphism Mv(λ) : k →
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V such that Mv(λ)(x) = λ(x) ·v for every x ∈ k∗ and Mv(λ)(0) = u. Denote

by |V, v| the set of one-parameter subgroups λ such that limx→0 λ(x) · v

exists.

Let U be a closed G-invariant subvariety of V such that v /∈ U . Then

Mv(λ)(k∗) ∩ U = ∅. Therefore, Mv(λ)(k) ∩ U is non-empty if and only if

Mv(λ)(0) ∈ U .

For a commutative ring A we denote the set of all proper prime ideals

of A by Spec(A). Suppose that Mv(λ)(0) ∈ U . We have that U ⊆ V and so

k[U ] = k[V ]/I for some ideal I ⊆ k[V ]. Hence, we have that the comorphism

Mv(λ)∗ maps k[V ] to k[A1]. Therefore, the ideal generated by Mv(λ)∗(I),

denoted [I], is an ideal in k[A1]. The pre-image Mv(λ)−1(U) of U under the

map Mv(λ) is a closed subvariety of A1 determined by Spec(k[A1]/[I]), and

which as a set is just {0}. Therefore, there is some positive integer m such

that Mv(λ)−1(U) is determined by Spec(k[T ]/(Tm)) for an indeterminate

T . The integer m depends on U, v and λ, so we denote it by αU,v(λ). Note

this is non-negative in general, and positive if and only if Mv(λ)(0) ∈ U .

A length function on Y (G) is a G-invariant function || − || : Y (G) →

R≥0 such that for any maximal torus T of G there is a positive definite

Z-valued bilinear form 〈·, ·〉 on Y (T ) such that for all λ ∈ Y (T ) we have

||λ|| =
√
〈λ, λ〉. It is shown in [26] that length functions on Y (G) exist.

Let W be the Weyl group NG(T )/T of G, in particular W is finite. We

have NG(T ) acts on T by conjugation, and so we have an action of W on

Y (T ) defined by nT · λ(x) = nλ(x)n−1 for λ ∈ Y (T ), n ∈ NG(T ), x ∈ k∗.

For any positive definite Z-valued bilinear form 〈·, ·〉 on Y (T ), we can form

a W -invariant length function || · ||W in the following way. Since W is finite,

we define a W -invariant positive definite Z-valued bilinear form 〈·, ·〉W on

Y (T ) by setting:

〈λ, µ〉W = Σw∈W 〈w · λ,w · µ〉, for λ, µ ∈ Y (T ).

74



By [26, Lemma 2.1 (a)], there is a bijective correspondence between G-

orbits of Y (G) and W -orbits of Y (T ). For any g ∈ G,λ ∈ Y (T ), we have

g · λ ∈ Y (G) can be identified with some n · λ ∈ Y (T ) for n ∈ NG(T ). Since

〈·, ·〉W is W -invariant, we can set ||g · λ||W = 〈λ, λ〉W .

Let |V, v|U denote the set of one-parameter subgroups λ of G, such that

limx→0 λ(x) · v exists and belongs to U .

We call a one-parameter subgroup λ ∈ Y (G) indivisible if it is not of

the form nµ for any µ ∈ Y (G) and any integer n greater than 1.

The Hilbert–Mumford Theorem, Theorem 6.20, asserts that, for V, v

and U as above, a one-parameter subgroup λ ∈ Y (G) can be chosen so

that the integer αU,v(λ) is non-zero. The following theorem of Kempf is

[26, Theorem 3.4], and shows that the αU,v(λ) reach a certain upper bound,

and that the λ reaching this upper bound give rise to a particular class of

parabolic subgroups of G, see Notation 6.26.

Theorem 6.25. Let G be a reductive algebraic group, V a G-variety con-

taining v and U a closed G-stable subvariety of V which does not contain v,

and satisfies U ∩G · v 6= ∅. Then the following hold:

(1) The function |V, v|U → R given by λ 7→ αU,v(λ)/||λ||W reaches an

upper bound.

(2) There exists a non-trivial indivisible one-parameter subgroup λ ∈

|V, v|U which attains this upper bound. For any other one-parameter

subgroup µ with this property we have:

(a) Pλ = Pµ;

(b) λ and µ are conjugate by some element of Ru(Pλ).

Notation 6.26. The parabolic subgroup Pλ of G arising in this theorem is

determined uniquely by V, v and U , so we can denote Pλ by PU,v, and PU,v is
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called the destabilising parabolic subgroup of G with respect to U and v.

We call the indivisible one-parameter subgroup λ optimal with respect to

V, v and U . Define ΛU,v to be the subset of |V, v| containing the indivisible

optimal one-parameter subgroups of G with respect to U and v.

Lemma 6.27. We have gPU,vg
−1 = PU,g·v for all g ∈ G.

Proof. Let ∗ : G × G → G denote the action of conjugation, given by

g ∗ h = ghg−1. We first show that for any g ∈ G we have g ∗ ΛU,v = ΛU,g·v.

Note that by the calculation given in the proof of [42, Lemma 2.7], the limit

g · (limx→0 λ(x) · v) exists if and only if the limit limx→0 g · (λ(x) · v) exists.

Let g ∈ G, we have:

|V, g · v| = {λ : Gm → G | lim
x→0

λ(x) · (g · v) exists}

= {λ : Gm → G | g−1 · ( lim
x→0

λ(x) · (g · v)) exists}

= {λ : Gm → G | lim
x→0

g−1 · (λ(x) · (g · v)) exists}

= {λ : Gm → G | lim
x→0

(g−1λ(x)g) · v exists}

= {λ : Gm → G | lim
x→0

(g−1 ∗ λ(x)) · v exists}

= {g ∗ λ′ : Gm → G | lim
x→0

λ′(x) · v exists}

= g ∗ |V, v|.

By the proof of [26, Corollary 3.5] we have αU,g·v(g ∗ λ) = αU,v(λ). As

|| · ||W is G-invariant we have ΛU,g·v = g ∗ ΛU,v. Now we can show that

g ∗ PU,v = g ∗ Pλ = Pg∗λ for λ ∈ ΛU,v. But since g ∗ ΛU,v = ΛU,g·v, we have

that g ∗ λ ∈ ΛU,g·v. So Pg∗λ = PU,g·v.

If we consider the induced action of G on the G-variety V n, for some n,

then the obvious action of Sn on V n commutes with the G-action. As noted

in [35], this can be used to show that ΛU,ω·v = ΛU,v, and PU,ω·v = PU,v, for

ω ∈ Sn,v ∈ V n.

76



Theorem 6.28. Let H be a closed subgroup of the reductive group G, and

let N be a normal subgroup of H. Suppose H is G-completely reducible, then

N is also G-completely reducible.

Proof. By Theorem 6.18 all we need to show is that if H is strongly reductive

in G, then so is N . Therefore, suppose by way of contradiction that H is

strongly reductive in G, and that N is not. By Lemma 6.24, we may assume

without loss thatH0 andN are topologically finitely generated by h1, . . . , hm

and n1, . . . , nr respectively.

By [36, Proposition 3.2] there exists a finite subgroup F = {f1, . . . , fs}

of H such that H = H0F . Define the tuple n ∈ N rs by

n = (n1, . . . , nr, f2n1f
−1
2 , . . . , f2nrf

−1
2 , . . . , fsn1f

−1
s , . . . , fsnrf

−1
s )

and the tuple h ∈ Hrs+m by

h = (n1, . . . , nr, f2n1f
−1
2 , . . . , f2nrf

−1
2 , . . . , fsn1f

−1
s , . . . , fsnrf

−1
s , h1, . . . , hm).

Since N is not strongly reductive in G, by Theorem 6.19, the orbit G ·n

is not closed in Grs. By [39, No.8] the closure of this orbit contains a unique

closed orbit, O1 say. Set O := ∪ω∈Srsω · O1, where Srs acts on Grs in the

obvious way. Then O is a union of finitely many closed G-orbits, hence is

closed. Furthermore, since each ω · O1 has dimension less than dim(G · n),

none of them contain n, hence O does not contain n. We have that Grs, O

and n satisfy the criteria of Theorem 6.25. Therefore, there is an optimal

indivisible one-parameter subgroup λ ∈ Y (G) such that Pλ = PO,n.

Since λ ∈ |Gsr,n|, the limit limx→0 λ(x) · n exists. This means that

limx→0 λ(x) ·ni exists for all i ∈ {1, . . . , r}, therefore each ni ∈ PO,n. As the

elements n1, . . . , nr topologically generate N , we have that N ⊆ PO,n.

By [36, Lemma 6.8], we have H0 = NH(N)0 = (NCH(N))0. If c ∈

CH(N), then PO,c·n = PO,n, and by Lemma 6.27, c · PO,n = PO,c·n. Hence,
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c ·PO,n = PO,n. Since PO,n is its own normaliser, (NCH(N))0 = H0 ⊆ PO,n.

For each f ∈ F , we have f · PO,n = PO,f ·n. Since each f acts in the same

way as some ω ∈ Srs, we have f · PO,n = PO,ω·n = PO,n, and so F ⊂ PO,n.

Therefore H = H0F ⊆ PO,n.

This means that limx→0 λ(x) · h exists in Grs+m. Since limx→0 λ(x) · n

does not belong to G · n, and the orbit G · n is the projection of the first

rs entries of the orbit G · h, we have that the limit limx→0 λ(x) · h does not

belong to G·h. Therefore, the orbit G·h is not closed, and by Theorem 6.19,

this implies that H is not strongly reductive in G, which is a contradiction,

as required.

Remark 6.29. When G = GL(V ), Theorem 6.28 is just a special case of

Clifford’s Theorem, see [14, Theorem 1.11(i)]. For N normal in G, Clifford’s

Theorem asserts that if V is a semisimple kG-module, then V is a semisimple

kN -module, and Theorem 6.28 follows from this since semisimplicity of the

module V and complete reducibility are equivalent for subgroups of GL(V ),

as noted in Lemma 6.11. An account of this observation is given in [35, §3].
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7 Frobenius Morphisms

7.1 Basic Facts About Rationality

Let k ⊆ K be fields of positive characteristic with K algebraically closed. In

this section we introduce the notion of an algebraic group G over K being

defined over the subfield k. We discuss this first in a general setting, then

focus on the fields Fq ⊂ Fq, where Fq is the finite field of characteristic p

with q = pa elements for some prime p and positive integer a. For further

details regarding the following refer to [6, AG.11].

Let V be a vector space over K (not necessarily finite dimensional). A

k-structure on V is a k-module Vk ⊆ V such that the homomorphism:

K ⊗k Vk −→ V

given by (x, v) 7→ xv, for all x ∈ K, v ∈ Vk, is an isomorphism of vector

spaces. The elements of Vk are said to be rational over k. For a subspace

U of V , we define the set Uk := U ∩ Vk, and say that U is rational over k

if Uk is a k-structure on U .

A K-linear map f : V → W of K-vector spaces V,W with k-structures

Vk,Wk on V and W , respectively, is called a k-morphism if f(Vk) ⊆Wk.

For a K-algebra A, we define a k-structure on A to be k-structure Ak

that is a k-subalgebra of A. An ideal of A is k-ideal if it is generated by its

restriction to Ak.

It is shown in [6, AG. 11.3] how to define a k-structure on the K-ringed

space (V,OV ). It consists of a topology on V in which the open sets are

defined over k, and are also open in V in the standard sense, such that when

OV is restricted to this topology it is a sheaf of K-algebras with k-structures.

A morphism φ : X → Y of k-ringed spaces X and Y is a k-morphism

(or is said to be defined over k) if φ is continuous when restricted to
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the k-topologies, and if V ⊂ Y and φ(U) ⊆ V are k-open subspaces, then

φ∗ : OY (V )→ OX(U) is a k-morphism.

If an affine variety over K has a k-structure, we call it a k-variety.

Let X be an affine k-variety and let A be its coordinate ring with a k-

structure Ak. Then the k-rational points X(k) of X consists of the points

corresponding to the maximal k-ideals of A. We say that X is defined over

k. This notion extends the correspondence between the points of an affine

variety and the maximal ideals of its affine algebra. For further details see

[6, §AG.13], for instance.

Example 7.1. Let V = A1. Its coordinate algebra satisfies

Fq[T ] ∼= Fq[T ]⊗Fq Fq.

We have that V is defined over Fq, and V (Fq) is the set of points correspond-

ing to the maximal ideals generated by the polynomials T − a, for a ∈ Fq.

That is, V (Fq) = Fq.

An algebraic group G is called a k-group, or is said to be defined over

k, if its coordinate algebra has a k-structure and the product and inverse

maps on G are defined over k. As noted in [23, §34.2], if G is a k-group,

then the k-rational points G(k) is a subgroup of G.

Example 7.2. Let G = GLn(Fq). Then its coordinate algebra satisfies,

Fq[Ti,j , det(Ti,j)
−1] ∼= Fq[Ti,j ,det(Ti,j)

−1]⊗Fq Fq.

We have that G is defined over Fq, and its group of rational points G(Fq) is

equal to GLn(Fq). This is because, the maximal k-ideals are generated by

the polynomials Ti,j − ai,j where ai,j ∈ Fq and det(ai,j) 6= 0.

7.2 Frobenius Morphisms

From now on set k = Fq, and K = Fq. We restrict our attention to these

fields because it enables us to examine the so-called Frobenius morphisms.
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This is the name given to a class of morphisms that are prominent in the

field of algebraic groups. They are used to construct the finite groups of

Lie type in the classification of finite simple groups. For a more extensive

account of the following, see [30, §1.2].

Definition 7.3. We define Aut(G) to be the group of all automorphisms of

G as an abstract group, and Autalg(G) to be the automorphism group of G

when G is viewed as an algebraic group.

For the abstract automorphism φ : G→ G to belong to Autalg(G), both

φ and its inverse need to be morphisms of the underlying variety of G.

Example 7.4. An example of a non-algebraic morphism is the inverse of the

map σq : GLn(Fq) → GLn(Fq) given by (xij) 7→ (xqij). It is easily checked

that σq is a homomorphism given by polynomial conditions, however its

inverse involves taking the q-th root, which is not an operation defined by

polynomial conditions.

The comorphism of σq is the map σ∗q : k[GLn(Fq)] → k[GLn(Fq)] given

by σ∗q (f) = f ◦ σq, for f ∈ k[GLn(Fq)]. Therefore, σ∗q is not invertible since

σq is not invertible.

If we let G be a simple algebraic group over the algebraically closed field

Fq of characteristic p, then we have the following description of Autalg(G).

By [51, Theorem 30], Autalg(G) is generated by inner automorphisms and

graph automorphisms of type An, Dn, D4, or E6 (which have order 2, 2, 3,

or 2 respectively), so called as they arise from symmetries of the Dynkin

diagrams of these types. The group Aut(G) is generated by the elements

of Autalg(G), together with non-trivial field automorphisms which are of

the form uα(x) 7→ uα(xq) for q a p-power, where uα is as defined in §6.1,

as well as automorphisms τ ′ of order 2 of type B2 (p = 2), F4 (p = 2), or

G2 (p = 3) arising from symmetries in the Dynkin diagrams of these types,
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and corresponding to the formula:

uα(x) 7→ uρ′(α)(εαx
p(α)). (3)

In the above p(α) = 1 if α is a long root, p(α) = p if α is a short root,

εα = ±1 is defined in [51, p156], and where ρ′ is a permutation of the root

system of G which interchanges long and short roots giving rise to an order

2 symmetry of the Dynkin diagram.

The following theorem is [50, 10.13].

Theorem 7.5. Let G be a simple algebraic group, and let σ ∈ Aut(G) be an

automorphism of G as an abstract group. Then one of the following holds:

(i) σ is in Autalg(G), or

(ii) Gσ (the group of fixed points) is finite.

Definition 7.6. In the setting of Theorem 7.5, if we are in the latter case

then we call σ a Frobenius morphism of G. We say that a subgroup H

of G is σ-stable if σ(H) = H.

By [50, §11], any Frobenius morphism σ of G is G-conjugate to either σq

or τσq where σq is a non-trivial field automorphism of the form σq : uα(x) 7→

uα(xq) for q a p-power (i.e. q 6= 1) and τ is a graph automorphism of type

An, Dn, D4, E6 (of order 2, 2, 3 and 2 respectively) or B2 (p = 2), F4 (p =

2), G2 (p = 3). In addition, in types B2 (p = 2), F4 (p = 2), G2 (p = 3) there

are additional Frobenius morphisms τ ′ as described above.

Now let G be an arbitrary linear algebraic group over Fq. We define a

Frobenius morphism of G as follows. Consider the map σq : GLn(Fq) →

GLn(Fq), given by

σq : (xij) 7→ (xqij).
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A homomorphism σ : G→ G is called a standard Frobenius morphism

if there exists an injective homomorphism ι : G→ GLn(Fq) for some n and

some q = pa such that

ι(σ(g)) = σq(ι(g)) for all g ∈ G.

By [15, Proposition 3.3 (ii),(iii)], we see that G is defined over Fq if and

only if G is σq-stable. Recall Example 7.2 from Section 7.1. This example

shows that GLn(Fq) is defined over Fq and, from the above, this means that

GLn(Fq) is σq-stable. The same is true for other classical algebraic groups.

A homomorphism σ : G→ G is called a Frobenius morphism if some

power of σ is a standard Frobenius morphism.

Definition 7.7. Let G and H be algebraic groups, and let f : G→ H be a

group homomorphism and a morphism of algebraic groups. Then f is called

an isogeny if it has finite kernel.

The following proposition is a compilation of results that can be found

in [10, §1.17].

Proposition 7.8. Let σ be a Frobenius morphism of G.

(1) If H is a σ-stable closed subgroup of G, then the restriction of σ to H

is a Frobenius morphism of H.

(2) If H is a σ-stable closed normal subgroup of G, then σ induces a

homomorphism from G/H to itself which is a Frobenius morphism

of G/H.

(3) σ is bijective.

(4) Gσ is finite.

(5) If G is semisimple and φ : G → G is any surjective homomorphism

for which Gφ is finite, then φ is a Frobenius morphism of G.
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(6) As σ is a bijection, it is an isogeny.

Remark 7.9. We have introduced two notions of Frobenius morphism.

(1) When G is simple, any surjective morphism σ : G → G which has a

finite fixed-point group is called a Frobenius morphism.

(2) When G an arbitrary algebraic group any homomorphism σ : G→ G,

such that there exists an embedding ι of G in some GL(V ), and some

power n of σ for which ι(σn(g)) = σq(ι(g)) for all g ∈ G, is called a

Frobenius morphism.

When G is simple, these two definitions coincide, and this can be seen

as follows. If σ is a Frobenius morphism of the simple algebraic group G in

the second sense, by Proposition 7.8 (4), the fixed point set Gσ := {g ∈ G |

σ(g) = g} is a finite group.

Conversely, if G is a simple algebraic group and σ is a Frobenius mor-

phism of G in the first sense, that is a surjective morphism σ : G → G for

which Gσ is finite, then by Proposition 7.8 (5), σ is a Frobenius morphism

in the second sense.

As noted in Proposition 7.8 (6), if σ : G→ G is a Frobenius morphism,

then it is an isogeny. By Proposition 7.8 (4) Gσ is finite. For example,

set G = SLn(Fq) and σ is the Standard Frobenius morphism, raising each

element in the matrices (xij) ∈ SLn(Fq) to the q-th power (xqij). Then

Gσ = SLn(Fq) – its group of Fq-points is finite. We give some more examples

of groups of the form Gσ in §7.3.

Remark 7.10. In the case G is simple, [50, §11] provides a way of decompos-

ing automorphisms of G into elementary automorphisms, and shows that

a Frobenius morphism is the product of certain inner, graph and field au-

tomorphisms of G. However, in general we can have Frobenius morphisms

85



arising in more exotic ways. For example, suppose that char(k) = 2, and let

B and C be simple groups of types Bn and Cn, respectively.

Chevalley describes in [12, 24-05] how to construct isogenies ch : B → C

and ch∗ : C → B, which are called special isogenies, such that the com-

position ch∗ ch : B → B is the 2-power map σ2 (see [13, Lemma 7.3.2] for

proof). This composition is clearly a Frobenius morphism on Bn, but fac-

tors through the special isogenies ch and ch∗, neither of which are Frobenius

morphisms, in particular they are not automorphisms.

The morphism (ch, ch∗) : B × C → B × C given by (ch, ch∗) : (b, c) 7→

(ch∗(c), ch(b)) is a Frobenius morphism of B × C because its square is the

standard Frobenius morphism. However, (ch, ch∗) does not decompose into

the elementary automorphism types as listed in [50, §11].

The following is part of the Lang–Steinberg Theorem, see for example

[48, Theorem 4.4.17]. It is an important tool in much of what follows.

Theorem 7.11 (Lang–Steinberg). Let G be a connected algebraic group,

and σ : G→ G a surjective endomorphism of G. Then the map g 7→ σ(g)g−1

from G to G is surjective.

We now state an important consequence of Theorem 7.11. This result

can be found in, for example [49, I, 2.7].

Corollary 7.12. Let G be a connected algebraic group acting transitively

on a set ∆, and let σ be a Frobenius morphism of G which acts on ∆ such

that σ(gx) = σ(g)σ(x) for all g ∈ G, x ∈ ∆. Then ∆ contains an element

fixed by σ.

Proof. Let x ∈ ∆. By the transitivity of the action of G on ∆, there exists

some g ∈ G with σ(x) = gx. Now by Theorem 7.11 we can write g =

σ(h)h−1 for some h in G. Therefore, σ(h−1x) = σ(h−1)σ(x) = σ(h−1)gx =

σ(h−1)σ(h)h−1x = h−1x, so h−1x ∈ ∆ has the desired property.
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Corollary 7.13. A connected algebraic group, with a Frobenius morphism

σ, contains a σ-stable Borel subgroup.

Proof. Let G be a connected algebraic group, and let σ be a Frobenius

morphism of G. Set ∆ to be the set of Borel subgroups in G. Since the

Borel subgroups of G are conjugate, by Proposition 6.2 ∆ forms one G-

conjugacy class, and so G acts transitively on ∆. As the homomorphic

image of a Borel subgroup is a Borel subgroup, ∆ is σ-stable. Thus, we

are in the setting of Corollary 7.12. Hence, ∆ contains an element fixed by

σ.

Corollary 7.14. An algebraic group, with a Frobenius morphism σ, con-

tains a σ-stable maximal torus.

Proof. Let G be an algebraic group, and let σ be a Frobenius morphism of

G. A maximal torus of G is also a maximal torus of G0 due to the fact

that tori are connected. Set ∆ to be the set of maximal tori in G0. By

Proposition 6.2 the maximal tori in G0 form one G-conjugacy class. Thus,

G0 acts transitively on ∆. As G0 is a characteristic subgroup of G, it is σ-

stable. As the homomorphic image of a maximal torus is a maximal torus, ∆

is σ-stable. Thus, we are in the setting of Corollary 7.12. Hence, ∆ contains

an element fixed by σ.

Corollary 7.15. Let G be a reductive algebraic group, with a Frobenius

morphism σ. Then, each σ-stable parabolic subgroup of G contains a σ-

stable Levi subgroup.

Proof. Let P be a parabolic subgroup of G, and set ∆ to be the set of Levi

subgroups in P . The set of Levi subgroups of P forms one P -orbit. Thus,

P acts transitively on ∆. As P is σ-stable, the homomorphic image of a

Levi subgroup of P is a Levi subgroup of P , hence ∆ is σ-stable. As P is
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connected, we are in the setting of Corollary 7.12. Hence, ∆ contains an

element fixed by σ.

The converse of Corollary 7.15 does not hold in general, as we shall see

in Example 10.7.

We conclude this section with a general lemma about Frobenius mor-

phisms.

Lemma 7.16. If H is a σ-stable subgroup of G, then so is H.

Proof. Since H is σ-stable, H ⊆ σ−1(H). Furthermore, as σ : G → G is

a morphism, σ−1(H) is closed and thus, H ⊆ σ−1(H). Applying σ gives

σ(H) ⊆ H. Since σ is bijective, we must have equality.

7.3 The Finite Groups of Lie Type

Let G be a simple algebraic group over Fq and let σ be a Frobenius morphism

of G. Consider the finite fixed point group Gσ := {g ∈ G | σ(g) = g}.

These finite groups Gσ are called the finite groups of Lie type and

are classified in [30, Corollary 1.5]. In particular, for each type of simple

algebraic group there exists a family of finite groups of Lie type, depend-

ing on the choice of field and Frobenius morphism. Further details on the

following can be found in, for example, [10, §1.19].

Let B be a σ-stable Borel subgroup of G, which exists by Corollary 7.13.

Let T be a σ-stable maximal torus of G, which exists by Corollary 7.14.

Then, Ru(B) is also σ-stable, and is generated by the root subgroups Uα for

α ∈ Φ+(G,T ), the positive roots in G relative to T . Therefore, σ determines

a permutation ρ of these positive root subgroups such that σ(Uα) = Uρ(α).

By extension, σ determines a permutation ρ of the root system Φ = Φ(G,T )

of G.
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The groups Gσ for which ρ acts trivially on the Dynkin diagram of G are

called Chevalley groups. The groups Gσ for which the Dynkin diagram

has only single bonds and ρ acts non-trivially are called twisted groups.

In types B2 (p = 2), F4 (p = 2) and G2 (p = 3) we have Frobenius

morphisms which arise as graph automorphisms of the corresponding Dynkin

diagram, each of which has a symmetry of order 2, giving a permutation of

the root system of G. In each case the graph automorphism corresponds to

the permutation ρ of the root system given by

uα(x) 7→ uρ(α)(εαx
p(α)), (4)

where p(α) = 1 if α is a long root, p(α) = p if α is a short root, and εα = ±1,

see [51, p156] for more details. Note that it is sufficient to describe the action

of a graph automorphism of G by its action on the root subgroups Uα since

G is generated by the Uα and a maximal torus T of G, where T can be

chosen to be σ-stable, by Corollary 7.14.

The fixed points of such Frobenius morphisms give rise to the Suzuki

and Ree groups, which we will briefly describe here. Let σ be such a

graph automorphism in type B2 (p = 2), F4 (p = 2) or G2 (p = 3), then the

Suzuki and Ree groups arise as Gσ where G is of one of these types. We

follow the convention of [24] when denoting these groups, in that we define

the Suzuki and Ree groups over a field of q2 elements where q2 is an odd

power of 2 or 3. In particular, this means that q is not an integer, and we

use this convention to indicate that the square of σ is a standard Frobenius

morphism. As Humphreys notes, this convention is also convenient as it

resembles the group order formulas given in [24, §20.1 Table 1].

In type B2 a group Gσ only occurs when p = 2 and q2 = 22n+1 for some

n ≥ 0. The groups arising in this way are Suzuki groups denoted 2B2(q2).

In type F4 a group Gσ only occurs when p = 2 and q2 = 22n+1 for some

n ≥ 0. The groups arising in this way are Ree groups of type F4 denoted
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2F4(q2).

In type G2 a group Gσ only occurs when p = 3 and q2 = 32n+1 for some

n ≥ 0. The groups arising in this way are Ree groups of type G2 denoted

2G2(q2).

For each of these types, there exists one isomorphism class of groups

for each q2. The smallest ones, 2B2(2),2 F4(2) and 2G2(3) are not simple,

however for all other q2, these groups are simple.

We see that the group Gσ is frequently a simple finite group, but it is not

always. If we take the quotient group Gσ/Z(Gσ) for G simple and simply

connected we obtain a finite simple group, and these groups are called the

finite simple groups of Lie type.
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Part II

Complete Reducibility and
Frobenius Morphisms
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8 Introduction to (G, σ)-Complete Reducibility

In this chapter we let G be a connected reductive algebraic group over the

algebraically closed field k = Fq, where Fq is the finite field with q elements

of characteristic p, where q is some positive power of the prime p, unless

otherwise stated, and let σ : G→ G be a Frobenius morphism of G.

8.1 (G, σ)-Complete Reducibility

In this section we define analogues of Serre’s notions of G-complete reducibil-

ity and G-irreducibility, from [45], which we introduced in Definition 6.10.

Recall that a subgroup H of G is called σ-stable if σ(H) = H.

Definition 8.1. Let H be a σ-stable subgroup of G.

(1) We say H is (G, σ)-completely reducible (or (G, σ)-cr) if whenever

H is contained in a σ-stable parabolic subgroup P of G, then H is

contained in a σ-stable Levi subgroup of P .

(2) We say H is (G, σ)-irreducible (or (G, σ)-ir) if H is not contained

in any proper σ-stable parabolic subgroup of G.

Recall that, according to Serre [45], a subgroup H of G is called G-

completely reducible if whenever H is contained in a proper parabolic

subgroup P of G it is contained in a Levi subgroup of P . Also H is said to

be G-irreducible if it is not contained in any proper parabolic subgroup of

G, see [47, Part II, Lecture 1].

Clearly, a σ-stable G-irreducible subgroup is trivially (G, σ)-irreducible,

and a (G, σ)-irreducible subgroup is trivially (G, σ)-completely reducible.

However, a (G, σ)-irreducible subgroup need not be G-irreducible, as the

following example shows.
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Example 8.2. Consider the case when G is the group GLm+n with the Frobe-

nius morphism σ where σ : g 7→ (σq(g
−1))T , for all g ∈ G and where T

denotes the transpose map.

The parabolic subgroup P :=

(
GLn ∗

0 GLm

)
of G is sent by the Frobe-

nius morphism σ to the opposite parabolic subgroup P− =

(
GLn 0
∗ GLm

)
of G, and we have that these are not conjugate if m 6= n. In this case the

Levi subgroup L :=

(
GLn 0

0 GLm

)
is a σ-stable Levi subgroup of G. Fur-

thermore, L is a Levi subgroup of a maximal parabolic subgroup of G. Thus

any of the parabolic subgroups of G containing L actually contain L as a

Levi subgroup and are therefore maximal themselves. But neither of these

is σ-stable.

Our ultimate aim in this chapter is to investigate when the notions of

G-complete reducibility and (G, σ)-complete reducibility are equivalent for

a σ-stable subgroup of G.

In Theorem 8.6 we show that a σ-stable G-completely reducible sub-

group H of G is (G, σ)-completely reducible. This is a generalisation of [33,

Theorem 9] in that we remove restrictions that were placed on H and G,

namely that H ⊆ Gσ and G is of exceptional type.

We proceed in §9 to investigate the converse of Theorem 8.6 for finite

σ-stable subgroups of G. We first state Proposition 9.1 and Proposition 9.3,

which are due to Liebeck, Martin and Shalev, see [31], which show that if F is

a finite σ-stable subgroup of G that is not strongly reductive in G, then F is

contained in a proper σ-stable parabolic subgroup of G. Furthermore, if Gσ

is not a Ree or Suzuki group, then F is not contained in any Levi subgroup

of P . Therefore, this is a partial converse to Theorem 8.6. In Lemma 9.9

we partially extend these results to the case G is reductive where we show

that a finite σ-stable subgroup F of G that is not strongly reductive in G is

contained in a proper σ-stable parabolic subgroup P of G.
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In §9.2 we extend Proposition 9.1 to include the Ree and Suzuki cases.

We examine the symmetries of the Dynkin diagrams that occur in these

types to identify the conjugacy classes of σ-stable parabolic subgroups that

exist in these cases. For G whose fixed point group under the action of σ is

a large Ree group, we require Lemma 9.9 because we restrict our attention

to Levi subgroups of G, and use the fact that Levi subgroups are reductive.

The main result of §9.2 is Theorem 9.12, which shows that when G is simple

σ-stable group, a finite σ-stable subgroup F of G is G-completely reducible

if, and only if, it is (G, σ)-completely reducible. Furthemore, if F is not

G-completely reducible then we use Lemma 8.15 to show the stronger result

in one direction that F is contained in a σ-stable parabolic subgroup P of

G and in no Levi subgroup of P .

In §9.3 we extend these results to the reductive case in Proposition 9.15,

whose proof follows a similar methodoloy to Lemma 9.9, however now that

our results about Ree and Suzuki groups are established we can restrict to

any simple factor of G and employ Theorem 9.12. This gives that when G is

a reductive σ-stable group, a finite σ-stable subgroup of G is G-completely

reducible, if and only if, F is (G, σ)-completely reducible.

In §10 we develop the notion of a finite σ-structure which allows us to

pass from an infinite σ-stable subgroup of G to a finite σ-stable subgroup

of G that shares the infinite group’s (G, σ)-complete reducibility properties.

This enables us to extend Proposition 9.15 to the case F is infinite. We

summarise our main results in our study of (G, σ)-complete reducibility in

Theorem 10.6 which gives an equivalence between the notions of G-complete

reducibility and (G, σ)-complete reducibility for σ-stable subgroups of G.

We also have the stronger result in one direction: if H is a σ-stable

subgroup of G that is not G-completely reducible, then H is contained in a

proper σ-stable parabolic subgroup P of G, and not in any Levi subgroup

of P .
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We begin by establishing the following basic facts about σ-stable sub-

groups of G.

Lemma 8.3. If H is a σ-stable subgroup of G, then so are CG(H) and

NG(H).

Proof. Let h ∈ H, and let · denote the action of conjugation of elements of

G on G, given by g · h = ghg−1. Since the map σ : H → H is surjective,

there exists some h′ ∈ H such that h = σ(h′). Let c ∈ CG(H). Then

σ(c)·h = σ(c)·σ(h′) = σ(c·h′) = σ(h′) = h and so σ(c) ∈ CG(H). This shows

that σ(CG(H)) ⊆ CG(H). Since σ is bijective we have σ(CG(H)) = CG(H).

Now let n ∈ NG(H). Then σ(n) · H = σ(n · H) = σ(H) = H and so

σ(n) ∈ NG(H) and hence σ(NG(H)) ⊆ NG(H). Again, since σ is bijective

σ(NG(H)) = NG(H).

The next proposition states that (G, σ)-completely reducible subgroups

of G are reductive. This is an analogue of [47, Property 4] by Serre, showing

that a closed G-completely reducible subgroup of G is reductive. The proof

uses a construction given in [23, 30.3] and shows that we need H to be

σ-stable in Definition 8.1, for if not we would not be able to construct a

σ-stable parabolic subgroup of G containing H.

Proposition 8.4. If H is (G, σ)-completely reducible, then H is reductive.

Proof. Suppose that H is (G, σ)-cr and U := Ru(H) 6= e. Since H is

σ-stable, so is U , being a characteristic subgroup of H. By Lemma 8.3,

N1 := NG(U) is also σ-stable and so is U1 := Ru(N1). Inductively define

the σ-stable subgroups Ni := NG(Ui−1) and Ui := Ru(Ni) of G.

Since U is a connected normal unipotent subgroup of N1 we have U ⊆

Ru(N1), and similarly Ui ⊆ Ru(Ni+1). Hence, Ui+1 ⊇ Ui ⊃ · · · ⊃ U , and

clearly dimUi+1 > dimUi unless Ui+1 = Ui. In particular the two sequences

(Ni) and (Ui) must stabilise, say Uj−1 = Uj = · · · , Nj = Nj+1 = · · · . Set
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P := Nj , V := Uj . We have that NG(U) normalises P . Since U is connected

and solvable it must lie in some Borel subgroup of G and so [23, Corollary

30.3A] gives that P is a σ-stable parabolic subgroup of G with NG(U) ⊆ P

and U ⊆ Ru(P ) and all these groups are σ-stable.

Since H is (G, σ)-cr and P is σ-stable, H is contained in a σ-stable Levi

subgroup, L say, of P . So U ⊆ H ∩ Ru(P ) ⊆ L ∩ Ru(P ) = e which is a

contradiction.

Remark 8.5. Recall that Theorem 6.8 shows that for a non-trivial unipotent

subgroup U of G, we have a proper parabolic subgroup P of G for which

U ⊆ Ru(P ) and NG(U) ⊆ P . This result is due to A. Borel and J. Tits,

see [7]. By [7, Theorem 2.5], if U is σ-stable, then this construction leads to

a σ-stable parabolic subgroup of G that satisfies the same conditions as P

does. Note that we can draw the same conclusion by following the argument

given in the proof of Proposition 8.4. This method for constructing such a

parabolic subgroup of G is used in several places throughout this thesis, and

we refer to this construction as the construction of Borel-Tits.

For the proof of the following theorem we adapt the argument used at

the end of the proof of [33, Theorem 9] to the context of σ-stability.

Theorem 8.6. A σ-stable G-completely reducible subgroup of G is (G, σ)-

completely reducible.

Proof. Let H be a closed σ-stable G-cr subgroup of G, and suppose that

H ⊆ P , for some proper σ-stable parabolic subgroup P of G. Since H is

G-cr, H ⊆ L for a Levi subgroup L of P , and P = Ru(P )L.

If H ⊆ Lu for some u ∈ Ru(P ), then Hu−1 ⊆ L ∩ (Ru(P )H) = H, so

u ∈ NRu(P )(H). Define the non-empty set

∆ := {Lu | u ∈ Ru(P ), H ⊆ Lu}.
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Now let u be any element of NRu(P )(H) and h ∈ H. Then huh−1u−1 ∈

Ru(P ) ∩ H = e, since H ⊆ L. Therefore, NRu(P )(H) = CRu(P )(H). Thus

C := CRu(P )(H) acts transitively on ∆ by conjugation.

Next we show that C is connected. Let S = Z(L)0, then by Proposition

6.4 CG(S) = L and so H ⊆ CG(S). We claim that S ⊆ NG(C). This can

be seen since S ⊆ CG(H) and S normalises Ru(P ), therefore we have that

S normalises CG(H) ∩Ru(P ) = C. Thus S acts on C.

The torus S acts on C0, because C0 is characteristic in C, and hence S

acts trivially on the finite group C/C0, by [23, Proposition 8.2].

Since S centralizes C/C0, we have scs−1 ∈ cC0 for some s ∈ S, c ∈ C.

Therefore,

c(C0S)c−1 = C0(cSc−1) = C0(C0S) = C0S.

Where the first equality holds because C0 is normal in C, and the second

equality holds because sc−1s−1 ∈ c−1C0 and hence csc−1 ∈ C0s, for all

s ∈ S. Thus, C acts on C0S. There is just one class of maximal tori in

C0S. We have that C0S is normal in CS. Therefore, if x ∈ CS, then Sx is a

maximal torus in C0S, so Sx = Sa for some a ∈ C0. Hence, xa−1 ∈ NCS(S)

and x ∈ NCS(S)C0 = C0NCS(S).

As x was arbitrary, we now have CS = C0NCS(S), and as NCS(S) =

SNC(S) this gives CS = C0SNC(S). However, [NC(S), S] ⊆ C ∩ S = e, so

that NC(S) = CC(S).

Suppose that C/C0 is non-trivial, then it follows that CC(S) is not triv-

ial. Hence, this argument produces elements in C fixed by S.

However CC(S) ⊆ CRu(P )(S) = CG(S) ∩ Ru(P ) = L ∩ Ru(P ) = e, this

is a contradiction. Therefore, C = C0.

Next we claim that ∆ is σ-stable. Let H ⊆ Lu ∈ ∆. Note that Ru(P )

is σ-stable since Ru(P ) is characteristic in P . Then H = σ(H) ⊆ σ(Lu) =

σ(L)σ(u). But P = σ(P ) = σ(Ru(P )L) = Ru(P )σ(L). Thus σ(L) = Lv for
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some v ∈ Ru(P ). Hence σ(L)σ(u) = Lv·v
′ ∈ ∆ for v′ = σ(u) ∈ Ru(P ) and

so ∆ is σ-stable. It now follows from Corollary 7.12, that ∆ contains an

element fixed by σ.

Remark 8.7. Theorem 8.6 provides one direction of the desired equiva-

lence between the notions of G-complete reducibility and (G, σ)-complete

reducibility for a σ-stable subgroup of the reductive group G. The con-

verse is given in Proposition 9.14 for finite σ-stable subgroups of G, and is

extended in Proposition 10.5 to include infinite σ-stable subgroups of G.

Remark 8.8. For H ⊆ Gσ, with G simple and of exceptional type, Theorem

8.6 is obtained from the proof of the last part of [33, Theorem 9].

Example 8.9. A map φ : H −→ GL(V ), for an algebraic group H, is called a

rational representation of H if φ is a homomorphism of algebraic groups,

see for example [6, Examples 1.6].

A subgroup H of G is called linearly reductive if all of its rational

representations are semisimple, see for example [42, §1.2]. By [1, Lemma

2.6], if H is linearly reductive, it is G-completely reducible. Therefore, a

σ-stable linearly reductive subgroup of G is (G, σ)-completely reducible.

Example 8.10. Let S be any torus in G. Since S is linearly reductive, by [1,

Lemma 2.6], S is G-completely reducible. Therefore, [1, Theorem 3.14] gives

that CG(S)0 is G-completely reducible. By [6, Corollary 11.12], CG(S)0 =

CG(S), and by Proposition 6.4 CG(S) is a Levi subgroup of G. Moreover,

every Levi subgroup of G is of this form. Hence, Theorem 8.6 shows that

any σ-stable Levi subgroup of G is (G, σ)-completely reducible.

Example 8.11. A subgroup H of G is called regular if it is normalised by

a maximal torus of G. By [1, Proposition 3.20], if H is regular, it is G-

completely reducible. Therefore, a σ-stable regular subgroup of G is (G, σ)-

completely reducible.
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Corollary 8.12. If H is σ-stable and G-completely reducible, then H0 is

(G, σ)-completely reducible.

Proof. As H is σ-stable then so is H0 since it is characteristic in H. Since

H is G-cr, by [1, Theorem 3.10] so is H0. Therefore, the result follows from

Theorem 8.6.

Next we establish a generalisation of [1, Proposition 3.40]. This argument

was provided by Michael Bate, Tim Burness and Martin Liebeck.

Proposition 8.13. Let H be a σ-stable G-irreducible subgroup of G such

that H0 is not G-irreducible. Then CG(H0) contains a σ-stable non-central

maximal torus.

Proof. Since H is G-ir, it is G-cr and therefore, by [1, Theorem 3.10], H0 is

G-cr. Since H0 is not G-ir, it is contained in a proper parabolic subgroup

P of G, and hence a proper Levi subgroup L of P . By Proposition 6.4 L =

CG(S) for some non-central torus S of G. In particular, since H0 ⊆ CG(S)

we have S ⊆ CG(H0). In particular, every maximal torus of CG(H0) is

non-central (because they are all conjugate in CG(H0)).

Consider the set ∆ = {Sg | g ∈ CG(H0)0} to be the conjugacy class

in CG(H0)0 containing its maximal tori. We have that CG(H0)0 acts tran-

sitively on ∆ and ∆ is σ-stable. Hence, by Corollary 7.12, CG(H0)0 (and

hence CG(H0)) contains a σ-stable maximal torus.

We conclude this section with the following lemma and its subsequent

corollary, which were provided by Michael Bate, Tim Burness and Martin

Liebeck.

Lemma 8.14. Let G be a reductive algebraic group with a Frobenius mor-

phism σ. Let H be a σ-stable subgroup of G that is contained in a proper

σ-stable parabolic subgroup P of G. Then, H is contained in a Levi subgroup

of P if, and only if, H is contained in a σ-stable Levi subgroup of P .
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Proof. Suppose that H is contained in a Levi subgroup L of P , and P =

Ru(P )L. Define the non-empty set

∆ := {Lu | u ∈ Ru(P ), H ⊆ Lu}.

As in the proof of Theorem 8.6, whenever H ⊆ Lu for some u ∈ Ru(P )

we can conclude that u ∈ NRu(P )(H). The arguments of Theorem 8.6 show

that NRu(P )(H) = CRu(P )(H). Since any Levi subgroup of P is Ru(P )-

conjugate to L, the group CRu(P )(H) acts transitively on ∆. The same

proof shows that this group is connected.

Let H ⊆ Lu ∈ ∆. Note that Ru(P ) is σ-stable since Ru(P ) is char-

acteristic in P . Then H = σ(H) ⊆ σ(Lu) = σ(L)σ(u). But P = σ(P ) =

σ(Ru(P )L) = Ru(P )σ(L). Thus σ(L) = Lv for some v ∈ Ru(P ). Hence

σ(L)σ(u) = Lv·v
′ ∈ ∆ for v′ = σ(u) ∈ Ru(P ) and so ∆ is σ-stable.

Therefore, by applying Corollary 7.12, we see that ∆ contains an element

fixed by σ. The converse is immediate, and this gives the lemma.

Lemma 8.15. Let G be a reductive algebraic group with a Frobenius mor-

phism σ. Let H be a σ-stable subgroup of G. Then if H is not (G, σ)-

completely reducible, it is contained in a σ-stable parabolic subgroup P of G,

and in no Levi subgroup of P .

Proof. Since H is not (G, σ)-completely reducible, it is contained in a proper

σ-stable parabolic subgroup P of G, and not in any σ-stable Levi subgroup

of P . Suppose, by way of contradiction, that H is contained in a Levi

subgroup L of P that is not σ-stable. Then Lemma 8.14 implies that H is

contained in a σ-stable Levi subgroup of P . However, this contradicts our

hypothesis and therefore H is not contained in any Levi subgroup of P .
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9 Finite Subgroups

Let G be a reductive algebraic group over the algebraically closed field k =

Fq, where Fq is the finite field with q elements of characteristic p, where q

is some positive power of the prime p.

In this section we recall some geometric invariant theory and state an

equivalence result between the notions ofG-complete reducibility and (G, σ)-

complete reducibility under certain conditions, which follows from work of

Liebeck, Martin and Shalev, [31]. When σ is a Frobenius morphism of G and

G is simple, we obtain an equivalence between the notions of G-complete

reducibility and (G, σ)-complete reducibility in Theorem 9.12 for finite σ-

stable subgroups of G. We generalise this equivalence further in Theorem

9.15 to the case when G is a reductive group.

9.1 A Result of Liebeck, Martin, Shalev

We introduce the same setup as that of §6.6. Much of the following uses

the argument given in [31, Proposition 2.2 and Remark 2.4]. As a brief

reminder, for an arbitrary affine G-variety V , let v ∈ V and λ ∈ Y (G),

and let S be a closed G-stable subvariety of V which does not contain

v. If the limit limx→0 λ(x)vλ(x)−1 exists and is equal to u, we define the

morphism Mv(λ) : k → V as in §6.2, that is Mv(λ)(x) = λ(x)vλ(x)−1 for

every x ∈ k∗, and Mv(λ)(0) = u. Then, because of the G-invariance of

S, we have Mv(λ)(k∗) ∩ S = ∅. Hence Mv(λ)(k) ∩ S 6= ∅ if and only if

Mv(λ)(0) ∈ S. Therefore, Mv(λ)−1(U) = {0} and we can conclude there is

some integer m such that Mv(λ)−1(U) is determined by Spec(k[T ]/(Tm)),

for an indeterminate T . Thus, m depends on S, v and λ, so we denote the

degree m by αS,v(λ), and note this is a non-negative integer in general, and

positive if Mv(λ)(0) ∈ S.

We use this setup in the following way. Let G be a simple algebraic

group, then we consider the affine G-variety Gn, where “ · ” denotes the
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action of G on Gn by simultaneous conjugation, that is:

g · (x1, . . . , xn) = (gx1g
−1, . . . , gxng

−1),

for g ∈ G, (x1, . . . , xn) ∈ Gn.

Define a subset Aut+(G) of Aut(G) to be the group of those abstract au-

tomorphisms of G generated by inner automorphisms, field automorphisms

and graph automorphisms of G which are of type An, Dn or E6, see §7.2.

Note that these graph automorphisms are automorphisms of G as an alge-

braic group, however the remaining ones, those of type B2 (p = 2), F4 (p = 2)

or G2 (p = 3), are only automorphisms of G as an abstract group and their

inverses are not morphisms, and they are excluded from Aut+(G).

The group Aut+(G) contains the Frobenius morphisms which are G-

conjugate to either σq, a non-trivial field automorphism, or τσq, for τ a graph

automorphism of G if G is of type An, Dn or E6. The Frobenius morphisms

which are not contained in Aut+(G) are those Frobenius morphisms of G

which are G-conjugate to either τ ′, or τ ′σq, where τ ′ is an automorphism of

G of the form defined in equation (3) for G of type B2 (p = 2), F4 (p = 2)

or G2 (p = 3). For details see [30, Theorem 1.4]. Hence, Aut+(G) contains

every Frobenius morphism of G if G is of type An(n ≥ 1), Bn(n ≥ 3), Cn(n ≥

3), Dn(n ≥ 4), E6, E7 or E8, and only those that are G-conjugate to σq when

G is of type B2 (p = 2), F4 (p = 2) or G2 (p = 3).

We have a component-wise action of Aut+(G) on Gn given by β ·

(x1, . . . , xn) 7→ (β(x1), . . . , β(xn)) for β ∈ Aut+(G) and (x1, . . . , xn) ∈ Gn.

The action of Aut+(G) on Gn permutes the G-orbits in Gn. The obvious

action of the symmetric group Sn on Gn commutes with these two actions.

In [31, §2] it is shown how to construct a length function ||− ||1 on Y (G)

which is invariant under Aut+(G).

Let R be a subgroup of Aut+(G), and let F = {f1, . . . , fn} be a finite

R-invariant subgroup of G which is not strongly reductive in G. Set f :=
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(f1, . . . , fn) ∈ Gn. Since F is not strongly reductive in G, Theorem 6.19

gives that the orbit G · f is not closed in Gn. By [39, No. 8], the closure

of G · f contains a unique closed orbit, D′(f) say. By [6, Proposition 1.8],

D′(f) has strictly lower dimension that G · f. Set D(f) := ∪π∈Snπ · D′(f).

We have f /∈ D′(f), because D′(f) is an orbit of lower dimension than G · f.

Furthermore, D(f) is closed, since it is a finite union of closed G-orbits, each

of which does not contain f and so f /∈ D(f).

Hence Gn, D(f), and f satisfy the hypotheses of Theorem 6.25, thus there

exists a one-parameter subgroup λ ∈ ΛD(f),f such that limx→0 λ(x) · f exists

and belongs toD(f). To the one-parameter subgroup λ we have an associated

optimal destabilising parabolic subgroup PD(f),f of G (see Notation 6.26)

such that PD(f),f = Pλ where, as in Lemma 6.6, Pλ = {g ∈ G | limx→0 λ(x) ·

g exists}. Hence we can conclude that F ⊆ PD(f),f.

First, we show Pβ·D(f),β·f = PD(f),f for any β ∈ R. By construction D(f)

is Sn-invariant, hence an argument of Martin (see [35, p672]), gives that

PD(f),π·f = PD(f),f.

As F is finite, β · f = π · f for some π ∈ Sn. Furthermore, since Aut+(G)

and Sn act by homeomorphisms on Gn, and these two actions commute,

β ·D(f) = D(β · f) = D(π(f)) = D(f) for all β ∈ R. Hence,

Pβ·D(f),β·f = PD(f),π·f = PD(f),f. (5)

This equality holds, in fact, even if we take R to be an arbitrary subset

of Aut(G). This is because in the argument used, we only require β to

stabilise F , act by homeomorphisms on Gn and to commute with the Sn

action, which all the automorphisms of G that stabilise F satisfy. The

following discussion, however, is only proved for subsets of Aut+(G).

In [31, §2], for all β ∈ Aut+(G), it is shown that

β · PD(f),f = Pβ·D(f),β·f. (6)
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The way the argument works for any graph automorphism requires that

the inverse morphism is applied. However, in types B2 (p = 2), F4 (p = 2)

or G2 (p = 3) a graph automorphism does not have an inverse that is a

morphism, and so we cannot apply this argument in these cases.

For inner automorphisms equation (6) is given in [26, Corollary 3.5(a)],

for field automorphisms in [26, Lemma 4.1] and for graph automorphisms

β which are algebraic automorphisms of G we have the following argument,

further details of which can be found in [31, p.547]. Recall that |Gn, f|D(f)

is the set of all optimal indivisible one-parameter subgroups λ of G whose

limit limx→0 λ(x) · f belongs to the set D(f).

As β is an invertible morphism, the limit limx→0 λ(x)·f exists if, and only

if, the limit β ·(limx→0 λ(x)·f) exists. Furthermore, the limit β ·(limx→0 λ(x)·

f) exists if, and only if, the limit limx→0 β · (λ(x) · f) exists. Hence, we have:

|Gn, β · f|β·D(f) = {λ ∈ Y (G) | lim
x→0

λ(x) · (β · f) exists and lies in β ·D(f)}

= {λ ∈ Y (G) | ββ−1 · ( lim
x→0

λ(x) · (β · f)) exists and lies in β ·D(f)}

= {λ ∈ Y (G) | lim
x→0

β · (β−1 ◦ λ(x) · (β−1β · f)) exists and lies in β ·D(f)}

= {β ◦ λ′ ∈ Y (G) | lim
x→0

β · (λ′(x) · f) exists and lies in β ·D(f)}

= {β ◦ λ′ ∈ Y (G) | lim
x→0

λ′(x) · f exists and lies in D(f)}

= β · |Gn, f|D(f).

Because the inverse of β features, this argument cannot be applied to

those graph automorphisms in Aut(G) which are not in Aut+(G), since they

are precisely the automorphisms whose inverse is not a morphism.

We also have that β ◦Mv(λ) = Mv(β ◦ λ) and that αβ·D(f),β·f(β ◦ λ) =

αD(f),f(λ). The function |Gn, f|D(f) → R given in Theorem 6.25 by λ 7→

αD(f),f(λ)/||λ||1 reaches an upper bound for some λ ∈ Y (G), and since ||−||1

is Aut+(G)-invariant, reaches the same upper bound at all β(λ) for all β ∈

Aut+(G). This gives that β · PD(f),f = Pβ·D(f),β·f, as required.
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Combining (5) and (6) gives that β · PD(f),f = PD(f),f for any β ∈ R ⊆

Aut+(G).

Set PD(f),f = Pλ for λ in the optimal class ΛD(f),f. By the discussion

following Lemma 6.6, every Levi subgroup of Pλ is of the form Lλ for λ ∈

ΛD(f),f. Suppose that F is contained in a Levi subgroup Lλ of Pλ. Then

u · f ∈ Lnλ for some u ∈ Ru(Pλ). Since u · fi ∈ Lλ for each i, we have λ(k∗)

centralises u · fi. Hence

u · fi = lim
x→0

λ(x)ufiu
−1λ(x)−1

= lim
x→0

λ(x)uλ(x)−1λ(x)fiλ(x)−1λ(x)u−1λ(x)−1

= lim
x→0

(λ(x)uλ(x)−1) lim
x→0

(λ(x)fiλ(x)−1) lim
x→0

(λ(x)u−1λ(x)−1)

= lim
x→0

λ(x)fiλ(x)−1.

Therefore, limx→0 λ(x) · f = u · f ∈ G which lies inside the orbit G · f.

However, by hypothesis limx→0 λ(x) · f does not lie within the orbit G · f,

hence we have reached a contradiction. Therefore, we conclude that F is

not contained in any Levi subgroup of PD(f),f.

The following proposition is [31, Proposition 2.2] combined with the

argument given after its proof, see [31, p. 547], and it follows from the

discussion above.

Proposition 9.1. Let F be a finite subgroup of the simple group G, and let

R be a subgroup of Aut+(G) such that F is R-invariant. Then one of the

following holds:

(1) F is strongly reductive in G, or

(2) F is contained in a proper R-invariant parabolic subgroup P of G, but

not in any Levi subgroup of P .

Remark 9.2. In [31, Remark 2.4], a partial extension to Proposition 9.1 is

given that takes into account the situation where G is of type B2 (p =
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2), F4 (p = 2) or G2 (p = 3) where Aut+(G) is replaced by 〈Aut+(G), φ〉,

and φ is a graph automorphism of G as introduced in equation (4). In these

cases φ2 is a field automorphism, and φ normalises Aut+(G).

Suppose that F is a finite subgroup of G, that is invariant under a

subgroup S of 〈Aut+(G), φ〉. The argument in [31, Remark 2.4] states that

if we set S0 = S ∩Aut+(G), then S = 〈S0, σ〉, where σ2 ∈ S0.

Suppose that F is not strongly reductive in G. By Proposition 9.1, we

have that F is contained in the S0-invariant parabolic subgroup P ′ of G,

and hence F is also contained in σ(P ′). If P ′ ∩ σ(P ′) is reductive, then by

Lemma 6.9, this intersection is a Levi subgroup of P ′. However this is a

contradiction because we showed in Proposition 9.1 that F is not contained

in any Levi subgroup of P ′. Therefore, U := Ru(P ′ ∩ σ(P ′)) 6= e. We

construct the parabolic subgroup P of G from this non-trivial unipotent

radical using the construction of Borel-Tits. Since U is S-invariant, so is

P , and since U is non-trivial we have that P is proper in G. Although it is

known that F is not contained in any Levi subgroup of P ′, the relationship

between the Levi subgroups of P and those of P ′ is not well understood. It

is therefore not trivial to infer from the arguments given in [31, Remark 2.4]

whether F is contained in a Levi subgroup of P , or not.

We present an argument in §9.2 which shows that in the case S = σ

there is a σ-stable parabolic subgroup P ′′ of G containing F , and F is not

contained in any Levi subgroup of P ′′.

The next result follows from Proposition 9.1 and Remark 9.2.

Proposition 9.3. Let G be a simple algebraic group and let σ be a Frobenius

morphism of G. Let F be a finite σ-stable subgroup of G. Then one of the

following holds:

(1) F is strongly reductive in G, or

(2) F is contained in a proper σ-stable parabolic subgroup P of G.
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In the remainder of this section we will show that Proposition 9.3 can

be extended to the case where G is a reductive algebraic group. This result

is achieved in Lemma 9.9.

Lemma 9.4. Let G1, G2 and G3 be algebraic groups. Given isogenies f :

G1 → G2 and g : G2 → G3, the map h : G1 → G3 where h(x) = g(f(x)) for

all x ∈ G1, is also an isogeny.

Proof. The composition of the map f and g is indeed a morphism from G1

to G3. We have to show that it has a finite kernel.

SetK := ker(h), and let x ∈ K. Then, g(f(x)) = e, and so f(x) ∈ ker(g).

That is, f(K) ⊆ ker(g). Therefore, f(K) is finite. Since, K ∩ ker(f) =

ker(f |K) is finite, we have that K is finite.

Notation 9.5. Let G = G1×· · ·×Gn be a product of n groups, and let σ be

a Frobenius morphism of G. We say that σ permutes the Gi transitively if

for all i we have σ(Gi) ⊆ Gi+1 mod n. That is, for any (g1, . . . , gn) ∈ G and

each i we have morphisms σi : Gi → Gi+1 mod n such that σ is given by the

map (g1, . . . , gn) 7→ (σn(gn), σ1(g1) . . . , σn−1(gn−1)).

Lemma 9.6. Let H = G1 × · · · × Gn be a direct product of the simple

algebraic groups G1, . . . , Gn, and let σ be a Frobenius morphism of H that

permutes the Gi transitively. Suppose that F is a finite σ-stable subgroup of

H. Then one of the following holds:

(1) F is strongly reductive in H, or

(2) F is contained in a proper σ-stable parabolic subgroup P of H.

Proof. Label the Gi so that σ(Gi) = Gi+1 mod n. Let πi : H → Gi, be the

projection of H onto the i-th component Gi, and let Fi := πi(F ). As F is

σ-stable, for fi ∈ Fi, we have πi+1(σ(fi)) ∈ Fi+1 mod n. Therefore, we have
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σ(Fi) ⊆ Fi+1 mod n. Furthermore, σn−1(Fi+1) ⊆ Fi. Since σ is bijective, all

the Fis are finite and of the same order. Hence, σ(Fi) = Fi+1 mod n, for each

i.

For each i, let fi := (fi1 , . . . , fim) be a tuple of the m elements of Fi. We

write σ(fi) for (σ(fi1), . . . , σ(fim)). Then, σ(fi) = ω · fi+1 mod n, for some

ω ∈ Sm. The tuple ω · fi generates Fi for all i, and all ω ∈ Sm.

Suppose that F is not strongly reductive in H. Then, by [1, Theorem

3.1], F is not H-cr. By [1, Lemma 2.12(i)], there is some j ∈ {1, . . . , n} such

that Fj is not Gj-cr.

As σ : H → H is a bijection, it has trivial kernel, hence σ is an isogeny.

By Lemma 9.4, σa : Gi → Gi+a is an isogeny for any positive integer a.

Therefore, [1, Lemma 2.12(ii)(b)] gives that σa(Fj) is not Gj+a-cr. By con-

struction, σa(Fj) = Fj+a mod n. Hence, Fi is not Gi-cr for all i.

In particular F1 is not G1-cr and both are σn-stable. We may apply

Proposition 9.3. Therefore we can construct a parabolic subgroup P1 of G1

that is σn-stable and contains F1.

Since P1 is σn-stable, the parabolic subgroup P := P1 × σ(P1) × · · · ×

σn−1(P1) of H is σ-stable. Furthermore, F is contained in P because

σa(F1) = Fa+1 mod n is contained in σa(P1) = Pa+1 mod n, for all n. This

gives the result.

The following lemma shows that in the context of our study of (G, σ)-

complete reducibility we can reduce from the case where G is reductive to

the case where G is semisimple.

Lemma 9.7. Let G be a reductive algebraic group and let σ be a Frobenius

morphism of G. Suppose F is a finite σ-stable subgroup of G. Then, there

exists a Frobenius morphism σ′ of [G,G] and a finite σ′-stable subgroup F ′

of [G,G] such that the following hold:
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(1) F is G-completely reducible if and only if F ′ is [G,G]-completely re-

ducible, and

(2) F is (G, σ)-completely reducible if and only if F ′ is ([G,G], σ′)-

completely reducible.

Proof. Since G is reductive, we have G = [G,G]Z, where Z = Z(G)0. Let

α : [G,G]× Z → G be the product map. Then α is an isogeny.

There exists a Frobenius morphism σ′ on [G,G] × Z which when com-

posed with the multiplication map gives the Frobenius morphism σ onG. Set

σ′ to be the map defined by (g, z) 7→ (σ(g), σ(z)) for g ∈ [G,G], z ∈ Z. Then,

ker(α) is a σ′-stable normal subgroup of [G,G]×Z. Therefore, by Proposi-

tion 7.8 (2), σ′ induces the Frobenius morphism σ on [G,G]×Z/ ker(α) ∼= G.

Hence, we have the commutative diagram:

[G,G]× Z α //

σ′

��

G

σ

��
[G,G]× Z α // G.

Let F−1 := α−1(F ), for a finite σ-stable subgroup F of G. We wish to show

that F−1 is finite and σ′-stable. We have that α(σ′(F−1)) = σ(α(F−1)) =

σ(F ) = F . Therefore, α−1(α(σ′(F−1))) = α−1(F ) = F−1. Since ker(α)

is σ′-stable and ker(α) ⊆ F−1, we have that F−1 = α−1(α(σ′(F−1))) ⊇

σ′(F−1) ker(α) = σ′(F−1 ker(α)) = σ′(F−1). Note that, as α is an isogeny,

F−1 is finite. Hence, as σ′ is a bijection we must have equality. This shows

F−1 is finite and σ′-stable.

By [1, Lemma 2.12(ii)], F is G-cr if and only if F−1 is ([G,G] × Z)-

cr. Let π[G,G] : [G,G] × Z → [G,G] be the projection onto [G,G], and

πZ : [G,G]× Z → Z be the projection onto Z.

By [1, Lemma 2.12(i)], if F−1 is ([G,G]× Z)-cr, then F ′ := π[G,G](F
−1)

is [G,G]-cr. Again, by [1, Lemma 2.12(i)], if F−1 is not ([G,G] × Z)-cr,
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then either F ′ is not [G,G]-cr, or πZ(F−1) is not Z-cr, or both of these

statements hold. Since πZ(F−1) ⊆ Z, it is linearly reductive, and hence, by

[25, Lemma 11.24], is G-cr. Hence if F−1 is not ([G,G] × Z)-cr, then F ′ is

not [G,G]-cr. Therefore, combining the above gives that F is G-cr if and

only if F ′ is [G,G]-cr.

Since [G,G] and F−1 are σ′-stable, F ′ is also σ′-stable, and since F−1 is

finite, so is F ′.

Given a parabolic subgroup P of G, we have P ′ := π[G,G](α
−1(P )) is a

parabolic subgroup of [G,G], and every parabolic subgroup of [G,G] arises

in this way. Also, if F is contained in P , then F ′ is contained in P ′, and

vice-versa. Furthermore, P is σ-stable if, and only if, P ′ is σ′-stable. A

corresponding argument holds for Levi subgroups of P , giving the result.

Notation 9.8. Let G be a semisimple algebraic group, and let σ be a Frobe-

nius morphism of G. Then G is the almost direct product of n simple factors

(see Definition 5.21), and the image under σ of each simple factor is another

simple factor. Therefore, σ naturally partitions G into a fixed number, k say,

of σ-orbits denoted Hj for j ∈ {1, . . . , k}, k ≤ n. If the j-th such σ-orbit Hj

is a product of lj simple groups, we say that lj is the length of the σ-orbit

Hj .

We may assume without loss of generality that the simple factors Gi of G,

for i = 1, . . . , n, are labeled such that within the j-th σ-orbit σ sends Gi to

Gi+1 mod lj . Thus, for each j ∈ {1, . . . , k} we may choose a corresponding

number aj ∈ {1, . . . , n} to denote the index of the first simple factor in

the σ-orbit Hj , and σ(Gaj ) = Gaj+1 mod lj .Therefore, we can write the

Hj = Gaj · · ·Gaj+lj−1, where a1 = 1 and ak + lk − 1 = n.
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Therefore, we have

G = H1 · · ·Hk

= (G1 · · ·G1+l1−1) · · · (Gak · · ·Gn)

= G1 · · ·Gn.

Necessarily, we have Σk
j=1lj = n and the aj are numbers in the set {1, . . . , n}

such that aj < aj+1 for all j, but are not necessarily consecutive (the two

indices aj , aj+1 are consecutive if, and only if, lj = 1).

We will refer to this labeling of the simple factors Gi of G, and of its

σ-orbits Hj as a compatible decomposition of G with respect to σ.

No restrictions are placed on G and σ in defining this decomposition, and

it is clear that every semisimple algebraic group with a Frobenius morphism

σ has a compatible decomposition with respect to σ. The objective of defin-

ing this decomposition is to simplify subsequent arguments by considering

a concrete decomposition of G into its σ-orbits.

Clearly this decomposition is not unique, for we may begin each σ-orbit

at any of the simple factors occurring within that orbit, however for our

purposes it is sufficient to pick any compatible decomposition. It should be

noted that the decomposition into σ-orbits is unique up to isomorphism, and

so the number of orbits, their lengths, and the types of groups that occur

as simple factors are all uniquely determined.

Lemma 9.9. Let G be a reductive algebraic group and let σ be a Frobenius

morphism of G. Let F be a finite σ-stable subgroup of G. Then one of the

following holds:

(1) F is strongly reductive in G, or

(2) F is contained in a proper σ-stable parabolic subgroup P of G.
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Proof. By Lemma 9.7 we may assume without loss that G = [G,G]. Ac-

cording to Notation 9.8, let G = G1 · · ·Gn = H1 · · ·Hk be a compatible de-

composition of G with respect to σ. That is, the Gi, for i ∈ {1, . . . , n}, are

the simple factors of G, and the Hj , for j ∈ {1, . . . , k}, are the σ-orbits each

of length lj of G, and within each σ-orbit Hj we have σ(Gi) = Gi+1 mod lj .

Set H̃j = Gaj ×· · ·×Gaj+lj−1, and G̃ = H̃1×· · ·× H̃k. Then, G̃ is equal

to the product G1 × · · · × Gn of n simple groups. Let ιi : Gi → G be the

inclusion map for each i, and let ε : G̃→ G be the product map, defined by

ε : (g1, . . . , gn) 7→ ι1(g1) · · · ιn(gn), for gi ∈ Gi.

There exists a Frobenius morphism σ′ on G̃ which when composed with

the product map, ε, gives the Frobenius morphism σ on G. Define the

Frobenius morphism σj : H̃j → H̃j by

σj(gaj , . . . , gaj+lj−1) = (σ(gaj+lj−1), σ(gaj ), . . . , σ(gaj+lj−2)).

Then define σ′ : G̃ → G̃ by σ′(h1, . . . ,hk) = (σ1(h1), . . . , σk(hk)) where

each hj ∈ H̃j . This defines a Frobenius morphism on G̃ because σj is a

homomorphism and for each j there is some power pj of σj such that σ
pj
j

acts like the standard Frobenius morphism on each simple factor of H̃j , for

each j.

We have ker(ε) is a σ′-stable normal subgroup of G̃. Therefore, by Propo-

sition 7.8 (2), σ′ induces the Frobenius morphism σ on G̃/ ker(ε) ∼= G.

Hence, we have the commutative diagram:

G̃
ε //

σ′
��

G

σ

��
G̃

ε // G.

Note, the product map, ε, is an isogeny because G is an almost direct

product of the simple groups Gi, so there are only finitely many elements in

its kernel.
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Let F be a finite σ-stable subgroup of G. Then, by the argument given

in the proof of Lemma 9.7, we have F̃ := ε−1(F ) is also finite and σ′-stable.

Suppose F is not strongly reductive in G, then by [1, Theorem 3.1], F is

not G-cr. By [1, Lemma 2.12 (ii)] we have F̃ is not G̃-cr. Let πj : G̃→ H̃j

be the projection of G̃ onto the j-th σ-orbit H̃j . Then, by [1, Lemma 2.12

(i)], there exists some j such that Fj := πj(F̃ ) is not H̃j-cr. Furthermore,

we have σj(πj(F̃ )) ⊆ πj(F̃ ), so Fj is σj-stable.

By Lemma 9.6, we have Fj is contained in a proper σj-stable parabolic

subgroup P̃j of H̃j . Thus, F̃ is contained in the proper σ′-stable parabolic

subgroup P̃ := H̃1× · · · × H̃j−1× P̃j × H̃j+1× · · · × H̃k of G̃. By [1, Lemma

2.11], we can conclude that F is contained in the proper parabolic subgroup

P := ε(P̃ ) of G. Finally, because P̃ is σ′-stable, P is σ-stable.

9.2 Extension to the Ree and Suzuki Case

We now analyse the cases whereG is a simple algebraic group of typeB2 (p =

2), F4 (p = 2) or G2 (p = 3) with root system Φ. Let σ be a Frobenius

morphism of G that gives rise to an order two permutation of the roots in

Φ. Let F be a finite σ-stable subgroup of G that is not strongly reductive in

G. Note that in Remark 9.2 we obtained a partial extension of Proposition

9.1, in that we were able to construct a σ-stable parabolic subgroup of G

containing F . Below we show that F is contained in a proper σ-stable

parabolic subgroup P of G, but not in any Levi subgroup of P .

Case 1 G is of type B2, p = 2 or G2, p = 3

Since F is σ-stable, it is σ2-stable and σ2 ∈ Aut+(G), so by Proposition

9.1, we have F ⊂ P ( G for P a proper σ2-stable parabolic subgroup of G

and F is in no Levi subgroup of P . Furthermore, F ⊂ P ∩ σ(P ) and this

intersection is σ-stable. We cannot have U := Ru(P ∩σ(P )) = e for then the

intersection P ∩ σ(P ) would be a Levi subgroup of P containing F , which
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contradicts Proposition 9.1. Therefore, U 6= e, and is σ-stable. Hence, by

the construction of Borel-Tits, U gives rise to a σ-stable parabolic subgroup

P1 of G, which contains F . Since U is non-trivial, the parabolic subgroup

P1 is proper in G.

By Corollary 7.13 P1 contains a σ-stable Borel subgroup B of G, and by

Corollary 7.14 this Borel subgroup contains a σ-stable maximal torus T of

G. We choose a base ∆ of the root system Φ of G with respect to B and T .

Suppose that ∆ = {α, β}, then σ(α) = β and vice-versa.

From §6.2, we see that for each subset I of ∆, there is a corresponding

conjugacy class PI of parabolic subgroups of G, and U−γ ⊂ PI if, and only

if, γ ∈ I. We have ∆ corresponds to G and ∅ corresponds to the Borel

subgroups of G.

By checking the Dynkin diagrams in these types, we see that there are

only two conjugacy classes of proper (non-Borel) parabolic subgroups in G,

and due to our choice of base for Φ these correspond to the simple roots α and

σ(α) = β, where σ swaps these simple roots. The maximal proper parabolic

subgroup Pα = 〈B,U−α〉 corresponding to α is sent to the maximal proper

parabolic subgroup Pσ(α) = 〈B,Uσ(−α)〉. Thus, the only σ-stable parabolic

subgroups in this case are the σ-stable Borel subgroups.

Therefore P1 must be a Borel subgroup of G. By Theorem 6.18, F is

not G-cr, hence it is not contained in a torus of P1, giving the result. That

is, F is not (G, σ)-completely reducible. In particular, F is contained in the

σ-stable parabolic subgroup P1 of G, and in no Levi subgroup of P1.

Case 2 G is of type F4, p = 2

Let F be a finite σ-stable subgroup of G, and suppose that F is not

G-completely reducible, but is (G, σ)-completely reducible. By Lemma 9.9

we have that F ⊂ P ⊂ G for P a proper σ-stable parabolic subgroup of G.
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Since F is (G, σ)-completely reducible we have F ⊂ L ⊂ P for L a σ-stable

Levi subgroup of P .

By [45, Proposition 3.2], since L is a Levi subgroup, F is G-completely

reducible if and only if F is L-completely reducible. Hence F is not L-

completely reducible.

Therefore, by Lemma 9.9, we can conclude F ⊆ Q ⊆ L, for Q a proper

σ-stable parabolic subgroup of L.

By [8, Proposition 4.4 (c)], the subgroup V = QRu(P ) is also a parabolic

subgroup of G and is contained in P . It is σ-stable by construction.

Lemma 9.10. Let G be a simple algebraic group of type F4, and let σ

be a Frobenius morphism of G that induces a non-trivial permutation of its

simple roots. Then, there are no proper inclusions amongst the set of proper,

non-Borel, σ-stable parabolic subgroups of G.

Proof. In this case we note that, by [30, Corollary 1.5], Gσ = 2F4. By [34,

Main Theorem], we have that every proper (non-Borel) parabolic subgroup

of 2F4 is maximal.

By [32, Theorem 8] the maximal parabolic subgroups of 2F4 are the fixed

point groups of maximal σ-stable parabolic subgroups of G. Pick a σ-stable

Borel subgroup B of G, containing a σ-stable maximal torus T of G. Then,

with respect to B and T we can form a base ∆ = {α, β, γ, δ} of the root

system of G, giving the following Dynkin diagram.

z z z z@@
��

α β γ δ

Dynkin diagram of type F4

The Frobenius morphism σ acts on these simple roots by σ(α) = δ and

vice-versa, and also σ(β) = γ and vice-versa. The conjugacy classes of

σ-stable parabolic subgroups of G correspond to σ-stable subsets of these
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simple roots, which are the sets {α, β, γ, δ}, {α, δ}, {β, γ} and ∅. As before,

P{α,β,γ,δ} = G and P∅ = B.

Thus, the only conjugacy classes of proper non-Borel parabolic subgroups

of G are represented by P{α,δ} and P{β,γ}, and these classes give rise to

the two conjugacy classes of maximal parabolic subgroups in 2F4 listed in

[34, Main Theorem]. Therefore, the proper, non-Borel, σ-stable parabolic

subgroups of G are maximal, thus we conclude that there are no proper

inclusions among this set of subgroups of G.

We have three cases to consider:

(1) V = G. This is not possible since V ⊆ P 6= G.

(2) If V = B, a Borel subgroup of G. Then we have F ⊆ B ⊆ G and is not

G-completely reducible. Therefore, F is not contained in a torus of B,

and is therefore not (G, σ)-completely reducible. This contradicts our

hypothesis.

(3) If V is another parabolic subgroup of G that is contained in P then,

by Lemma 9.10, we must have V = P . That is QRu(P ) = P . We

have, dim(P ) = dim(L) + dim(Ru(P )). However, dim(V ) ≤ dim(Q) +

dim(Ru(P )). Since dim(Q) � dim(L), we cannot have the equality

V = P . Thus, we have a contradiction.

None of these cases are possible, and so we have reached a contradiction

to our hypothesis. Therefore, we conclude that F is not (G, σ)-completely

reducible. We complete the argument by applying Lemma 8.15, to obtain

that H is contained in a proper σ-stable parabolic subgroup P ′ of G, and

not in any Levi subgroup of P ′.

Combining the above results and Proposition 9.1 gives the following,

which provides a partial converse to Theorem 8.6.
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Proposition 9.11. Let G be a simple algebraic group and let σ be a Frobe-

nius morphism of G. Let F be a finite σ-stable subgroup of G. Then one of

the following holds:

(1) F is strongly reductive in G, or

(2) F is contained in a proper σ-stable parabolic subgroup P of G and not

in any Levi subgroup of P .

We can now present our main result about finite subgroups of simple

groups, which follows immediately from Theorem 8.6 and Proposition 9.11

Theorem 9.12. Let G be a simple algebraic group, and let σ be a Frobenius

morphism of G. Suppose that F is a finite σ-stable subgroup of G, then

(1) F is G-completely reducible if and only if it is (G, σ)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper

σ-stable parabolic subgroup P of G and not in any Levi subgroup of P .

9.3 Extension to Reductive Groups

The aim of this section is to generalise Theorem 9.12 to the case where G is

a reductive algebraic group. In the following lemma we extend Proposition

9.11 to the case where G is a direct product of simple groups. This will

be used later on in the proof of our main result in this section, which is

Proposition 9.14.

Lemma 9.13. Let H = G1 × · · · × Gn be a direct product of the simple

algebraic groups G1, . . . , Gn, and let σ be a Frobenius morphism of H that

permutes the Gi transitively. Suppose that F is a finite σ-stable subgroup of

H. Then one of the following holds:
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(1) F is strongly reductive in H, or

(2) F is contained in a proper σ-stable parabolic subgroup P of H and not

in any Levi subgroup of P .

Proof. Label the Gi such that σ(Gi) = Gi+1 mod n. Let πi : H → Gi, be the

projection of H onto the i-th component Gi, and let Fi := πi(F ).

Suppose that F is not strongly reductive in H. As in the proof of Lemma

9.6, we can conclude that σ(Fi) = Fi+1 mod n, and that Fi is not Gi-cr for

each i.

For all i we have Fi and Gi are σn-stable. By Proposition 9.11, we

can construct a proper parabolic subgroup Pi of Gi that is σn-stable that

contains Fi, such that Fi is not contained in any Levi subgroup of Pi.

Without loss, set i = 1, then F1 is not G1-cr, and F1 is contained in

the proper σn-stable parabolic subgroup P1 of G1, and in no Levi subgroup

of P1. The parabolic subgroup P := P1 × σ(P1) × · · · × σn−1(P1) of H is

σ-stable, and contains F .

Suppose that F is contained in a Levi subgroup L := L1 × · · · × Ln of

P . We have L1 is a Levi subgroup of P1 containing F1, and L2 is a Levi

subgroup of P2 containing F2, etc. However, this contradicts the previous

assertion. Hence F is not contained in any Levi subgroup of P .

We now extend Proposition 9.11 to the case where G is reductive, and

observe that the following result provides the converse to Theorem 8.6 for

finite σ-stable subgroups of G.

Proposition 9.14. Let G be a reductive algebraic group and let σ be a

Frobenius morphism of G. Let F be a finite σ-stable subgroup of G. Then

one of the following holds:

(1) F is strongly reductive in G, or
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(2) F is contained in a proper σ-stable parabolic subgroup P of G and not

in any Levi subgroup of P .

Proof. By Lemma 9.7 we may assume without loss that G = [G,G]. Ac-

cording to Notation 9.8, let G = G1 · · ·Gn = H1 · · ·Hk be a compatible

decomposition of G with respect to σ. That is the Gi, for i ∈ {1, . . . , n}, are

the simple factors of G, and the Hj , for j ∈ {1, . . . , k}, are the σ-orbits each

of length lj of G, and within each σ-orbit Hj we have σ(Gi) = Gi+1 mod lj .

Set H̃j = Gaj ×· · ·×Gaj+lj−1, and G̃ = H̃1×· · ·× H̃k. Then, G̃ is equal

to the product G1 × · · · × Gn of n simple groups. Let ιi : Gi → G be the

inclusion map for each i, and let ε : G̃→ G be the product map, defined by

ε : (g1, . . . , gn) 7→ ι1(g1) · · · ιn(gn), for gi ∈ Gi.

As in the proof of Lemma 9.9, there exists a Frobenius morphism σ′

on G̃ which when composed with the product map, ε, gives the Frobenius

morphism σ on G. We define the Frobenius morphism σ′ : G̃ → G̃ by its

action on each H̃j . For (gaj , . . . , gaj+lj−1) ∈ H̃j we set:

σj(gaj , . . . , gaj+lj−1) = (σ(gaj+lj−1), σ(gaj ), . . . , σ(gaj+lj−2)).

Then we set σ′ : G̃ → G̃ by σ′(h1, . . . ,hk) = (σ1(h1), . . . , σk(hk)) where

each hj ∈ H̃j .

Let F be a finite σ-stable subgroup of G. Then, by the argument given

in the proof of Lemma 9.7, we have F̃ := ε−1(F ) is also finite and σ′-stable.

Suppose F is not strongly reductive in G, then by [1, Theorem 3.1], F is

not G-cr. By [1, Lemma 2.12 (ii)] we have F̃ is not G̃-cr. Let πj : G̃→ H̃j

be the projection map. Then, by [1, Lemma 2.12 (i)], there exists some j

such that Fj := πj(F̃ ) is not H̃j-cr. Since σj(πj(F̃ )) ⊆ πi(F̃ ), we have that

Fj is σj-stable.

Therefore, by Lemma 9.13, we have Fj is contained in a proper σj-stable

parabolic subgroup P̃j of H̃j , and in no Levi subgroup of P̃j .
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Thus, F̃ is contained in the σ′-stable parabolic subgroup P̃ := H̃1×· · ·×

H̃j−1× P̃j × H̃j+1× · · ·× H̃k of G̃. The Levi subgroups of P̃ are of the form

H̃1 × · · · × H̃j−1 × L̃j × H̃j+1 × · · · × H̃k, where L̃j a Levi subgroup of P̃j .

Therefore, F̃ is not contained in any Levi subgroup of P̃ .

By [1, Lemma 2.11], we can conclude that F = ε(F̃ ) is contained in the

proper parabolic subgroup P := ε(P̃ ) of G. Because P̃ is σ′-stable, we have

that P is σ-stable. Similarly, by [1, Lemma 2.11], F is not contained in any

Levi subgroup of P .

It is interesting to note that Proposition 9.14 takes into account Frobe-

nius morphisms of G that are composed of elementary morphisms which are

not necessarily Frobenius morphisms. For example, suppose char(k) = 2

and G = Bn × Cn. Let σ : G → G be the homomorphism which acts by

σ : (x, y) 7→ (ch∗(y), ch(x)) where ch, ch∗ are the isogenies from Bn to Cn and

vice-versa, respectively, as introduced in Remark 7.10 and x ∈ Bn, y ∈ Cn.

Then σ2 = σ2 is a standard Frobenius morphism, and hence σ is a Frobe-

nius morphism of G and thus we can apply our results to this case. Another

important feature of the proof of Proposition 9.14, is that it is not necessary

to consider the specific decomposition of σ into its elementary components.

We have now arrived at the main result of this section, which follows

immediately from Theorem 8.6 and Proposition 9.14.

Theorem 9.15. Let G be a reductive algebraic group, and let σ be a Frobe-

nius morphism of G. Suppose that F is a finite σ-stable subgroup of G,

then

(1) F is G-completely reducible if and only if it is (G, σ)-completely re-

ducible, and

(2) if F is not G-completely reducible, then F is contained in a proper

σ-stable parabolic subgroup P of G and not in any Levi subgroup of P .
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Remark 9.16. Alternative proofs of Theorem 9.15, or special cases of it, are

available. For example, part (1) of Theorem 9.15 is proved in [18].

If we take σ = σq to be a standard Frobenius morphism, then Theorem

9.12 (1) and Theorem 9.15 (1) are special cases of [1, Theorem 5.8], and this

can be seen as follows. Consider the extension Fq/Fq of perfect fields. A

group is defined over Fq if and only if it is σq-stable. A σ-stable subgroup

H of G is said to be G-completely reducible over Fq if it is contained in

a parabolic subgroup P of G defined over Fq implies that it is contained in

a Levi subgroup L of P defined over Fq. In these terms, [1, Theorem 5.8]

states that a σq-stable subgroup H of G is G-completely reducible if and only

if it is (G, σq)-completely reducible, and this is because being G-completely

reducible over Fq is the same as being (G, σq)-completely reducible.

Example 9.17. In characteristic p, a finite subgroup F of G is G-completely

reducible provided p does not divide |F |. This is the well known Maschke’s

Theorem of representation theory. This gives plenty of examples of G-

completely reducible subgroups. Therefore, by Theorem 8.6, a finite σ-stable

subgroup of G is (G, σ)-completely reducible if its order is not divisible by

p.

The following example provides numerous examples of finite (G, σ)-

completely reducible subgroups of a reductive group G, with Frobenius mor-

phism σ.

Example 9.18. Let G be a reductive group, and σ an arbitrary Frobenius

morphism of G. The finite group Gσ of G is (G, σ)-irreducible.

We can see this as follows. Suppose that Gσ ⊆ P , for a proper σ-

stable parabolic subgroup P of G. Let L be a σ-stable Levi subgroup of

P , which exists by Corollary 7.15. Then, the opposite parabolic subgroup

−P relative to L is also σ-stable. Its unipotent radical Ru(−P ) intersects

trivially with P , yet contains fixed points under the action of σ (see [10, p.
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76] for details). This is a contradiction. Therefore, Gσ is not contained in

any proper σ-stable parabolic subgroup of G.

Remark 9.19. Let L be a σ-stable Levi subgroup of some parabolic sub-

group P of G. One consequence of Example 9.18 is that since Lσ is (L, σ)-

irreducible, P is in fact a minimal parabolic subgroup of G containing Lσ.
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10 Infinite Subgroups

In this section, unless otherwise stated, G will denote a reductive algebraic

group over the field k = Fq of characteristic p, and where q is some positive

power of p. Recall that by reductive, we mean a connected reductive group.

Let σ be a Frobenius morphism of G. The aim of this section is to generalise

Theorem 9.15 to a result about arbitrary closed subgroups of G. We can do

this once we know Lemma 10.4, which is an analogue of Lemma 6.24 in the

σ-stability setting. This is an important step in the generalisation because

within the context of G-complete reducibility it enables us to model any

σ-stable subgroup of G as a finite σ-stable subgroup of G.

10.1 Extension to Infinite Groups

It is shown in [36, Lemma 3.2] that for a reductive group G there exists an

ascending sequence G1 ⊆ G2 ⊆ · · · of finite subgroups of G whose union is

dense in G. If G has such a sequence with each Gi σ-stable then we say that

G has a finite σ-structure given by the chain {Gi}.

Proposition 10.1. Let G be a reductive algebraic group and σ a Frobenius

morphism of G. Then G has a finite σ-structure.

Proof. Since σ is a Frobenius morphism of G there is an injective homo-

morphism ι : G→ GLn(Fq) such that ι(σa(g)) = σq(ι(g)) for some positive

power a of σ. Therefore, there is a Frobenius morphism σ′ : ι(G) → ι(G),

given by σ′(x) = ι(σ(ι−1(x))) for all x ∈ ι(G). Thus, we have ι(σ(g)) =

σ′(ι(g)) for all g ∈ G, and σ′a(ι(g)) = σq(ι(g)).

A subgroup H of G is σ-stable if, and only if, ι(H) is σ′-stable, and

clearly H is finite if, and only if ι(H) is finite. Therefore, G has a finite

σ-structure if, and only if, ι(G) has a finite σ′-structure. We set:

G(i) := (ι(G)∩GLn(Fqi!))∩σ′(ι(G)∩GLn(Fqi!))∩· · ·∩σ′a−1(ι(G)∩GLn(Fqi!)).

126



Each G(i) is σ′-stable because σ′a = σq and ι(G) and GLn(Fqi!) are σq-stable.

Let x ∈ ι(G). Since Fq = ∪i∈NFqi! , we have that ι(G) = ∪i∈N(ι(G) ∩

GLn(Fqi!)), see [36, Notation 3.3]. Therefore, we have x ∈ ι(G) ∩GLn(Fqi!)

for some i. Furthermore, we have that ι(G) = ∪iσ′b(ι(G) ∩ GLn(Fqi!)) for

each positive integer b. Therefore, for each such b there exists a correspond-

ing i such that x ∈ σ′b(ι(G) ∩ GLn(Fqi!)). By picking i to be sufficiently

large, we have x ∈ G(i) 6= {1}, and for all i we have G(i) ⊆ G(i+ 1). Hence

we obtain an ascending sequence of finite subgroups G(i) of G, such that

each element of ι(G) is contained in a finite group G(i), for sufficiently large

i.

The union over i of each of the chains σ′b(ι(G) ∩ GLn(Fqi!)), for each

b ∈ N, is dense in ι(G). Therefore, the union ∪i∈NG(i) is also dense in ι(G)

giving the result.

Note that in the proof of Proposition 10.1 we require G(i) to be a sub-

group of GLn(Fqi!). Since i! divides (i+1)!, we can embed G(i) as a subgroup

in G(i+ 1) by canonically embedding Fqi! as a subfield in Fq(i+1)! .

Example 10.2. We present an example of a finite σ-structure of a reductive

group. Consider the reductive groupG = GLn(Fq) which has a non-standard

Frobenius morphism σ given by σ(g) = (σq(g
−1))T , where T denotes the

transpose map.

With respect to a suitable basis, σ sends a parabolic subgroup P of

G which is of block upper triangular form to the parabolic subgroup P−

of G which is of block lower triangular form, and leaves P ∩ P− stable.

Furthermore, σ2 = σq2 . Thus, the fixed point group GLn(Fq)σ is the group

of all matrices g ∈ GLn(Fq2) for which g = (σq(g
−1))T , that is, the group

Un(Fq2) of all unitary transformations of Fnq2 . Let us define the finite

groups G(i), as in Proposition 10.1, by

G(i) := GLn(Fq2i!) ∩ σ(GLn(Fq2i!)).
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The G(i) are finite, σ-stable, and form a chain {G(i)} with the inclusions

G(i) ⊆ G(i + 1). All that needs to be checked is that the union of the

G(i) is dense in G. Consider the chains given by H(i) := GLn(Fq2i!) and

H ′(i) := σ(GLn(Fq2i!)). These chains are σq2-structures for G. Therefore,

any element of G must simultaneously be in H(i) and H ′(i) for sufficiently

large i. Thus, the chain {G(i)} endows G with a finite σ-structure.

In Proposition 10.5, a finite σ-structure of an arbitrary closed subgroup

of G is required. Therefore, as part of our generalisation of Theorem 9.15 to

a statement about arbitrary closed subgroups of G, we extend Proposition

10.1 to arbitrary algebraic groups in the following result, and for the proof

we appeal to [4, Lemma 2.3].

Proposition 10.3. Let G be an algebraic group defined over Fq, and let σ

be a Frobenius morphism of G. Then G has a finite σ-structure.

Proof. We proceed by induction on dimG. If G is reductive, then Propo-

sition 10.1 gives the result. Suppose that G is not reductive, then Z :=

Z(Ru(G))0 is a non-trivial closed connected unipotent normal subgroup of

G, and Z is a characteristic subgroup of Z(Ru(G)) and so is σ-stable. By [6,

III.10.6(2)], Z contains a subgroup isomorphic to the additive group Ga. Let

C be the subgroup of Z generated by the subgroups of Z that are isomorphic

to Ga. Since σ is a morphism, the image of each of these subgroups under σ

is another subgroup of Z that is isomorphic to Ga. By [20, Theorem 5.4], C

is a vector space. Therefore, C is a σ-stable, finite-dimensional vector space

over k which is normal in G.

As in the proof of Proposition 10.1, there is an injective homomorphism

ι : G → GLn(Fq), such that ι(σa(g)) = σq(ι(g)) for some positive power a

of σ. Therefore, there is a Frobenius morphism σ′′ : ι(G) → ι(G), given by

σ′′(x) = ι(σ(ι−1(x))) for all x ∈ ι(G). Thus, we have ι(σ(g)) = σ′′(ι(g)) for

all g ∈ G, and σ′′a(ι(g)) = σq(ι(g)).
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A subgroup H of G is σ-stable if, and only if, ι(H) is σ′′-stable, and

clearly H is finite if, and only if ι(H) is finite. Hence, G has a finite σ-

structure if, and only if, ι(G) has a finite σ′′-structure. We may therefore

assume that G = ι(G) and σ = σ′′.

To the group C we may associate a chain C1 ⊆ C2 ⊆ · · · of finite σq-

stable subgroups of C whose union is dense in C by setting Ci := C ∩

GLn(Fqi!). We have C ′i := Ci ∩ σ(Ci) ∩ · · · ∩ σa−1(Ci) is a finite σ-stable

subgroup of C. As in the proof of Proposition 10.1, there is some i such

that C ′i 6= e, and for all i we have that C ′i ⊆ C ′i+1. We have that C = ∪iC ′i.

Therefore C has a finite σ-structure given by the set {C ′i}.

Since C is a σ-stable subgroup of G, by Proposition 7.8, the morphism

σ′ on M := G/C defined by σ′ : gC 7→ σ(g)C for g ∈ G is a Frobenius

morphism. Furthermore, we have the commutative diagram

G
π //

σ
��

M

σ′

��
G

π //M.

By induction M has an ascending sequence of finite σ′-stable groups

M1 ⊆ M2 ⊆ · · · whose union is dense in M . Let π : G → M be the

canonical projection. Suppose that Mi = {gi1C, . . . , gikiC} for each i.

Denote by Gi the subgroup of G generated by the finite set C ′i ∪

{gi1 , . . . , giki}. We have, π(Gi) ⊇ Mi, and the Gi form an ascending se-

quence G1 ⊆ G2 ⊆ · · · of subgroups where Gi contains C ′i. Since Gi is

finitely generated and Gi∩C is of finite index in Gi, by [44, Theorem 11.54]

Gi ∩ C is finitely generated. Since C is a vector space, Gi ∩ C is finite.

Therefore Gi is finite. We wish to show that the Gi are σ-stable. If there is

no gia ∈ Gi − C, then the Gi coincide with the C ′i and hence are σ-stable.

Therefore, suppose that there is some gia ∈ Gi − C. As Mi is σ′-stable, we

have σ′(giaC
′
i) ∈ Mi. Since the C ′i are σ-stable, we have σ(gia) ∈ Gi − C.
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Thus, Gi is σ-stable. Therefore we have that the Gi form an ascending

sequence of finite σ-stable subgroups.

Let G′ be the closure of the union of the Gi. Then G′ is a closed σ-

stable subgroup of G containing C. Its image π(G′) is a closed subgroup of

M containing the Mi and is therefore equal to M . Therefore G′ = G.

By Proposition 10.3 we can associate a finite σ-structure to a closed σ-

stable subgroup of G, enabling us to prove the following lemma, which is an

adaptation of Lemma 6.24.

Lemma 10.4. Let G be a σ-stable reductive group. Suppose that H is a

closed σ-stable subgroup of G with a finite σ-structure given by the chain of

subgroups {Hi}. Then, there is some a ∈ N such that for all b ≥ a we have

H is G-completely reducible if and only if Hb is G-completely reducible.

Proof. List representatives of theG-conjugacy classes of parabolic subgroups

of G as P1, . . . , Pm and representatives of the G-conjugacy classes of Levi

subgroups as L1, . . . , Ln. Let j ∈ {1, . . . ,m}, k ∈ {1, . . . , n} and l ∈ N.

Since ∪iHi is dense in H we have that ∪iHi is contained in a parabolic

subgroup P of G (resp. a Levi subgroup of P ) if and only if H is contained in

a parabolic subgroup P of G (resp. a Levi subgroup of P ). We may therefore

assume, without loss of generality, that ∪iHi = H. For any subgroup H ′ ⊆

H define the sets Cj(H
′) := {g ∈ G | H ′ ⊆ gPjg

−1} and Dk(H
′) := {g ∈

G | H ′ ⊆ gLkg
−1} for all j, k, which are closed by [23, Proposition 8.2 (a)].

For any H ′′ ⊆ H ′ we have the inclusions Cj(H
′) ⊆ Cj(H

′′) and Dk(H
′) ⊆

Dk(H
′′).

For each j define Cj to be the set of all Cj(H
′) where H ′ ranges over

the set of all finite subgroups of H in the chain {Hi} giving H its finite

σ-structure, and for each k define Dk to be the set of all Dk(H
′) corre-

spondingly. By the descending chain condition on closed sets, these two
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chains give rise to a minimal element in each of Cj and Dk. Therefore, there

exists some finite group H∗, say, in {Hi} such that for any other H∗∗ in

{Hi} with H∗ ⊆ H∗∗ we have Cj(H
∗) ⊆ Cj(H

∗∗) and Dk(H
∗) ⊆ Dk(H

∗∗)

for each j and k. The reverse inclusions are noted to hold above, so in fact

we have that Cj(H
∗) = Cj(H

∗∗) and Dk(H
∗) = Dk(H

∗∗).

It follows that there are some a′, a′′ ∈ N such that Cj(Ha′) = Cj(H) and

Dk(Ha′′) = Dk(H) for all j, k. This can be seen as follows. Suppose, by way

of contradiction, that Cj(H) ( Cj(Ha′) for some j, then there exists some

g ∈ Cj(Ha′) which is not in Cj(H). Hence, there exists some g ∈ Cj(Ha′),

and some h ∈ H with ghg−1 /∈ Pj . Since ∪iHi = H, we have that h ∈ Ha′+l

for some l ∈ N and so Cj(Ha′+l) ( Cj(Ha′) since g /∈ Cj(Ha′+l), which is a

contradiction. A similar argument shows that Dk(Ha′′) = Dk(H).

It also follows, from the minimality of Cj(Ha′) and Dk(Ha′′), and the

fact that Cj(Ha′) ⊆ Cj(Ha′+l) and Dk(Ha′′) ⊆ Dk(Ha′′+l) for all l ∈ N, that

Cj(Ha′+l) = Cj(H) and Dk(Ha′′+l) = Dk(H) for all l ∈ N.

Suppose that H ⊆ P for some parabolic subgroup P of G. Then P is

G-conjugate to Pj for some j, so gPg−1 = Pj , say. Hence gHg−1 ⊆ Pj .

Hence, g ∈ Cj(H) = Cj(Ha′+l) and so gHa′+lg
−1 ⊆ Pj , so Ha′+l ⊆ P for all

l. This argument is reversible and a corresponding argument works for Levi

subgroups of G. Let a = max(a′, a′′). The group Ha satisfies the conditions

in the statement of the Lemma, giving the result.

We can now show the converse to Theorem 8.6.

Proposition 10.5. Let G be a reductive algebraic group with Frobenius

morphism σ. Let H be a σ-stable subgroup of G. Then one of the following

holds:

(1) H is strongly reductive in G, or

(2) H is contained in a proper σ-stable parabolic subgroup P of G, and

not in any Levi subgroup of P .
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Proof. Suppose that H is σ-stable and not strongly reductive in G. By [1,

Theorem 3.1], H is not G-cr. By Proposition 10.3, H admits a finite σ-

structure, {Hi} say. By Lemma 10.4, there exists some j such that Hj+l

is not G-cr, for all l ≥ 0, and hence by Theorem 6.18 Hj+l is not strongly

reductive in G. Therefore, by Proposition 9.14, for each l ≥ 0 we have that

each Hj+l is contained in some proper σ-stable parabolic subgroup of G.

Suppose P is such a σ-stable parabolic subgroup of G containing Hj+l for

some l ≥ 0.

As in the proof of Lemma 10.4, list representatives of the conjugacy

classes of parabolic subgroups of G by P1, . . . , Pm. Suppose that P is G-

conjugate to Pk for some k ∈ {1, . . . ,m}, say P = gPkg
−1 for some g ∈ G.

Then, as in the proof of Lemma 10.4, Ck(Hj) = Ck(Hj+l), hence Hj+l ⊆

gPkg
−1 = P for all l > 0. We have that Hj+l ⊂ P for all l > 0 and so

H ⊆ P . Furthermore, by Proposition 9.14, each Hj+l is not contained in

any Levi subgroup of P , and so H is also not contained in any Levi subgroup

of P , as required.

We have arrived at our main result, which is an immediate consequence

of Theorem 8.6 and Proposition 10.5.

Theorem 10.6. Let G be a reductive algebraic group, and let σ be a Frobe-

nius morphism of G. Suppose that H is a σ-stable subgroup of G, then

(1) H is G-completely reducible if and only if it is (G, σ)-completely re-

ducible, and

(2) if H is not G-completely reducible, then H is contained in a proper

σ-stable parabolic subgroup P of G and not in any Levi subgroup of P .

Example 10.7. Care must be taken in applying Theorem 10.6, for the fact

that a (G, σ)-irreducible subgroup of G may not be G-irreducible.

132



With reference to the notation of Example 8.2, we note that although L is

(G, σ)-irreducible, it is not G-irreducible. However, as L is a Levi subgroup

of G it is G-completely reducible, and since it is (G, σ)-irreducible, it is

(G, σ)-completely reducible.

We now present a collection of corollaries to Theorem 10.6. In each we

assume that G is a reductive algebraic group with Frobenius morphism σ.

The first of the corollaries gives an understanding of the geometric nature of

(G, σ)-completely reducible subgroups of G. Each is the result of a combi-

nation of Theorem 10.6 and a corresponding result from [1] or [2]. We have

chosen this collection of results to provide an indication of the properties of a

(G, σ)-completely reducible subgroup of G, and because they are of general

interest.

Corollary 10.8. Let H be a σ-stable subgroup of G topologically generated

by {x1, . . . , xn}. Then H is (G, σ)-completely reducible if and only if the

orbit G · (x1, . . . , xn) is closed in Gn.

Proof. Follows from Theorem 10.6 and [1, Corollary 3.7].

Corollary 10.9. Assume that p is good for G or p > 3. Let A and B be

σ-stable commuting connected (G, σ)-completely reducible subgroups of G.

Then AB is (G, σ)-completely reducible.

Proof. Follows from Theorem 10.6 and [2, Corollary 4.19]. The bound on p

is a result of the case by case analysis in [2].

Corollary 10.10. Let H be a closed σ-stable subgroup of G and let N be a

σ-stable normal subgroup of H. If H is (G, σ)-completely reducible, then so

is N . In particular, H0 is (G, σ)-completely reducible.

Proof. Follows from Theorem 10.6 and [1, Theorem 3.10].
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Corollary 10.11. Let H be a (G, σ)-completely reducible subgroup of G and

let K be a σ-stable closed subgroup of G satisfying HCG(H)0 ⊆ K ⊆ NG(H).

Then, K is (G, σ)-completely reducible.

Proof. Follows from Theorem 10.6 and [1, Corollary 3.14].

The following two results are immediate consequences of Corollaries

10.10 and 10.11.

Corollary 10.12. Let H be a closed σ-stable subgroup of G. Then H is

(G, σ)-completely reducible if and only if NG(H) is.

Corollary 10.13. Let H be a closed σ-stable subgroup of G. If H is (G, σ)-

completely reducible then so is CG(H).

The following result is an analogue of [1, Corollary 3.22] in the setting

of σ-stability.

Corollary 10.14. Let K be a closed σ-stable subgroup of a σ-stable Levi

subgroup L of G. Then K is (L, σ)-completely reducible if and only if K is

(G, σ)-completely reducible.

Proof. Suppose K is (L, σ)-cr. Then, by Theorem 10.6, K is L-cr. There-

fore, by [1, Corollary 3.22], K isG-cr. ThusK is (G, σ)-cr, again by Theorem

10.6.

Conversely, suppose K is (G, σ)-cr. Then, by Theorem 10.6, K is G-cr.

Therefore, by [1, Corollary 3.22], K is L-cr. Thus K is (L, σ)-cr, by Theorem

8.6.

Recall that a subgroup H of G is called regular if it is normalised by

a maximal torus of G. The following result is an analogue of [1, Corollary

3.26] in the setting of σ-stability, and in which the restriction that p is good

for G is required.
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Corollary 10.15. Suppose that p is good for G. Let K be a closed σ-stable

subgroup of a σ-stable regular reductive subgroup H of G. Then K is (H,σ)-

completely reducible if and only if K is (G, σ)-completely reducible.

Proof. Suppose K is (H,σ)-cr. Then, by Theorem 10.6, K is H-cr. There-

fore, by [1, Theorem 3.26], K is G-cr. Thus K is (G, σ)-cr, again by Theorem

10.6.

Conversely, suppose K is (G, σ)-cr. Then, by Theorem 10.6, K is G-

cr. Therefore, by [1, Theorem 3.26], K is H-cr. Thus K is (H,σ)-cr, by

Theorem 10.6.

Example 10.16. Let char(k) = 2. We embed the group Spm(k) diagonally

in the maximal rank subgroup Spm(k) × Spm(k) of Sp2m(k). Then, by [1,

Example 3.45], Spm(k) is not Sp2m(k)-cr, even though Spm(k) is reductive.

Let σ = σ2a be a standard Frobenius morphism of Sp2m(k), where a ∈ N.

Clearly, the diagonally embedded copy of Spm(k) is also σ-stable, and by

Theorem 10.6, is not (Sp2m(k), σ)-completely reducible.

This provides an example of a reductive subgroup of Sp2m(k) which is

not (Sp2m(k), σ)-completely reducible.

10.2 Groups of Fixed Points

Let G be a connected reductive algebraic group over a field of characteristic

p, with a Frobenius morphism σ. In this section we deal with subgroups

of Gσ. For such groups, we present the following definition, which is an

analogue of Definition 8.1 for subgroups of Gσ.

Definition 10.17. Let G be a reductive algebraic group, and let σ be a

Frobenius morphism of G. Let H be a subgroup of Gσ.

(1) We say that H is Gσ-completely reducible (or Gσ-cr) if whenever

H is contained in P σ for a σ-stable parabolic subgroup P of G, then

H is contained in Lσ, for a σ-stable Levi subgroup L of P .

135



(2) We say that H is Gσ-irreducible (or Gσ-ir) if H is not contained in

P σ for any proper σ-stable parabolic subgroup P of G.

Example 10.18. The observation made in Example 9.18 gives that Gσ is

Gσ-irreducible, and is therefore trivially Gσ-completely reducible.

Proposition 10.19. Let G be a reductive algebraic group and let H be a

subgroup of Gσ. Then H is (G, σ)-completely reducible if and only if it is

Gσ-completely reducible.

Proof. Let H be (G, σ)-cr. Suppose that H ⊆ P σ, where P is a σ-stable

parabolic subgroup of G. Then H ⊆ P . Because H is (G, σ)-cr, H ⊆ L for

some σ-stable Levi subgroup L of P . Therefore H ⊆ Lσ.

Conversely, suppose that H is Gσ-cr and that H ⊆ P for some σ-stable

parabolic subgroup P of G. Then H ⊆ P σ. Because H is Gσ-cr, H ⊆ Lσ for

some σ-stable Levi subgroup L of P . Hence, H ⊆ L, giving the result.

Corollary 10.20. Let G be a reductive algebraic group and σ a Frobenius

morphism of G. The following are equivalent for a subgroup H of Gσ:

(1) H is Gσ-completely reducible,

(2) H is (G, σ)-completely reducible, and

(3) H is G-completely reducible.

Proof. This follows from Theorem 10.6 and Proposition 10.19.

Using the notion of Gσ-complete reducibility, we can find more examples

of (G, σ)-completely reducible subgroups of G, as shown in the following.

Example 10.21. Let G be a reductive algebraic group with a Frobenius mor-

phism σ, and let L be a σ-stable Levi subgroup of G. As in Example 10.18,

Lσ is Lσ-completely reducible. By Proposition 10.19, Lσ is (L, σ)-completely

reducible. Therefore, by Corollary 10.14, Lσ is (G, σ)-completely reducible.
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Example 10.22. Let G be a reductive algebraic group, with a Frobenius

morphism σ and suppose that p is good for G. Suppose that H is a closed

σ-stable regular reductive subgroup of G. As in Example 10.18, Hσ is

Hσ-completely reducible. By Proposition 10.19, Hσ is (H,σ)-completely

reducible. Therefore, by Corollary 10.15, Hσ is (G, σ)-completely reducible.

10.3 Strong σ-Reductivity in G

We define an analogue in the setting of σ-stability to Richardson’s notion of

strong reductivity, see [42, §16], which we discussed in §6.4.

Definition 10.23. A σ-stable subgroup H of G is strongly σ-reductive in

G if H is not contained in any proper σ-stable parabolic subgroup of CG(S),

where S is a σ-stable maximal torus of CG(H).

Remark 10.24. Note that in Definition 10.23 it makes sense to require S to

be a σ-stable maximal torus of CG(H) since such an S exists, by Corollary

7.14.

Theorem 6.18 shows that the notions of G-complete reducibility and

strong reductivity are equivalent. In the following we generalise this result

to the σ-stability setting. The proof of the forward direction was provided

by Michael Bate, Tim Burness and Martin Liebeck.

Theorem 10.25. Let H be a σ-stable subgroup of G. Then, H is strongly

σ-reductive in G if, and only if, it is (G, σ)-completely reducible.

Proof. Suppose that H is strongly σ-reductive in G; so H is not contained

in any proper σ-stable parabolic subgroup of CG(S) where S ⊆ CG(H) is a

σ-stable maximal torus. Then, H is (CG(S), σ)-ir, and thus is (CG(S), σ)-

cr. Therefore, by Theorem 10.6, H is CG(S)-cr, and by [1, Corollary 3.5] is

G-cr. As H is σ-stable, by Theorem 8.6, it is (G, σ)-cr.
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Suppose that H is (G, σ)-cr. By Theorem 10.6, H is G-cr. Pick any σ-

stable maximal torus S1 of CG(H), then by [1, Corollary 3.5] H is CG(S1)-

ir. Therefore, H is (CG(S1), σ)-ir. This gives that H is not contained in

any proper σ-stable parabolic subgroup of CG(S1) where S1 is any σ-stable

maximal torus of CG(H). Thus, H is strongly σ-reductive in G.

Remark 10.26. We note that the proof of Theorem 10.25 shows that Defini-

tion 10.23 is independent of the choice of σ-stable maximal torus of CG(H).

We have the following analogue of [42, Lemma 16.3], which justifies the

use of the terminology strongly σ-reductive.

Lemma 10.27. Suppose that H is strongly σ-reductive in G. Then H is

reductive.

Proof. Let S be a σ-stable maximal torus of CG(H). We have that CG(S)

is reductive. Suppose that Ru(H) 6= e. Since H is σ-stable, so is Ru(H).

Then, by the construction of Borel-Tits, there is a proper σ-stable parabolic

subgroup P of CG(S) such that Ru(H) ⊆ Ru(P ), and H ⊆ P . However,

this contradicts the hypothesis. Hence H is reductive.
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Part III

Complete Reducibility for
Lie Algebras
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11 Complete Reducibility for Lie Algebras

Let G be a reductive algebraic group. In this section we analyse the notion

of G-complete reducibility for a Lie subalgebra of g = Lie(G), which is due

to McNinch, see [37]. In Theorem 11.38, we obtain an analogue in the Lie

algebra setting of Theorem 6.28. As a consequence of this result, we obtain

Corollary 11.40, which demonstrates that if G is a simple algebraic group

then any Ad(G)-invariant ideal in g is G-completely reducible.

Notation 11.1. In this section algebraic groups will be represented with cap-

ital Roman letters, G,H,K, . . ., and to each group the corresponding Lie

algebra will be denoted by the same letter in Gothic g, h, k, . . ..

From §5.8 we have that the adjoint representation of G gives an action

of G on g given by Ad(g) : X 7→ Ad(g)(X) for all g ∈ G,X ∈ g.

Let g = Lie(G), and let “0” denote the identity element of the Lie algebra

g. A Lie subalgebra of g is called a parabolic (resp. Levi) subalgebra if it is

the Lie algebra of a parabolic (resp. Levi) subgroup of G.

11.1 G-Complete Reducibility for Lie Algebras

Let G be a reductive algebraic group over an algebraically closed field k,

and let H be a closed subgroup of G. Let g = Lie(G) and h = Lie(H), as

defined in §5.7. If H is reductive then h is called reductive.

We combine some definitions and results of [42, §2], and [1, Lemma 2.4].

We note that we originally introduced the definitions of Pλ, Lλ, Ru(Pλ), and

the map cλ : Pλ → Lλ in §6.2.

Definition 11.2. Let λ ∈ Y (G), and x ∈ k∗.

(1) Pλ := {g ∈ G | limx→0 λ(x) · g exists} is a parabolic subgroup of G.

(2) Lλ := {g ∈ G | limx→0 λ(x) · g = g} is a Levi subgroup of Pλ.
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(3) Uλ := {g ∈ G | limx→0 λ(x) · g = e} = Ru(Pλ).

(4) pλ := {X ∈ g | limx→0 Ad(λ(x))X exists} = Lie(Pλ) is a parabolic

subalgebra of g.

(5) lλ := {X ∈ g | limx→0 Ad(λ(x))X = X} = Lie(Lλ) is a Levi subalgebra

of g.

(6) uλ := {X ∈ g | limx→0 Ad(λ(x))X = 0} = Lie(Uλ).

For g ∈ Pλ the map cλ : Pλ → Lλ given by

cλ(g) = lim
x→0

λ(x)gλ(x)−1

is a surjective homomorphism of algebraic groups. Clearly, Ru(Pλ) is the

kernel of the map cλ. Corresponding to the group case, for X ∈ pλ define

the projection cλ : pλ → lλ given by

cλ(X) = lim
x→0

Ad(λ(x))X.

Since the limit limx→0 Ad(λ(x))X exists we have that Ad(λ(x)) ∈ GL(g),

for all x ∈ k, and so Ad(λ(x)) is an automorphism of g.

Thus, cλ preserves the Lie bracket and as such cλ is a homomorphism

of Lie algebras. As in the group case, the kernel of the map cλ is uλ and

we have the decomposition pλ = lλ ⊕ uλ, for details see, for instance, [27,

Equation 5.93(b)].

Suppose that G and H are reductive groups with H ⊆ G. Recall that

each one-parameter subgroup λ ∈ Y (H) may be considered as a cocharacter

of G. Therefore, corresponding to λ is one parabolic subgroup Pλ(H) of

H and one parabolic subgroup Pλ(G) of G with Pλ(H) = Pλ(G) ∩H. For

details see [1, Corollary 2.5]. We will write Pλ for Pλ(G), and will only write

Pλ(H) when H is a proper subgroup of G.

We denote pλ(H) = Lie(Pλ(H)) and pλ(G) = Lie(Pλ(G)). We have

pλ(H) is the Lie algebra of a parabolic subgroup of H and pλ(G) is the Lie
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algebra of a parabolic subgroup of G. As in the group case, we will write pλ

for pλ(G), and will only write pλ(H) when H is a proper subgroup of G.

Following [37], we give the following definition.

Definition 11.3. Let G be a reductive algebraic group with Lie algebra g,

and let h be a Lie subalgebra of g.

(1) We say that h is G-completely reducible (or G-cr) if whenever h ⊆

Lie(P ) for some parabolic subgroup P of G, then h ⊆ Lie(L) for some

Levi subgroup L of P .

(2) We say that h is G-irreducible (or G-ir) if h is not contained in the

Lie algebra of any proper parabolic subgroup of G.

(3) We say that h is G-indecomposable (or G-ind) if h is not contained

in the Lie algebra of any proper Levi subgroup of G.

Remark 11.4. Suppose that G is a non-connected algebraic group, with

subgroup H. Then, the Lie subalgebras of G coincide with those of G0.

Therefore, Lie(H) is G-completely reducible if and only if it is G0-completely

reducible.

Remark 11.5. Let H be a closed subgroup of G = GL(V ) where V is a

finite dimensional vector space. Then h is a Lie subalgebra of gl(V ). We

claim that h is GL(V )-completely reducible if and only if V is a semisimple

h-module. This is an analogous result in the Lie algebra case to Lemma

6.11, and can be seen as follows.

A parabolic subgroup P of GL(V ) is the stabiliser of a flag F :=

(V1, . . . , Vm) of subspaces {0} 6= V1 ⊆ V2 ⊆ · · · ⊆ Vm of V , where

m ≤ dim(V ). By [6, Theorem 5.1], the Lie algebra p = Lie(P ) also sta-

bilises the flag F of V .

As in Lemma 6.11, we may choose a complement Wi to Vi−1 in Vi such

that Vi = Vi−1⊕Wi. Then a Levi subgroup L of P is isomorphic to GLn1(k)×
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· · · ×GLnm(k), where each ni = dim(Wi). To each subspace U of V that is

stabilised by L, there is a complement to U in V that is also stabilised by

L. Thus V is a semisimple L-module.

We have l = Lie(L) is isomorphic to the direct sum
⊕

i glni(k) in p, and

V is a semisimple l-module.

Suppose that h is G-completely reducible, and stabilises a subspace U

of V . Then h is contained in the Lie algebra p of a parabolic subgroup P

of G that also stabilises U . As h is G-completely reducible, h is contained

in the Lie algebra l of some Levi subgroup L of P . Each Levi subalgebra of

p stabilises U , and a complement to U . As U has an l-stable complement

and h ⊆ l, it has the same h-stable complement. Thus, V is a semisimple

h-module.

Conversely, suppose that V is a semisimple h-module, and that h is

contained in the Lie algebra p of a parabolic subgroup P of G. Since p

acts on V by stabilising a flag (V1, . . . , Vn), we have that h also stabilises

(V1, . . . , Vn). Since V is a semisimple h-module h is of block diagonal form,

and so is contained in a Levi subalgebra of p.

We discuss the corresponding situation when G = Sp(V ) or SO(V ) in

Remark 11.29.

The following is an analogue of [1, Corollary 2.7].

Lemma 11.6. Let H be a reductive subgroup of G. Suppose that k is a Lie

subalgebra of g and is contained in h = Lie(H). Then:

(1) if k is G-irreducible, it is H-irreducible, and

(2) if k is G-indecomposable, it is H-indecomposable.

Proof. (1) Suppose that k is contained in the Lie algebra Lie(Q) of a proper

parabolic subgroup Q of H. Then, since H is reductive in G, by [1, Corollary
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2.5], there exists a proper parabolic subgroup P of G such that Q ⊆ P , and

k ⊆ Lie(P ), a contradiction. Hence, k is in no such Lie algebra of h, i.e. k is

H-ir.

(2) Suppose that k is contained in the Lie algebra Lie(M) of a Levi

subgroup M of a proper parabolic subgroup Q of H. Then, since H is

reductive in G, by [1, Corollary 2.5], there exists a proper parabolic subgroup

P of G such that Q ⊆ P , and M ⊆ L for L a Levi subgroup of P . Thus

k ⊆ Lie(L), a contradiction. Hence, k is in no such Lie algebra of h, i.e. k is

H-ind.

Remark 11.7. Let H be a closed subgroup of G. If h is G-irreducible, then

so is H. This is easy to see. Indeed if H is not G-irreducible then H ⊆ P for

some proper parabolic subgroup P of G. Then h ⊆ Lie(P ), a contradiction.

Notation 11.8. We consider the simultaneous adjoint action of G on gn for

g ∈ G and X := (X1, . . . , Xn) ∈ gn by:

Ad(g)(X1, . . . , Xn) = (Ad(g)X1, . . . ,Ad(g)Xn).

Following Richardson [42], we denote the Lie subalgebra of g generated

by the Xi by a(X).

Let X ∈ gn and set h = a(X). Recall the centraliser in G of h is the set

CG(h) = {g ∈ G | Ad(g)X = X for all X ∈ h}. For X ∈ g, we denote the

stabiliser in G of X by GX . Note that CG(h) = GX.

Let H be a closed subgroup of G. Set cgn(H) := {X ∈ gn | Ad(h)X =

X for all h ∈ H}. Finally, we set cg(h) := {X ∈ g | [Y,X] = 0 for all Y ∈ h}.

The next result is an adaptation of [37, Theorem 1.1], due to McNinch.

In [37], the tuple X is taken to be a basis of h, however we note that the

result holds also when X is a generating tuple of h (that is for X such that

a(X) = h). This is because the tuple X is used in the proof to generate
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the Lie algebra h, see [37, Proof of Theorem 1], much like we have used a

generating tuple below in Theorem 11.38. Therefore, this result is stated

in this more general form here. See also [3, Theorem 5.30] for a different

approach to part (2) of this theorem.

Theorem 11.9. Let h be a Lie subalgebra of g such that h = a(X) for some

X ∈ gn. Then:

(1) The Lie algebra h is G-completely reducible if and only if the G-orbit

of X is closed in gn.

(2) Let H be a closed subgroup of G, and let h = Lie(H). If H is G-

completely reducible, then h is G-completely reducible.

Remark 11.10. Part (1) is proved in [37] using techniques similar to those

of Richardson, see [42].

Once Part (1) is known, Part (2) is proved in the following way. Let S

be a maximal torus of CG(H). Then, H ⊆ L := CG(S), and so h ⊆ Lie(L).

By [37, Lemma 2] it is sufficient to show that h is L-completely reducible.

Since S was chosen to be maximal, we have that H is not contained in any

proper Levi subgroup of L. Since H is G-completely reducible, H is not

contained in any proper parabolic subgroup of L.

By Theorem 11.9 (1), to show that h is L-completely reducible, it is suf-

ficient to show that Ad(L)(X) is closed in Lie(L)n, where X = (X1, . . . , Xn)

is a generating tuple of h. If Ad(L)(X) is not closed, then the boundary

S = Ad(L)(X) − Ad(L)(X) is non empty, and we can refer to Theorem

6.25 to obtain that the destabilising parabolic subgroup PS,X is a proper

parabolic subgroup of L. Since Ad(H) leaves h invariant, by [37, Corollary

7], we obtain that h·PS,X = PS,Ad(h)·X = PS,X, for all h ∈ H. As a parabolic

subgroup is its own normaliser, we conclude that H ⊆ PS,X. This contra-

dicts our assumption, and so we conclude that h is L-completely reducible,

and therefore G-completely reducible.
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Example 11.11. By [1, Corollary 3.22], any Levi subgroup L of G is G-

completely reducible. Therefore, by Theorem 11.9, any Levi subalgebra l of

g is G-completely reducible.

Example 11.12. Let H be a G-completely reducible subgroup. Then, by

[1, Corollaries 3.16, 3.17], CG(H) and NG(H) are both G-completely re-

ducible. Hence, by Theorem 11.9 (2), Lie(CG(H)) and Lie(NG(H)) are

both G-completely reducible.

We present the following examples which show that the converse to The-

orem 11.9 (2) does not always hold even in the case when H is connected.

Example 11.13. Any finite unipotent subgroup U of G is not G-completely

reducible since, by [23, §30.3], U ⊆ Ru(P ) for some parabolic subgroup P of

G, and U is not contained in any Levi subgroup of P . However, as U is finite,

its Lie algebra is trivial and is therefore trivially G-completely reducible.

The following example is taken from [37] and is attributed to Ben Martin.

Example 11.14. Let H be a semisimple group. Let ρi : H → SL(Vi) for i =

1, 2, be two representations of H with ρ1 semisimple and ρ2 not. Consider

the representation ρ : H → SL(V1 ⊕ V2) given by ρ(h) 7→ ρ1(h) ⊕ ρ2(σ(h))

where σ is a standard Frobenius morphism, and set G := SL(V1⊕V2). Then

ρ(H) is not G-completely reducible, since V1⊕V2 is not a semisimple ρ(H)-

module. Recall that the differential map ∂e(ρ) of ρ at e introduced in §5.5

maps h to Lie(SL(V1⊕V2)). The Lie algebra Lie(ρ(H)) = im(∂eρ) lies in the

Lie algebra of M = SL(V1)×SL(V2) (which is the semisimple part of a Levi

subgroup of G), and im(∂eρ) = im(∂eρ1)⊕ im(∂eρ2◦σ) = im(∂eρ1)⊕0 lies in

sl(V1)⊕ sl(V2). We justify the last equality as follows. By [23, §5.4] ∂e acts

on the functions that define σ(SL(V2)) by taking all partial derivatives of

these functions, all of which involve a p-power. Hence, this factor vanishes

in the above. By [1, Lemma 2.12 (i)], the image of ρ1 × 1 : H → M is M -

completely reducible and, by Theorem 11.9 (i) Lie(ρ(H)) is M -completely
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reducible. Hence, by [37, Lemma 2] Lie(ρ(H)) = im(∂eρ1 × 1)(H) is G-

completely reducible.

The following is an analogue in the Lie algebra setting of the notion of

a strongly reductive subgroup of G due to Richardson, [42].

Definition 11.15. Let h be a subalgebra of g. We say h is strongly re-

ductive in G if h is not contained in the Lie algebra of any proper parabolic

subgroup of CG(S), where S is a maximal torus of CG(h).

We follow the argument of Richardson [42, §16] to obtain the following

result.

Theorem 11.16. Let X ∈ gn. Then a(X) is strongly reductive in G if and

only if the orbit Ad(G)X is closed in gn.

Recall from Definition 6.21, that for a G-variety X, and Z = ∩x∈XCG(x),

we say x ∈ X is a stable point for the action of G if the orbit G ·x is closed

in X and CG(x)/Z is finite.

Proposition 11.17. Let X ∈ gn. Then X is a stable point of gn if and only

if a(X) is not contained in the Lie algebra of any proper parabolic subgroup

of G.

Proof. We sketch the proof of this result. Suppose a(X) is not contained in

the Lie algebra of any proper parabolic subgroup of G. We can conclude, as

in the proof of Proposition 6.23, that Ad(G)X is closed and affine. Therefore,

by [41, Theorem A], G0
X is reductive. Let S be a maximal torus of GX, then

by following the argument in 6.23 we can conclude that G0
X = S.

To conclude that X is a stable point we need that GX/Z is finite where

Z = ∩Y∈gnGY. We have that GX/S is finite. Because S ⊆ Z(G)0, and

Z(G)0 is the kernel of the adjoint representation, we have S ⊆ Z. Since

GX/Z is a quotient of GX/S, it follows that GX/Z is also finite.
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Conversely, suppose there is some non-central λ ∈ Y (G) with a(X) ⊆

pλ = Lie(Pλ), for Pλ a proper parabolic subgroup of G. Let X =

(X1, . . . , Xn), and set Y = (limx→0 Ad(λ(x))X1, . . . , limx→0 Ad(λ(x))Xn).

Then, we have λ(k∗) ⊆ G0
Y, and hence λ ∈ Y (GY).

Since Pλ is proper in G, so Lλ is also proper in G, and hence lλ = Lie(Lλ)

is proper in g. We have that lλ consists of the elements of g which are fixed

by Ad(λ(x)) for all x ∈ k∗. As Ad(λ(k∗)) does not fix all of g, λ(k∗) is not

contained in Z.

Hence, Z0 ( G0
Y. These two groups must therefore have different di-

mensions, because they are connected, and so G0
Y/Z

0 is infinite. Thus Y is

not a stable point.

If Y ∈ Ad(G)X, then the quotient GX/Z is also infinite since GX and

GY are conjugate in G and, as before, X is not a stable point. Now, suppose

Y /∈ Ad(G)X, then the orbit of X is not closed because it does not contain

the limit Y = limx→0 Ad(λ(x))X. Again, we conclude that X is not a stable

point of gn.

We state two preliminary results of Richardson before giving the proof

of Theorem 11.16. The first is a special case of [43, Theorem C], and the

second is [42, Lemma 16.6].

Lemma 11.18. Let S be a linearly reductive subgroup of G and let X ∈

cgn(S). Then Ad(G)X is closed in gn if and only if Ad(CG(S))X is closed

in cgn(S).

Lemma 11.19. Let X ∈ gn and S be a maximal torus of GX. Then Ad(G)X

is closed in gn if and only if X is a stable point for the action of CG(S) on

cgn(S).

We now prove Theorem 11.16.
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Proof. Let S be a maximal torus of GX. Suppose that a(X) is strongly

reductive in G. Since X ∈ cg(S)n we have a(X) ⊆ cg(S) and by [43, Lemma

4.1] cg(S) = Lie(CG(S)). Hence, a(X) ⊆ Lie(CG(S)). As a(X) is strongly

reductive in G, it is not contained in the Lie algebra of any proper parabolic

subgroup of CG(S). By Proposition 11.17 applied to CG(S), we have X

is a stable point for the action of CG(S) on cg(S)n. Therefore, the orbit

Ad(CG(S))X is closed in cg(S)n = cgn(S), and hence by Lemma 11.18,

Ad(G)X is closed in gn.

For the converse, suppose that Ad(G)X is closed in gn. Then, by Lemma

11.19, X is a stable point for the action of CG(S) on cgn(S) = cg(S)n. Hence,

by Proposition 11.17, a(X) is not contained in the Lie algebra of any proper

parabolic subgroup of CG(S), in other words, a(X) is strongly reductive in

G.

The three results that follow are corollaries of the preceding results,

and constitute analogues in the Lie algebra setting of [1, Theorem 3.1], [1,

Corollary 3.5] and [1, Corollary 3.21], respectively.

Corollary 11.20. A Lie subalgebra h of g is G-completely reducible if and

only if it is strongly reductive in G.

Remark 11.21. In the algebraic group setting, the equivalence between G-

complete reducibility and strong reductivity in G follows from group the-

oretic methods. The equivalence leads to the ‘geometric approach’ to G-

complete reducibility developed by Bate, Martin and Röhrle, described in

[1]. This constitutes a new method that is available to tackle problems in

G-complete reducibility and gives rise to a number of results, such as the

fact in [1, Corollary 3.7] which links G-completely reducible subgroups of G

to closed G-orbits in Gn.

In the Lie algebra setting, we require Theorem 11.16 in order to show

that the equivalence between G-complete reducibility and strong reductivity
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holds. We note that Theorem 11.16 follows from the geometric methods of

Richardson [42].

Corollary 11.22. A Lie subalgebra h of g is G-completely reducible if and

only if it is CG(S)-irreducible where S is a maximal torus of CG(h).

Recall that a subgroup H of G is called linearly reductive if all of its

representations are semisimple.

Corollary 11.23. Let S be a linearly reductive subgroup of G and let X ∈

cgn(S). Then, a(X) is G-completely reducible if and only if it is CG(S)-

completely reducible.

Proof. By Lemma 11.18, Ad(G)X is closed in gn if and only if Ad(CG(S))X

is closed in cgn(S). Thus, since cgn(S) = cg(S)n we see that a(X) is G-cr if

and only if it is CG(S)-cr.

The reverse direction of the following proposition provides a condition

for the converse of Theorem 11.9 (2) to hold.

Proposition 11.24. Let H be a closed subgroup of G such that H is con-

tained in CG(S) where S is a maximal torus of CG(h). Then H is G-

completely reducible if and only if h is G-completely reducible.

Proof. Suppose that H is G-cr. Then, by Theorem 11.9, h is G-cr.

For the converse, suppose h is G-cr. By Corollary 11.22, this is true

if and only if h is CG(S)-ir, where S is a maximal torus of CG(h). Since

H ⊆ CG(S) by hypothesis, Remark 11.7 gives that H is CG(S)-ir. Since

S ⊆ CG(H) we have that S is a maximal torus of CG(H), and so H is G-cr,

giving the result.

Remark 11.25. LetG be a reductive group, and let g = Lie(G). Suppose that

H is a subgroup of G, and let S be a torus in CG(H). Denote Lie(H) =
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h. Then by [6, §8.17] we have that h ⊆ cg(S) = {X ∈ g | Ad(s)X =

X for all s ∈ S}. That is S ⊆ CG(H) implies S ⊆ CG(h).

Remark 11.26. We can replace the condition that H is contained in CG(S)

where S is a maximal torus of CG(h) with the stronger condition that

CG(H) = CG(h) in Proposition 11.24. This is because if S is a maximal

torus of CG(h), and CG(H) = CG(h), then H ⊆ CG(S).

Example 11.27. Let H be a connected subgroup of G that is not G-

completely reducible, such that Lie(H) is G-completely reducible. For in-

stance we may take for H and G the setup described in Example 11.14. Let

S be a maximal torus of CG(H) contained in a maximal torus T of CG(h).

Then we may conclude that:

(1) S is properly contained in T , and

(2) H is not contained in the normaliser of T .

The following result follows immediately from [42, 16.8] together with

Theorem 11.9.

Lemma 11.28. Let G be a reductive algebraic group, and let S be a linearly

reductive group that acts on G. Let g = LieG, and let X = (X1, . . . , Xn) ∈

cgn(S) generate the Lie algebra h of g. Then h is G-completely reducible if,

and only if, h is CG(S)-completely reducible.

Remark 11.29. Suppose that char(k) 6= 2, and let V be an n-dimensional vec-

tor space over k. Let τ : GL(V )→ GL(V ) be a non-trivial graph automor-

phism. Then τ is of the form τ(g) = A(gT )−1A−1, where by a suitable choice

of basis for V , A has the anti-diagonal form A =

 0 · · · εn
... �

...
ε1 · · · 0

 , εi = ±1,

and A is either skew symmetric or symmetric. In either case τ2 = e.

By [51, §11], if A is skew symmetric, then n is even, and GL(V )τ =

Sp(V ), and if A is symmetric, then (GL(V )τ )0 = SO(V ).
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Let S = 〈τ〉 be the subgroup of Aut(GL(V )) generated by the automor-

phism τ . Then CGL(V )(S) = {g ∈ GL(V ) | τ(g) = g} = GL(V )τ .

Since |S| does not divide char(k), Maschke’s Theorem gives that all of its

rational representations are semisimple. Therefore S is linearly reductive.

We apply Lemma 11.28 with G = GL(V ), and S as above. This gives

that a subalgebra h of Lie(GL(V )τ ) is GL(V )τ -completely reducible if and

only if h is GL(V )-completely reducible, and, by Remark 11.4, h is GL(V )τ -

completely reducible if and only h is (GL(V )τ )0-completely reducible.

Therefore, by Remark 11.5, when char(k) 6= 2 we have h is Sp(V ) (resp.

SO(V ))-completely reducible if and only if V is a semisimple h-module.

The next proposition shows that for a subgroup K of G, if CG(k) and

CG(K) share a common maximal torus, then there is a certain class of

Levi subgroups of G for which the two implications of [37, Lemma 2] are

equivalent. The proof below was provided by Michael Bate and Tim Burness.

Proposition 11.30. Let K be a subgroup of G such that CG(k) and CG(K)

contain a common maximal torus T . Let H = CG(S), for S ⊆ T . Then the

following are equivalent:

(1) K is G-completely reducible,

(2) K is H-completely reducible,

(3) k is G-completely reducible, and

(4) k is H-completely reducible.

Proof. Let T be a common maximal torus of both CG(k) and CG(K), and

let S ⊆ T be a torus of CG(K).

We have that (1) and (2) are equivalent by [1, Corollary 3.22]. The

equivalence between (1) and (3) is given by Proposition 11.24 applied to

G. Finally, since T ⊆ H, we have that T is a common maximal torus of
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CH(K) and CH(k), and so the equivalence between (2) and (4) is given by

Proposition 11.24.

11.2 Separability

In this section we introduce the notion of separability for Lie algebras.

An extension E of a field F , denoted E ⊇ F , is said to be separable if

for each x ∈ E, the minimal polynomial of x over F is a separable polynomial

(i.e. has distinct roots in E).

Consider the morphism φ : X → Y of irreducible varieties. As discussed

in §5.2, the comorphism φ∗ : k[Y ]→ k[X] induces an embedding of φ∗(k(Y ))

in k(X). If k(X) ⊇ φ∗(k(Y )) is a separable extension of fields, then φ is

said to be separable.

Suppose that H is topologically generated by the elements x1, . . . , xn in

G, and let x = (x1, . . . , xn) ∈ Gn. It is shown in [6, Proposition 6.7] that

the orbit map µ : G→ G ·x is separable if and only if (∂eµ) : g→ Tx(G ·x),

the differential map of µ at e as introduced in §5.5, is a surjective map, and

if this occurs G · x is isomorphic to G/CG(x).

By [6, Proposition 6.7], for any subgroup H of G we have Lie(CG(H)) ⊆

cg(H). The map (∂eµ) is surjective if and only if we have equality.

In the next definition we follow [1, §3.5], where the various centralisers

are defined in Notation 11.8.

Definition 11.31. Let H be a closed subgroup of G.

(1) If Lie(CG(H)) = cg(H), then H is said to be separable in G.

(2) If Lie(CG(h)) = cg(h), then h is said to be separable in g.

Lemma 11.32. Let H be a closed separable subgroup of G such that g

is semisimple as an H-module. Then cg(H) is G-completely reducible. In

particular, if H is a linearly reductive subgroup of G, then cg(H) is G-

completely reducible.
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Proof. By [1, Theorem 3.46], H is G-cr and so, by [1, Corollary 3.17], we

have CG(H) is G-cr. By Theorem 11.9, and since H is separable in G, we

get that Lie(CG(H)) = cg(H) is G-cr.

The following is an analogue of [1, Lemma 2.17]. The proof translates

over from the group case without major changes.

Lemma 11.33. Let X = (X1, . . . , Xn) ∈ gn. Then a(X) is strongly re-

ductive in G if and only if for every cocharacter λ of G with a(X) ⊆

pλ(= Lie(Pλ)), there exists some g ∈ G such that cλ(Y ) = Ad(g)Y for

all Y ∈ a(X).

The following lemma is standard, and can be found, for example, in [10,

§1.5] or [48, Corollary 5.3.3.].

Lemma 11.34. Let G act transitively on an algebraic variety X, and let

x ∈ X. Then dim(G · x) = dim(G)− dim(StabG(x)). In particular, for any

X ∈ gn, we have that dim(Ad(G)X) = dim(G)− dim(CG(a(X))).

The following is an analogue of [1, Theorem 3.46], and provides a crite-

rion for h to be G-completely reducible. We sketch the proof here, and note

that is closely resembles the argument in the group case.

Theorem 11.35. Let h be separable in g. If g is semisimple as an h-module,

then h is G-completely reducible.

Proof. We sketch the proof of this result. Suppose that h is not G-cr. Choose

X = (X1, . . . , Xn) to be a generating tuple of h in gn in that h = a(X). Then,

by Theorem 11.9, the orbit Ad(G)X is not closed in gn. By Theorem 6.20,

there exists a cocharacter λ of G such that limx→0 Ad(λ(x))X =: X′ exists,

and the orbit Ad(G)X′ is closed.

Let h′ = a(X′). As in the proof of [1, Theorem 3.46], we can show that

dim(Ad(G)X′) < dim(Ad(G)X), and dim cg(h
′) > dim cg(h).
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Let m = ad(h), and m′ = ad(h′). Then m′ = cad ◦λ(m). Since g is

h-semisimple, m is GL(g)-cr. Therefore, by Theorem 11.16, m is strongly

reductive in GL(g), and hence, by Lemma 11.33, and since h ⊆ pλ, we have

m ⊆ ad(pλ). Hence, m′ = cad ◦λ(m) = Ad(g)m for some g ∈ GL(g). That is,

m′ is GL(g)-conjugate to m.

We have cg(h) (resp. cg(h
′)) is the set of fixed points of m (resp. m′) in g,

and so cg(h) is GL(g)-conjugate to cg(h
′). Therefore, dim cg(h) = dim cg(h

′)

which is a contradiction, and hence h is G-cr.

Recall that the prime p is said to be good for G is p does not divide any

of the coefficients in the expressions obtained when each root in the root

system of G is written as a sum of simple roots. Then, p is said to be very

good for G if p is good for G and p does not divide n + 1 for any of the

simple components of type An that occur in the decomposition of G into its

simple factors.

The following is an analogue of [4, Theorem 1.7], and follows immediately

from [4, Theorem 1.2] and Theorem 11.35.

Theorem 11.36. Let G be a connected reductive group, and suppose that

char(k) is very good for G. Let h be a Lie subalgebra of g such that g is

semisimple as an h-module. Then h is G-completely reducible.

11.3 Ad-Invariant Lie subalgebras

We recall some results from geometric invariant theory. Suppose V is an

affine G-variety, and suppose that v ∈ V . Let S be a closed G-stable sub-

variety of V that does not contain v, but such that S meets the closure of

G ·v. We let |V, v|S denote the set of one-parameter subgroups λ ∈ Y (G) for

which limx→0 λ(x) ·v exists and lies in S. We call a one-parameter subgroup

λ ∈ Y (G) indivisible if λ = nµ for some one-parameter subgroup µ ∈ Y (G)

if and only if n = 1.
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Let W be the Weyl group of G, and ||−||W the W -invariant length func-

tion on Y (G), as described in §6.6. We are in the setting of Theorem 6.25.

Let ∆S,v denote the set of indivisible optimal cocharacters in |V, v|S . The

parabolic subgroup Pλ arising in this theorem is associated to an indivisible

optimal cocharacter λ in ∆S,v, and is determined uniquely by V, v and S.

We denote Pλ by PS,v, and we call PS,v optimal for v and S. Recall also

that, due to Lemma 6.27, we have gPS,vg
−1 = PS,g·v for all g ∈ G.

Notation 11.37. For V, S, v and PS,v as above, we denote Lie(PS,v) by pS,v.

Recall that G acts on g via the adjoint representation Ad, and we call

a Lie subalgebra h of g G-invariant if it is Ad(G)-invariant, that is if

Ad(g)h ⊆ h for all g ∈ G.

The following result uses the techniques of B. Martin [35] and McNinch

[37]. Note that the proof below bears many similarities to the proof of [35,

Theorem 2].

Theorem 11.38. Let H ⊆ G and suppose that h = Lie(H) is a G-completely

reducible Lie subalgebra of g. Then, any H-invariant Lie subalgebra of h is

G-completely reducible.

Proof. Let k be an H-invariant Lie subalgebra of h, and let K :=

(K1, . . . ,Km) be a generating tuple for k as a subalgebra of h. Suppose

that k is not G-cr. Then, by Theorem 11.9, Ad(G)K is not closed in gm.

By [39, No.8], the closure of this orbit contains a unique closed orbit, O

say, and K /∈ O. Therefore, gm, O and K satisfy the hypothesis of Theo-

rem 6.25. Therefore, there exists a cocharacter λ of G contained in |gm,K|.

Furthermore, the limit limx→0 Ad(λ(x))K exists, and therefore the limit

limx→0 Ad(λ(x))Ki exists for each i, and so k ⊆ pλ = pO,K ( g, where the

last containment is proper, because pO,K = Lie(PO,K), and PO,K 6= G.

Consider the proper parabolic subgroup PO,K of G. We apply Lemma

6.27, where the action of G on gn is the adjoint action Ad, to get gPO,Kg
−1 =
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PO,Ad(g)K for all g ∈ G. By hypothesis we have that Ad(h)k = k for any

h ∈ H, hence K′ := Ad(h)K is another generating tuple of k. Hence, we

may apply [37, Corollary 7] to K′, for any h ∈ H, to get that |gn,K| =

|gn,K′|, and αO,K(λ) = αO,K′(λ) (where αO,K(λ) is defined in §6.6), for

all λ ∈ |O,K|. Therefore ∆O,K = ∆O,K′ and hence PO,K = PO,K′ . Thus,

hPO,Kh
−1 = PO,Ad(h)K = PO,K′ = PO,K. Since PO,K is its own normaliser,

H ⊆ PO,K. We conclude that h ⊆ pO,K.

Let (H1, . . . ,Hl) be a generating tuple for h. Define the tuple H :=

(H1, . . . ,Hl,K1, . . . ,Km). The limit limx→0 Ad(λ(x))H exists in gm+l since

h ⊆ pO,k. However, this limit is not in Ad(G)H, since limx→0 Ad(λ(x))K /∈

Ad(G)K. Therefore, the orbit Ad(G)H is not closed, so Theorem 11.9

implies that h is not G-cr, which is a contradiction.

Corollary 11.39. Suppose that H is a subgroup of G such that h is G-

invariant and H is contained in CG(S) for S a maximal torus of CG(h).

Then H is G-completely reducible.

Proof. If h is G-invariant, then by Theorem 11.38 with H = G, h is G-cr.

Hence, by Corollary 11.24, H is G-cr.

11.4 Ideals in g

Let G be a simple algebraic group, with Lie algebra g. In our discussion of

ideals in g we chiefly follow the notation of [21]. The reader should be aware

that many authors use the symbols e, f, h as generating elements of certain

Lie algebras, however the notation of [21] is unrelated. A complete list of

G-invariant ideals of g is given in [21, Table 1].

In characteristic 2, if G is of type A1, B2 or Cn, for any n, then there

are ideals in g that are not G-invariant, which we describe in the following

discussion.
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Let T be a maximal torus of G, and Φ be the root system of G with

respect to the lattice X(T ), see §5.11. The Lie algebra g of G can be realised

as g = t⊕
∐
α∈Φ gα, where the gα are the root spaces and t is the 0-weight

space. Let e be the subspace of g generated by the gα. Let ΦS be the

subset of Φ consisting of all the short roots and let eS be the subspace of

g generated by the gα for α ∈ ΦS . Similarly let ΦL be the subset of Φ

consisting of all the long roots and let eL be the subspace of g generated by

the gα for α ∈ ΦL.

For G of type A1 where p = 2, the ideals {t + kX} and {kX} for each

0 6= X ∈ e of g, are not G-invariant. For G of type B2 or Cn where p = 2, we

have that any ideal h of g for which [g, g] ( h 6= g is not G-invariant. For G

of type Cn where p = 2, we have that the ideals eS + f + tΦ with 0 6= f ( eL

are not G-invariant, where tΦ is a certain subalgebra of t, as defined in [21,

§1].

In characteristic p, where p ≥ 3, every ideal of g is G-invariant. Without

restriction on p, if G is a simple group of exceptional type, then any ideal

in g is G-invariant.

We may now present the following corollary, which is an analogue in the

Lie algebra setting of [35, Theorem 2].

Corollary 11.40. Let G be a simple algebraic group over k. Let m be

an ideal in g. If m is G-invariant, then m is G-completely reducible. In

particular, if char(k) ≥ 3, then any ideal in g is G-completely reducible.

Proof. Apply Theorem 11.38 with H = G, noting that, when char(k) ≥ 3,

any ideal in g is G-invariant, see [21, Table 1].

Example 11.41. Let G be a simple algebraic group over a field k of charac-

teristic 2. Further, suppose that G is not of type A1, B2 or Cn, for any n.

Then, any ideal of g is G-invariant, by [21, Table 1]. Hence, in this case,

any ideal of g is G-completely reducible.
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Example 11.42. Let G be a simple algebraic group G over k. By [21, Table

1], the ideal [g, g] of g is G-invariant. Therefore, [g, g] is G-cr.

Corollary 11.43. Let G be a simple algebraic group over k. Let M be a

subgroup of G for which m is a G-invariant ideal in g, and suppose that

M is contained in CG(S) for S a maximal torus of CG(m). Then M is

G-completely reducible.

Proof. Since m is a G-invariant ideal in g, Corollary 11.40 gives that m is

G-cr. By Proposition 11.24, M is G-cr.

Example 11.44. According to [21, Table 1], for G of type B2, Cn for n even

and for char(k) = 2, there exists an ideal i = eS + hS which is G-invariant,

where hS is a certain subalgebra generated by semisimple elements. There-

fore, by Corollary 11.40 i is G-completely reducible.
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Part IV

Conclusion
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12 Conclusion and Topics for Further Study

Let G be a reductive algebraic group over a field k = Fq where Fq is the

finite field of q = pa elements, for a prime p and positive integer a. Let σ be

a Frobenius morphism of G, and let H be a closed σ-stable subgroup of G.

In Part I of this thesis we described the structure of reductive alge-

braic groups and provided some background on the theory of G-complete

reducibility, that was introduced by Serre in [46], and later developed by

Bate, Martin and Röhrle in [1]. Suppose that H is topologically generated

by the elements h1, . . . , hn. We described how the group-theoretic notion

of G-complete reducibility is equivalent to Richardson’s notion of strong re-

ductivity in G, which is a geometric notion in that it classifies the closed

G-orbits in Gn. This link between geometry and group theory enables the

geometric theory of Richardson to be used to study G-complete reducibility.

In Part II we introduced the notion of (G, σ)-complete reducibility as an

analogue in the setting of σ-stability of the notion of G-complete reducibility.

Our first important result, Theorem 8.6, is to extend part of [33, Theorem

9] to show that a σ-stable G-completely reducible subgroup of G is (G, σ)-

completely reducible.

The main result in Part II of this thesis is Theorem 9.15, in which we

demonstrated that a finite σ-stable subgroup F of G is G-completely re-

ducible if and only if it is (G, σ)-completely reducible. This is an attractive

result since neither of the implications in this equivalence are obvious. It is

also a significant generalisation of [31, Proposition 2.2] because we do not

impose any restrictions on the type of Frobenius morphism, and we allow

G to be a reductive group rather than simple. In addition, we show that if

F is not G-completely reducible then it is contained in a σ-stable parabolic

subgroup P of G, and in no Levi subgroup of P . This, in turn, is a signif-

icant improvement of the result of [18], and of [1, Theorem 5.8] in the case
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when σ is a standard Frobenius morphism. Finally, in Theorem 10.6 we see

that Theorem 9.15 can be extended to the case F is not necessarily finite.

In [31], Liebeck, Martin and Shalev used what is reproduced in this

thesis as Proposition 9.1 to investigate the number of conjugacy classes of

maximal subgroups of simple groups. Our Proposition 9.14 is an extension

of this result from simple algebraic groups to reductive algebraic groups,

and it may be possible to infer information about the number of conjugacy

classes of maximal subgroups of the reductive groups we consider using the

methods of [31].

We conclude Part II by discussing an analogue in the setting of σ-stability

of the notion of strong reductivity in G. For a closed σ-stable subgroup H

of G, we defined the notion of strong σ-reductivity in G. In Theorem 10.25

we proved that H is (G, σ)-completely reducible if and only if H is strongly

σ-reductive in G.

In Part III we discuss the notion of G-complete reducibility for Lie sub-

algebras of Lie(G), as introduced by McNinch in [37]. In Proposition 11.24

we provided conditions under which a subgroup of G is G-completely re-

ducible if and only if its Lie algebra is. The equivalence is non-trivial as

there exist non-trivial examples of non-G-completely reducible subgroups of

G whose Lie algebras are G-completely reducible. Thus, we have discovered

an interesting connection between the behaviour a group and its Lie algebra.

We proceed to study ideals in g, and we show that any G-invariant

ideal in g is G-completely reducible, see Corollary 11.40. This result is

therefore an analogue in the Lie algebra setting of Martin’s result about

normal subgroups given in [35], since normal subgroups of G and ideals in

the Lie algebra g are closely related, in fact in characteristic zero, they are in

one-to-one correspondence. Corollary 11.40 does not, however, talk about

other subalgebras of g, and their G-complete reducibility. The question

of how other subalgebras behave, with regard to G-complete reducibility
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remains an open question worthy of further study. One approach to tackle

this could be to investigate under what conditions a closed subgroup H of

G is contained in CG(S), where S is a maximal torus of CG(Lie(H)). This

is a sufficient condition for the equivalence in Proposition 11.24 to hold.

For a simple group G, it would be interesting to explore if a non-G-

completely reducible subgroup of G gives rise to an Ad(G)-invariant Lie

subalgebra of Lie(G), as listed in [21]. In this case, by Corollary 11.40, we

know that such a Lie subalgebra is G-completely reducible.

In order to identify non-normal subgroups of a simple algebraic group G,

one place to look is for non-G-completely reducible subgroups (for any nor-

mal subgroup of G is G-completely reducible, see [35, Theorem 2]). Consider

the situation described in [1, Example 3.45]. Then, for Char(k) = 2, and

n ≥ 4 is even, we have that Spn(k) is not Sp2n(k)-completely reducible, and

thus is not a normal subgroup in Sp2n(k). However, in this case there are no

non-Ad(G)-invariant ideals in Lie(Sp2n(k)). Stewart has surveyed the non-

G-completely reducible subgroups of exceptional groups, see [52] for details.

Again, in these cases there are no non-Ad(G)-invariant ideals in Lie(G).

Such subgroups may give rise to new and interesting examples of non-G-

completely reducible subgroups of G, whose Lie algebras are G-completely

reducible. The question is, are the Lie algebras of these non-G-completely

reducible subgroups of G ideals in Lie(G)?

It would be interesting to extend Corollary 11.40 to the case where G

is semisimple. In [21, §3] Hogeweij discusses the situation of ideals in the

Lie algebras of semisimple groups. This direction of study could yield a

significant generalisation of the results of §11.4 from the case where G is

simple, to the case of G semisimple.
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[8] Borel, A., Tits. J.: Groupes Réductifs, Inst. Hautes Études Sci.

Publ. Math., 27, p55–150, (1965).

168



[9] Bourbaki, N.: Groupes et Algèbres de Lie, Ch. IV-VI, Hermann,
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