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In this paper we study grating-induced plasmon—plasmon coupling in photorefractive layered media using a weak-
coupling approximation. The method used is applicable to general layered structures that support both plasmonic
and optical modes, such as photorefractive liquid crystal cells. The approximate equations are accurate when
compared to S matrix approaches and capture the plasmon propagation at the surface of the device along with
the optical modes guided by the layered geometry underneath. Analysis of the resulting model provides insight
into the effect of the control parameters in this device and the means to optimize the diffraction efficiency.
For example, by considering the case in which the plasmon is spectrally separated from the guided modes it
is possible to determine the optimum gold thickness and grating strength required to obtain the strongest possible

diffraction. © 2013 Optical Society of America
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1. INTRODUCTION

A surface plasmon polariton (SPP) is a coupled oscillation be-
tween an electromagnetic field and the electron cloud at the
surface of ametal [1]. SPPs have a wide variety of applications
in both industry and academia. These include resonance
sensors [2], enhanced spectroscopy techniques capable of
detecting single molecules [3], waveguides [4], biosensors
[5,6], and subwavelength optical applications such as nano-
scale lithography [7].

SPPs have been widely studied in layered media [8-10].
However, modeling of layered devices is restricted to large
scale numerical simulations [11,12]. These studies consider
each layer as homogeneous or periodically modulated and
calculate the reflection spectrum of the device using transmis-
sion or scattering matrices [13-16]. This method can be ap-
plied to nonhomogenous materials by approximating them
as a large number of homogeneous layers.

Despite its frequent use, the scattering matrix method of
modeling layered media is computationally expensive for
highly nonhomogeneous media and does not easily allow the
dominant optical interactions to be isolated. One example of a
device for which this is the case is the hybrid photorefractive—
plasmonic liquid crystal (LC) cell [17,18]. This device provides
the means to manipulate and enhance SPP propagation. It
consists of a thin gold layer, roughly 40 nm thick, adjacent
to a LC cell. An SPP can be excited at the LC-Au interface
via a high refractive index prism on the other side of the
Aulayer [19]. The SPP can then be manipulated by application
of an electric field that reorients the LC near to the surface.
Coupling between SPP is achieved by applying a periodically
modulated voltage to the LC that produces a refractive index
grating [20].

0740-3224/13/082090-10$15.00/0

(240.6680) Surface plasmons; (050.1950) Diffraction gratings; (000.3860) Mathematical

The response of a SPP at the interface between a gold layer
and a LC is well understood [21]. However, due to the com-
plexity of the device and the waveguide properties of the LC
cell, the number of possible mode couplings in the device is
relatively high. This makes it nearly impossible to isolate the
dominant mechanisms and control parameters for SPP—SPP
coupling using scattering matrix techniques.

In this paper we develop an approximation method that can
be used to study the transfer of energy into and between dif-
ferent SPP modes. We consider the device as a set of different
waveguides. Each waveguide is simple enough that analytic
expressions for their modes can be obtained [22]. The inter-
action between the modes can then be considered as a per-
turbation. This method, which is similar to the tight binding
approximation used in atomic physics [23], allows us to isolate
the dominant interactions in the device and, hence, provides
the means to increase efficiency without the need for a large
scan of the parameter space. The model captures the salient
features of the reflection spectrum without the need, for ex-
ample, to consider the LC inhomogeneity and anisotropy.

We use the derived model to study the transfer of energy
between SPP and guided modes in an example system that
is comparable to a hybrid photorefractive—plasmonic LC cell.
We calculate the response of the system to several control
parameters including the gold thickness, grating wavenumber,
and the grating strength. We also consider the role of the
guided modes in the response of the system and how their
effects can be manipulated to increase efficiency.

The model derived here is of wide general use and can be
applied to understand the mode-mode interactions or to cal-
culate the reflection spectrum of any layered system in which
the modes can be easily approximated. Such devices include
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metallic grating couplers [24] and planar-waveguide Bragg
sensors [6]. The theory can also be applied to the study of non-
linear surfaces waves excited at the interface between a metal
layer and a photorefractive crystal [25].

As the model derived here is an approximate model, it
offers a significant reduction in computation time. Typical
simulation times for this model are reduced by a factor of
100 when compared to a scattering matrix code. However,
the key advantage to the method described in this paper is
that, as a semi-analytic method, it offers significant insight into
the underlying coupling mechanisms. Specifically, it allows
the individual coupling coefficients that describe the inter-
actions between the SPP and the guided modes to be isolated
and quantified.

This paper is arranged as follows. In Section 2 we derive
equations describing the interactions between the various op-
tical fields and the refractive index grating. In Section 3 we
analyze these equations to determine the key control param-
eters used to manipulate SPP in a layered device. Finally, our
results are summarized in Section 4.

2. THEORY

In order to find the reflection spectrum of a photorefractive
layered device, we make some simplifying assumptions. We
assume that the device is planar and choose a coordinate sys-
tem such that (see Fig. 1) the x direction is into the device,
while the z direction is parallel to the input facet and in
the direction of the SPP-coupling grating. The system is homo-
geneous in the y direction. The layers consist of a semi-infinite
prism in the region x < 0 that represents the prism in a stan-
dard Kretschmann configuration [19]. Adjacent to the prism
there is a gold layer that supports the SPPs followed by a
range of dielectric layers, the last one of which is also
semi-infinite. In this paper we consider the special cases of
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Fig. 1. Device schematic (bottom) showing its decoupled compo-
nents (top) as specified in Egs. (2). The ellipses represent the LC ori-
entation in a photorefractive LC cell. They illustrate how the idealised
dielectric layer geometry approximates the LC device.
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one and three dielectric layers corresponding to SPPs in
the absence or presence of waveguide modes. We identify
these layers as “cladding” and “core,” as illustrated in Fig. 1.

Such a geometry can approximate not just a gold-coated
isotropic dielectric waveguide, it is also applicable to hybrid
photorefractive—plasmonic LC cells. In this case there are sev-
eral additional assumptions made. This choice of geometry
neglects the alignment layers and the LC anisotropy and
inhomogeneity. As the alignment layers are thin, typically
<100 nm, it is expected that neglecting them will not signifi-
cantly impact the reflection spectrum of the device. The
anisotropy and inhomogeneity of the LC is small relative to
the isotropic part of the refractive index and, in principle,
can be added as a perturbation. However, the effects of this
perturbation are not expected to alter the reflection spectrum
qualitatively.

A. Decoupled Waveguide

We consider time harmonic electric and magnetic fields and
introduce the scaling £ = Ee'/, /&5, H = He ™"/, /g for the
electric and magnetic fields, respectively, and r = kqr, where
uo and ¢, are the permeability and permittivity of free space,
respectively, ky = 2z/1, and 1 is the free space wavelength.
Using this scaling Maxwell’s equations can be written as

D —i\[(E
(ie D)(’H):O’ M

where D is the curl operator such that Du=V xu for a
generic vector u.

In general we must require that Eq. (1) is satisfied every-
where. However, in order to proceed analytically we first con-
sider the waveguide geometry as physically separate from
the SPP interface. We denote the waveguide geometry Q,,, the
plasmon interface €, and the free space interface €.
The composite geometry is their union, Q = Q,UQ,UQ
(see Fig. 1).

The dielectric functions in each medium can be written as

e x<érefy
€s—{€d x> E,req,’ (2a)

€ X< str € Qw
€w =1 €0 &2 <X <E3r €LY, (2b)
€a &3 <xref,

Q
€f _ {€gl xr < O,r (S i (ZC)

€m O<x,rle’

where ¢,, = €, + i€;, €, and ¢; are the real and imaginary parts
of the gold dielectric constant, ¢ is the dielectric constant in
the cladding, e, the dielectric constant in the core, and ey is
the dielectric constant in the glass. We also define L,, = &,
Ly =& - &, and L., = & - & for the thickness of the gold,
cladding and core respectively. We consider optical and
SPP modes that are bound in the x direction. Hence, we write
a general expression for modes that can propagate in any di-
rection in the y, 2 plane. We denote this propagation direction
with the unit vector &, which is restricted to the y, 2 plane. We
also define a vector 9 | , a unit vector that is also restricted to
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the y, 2 plane and is orthogonal to ». Using this notation the
transverse magnetic solution to Maxwell’s equations local to
the plasmon interface is

H = AH(x)es7, reQ,, 3

where

ﬁleﬂsl(x’fl) x< gl
ﬁle’ﬂsz(x’él) x> &’

Ho(r) = { @

with corresponding electric field E; calculated using Eq. (1).
Here, A, is the mode amplitude, and the SPP effective index
and decay constants are given by [1]

N = €r€el ﬁ _ —€r€y _ —€cifel
G ’ sl — s 2 = —
€ T €ql € + €q €+ €q

5)
The solutions in the waveguide are
N .
Hw = ZAqu(x)emqﬁr’ re Qwv (6)
q=0

where n, are the effective indices of the guided modes calcu-
lated using the Cauchy integral method [26-28] and A, are the
mode amplitudes. The fundamental mode is even and corre-
sponds to ¢ = 0. The modes with even indices have a mag-
netic field of

D, cos [L‘““] e x < &,

p
H,={d) cos[(x—"%zﬂ)yq], & <x <&, (M

by cos[%]e‘(”“f“”% & <,

where 7, = /e, — 12 and B, = \/nZ —eq [22]. The modes

with odd indices have a magnetic field of

2
H =1, sin[(x—%)yq], & < <&, (8)

il sin[L—‘;“]e’(x"fﬁ)/’q, & <.

= sin[L““”]e(””‘@)/’a, x <&,

The guided modes have corresponding electric field profiles,
E,, calculated using Eq. (1). The solution at the interface is

Hy = er””fz. €))
where

D€+ AD e T 1 <0, rEeQy,

Hy = {Atﬁle‘/’fx x>0,reQy, aon

vr = \J€a — 1}, fr = \/n} - €, and A, and A, are the ampli-
tudes of the reflected and transmitted fields. The free space
modes have corresponding electric field Ey, calculated using

Eq. (D).
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The waveguide modes are the standard odd and even
planar waveguide modes [22] that satisfy the orthogonality
condition

+o0
[ H - H,dx « 5, (11)

In order for our approximation to be valid, and that the device
may be decomposed into three separate regions, we also
require

+ o0
[ H - Hydw ~ O(). (12)

where 5 < 1, a = {s,f} for the SPP and free space fields,
respectively, f = {s, q} for the SPP and guided modes, respec-
tively, and a # f.

B. Coupled Waveguide

The undetermined amplitudes in Egs. (3), (6) and (10) are
found by requiring that Maxwell’s boundary conditions for
the tangential components of the electric and magnetic fields
are satisfied in terms of all the fields at x = 0. In order to
achieve this we need to consider the composite waveguide
structure and, hence, the interaction of all the modes.

AsQ, NQ, #0,Qr NQ # 0and Q; N Q, # 0 the solutions
[Egs. (3), (6), and (9)] will only be approximate solutions to
Eq. (1) for r € Q. We consider the intersection of the different
geometries as a perturbation that has the effect of coupling
the different fields. We also consider the effect of a weak re-
fractive index grating in the optical waveguide. The grating
vector is parallel to the surface of the waveguide. Therefore,
the effect of the grating is to diffract energy from the initial
excitations into a series of higher diffracted orders traveling
in different directions along the surface (see Fig. 2).

We write € = €; + n(e,e*s” + &je-*s7),r € Q, where the
superscript * denotes the complex conjugate, €; =
€ + & = €, + &, = ¢ + &, k, = J/A[e, cos(6,) + &, sin(6,)],
A is the grating spacing and 6, is the propagation angle of
the incoming field in the y, 2 plane with respect to the y axis.
The dielectric perturbations are
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Fig. 2. Phase matching diagram showing the possible couplings
between an incident field, with tangential wave vector n,é,, and all
possible guided and plasmonic modes. The grating vector k, is shown
in red and makes and angle 6, with the y axis. The region in which the
guided modes exist is shaded in blue.
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eg—-¢€ x<0

- €; 0<x< f 1
= 1

© €co 62 <X < 53 ’ ( 33)
0 otherwise
€g — €ql x <0

€w =\ €m — €cl 0<x< ‘fl s (lgb)
0 otherwise
€cl — €Em 51 <r< 52

= €co ~ €m §2<x<§3

€ = . 13c

4 €cl — €Em 53 <X ( )

otherwise

The grating may exist in both the core and cladding layers and
potentially have a different phase in each layer, as is the case
for photorefractive LC cells [29]. Therefore, we consider the
grating as having a component in the cladding layer nearest
the gold and a component in the core,

_ €ga E1<x <&
ERe . 14
eg {eg‘co 52 <x< 4:3 ( )

We note that a more complete description of the hybrid LC
photorefractive system could be made by incorporating the
LC anisotropy and inhomogeneity as part of the perturbation.
However, we do not do so, as the aim of this paper is to con-
sider the dominant effects present in the system while keeping
the model simple enough to gain a thorough understanding of
the system.

We now return to the boundary condition at x = 0. In gen-
eral, n; # ng # n, and we cannot meet the boundary condi-
tions for all n,. If this were the case, then it would be
impossible to couple into the guided and plasmonic modes
except for the special cases ny = n, or ny = n,.

To overcome this problem we assume that the surface plas-
mon and the guided modes all have a spatial dependence of

r

7 (M)
the form &
K™

where m denotes the diffracted order,
= nseé, + mky, and e, is a unit vector in the z direction.
The result of this assumption is that we cannot satisfy
Maxwell’s equations. However, if we assume that the error in-
duced by this assumption is small, it is possible to make
progress. Physically, this condition tells us that energy can
couple into the guided and plasmonic modes if the respective
effective indices are close enough to 7.

We consider the expansion & = &;+ n€; + O(%) and
H = Hy + nH; + O(%), where &, and H,, are the leading or-
der solutions to Maxwell’s equations that are determined up to
a constant amplitude [see Egs. (3), (6), and (9)]. We now con-
sider all diffracted orders of the incident field, the SPP and the
guided modes. Extending the solutions defined in Egs. (4), (7),
@, and (10), such that the propagation vector is defined by
kfm), we substitute

M = AH @) (15)
(m) - (m) gy(m) k("
My =Y APHY @)t (16)
q=1
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into Eq. (1) and retain terms O(#), which oscillate with spatial
dependence ei"-;M)". The result is a set of nonhomogeneous
equations for the first order correction to the electric and mag-
netic fields. By eliminating terms that exhibit linear growth
[21,30] we obtain an equation for the SPP coupling,

N
(g5 + Peond™ )AL + ko A+ ko gAL + 1o AP
q=0

N

+1 1 * -1 -1

Fasr AT Y e gAY 25 ATY 4 AT
q=0

N
+Y xiAlV =0, (17a)
q=0

and a set of equations for the coupling into the guided modes,

N
Ppﬁ}(ﬁm)Al(gm) + Kpngm) + szsAgn) + Z Kp.qA((;n) +Xp<sA§m+1)
q=0

N
+)(p,fA§m+1) + Z)(p,qA<(1m+1) _’_X;‘sAgm—l) _’_)(;ngm—l)
q=0

N
+Y A =0 (17b)
q=0

where on{™ = k| -n, and &ny" = k™| -n,, k™| =
[(mI/A)? + 2nym/A) sin(6,) +nZ]*2. The SPP power is

— ns(ﬂslecl + ﬁsZer)

P
° ﬂsl eclﬂSZ €y

. (18)

and P, is the power of the pth guided mode. For sufficiently
large waveguide cores, typically L., > eq/y, and Le > €cofrp,
this can be written as

o Tokeo (19)

€CO

Py

The coupling coefficients are given by the overlap of the fields
with the dielectric perturbation,

°° (m)  ga(m)
Kap = / é.Eq" - E;" da, (20)
Xap = / g B S dy, @1
—00

where a, f = {s, q.f} for the SPP, m-th guided mode and free
space field, respectively. Of specific interest is the coupling
coefficients relating to the SPP-SPP interaction via the refrac-
tive index grating

(ng + ﬂ§2)(l - 672ﬂ52Lc1)

.o — € 5
Xs.s g.cl 2ﬁsz€é
(ng + ﬂ§2)(1 - e‘zﬂscho)e—zﬂsZLcl
~ €gco — Ce)
ﬂsZecl

which we will refer to in the analysis of the mode interac-
tions. We now return to the source terms that drive these
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interactions. To determine the amplitude of the reflected field
we require that Maxwell’s boundary conditions are satisfied at
the glass-gold boundary, x = 0. Specifically, we write the
boundary conditions on the magnetic and electric fields as

N
(H)ger)AgrrL) +A§m) + Z <H)¢(]Wl) — 50m +A§Am), (23)
q=1
and
ﬂ(m) (m)
(E)AT LA 4 Z E){" =L (8o, - A", (24)

where (-) denotes the projection of the corresponding field at
x = 0 onto the interface. Equation (17), (23), and (24) are a
system of (M + 3)(2N + 1) linear equations, where M is the
number of guided modes and N is the number of diffracted
orders considered.

C. No Guided Modes

The first case we consider is that of a single cladding layer
device. This corresponds to a photorefractive LC cell that
is aligned homeotropically on each surface. The result of this
alignment is that there is no waveguide region for the guided
modes and any grating induced in the LC will extend into
the bulk.

If this is the case then, in the absence of the grating, we
have a standard Kretschmann configuration [19]. In this case
the geometry is simple enough that the reflection spectrum
can be derived exactly. This allows us to verify that our model
predicts the correct spectrum qualitatively. Here, Egs. (17),
(23), and (24) reduce to a system of three equations for the
unknown amplitudes Ay, 4;, and A,,

11 1 A 1
1 —ip, WP A l=11]. (25)
0 st 'le'sg + Sns AS 0

where A = ePalwAy, ng = Pongebla, & = ik, ePalm,

Br = -Breghrr(en)), and By = —(Baeafrs(en)). Solving
Eq. (25) we obtain the reflected amplitude,
_ U+ ik +6n) — A= iBksy oo

(1 - if) (iR s + ong) — (1 + ifo)kes

The reflected intensity is given by I, = |A,|?, which has a
minimum at

_ 2 2 2.2 2

N Ks € Palan (2 1€q T Ms€m — €g€nm
’ﬂf ~ N + ] 5 |- (27)
Ps ﬁ51€g1 Ng€p, + Eglem

The addition of a grating to this geometry causes the fields to
be coupled through the coupling coefficients, y. There are two
possible coupling mechanisms that are distinct under the ap-
proximations used. The first is the coupling between the in-
coming field and the diffracted SPP, y,,. The second is the
coupling between the different SPP orders, y,,. Due to the
presence of the gold layer, the free space field is relatively
weak in the core and cladding layers. Therefore, y, >
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and we can neglect y, . This suggests that coupling is only
strong if the grating vectors are sufficient to match from
one SPP to another.

One of the key aims of this work is to obtain an estimate of
the coupling strength. We achieve this by considering a system
where the grating vector is sufficiently long that energy is
coupled only between three families of modes: the fundamen-
tal family of modes and the plus and minus one diffracted or-
ders. This case is analogous to the case where the grating
vector is short such that more modes can be present but
the coupling is also weak and very little energy is diffracted
beyond the first modes.

Using the fact that there are no guided modes, and there are
only three families of modes (in this case a family of modes
consists of a SPP and the free space field), we can invert the
linear system analytically. The linear system we must solve,
written in block matrix form, is

Ky x410 O Aq 0
xo+1 Ko xo10 Ay =S| (28)
0 Xo-1 K. A 0

where KyA, = S is the linear system we solved in the case
where no grating is present. The additional terms describe
the coupling into and out of the various diffracted orders.
Solving Eq. (28) we obtain

A, = P8, (292)

and
Ay = -K 0 P7'S, (29b)
where P = K - yo 1K 410 — 201K 1x_10- As we are able

to neglect the coupling induced by the free space field y, ;, we
find that all elements of the matrices yy 1K 111 X+10 and

Xo-1K j{ -1, are zero except for the bottom right entry. Hence,

the reflected field is
AP = &+ - (- ip D], (30)
and the diffracted fields are

~(0,£1) (0 +1 +1
A(il) _ 27’€0)(§s ) ( )(ﬁ( ) + ﬂ( ))
y =

K . (BD)
(@Fon + )G — D + D G + 1)
where 7, = ys &b,
1
fo= : (32)
0 — (1 "y (0))X (1 + ,L/](O)) (0)
X =ikss + %go) _ C(H) _ C(_l), 33)
i p(£D) ~(0 il) (il 0)
Y -1
LD = (@p Vs .

EOU+ D) - Gl + Ry L+ )

and the superscripts denote the diffracted order. Equation (31)
describes the diffracted energy into the plus or minus one
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diffracted orders and has been verified through comparison to
the solution of the full system.

Equations (30) and (31) are valid in the absence of guided
modes, while the more complex Egs. (17), (23), and (24) in-
clude the contribution to SPP-SPP coupling by the waveguide
modes. These equations will be analyzed in detail to provide
further insight into the coupling mechanisms in the next
section.

3. ANALYSIS

A. Introduction

In the previous section we have derived a set of equations that
describe the effect of the refractive index grating on SPP-SPP
coupling.

These equations are a powerful, if nontrivial, tool to analyze
the effect of the various system parameters on SPP-SPP cou-
pling. In this section we apply the coupling equations in the
absence of guided modes, Egs. (30) and (31), to study the ef-
fect on SPP-SPP coupling of three key parameters that can be
readily changed in experiments, namely the thickness of the
gold (Section 3.B), the grating wave number (Section 3.C)
and the coupling strength (Section 3.D). We include the effect
of the guided modes using Egs. (17), (23), and (24) in
Section 3.E.

The approximation Eq. (31) used in Sections 3.B-3.D is de-
rived in the limit of semi-infinite decoupled systems with only
the fundamental and the +1 diffracted orders. Here, we use it
to study finite, weakly coupled systems with potentially many
diffracted orders. Hence, we cannot expect the approximation
to give very accurate results. However, we show in this sec-
tion that not only does it capture the qualitative features of
these systems, but its predictions are in rough quantitative
agreement with full numerical simulations. In each case we
have checked that the difference between the asymptotic
and the “exact” results obtained using an S-matrix code is
not significantly large. A typical comparison of the two out-
puts is shown in Fig. 4. The parameter values used in all sim-
ulations are listed in Table 1.

B. Effect of Gold Thickness

The gold thickness has a two-sided effect on SPP-SPP cou-
pling. On the one hand, the maximum amplitude of the SPP
decays to zero for large gold thickness, because in this limit
the incident field has decayed to zero before it can couple to
the SPP. On the other hand, for very thin gold layers the SPP
becomes wider and less intense. In the limit of a vanishing
small gold layer the exciting field suffers very little absorption,
but the SPP is so delocalized that its maximum amplitude be-
comes negligible. This phenomenon is illustrated in Fig. 3,
where we have plotted the minimum of the reflected field
as a function of the gold thickness (solid line). This line
was obtained using Eq. (30) and shows that there is a clear
optimum thickness (approximately 38 nm) for coupling the
external field to the SPP.

The energy diffracted by the grating in the first diffracted
orders, computed using Eq. (31), follows the same trend of the
fundamental SPP (dashed and dash-dotted lines in Fig. 3).
This observation is to be expected on physical grounds
(the coupling happens to the right of the gold layer and its
physical mechanism is independent of the gold thickness).
It is also expected on mathematical grounds because the
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Table 1. Default Parameter Values Used
in All Figures®®

A=4x10%m L, =40x10°m €g.cl = €gco = 0.02
€q = 3.36 €q = 2.50 €co = 2.76

0, = O, 2 =850x 10 m ¢, = -31.14

€ =2.19

“A is the grating wavelength; L,, is the gold layer thickness; €gjclco] 1S the
amplitude of the dielectric grating in the cladding and core layer, respectively;
€glcleo 1S the dielectric permeability of the glass prism, cladding and core,
respectively; ¢, and ¢; are the real and imaginary parts of the dielectric
permeability of the gold; ¢, is the angle that the grating makes with the
y-axis; 60,, is the grating angle that perfectly matches the fundamental and
the +1 diffracted SPP for a given A; and 2 is the light wavelength.

"The dielectric permeability of the gold is taken from [31].

SPP-SPP coupling coefficient, Eq. (22), does not depend on
the gold thickness. The difference in intensity between the
+1 diffracted orders is due to the fact that the grating angle
0, is equal to 0,,, the grating angle that matches perfectly the
fundamental and the +1 SPP,

k
0,, = arcsin (y) . (35)

S

C. Effect of the Grating Wave Number
The key to understanding the effect of grating spacing is Fig. 2:
for large values of the grating spacing (small grating wave
numbers) the fundamental SPP is coupled equally between
the +1 modes. This is confirmed by Fig. 4, which plots the
maximum of the relative intensity of the first diffracted orders
as a function of the grating spacing. The predicted amplitudes
of the =1 modes converge to the same values for large grating
spacings. Moreover, in this parameter region there is signifi-
cant coupling to higher order modes; this is indicated by the
growing difference between asymptotic and S-matrix results.
As the grating spacing decreases, the amplitude of the two
first diffracted orders become very different. The +1 mode is,
in the case of Fig. 4, perfectly matched and its amplitude
grows, while the -1 is more and more mismatched and its
amplitude decreases.
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Fig. 3. Plot of the maximum of the relative intensity of the first
diffracted orders and of the minimum of the reflected intensity as
a function of the gold layer thickness. The curves are calculated using
Egs. (30) and (31) for the fundamental and first diffracted orders,
respectively. The cladding is semi-infinite (no guided modes). All
other parameters are as in Table 1.
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The small peak/trough visible in the numerical curves of
Fig. 4 at A ~ 1.1 pm is caused by the coupling of the surface
SPP localized at the interface between the gold and the clad-
ding (right SPPs) to those at the interface between the prism
and the gold layer (left SPPs). The effective refractive indices
of the two SPPs are given by 7, in Eq. (5), using ¢, and ey for
the left and right SPPs, respectively. A grating vector k, at an
angle 6, = 0,, from the vertical (see Fig. 2) can couple the
fundamental right SPP with the first diffracted order of the
left SPP if |k,| satisfies

2 _ 2
ng —ng

5 (36)

|kg|2 =

where ng and ny are the effective refractive indices of the right
and left SPPs, respectively. With the parameter values used in
Fig. 4, this coupling occurs at |k,| ~ 0.73, which correspond to
a grating wavelength A, ~ 1.17 pm and is in agreement with
the analytical estimate plotted in Fig. 4. The numerical esti-
mate of the grating spacing in Fig. 4 is 1.09 pm. The difference
between this value and that given by Eq. (36) may be attrib-
uted to the finite thickness of the gold: this has the effect of
decreasing n? - n? and, hence, |k/|. It is interesting to note
that the analytical approximation captures the presence of
this additional SPP, even though it is not explicitly included
in the derivation of the model. On the other hand, while
the numerical scattering code predicts a small dip in the in-
tensity of the +1 mode, the analytical approximation predicts
a small peak.

The results in Fig. 4 are directly comparable to our previ-
ously published experimental work on photorefractive—
plasmonic LC cells, see Fig. 9 of [18]. The approximation
described here captures the large grating pitch behavior of
the experimental system. However, in the experimental sys-
tem the diffraction efficiency is seen to drop off at grating
pitches below 4 pm. This is attributed to the stiffness of the
LC. As the LC physics are not included in the approximate
model, we do not capture this behavior and do not see a drop
off in relative intensity until a much smaller grating pitch.
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Fig. 4. Plot of the maximum of the intensity of the first diffracted
orders scaled to that of the input beam as a function of the grating
spacing A. The curves are computed numerically (N) or using the
analytical model (A) given by Eq. (31). The cladding is semi-infinite
(no guided modes). All other parameters are as in Table L
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D. Effect of the Coupling Strength

The energy transfer to diffracted orders is not a monotonically
increasing function of the coupling strength, ¢,. As can be
seen from Fig. 5, the intensity of the first diffracted orders
at first increases with ¢,, but then decreases. The decrease
is mild, according to the asymptotic model, and is due to
the fact that ¢, appears linearly in the numerator of Aﬁil)
in Eq. (31), but appears quadratically in its denominator.
The decrease is steeper, according to the S-matrix code, with
an even sharper decline once ¢, is sufficiently large.

Figure 5 is comparable to our previously published exper-
imental work (see Fig. 8a of [18]). Experimentally, the diffrac-
tion efficiency is seen to initially grow sharply with voltage
until it reaches a peak at approximately 12 V; for a voltage
greater than 12, the diffraction efficiency is seen to decrease
slightly. While the voltage response of a LC is not strictly pro-
portional to the grating strength, the approximate method de-
veloped here provides an explanation for this behavior, which
was previously attributed to nonlinearities in the alignment
layers [18].

The general behavior of the intensity of the +1 diffracted
orders can be understood by making reference to Fig. 6. In this
figure we have chosen A = 1 um to limit the number of dif-
fracted orders and, thus, simplify the interaction. For weak
coupling strength (top left panel of Fig. 6), energy is trans-
ferred from the fundamental SPP to the first diffracted order.
As the coupling strength is increased, at first the only effect is
to increase the amount of energy coupled out (top right panel
of Fig. 6). However, if the coupling strength is increased even
further, then energy starts to flow from the diffracted order
back into the fundamental and also, depending on the configu-
ration, to other diffracted orders. This effect is more pro-
nounced at perfect resonance and the spectrum of the
amplitude of the fundamental and diffracted order as a func-
tion of the reflection angle develops multiple peaks (bottom
panels of Fig. 6).

E. Effect of the Guided Modes

The guided modes add another level of complexity to the
problem. Here, we focus on their role on SPP-SPP coupling
rather than on their effect on the spectral response of a
gratingless device. We analyze their effect in the three cases
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Fig. 5. Plot of the maximum of the intensity of the first diffracted
orders, scaled to that of the input beam, as a function of the coupling
strength ¢, . The curves are computed numerically (N) or using the
analytical model (A) given by Eq. (31). The cladding is semi-infinite
(no guided modes). All other parameters are as in Table L
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illustrated in Figs. 7-9. In all these figures the top panels dis-
play the reflection spectrum computed using the approximate
model [Egs. (30) and (31)], equivalent to the full model
[Egs. (17), (23), and (24)] with the coupling coefficients asso-
ciated with the guided modes set to zero. The spectra in the
middle and bottom panels take into account the guided modes
and are computed using the full model [Egs. (17), (23), and
(29)] and a fully numerical scattering matrix algorithm
[13-16], respectively.

If the grating is in the cladding (Fig. 7), the main coupling
mechanism between different plasmonic diffracted orders is
the direct grating-mediated SPP—-SPP coupling in the cladding.
The guided modes play no significant role and their main
effect is to complicate the spectral response. A comparison
between the top and the other two panels of Fig. 7 shows that
the inclusion of the guided modes does not alter significantly
the maximum of the first plasmonic diffracted order (approx-
imately 27% in all panels). On the other hand, the guided

-
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Fig. 6. Plot of the relative intensity of the reflected fundamental
beam and diffracted orders as a function of the angle of incidence
of the beam predicted by Egs. (30) and (31), for e,4 =
{0.01,0.03,0.06, 0.12} left to right, top to bottom, respectively, and
A = 1 pm. The cladding is semi-infinite (no guided modes). All other
parameters areas in Table 1.
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Fig. 7. Effect of guided modes for thick cladding, no grating in the
core. Reflection spectrum computed using (top panel) Egs. (30) and
(31), i.e., no guided modes; (middle panel) Egs. (17), (23), and (24);
and (bottom panel) an S-matrix code. Left cladding thickness,
Ly = 600 nm; core width, L., = 2.5 pm; semi-infinite right cladding,
A =1 pm, ¢,., = 0. All other parameters are as in Table 1.
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modes introduce additional lines in the spectrum of the re-
flected field that correspond to their resonant frequencies.
A comparison between the middle and bottom panel of
Fig. 7 reveals the strengths and limitations of the full model
[Egs. (17), (23), and (24)]. The model captures well the plas-
mon region and the dips in the intensity of the +1 diffracted
order caused by the waveguide modes. In this region the
model is both qualitatively and quantitatively accurate. How-
ever, the model becomes less accurate as we approach the
region of total internal reflection (approximately 59° in the
case represented in Fig. 7). The main difference between
the two models is the waveguide mode line near 61° that is
present in the S-matrix spectrum, but appears as a small
dip at approximately 60.5° in the full model result. There is
a mode of the waveguide that has index n ~ 1.6, correspond-
ing approximately to the dip in the numerical simulation.
However, this mode has a low decay rate in the cladding
and, hence, a very strong overlap with the gold and the prism.
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Fig. 8. Effect of guided modes for thick cladding, no grating in the
cladding. Reflection spectrum computed using (top panel) Egs. (30)
and (31), i.e., no guided modes; (middle panel) Egs. (17), (23), and
(24); and (bottom panel) an S-matrix code. Left cladding thickness,
L = 600 nm; core width, L., = 2.5 ym; semi-infinite right cladding,
A =1pm, ¢, = 0. All other parameters are as in Table 1.
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Fig. 9. Effect of guided modes for thin cladding, no grating in the
cladding. Reflection spectrum is computed using (top panel) Egs. (30)
and (31), i.e., no guided modes; (middle panel) Egs. (17), (23), and
(24); and (bottom panel) an S-matrix code. Left cladding thickness,
Ly = 100 nm; core width, L., = 2.5 pm; semi-infinite right cladding,
A =1pm, ¢, 4 = 0. All other parameters are as in Table 1.
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The correction due to this overlap is enough to push the mode
a large distance from the original position.

The situation is rather different if the grating is in the core
(Fig. 8). In this case the main coupling mechanism between
different plasmonic orders is mediated through the guided
modes. In the case of a thick cladding, there is no SPP-
SPP coupling if modes are not considered (top panel of Fig. 8),
while SPP-SPP coupling at the wavelengths of the guided
modes can be observed if these are included (middle and bot-
tom panels of Fig. 8).

Even if the guided modes are not immediately resonant
with the SPP, their net effect is to enhance the SPP-SPP cou-
pling. In Fig. 9 we analyze a thin cladding case. The cladding is
sufficiently thin that the SPPs reach the core and are directly
coupled by the grating there (top panel of Fig. 9). If we include
the guided modes we observe two effects (middle and bottom
panels of Fig. 9); there are additional resonances in the spec-
trum that correspond to the guided modes. More interestingly,
the amplitude of the diffracted SPP is increased, from 9% to
approximately 13%, even though no guided mode is directly
resonant with the SPP. This indicates that the guided modes
can be beneficial to the exchange of energy between SPPs
and, possibly, SPP-SPP photorefractive gain.

4. SUMMARY

In this paper we have derived and analyzed an approximate
set of equations that describe the response of a photorefrac-
tive layered device. These equations offer a significant reduc-
tion in computation time, approximatly a factor of 100 when
compared to an S matrix code, and capture the salient fea-
tures of any layered device with photorefractive and metalic
layers and are a powerful analytical tool to dissect the optical
interactions between SPPs, waveguide modes and incident
fields, which are hard to estimate otherwise.

The equations are derived assuming an idealized geometry
that also captures the features of the photorefractive LC cell.
These equations can, in principle, be extended to consider the
effects of the anisotropy and inhomogeneity of the LC as a
perturbation. However, these effects are not expected to be
significant in reproducing the main features of the reflection
spectrum.

In this paper we have considered the cases of one and three
dielectric layer devices adjacent to a standard two layer SPP
interface. These geometries were chosen as they are simple
enough that the modes of the individual waveguides can be
found analytically. Considering the interaction between the
waveguides and an external field allows the reflection spec-
trum to be obtained. Further, including the effect of a weak
dielectric grating in the dielectric allows diffraction between
different families of modes to be considered.

The derived model has been compared to numerical simu-
lations and shows strong qualitative agreement. Further, a
simplified model that neglects the modes in the LC waveguide
has been derived to simplify the analysis and identify the
salient features of the physics of these devices and of
SPP-SPP photorefractive coupling.

Through careful analysis of the two models the effects of
gold thickness, grating strength, grating vector, and the pres-
ence of guided modes have been studied. We have shown that
an optimum gold thickness exists. This layer must be thick
enough to support an SPP, yet thin enough that energy from
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the incident field can penetrate it to feed energy into the SPP.
For the parameters studied here this thickness is approxi-
mately 38 nm.

The effect of the grating strength is somewhat surprising as
simply increasing the modulation of the dielectric constant
does not produce a monotonically increasing diffraction effi-
ciency. Rather, there is an optimum grating strength above
which energy couples back from the +1 diffracted order into
the incident beam and into higher diffracted orders.

Finally, the presence of guided modes is unavoidable in
these systems. However, parameters can be chosen such that
the guided modes are not resonant with the SPP, reducing
their effects. Alternatively, for gratings localized in the wave-
guide core, the guided modes can act as a route for SPP-SPP
interactions with energy coupled from SPP to guided modes,
diffracted into higher order guided modes and finally coupled
back into higher order SPP.

This analysis highlights the importance of the many control
parameters involved in this system. The simplified equations
are a powerful tool to study the response of the system to
these parameters and provide the means to choose param-
eters such that the strongest possible SPP diffraction is
observed.
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