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Abstract. This paper provides a novel solution to the volumetric sim-
ilarity registration problem usually encountered in statistical study of
shapes and shape-based image segmentation. Here, shapes are implic-
itly represented by characteristic functions (CFs). By mapping shapes
to a spherical coordinate system, shapes to be registered are projected
to unit spheres and thus, rotation and scale parameters can be conve-
niently calculated. Translation parameter is computed using standard
phase correlation technique. The method goes through intensive tests
and is shown to be fast, robust to noise and initial poses, and suitable
for a variety of similarity registration problems including shapes with
complex structures and various topologies.

Keywords: similarity registration, volumetric shapes, characteristic func-
tions, registration of lungs.

1 Introduction

Similarity registration is a significant technique that handles isometric scale,
rotation and translation in computer vision. Major applications of this technique
are two folds: one is statistical study of shapes and the other is shape-based
image segmentation. Vast amount of research about this topic has been done in
2-D, including [1–4]. These works handle similarity registration using gradient
methods that iteratively optimize similarity measures of shapes represented by
SDFs (signed distance functions)[5]. In 2-D, the computational cost of these
methods is generally acceptable, however, they are not feasible in similarity
registration of volumetric shapes which often appear in medical data such as
CT-scans, MRI and ultrasound images.

One method to be noted is the renowned ICP (iterative closed point) method
proposed in [6]. It is a general solution to 3-D rigid registration (concerning
only rotation and translation). Other popular 3-D registration methods in the
literature are frequently designed for range data or open surfaces (e.g. see [7,
8]) which are not related to the algorithm to be introduced in this paper.
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The problem to be solved in this paper is the registration of two intact vol-
umetric shapes.

The algorithm proposed here is an extension of the method proposed in [9] for
3-D shapes. However, rather than using SDFs, which are convenient represen-
tations in solving PDEs (partial differential equations), we prefer CFs (charac-
teristic functions) which are concise representations of volumetric shapes. This
algorithm calculates optimal shape scale, rotation, and translation without han-
dling PDEs and is shown to be robust to noise and initial poses, and appropriate
for many registration problems involving shapes with topological complexities
mostly observed in medical data.

The rest of the paper is organized as follows. Section 2 presents preliminaries
concerning shape registration. Section 3 describes the theory behind the regis-
tration technique proposed here. Numerical results are presented in section 4
and finally we conclude the paper in section 5.

2 Mathematical Preliminaries and Statement of the
Problem

In this paper, unit quaternions are used as mathematical representation of
rotation of volumetric rigid shapes. A unit quaternion is a four vector q =
(q0, q1, q2, q3) with q20 + q21 + q22 + q23 = 1. In our case, a unit quaternion consists
of an axis, denoted by a unit vector v = (v1, v2, v3)

T and an angle denoted by
Δθ, making q(v, Δθ) = (cos(Δθ/2),vT sin(Δθ/2)) [10]. Unit vector v and angle
Δθ are considered as the axis and angle of rotation. This is a linear transform
and equivalent to a rotation generated by the corresponding 3×3 rotation matrix
R(q(v, Δθ)) [10].

Let Ω ⊂ R
3 be bounded and represent the image domain, and Φr(x) : Ω → R

and Φt(x) : Ω → R denote the characteristic functions (CFs) of reference shapes
and target shapes. These functions are defined as

Φ(x) =

{
1, x ∈ Ω+,

0, x ∈ Ω−,
(1)

where Ω+ and Ω− respectively represent domains inside and outside shapes. The
surfaces of shapes are implicit and of less importance in this work.

Let parameter s represent scaling, q rotation and T = (Tx, Ty, Tz)
T trans-

lation. The problem becomes to find a set of s, q and T that maximize the
normalized inner product of shapes’ CFs

ER =

∫
Ω

Φt(x)Φr(sR(q)x− T )

||Φt(x)||||Φr(sR(q)x− T )|| dx (2)

where || · || is the L2-norm of CFs (||Φ|| = ( ∫
Ω
|Φ|2 dx) 1

2 ).
In a geometric point of view, shapes are regarded as vectors and their similar-

ity is measured by their normalized inner product. It is noted that ER is between
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0 and 1, and similarity between shapes is intuitively measured by percentage.
Using this measure, the maximum similarity that could be achieved between
shapes is unity, which corresponds only to identical shapes.

3 Method

Before calculation of parameter, Φr(x) and Φt(x) are centralized, i.e.:

Φ̆r(x) = Φr(x + cr), (3)

Φ̆t(x) = Φt(x+ ct), (4)

where cr and ct are the respective centroids of both CFs calculated according
to the initial Cartesian coordinate system.

For convenience calculating rotation and scale parameter, Φ̆r(x) and Φ̆t(x)
are mapped to a spherical coordinate system. Φ̆r(x) and Φ̆t(x) are respectively
represented by Φ̆r(r) : ΩS2 → R and Φ̆t(r) : ΩS2 → R, where ΩS2 ⊂ R × S

2

denotes a spherical domain bounded with radius R inside image domain Ω and
r = (r, x̂(θ, ϕ))T (x̂ =(cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ))T, r ∈ [0, R], θ ∈
[0, 2π), and ϕ ∈ [0, π]).

This mapping allows the scale and rotation parameter to be separated, namely,
to change from Φ̆r(sRx) to Φ̆r(sr,Rx̂), and these two parameters could be cal-
culated individually.

3.1 Rotation

An optimal rotation could be represented by a unit quaternion qop which consists
of a unit vector vop and an angleΔθop. Radial variable r contains scale difference
between the shapes to be registered, therefore to remove its impact on calculating
rotation angle of the two CFs, we integrate the CFs over variable r, i.e.:

Φ̃r(x̂(θ, ϕ)) =

∫ R

0

Φ̆r(r)r
2 dr, (5)

Φ̃t(x̂(θ, ϕ)) =

∫ R

0

Φ̆t(r)r
2 dr, (6)

This indeed could be intuitively considered as projecting the CFs of shapes
on to a parametric unit sphere centered by their centroids, referred to in this
paper as S2 maps (see figure 1). The problem becomes to maximize the inner
product of the two S2 maps:

qop = argmax
q

∫
S2

Φ̃t(x̂)Φ̃r(R(q)x̂) dx̂ (7)

To solve this equation, the unit sphere is mapped onto a bounded plane with
coordinates θ́ and ϕ́, referred to in this paper as R2 map. We prefer to generate
an R2 map according to the axis around which the S2 map rotates, because
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in this way, rotation of an S2 map could be simply represented by shifting the
correspondingR2 map along its θ́-axis. Assuming that the 1-D Fourier transform
of Φ̃r(θ́, ϕ́) and Φ̃t(θ́, ϕ́) with respect to θ́ are respectively Ψ̃r(ωθ́, ϕ́) and Ψ̃t(ωθ́, ϕ́),
the optimal rotation angle by rotating around a fixed common axis v0 could be
obtained by

Δθop(v0) = argmax
Δθ

∫ π

0

∫ +∞

−∞
Ψ̃t(ωθ́, ϕ́)Ψ̃r(ωθ́, ϕ́)e

iωθ́Δθ sin(ϕ́) dωθ́ dϕ́ (8)

The problem now is to find proper axes that could enable us to use the above
equation. PCA is employed here to find these axes.

Using centralized CFs in section 3.2, 3× 3 symmetric covariance matrices Σr

and Σt respectively for Φ̆r and Φ̆t could be computed as

Σ =

∫
Ω xxTΦ̆(x) dx∫

Ω
Φ̆(x) dx

(9)

We then calculate respective three eigenvectors of Σr and Σt, denoted by Pr =
(pr1 ,pr2 ,pr3) and Pt = (pt1 ,pt2 ,pt3). The eigenvectors are ordered according to
their eigenvalues, i.e. the first eigenvector corresponds to the largest eigenvalue.
These three eigenvectors are referred to in this paper as the first, second and
third principal axes. Φ̆r(x̂) is rotated so that Pr is coincided with Pt. This
rotation is generated by qp, which is calculated by three steps:

Step 1: Calculating qp1 that coincides the first principal axis,

Δθp1 = cos−1(pr1 · pt1),vp1 = (pr1 × pt1)/ sin(Δθp1),

qp1 = (cos(Δθp1/2), vT
p1

sin(Δθp1/2)),

Step 2: Calculating qp2 that coincides the second principal axis,

Δθp2 = cos−1(R(qp1)pr2 · pt2),vp2 = (R(qp1)pr2 × pt2)/ sin(Δθp2),

qp2 = (cos(Δθp2/2), vT
p2

sin(Δθp2/2)),

Step 3: Calculating qp by quaternion multiplication of qp1 and qp1 ,

qp = qp1qp2 ,

Note that multiplication of quaternions follows principles in quaternion alge-
bra and in certain cases the third principal axes may be inverse to each other
after the coinciding, however, this would not affect the final result. Figure 2
presents a general process of coinciding shapes’ principal axes. Then Pt is used
as the axes according to which we apply equation 8. There are three R2 maps
generated according to the three coincided principal axes and consequently three
rotation angles, Δθt1 , Δθt2 and Δθt3 are calculated. With the principal axes and
rotation angles, we have three quaternions, qt1 , qt2 and qt3 . Finally, qop could
be computed by

qop = qpqt1qt2qt3 . (10)
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Fig. 1. Principal axes, S2 map and R2 maps of a volumetric ’4’. (a) Red, green and
blue lines are respectively the first, second and third principal axis. The sphere that
contains the shape is its S2 map. (b)-(d) are the R2 maps acquired according to the
first, second and third principal axis.

Fig. 2. (a) and (b) describe the process of coinciding the principal axes of shapes to be
registered. (c) The following three adjustments according to the three principal axes
of the reference shape. (d) The result after the adjustments.

3.2 Scaling

The scale parameter is computed according to the S2 maps discussed in the
previous section. We start by considering a simple case that the reference shape
is a rescaled version of the target shape:

Φ̆t(r, x̂) = Φ̆r(sr, x̂) (11)

Integral over variable r on the left side of the above equation is Φ̃r (given in equa-
tion 6). Assuming that ŕ = sr, integrals over variable r on both sides therefore
satisfy

Φ̃t(x̂) =

∫ R

0

Φ̆r(sr, x̂)r
2 dr

=

∫ R

0

Φ̆r(ŕ, x̂)
ŕ2

s2
d
ŕ

s

=
1

s3

∫ R

0

Φ̆(ŕ, x̂)ŕ2 dŕ

=
1

s3
Φ̃r(x̂) (12)

In practice, the equality hardly holds because the shapes to be registered may
well be different. Therefore, we simply minimize the SSD (sum of squared differ-
ence) between both sides to find an estimate of the scale parameter. Assuming
that ś = 1/s3, the SSD could be written as
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Es =

∫
S2

∣∣∣śΦ̃r(x̂)− Φ̃t(x̂)
∣∣∣2 dx̂

= ||Φ̃r ||2ś2 − 2
〈
Φ̃t(x̂), Φ̃r(x̂)

〉
ś+ ||Φ̃t||2 (13)

This is a simple quadratic equation and the solution is

ś =
〈Φ̃t(x̂), Φ̃r(x̂)〉

||Φ̃r||2
(14)

By substituting equation 14 to equation 13, the minimum value of Es could be
obtained by

Esmin = −〈Φ̃t(x̂), Φ̃r(x̂)〉2
||Φ̃r||2

+ ||Φ̃t||2 (15)

It could be observed from the above equation that Es is dependent only on the
inner product of S2 maps (||Φ̃r ||2 and ||Φ̃t||2 are constants) and it has been
maximized in section 3.1. Finally, the optimal value of s could be calculated
using the following equation:

sop =

(
||Φ̃r||2

〈Φ̃t(x̂), Φ̃r(R(qop)x̂)〉

) 1
3

(16)

3.3 Translation

Using the calculated optimal rotation and scale parameter, qop and sop, we

obtain Φ́r(x) = Φr(sopR(qop)x). Let T = (Tx, Ty, Tz) denote the translation
parameter and the optimal translation parameter T op could be calculated by
employing the method introduced in section 3.1:

T op = argmax
T

∫
R3

Ψt(ω)Ψ́r(ω)eiω·T dω, (17)

where ω = (ωx, ωy, ωz) is the spacial angular frequency. Ψ́r(ω) and Ψt(ω) are

respectively the 3D spacial Fourier transform of Φ́r(x) and Φt(x).

4 Experimental Results

The method proposed here is implemented in MATLAB 7.11 on a PC station
with a 2.67 GHz Xeon processor and 12 GB RAM. Reference shapes are in
cyan (light color), target shapes in magenta (dark color) and for visualization
purpose, only the surface of the shapes are shown here. Some experimental data,
including approximate shape size, execution time t as well as the change of ER

(in equation 2, normalized inner product as the similarity measure) before and
after registration are presented in the captions of the corresponding figures.
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4.1 Performance Analyses Using Complex Shapes

Three performance analyses, namely, a noise and an initial pose test, and a com-
parison with the standard ICP method are presented here to provide evidence of
the robustness of the algorithm. Relatively complex shapes with various topolo-
gies are used to carry out the analyses and they would focus mainly on rotation
and scale accuracy, which are the major contribution of this work. In addition,
the purpose of comparing the method proposed here to the ICP method is to
address the local minima issue, which is the drawback of most gradient descent
iterative optimization methods.

One example of registration using the method proposed here is given in fig-
ure 3. The reference shape is two linked symmetric rings and the target shape
is similarly posed two asymmetric horseshoes. However, such topological varia-
tion has no impact on the technique proposed here. Keeping their poses fixed, a
noise test is done by registering the linked rings to the horseshoes with manually
added increasing level of randomly generated binary noise (’salt and pepper’
noise) from 10% to 90% (9 levels in total). Figure 4 presents several examples of
the horseshoes with different levels of noise.

The left side of figure 5 shows the result of the noise test. Each level of the noise
is generated 10 times and is both inside and outside the shape to contaminate the
region and the surface (the noise outside the shape goes no further than 3 voxels
away from the surface). An apparent decrease of the mean of the normalized
inner product between registered shapes can be observed, while the standard
variation remains stable.

The accuracy is further measured by calculating the difference between the
standard registration parameters computed without noise and those computed
corresponding to the noise levels. For rotation which is represented by quater-
nions, the SSD is calculated and for scale, the absolute difference is computed.
As is shown respectively in figure 5 middle and right, an increase of mean and
variance can be observed as the level of the noise rises. However, it should be
noted that the rotation error is under 0.1% and the scale error under 2%. There-
fore, it can be concluded that the algorithm proposed here is robust in presence
of a significant amount of noise.

As for the initial pose test, the results are presented by figure 6. 744 initial
poses (equally distributed in SO(3)) of the linked rings are chosen to register
to the horseshoes with and without noise (the noise level selected in this test
is maximum: 90%). From the two curves in the figure 6 left, it can be observed
that our algorithm is stable under these initial conditions. A same test is done
using the ICP method to register the two shapes without noise and the result is
showed in figure 6 right, there are 91% of the initial conditions that make the
ICP method fall into local minima.

4.2 Registration of Real-World Shapes

Figure 7 presents a practical example for our method: registration of lungs. The
structure of lungs is relatively complex including smooth contours and sharp
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Fig. 3. The registration of regular and irregular shapes with different topologies. (a)
The reference shape (two linked rings) and the target shape (two linked horseshoes).
(b)The result of registration. (c)The result from another viewpoint. {Reference shape
size: 90×60×60, target shape size: 90×60×60, t=1.75s, before: ER=0, after: ER=0.54.}

Fig. 4. Several examples of the horseshoes with various level of noise. Top row from
left to right: 30%, 50%, 70%, 90%. Bottom row from left to right: registration results
corresponding to the noise levels.
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Fig. 5. A noise test. Left: the normalized inner products of shapes registered in presence
of binary noise (’salt and pepper’ noise) from 10% to 90%. Middle: SSD between
standard q calculated without noise and q with different levels of noise. Right: absolute
difference between standard s calculated without noise and s with different levels of
noise.

corners. It could be observed from figure 7 that our method achieves promising
results and allows us to do further statistical studies.
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Fig. 6. An initial pose test. Left: the result using the method proposed here. The
linked rings are registered to the horseshoes with noise (bottom curve) and without
noise (top curve) under 744 initial conditions (equally distributed in SO(3)). Right:
result of registration using the ICP method under 744 initial conditions (the horseshoes
are without noise).

Fig. 7. The registration of lungs from two persons. (a) The reference and the target
left lungs before registration. (b) The result of registration. {Reference shape size:
150× 120× 270, target shape size: 160× 120× 300, t=11.09s, before: ER=0.39, after:
ER=0.85.} (c) The reference and the target right lungs before registration. (d) The
result of registration. {Reference shape size: 150× 110× 260, target shape size: 160×
110× 270, t=9.47s, before: ER=0.32, after:ER=0.83.}

5 Conclusion

This paper proposes a robust registration technique of two volumetric shapes
represented by CFs. By mapping shapes to a spherical coordinate system, scale
and rotation parameter could be handled separately. PCA is employed to find
principal axes of shapes that largely facilitates the calculation of rotation pa-
rameter. Both computations of rotation and translation parameter exploit FFT,
allowing the efficiency of our method to be vastly improved. The results of in-
tensive experiments suggest that our method is able to register shapes with
different topologies, and is robust to noise and initial conditions, and also effi-
cient. It is a suitable solution to the registration problem in statistical modelling
of volumetric shapes and shape-based volumetric image segmentation.
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