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SENSITIVITY ENHANCEMENT AND FIELD-DEPENDENT RELAXATION IN

SINGLET NUCLEAR MAGNETIC RESONANCE

by Jǐŕı Bočan

Nitrous oxide (N2O), also known as “laughing” gas, is a well known compound used in

medicine as a mild anaesthetic, or in engineering as a powerful oxidizer providing high

output of engines. Recently, its 15N doubly-labelled isotopologue attracted attention in

singlet NMR due to its long singlet relaxation time ranging between 7 minutes, when

dissolved in blood, up to 26 minutes in degassed dimethyl sulfoxide (DMSO).

Singlet NMR deals with nuclear singlet states, which are exchange antisymmetric quan-

tum states of coupled pairs of spin-1/2 nuclei with zero total nuclear spin quantum number.

These states are nonmagnetic and immune to exchange-symmetric relaxation processes

such as intramolecular direct dipolar relaxation. Their lifetimes may be up to an order of

magnitude longer than conventional relaxation times T1 and T2. Besides various fields of

NMR, singlet states find potential application also in MRI. The direct medical application

of 15N2O as a MRI tracer is, however, complicated by a poor detection sensitivity resulting

from the low 15N magnetogyric ratio, low solubility in liquids at room temperature and

atmospheric pressure, and limitations of 15N signal enhancement by means of physical

methods for dissolved 15N2O.

This thesis addresses two topics related to singlet NMR of 15N2O – sensitivity enhance-

ment and magnetic-field dependent relaxation. The NMR signal decay in liquid phase is

often dominated by static magnetic field inhomogeneity, described by the time constant

T ′2, which is much faster than the transverse relaxation, characterized by T2. Repeated

refocusing by a multiple spin-echo (MSE) train maintains the 15N signal for extended

times of several T2. Acquisition of the signal during the whole MSE sequence followed

by a proper processing either by matched weighting or singular value decomposition, may

lead to the signal-to-noise ratio (SNR) enhancement by up to an order of magnitude under

favourable circumstances. The SNR enhancement is a function of T2, T ′2, and the spectral

resolution.

The procedure of the SNR enhancement in combination with methods of singlet NMR

was used to investigate in detail low-field 15N2O singlet relaxation. The 15N2O relaxation

measurements were extended to field strengths up to the spectrometer high field. The

observed relaxation dependencies were described by a general theory, which represents

relaxation as a time-dependent exchange of populations of the field-dependent energy

eigenstates. In particular, spin-rotation relaxation in low field was discussed.





“You will recognize your own path

when you come upon it,

because you will suddenly have

all the energy and imagination

you will ever need.”
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Chapter 1

Introduction

This thesis encloses a 35-month project in the NMR group of Professor Malcolm Levitt at

the University of Southampton.

In the light of the newest developments in singlet NMR, till 2012, it was believed that

one of the most promising candidates for singlet MRI is 15N2O dissolved in blood. How-

ever, several obstacles related to the sensitivity of the method prevented direct application.

First, 15N2O is a gas with a limited solubility, though blood has slightly better properties

compared to other ordinary solvents. Secondly, a very low 15N2O concentration is expected

after redistribution of the enriched sample in the blood stream. Thirdly, the 15N magnet-

ogyric ratio is approximately ten times lower than that of hydrogen 1H, which results in

a proportionally weaker signal. The search for a means of sensitivity enhancement is, and

especially in NMR always was, particularly pressing.

An easy and readily available way to enhance the sensitivity of NMR, translated into

the signal-to-noise ratio (SNR) in frequency spectra, is provided by solution NMR itself. In

such a case, the NMR signal may ideally live for a long time, which is comparable to the

longitudinal relaxation time constant T1. Possible magnetic field inhomogeneity effects,

which speed up the signal decay, may be overcome by using multiple refocussing by means

of the spin-echo pulse sequence, the so-called multiple spin-echo (MSE) sequence. The

MSE signal, acquired during a prolonged scan, may be processed afterwards in a way

that allows the SNR enhancement compared to an ordinary free-induction decay signal.

Therefore, a combination of 15N2O singlet NMR together with the MSE pulse sequence

may provide the desired enhancement in sensitivity.

An additional piece of information, which 15N2O as an alternative MRI tracer might

provide, and which is extracted from the human body in a completely noninvasive way
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through observing NMR signals, is hidden in the relaxation of 15N2O. Once the MSE

method was developed, its application to singlet relaxation in the case of weak 15N signals

was obvious.

1.1 Thesis Outline

The whole text is divided into eight chapters. Chapter 1 provides the main ideas and the

motivation behind this project, and overviews the thesis.

Chapter 2 introduces a geometrical vector model of magnetization, which is shown to

be an useful tool for visualization of basic and even more complicated NMR experiments.

Relationships presented in this chapter will be exploited later in Chapter 6, in order

to evaluate the effects of various pulse imperfections during the MSE experiment. The

rigorous quantum mechanical formalism, and singlet and triplet states, are introduced

afterwards.

Chapter 3 provides the reader with an overview of singlet NMR. Inclusion of the singlet

state into ordinary NMR experiments brings several advantages. This branch of NMR has

widened significantly since 2004, when the singlet state was prepared purely by means

of NMR for the first time. The basic techniques of singlet NMR, as well as examples of

singlet state applications, are summarized.

Chapter 4 is dedicated to Fourier transformation, the essence of modern magnetic

resonance spectroscopy (MRS). Since the whole procedure of MSE signal processing was

programmed by hand, without using any commercially available software package, basic

methods of the NMR signal processing will be presented. Special care is given to signal

and noise in NMR, and to derivation of a matched filter in general. Other important

subjects included are the methods of the SNR enhancement, particularly singular value

decomposition (SVD). SVD will be used as one of the means for MSE signal processing.

Chapter 5 starts with a brief introduction to nitrogen NMR, and presents 15N samples

used for the experimental work. A summary of their properties, mainly various relaxation

time constants, is provided.

Chapter 6 is devoted to the MSE pulse sequence. A short overview of the spin-echo

sequence, a fundamental building block of pulse sequences in modern NMR, is followed

by detailed treatment of the preferred CPMG spin-echo sequence. Taken into account

are basic interference effects, which may occur during the prolonged pulse trains. The

matched filter corresponding to the MSE signal will be derived. Due to knowledge of
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the specifications of the matched filter, a realistic theoretical model, predicting the SNR

enhancement, will be presented. The description of experimental procedures for processing

the MSE signal will follow. Finally, experimental evidence of the SNR enhancement after

MSE signal processing will be provided, and the achieved results will be compared to the

theoretical predictions.

Chapter 7 discusses the formal theory of relaxation with emphasis on the singlet state.

The field-cycling experiments will be described, which were used for study of the field-

dependent relaxation of 15N2O dissolved in liquid phase in the full range of magnetic

fields, which are reachable in the laboratory. The observations are explained by using a

phenomenological field-dependent relaxation model, which will be presented in full detail.

Finally, experimental results will be compared to the model-based predictions and also

with the dedicated literature.

Concluding Chapter 8 will bring the thesis to an end. It will summarize the achieved

findings and will foreshadow possible prospects for application of the presented methods.
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Chapter 2

Basics of Nuclear Magnetic

Resonance

2.1 Classical Description

2.1.1 Nuclear Magnetism

Nuclear magnetism is a consequence of the existence of a nuclear spin angular momentum

I. This vector quantity, first observed in the electron [1], is purely quantum mechanical,

without a classical counterpart. Amongst the mass and the electric charge, the spin is a

fundamental property of all subatomic particles, including the proton or the neutron, as

well as objects built from them. The magnitude of I is given by [2]:

∣I ∣ =
√
I(I + 1) h̵ (2.1)

where h̵ = h/2π is the reduced Planck constant [3]. A nuclear spin quantum number I may

be either integer or half-integer, ranging from 0 up to 10 [4]. For solution NMR, the most

important nuclei are those with I = 1/2 (spin-1/2 nuclei), mainly the stable isotopes 1H,

13C or 15N. Nuclei with spin zero are undetectable by means of NMR. Nuclei with spin

I > 1/2 are called quadrupolar nuclei. Their nonspherical electric charge distribution gives

rise to an electric quadrupole moment, which causes very rapid relaxation and makes their

observation difficult.

In the presence of a significant direction, I is quantized. In NMR, such a direction is

determined by a strong static magnetic fieldB0.B0 = B0 ez is conventionally aligned along

the z-axis of a right-handed Cartesian coordinate system, represented by an orthogonal set

of unit vectors (ex,ey,ez). Quantum mechanics restricts that only one of the I components
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may be determined at a time, while the other two remain indeterminate. By convention,

values of the z-component of I are given by [2]:

Iz =mh̵ (2.2)

where m is a magnetic quantum number, having (2I + 1) discrete values between −I

and +I.

Spin interactions with magnetic fields are described by means of a nuclear magnetic

moment µ, related to I through [2]:

µ = γI (2.3)

where γ is a magnetogyric ratio, a constant characteristic for each nucleus with nonzero

spin. It may be either positive or negative. Consequently, the vector µ is either parallel or

antiparallel to I. The γ ratio also determines the size of the Larmor frequency:

ω0 = −γB0 (2.4)

and the sense of precession of I and the derived magnetic moments in the given field B0.

The interaction energy E of the moment µ placed in the field B is equal to:

E = −µ ⋅B = −γI ⋅B = −γ∣I ∣∣B∣ cosα (2.5)

where the dot product is defined by Eq. (A.3), and α is the angle between the two vectors.

Assuming that B =B0 and ∣I ∣ cosα = Iz, and using Eq. (2.2), there exist (2I + 1) equally

spaced energy levels:

Em = −γIzB0 = −γmh̵B0 (2.6)

called the Zeeman levels in analogy with the Zeeman effect in optical spectroscopy [5, 6].

The thermal-equilibrium population of each level is governed by the Boltzmann distribu-

tion. Assuming a total number N of observed nuclei, the relative population of the mth

level is given by [2]:

Nm

N
= exp(−Em/kBT )

I

∑
m=−I

exp(−Em/kBT )
= exp(γmh̵B0/kBT )

I

∑
m=−I

exp(γmh̵B0/kBT )
≈ 1

2I + 1
(1 + γmh̵B0

kBT
) (2.7)

kB is the Boltzmann constant [3], and T is the thermodynamic temperature. The final

approximate expression is obtained by the Maclaurin series expansion of the exponential

function around Em/kBT ∼ 10−5 ≪ 1 up to the linear term.

6



A bulk nuclear magnetic moment (magnetization) M is obtained by the vector sum

over µi of all individual nuclei:

M =
N

∑
i=1

µi (2.8)

By using Eqs. (2.2), (2.3) and (2.7), the equilibrium value M0 of the z-component of M

in the field B0 is given by:

M0 = γh̵
I

∑
m=−I

mNm ≈ Nγh̵

2I + 1

I

∑
m=−I

m(1 + γmh̵B0

kBT
) = Nγ

2h̵2I(I + 1)
3kBT

B0 = χ0B0 (2.9)

χ0 is the nuclear contribution to the magnetic susceptibility [7], experimentally first de-

termined for the proton [8]. The susceptibility dependence on the inverse of temperature

is known as the Curie law [2].

2.1.2 Bloch Equations and Vector Model

A classical description of magnetization was formulated by Bloch [9]. His vector model and

associated equations are valid for an idealized sample containing isolated noninteracting

spins-1/2. Despite its simplicity, many terms introduced within this approach are routinely

used in NMR until today.

The behaviour of the magnetization M(t) in a magnetic field B(t) is given by the set

of Bloch equations [10]:

dM(t)
dt

= γM(t) ×B(t) −R [M(t) −M0] (2.10)

where the cross product is defined in Eq. (A.4). A relaxation matrix, R, given by:

R =

⎛
⎜⎜⎜⎜⎜
⎝

1/T2 0 0

0 1/T2 0

0 0 1/T1

⎞
⎟⎟⎟⎟⎟
⎠

(2.11)

consists of longitudinal and transverse relaxation time constants T1 and T2, respectively,

see Section 2.1.4.

As explained in Section 2.1.4, a strong static longitudinal field B0 is used to establish

the steady equilibrium magnetization M0. In order to manipulate it, another magnetic

field, a radiofrequency (rf) transverse magnetic field Brf(t) is applied along the x-axis:

Brf(t) = 2B1 cos (ωrft + ϕ)ex (2.12)

2B1 is the rf field amplitude, ωrf is an angular frequency of a rotating frame as explained

below, and ϕ is an initial phase of the rf field. The linearly oscillating motion of Brf(t)
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may be decomposed into two counter-rotating components:

Brf(t) =B+
rf(t) +B

−
rf(t) (2.13)

where:

B±
rf(t) = B1 [cos(ωrft + ϕ)ex ± sin(ωrft + ϕ)ey] (2.14)

Only the resonant component is retained, which rotates in the same sense as µ. The non-

resonant component is responsible for the Bloch-Siegert shift, which is of order (B1/2B0)2

and may usually be neglected [2, 11].

The time dependence of Brf(t) makes the description of the rf field effects on the spin

system complicated. Simplification is provided by transforming all relationships into the

rotating frame:

B(t) = Rz(ωrft) B̃(t) (2.15)

M(t) = Rz(ωrft)M̃(t) (2.16)

The rotating frame rotates about the laboratory frame z-axis with the angular frequency

ωrf , which may be expressed by a rotation matrix Rz(φ) defined by Eq. (B.3). A tilde is

used to distinguish rotating frame quantities from those in the laboratory frame. A time

independent effective magnetic field, experienced by nuclei within the rotating frame, is

then:

B̃ = (B1 cosϕ,B1 sinϕ,∆B0)T (2.17)

A superscript “T” denotes the column vector, see Eq. (A.1), and ∆B0 is a reduced (offset)

field:

∆B0 = B0 + ωrf/γ ≡ −Ω/γ Ô⇒ Ω = ω0 − ωrf (2.18)

Ω is a resonance offset in the rotating frame. The magnitude of the effective field B̃ is

given by:

B̃ =
√

(B1)2 + (∆B0)2 (2.19)

The angle θ between the z-axis and the vector B̃ is defined by the following equivalent

expressions:

sin θ = B1

B̃
= ω1

ωnut
⇐⇒ cos θ = ∆B0

B̃
= Ω

ωnut
⇐⇒ tan θ = B1

∆B0
= ω1

Ω
(2.20)

where ω1 is the rf field strength:

ω1 = −γB1 (2.21)
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and ωnut is, by convention, a positive nutation frequency [12]:

ωnut = ∣γB̃∣ (2.22)

with which the magnetization M rotates around the field B̃.

By using Eqs. (2.15) and (2.16), and assuming M0 = M̃0, the Bloch equations (2.10)

transform into the rotating frame accordingly:

dM̃(t)
dt

= γM̃(t) × B̃ −R [M̃(t) −M0] (2.23)

If not specified otherwise, the rotating frame will be used by default and the tilde will be

left out from now on.

2.1.3 Radiofrequency Pulses

The detection of a NMR signal is based on Faraday’s law of electromagnetic induction

[13]. A NMR sample is surrounded by a wire coil. The time varying bulk magnetization

induces an electromotive force, and consequently an electric current in the coil and an

attached circuitry.

The only nonzero mean component at equilibrium is M0, which does not vary with

time. Application of an rf pulse, i.e., the additional field Brf(t) with the frequency ωrf

close to the Larmor frequency ω0, and the phase ϕ for a time interval τp, disturbs the

equilibrium magnetization. In result, M0 rotates by the flip angle:

β = ωnutτp (2.24)

around the direction of B̃ at the frequency ωnut. The βϕ pulse transformsM0 as follows [2]:

M(t) = R(β,ϕ, θ)M0 (2.25)

where the composite rotation is given by [2]:

R(β,ϕ, θ) ≡ Rz(ϕ)Ry(θ)Rz(β)Ry(−θ)Rz(−ϕ) (2.26)

Its explicit form is provided in Eq. (B.6). The similarity transformation Ry(θ)Rz(β)Ry(−θ)

represents nutation around the direction of B̃ by the angle β, and Rz(ϕ)...Rz(−ϕ) repre-

sents the rotation of the rf field Brf , originally aligned along the x-axis, by the angle ϕ in

the transverse plane. The conventional labelling of the pulse phase is the following:

ϕ = {0, π/2, π,3π/2} ⇐⇒ {x, y,−x,−y} (2.27)
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As an example, a simple one-pulse experiment is assumed. The βϕ pulse of a strong rf

field ∣ω1∣ ≫ ∣Ω∣, θ ≈ π/2 is applied to the equilibrium magnetization M0:

M(0) =M0
R(β,ϕ,π/2)
ÐÐÐÐÐÐÐ→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Mx(τp) = M0 sinβ sinϕ

My(τp) = −M0 sinβ cosϕ

Mz(τp) = M0 cosβ

(2.28)

and the tilted magnetization is left to precess freely. Solution of (2.23) gives:

M(τp)

free

precession

ÐÐÐÐÐÐÐ→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Mx(t) = −M0 sinβ sin(Ωt − ϕ) e−t/T2

My(t) = −M0 sinβ cos(Ωt − ϕ) e−t/T2

Mz(t) = M0 [1 − (1 − cosβ) e−t/T1]

(2.29)

The transverse magnetization, obtained by combining Mx(t) and My(t) from (2.29), is

recorded through the quadrature detection method as the NMR signal [14]:

M−(t) =Mx(t) − iMy(t) = iM0 sinβ exp[i(Ωt − ϕ) − t/T2] (2.30)

The signal of amplitude M0 sinβ oscillates with the offset angular frequency Ω, and is

exponentially damped with the transverse relaxation time constant T2.

In general, rf pulses may be categorized according to the relative strength of the rf field

ω1 with respect to the resonance offset Ω [15]. Assume that there exist several coupled

spins of the same isotope in the sample, each characterized by its own chemical shift, each

pair having a characteristic coupling constant. The corresponding frequency spectrum

will display multiplets of peaks at offsets Ωi for the given frequency ωrf . The rf pulse is

called hard or nonselective, when ∣ω1∣ ≫ ∣Ωi∣ for all i. A weak rf-field of either constant

or modulated amplitude or phase may be used to excite only one multiplet belonging to

a certain nucleus, while leaving the rest of the resonances untouched [16–22]. This is a

semi-selective pulse. When only one specific resonance is excited, such a pulse is called

selective [23, 24].

2.1.4 Longitudinal and Transverse Relaxation Experiments

Both the longitudinal and transverse relaxation time constants were introduced phe-

nomenologically by Bloch [9, 25]. Though they were introduced for the purpose of the

classical description of magnetization by means of the vector model, they are still valid

characteristics of individual nuclear centers.

The T1 constant describes reestablishment of the thermal-equilibrium population dis-

tribution after its perturbation. This process is connected with the transfer of excess energy

10



from excited nuclei to their surroundings. The value of T1 depends on the observed isotope

as well as on the sample properties as, e.g., its temperature T , viscosity η or self-diffusion

coefficient D. Oxygen dissolved within the sample may shorten T1 as well [14, 26].

Several methods exist for T1 determination [10, 14, 26]. The one used in this work is

the inversion recovery method [27, 28]. Its basic pulse sequence is shown in Figure 2.1(a).

Using Eqs. (2.28) and (2.29), the thermal equilibrium magnetization M0 is inverted by a

hard πx pulse of duration τp:

M(0) =M0
R(π,0,π/2)
ÐÐÐÐÐÐÐ→M(τp) = −M0 (2.31)

and left to relax towards equilibrium during a τ interval. Assume that τp ≪ τ , then:

M(τp)Ð→M(τ) =M0 (1 − 2 e−τ/T1) (2.32)

After the relaxation interval, another hard (π/2)x pulse converts the longitudinal magne-

tization into transverse magnetization, which is detected:

M−(t) = iM0 [1 − 2 exp(−τ/T1)] exp[i(Ωt − ϕ) − t/T2] (2.33)

When the same experiment is repeated for different values of τ , the T1 value may be

determined from a plot of signal intensity vs. τ interval, shown in Figure 2.1(b). T1 may

also be estimated from the zero-crossing time τzc = T1 ln 2.

Figure 2.1: The inversion recovery experiment. a) The rf pulse sequence. b) The longitu-

dinal magnetization recovery after inversion as a function of the τ interval. The magneti-

zation strength is zero for τ = τzc.

The inversion recovery method is advantageous because of its simplicity. It does not use

magnetic field gradients as, e.g., saturation recovery [10, 29]. However, thermal equilibrium

magnetization has to be reestablished before repeating the experiment. In practice, it takes

between 3 and 5 T1-intervals, which makes the method impractical in the case of long T1

values.

Transverse relaxation, characterized by the T2 time constant, is not connected with any

energy transfer. Its cause is a gradual loss of synchrony during the precession of individual
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spins due to magnetic field fluctuations on the microscopic scale. This homogeneous decay

is irreversible and results in the NMR signal fading away, see Eq. (2.29). The value of T2

depends on the sample phase, possible spin exchange taking place inside the sample, and

the molecular size as related to the respective molecular dynamics. In the liquid phase,

T2 ≤ T1 is the usual case [14].

Besides the homogeneous decay characterized by T2, the inhomogeneous decay exists as

well. On the one hand, it is caused by a macroscopic B0 field inhomogeneity over the sample

volume due to, e.g., instrumental imperfections or a nonuniform sample susceptibility. On

the other hand, transport processes (diffusion) contribute, too. The inhomogeneous decay

is reversible by means of a spin-echo method, which is treated in detail in Section 6.1.

Assuming the inhomogeneous decay is described by a time constant T ′2, then both T2 and

T ′2 combine into an apparent transverse relaxation time constant T ∗2 given by:

1

T ∗2
= 1

T2
+ 1

T ′2
(2.34)

Neither T ′2 nor T ∗2 bear any meaningful information about the studied spin system as

they are solely a result of the above mentioned processes within the sample volume. T ∗2

is, however, related to the full-width at half-maximum (FWHM) of the observed spectral

peaks, see Eq. (4.23), instead of the ideal T2.

2.1.5 Drawbacks of the Classical Approach

The Bloch approach to describe the classical evolution of nuclear magnetization was very

successful. Though it was originally suited only for isolated spins-1/2, either in its simplest

form or due to various ad hoc extensions, it allowed the explanation of different effects in

NMR such as chemical shifts, reaction kinetics, or diffusion [10, 26].

The inability to handle the internuclear couplings and its restriction to the description

of magnetization as a 3D vector hindered the classical model from universal use. It can-

not explain strong spin-spin coupling effects, evolution of the coupled spin system after

application of nonselective rf pulses, individual processes responsible for apparent T1 and

T2 relaxation, or magnetization transfer via forbidden transitions in general [2]. In order

to understand the nature of these and numerous other phenomena, the full quantum-

mechanical treatment of a realistic ensemble of interacting spins, with all the essential

properties taken into account, has to be used.
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2.2 Quantum-Mechanical Approach

2.2.1 From Individual Spins to the Spin Ensemble

The wavefunction formalism represents an intermediate step between the classical and full

quantum mechanical treatment of the spin system. It is capable of describing systems of a

few spins, but introduces important terms and concepts used in more advanced approaches

[2, 30].

Any state of the spin system is fully characterized by a wavefunction Ψ(t, τ). In Dirac

formalism, the wavefunction is represented by a ket ∣Ψ(t, τ)⟩ or its complex conjugate, a

bra ⟨Ψ(t, τ)∣. It is a function of time t and other relevant variables τ , and is normalized

to unity:

⟨Ψ(t, τ)∣Ψ(t, τ)⟩ = ∫
+∞

−∞
dτ Ψ∗(t, τ)Ψ(t, τ) = 1 (2.35)

When concentrating only on the time-dependence of ∣Ψ(t, τ)⟩, and using the natural units

(h̵ = 1), time evolution of the spin system is described by the Schrödinger equation:

∂

∂t
∣Ψ(t)⟩ = −iĤ(t) ∣Ψ(t)⟩ (2.36)

where Ĥ(t) is the Hamiltonian operator, which incorporates processes influencing the spin

system evolution. A detailed solution of (2.36) is provided in Appendix C. The solution

for a time-independent Hamiltonian is equal to, see Eq. (C.3):

∣Ψ(t)⟩ = Û(t,0) ∣Ψ(0)⟩ (2.37)

where Û is the propagation operator (propagator) of the system between the time-points

t1 and t2 defined by:

Û(t2, t1) = exp[−iĤ(t2 − t1)] for t1 ≤ t2 (2.38)

The propagator is a unitary operator (A.10), which obeys the following relationships:

Û(t, t) = Ê (2.39)

Û−1(t2, t1) = Û(t1, t2) (2.40)

Û(t3, t1) = Û(t3, t2) Û(t2, t1) (2.41)

where Ê is the identity operator, and t1 ≤ t2 ≤ t3.
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Formal integration of (2.36) for a time-dependent Hamiltonian is difficult to evaluate

in practice, and is replaced by an iterative scheme leading to the time-ordered exponen-

tial (C.10):

∣Ψ(t)⟩ = ˆ̂T exp [−i∫
t

t0
dt′ Ĥ(t′)] ∣Ψ(t0)⟩ (2.42)

where ˆ̂T is the Dyson time-ordering superoperator. If the continuous Hamiltonian Ĥ(t),

considered within a time interval tA ≤ tB, may be approximated by a series of piecewise con-

stant Hamiltonians Ĥi(t) within time intervals t ∈ [ti, ti+1], where tA ≡ t0 ≤ t1 ≤ . . . ≤ tk ≡ tB,

then, using Eq. (2.41), the solution of (2.36) is simply [30]:

∣Ψ(t)⟩ = Ûk−1(tk, tk−1) ⋅ . . . ⋅ Û0(t1, t0) ∣Ψ(0)⟩ (2.43)

Every quantum mechanical observable quantity A has associated a Hermitian operator

Â, satisfying the eigenvalue equation [2]:

Â∣ψi⟩ = λi∣ψi⟩ or ⟨ψi∣Â† = λ∗i ⟨ψi∣ (2.44)

∣ψi⟩ is the eigenfunction (eigenstate) and λi is the corresponding eigenvalue. The dagger

denotes adjoint operation, see Eq. (A.8). Hermiticity (A.9) of Â implies λ = λ∗ is real.

In a system of N distinct spins Ii, there exist N different energy eigenstates ∣ψi⟩, each

having an energy Ei:

Ĥ ∣ψi⟩ = Ei∣ψi⟩ (2.45)

where N is given by:

N =
N

∏
k=1

(2Ik + 1) (2.46)

The time-independent eigenstates are orthonormal:

⟨ψi∣ψj⟩ = δi,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = j

0 if i ≠ j
(2.47)

The symbol δi,j is the Kronecker delta. A complete set of N eigenstates forms a basis

(eigenbasis), common for all observable operators. Any wavefunction may be expressed as

a linear combination of the eigenstates [31]:

∣Ψ(t)⟩ =
N

∑
j=1

cj(t)eiφj ∣ψj⟩ (2.48)

Here eiφj is the phase of the jth eigenstate, which is not provided by solution of (2.36). It

uniquely determines ∣ψj⟩, which solves (2.36) as well. The coefficients cj(t) are generally

complex, time-dependent and normalized:

N

∑
j=1

c∗j (t)cj(t) =
N

∑
j=1

∣cj(t)∣2 =
N

∑
j=1

pj = 1 (2.49)
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The coefficients cj(t) quantify the contribution of the eigenstate ∣ψj⟩ to ∣Ψ(t)⟩. Their

square denotes the probabilities pj . Therefore, Eq. (2.49) expresses that the sum over

probabilities of all possible states is equal to one.

The operator Â may be expressed in the form of a N ×N matrix in the considered

basis. The matrix elements are given by:

Aij = ⟨ψi∣Â∣ψj⟩ = ∫
+∞

−∞
dτ ψ∗i Âψj (2.50)

An expectation value of the observable A, when the system is in the state ∣Ψ(t)⟩, is then

given by:

⟨A⟩ = ⟨Ψ(t)∣Â∣Ψ(t)⟩ (2.51)

Despite its usefulness, the wavefunction formalism cannot be extended to describe

bigger molecules or even macroscopic spin ensembles [30]. Firstly, since the whole system

is described by only one wavefunction, inclusion of all degrees of freedom for all spins

makes it a very complicated and an enormously sizable object. Secondly, for an NMR

sample containing ∼1020 spins, it is unlikely that all spins of the ensemble would be in

the same pure state described by a single state wavefunction. All these difficulties may be

overcome by means of the density operator formalism [32, 33].

2.2.2 Spin Density Operator

Assume first an idealized spin ensemble in a pure state, described by the single wavefunc-

tion ∣Ψ(t)⟩. The density operator is defined as [10]:

ρ̂(t) = ∣Ψ(t)⟩⟨Ψ(t)∣ =
N

∑
i,j=1

ci(t)c∗j (t)ei(φi−φj)∣ψi⟩⟨ψj ∣ (2.52)

The density operator ρ̂(t) is the projection operator:

ρ̂(t)∣Φ(t)⟩ = ∣Ψ(t)⟩⟨Ψ(t)∣Φ(t)⟩ = λΦ∣Ψ(t)⟩ (2.53)

The eigenvalue λΦ denotes an amount of ∣Φ(t)⟩ contained in ∣Ψ(t)⟩. The matrix form of

the density operator in the given eigenbasis is a N ×N density matrix:

ρmn(t) = ⟨ψm∣ρ̂(t)∣ψn⟩ =
N

∑
i,j=1

ci(t)c∗j (t)ei(φi−φj)⟨ψm∣ψi⟩⟨ψj ∣ψn⟩ = cm(t)c∗n(t)ei(φm−φn)

(2.54)

The diagonal elements, ρmm(t), give the probability that the spin ensemble is in the

eigenstate ∣ψm⟩:

ρmm(t) = cm(t)c∗m(t) = ∣cm(t)∣2 = Pm (2.55)
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Pm is called the population of the eigenstate ∣ψm⟩, and is associated with the operator

∣ψm⟩⟨ψm∣. The existence of nonzero off-diagonal elements:

ρmn(t) = cm(t)c∗n(t)ei(φm−φn) , m ≠ n (2.56)

implies that the wavefunction ∣Ψ(t)⟩ contains a coherent superposition (coherence) of the

eigenstates:

cm(t)eiφm ∣ψm⟩ + cn(t)eiφn ∣ψn⟩ (2.57)

This means that the evolution of different spin sub-ensembles is correlated to the coherence

∣ψm⟩⟨ψn∣, of which ρmn(t) is the complex amplitude.

The coherences correspond to transitions between the corresponding eigenstates. The

difference in the (total) magnetic quantum numbers of the eigenstates ∣ψr⟩ and ∣ψs⟩:

p =mr −ms (2.58)

denotes the p-quantum coherence. Only the transitions with p = ±1 (single quantum co-

herences) give rise to the observable NMR signal. Coherences with p ≠ ±1 may only be

observed indirectly [10].

As a consequence of the interactions of individual spins with their surroundings, the

spin ensemble is in a mixed state. Different states, characterized by the wavefunctions

∣Ψλ(t)⟩, are populated with probabilities pλ by sub-ensembles of the spins. A generalized

form of the density operator is then [10]:

ρ̂(t) = ∑
λ

pλ∣Ψλ(t)⟩⟨Ψλ(t)∣

= ∑
λ

pλ
N

∑
i,j=1

cλi (t)cλ∗j (t)ei(φλi −φ
λ
j )∣ψi⟩⟨ψj ∣

=
N

∑
i,j=1

ci(t)c∗j (t)ei(φi−φj)∣ψi⟩⟨ψj ∣

(2.59)

Also the probabilities pλ obey Eq. (2.49). The overbar denotes the ensemble average.

The trace (A.14) of the density operator is given by:

Tr{ρ̂(t)} ≡
N

∑
j=1

ρjj(t) =
N

∑
j=1

∣cj(t)∣2 =
N

∑
j=1

Pj = 1 (2.60)

Different results are obtained for the trace of ρ̂2(t). For a spin ensemble in a pure state:

Tr{ρ̂2(t)} = Tr{∣Ψ(t)⟩⟨Ψ(t)∣Ψ(t)⟩⟨Ψ(t)∣} = Tr{∣Ψ(t)⟩⟨Ψ(t)∣} = Tr{ρ̂(t)} = 1 (2.61)
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Knowledge of the behaviour of any sub-ensemble means knowledge of the behaviour of the

ensemble. The ensemble in a general mixed state obeys:

Tr{ρ̂2(t)} < 1 (2.62)

This means that knowledge of the behaviour of sub-ensembles says nothing about the

ensemble as a whole. If ρ̂2(t) = ρ̂(t), the density operator is idempotent [10].

The time evolution of the density operator may be derived as follows, taking into

account Eqs. (2.36) and (2.52):

∂

∂t
ρ̂(t) = ∂

∂t
∣Ψ(t)⟩⟨Ψ(t)∣

= [ ∂
∂t

∣Ψ(t)⟩] ⟨Ψ(t)∣ + ∣Ψ(t)⟩ [ ∂
∂t

⟨Ψ(t)∣]

= −iĤ(t)ρ̂(t) + iρ̂(t)Ĥ(t)

= −i[Ĥ(t), ρ̂(t)]

(2.63)

where [⋅, ⋅] is the commutator (A.17). Eq. (2.63) is called the Liouville-von Neumann

equation. Its solution may be written in the most general form using Eq. (2.37):

ρ̂(t) = ∣Ψ(t)⟩⟨Ψ(t)∣ = Û(t,0)∣Ψ(0)⟩⟨Ψ(0)∣Û−1(t,0) = Û(t,0) ρ̂(0) Û−1(t,0) (2.64)

The expectation value of the observable A is given by:

⟨A⟩ = Tr{ρ̂(t) Â} = Tr{Â ρ̂(t)} (2.65)

where Eqs. (2.50), (2.51), (2.59), and (2.60), and the relationship (A.16) were taken into

account.

2.2.3 Superoperators

As shown in Section 2.2.2, the density operator formalism often involves commutators

or double-sided multiplications. As a consequence, the description of complex NMR ex-

periments eventuates in extensive expressions, which may also become computationally

demanding [30]. A simplification of the formalism is possible by introducing superopera-

tors [34].

In analogy with operators, represented by N ×N matrices, which act on the wavefunc-

tions, represented byN×1 vectors, the superoperators are represented byN 2×N 2 matrices,

and act on such operators. The operators are rearranged column-wise into N 2 × 1 column

supervectors, and the application of the superoperators simplifies into matrix-vector mul-

tiplication.
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Assume a complete basis {B̂i} ofN 2 orthogonal operators with the trace metric defined

by the scalar product [10]:

(B̂i∣B̂j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Tr{B̂†
i B̂i} for i = j

0 for i ≠ j
(2.66)

where ( ⋅ ∣ ⋅ ) is called the Liouville bracket, which is defined by [34]:

(Â∣B̂) = Tr{Â†B̂} =
N

∑
i,j=1

Â†
jiB̂ij =

N 2

∑
ij=1

Â∗
ijB̂ij (2.67)

The first sum is appled to the operator matrix representations and the second sum is

applied to the supervectors of the operators Â and B̂. Any operator Â, including ρ̂, may

be expanded in this basis:

Â =
N 2

∑
i=1

aiB̂i (2.68)

where the mixing coefficients ai are given by:

ai =
(B̂i∣Â)
(B̂i∣B̂i)

=
Tr{B̂†

i Â}
Tr{B̂†

i B̂i}
(2.69)

The matrix representation of the superoperator, which is denoted by a double hat, in

a suitable orthonormal operator basis {B̂i}, where (B̂i∣B̂i) = 1, is then:

ˆ̂Sij = (B̂i∣ ˆ̂S∣B̂j) = Tr{B̂†
i

ˆ̂SB̂j} (2.70)

Similarly with the operators, the superoperators may be Hermitian or unitary.

Several important classes of superoperators, which are used in the rest of the text, will

be introduced now.

2.2.3.1 Commutation Superoperators

The commutation superoperator ˆ̂C generates the commutator of two operators [10]:

ˆ̂CÂ = [Ĉ, Â] = ĈÂ − ÂĈ (2.71)

The matrix representation of the superoperator ˆ̂C is constructed from the matrix repre-

sentations of the operator Ĉ and unity operator Ê as follows:

ˆ̂C = Ĉ ⊗ ÊT − Ê ⊗ ĈT (2.72)

where the symbol ⊗ denotes the Kronecker product (A.18). If Ĉ is Hermitian, ˆ̂C is Her-

mitian as well.
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Commutation superoperators are often associated with Hamiltonians and involve dif-

ferent combinations of spin operators Î. An important example is the Liouvillian ˆ̂L(t),

which simplifies the Liouville-von Neumann equation (2.63):

∂

∂t
ρ̂(t) = −i [Ĥ(t), ρ̂(t)] ≡ −i ˆ̂L(t)ρ̂(t) (2.73)

2.2.3.2 Cyclic Commutation

A special case of the commutation superoperator is the double-commutator superopera-

tor [10]:

ˆ̂C2
ˆ̂C1 Â = ˆ̂C2 [Ĉ1, Â] = [Ĉ2, [Ĉ1, Â]] (2.74)

Two operators Â and B̂ commute cyclically, if [31]:

ˆ̂A ˆ̂AB̂ = B̂ (2.75)

The product ˆ̂AB̂ gives rise to another operator iĈ. By using all three operators, the cyclic

commutation relationships may be rewritten as follows:

ˆ̂AB̂ ≡ [Â, B̂] = iĈ ⇐⇒
Â

Ĉ↻B̂ (2.76)

A generalized form of Eq. (2.75) is given by [31]:

ˆ̂AkB̂ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ˆ̂AB̂ for odd k

B̂ for even k
(2.77)

from which an important equivalence may be derived:

exp (−iθ ˆ̂A) B̂ =
⎛
⎝

∞

∑
k=0

(−iθ ˆ̂A)k

k!

⎞
⎠
B̂

= B̂ (
∞

∑
k=0

(iθ)2k

(2k)!
) + ˆ̂AB̂ (

∞

∑
k=0

(−iθ)2k+1

(2k + 1)!
)

= B̂ cos θ − i ˆ̂AB̂ sin θ

= B̂ cos θ + Ĉ sin θ

(2.78)

Relationship (2.78) is used during the evaluation of effects of the rf pulses and intervals of

free evolution on the spin state represented by the density operator. Its shorthand is an

arrow notation in NMR experiments:

B̂
θÂÐÐ→ B̂ cos θ + Ĉ sin θ (2.79)

The Cartesian spin operators obey the cyclic commutation relationships:

[Îx, Îy] = iÎz ⇐⇒
x

z↻y (2.80)
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As an example, the application of a πx pulse on the equilibrium magnetization ρ̂(0) ≡ Îz

gives:

ˆ̂Rx(π) ρ̂(0) ≡ exp (iπ ˆ̂Ix) Îz = −Îz ⇐⇒ Îz
π ÎxÐÐÐ→ −Îz (2.81)

ˆ̂Rx(θ) is a rotation superoperator generating rotation around the x-axis by an angle θ.

2.2.3.3 Unitary Transformation Superoperators

The rotation superoperator in Eq. (2.81) belongs to a group of unitary transformation

superoperators ˆ̂U . Such operators replace the double-sided operator multiplication [10]:

ˆ̂UÂ = exp (−i ˆ̂C) Â = exp (−iĈ) Â exp (iĈ) = Û ÂÛ−1 (2.82)

where ˆ̂C is the commutation superoperator. The matrix representation of ˆ̂U is constructed

from the matrix representations of the operator Û as follows:

ˆ̂U = Û ⊗ Û−1 (2.83)

Unitary transformation operators are used as, e.g., propagator superoperators. Assume

that the spin system evolves from its initial state ρ̂(0) under the action of different time-

independent Hamiltonians Ĥ1 and Ĥ2 for time intervals τ1 and τ2, respectively. By using

the arrow representation, the set of events is:

ρ̂(0) Ĥ1τ1ÐÐÐÐ→ Ĥ2τ2ÐÐÐÐ→ ρ̂(τ1 + τ2) (2.84)

which is equivalent to:

ρ̂(τ1 + τ2) = ˆ̂U2(τ1 + τ2, τ1) ˆ̂U1(τ1,0) ρ̂(0)

= exp (−i ˆ̂H2τ2) exp (−i ˆ̂H1τ1) ρ̂(0)

= exp (−iĤ2τ2) exp (−iĤ1τ1) ρ̂(0) exp (iĤ1τ1) exp (iĤ2τ2)

(2.85)

Another important example is the transformation between the laboratory and the rotating

frames, see Eq. (2.118).

2.2.3.4 Projection and Shift Superoperators

A projection superoperator is related to the density operator, see Eq. (2.53) [10]:

ˆ̂PB =
∣B̂)(B̂∣
(B̂∣B̂)

⇐⇒ ˆ̂PB Â = Tr{B̂†Â}
Tr{B̂†B̂}

B̂ = aB B̂ (2.86)

where the coefficient aB denotes the amount of Â in B̂. The normalized projection super-

operators are idempotent.
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A shift superoperator is a generalized version of the projection superoperator [35]:

ˆ̂PBA =
∣B̂)(Â∣
(B̂∣B̂)

(2.87)

2.2.4 Two Spin-1/2 System Description

Assume a homonuclear pair (N = 2) of coupled spins-1/2 in isotropic phase. Such a spin

system occupies N = 4 energy eigenstates, see Eq. (2.46). Each eigenstate is described by:

∣ψi⟩ =
N

⊗
k=1

∣mki⟩ = ∣m1im2i⟩ (2.88)

which is given by the Kronecker product of single spin-1/2 eigenkets:

∣α⟩ = (1,0)T for mki = +1/2

∣β⟩ = (0,1)T for mki = −1/2
(2.89)

Therefore, there exist states with total magnetic quantum number Mi equal to 0 and ±1,

where.

Mi =
N

∑
k=1

mki (2.90)

The corresponding operator basis consists of N 2 = 16 operators and in total N 4 = 256

linearly independent superoperators. The basis operators {B̂s} are constructed from the

Pauli matrices Îα, where α = {x, y, z}, and unity operator Ê , defined in Eq. (D.2), following

a general recipe [10]:

B̂s = 2(q−1)
N

⊗
k=1

(Îkα)aks (2.91)

Here q = {0,1, . . . ,N} is the number of operators Îkα in the product. aks = 1 for q of the

operators and aks = 0 for the other (N − q) operators, while (Îkα)0 = Ê . Concretely:

q = 0 ∶ Ê/2

q = 1 ∶ Î1x, Î1y, Î1z, Î2x, Î2y, Î2z

q = 2 ∶ 2Î1xÎ2x, 2Î1xÎ2y, 2Î1xÎ2z

2Î1y Î2x, 2Î1y Î2y, 2Î1y Î2z

2Î1z Î2x, 2Î1z Î2y, 2Î1z Î2z

The basis operators are orthogonal in the following sense [10]:

(B̂r∣B̂s) = δr,s 2N−2 (2.92)

The Cartesian spin operators are convenient, since they provide an insight into the

magnetization evolution. Consequently, some of the operators bear special names either
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due to their relation to the vector model, or due to the spectral appearance, when such

operators are included in the spin-system density operator, see Appendix D.3.

The basic form of the two spins-1/2 Hamiltonian in the rotating frame is:

Ĥ = Ω1Î1z +Ω2Î2z + 2πJ12 Î1 ⋅ Î2 (2.93)

where the first two terms belong to the Zeeman Hamiltonian ĤZ (2.114), and the third

term is called the J-coupling Hamiltonian ĤJ (2.122).

The description of the spin system differs according to the relative contribution of ĤZ

and ĤJ into the total Hamiltonian Ĥ. The two extreme cases are the weakly and strongly

coupled spin systems, for which ∣Ω1 −Ω2∣ ≫ ∣πJ12∣ and ∣Ω1 −Ω2∣ ≲ ∣πJ12∣, respectively. The

coupling strength may also be expressed by a mixing angle [36]:

tan Θ = Ω1 −Ω2

2πJ12
= −γB0 (δ1 − δ2)

2πJ12
(2.94)

For a weakly coupled spin system, Θ ≈ ±π/2, while for a strongly coupled spin system,

Θ ≈ 0. The intermediate case, when ∣Θ∣ ∈ (0, π/2), is treated in detail in Section 7.2.2.

A weakly coupled spin system, including the spin-spin coupling, is conveniently de-

scribed by the product operator formalism, used above. The eigenstates are described by

the Zeeman product states (2.88):

∣αα⟩ = (1,0,0,0)T

∣αβ⟩ = (0,1,0,0)T

∣βα⟩ = (0,0,1,0)T

∣ββ⟩ = (0,0,0,1)T

(2.95)

The Hamiltonian Ĥ (2.93) may be rearranged into:

ĤW = Ω1Î1z +Ω2Î2z + 2πJ12 Î1z Î2z
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ĤA

+πJ12(Î+1 Î−2 + Î−1 Î+2 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ĤB

(2.96)

where Î±k are the shift operators defined by Eq. (D.8). The matrix representation of ĤW

is given by:

ĤW = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣αα⟩ ∣αβ⟩ ∣βα⟩ ∣ββ⟩

ΩΣ + πJ12 0 0 0

0 Ω∆ − πJ12 2πJ12 0

0 2πJ12 −Ω∆ − πJ12 0

0 0 0 −ΩΣ + πJ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟨αα∣

⟨αβ∣

⟨βα∣

⟨ββ∣

(2.97)
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where:

ΩΣ = Ω1 +Ω2 (2.98)

Ω∆ = Ω1 −Ω2 (2.99)

The four diagonal elements belong to the Hamiltonian ĤA. The presence of nonzero off-

diagonal elements, arising from the Hamiltonian ĤB, means that the Zeeman product

states are not the exact eigenstates. Nonetheless, under the secular approximation [14]:

∣Ĥ23∣ = ∣Ĥ32∣ ≪ ∣Ĥ22 − Ĥ33∣ ⇐⇒ ∣πJ12∣ ≪ ∣Ω∆∣ (2.100)

the Hamiltonian ĤB may be omitted and ĤW ≈ ĤA becomes diagonal.

A strongly coupled pair may be attained in two different ways. On the one hand, by

choosing magnetically (nearly-)equivalent spins, where their chemical shifts are close and

the two spins have similar couplings to other nuclei in the molecule [14]. On the other

hand, by placing the spin system, which is weakly coupled in the spectrometer high field

BHF, into a very low field BLF ≪ BHF. The outcome in both cases is that ∣Ω∆∣ ≲ ∣πJ12∣.

Assume that the two chemical shifts are the same, so that Ω1 = Ω2 ≡ Ω′. The Hamilto-

nian (2.93) then simplifies into [14]:

ĤS = Ω′Îz + 2πJ12 Î1 ⋅ Î2 (2.101)

where the total spin operator Îz is defined by Eq. (D.16). The eigenstates of Hamiltonian

(2.101) are the so-called singlet state ∣S0⟩ and three triplet states ∣TMi⟩:

∣S0⟩ =
∣αβ⟩ − ∣βα⟩√

2

∣T+1⟩ = ∣αα⟩

∣T0⟩ =
∣αβ⟩ + ∣βα⟩√

2

∣T−1⟩ = ∣ββ⟩

(2.102)

The matrix representation of the Hamiltonian in the singlet-triplet basis equals:

ĤS =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣S0⟩ ∣T+1⟩ ∣T0⟩ ∣T−1⟩

−3π J12 0 0 0

0 2Ω′ + π J12 0 0

0 0 π J12 0

0 0 0 −2Ω′ + π J12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟨S0∣

⟨T+1∣

⟨T0∣

⟨T−1∣

(2.103)

In the case that B0 ≈ 0, the three triplet states become degenerate with an energy separated

by 2πJ12 from the singlet state, as shown later in Figure 7.1.

23



Knowledge of the density operator allows determination of the frequency spectrum ap-

pearance, i.e., positions and intensities of the peaks. Assume the NMR signal is generated

by the (−1)-quantum coherences between the energy levels with frequencies Ωr and Ωs,

where r, s = {αα,αβ, βα,ββ} and r ≠ s. The NMR signal is given by [14]:

s(t) =
4

∑
r,s=1

ars exp [(iΩrs − λ)t] (2.104)

where ars are the complex signal amplitudes, to which the intensities of the spectral peaks

are proportional. The spectral peaks appear at positions given by the frequency differences

between the corresponding pairs of the neighbouring levels:

Ωrs = −Ωr +Ωs (2.105)

The detected magnetization is proportional to the expectation value of the shift operator

Î−, which represents the (−1)-quantum coherence:

M−(t)∝ ⟨Î−⟩ = Tr{ρ̂(t)Î−} =∑
r,s

ρ̂rs(t)⟨s∣Î−∣r⟩ (2.106)

The terms ρ̂rs(t) arise from the density matrix expansion:

ρ̂(t) =
4

∑
r,s=1

ρrs(t) ∣r⟩⟨s∣ (2.107)

Therefore, the signal amplitudes ars at time zero are given by:

ars = 2iρrs(0)⟨s∣Î−∣r⟩ e−iφrec (2.108)

where the additional receiver phase φrec results from the spectrometer electronics.

2.2.5 Averaging and Residual Interactions in Solution NMR

A Hamiltonian ĤΛ, which describes a specific spin interaction Λ, may in general be written

as [2, 10]:

ĤΛ = uTΛv (2.109)

The vector u stands for the Cartesian spin angular momentum operator vector (D.1). The

vector v may either be of the same type as u, or may denote the magnetic field vector B.

Λ represents a 3 × 3 Cartesian second-rank tensor:

Λ =

⎛
⎜⎜⎜⎜⎜
⎝

Λxx Λxy Λxz

Λyx Λyy Λyz

Λzx Λzy Λzz

⎞
⎟⎟⎟⎟⎟
⎠

(2.110)
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comprising the effect of the interaction under consideration on the given spin. The tensor

Λ may be decomposed into three irreducible tensors of rank 0, 1 and 2:

Λ = Λ(0) +Λ(1) +Λ(2) (2.111)

where:

Λ(0) = 1

3
Tr{Λ}E3 ≡ Λiso

Λ(1) = 1

2
(Λ −ΛT)

Λ(2) = 1

2
(Λ +ΛT) −Λ(0)

(2.112)

The first term Λ(0) is a scalar multiplied by the unit matrix E3 defined by Eq. (A.11).

The second term Λ(1) is a traceless antisymmetric tensor, see the definitions in Eqs. (A.6)

and (A.15). It leaves unchanged the spin system energy levels and, therefore, the frequency

spectrum. The third term Λ(2) is a traceless symmetric tensor (A.5). It becomes diagonal

in the principal axis coordinate system (PAS) of the interaction Λ. Except for the chemical-

shift anisotropy (CSA) interaction [37], Λ(1) may be left out and the only tensors, which

remain for describing the observed effects, are Λ(0) and Λ(2).

In isotropic solutions such as a low-concentrated solution of a measured compound,

molecules (but not spins) may be found in any possible orientation with respect to the

static magnetic field B0 due to their thermal motion. Nevertheless, Hamiltonian rotational

invariance, i.e., [R̂α(θ), Ĥ] = 0, limits the types of interactions under consideration.

The dominant Zeeman interaction, linear in the spin operators, is described by the

Zeeman Hamiltonian ĤZ [10]:

ĤZ = −
N

∑
k=1

γkÎk(E3 + δk)B0 (2.113)

where Îk and δk are the spin operator and the chemical shift tensor of the spin k, respec-

tively, and B0 is the static magnetic field. Under assumptions that B0 is aligned along

the z-axis and the norm (A.13) of δk is small, i.e., ∥δk∥F ≪ 1, the Hamiltonian ĤZ may

be approximated by:

ĤZ ≈
N

∑
k=1

[−γk(1 + δiso
k )B0] Îkz =

N

∑
k=1

ω0kÎkz (2.114)

where δiso
k is the motionally averaged isotropic chemical shift, and ω0k is the chemically

shifted Larmor frequency.
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Similarly with Eq. (2.14), the Hamiltonian Ĥrf represents the interaction of the spins

with the radiofrequency field [10]:

Ĥrf = −B1

N

∑
k=1

γk[cos(ωrft + ϕ)Îkx + sin(ωrft + ϕ)Îky]

=
N

∑
k=1

ω1k[cos(ωrft + ϕ)Îkx + sin(ωrft + ϕ)Îky]
(2.115)

The meaning of all frequency- and field-related quantities remains the same as in Sec-

tion 2.1.

The transformation into the rotating frame changes the laboratory-frame Hamiltonians

ĤZ and Ĥrf correspondingly:

ˆ̃HZ = ˆ̂U−1(t) ĤZ =
N

∑
k=1

(ω0k − ωrf)Îkz =
N

∑
k=1

ΩkÎkz (2.116)

ˆ̃Hrf = ˆ̂U−1(t) Ĥrf =
N

∑
k=1

ω1k [cosϕ Îkx + sinϕ Îky] (2.117)

where the unitary transformation superoperator is given by:

ˆ̂U(t) = exp (−iωrft
ˆ̂Iz) (2.118)

The transformation of the density operator and the Liouville-von Neumann equation are

performed in Appendix E in detail. The resulting relationships are:

ˆ̃ρ(t) = ˆ̂U−1(t) ρ̂(t) (2.119)

∂

∂t
ˆ̃ρ(t) = −i [ ˆ̃H(t) − ωrf Îz, ˆ̃ρ(t)] (2.120)

The indirect spin-spin coupling, mediated by electrons, bilinear in the spin operators,

is described by [10]:

ĤJ = 2π∑
k<l

ÎkJklÎl (2.121)

where only the isotropic part Jkl of the spin-spin coupling tensor Jkl is retained:

ĤJ ≈ 2π∑
k<l

Jkl Îk ⋅ Îl ≈ 2π∑
k<l

Jkl Îkz Îlz (2.122)

The first sum in (2.122) holds generally, while the second approximate expression is valid

for weakly coupled spin pairs. The factor 2 belongs to the product of the two spin operators,

and the factor π arises due to a convention of expressing Jkl in Hz.

The intramolecular direct dipolar (DD) interaction between the nuclear angular mo-

ments is given by [10]:

ĤDD =∑
k<l

bkl (Îk ⋅ Îl −
3(Îk ⋅ rkl)(Îl ⋅ rkl)

∣rkl∣2
) , bkl = −

µ0

4π

γkγlh̵

r3
kl

(2.123)
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where bkl is the dipolar coupling constant in SI units. In solution NMR of isotropic liquids,

the dipolar contribution is neglected, except when relaxation is considered.

The quadrupolar interaction is quadratic in the spin operators:

ĤQ =
N

∑
k=1

ÎkQkÎk (2.124)

where Qk is the quadrupolar coupling tensor:

Qk =
eQk

2Ik(2Ik − 1)h̵
V k (2.125)

Qk is the nuclear quadrupolar moment and Vk is the electric field gradient at the site of the

nucleus. The quadrupolar interaction exists only for nuclei with spins I > 1/2. Nevertheless,

it causes scalar relaxation of the second kind, mentioned in Section 5.2.

To summarize, the total rotating-frame Hamiltonian, which is valid for coupled

spins-1/2 in solution NMR of isotropic liquids, has the form:

ˆ̃H = ˆ̃HZ + ˆ̃Hrf + ĤJ (2.126)

where ˆ̃HZ, ˆ̃Hrf and ĤJ are given by Eqs. (2.116), (2.117) and (2.122), respectively.
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Chapter 3

Nuclear Singlet States

3.1 Singlet and Triplet States

Compared to well-known electronic singlet states, nuclear singlet states were relatively ne-

glected by NMR spectroscopists from the very beginning of the nuclear physics and quan-

tum mechanics. It appeared in experiments with hydrogen (H2) gas only during 1980’s

[38]. When H2 was used during hydrogenation reaction, an unexpected SNR enhancement

was detected by means of NMR with a characteristic anti-phase peak patterns [39, 40].

The signal intensity increased with increasing duration of hydrogenation and decreas-

ing sample temperature. However, since the hydrogenation was catalyzed by transition

metal ions, which provide unpaired electrons, the experiments were included in the family

of Chemically Induced Dynamic Nuclear Polarization (CIDNP) methods [41–44]. Fortu-

nately, the role of para-H2 was revealed soon, which led to development of new techniques

for the NMR signal enhancement called Parahydrogen Induced Polarization (PHIP) [45],

see Section 3.3.

Except for observation, all para-H2 experiments managed without any NMR interven-

tion. The nuclear singlet state was believed to be an exclusive property of H2 and other

extraordinary symmetric molecules such as H2O in a fullerene cage, which was proven ex-

perimentally much later [46]. In 2004, Professor Levitt and his coworkers Dr. Carravetta

and O. G. Johannessen succeeded in generating the nuclear singlet state purely by means

of NMR [47, 48]. They demonstrated that the singlet state may be produced in other

common molecules, too [49, 50].
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3.2 Singlet State Properties

The singlet and triplet states, as introduced in Section 2.2.4, are states with the total spin

quantum numbers I = 0 and 1 and the total magnetic quantum numbers Mi = 0 and ±1:

Îz ∣S0⟩ = 0 Îz ∣TMi⟩ =Mih̵ ∣TMi⟩

Î2 ∣S0⟩ = 0 Î2 ∣TMi⟩ = 2h̵2 ∣TMi⟩
(3.1)

Due to spin zero, the singlet state is nonmagnetic and generates no NMR signal, see

Eq. (2.9). The detectable magnetization belongs exclusively to the triplet manifold.

The singlet state is antisymmetric under the spin exchange operation, whereas the

triplet states are symmetric. Assume a generalized idempotent permutation operator P̂ij ,

swapping spins at the ith and jth positions, defined as:

P̂ij ∣ . . . risj . . .⟩ = ∣ . . . sirj . . .⟩ (3.2)

where r, s = {α,β}. Using definitions of ∣S0⟩ and ∣TMi⟩ from Eq. (2.102), then:

P̂12 ∣S0⟩ = −∣S0⟩

P̂12 ∣TMi⟩ = ∣TMi⟩
(3.3)

Once there exists a difference between the singlet state population and the mean popu-

lation of the triplet manifold (singlet order), a transition between the antisymmetric and

symmetric combinations of spins is only possible through processes, which themselves are

antisymmetric with respect to the spin exchange. The dominant relaxation process in so-

lution NMR, the intramolecular direct dipolar (DD) relaxation, is exchange-symmetric.

This makes the singlet state immune to DD relaxation and causes it to relax slower. In

comparison, the triplet manifold equilibrates with the longitudinal relaxation time con-

stant T1. The singlet state relaxation time constant TS may be an order of magnitude

longer than T1. An exceptional example is TS/T1 ≈ 37 [51, 52].

The singlet state may only be maintained in the magnetically nearly-equivalent spin

system, when ∣Ω∆∣ ≪ ∣πJ12∣. Rewriting the Hamiltonian Ĥ (2.93) in the matrix represen-

tation of the singlet-triplet basis gives:

Ĥ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣S0⟩ ∣T+1⟩ ∣T0⟩ ∣T−1⟩

−3π J12 0 Ω∆ 0

0 ΩΣ + π J12 0 0

Ω∆ 0 π J12 0

0 0 0 −ΩΣ + π J12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟨S0∣

⟨T+1∣

⟨T0∣

⟨T−1∣

(3.4)
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The nondiagonal elements between the singlet ∣S0⟩ and the central triplet ∣T0⟩ states

depend on the magnetic field strength and the chemical shift difference. In the case of

magnetic (near-)equivalence, they may be neglected. If ∣Ω∆∣ ≳ ∣πJ12∣, such elements cause

mixing of the populations of these states, and therefore relaxation of the populations. This

fast relaxation precludes possible observation of the singlet state.

3.3 Singlet State Experiments

Experiments using singlet states as a probe into the micro-world are based on intentional

imposing or breaking of the exchange symmetry of the coupled nuclear sites, i.e., switching

magnetic equivalence or inequivalence of the nuclear environments. Feasible techniques for

doing this are magnetic field cycling, high-field techniques, and chemical reactions [49, 50].

3.3.1 Field-Cycling

Magnetic-field cycling is a subject of the first submitted paper on the singlet state pre-

pared purely by means of NMR [48]. As an inspiration served the para-H2 experiment

ALTADENA [53], described in Section 3.3.3. Initially the weakly-coupled spin pair is

transformed into the strongly-coupled one by moving a sample from high field BHF of

several tesla within the spectrometer to low field BLF of order of millitesla (or less) at a

certain position outside the magnet. Such a low field is a superposition of a stray field

from the spectrometer underneath, which is directionally and temporally constant, and

other magnetic fields from surrounding wirings and appliances, which may vary.

The current experimental setup is shown in Figure 3.1. A sample tube is fixed in a

sample holder, which is attached to a string. A stepper motor drives a winch and lifts the

sample up and down. The whole transport is controlled by a spectrometer console and

synchronized with a corresponding pulse sequence.

When the sample is inserted into the spectrometer field, the equilibrium magnetization

builds up. Subsequently, a precursor state, denoting a nonequilibrium population of energy

levels, may be prepared by using a sequence of rf pulses (PS1). Transport between the two

positions proceeds adiabatically. This means that the magnetic field change is slow enough

that both the energy levels and their populations follow steadily. The correspondence
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Figure 3.1: The magnetic-field cycling experiment. An initially weakly-coupled spin pair

in high field (left) becomes strongly-coupled in low field (centre). The transport between

the different magnetic fields is adiabatic. The high-field populations smoothly transform

into the low-field populations. After relaxation in the low field, the sample is returned

back into the spectrometer for observation (right).

between the high-field and low-field states is given by [53]:

signJ12 = sign(Ω1 −Ω2) ∶ ∣αα⟩↔ ∣T+1⟩, ∣αβ⟩↔ ∣T0⟩, ∣βα⟩↔ ∣S0⟩, ∣ββ⟩↔ ∣T−1⟩ (3.5)

signJ12 ≠ sign(Ω1 −Ω2) ∶ ∣αα⟩↔ ∣T+1⟩, ∣αβ⟩↔ ∣S0⟩, ∣βα⟩↔ ∣T0⟩, ∣ββ⟩↔ ∣T−1⟩ (3.6)

After storing the sample in the low-field for a variable time interval, the sample is adiabati-

cally returned back into the spectrometer. Another series of rf pulses (PS2) is immediately

applied to the generated post-cursor state, and the NMR signal is detected.

Field-cycling was successfully used to generate singlet state in pairs of 1H [48, 54], 13C

[55, 56] and in 15N pairs in the case of doubly labelled 15N2O [57–61]. The theoretical

treatment of field-cycling is summarized in [36, 53, 62]. This technique is the main subject

of this work and will be treated in detail in Section 7.2.
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3.3.2 High-Field Techniques

The high-field techniques may be divided into three distinct groups according to the

strength of the in-pair spin-spin coupling. Spin-locking is used in the case of weakly-

coupled spin pairs [47]. For nearly-equivalent spins, pulse sequences called M2S and S2M

are used to convert magnetization (M) into singlet order (S) and vice versa [56, 59, 63–67].

Once the singlet order is generated, it lives for extended time intervals in high field without

any other pulse sequence. Finally, experiments with more than two spins-1/2 exist, where

the singlet state was successfully produced, maintained and observed [68–70].

3.3.2.1 Spin-Locking Technique

The spin-locking experiment, as shown in Figure 3.2, is based on the transformation of

the initial longitudinal magnetization ρ̂1 ∝ Îz into a zero-quantum coherence, by using a

sequence of rf pulses and delays proportional to the spin-spin coupling J12:

ρ̂2 ∝ Î+1 Î
−
2 + Î−1 Î+2 ⇐⇒ ∣T0⟩⟨T0∣ − ∣S0⟩⟨S0∣ (3.7)

Adiabatic transport into and storage in the low field is replaced by continuous rf irradiation

(spin-locking) with the carrier frequency at the mean of the resonance offsets of the two

sites. The case, in which the carrier frequency is different from the mean offset was studied

theoretically as well [71].

Figure 3.2: The high-field spin-locking singlet experiment. The description is in the text.

Adapted from [47].

Spin-locking suppresses chemical shift differences. The Zeeman Hamiltonian in the ro-

tating frame vanishes and Ĥ ≈ ĤJ . In the original work [47], the authors used unmodulated

(continuous-wave, CW) rf field, for which the amplitude and phase of the rf field are con-

stant. Several other sequences, which are used in broadband decoupling, were exploited

later, too [72]. At the end of the storage interval τ4, the remaining population distribution

is converted into an observable signal.
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A key point in the spin-locking experiment is that the zero-quantum coherences (3.7)

remain intact under the CW irradiation, if relaxation is neglected. In addition, the singlet

state is immune to DD relaxation. As long as the nutation frequency ω̃ of the spin-locking

field is much bigger than the difference of the resonance offsets of the two spin sites

Ω∆, CW irradiation gives similar results as other decoupling sequences. When ω̃ ≲ Ω∆,

either due to the capabilities or the power-load restrictions of the spectrometer, or due to

the large chemical shift difference Ω∆ of the sites, special decoupling sequences using rf

modulation schemes give better results [72]. Otherwise, the field-cycling experiment is a

possible alternative.

Advanced experiments, using various decoupling pulse sequences, were studied by

Sarkar [51, 73] in order to maintain the singlet state in more complex molecules such

as proteins. These methods extended several existing experiments, as discussed in Sec-

tion 3.4, and became the basis for follow-up works in the Levitt and Bodenhausen groups,

some of which are cited below.

3.3.2.2 M2S-S2M Pulse Sequences

The schemes described in the previous sections work well for spin systems, which are rather

weakly coupled in the high field. However, strongly coupled or nearly equivalent spins

remained almost intact due to their inaccessibility, until the pulse sequences abbreviated

as M2S-S2M, appeared [56, 59, 63–66]. M2S and S2M, which is a time-reversed version

of M2S, consist of J-synchronized echo trains, see Figure 3.3. Refocusing π-pulses are

replaced by composite pulses [74–77] in order to better compensate for possible pulse

imperfections.

The principle of the M2S sequence is the following [63]. The first (π/2)y pulse converts

Figure 3.3: The M2S-S2M sequence. The description is in the text. Adapted from [63].
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the initial thermal-equilibrium population:

Îz = ∣αα⟩⟨αα∣ − ∣ββ⟩⟨ββ∣ = ∣T+1⟩⟨T+1∣ − ∣T−1⟩⟨T−1∣ (3.8)

into coherences between the triplet states:

Îx = ∣T+1⟩⟨T0∣ + ∣T0⟩⟨T+1∣ + ∣T−1⟩⟨T0∣ + ∣T0⟩⟨T−1∣ (3.9)

Such coherences are progressively transformed into coherences between the singlet and

outer triplet states by the train of n1 composite π-pulses, which are separated by time

intervals τ :

Î1y − Î2y = i (∣T+1⟩⟨S0∣ + ∣S0⟩⟨T+1∣ − ∣T−1⟩⟨S0∣ − ∣S0⟩⟨T−1∣) (3.10)

The constants n1 and τ are defined in the following way:

2n1Θ ≈ π (3.11)

τ = π
2

1√
(2πJ)2 + (Ω∆)2

≈ 1

4J
(3.12)

where Θ and Ω∆ are the mixing angle and the difference of the resonance offsets given by

Eqs. (2.94) and (2.99), respectively.

The (π/2)x pulse results in another coherence between the singlet and central triplet

states:

Î1z − Î2z = i (∣T0⟩⟨S0∣ + ∣S0⟩⟨T0∣) (3.13)

Finally, the the second train of n2 = n1/2 composite π-pulses converts the coherence (3.13)

into the singlet and central triplet population difference:

i (∣S0⟩⟨S0∣ − ∣T0⟩⟨T0∣) (3.14)

After a storage time τrelax, during which the spin order relaxes, the S2M sequence is applied

to transform the remaining population distribution into observable magnetization.

Originally, the M2S-S2M sequence was tested in combination with the field-cycling

experiment, during the low-field storage interval [59]. Later, the sequence was shown to

be useful also in high field, which is the case in Figure 3.3. Application in MRI followed

afterwards [64]. Especially with respect to modern MRI methods, the M2S-S2M sequence

together with molecular engineering, which may design and supply a water-soluble bio-

compatible molecule, containing the nearly-equivalent spin-1/2 pairs, offers superior pos-

sibilities over the field cycling method with 15N2O.
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Finally, magnetic field gradients and an extra (π/2)y pulse were inserted between

the M2S and S2M blocks in order to filter out possible single-quantum coherences after

the non-ideal M2S sequence, and partially recovered longitudinal magnetization after the

storage interval [66].

3.3.2.3 Singlet State in Multinuclear Systems

Several experiments were performed, in which the singlet state was prepared in the vicinity

of other coupled spin-1/2 nuclei [68–70]. Due to slightly different chemical shifts and

nonnegligible spin-spin couplings, the extra nuclei served as a means for breaking the

magnetic equivalence of the nuclear pair environments.

Theoretical study together with experimental results suggested that the nuclear singlet

state is not a “collective” state of several nuclei. It is rather localized at a certain pair of

nuclei [70, 78–80]. Also a role of spin-spin coupling between the paired nuclei was revealed

to be a mechanism stabilizing the singlet state against the action of other out-of-pair

coupled nuclei [81].

3.3.3 Symmetry Switching by Chemical Reaction

The main representatives of this group are para-H2 experiments. Naturally occurring hy-

drogen consists of three nuclear isotopes with the mass number A = {1,2,3}: light 1H,

heavy 2D (deuterium) and super-heavy 3T (tritium) hydrogens. All three isotopes cre-

ate diatomic molecules, where both atoms may be the same or different. Experimentally,

para-H2 itself is known only in cases of 1H2 and 2D2. The mixed molecules do not create

states with spin zero either due to large differences in magnetogyric ratios or due to the

spin-1 of deuterium. 3T has, in addition, a very low natural abundance (AN = 0.115(7) h)

and is radioactive (β−, T1/2 = 12.32(2) yr) [4]. Despite all the drawbacks, if 3T is used for

NMR investigation, it provides high SNR spectra with sharp lines, which are free of the

natural background [82, 83].

1H atoms in the naturally most abundant H2 molecule may combine to the states

with nuclear spin I = 0 (para-H2) and I = 1 (ortho-H2). Due to the (2I + 1)-fold energy

level degeneracy, the ratio of para-H2 vs. ortho-H2 equals 1:3 at high temperatures. The

state with the lowest energy, and the most abundant one at temperatures below 77 K, is

para-H2. On the contrary, in the case of 2D, ortho-D2 includes states with spin I = {0,2},

while para-D2 is the spin-1 state. The state with the lowest energy is ortho-D2. In the
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absence of any relaxation centre, both para- and ortho-states coexist in the gas phase

as two distinct species for months [84]. The interconversion is mediated by molecular

collisions, or by contact with paramagnetic solids such as transition metals or activated

charcoal [62].

As mentioned in Section 3.1, PHIP methods include several important experiments.

Namely “Parahydrogen And Synthesis Allow Dramatically Enhanced Nuclear Alignment”

(PASADENA) and “Adiabatic Longitudinal Transport After Dissociation Engenders Net

Alignment” (ALTADENA) [38, 85]. 20 years later, “Signal Amplification by Reversible-

Exchange” (SABRE) joined the two [86].

PASADENA was first predicted theoretically [87]. Soon, it was proved experimentally

by two independent groups. In the true PASADENA experiment [88], a sample containing

unsaturated bonds was bubbled with the para-H2 enriched H2 gas within the spectrometer

field and subsequently observed. In the para-H2 CIDNP experiment [89], the sample,

initially stored at the liquid nitrogen temperature, was then melted and shaken with the

introduced para-H2 rich H2 gas in the laboratory magnetic field, and quickly inserted into

the spectrometer. The two para-H2 protons are transferred pairwise into magnetically

inequivalent sites, still maintaining a resolved scalar coupling JHH. Hydrogenation has to

proceed faster than the T1 of the product molecule.

PASADENA was used, e.g., for a detailed investigation of kinetics and mechanisms

of several hydrogenation reactions, where para-H2 served as a spin label. Extensions for

probing chemical exchange processes and mapping of coupling connectivities exist [62].

Using either the INEPT sequence [90] or para-H2 labeling [91], hyperpolarization resulting

from para-H2 may be transferred to other hetero-nuclei with a lower magnetogyric ratio,

and further increase their SNR.

Although a sort of field-cycling had already been used during the para-H2 CIDNP

experiments [45, 89], it remained overlooked. However, the transport between the low

and high magnetic fields, with emphasis on the transfer adiabaticity, became the basis

for the ALTADENA method [53]. The energy eigenstates and the population distribution

of the spin-system in the laboratory field right after hydrogenation differ from the final

states, when hydrogenation takes place entirely in high field. Adiabatic transport into the

spectrometer field assures nearly lossless transformation of the low-field populations into

the high field nonequilibrium population distribution, which can readily be detected. The

acronym of the method comes from the net aligned FT spectra containing no anti-phase
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peaks compared to PASADENA.

The SABRE method is based on hyperpolarization transfer from para-H2, mediated

through a labile complex formed from the substrate molecule, transition-metal carrier and

para-H2. Para-H2 is introduced and the polarization transfer proceeds in low magnetic

field. The complex lives long enough, so that the substrate may be polarized, but de-

composes again to its initial components. The whole process may be regenerated by just

adding fresh para-H2 enriched gas. The signal enhancement may be transferred to other

NMR isotopes [86].

One important non-para-H2 case is worth noting, where a chemical reaction is used for

breaking the exchange-symmetry. Warren reported reversible generation of singlet states in

13C doubly-labelled diacetyl by dehydration (singlet state) and rehydration (triplet state)

[92].

3.4 Singlet State Applications

The singlet state has mostly been exploited in NMR experiments, which study processes

over extended time scales, but which are limited by fast T1 relaxation. However, the

search for a molecule, which displays high TS/T1 ratio, and ideally has other promising

characteristics, is itself a topic.

Singlet NMR methods were successfully used to measure various molecular properties.

The original Diffusion Ordered Spectroscopy (DOSY) [93], which observes spin echoes

stimulated by pulsed field gradients in order to determine diffusion coefficients of individual

components of a sample, was improved by combining with the spin-locking sequence [94–

97]. In a similar way was upgraded the EXchange SpectroscopY (EXSY) [98], which is a

two-dimensional method for monitoring chemical exchange processes [51, 73].

Tayler used singlets to get insight into the geometry of small molecules [52]. He used

an example of a phenylalanine isotopologue to demonstrate that a torsional angle around

a C−C bond influences the singlet relaxation rate of two diastereotopic protons in a CH2

group. In a similar manner, the dynamics of protein unfolding was observed by measuring

the singlet state relaxation of different conformers, otherwise hardly sensed by routine

T1/T2 relaxation measurements [99]. Recently, singlet states were also used for the explo-

ration of ligand-protein interactions [100].

Low sensitivity is an inherent feature of NMR. Therefore many methods were developed

to increase it as much as possible. Especially in medical applications, common techniques
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as, e.g., Dynamic Nuclear Polarization (DNP) [101], see also Section 4.3.1, are inapplicable

due to the sensitivity of living tissues to temperatures and the use of microwaves. Only in

2003, a method called dissolution-DNP overcame such obstacles [102]. Nonetheless, despite

of the enormous levels of enhancement by four orders of magnitude, hyperpolarized spin

order decays quickly due to the radical content of the sample, which is essential for the

successful hyperpolarization, or due to a short T1 value and field-dependent relaxation.

The singlet state is capable of storing the hyperpolarized spin order and therefore maintain

the very strong signal for prolonged time intervals [54, 55, 103, 104].

Concretely, the singlet state has already been exploited during the veterinary [64],

as well as medical [105] MRI examination. An exceptional example represents the singlet

state in dissolved, 15N doubly-labelled 15N2O. Its TS ≈ 26 min and TS/T1 ≈ 8 (15N15NO) or

14 (15N15NO), when dissolved in degassed and perdeuterated DMSO, and TS ≈ 7 min and

TS/T1 ≈ 20 (15N15NO), when dissolved in blood, makes it a fairly realistic candidate for

use as a MRI tracer [57, 60, 106].

In material sciences, the singlet state has allowed measurement of restricted diffusion

during investigations of macroscopic pores in different materials [107]. Last but not least

is the application of singlet states in quantum computing [108–113].

A special family of singlet-state related experiments includes methods exploiting the

long-lived singlet-triplet coherent superposition (long-lived coherence, LLC) [114–116]:

QLLC = Îkx − Îlx = ∣S0⟩⟨T0∣ + ∣T0⟩⟨S0∣ (3.15)

The QLLC coherence NMR signal intensity evolves according to [114]:

d

dt
QLLC = −(i2πJkl +RLLC)QLLC (3.16)

where RLLC is the relaxation rate constant. On the one hand, the FT spectrum displays

very sharp peaks, since their FWHM is proportional to RLLC. On the other hand, the

positions of the spectral peaks are determined by Jkl values, which can be determined

with very high precision.

LLCs were used in combination with signal-enhancing dissolution-DNP [117], or for

refinement of COrrelation SpectroscopY (COSY) [118]. The LLC-COSY boosts ordi-

nary COSY performance since LLCs overcome both the homogeneous and the inhomoge-

neous broadenings of the peaks. This results in ultrahigh resolution spectra with sub-Hz

linewidths [119]. The LLC experiments, mentioned so far, took place in the spectrometer
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magnetic field of several tesla. An example exists, preceding these mentioned above, which

was performed in extremely low magnetic field around 1 mT, as well [58].
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Chapter 4

Fourier Transform Spectroscopy

Since its invention, NMR spectroscopy was practised as the so-called continuous wave

(CW) spectroscopy. Absorption of electromagnetic radiation was recorded as a function

of magnetic field, and the whole spectrum range was gradually scanned through. Besides

its unique resolution power and accuracy, the main drawbacks were (and often still are)

the high time cost of experiments and data evaluation, and limited sensitivity. In 1966,

Fourier transform (FT) NMR was introduced [120], which alleviated the time expenditure

and further increased the resolution. In parallel with NMR, FT spectroscopy became very

popular as a means for electron paramagnetic resonance (EPR), and since 1969, also in

optical infrared spectroscopy (FT-IR) [121].

In FT-NMR, the whole spin system is excited at once by rf pulses, which may last

from a fraction of microsecond up to hundreds of milliseconds, depending on the specific

purpose. Subsequently, de-excitation (relaxation) towards equilibrium is observed. The

time-varying signal generated by the macroscopic nuclear magnetization is acquired and

digitized. Spectral information is subsequently extracted either from the time-domain sig-

nal or from the frequency-domain spectrum after FT. Compared to sweeping for minutes

through the whole spectrum, an experiment may be repeated after several T1 intervals.

This allows a sensitivity increase by, e.g., signal averaging described in Section 4.3.2, if

T1 is sufficiently short. FT-NMR becomes less advantageous, compared to high-resolution

CW-NMR, for high values of the T1/T ∗2 ratio [120, 122].
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4.1 Fourier Transformation

Fourier transformation (FT) is used for interconversion of the time-domain, s(t), and

frequency-domain, S(f), signals. Both domains provide the same information, only in a

different form. The time domain is preferably used for the signal acquisition and manipu-

lations. The frequency domain serves for reading the spectroscopic information.

Forward FT, F , maps from the time to the frequency domain [2]:

F {s(t)} = ∫
∞

−∞
dt s(t) e−iωt ≡ S(ω)

= ∫
∞

−∞
dt s(t) e−i2πft ≡ S(f)

(4.1)

where ω = 2πf . The inverse or backward FT, F−1, is defined as:

s(t) = 1

2π
∫

∞

−∞
dωS(ω) eiωt ≡ F−1 {S(ω)}

= ∫
∞

−∞
df S(f) ei2πft ≡ F−1 {S(f)}

(4.2)

FT is the linear mapping. As such, it obeys several important properties, which result

from its definition [2, 10]:

Similarity theorem: F {s(at)} = 1

∣a∣
S (f

a
) (4.3)

Time shift theorem: F {s(t − t0)} = e−i2πft0 S(f) (4.4)

Frequency shift theorem: F−1 {S(f − f0)} = ei2πf0t s(t) (4.5)

Derivative theorem: F { dk

dtk
s(t)} = (i2πf)k S(f) (4.6)

Convolution theorem: F {s1(t) ∗ s2(t)} = S1(f)S2(f) (4.7)

F−1 {S1(f) ∗ S2(f)} = s1(t) s2(t) (4.8)

Parseval’s theorem: ∫
∞

−∞
dt ∣s(t)∣2 = ∫

∞

−∞
df ∣S(f)∣2 (4.9)

The asterisk denotes the convolution of two functions:

r(t) ∗ s(t) = ∫
∞

−∞
dτ r(τ) s(t − τ) = ∫

∞

−∞
dτ r(t − τ) s(τ) (4.10)

All digital signals are discrete, for which the discrete FT, Fd, is suited [2]:

Sk = Fd{sj} =
N−1

∑
j=0

sj e−i2πjk/N (4.11)

where:

sj ≡ s(j∆t) ⇐⇒ s(t)

Sk ≡ S ( k

N∆t
) ⇐⇒ S(f)

(4.12)
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N is the number of complex points (acquisition length), ∆t is the sampling interval (dwell

time), and k = {−N/2, . . . ,0, . . . ,N/2}. The inverse discrete FT, F−1
d , is given by:

sj = F−1
d {Sk} =

1

N

N−1

∑
k=0

Ske
i2πjk/N (4.13)

The frequency spectrum spans between −1/(2∆t) and 1/(2∆t). The frequency steps are

given by ∆f = 1/(N∆t).

In the case that N = 2n, where n is an integer, the so-called fast Fourier transform

(FFT) is conveniently used. Its basis was laid by Gauss [123] and rediscovered by Cooley

and Tukey 160 years later [124, 125]. Compared to the discrete FT, which scales as N2,

the FFT scales as N log2N , which is much faster for large N [126].

4.2 Signal versus Noise

NMR spectroscopy may be described by linear time-invariant (LTI) system theory

[10, 127], see the scheme in Figure 4.1. Linearity means that the output is a linear func-

tion of the input, and time invariance denotes that the system acts on a given input signal

in exactly the same way at any time. The relationship between the time-domain, x(t),

and frequency-domain, X(f), input signals and the corresponding output signals s(t) and

S(f) in the case of LTI system is given by a convolution (4.10) with the system impulse

response, h(t), or frequency transfer function, H(f), respectively:

s(t) = x(t) ∗ h(t) = kx(t − t0) (4.14)

S(f) =X(f) ∗H(f) = kX(f)e−i2πft0 (4.15)

where k and t0 are constants.

Figure 4.1: Scheme of the linear time-invariant system. Adapted from [127].

Real experimental signals, r(t), are always accompanied by noise, n(t):

r(t) = s(t) + n(t) (4.16)

While the pure signal s(t) is deterministic, the noise n(t) is usually considered as stochas-

tic.
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Assume a free-induction NMR signal generated by a single (−1)-quantum coherence

in a general form [2]:

s(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s0 exp[(iΩ − λ)(t + t0) + iφ0] for 0 ≤ t ≤ tacq

0 otherwise
(4.17)

where s0 is the signal amplitude, Ω (rad s−1) = 2π × f (Hz) is the resonance offset, λ = 1/T ∗2
is the decay rate constant, t0 is the acquisition delay, and φ0 is the initial instrumental

phase. Limiting the signal to times t ≥ 0 makes it causal. The corresponding form of a

digitized discrete NMR signal for t ≥ 0 is:

sj = s0 exp[(iΩ − λ)(j∆t + t0) + iφ0] (4.18)

comprising N complex points evenly spaced by ∆t time intervals. The spacing of the points

in the time domain determines the bandwidth W of the frequency-domain spectrum after

discrete FT. The bandwidth equals W = 1/∆t. The total acquisition time of the time-

domain signal gives the spacing of the points in the frequency-domain spectrum (spectral

resolution) ∆f = 1/(N∆t).

The forward FT of the time-domain signal (4.17) leads to:

S(ω) = s0 exp[(iΩ − λ)t0 + iφ0]L(ω; Ω, λ) (4.19)

where:

L(ω; Ω, λ) = 1

λ + i(ω −Ω)
(4.20)

L(ω; Ω, λ) is the complex Lorentzian function, centered at Ω with FWHM proportional

to λ. Its real part, A(ω; Ω, λ), is an absorption Lorentzian, and the imaginary part,

D(ω; Ω, λ), is a dispersion Lorentzian:

A(ω; Ω, λ) = Re[L(ω; Ω, λ)] = λ

λ2 + (ω −Ω)2
(4.21)

D(ω; Ω, λ) = Im[L(ω; Ω, λ)] = (Ω − ω)
λ2 + (Ω − ω)2

(4.22)

The symmetric absorption Lorentzian (4.21) is the conventional NMR lineshape. Its FWHM

is equal to:

2λ = 2

T ∗2
(in rad s−1) or

2λ

2π
= 1

πT ∗2
(in Hz) (4.23)

The dispersion Lorentzian (4.22) is used as the primary lineshape in EPR, and 2λ corre-

sponds to the distance between the maximum and minimum of D(ω; Ω, λ).
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The noise arises mainly from the thermal motion of electrons in the NMR probe cir-

cuits. It is represented by a so-called additive white Gaussian noise (AWGN). AWGN is

described by a random function n with the values characterized by the Gaussian prob-

ability density function p(n) with zero mean and a given variance σ2 at an arbitrary

time t [127]:

p(n) = 1

σ
√

2π
exp(− n

2

2σ2
) (4.24)

The power spectral density of the noise Gn(f) is the same for all frequencies f in the

interval of interest fl < f < fu, where W = fu − fl:

Gn(f) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n0/2 for ∣f ∣ < fu

0 otherwise
(4.25)

fl and fu (often fl = −fu) are the lower and upper cutoff frequencies, respectively. n0 is

a constant. Since two-sided Gn(f) is uniform, such noise is called white by analogy with

white light, where all frequencies in the continuous visible range are equally abundant.

The LTI system output, which corresponds to the input Gn(f), is given by:

GN(f) = Gn(f) ∣H(f)∣2 (4.26)

The signal-to-noise ratio (SNR) is used as a measure of the signal quality. In terms

of NMR, it is defined as the spectral peak amplitude divided by the root-mean-square

(RMS) noise amplitude [10]. More generally, it is given by the square root of the ratio of

the signal power Ps(t) and the average noise power ⟨Pn⟩ at the beginning of the signal

acquisition (t = 0) [2, 127]:

SNR =

¿
ÁÁÀPs(t)

⟨Pn⟩

RRRRRRRRRRRRRt=0

=

¿
ÁÁÀa2(t)

σ2
0

RRRRRRRRRRRRt=0

(4.27)

The signal, corresponding to the LTI system output, is given by:

a(t) = ∫
∞

−∞
df H(f)S(f) ei2πft (4.28)

Using Eq. (4.26), the average noise power equals to:

σ2
0 = ∫

∞

−∞
df GN(f) = n0

2
∫

∞

−∞
df ∣H(f)∣2 (4.29)

Therefore, the full expression for the SNR is as follows:

SNR =

¿
ÁÁÀ∣∫

∞

−∞
df H(f)S(f)∣

2

/(n0

2
∫

∞

−∞
df ∣H(f)∣2) (4.30)
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In NMR, the SNR is proportional to the ratio of the induced signal current and the

noise current in the detection coil. In terms of the NMR probe and the sample parameters,

the SNR is proportional to [128]:

SNR ∝
m1/2N γe γ

3/2
d B

3/2
0 (B1/Ic)√

Wr [Rc(Tc + Ta) −Rs(Ts + Ta)]
(4.31)

where m is the number of accumulated scans, N is the number of spins, γe and γd are

the magnetogyric ratios of the excited and detected nuclei (often γe = γd), B0 and B1 are

the strengths of the static and rf magnetic fields, Ic is the current generated by the rf

coil, Wr is the receiver bandwidth, Rc and Tc are the resistance and temperature of the

detection coil, Rs is the resistance induced by the sample in the coil, Ts is the sample

temperature, and Ta is the noise temperature of the preamplifier.

The sensitivity of the NMR experiment is defined as SNR per square-root unit time

[10]. Assume the total time needed to acquire m FID signals:

ttot =m(tacq + tpd) (4.32)

where the single scan acquisition time is tacq, and the next scan is repeated only after a

pulse delay tpd ≥ 3T1 in order to restore the thermal-equilibrium longitudinal magnetiza-

tion. Then the sensitivity S is given by [10]:

S = SNR/
√
ttot (4.33)

4.3 Methods of Sensitivity Enhancement

4.3.1 Overview of Technical Solutions

Most methods for enhancing the SNR and the sensitivity in NMR are nicely summarized

by Eq. (4.31). NMR instrument manufacturers reflect this and push the technology to its

edges in the respective directions.

Mainly due to advances in material sciences, spectrometers exploiting still higher static

magnetic fields B0 are produced. The first 23.5 T commercial NMR, operating at 1 GHz 1H

frequency built by Bruker, was installed at the Centre de Resonance Magnétique Nucléaire

à Très Hauts Champs (CRMN) in Lyon in 2009 [129]. However, with the increasing mag-

netic field, numerous serious factors need to be considered such as the critical param-

eters of the innermost coil wire material related to its superconducting state, the total

stored energy, size and mass of the system, magnetic shielding, or liquid He consumption
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[130–132]. Especially in the case of organic and biological applications, the sample power

load and the exposure to strong magnetic fields may have damaging effects [133].

A decrease in the operating temperature of the spectrometer electronics represents

another pathway. Cooling down the probe coil (Tc) and the preamplifier (Ta) to the tem-

perature of liquid He substantially reduces electronic noise generated by thermal agitation

of charge carriers [128, 134].

A whole group of methods is based on the polarization transfer within a coupled

heteronuclear pair. Polarization is transferred from more abundant nuclei S with higher

magnetogyric ratio γS and large Boltzmann population differences (often 1H) to less abun-

dant nuclei I with a lower magnetogyric ratio γI (13C or 15N). An example is a method

called “Insensitive Nuclei Enhanced by Polarization Transfer” (INEPT) [135] or its im-

proved version, the “Distortionless Enhancement by Polarization Transfer” (DEPT) [136].

Polarization is transferred by using spin echoes and time delays proportional to the inverse

of the scalar coupling JIS . The signal enhancement is given by γS/γI independent of any

relaxation mechanism, except for the longitudinal relaxation of the two nuclei.

Finally, the oldest technique of the SNR enhancement, originally developed for polar-

ized target production in nuclear and particle physics, is Dynamic Nuclear Polarization

(DNP) [137, 138]. DNP, including Overhauser effect [101, 139, 140], solid effect [141–143],

thermal mixing [144–146], and cross effect [147–150], exploits polarization transfer from

electrons. To this family of methods belong CIDNP and PHIP, mentioned in Sections 3.1

and 3.3.3, as well as the Spin-Exchange Optical Pumping (SEOP) [151] of noble-gas nuclei

such as 3He [152] or 129Xe [153, 154], in a mixture with alkali metal vapours.

4.3.2 Signal Averaging

The principle of the signal averaging [155] is already contained in Eq. (4.31). In the case of

the LTI system and AWGN noise, the addition of m scans improves the SNR by a factor

of
√
m. The total time needed is given by Eq. (4.32). Such a method is convenient in the

case that T1 is reasonably short (≲ 1 min).

In the case of nonlinear systems and nonadditive noise, the SNR enhancement may be

less than
√
m [156].

47



4.3.3 Matched Filter

The matched filter (MF), initially called the North filter [157], was designed to provide the

maximum SNR at the LTI system output for a noisy input signal of a form (4.16). As is

apparent from Eq. (4.30), either the frequency transfer function H(f) or the correspond-

ing impulse response h(t), are the candidates for optimization. Application of Schwartz’s

inequality [127]:

∣∫
∞

−∞
dxf(x)g(x)∣

2

≤ ∫
∞

−∞
dx ∣f(x)∣2 ∫

∞

−∞
dx ∣g(x)∣2 (4.34)

on the numerator of the fraction in Eq. (4.30) gives:

∣∫
∞

−∞
df H(f)S(f)∣

2

≤ ∫
∞

−∞
df ∣H(f)∣2∫

∞

−∞
df ∣S(f)∣2 (4.35)

The expression (4.30) for the SNR simplifies to:

SNR ≤
√

2

n0
∫

∞

−∞
df ∣S(f)∣2 (4.36)

The integral in (4.36) represents, according to Eq. (4.9), the energy E of either the time-

domain or the frequency-domain input signal. In fact, from:

max(SNR) =
√

2E/n0 (4.37)

arises that the maximum SNR is given only by the energy of the input signal and the

power spectral density of the noise, but not by the particular shape of the input signal.

Taking into account Eqs. (4.4) and (4.28), the optimized transfer function for the input

signal at a general time t = T , equals to:

Hopt(f) = kS∗(f) e−i2πfT ⇐⇒ hopt(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ks(T − t) for 0 ≤ t ≤ T

0 otherwise
(4.38)

where k is the proportionality constant. In practice, MF in NMR is taken as a real function,

by which the time-domain signal is apodized before FT. It is, therefore, sufficient to take:

∣Hopt(f)∣ = kS(f) ⇐⇒ hopt(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ks(t) for 0 ≤ t ≤ tacq

0 elsewhere
(4.39)

The proper MF is given by the scaled version of the output time-domain signal s(t).

Further simplification is made by identifying MF with the envelope of s(t). Reference

[158] provides an alternative derivation and discussion of the two distinct approaches to
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MF used in signal processing on the one hand, Eq. (4.38), and in NMR on the other hand,

Eq. (4.39).

Matched filtering is exact for a single resonance but not for a signal comprising multiple

resonances. The complex signal is then routinely multiplied by a single exponential filter

function derived from the global decay of the signal. Such an exponential apodization

increases the SNR of the spectrum, but is no longer equivalent to MF in general.

4.3.4 Noise Reduction by Singular Value Decomposition

Singular Value Decomposition (SVD) is a well established method in Linear algebra [159].

Due to the efforts of Golub [160, 161] and Chan [162], there exist computationally stable

and efficient numerical algorithms. SVD is most often used for computing the pseudo-

inverse even in ill-conditioned problems, and for solving the majority of least-squares

related tasks. It is also widely applied in processing and analysis of diverse acoustic,

visual, radar, telecommunication, and bio-electrical signals.

The SVD method has been used in NMR and MRI for the suppression of spectral

artefacts or solvent peaks, speeding up the signal acquisition, or the SNR enhancement

by reducing the noise contribution [163–169]. Compared to the linear methods used for

ordinary NMR signal processing, SVD noise reduction is a nonlinear procedure and is,

therefore, accepted less willingly by the NMR community.

Assume a set of n experimental signals ri(t) of the form (4.16) such as determination of

T1 by inversion recovery. Assume further that each individual signal consists of m discrete,

real or complex values, i.e., it is represented by a m×1 vector ri. The whole set of ri may

be arranged column-wise into a m × n measurement matrix A:

A = [r1,r2, . . . ,rn] (4.40)

An important property of the useful signals si(t), represented by m × 1 vectors si, is

that they maintain a certain pattern through all measurements, which at most scales by

a real (relaxation) or complex (phase) constant, but which remains unchanged otherwise.

The noise ni, introduced either before the signal digitization (probe or electrical circuits)

or afterwards (discretization, truncation errors), is assumed to be AWGN. It is, therefore,

possible to approximate the measurement matrix A, which is the noisy version of a signal

matrix S:

S = [s1,s2, . . . ,sn] (4.41)
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by a matrix A(k) of a lower rank k < min(m,n). Such a matrix A(k), conveniently found

by SVD, may approximate the signal matrix S better than the original measurement

matrix A. SVD further allows one to split the span of A into an equivalent orthogonal

span, and to identify from it the dominant (persisting patterns) and the sub-dominant

(varying noise) sub-spaces [170].

Generally, any m × n matrix A, where m,n ≥ 2, may be factorized in the following

way [126]:

A = UΣV† ⇐⇒ U†AV = diag (σ1, σ2, . . . , σp) (4.42)

U = [u1, . . . ,um] is a m×m unitary orthogonal matrix. Its columns, ui, are the left singular

vectors of A, i.e., eigenvectors of AA†. V = [v1, . . . ,vn] is a n×n unitary orthogonal matrix.

It consists of the right singular vectors vi, which are eigenvectors of A†A. Σ is a m × n

diagonal matrix, for which:

Σij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σi for i = j = {1, . . . , p}

0 for i ≠ j or i, j > p
(4.43)

where p = min(m,n). The leading diagonal elements, σi, are the singular values of A,

ordered in the way that σ1 ≥ . . . ≥ σp ≥ 0. The squares of the singular values σ2
i are equal

to the eigenvalues of both AA† and A†A [126, 171].

SVD of A, given by Eq. (4.42), provides a series of approximations of A:

A(k) = UΣ(k)V† = [U(k) U(m − k)] ×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Σ(k) 0

0 Σ(n − k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

VT(k)

VT(n − k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4.44)

Σ(k) is the rank-k version of Σ with the remaining singular values {σk+1, . . . , σp} in the

Σ(n − k) block replaced by zeros. The matrix A(k) best approximates the original mea-

surement matrix A in the sense of the F-norm (A.13), i.e., in the least squares sense.

As found empirically, the largest singular values correspond to persisting signal com-

ponents with a non-varying pattern. On the contrary, the smallest singular values, which

are set to zero, are related to the less significant signal components [172]. Inevitably, the

pattern of the signal changes to some extent after recalculating the matrix A(k). This

distortion is the price for the noise reduction [170].

Assume a case, when one of the dimensions of A is much bigger than the other one, and

max(m,n) ≳ 104. The full SVD then becomes very demanding with respect to the memory

and processor time, if not utterly incalculable. In the case that, e.g., m≫ n, the bigger

matrix U may be truncated from originally m ×m to m × n matrix Utr, see Eq. (4.44).
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In parallel, Σ is truncated from m × n to n × n matrix Σtr, and the matrix V remains

unchanged. Then:

A ≈ Atr = UtrΣtrV
† (4.45)

Immediately, the whole task simplifies substantially, providing almost identical results to

the full SVD (4.42). This technique is called the thin SVD [126].

SVD is applicable without a need of any prior knowledge about A. Due to “commuta-

tion” with FT, identical results are obtained regardless of whether SVD is applied to the

time-domain signals or the frequency-domain spectra [172]. Assume that the measurement

matrices A(t) and A(f) contain time-domain and frequency-domain signals respectively.

Two-dimensional FT may be represented by a matrix F, which connects the two measure-

ment matrices as follows:

A(f) = FA(t) (4.46)

Individual signal patterns after the decomposition are contained within the columns of U.

It may therefore be written:

F {SVD [A(t)]} = FUΣV† (4.47)

SVD [F {A(f)}] = XΨY† (4.48)

Due to the linearity of FT and the existence of a unique SVD decomposition for any

matrix, X ≡ FU, Ψ ≡ Σ and Y ≡ V.

Regarding the effectiveness of SVD, if the initial SNR of the signals ri is much higher

than 1, only a small number of measurements needs to be collected for the signal pattern

recognition and a possible significant noise suppression. In such a case, the signal patterns

remain almost undistorted. The difference between the biggest and the small singular

values is large enough that the threshold for singular values to be zeroed is clear-cut.

To be able to distinguish between the useful signal and noise, when SNR ≲ 1 for the

majority of ri, a much higher number of measurements needs to be accumulated. SVD is

otherwise ineffective, since all the singular values are too close one to another, and the value

of the threshold for zeroing cannot be satisfactorily set. Nevertheless, the obtained noise

reduction may be better than after using the signal averaging, where the SNR increases as

the square root of the number of measurements. The signal patterns are, however, likely

to be severely distorted.

More advanced signal processing techniques, which are either derived from or directly

exploit SVD, are Principal Component Analysis (PCA) [171] and Independent Component
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Analysis (ICA) [173]. In contrast to SVD, they can even handle cases, where the useful

signals are much weaker than the noise. Such methods are used for higher-dimensional

datasets as, e.g., functional MRI maps or various bio-electrical signals (EEG, EMG).

4.4 Data Manipulation

It is rather unlikely that the NMR signal or the corresponding frequency spectrum is suit-

able for analysis immediately after acquisition. A basic set of corrections has to be applied

first in order to remove specific instrumental distortions, FT artifacts, and to additionally

enhance either the sensitivity or the resolution in the frequency domain [2, 174]. The basic

principle of linear filtering, as described in Section 4.2, is represented by Eq. (4.8).

Though these techniques are an integral part of various data-analysis software pack-

ages, such programs may not always either be available or fit to the needs of an experimen-

talist. Corresponding routines may, nonetheless, easily be coded by hand in a preferred

programming language or environment, which is also the case here.

4.4.1 Dc Offset

Due to instrumental offsets in the signal-processing circuitry, the whole time-domain signal

s(t), given by Eq. (4.17), may become displaced by a constant voltage value sdc. The FT

of such a signal gives:

F {sdc + s(t)} = −isdc/ω + S(ω) (4.49)

According to (4.22):

−isdc/ω ≡ sdcD(ω; 0,0) (4.50)

is a narrow dispersion Lorentzian at the zero resonance offset. This peak adds to the

regular spectrum and may cause significant distortions.

The dc offset is removed by subtracting a mean value, computed from the last 10 − 20 %

of samples, from the whole time-domain signal [175]. After FT, the unwanted peak is

completely or to a great extent suppressed. If multiple scans are accumulated, phase cycling

of the receiver phase may be used to correct for the offset during the pulse sequence.

4.4.2 Apodization

Apodization of the time-domain signal has a twofold use: either sensitivity or resolu-

tion enhancement [10]. The NMR signal is always acquired during a finite time interval
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0 ≤ t ≤ tacq, see Eq. (4.17). An incompletely decayed (truncated) signal may be represented

by the Heaviside Π-function [176]:

Π(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for ∣t∣ ≤ 1/2

0 for ∣t∣ > 1/2
(4.51)

FT of such a signal results in:

F {Π( t

2tacq
) s(t)} = tacq

√
2/π sinc(ωtacq) ∗ S(ω) (4.52)

where the sinc function is defined by [176]:

sincx =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sinx

x
for x ≠ 0

1 for x = 0
(4.53)

The sinc function modifies peak tails by a typical oscillatory pattern also called sinc

wiggles, see Figure 6.26. Application of a properly chosen filter function, which attenuates

the end part of the signal to a certain degree, e.g., ≲ 0.01 s0, successfully suppresses this

artifact [2, 10].

Assume the noisy NMR signal (4.16). FT of the time-domain noise results in the

frequency-domain noise. A filter function, which is selected according to the envelope of

the observed signal (4.17), may enhance the initial part of the signal r(t), where s(t) ≳ n(t),

and suppress the the end part, where s(t) ≲ n(t). The SNR of the spectrum is enhanced as

the noise is reduced. However, the sensitivity is traded off for the resolution as the peaks

become broader. Assume the case of an exponentially decaying filter function with a decay

rate constant λ′ > 0:

h(t) = e−λ
′t (4.54)

The frequency spectrum is given by:

F {h(t)s(t)} = s0 exp[(iΩ − λ)t0 + iφ0]L(ω; Ω, λ + λ′) (4.55)

A special case of apodization is the matched filter, which is discussed in detail in

Section 4.3.3. The resolution may be enhanced by using the filter function (4.54) with a

negative decay rate constant λ′ < 0 and/or some other function [2, 10].

4.4.3 Zero Filling

Assume a discrete NMR signal sj composed of N complex points, i.e., 2N real plus imagi-

nary points in total. After the discrete FT, the real part represents the frequency spectrum:

Sk =
1

N
Re

⎛
⎝

N−1

∑
j=0

sj e−i2πjk/N⎞
⎠

(4.56)
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The remaining N imaginary points, together with any information contained in them,

are discarded. In order to include the full information available, the data may be filled

(padded) with extra N zeros:

SZF
k = 1

2N
Re

⎛
⎝

2N−1

∑
j=0

sj e−iπjk/N⎞
⎠
= 1

2N
Re

⎛
⎝

N−1

∑
j=0

sj e−iπjk/N⎞
⎠

(4.57)

Despite the halving of the spectral amplitude, the number of points in the spectrum is

doubled, which increases the resolution and makes the quantification of the spectrum more

accurate [30]. Further zero-filling beyond 2N points may also be used. The consequent

interpolation of the frequency spectrum, however, brings no extra information.

As mentioned in Section 4.1, the FFT algorithm is efficient only for the number of

points N = 2n, where n is an integer. In the case that 2n−1 < N < 2n, zero-filling to the

nearest power of two, 2n+1, may be beneficial [2].

4.4.4 Phase Corrections

FT of the general time-domain signal (4.19), which corresponds to a single resonance,

already contains a phase distortion. It may be rewritten in the following way:

S(ω) = s′0 ei(Ωt0+φ0)L(ω; Ω, λ) = s′0 [SRe(ω) + iSIm(ω)] (4.58)

where s′0 = s0 e−λt0 and:

SRe(ω) = cos(Ωt0 + φ0)A(ω; Ω, λ) − sin(Ωt0 + φ0)D(ω; Ω, λ) (4.59)

SIm(ω) = cos(Ωt0 + φ0)D(ω; Ω, λ) + sin(Ωt0 + φ0)A(ω; Ω, λ) (4.60)

The frequency spectrum (4.59) contains an admixture of the dispersion Lorentzian. In such

a case, the phase distortion may be corrected by a so-called zero-order phase correction.

Multiplication of Eq. (4.58) by a factor eiϕ0 , where:

ϕ0 = −(Ωt0 + φ0) (4.61)

restores the absorption mode of the frequency spectrum (4.59).

The zero-order phase distortion occurs because the time-domain signal acquisition

never starts immediately after the rf pulse ends. It is delayed by a certain time interval t0

in order to protect the amplifier circuitry against the high rf power during the “ring-down”

interval. The phase shift Ωt0 is a consequence of the time-shift theorem (4.4). An additional

constant phase φ0 in Eq. (4.58) results from the spectrometer electronics settings.
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Assume the case of a frequency spectrum containing several resonances at different

offsets Ωi:

SΣ(ω) = eiφ0∑
i

s′0i e
iΩit0 L(ω; Ωi, λi) (4.62)

where s′0i = s0 e−λit0 . The phase distortion now becomes resonance-offset dependent. In

order to correct it, SΣ(ω) has to be multiplied point-by-point by a factor e−iϕ(Ω), where

ϕ(Ω) is given by [30]:

ϕ(Ω) =
m

∑
k=0

ϕkΩ
k (4.63)

In most cases, correction up to the linear term is enough. One of the peaks at the

position Ωp, a pivot peak, is phased by using the zero-order phase correction. The total

phase ϕ0 corresponding to the pivot peak offset equals to:

ϕ0 = Ωpt0 + φ0 , ϕ0 ∈ [−π,π] (4.64)

Keeping the phase correction ϕ0 fixed, a constant ϕ1 is set such that the remaining peak

lineshapes resemble absorption Lorentzians. The overall correction is then given by:

ϕ(Ω) = ϕ0 +
Ω −Ωp

2πW
ϕ1 (4.65)

The phase factors ϕ0 and ϕ1 are given in radians, the resonance offsets Ω and Ωp are given

in radians per second. The bandwidth W , as introduced in Section 4.2, is in Hz. The value

of the dimensionless fraction in (4.65) remains between −1 and 1 for any resonance offset

Ω within the bandwidth.

The whole phasing procedure is often interactive. Various techniques of automatic

phasing have also been proposed [177–179]. When the spectrum contains only a limited

number of resonances, a simple technique is based on the fact that the pure absorption

Lorentzian (4.21) has a finite integral:

∫
∞

−∞
dωA(ω; Ω, λ) = π (4.66)

whereas the integral of the pure dispersion Lorentzian (4.22) is equal to zero:

∫
∞

−∞
dωD(ω; Ω, λ) = 0 (4.67)

A properly phased spectrum, therefore, has the maximum integral.
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Chapter 5

15N NMR

5.1 Nitrogen NMR

All experiments presented in Chapters 5 to 7 are based on NMR of nitrogen 15N. Solutions

of 15N doubly-labelled compounds were used, namely ammonium nitrate (15NH4
15NO3)

and nitrous oxide (15N2O).

Nitrogen with its both naturally occurring isotopes 14N and 15N, listed in Table 5.1,

plays a vital role from the early days of NMR. In the form of 15NH4
15NO3, it allowed

observation of the chemical shift [182], determination of the nitrogen magnetogyric ratios

[183], or the first liquid state 15N-NMR [184].

Nowadays, 15N is often exploited in NMR of proteins. The characteristic features of

15N-NMR spectroscopy are usually very narrow spectral lines, a wide chemical shift range,

and a high sensitivity of 15N chemical shifts to the solvent environment [185].

Nucleus I/h̵ γ / rad s−1 T−1 µ/µN AN /%

14N 1 +1.9338 × 107 +0.4038 99.6337(4)

15N 1/2 −2.7126 × 107 −0.2832 0.3663(4)

Table 5.1: NMR properties of the naturally occurring nitrogen isotopes. I is the

nuclear spin in units of the reduced Planck constant, and γ is the magneto-

gyric ratio. µ is the nuclear magnetic moment in units of the nuclear magneton

µN = eh̵/2mp ≈ 5.0508 × 10−27 J T−1, where e ≈ 1.6022 × 10−19 C is the elementary charge

and mp ≈ 1.6726 × 10−27 kg is the proton rest mass [180]. AN is the isotopic natural abun-

dance [181].
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5.2 15NH4
15NO3

The 15NH4
15NO3 sample consisted of 37.3 mg of 15N doubly-labelled salt of 98 % en-

richment (Sigma-Aldrich), dissolved in 1 ml of D2O. The sample was used as prepared,

without any additional modification or degassing.

Figure 5.1: Spectrum of 15NH4
15NO3 dissolved in D2O as measured on the 300 MHz NMR

instrument

The spectrum of 15NH4
15NO3 in D2O is shown in Figure 5.1. It consists of a 15NO−

3

singlet (δiso ≈ −4 ppm w.r.t. CH3NO2 [186, 187]) and a 15ND+
4 multiplet (δiso ≈ −360 ppm

w.r.t. CH3NO2 [186, 187]). The multiplet merged into a single peak either due to the

undergoing chemical exchange between 1H and 2D, or more likely due to the relaxation

of 15N by the attached quadrupolar 2D nuclei, i.e., the scalar relaxation of the first and

second kind, respectively [2, 26]. Due to the dissociation of 15NH4
15NO3 in solution, the

15N-15N J-coupling may be neglected.

5.3 15N2O

The 15N2O sample contained 15N doubly-labelled 15N2O of 98 % enrichment (CK-Gas,

U.K.), dissolved under the pressure of 3.5 bar in perdeuterated DMSO. In order to avoid

paramagnetic singlet-state relaxation due to the dissolved oxygen, the DMSO was degassed

prior to 15N2O filling. The whole procedure of sample preparation is described in full detail

in [60].

The 15N2O frequency spectrum is shown in Figure 5.2. It consists of two doublets,

one corresponding to the terminal 15N site (15N15NO, δiso ≈ −219 ppm ≡ δ1 w.r.t. H15NO3

[188]) and the other corresponding to the central 15N site (15N15NO, δiso ≈ −135 ppm ≡ δ2
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w.r.t. H15NO3 [188]). The experimental J-coupling constant is −8.20 ± 0.06 Hz, see

also [188].

Figure 5.2: Spectrum of 15N2O dissolved in DMSO as measured on the 300 MHz NMR

instrument

5.4 Measurement of Relaxation Times

Experimental time constants for the 15NH4
15NO3 and 15N2O samples are summarized in

Table 5.2. Individual procedures used for their determination are described in the following

subsections.

Nucleus T1 / s T2 / s T ∗2 / ms T ′2 / ms T ′2/T2 (×10−3)

15ND+
4 256.5 ± 8.0 0.336 ± 0.013 81.9 ± 8.4 108 ± 15 323 ± 46

15NO−
3 131.1 ± 2.3 51.3 ± 1.6 223 ± 40 224 ± 40 4.37 ± 0.80

15N15NO 114.8 ± 5.1 48.2 ± 2.5 218 ± 17 219 ± 17 4.53 ± 0.42

15N15NO 207.7 ± 11.0 45.3 ± 2.1 221 ± 20 222 ± 21 4.91 ± 0.51

Table 5.2: Summary of experimental time constants for 15NH4
15NO3 in D2O and 15N2O in

DMSO. The longitudinal relaxation time constant T1 was determined by inversion recov-

ery. The transverse relaxation time constant T2 was determined by the CPMG spin-echo

sequence (π-pulse spacing: τ = 0.01 s for 15ND+
4 , τ = 1 s for 15NO−

3 and 15N2O). T ∗2 was de-

termined from the FWHM of the spectral peaks. T ′2 was determined by using Eq. (2.34).

The errors in T1, T2 and T ∗2 are standard deviations of the ensemble of experimental val-

ues. The errors of the derived quantities T ′2 and T ′2/T2 are computed by using Eq. (F.11).
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5.4.1 Determination of T1

The value of the longitudinal relaxation time constant T1 was determined by means of the

inversion recovery pulse sequence shown in Figure 2.1, using nonselective rf pulses.

The integrals I(τ) of the spectral peaks were plotted against the relaxation interval τ ,

and fitted by a modified version of Eq. (2.32):

I(τ) = I0 (1 − 2ε e−τ/T1) (5.1)

where I0 is the initial amplitude, and the constant ε denotes the magnetization inversion

effectiveness. Typically, 0.95 ≤ ε ≤ 1.

The plots of the peak integrals and the best fits are shown in Figure 5.3 for 15NH4
15NO3

and in Figure 5.4 for 15N2O. The results of fitting are summarized in Table 5.2. All values

were evaluated from a large ensemble of repeated measurements. Some values differ slightly

from those given in [61].

Figure 5.3: T1 determination for 15NO−
3 (left) and 15ND+

4 (right) by inversion recovery

Figure 5.4: T1 determination for 15N15NO (left) and 15N15NO (right) by inversion recovery
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5.4.2 Determination of T2

The T2 constant was determined by means of the CPMG spin-echo pulse sequence with

semi-selective rf pulses, described in detail in Chapter 6 (see particularly Figure 6.5).

A train of a varying number of π pulses was applied in order to refocus the magneti-

zation. The spacing τ of the π pulses was chosen carefully with respect to both the ex-

pected T2 value and the efficient removal of B0 inhomogeneity effects (τ = 0.01 s for 15ND+
4 ,

τ = 1 s for 15NO−
3 and 15N2O). The number of pulses was kept as low as possible to avoid

accumulation of errors.

The FID signal was acquired after the τ/2 delay following the last π pulse. The peak

integrals were plotted against the total time between the end of the first (π/2) pulse and

the time point, when the signal acquisition started. Assuming nπ pulses of length τp, then

the total refocusing time τr is given by:

τr = nπ(τ + τp) (5.2)

The corresponding fitting function is a simple decaying exponential:

I(τr) = I0 e−τr/T1 (5.3)

The peak integrals and the best fits are shown in Figure 5.5 for 15NH4
15NO3 and in

Figure 5.6 for 15N2O. The resulting values are summarized in Table 5.2.

Figure 5.5: T2 determination for 15NO−
3 (left) and 15ND+

4 (right) by a CPMG spin-echo

sequence with the π-pulse spacing τ = 1 s for 15NO−
3 and τ = 0.01 s for 15ND+

4
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Figure 5.6: T2 determination for 15N15NO (left) and 15N15NO (right) by a CPMG spin-echo

sequence with the π-pulse spacing τ = 1 s

5.4.3 Determination of T ∗
2 and T ′

2

The T ∗2 value was determined from FWHM of the spectral peaks by using Eq. (4.23). The

T ′2 mean value was computed by using (2.34):

µ(T ′2) =
µ(T2) µ(T ∗2 )
µ(T2) − µ(T ∗2 )

(5.4)

The standard deviation of T ′2 was determined by using Eq. (F.11), assuming that T2 and

T ∗2 are uncorrelated:

σ(T ′2) =

√
[µ(T ∗2 )]4

σ2(T2) + [µ(T2)]4 σ2(T ∗2 )

[µ(T2) − µ(T ∗2 )]2
(5.5)

The resulting values of T ∗2 and T ′2 are provided in Table 5.2.
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Chapter 6

Multiple Spin-Echo Sensitivity

Enhancement

6.1 Spin Echoes

Transverse relaxation has been introduced in Section 2.1.4. Although the true homoge-

neous decay rate is given by 1/T2, the signal in solution NMR often fades away much

faster. This is predominantly caused by B0 inhomogeneity, which combines with the ho-

mogeneous decay in the overall apparent relaxation rate 1/T ∗2 ≫ 1/T2. Fortunately, the

effect of B0 inhomogeneity can be reversed by spin echoes.

6.1.1 Overview

Besides the inventors of NMR [189–191], Erwin Hahn may surely be ranked among the

co-founders of the method. By using strong rf fields for excitation for the first time [192],

and introducing the spin echo sequence [193], see Figure 6.1, he paved the way for the

modern multi-pulse NMR methods, where the spin echo plays an essential role.

Figure 6.1: The Hahn spin echo pulse sequence. The oscillating gray curve denotes the

time evolution of the NMR signal. Only the black signal is usually acquired.
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The Hahn echo consists of an initial excitation (π/2)x pulse, which is followed by

another (π/2)x pulse after a time interval τ/2. Although the signal has almost disappeared

before the second pulse is applied (T ∗2 ≲ τ/2), it reappears again, peaking at time t = τ .

This resembles well known acoustic echoes, hence the name of the sequence.

The principle of the Hahn echo is shown in Figure 6.2 [193, 194]. The first (π/2)x

pulse flips the longitudinal magnetization into the transverse plane (1) , and individual

magnetization isochromats start unwinding (2). After the second (π/2)x pulse at time

t = τ/2, the x-component of the transverse magnetization remains unaffected (3), but the

y-component becomes aligned along the z-axis (4). The isochromats, which are close to

the x-axis continue in precession during the second τ/2 interval to form the echo (5). If

the third (π/2)x pulse is applied at time τ < T < T2, the magnetization z-component is

rotated back into the transverse plane (6), and a stimulated echo occurs at time T + τ (7).

Figure 6.2: Origin of the Hahn and stimulated spin echoes. The description is in the text.

Adapted from [194].

Despite the phenomenal success, the compensatory capabilities of the Hahn echo are

weak, regarding the B0 inhomogeneity. Besides, only a fraction of the magnetization is

responsible for either of the echo signals. As a result, the NMR signal fades away quickly.

A partial improvement came with the Carr-Purcell (CP) modification [195]. Two versions

of the CP echoes were published, as shown in Figure 6.3.

“Method A” was just a simple extension of the original Hahn echo. The replacement

of the second (π/2)x pulse by a πx pulse, however, allowed a complete refocussing of the
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Figure 6.3: The CP spin echo pulse sequences

magnetization. In order to measure the T2 value, the sequence was repeated for different

values of τ . Nevertheless, if the B0 inhomogeneity and diffusion are significant, and T1

is too long, Method A becomes inefficient. It was shown that instead of the single πx

pulse, a train of many π pulses may be applied consecutively. The so-called “Method B”

allows repeated refocussing and observation of multiple spin-echo signals for extended time

intervals in just one scan.

In comparison to Method A, the refocussing performance of Method B strongly depends

on the accuracy of the π pulse. When the π pulse length is inaccurate, the flip angle is

different from 180° and the magnetization ends up above the xy-plane. Every other π pulse

rotates the magnetization still farther away from the transverse plane, see Figure 6.4.

Figure 6.4: The CP spin echo refocusing capabilities. The description is in the text.

Adapted from [194].

65



Possible B1 inhomogeneity during the rf pulse across the sample needs to be included as

well [196]. Refocussing then becomes ineffective, which again results in a speeding-up of

the signal decay.

A remedy for the obstacles listed above was devised by Meiboom and Gill [197], see

Figure 6.5. In their CPMG spin echo, the phase of the π pulses is shifted by 90° with

respect to the first excitation pulse. If the magnetization ends above the xy-plane after

the odd π pulse, it is returned back to the transverse plane by the following even π pulse,

see Figure 6.6. As a result, the change in the pulse phase causes self-compensation in every

even echo.

Figure 6.5: The CPMG spin echo pulse sequence

Figure 6.6: The CPMG spin echo refocusing capabilities. The description is in the text.

Adapted from [194].

The use of the spin echoes spans over all fields of MRS. They may be used for removal

of unwanted features in order to enhance spectral information. On the one hand, they

allow refocusing of the B0 inhomogeneity, so that NMR signal is repeatedly resurrected.

On the other hand, spin echoes provide a means for quantification of diffusion (DOSY) or

chemical exchange processes (EXSY). Chemical shift effects and heteronuclear couplings

may be refocussed, too, except for homonuclear couplings [196], see Section 6.1.2.
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Spin echoes are used in J-spectroscopy [198] or for polarization transfer between cou-

pled nuclear partners (INEPT) [194]. Repeatedly refocused NMR signal may be further

exploited for the SNR enhancement, see Section 6.5. In solid-state NMR, where the dipolar

and quadrupolar interactions need to be taken into account, an alternative of the Hahn

echo, a solid echo, is used [199]. In MRI, pulse sequences incorporating many different

types of echoes exist for obtaining images of the human body in a noninvasive way.

6.1.2 CPMG Spin Echo Sequence

The principles of the CPMG spin echo may be visualized by using the vector model,

see Figure 6.7. The equilibrium z-magnetization is rotated by the (π/2)y pulse towards

the x-axis. During an interval τ/2, transverse magnetization freely evolves and individual

magnetization isochromats unwind, each of a slightly different precession frequency. This

is either due to different chemical shifts or due to an inhomogeneous B0 field.

Figure 6.7: The CPMG spin-echo sequence visualized by means of the vector model.

(A) The time evolution of magnetization common to either isolated spins or coupled

spins, where the rf pulses are applied to a single spin species. (B) The time evolution

of magnetization in the case that the rf pulses are applied to all spins.

The time evolution of the magnetization differs after the πx pulse. In the case (A),

which is common for either the isolated or coupled spins, where the π pulse is applied to

only one spin species, magnetization is mirrored through the xz-plane, and refocused after
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another τ/2 interval again. In the case (B), which corresponds to magnetization evolution

of a coupled spins, where the π pulse is applied to all spins at the same time, the spin-

spin coupling causes further divergence of the isochromats during the other free-evolution

interval.

In order to describe such effects in a more rigorous way, assume a pair of weakly coupled

spins-1/2, described by Hamiltonian ĤA (2.96). In such a case, the product operator

formalism may be used. The thermal-equilibrium magnetization is given by [14]:

ρ̂(0−) ≈ 1

4
(Ê + h̵γB0

kBT
Îz) (6.1)

where ρ̂(0−) denotes the state of the spin system shortly before the (π/2)y pulse, which is

applied at time zero. For the sake of simplicity, all rf pulses are assumed to be negligibly

short with respect to the evolution intervals. Therefore, magnetization relaxation during

the pulses may be ignored. Simultaneously, only relevant terms containing spin operators

Î will be retained, while the unity operator Ê and the Boltzmann factor in front of Îz will

be left out.

Assume first the case, in which the semi-selective rf pulses are applied exclusively to

the spin Î1 and the other spin remains unaffected. The initial (π/2)1y pulse transforms

ρ̂(0−) into:

ρ̂(0−)
π
2 Î1yÐÐÐÐ→ ρ̂(0)∝ Î1x + Î2z (6.2)

Free evolution under the Hamiltonian ĤA during the time interval τ/2 results in:

ρ̂(0)
τ
2 Ω1Î1z
ÐÐÐÐÐ→

τ
2 πJ12 2Î1z Î2z
ÐÐÐÐÐÐÐÐÐ→

ρ̂(τ/2−)∝ Î1x cos(Ω1τ/2) cos(πJ12τ/2) + 2Î1y Î2z cos(Ω1τ/2) sin(πJ12τ/2)

+Î1y sin(Ω1τ/2) cos(πJ12τ/2) − 2Î1xÎ2z sin(Ω1τ/2) sin(πJ12τ/2) + Î2z

(6.3)

The π1x pulse acts on the spin operators in the following way:

ρ̂(τ/2−) π Î1xÐÐÐÐ→

ρ̂(τ/2)∝ Î1x cos(Ω1τ/2) cos(πJ12τ/2) − 2Î1y Î2z cos(Ω1τ/2) sin(πJ12τ/2)

−Î1y sin(Ω1τ/2) cos(πJ12τ/2) − 2Î1xÎ2z sin(Ω1τ/2) sin(πJ12τ/2) + Î2z

(6.4)

Free evolution under ĤA during the second evolution interval τ/2 results in 16 terms,

which simplify into:

ρ̂(τ/2)
τ
2 Ω1Î1z
ÐÐÐÐÐ→

τ
2 πJ12 2Î1z Î2z
ÐÐÐÐÐÐÐÐÐ→ ρ̂(τ)∝ Î1x + Î2z (6.5)

68



This is the same expression as in Eq. (6.2). Both the chemical shift and B0 inhomogeneity

effects are refocused. This result corresponds to the case (A) in Figure 6.7.

Excluding relaxation, the refocused component ρ̂1(t) of ρ̂(t) displays a following peri-

odic behaviour during the CPMG spin echo:

ρ̂1(0) = ρ̂1(kτ) , k = {1,2, . . .} (6.6)

In the case of the CP spin-echo sequence, a different result is obtained:

ρ̂1(2kτ) = −ρ̂1[(2k + 1)τ] , k = {0,1, . . .} (6.7)

Assume now that the nonselective rf pulses are applied to both spins. The first (π/2)y

pulse transforms the equilibrium magnetization (6.1) as follows:

ρ̂(0−)
π
2 ÎyÐÐÐ→ ρ̂(0) = Îx (6.8)

Application of the sequence τ/2 − πx − τ/2, also called a spin-echo “sandwich” [14], to ρ̂(0)

results in 32 terms. These fortunately simplify as follows:

ρ̂(0)
τ
2 ĤA

ÐÐÐÐ→ π ÎxÐÐÐ→
τ
2 ĤA

ÐÐÐÐ→ ρ̂(τ)∝ Îx cos(τπJ12) + (2Î1y Î2z + 2Î1z Î2y) sin(τπJ12) (6.9)

This divergence of isochromats, rather than their refocussing, corresponds to the case (B)

in Figure 6.7, and is further treated in Section 6.2.1.

6.2 Interference Effects in Multi-Pulse Experiments

6.2.1 J-Modulation

The result of the application of the nonselective rf pulses to the coupled homonuclear spin

pair, or simultaneous application of rf pulses to each of the two spins in the heteronuclear

pair, given by Eq. (6.9), is called J-modulation [193, 200]. J-modulation causes complex

oscillations of the multiple spin-echo signal. This reflects in varying phases of peaks in the

frequency spectrum [201].

Several different remedies exist. One has already been exposed in Section 6.1.2. Ap-

plication of (semi-)selective rf pulses to only one of the coupled spins or to individual

resonances avoids evolution under the J-coupling Hamiltonian ĤJ , and the observed mag-

netization is refocused by the π pulse.

69



Another solution is to use spin-locking, in which π pulses are spaced by τ < 1/J12 [194].

Individual magnetization isochromats evolve only slightly during the inter-pulse intervals

and are immediately refocused. They are literally “locked” to the rotation axis.

The effects of J-modulation in various spin-1/2 systems were successfully suppressed

by modified spin-echo pulse sequences such as “perfect spin echo” [202, 203], “Stabiliza-

tion by Interconversion within a Triad of COherences under Multiple refocusing pulses”

(SITCOM) [204, 205], and “Periodic Refocusing of J Evolution by Coherence Transfer”

(PROJECT) [206].

Finally, several methods exist for eliminating the dispersion contribution from the

frequency spectra. Although such methods were primarily intended for the correction of

two-dimensional NMR spectra, they may also be applied to the one-dimensional spectra.

It was recognized that when the signal envelope is symmetric, which is also the case of the

spin-echo signal, a proper treatment of the signal as a whole [207] or of its halves [208] leads

to a cancellation of the dispersion contribution to the spectral lineshapes. One peculiar

example of these techniques uses so-called pseudo-echoes [209]. The pseudo-echoes arise

after artificial symmetrization of the ordinary FID signal, which also leads to the desired

result.

6.2.2 Non-Ideal Rf Pulses

Three main sources of a non-ideal performance of the rf pulses may be discerned. These

are: off-resonance effects, static field (B0) inhomogeneity, and rf field (B1) inhomogeneity.

The B0 inhomogeneity may be overcome by using the spin-echo sequence. The remaining

two cases will now be treated in more detail. An impact of these effects on the spin-echo

signal has been studied both theoretically and experimentally [210, 211].

6.2.2.1 Off-Resonance Effects

Assume the frequency spectrum containing multiple resonances. Since only one value of the

carrier frequency ωrf can be used at a time, some of the peaks may be located on-resonance

or very close to it (0 ≈ ∣Ωi∣ ≪ ω1), or also significantly off-resonance (∣Ωi∣ ≳ ω1). When the

ideal (π/2)y pulse is applied, a magnetization isochromat vector, which corresponds to the

on-resonance peak, will end up in the xy-plane, parallel to the x-axis. As the resonance

offset increases, the equivalent magnetization isochromat rotates at the nutation frequency

ωnut > ω1 around the effective field B̃ through the angle βeff ≠ π/2. After the pulse ends,
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the transverse magnetization phase is shifted by ∆ϕ, see Figures 6.8.

Assume application of a general rf pulse βϕ, which is represented by the composite rota-

tion (B.6), to the thermal-equilibrium magnetization M(0) ≡M0, including nonzero res-

onance offset Ω. Assume further that ϕ = π/2, β = ωnut τp = τp

√
Ω2 + ω2

1 and tan θ = ω1/Ω.

The final orientation of the magnetization vector M after the pulse is given as follows:

⎛
⎜⎜⎜⎜⎜
⎝

Mx(0)

My(0)

Mz(0)

⎞
⎟⎟⎟⎟⎟
⎠

= R(β,ϕ, θ)

⎛
⎜⎜⎜⎜⎜
⎝

0

0

M0

⎞
⎟⎟⎟⎟⎟
⎠

= M0

Ω2 + ω2
1

⎛
⎜⎜⎜⎜⎜
⎝

ω1

√
Ω2 + ω2

1 sin (τp

√
Ω2 + ω2

1)

Ωω1 [1 − cos (τp

√
Ω2 + ω2

1)]

Ω2 + ω2
1 cos (τp

√
Ω2 + ω2

1)

⎞
⎟⎟⎟⎟⎟
⎠

(6.10)

The dependence of the magnetization components (6.10) on the Ω/ω1 ratio is shown in

Figure 6.9. A semi-selective (π/2)y pulse, which was applied during experiments described

later in the text, is taken as an example.

a) b)

Figure 6.8: Off-resonance effects on the longitudinal magnetization vector trajectory after

application of the nominal (π/2)y pulse. a) The magnetization vector M̃ is rotated through

the angle βeff from the initial orientation along the z-axis around the effective magnetic

field B̃, tilted by the angle θ. The transverse magnetization phase is shifted by ∆ϕ.

b) Trajectories of the longitudinal magnetization vector as a function of the resonance

offset Ω relative to the rf field strength ω1. The numbers next to the trajectories are equal

to Ω/ω1.

Expressions for the effective tilt angle βeff and the phase shift ∆ϕ are given by [10]:

βeff = τp

√
Ω2 + ω2

1 (6.11)

tan ∆ϕ =My(0)/Mx(0) (6.12)

The dependence of βeff and ∆ϕ on the size of Ω/ω1 ratio is shown in Figure 6.10.
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The angle χβ between the magnetization vector M and the z-axis, as a result of the

action of the rf pulse βϕ, is called the excitation profile [2]. Assuming that ∣M ∣ ≡M0,

χβ is defined by [31]:

cosχβ =Mz(0)/M0 (6.13)

This dependence is plotted in Figure 6.11. The excitation profile of a π pulse is twice as

narrow as that of a π/2 pulse. The π pulse is more frequency selective.

Figure 6.9: The dependence of the magnetization components Mx (dotted line), My

(dashed line) and Mz (solid line) on the resonance offset relative to the rf field strength

after the semi-selective rectangular (π/2)y pulse (ω1/2π = 250 Hz, τp = 1.0 ms).

6.2.2.2 B1 Inhomogeneity

B1 inhomogeneity manifests only during rf pulses. In the case that the pulse sequence con-

sists of a small number of pulses, its effect is negligible compared to multi-pulse sequences.

B1 inhomogeneity may be approximated by [2]:

B1(r) = B1(0) +∆B1(r) (6.14)

where B1(0) is the nominal B1 field in the centre of the rf coil, and ∆B1(r) is the position

dependent B1 inhomogeneity.

An example of a B1 inhomogeneity during a (π/2)y pulse on the equilibrium magne-

tization M0, averaged over the sample volume V , leads to [2]:

Îz
∣γB1(r)τp∣ ÎyÐÐÐÐÐÐÐÐ→ 1

V
[Îz ∫

V
dr cos(∣γB1(r)τp∣) + Îx∫

V
dr sin(∣γB1(r)τp∣)] (6.15)

The values of the integrals depend on the distribution of ∆B1(r).
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Figure 6.10: The dependence of the effective flip angle βeff (solid line) and the transverse

magnetization phase shift ∆ϕ (dashed line) on the resonance offset relative to the rf field

strength after the semi-selective rectangular (π/2)y pulse (ω1/2π = 250 Hz, τp = 1.0 ms).

Discontinuities are caused by limiting the angle size to the interval [−360○,+360○].

Figure 6.11: The dependence of the excitation profile of the semi-selective π/2 (solid line)

and π (dotted line) rf pulses on the resonance offset relative to the rf field strength

(ω1/2π = 250 Hz, τp(π) = 2τp(π/2) = 2.0 ms).

6.3 MSE Signal

The multiple spin-echo (MSE) signal is acquired by using a modified version of the CPMG

spin-echo sequence in Figure 6.5. Assume that semi-selective rf pulses are used in order
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to avoid J-modulation. The MSE signal sMSE(t) is recorded between the pulses during

the whole sequence for a time interval of several multiples of T2. In accordance with [61],

sMSE(t) may be described by:

sMSE(t) = hMSE(t) s0
MSE(t) , t ≥ 0 (6.16)

where hMSE(t) is the signal envelope function and s0
MSE(t) is the undecaying periodic

NMR signal.

The signal envelope incorporates both the irreversible decay due to homogeneous trans-

verse relaxation (T2) and the reversible effect of B0 inhomogeneity (T ′2), see Figure 6.12.

A general and compact form of hMSE(t) is given by:

hMSE(t) = e−t/T2 g(∣t − ne(t)τ ∣) (6.17)

The monotonically decaying function g(t) obeys:

g(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for t = 0

0 for t→ +∞
(6.18)

The expression ∣t − ne(t)τ ∣ describes individual whole-echo signals centered at times

t = ne(t)τ , where ne(t) is an echo index:

ne(t) = ⌊ t
τ
+ 1

2
⌋ (6.19)

The brackets ⌊⋅⌋ denote the “floor” function, which rounds any real number to its nearest

smaller integer. The echo index introduces MSE signal periodicity due to the reversible

refocusing. Assume that B0 field inhomogeneity causes exponential decay and rise of the

signal, excluding T2 relaxation. An explicit form of g(t) is then:

g(t) = e−t/T
′

2 (6.20)

When Eqs. (6.17) to (6.20) are combined, a compact and computationally effective

form of the envelope function arises:

hMSE(t; τ, T2, T
′
2) = exp{− ∣ t

τ
− ⌊ t

τ
+ 1

2
⌋∣ τ
T ′2

− t

T2
} , t ≥ 0 (6.21)

An equivalent form, which is more illustrative, but computationally inefficient for large

numbers of echoes Ne, is given by:

hMSE(t; τ,Ne, T2, T
′
2) =

Ne

∑
k=0

Π( t − kτ
τ

) exp{− ∣t − kτ ∣
T ′2

− t

T2
} , t ≥ 0 (6.22)
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Figure 6.12: Examples of the MSE signal envelope function hMSE(t). Parameters: T2 = 10 s,

τ = 2 s, T ∗2 = 0.2 s (black solid line, T ′2 ≈ 0.2 s), T ∗2 = 0.5 s (dotted line, T ′2 ≈ 0.53 s), T ∗2 = 1 s

(dashed line, T ′2 ≈ 1.11 s), T ∗2 = T2 (gray solid line, T ′2 =∞). The values of T ′2 are computed

by using Eq. (2.34).

where the Heaviside Π-function is defined by Eq. (4.51).

Finally, an idealized form of the undecaying signal, generated by a single resonance,

which oscillates at the resonance offset frequency Ω, may be written as follows:

s0
MSE(t) = ∣a(0)∣ exp{i [Ω(t − ne(t)τ) + (−1)ne(t)φ0 + φinst]} (6.23)

Here a(0) is the signal amplitude at time zero, φ0 is the initial signal phase alternated by

the π pulses, and φinst is a constant instrumental phase shift.

6.4 MSE Matched Filter

Based on the discussion in Section 4.3.3, the matched filter suited for the MSE signal

is given by the envelope function hMSE(t) in Eq. (6.21). The maximum achievable SNR

enhancement after processing the MSE signal described in Section 6.5.3.1, relative to the

SNR of a single FID, may be simply estimated. Considering Parseval’s theorem (4.9) and

Eqs. (4.36) and (4.37), the enhancement εMSE is defined by:

εMSE = max(SNRMSE)
max(SNRFID)

=

¿
ÁÁÀ∫

∞

0
dt ∣hMSE(t)∣2/∫

∞

0
dt ∣hFID(t)∣2 (6.24)
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Assume that the FID signal decays exponentially with the time constant T ∗2 . Its envelope

function hFID(t) is given by:

hFID(t) = e−t/T
∗

2 (6.25)

and the resulting expression for εMSE is the following, using Eq. (6.22):

εMSE =

¿
ÁÁÁÁÁÁÁÀ

1 +
2 [exp( τ

T2
− τ

T ′2
) − 1]

[exp(2τ

T2
) − 1] [T

′
2

T2
− 1]

=

¿
ÁÁÀ1 + 2(eα−α/β − 1)

(e2α − 1)(β − 1)
(6.26)

Constants α = τ/T2 and β = T ′2/T2 are the π-pulse spacing and the inhomogeneous decay

time constant in units of T2, respectively. The dependence of the enhancement εMSE on

the parameters α and β is shown in Figure 6.13.

Small values of the ratio α correspond to a closely spaced π pulses, whereas small values

of the ratio β imply a large influence of B0 inhomogeneity. As both α and β approach

zero, the SNR enhancement increases. This regime is, nevertheless, inconvenient. On the

one hand, the frequency spectrum resolution is heavily compromised as a consequence of

either the small number of points per half-echo, or of truncation artifacts. On the other

hand, errors may accumulate with a large number of π pulses. On the contrary, when both

α and β approach unity, the signal is not refocused at all.

Therefore, an optimal number of echoes Ne and the π-pulse spacing τ has to be found

with respect to the desired frequency spectrum properties such as the SNR enhancement

and the frequency resolution. In the case of a single resonance, there exists practically no

limitation. In the case of multiplets, the maximum resulting FWHM of the peaks should

be less than the value of J-coupling.

6.5 Experimental Procedures

6.5.1 Initial Considerations

In our experiments, the main purpose of the MSE pulse sequence is to enable SNR-

enhanced singlet NMR. During its devising, information from Section 6.2 was taken into

account together with details of the field-cycling experiments in Section 7.2.

The carrier frequency is preferably set either close to a singlet or to the mean frequency

of a multiplet. Peaks are located near zero frequency, which minimizes off-resonance effects.

Full advantage may, therefore, be taken of the use of semi-selective rf excitation and
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refocusing pulses. J-modulation is avoided. Based on the excitation profiles of typical rf

pulses (Figure 6.11), the other coupled spins are affected only minimally.

The CPMG spin-echo sequence itself compensates sufficiently well for both B0 and B1

inhomogeneities and alleviates possible diffusion effects. If the pulse lengths are properly

determined, pulse imperfections are minimized. In addition, the CPMG sequence with

single π pulses is the least demanding with respect to both the power load of the spec-

trometer electronics (transmitter) and the heat load of the sample, when compared to the

composite or shaped π pulses.

Precise timing during the whole MSE sequence is of the utmost priority in order to

ensure optimal performance of the MSE method. The occurrence of each element within

Figure 6.13: The dependence of the εMSE enhancement on the ratios τ/T2 (top) and T ′2/T2

(bottom)
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the sequence, as well as each sample within the resulting MSE signal, is orchestrated with

respect to the dwell time ∆t, see Figures 6.14 and 6.15.

Figure 6.14: The MSE pulse sequence timing. Every element of the MSE sequence and the

MSE signal occurs at a time given by an integer multiple of the dwell time. This ensures

that all points (dots) in the MSE signal occur periodically, and every point in one half-echo

signal has its counterpart in the other half-echo signal. ne denotes the echo index, τ is the

π-pulse spacing, the time shifts δ and ε are multiples of the dwell time.

6.5.2 MSE Pulse Sequence

A scheme of the MSE pulse sequence is shown in 6.15. The first (π/2)y pulse excites the

spin system. Since the resonance offset is small, the flip angle is close to 90°. The end of

the (π/2)y pulse is the time zero reference point.

A delay ∆1 follows:

∆1 =m ×∆t , m = ⌈τad + τrd

∆t
⌉ (6.27)

where m is an integer and the brackets ⌈⋅⌉ denote the “ceiling” function, which rounds any

real number to its nearest greater integer. ∆1 is made longer than an acquisition delay

τad, during which the strong rf pulse “rings-down”, plus a receiver delay τrd, needed for

preparing the receiver for signal acquisition so that the first point of the signal is recorded

properly.

During the acquisition interval of length τ1, ν1 samples of the first decreasing half-echo

are acquired:

τ1 = ν1 ∆t (6.28)
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The delay ∆2 is placed symmetrically around the refocusing πx pulses. It takes into

account the duration of the π pulse, a time interval τprep < {τad, τrd} needed for the rf pulse

preparation (amplitude and phase setting), as well as τad and τrd intervals. Therefore:

∆2 = n ×∆t − τp(πx)/2 , n = ⌈
τad + τrd + τp(πx)/2

∆t
⌉ (6.29)

where n is integer and τp(πx) is the πx pulse length.

After the sequence ∆2 − πx −∆2, the whole-echo signal of ν2 samples is recorded during

an interval τ2:

τ2 = ν2 ∆t (6.30)

The bracketed part of the sequence is repeated Ne-times in total, where Ne is the number of

echoes. After the pulse sequence ends, the accumulated signal is sent to the spectrometer,

and the next experiment is repeated after the pulse delay tpd ≥ 3T1 (not shown).

As apparent from Figure 6.15, the π-pulse spacing obeys:

τ ≡ 2[∆1 + τ1 +∆2 + τp(πx)/2] = τp(πx) + 2∆2 + τ2 (6.31)

which simplifies as follows:

m + ν1 = ν2/2 (6.32)

The total number of acquired samples within the MSE signal is given by:

νacq = ν1 +Ne ν2 (6.33)

Taking into account Eq. (6.31), the total duration of the sequence is equal to:

TMSE = τp[(π/2)y] + (Ne + 1/2)τ (6.34)

Figure 6.15: The MSE pulse sequence. (A) A compact and detailed scheme. (B) An ex-

panded form of the pulse sequence.
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Figure 6.16: Example of the 15N15NO MSE signal (64 scans). Experimental parameters:

Ne = 100, τ = 1 s, τp(πx)/2 = τp[(π/2)y] = 1.066 ms, τad = τrd = 30 µs, ∆t = 0.8 ms, m = 1,

n = 2, tpd = 450 s, tacq = 100.5 s, ν2 = 1250, νacq = 125 624.

Figure 6.17: Example of the 15N15NO MSE signal (49 scans). Experimental parameters:

Ne = 200, τ = 1 s, τp(πx)/2 = τp[(π/2)y] = 1.066 ms, τad = τrd = 30 µs, ∆t = 0.8 ms, m = 1,

n = 2, tpd = 800 s, tacq = 200.5 s, ν2 = 1250, νacq = 250 624.

The frequency resolution of the processed MSE signal without zero-filling is given by 1/τ2.

The spectral bandwidth is equal to 1/∆t. Both may be set independently of each other.

Examples of MSE signals are shown in Figures 6.16 and 6.17. The sample was 15N

doubly-labelled 15N2O dissolved in perdeuterated DMSO.
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6.5.3 MSE Signal Processing

The MSE signal acquisition and processing in order to enhance SNR or sensitivity is not

an entirely new topic. It has already been approached in different ways. In solid-state

NMR, the whole MSE signal is directly Fourier transform [212–219]. A broad continuous

spectrum of a low SNR is transformed into a set of sidebands (spikelets), the SNR of which

is substantially enhanced. The lineshape of the spikelets is affected by homogeneous inter-

actions. Inhomogeneous interactions give rise to a specific shape of the spikelet envelope,

which is equivalent to the original solid-state spectrum [212].

Another possibility is the splitting of the MSE signal either into the individual half-

echoes [122, 220] or into the whole-echoes [207], which are then added together. The

combined half-echo signal resembles the FID. The combined whole-echoes may be pro-

cessed into the absorption spectrum without any need of phase correction, as described in

Section 6.2.1.

The two techniques examined in the current work are based on splitting the MSE

signal into half-echoes. This is followed by either matched filtering [220, 221] or singular

value decomposition [167].

6.5.3.1 Matched-Filter Technique

The matched-filter technique (MF-MSE) is a modified version of the “superposition method”

[220]. In accordance with the block diagram in Figure 6.18, the main steps are as follows:

1. raw time-domain signal import and conversion;

2. dc offset correction;

3. signal multiplication by MF;

4. signal splitting into individual half-echoes;

5. separate summation of decreasing and increasing half-echoes;

6. phase correction to maximize frequency spectrum SNR;

7. time reversal and complex conjugation of combined increasing half-echoes;

8. addition of both half-echo signals together;

9. signal zero-filling and FT;

10. phase correction to obtain absorption lineshapes.

81



The raw MSE signal is stored in the binary format as two separate arrays of real and

imaginary amplitudes. It is necessary to merge the two datasets into an array of complex

amplitudes first (1). Such a complex n-tuple is corrected for the dc offset. The mean of

the last 20 % of the samples is computed and subtracted from the whole signal (2). The

MSE signal multiplication by the matched filter follows (3).

The MSE signal is split into the individual half-echoes (4). The decreasing and increas-

ing half-echoes are co-added separately, so that only two half-echo datasets of the length

τ2/2 remain (5). Each dataset is then multiplied by a constant phase correction eiϕproc (6),

where:

ϕproc = −φ0 − φinst (6.35)

Figure 6.18: Block diagram of the MF-MSE technique for MSE signal processing. The

detailed description of the individual steps is provided in the text.
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which corrects for the initial and instrumental signal phases, see Eq. (6.23). In addition,

the increasing half-echo dataset is time-reversed and complex conjugate, so that it becomes

equivalent to the decreasing half-echo signal (7).

The value of the phase ϕproc is found iteratively by maximizing the SNR of the final

frequency spectrum. Variation of ϕproc leaves the peak lineshapes almost unaffected, since

the imaginary parts of the two signals nearly cancel, but influences their amplitudes.

Assume that the combined decreasing and increasing half-echoes are denoted sdec and

sinc, respectively. Then:

sdec eiϕproc + sinc e−iϕproc = (sdec + sinc) cosϕproc + i (sdec − sinc) sinϕproc (6.36)

If sdec ≈ sinc, only the first term survives and its amplitude is modulated by cosϕproc.

Finally, sdec and sinc are summed together. A proper time coordinate is added to each

complex amplitude, so that the full time-domain signal sproc(t) is obtained (8):

sproc(t) =
Ne

∑
j=0

sMSE(jτ + t)hMSE(jτ + t) eiϕproc +
Ne

∑
j=1

{sMSE(jτ − t)}∗ hMSE(jτ − t) e−iϕproc

(6.37)

The two sums represent the decreasing and increasing half-echo signals, respectively. After

zero-filling and FT (9), phase correction is applied to get the absorption lineshapes for all

peaks (10).

In order to perform the whole procedure, several input constants need to be provided in

advance, since they cannot be deduced from the data. Some constants are the parameters

of the pulse sequence, directly available in the log files of a given measurement. Such

constants are the number of echoes Ne, the π-pulse spacing τ , and the dwell time ∆t.

The number of samples per half-echo ν2/2 can be determined from the data-length νacq.

The dwell time ∆t also serves for computing of the time coordinates. Evaluation of the

matched filter is impossible without a prior knowledge of the relaxation time constants T2

and T ′2. Their determination is described in detail in Section 5.4.

The dc offset correction, as well as the phase corrections may be performed fully

automatically. Otherwise, the values of the complex signal offset (sdc) and the two (ϕproc

and ϕ0) or three (also ϕ1) phases need to be provided. In the simple case of one singlet or

doublet, a zero-order phase correction ϕ0 is usually sufficient.
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6.5.3.2 Singular Value Decomposition Technique

The fundamental motivation behind the use of the singular value decomposition technique

(SVD-MSE) instead of matched filtering was to avoid measurement of the T2 value, which

is often very precarious. A similar approach has already been successfully used in MRI

[167]. The scheme of the SVD-MSE technique is shown in Figure 6.19, and the main steps

are as follows:

1. raw time-domain signal import and conversion;

Figure 6.19: Block diagram of the SVD-MSE technique for the MSE signal processing.

The detailed description of the individual steps is provided in the text.
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2. dc offset correction;

3. signal splitting into individual half-echoes;

4. phase correction to maximize frequency spectrum SNR;

5. time reversal and complex conjugation of increasing half-echoes;

6. column-wise arrangement of half-echoes into matrix and SVD noise reduction;

7. summation of recomputed matrix columns;

8. signal zero-filling;

8′. signal apodization;

9. FT;

10. phase correction to obtain absorption lineshapes.

Steps (1) to (5) are the same as in the MF-MSE technique, except for MF application,

which is not required in the SVD-MSE technique. After correcting all individual half-

echoes, these are arranged column-wise into the measurement matrix (4.40). Due to its

dimensions, the thin SVD method (4.45) is preferably used. The smallest singular values

are zeroed and the modified measurement matrix (4.44) is recomputed (6). The matrix

columns are summed up into one dataset (7). The time coordinates are added in order to

obtain the full time-domain signal, which is then zero-filled (8). The signal may be apodized

for example by a decaying exponential with time constant T ∗2 (8′), see Eq. (6.25). After

FT (9), the frequency spectrum is phase-corrected, if necessary (10).

SVD-MSE technique uses the same set of input parameters as the MF-MSE technique,

except for T2 and possibly also T ∗2 . In the case that the MSE signal SNR is greater than 1,

or in the case that it comprises ≳ 100 half-echo signals, the discrepancy between the biggest

singular value(s) and the rest is usually big enough to set the threshold for zeroing safely.

In step (6), it makes no difference whether the half-echoes are arranged column-wise or

row-wise. SVD gives the same results for both cases. Attention has to be paid to step (7).

If the half-echo signals are treated as columns in step (6), they have to be added together

column-wise.

The technique of SVD noise reduction in the time domain may also be adapted for

the frequency domain. Although this approach gives the same results, as elucidated in

Section 4.3.4, the FT of all individual half-echoes requires extra computational time.
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6.6 Sensitivity Enhancement Observation

The MSE pulse sequence was performed on the 300 MHz Varian Infinity+ NMR instru-

ment. The spectrometer control and pulse programing was accomplished by using the

SpinSight software. Neither gradient coils, nor deuterium lock were available, which signif-

icantly limited the spectrometer performance and also the potential possibilities regarding

the spin-echo pulse sequence. A 10 mm liquid state probe was employed.

6.6.1 15NH4
15NO3

6.6.1.1 Experimental Realization

The MSE sequence was tested on 15NH4
15NO3 dissolved in D2O. MSE signals were

recorded for various values of the pulse sequence parameters: the number of echoes Ne,

the half of the π-pulse spacing τ1/2 ≡ τ/2, and the total number of acquired samples νacq,

as introduced in Section 6.5.2.

The maximum number of samples, which the spectrometer was able to acquire, was

limited to νmax = 218 = 262 144 (or 256k) samples. This specific limitation is likely to be

irrelevant on some other spectrometers. νmax may also be given any other value, if a

different maximum length of the MSE signal is desired, see Figure 6.16.

In order to avoid problems related to the machine precision of real numbers and to

acquire exactly the intended number of samples within the MSE signal, pairs of the pa-

rameters {Ne, τ1/2} were computed according to:

Ne = ⌊(νmax −m)∆t

τ
− 1

2
⌋ (6.38)

τ1/2 = ⌊νmax −m
2Ne + 1

∆t

(1 ms)
⌋ × (1 ms) (6.39)

τ1/2 was provided with a millisecond accuracy. The number of unused points (νmax − νacq)

was kept minimal.

As apparent from Table 5.2, the T ′2/T2 ratio is very large for the 15ND+
4 site. Therefore,

the corresponding SNR enhancement for the given values of T2 and T ′2 would be at best:

lim
τ→0

εMSE ≈ 2.03 for T ′2/T2 ≈ 0.323 (6.40)

Other inconvenient properties of 15ND+
4 are the very long T1 and quite short time constants

T2 and T ∗2 . The time constants of the 15NO−
3 site are similar to those of 15N2O. Therefore,

the 15NO−
3 site was chosen for the trials.
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6.6.1.2 MF-MSE Technique

The SNR enhancement was studied for different strengths of the 15NO−
3 signal, see Fig-

ure 6.20. To achieve less intense signals, the MSE pulse sequence in Figure 6.15 was

tentatively used with deliberately short duration of the initial (π/2)y pulse. The relative

transverse magnetization intensity is then given by:

Mxy/M0 = sin(ωnutτp) (6.41)

However, it became clear that the remaining longitudinal magnetization has a destructive

effect on the MSE signal. An alternative solution was proposed. The inversion recovery

sequence was combined with the MSE sequence in such a way that the second (π/2) pulse

of the inversion recovery sequence became the first pulse of the MSE sequence:

Inversion recovery
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
πx – τir – (π/2)y – τ/2 – [πx – τ ]Ne

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
MSE sequence

(6.42)

Any transverse magnetization generated due to the initial πx pulse imperfections decays

during the time interval τir before the (π/2)y pulse. The recovering longitudinal magneti-

zation is converted into transverse magnetization and the train of πx pulses follows. In all

cases, a SNR enhancement up to a factor of 10 was achieved, see Figure 6.20.

Figure 6.20: The enhancement εMSE for different 15NO−
3 signal strengths, when using the

MF-MSE technique for processing the MSE signal. The plot markers denote the following

signal strengths: 100 % M0 (◾) and 11.06 % M0 (○).

87



6.6.1.3 SVD-MSE Technique

Recalling the block diagram from Figure 6.19, two different approaches were considered.

The SNR enhancement after the SVD noise reduction without and with exponential

apodization are shown in Figures 6.21 and 6.22, respectively.

Performance of the SVD-MSE technique relative to the MF-MSE technique is com-

pared by means of a ratio εrel:

εrel =
εMSE(SVD)
εMSE(MF)

= (SNRMSE(SVD)
SNRFID(MF)

)(SNRMSE(MF)
SNRFID(MF)

)
−1

= SNRMSE(SVD)
SNRMSE(MF)

(6.43)

Here εMSE(SVD) is the ratio of the frequency spectrum SNR, SNRMSE(SVD), of the

MSE signal processed by the SVD-MSE technique, and the frequency spectrum SNR,

SNRFID(MF), of a single FID treated by the matched filter (6.25) in the same way as in the

case of the MF-MSE technique. The quantities εMSE(MF) ≡ εMSE, SNRMSE(MF) ≡ SNRMSE

and SNRFID(MF) ≡ SNRFID are introduced in Eq. (6.24).

The dependence of εrel for the SVD-MSE technique without and with exponential

apodization is shown in Figures 6.23 and 6.24, respectively. Whenever εrel > 1, the

SVD-MSE technique gives a better SNR enhancement compared to the MF-MSE technique

and vice versa.

The useful signal was represented by only one dominant singular value, see the plot d)

in Figures 6.25 and 6.26 for illustration, depicting a similar situation for 15N2O. The re-

maining singular values, which were much smaller than the largest singular value, were ze-

roed. Without exponential apodization, εrel ranges between 0.7 and 0.9, and the MF-MSE

technique gives better performance. With exponential apodization, the εrel is between

0.9 and 1.1, therefore the SVD-MSE technique works similarly well as the MF-MSE tech-

nique.

The initial points in Figures 6.20 to 6.24 result from the MSE signals with small

numbers of echoes Ne. Due to less efficient refocusing, corresponding frequency spectra

contain a significant portion of the noise. Consequently, all singular values are too close

together, which makes a proper setting of the threshold for zeroing impossible. Compared

to the theoretical prediction, the MF-MSE technique is less effective in this case, too.
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Figure 6.21: The enhancement εMSE for different 15NO−
3 signal strengths, when using the

SVD-MSE technique without apodization for processing the MSE signal. The plot markers

denote the following signal strengths: 100 % M0 (◾) and 11.06 % M0 (○).

Figure 6.22: The enhancement εMSE for different 15NO−
3 signal strengths, when using the

SVD-MSE technique with exponential apodization for processing the MSE signal. The

plot markers denote the following signal strengths: 100 % M0 (◾) and 11.06 % M0 (○).
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Figure 6.23: The enhancement εrel for different 15NO−
3 signal strengths achieved by using

the SVD-MSE technique without apodization, relative to the MF-MSE technique. The

plot markers denote the following signal strengths: 100 % M0 (◾) and 11.06 % M0 (○).

Figure 6.24: The enhancement εrel for different 15NO−
3 signal strengths achieved by using

the SVD-MSE technique with exponential apodization, relative to the MF-MSE technique.

The plot markers denote the following signal strengths: 100 % M0 (◾) and 11.06 % M0 (○).
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6.6.2 15N2O

In the case of 15NH4
15NO3, both the MF-MSE and SVD-MSE techniques provided the

SNR enhancement of up to an order of magnitude, when applied during the MSE signal

processing. The next step was to examine their performance in the case of 15N2O. Examples

from the 15N2O MSE signal processing are shown in Figures 6.25 and 6.26.

6.6.2.1 MF-MSE Technique

Pairs of values {Ne, τ1/2} were computed by using Eqs. (6.38) and (6.39), and the MSE

signals were acquired. Following the same practice as in the case of 15NH4
15NO3, the

achieved SNR enhancement after application of the MF-MSE technique for each doublet

separately, and also the average values from both doublets, are shown in Figure 6.27. All

error bars are computed as standard deviation of the experimental data.

The experimental values of the SNR enhancement εMSE deviate slightly from the theo-

retically predicted dependence given by Eq. (6.26). Due to a much higher number of points,

the effect is much better visible in Figure 6.27 than for the similar plot for 15NH4
15NO3

in Figure 6.20.

The points on the left-hand side were acquired by using large values of the π-pulse

spacing τ . In this case, the refocusing of the MSE signal was inefficient, NMR signal de-

cayed faster and the corresponding frequency spectra contained more noise. The deviation

of the points on the right-hand side arises from a heavily compromised resolution in the

frequency-domain spectrum due to a small number of samples per half-echo signal and

truncation artifacts. Another reason is a changed phasing of the frequency spectra, since

only one set of phase corrections was used for all datasets, which were recorded randomly

during a measurement series lasting many hours. A minor contribution to this kind of

deviation comes from the cumulative pulse-length imperfections as Ne approaches 1000 π

pulses.

6.6.2.2 SVD-MSE Technique

The SNR enhancement provided by the SVD-MSE technique without and with exponential

apodization are shown in Figures 6.28 and 6.29, respectively. The comparison of the SVD-

MSE and the MF-MSE techniques is shown in Figures 6.30 and 6.31.

Similarly with 15NH4
15NO3, the SVD-MSE technique without apodization gives slightly

worse results than MF-MSE. When exponential apodization is used, the SNR enhancement

is about the same or slightly better than that obtained with the MF-MSE technique.
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Figure 6.25: Example of 15N15NO MSE signal processing (Ne = 175, τ = 1194 ms). a) The

MSE signal as recorded. b) The MSE signal after matched weighting. c) FT of a single

FID after matched weighting. d) Normalized singular values. There is only one dominant

singular value emphasized by the arrow. e) SVD-MSE without apodization (black) com-

pared to MF-MSE technique (gray). f) SVD-MSE with exponential apodization (black)

compared to MF-MSE technique (gray).



Figure 6.26: Example of 15N15NO MSE signal processing (Ne = 708, τ = 296 ms). a) The

MSE signal as recorded. b) The MSE signal after matched weighting. c) FT of a single

FID after matched weighting. d) Normalized singular values. There is only one dominant

singular value emphasized by the arrow. e) SVD-MSE without apodization (black) com-

pared to MF-MSE technique (gray). f) SVD-MSE with exponential apodization (black)

compared to MF-MSE technique (gray).



Figure 6.27: The enhancement εMSE for 15N2O in DMSO, when using the MF-MSE tech-

nique for the MSE signal processing. Top left: The enhancement εMSE for peak 1 (◾) and

peak 2 (◽) in the 15N15NO doublet. Top right: The enhancement εMSE for peak 3 (●) and

peak 4 (○) in the 15N15NO doublet. Bottom: The average enhancement εMSE for both

doublets. Gray lines denote the maximum theoretical SNR enhancement as given by Eq.

(6.26) for the values of time constants from Table 5.2.
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Figure 6.28: The enhancement εMSE for 15N2O in DMSO, when using the SVD-MSE tech-

nique without apodization for the MSE signal processing. Top left: The enhancement εMSE

for peak 1 (◾) and peak 2 (◽) in the 15N15NO doublet. Top right: The enhancement εMSE

for peak 3 (●) and peak 4 (○) in the 15N15NO doublet. Bottom: The average enhancement

εMSE for both doublets. Gray lines denote the maximum theoretical SNR enhancement as

given by Eq. (6.26) for the values of time constants from Table 5.2.

95



Figure 6.29: The enhancement εMSE for 15N2O in DMSO, when using the SVD-MSE

technique with exponential apodization for the MSE signal processing. Top left: The en-

hancement εMSE for peak 1 (◾) and peak 2 (◽) in the 15N15NO doublet. Top right: The

enhancement εMSE for peak 3 (●) and peak 4 (○) in the 15N15NO doublet. Bottom: The

average enhancement εMSE for both doublets. Gray lines denote the maximum theoretical

SNR enhancement as given by Eq. (6.26) for the values of time constants from Table 5.2.
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Figure 6.30: The enhancement εrel for 15N2O in DMSO, when using the SVD-MSE tech-

nique without apodization for the MSE signal processing, relative to the matched filter

technique, as defined in Eq. (6.43). Top left: The enhancement εrel for peak 1 (◾) and

peak 2 (◽) in the 15N15NO doublet. Top right: The enhancement εrel for peak 3 (●) and

peak 4 (○) in the 15N15NO doublet. Bottom: The average enhancement εrel for both dou-

blets.
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Figure 6.31: The enhancement εrel for 15N2O in DMSO, when using the SVD-MSE tech-

nique with exponential apodization for the MSE signal processing, relative to the MF-

MSE technique, as defined in Eq. (6.43). Top left: The enhancement εrel for peak 1 (◾)

and peak 2 (◽) in the 15N15NO doublet. Top right: The enhancement εrel for peak 3 (●)

and peak 4 (○) in the 15N15NO doublet. Bottom: The average enhancement εrel for both

doublets.
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Chapter 7

Field-Dependent 15N2O Relaxation

Several important works on relaxation in NMR appeared so far [10, 24, 26, 37, 222–224],

but none of them treated singlet states. After 2004, core works on singlet state relaxation

were published alongside with new experimental observations [36, 56, 72, 78, 79, 81, 225].

They treated individual aspects of the singlet relaxation by using various approaches. The

first attempt towards unified description of basic, well understood relaxation processes

may be found in work of Dr. Pileio [226].

7.1 Formal Relaxation Theory

7.1.1 Master Equation

Assume the spin system under consideration is described by the wavefunction. The most

general solution of the Schrödinger equation (2.36) is provided by Eq. (2.42). In the case

of a general time-dependent Hamiltonian, an exact solution does not exist. The expansion

hidden behind the Dyson time-ordering superoperator (C.9) may, however, be truncated

at a desired accuracy of approximation, integrated and evaluated.

A similar derivation holds in the case of the density operator, which fully character-

izes any spin system. After introducing several simplifications, which separate the evo-

lution of the spin system from the evolution of the lattice, which evolves stochastically

at much smaller time scales than the nuclear spins, the Bloch-Redfield-Wangsness theory

arises [223].

Assume the Liouville-von Neumann equation (2.73) written in the following form [227]:

∂

∂t
ρ̂(t) = −i ( ˆ̂H0 + ˆ̂H1(t)) ρ̂(t) (7.1)
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ˆ̂H0 is the commutation superoperator, which includes the time-independent terms of

the Liouvillian (2.73). ˆ̂H1(t) is the commutation superoperator, which comprises time-

dependent terms modulated by the lattice stochastic evolution. Without loss of generality,

the ensemble average (denoted by the overbar) of ˆ̂H1(t) is assumed to be equal to zero:

ˆ̂H1(t) = 0 (7.2)

Eq. (7.1) may be further simplified by transforming into the interaction frame (denoted

by a tilde), which is equivalent to transformation from the laboratory to the rotating frame

derived in Appendix E:
∂

∂t
ˆ̃ρ(t) = −i

ˆ̃̂
H1(t) ˆ̃ρ(t) (7.3)

ˆ̂H1(t) and ρ̂(t) are transformed according to:

ˆ̃̂
H1(t) = ˆ̂U−1(t) ˆ̂H1(t) (7.4)

ˆ̃ρ(t) = ˆ̂U−1(t) ρ̂(t) (7.5)

where the propagator is given by:

ˆ̂U(t) = exp (−i ˆ̂H0t) (7.6)

Formal integration of (7.3) leads to a series similar to that in Eq. (C.7), where the

operators Ĥ(t) are replaced by
ˆ̃̂
H1(t). Keeping only terms up to the second order and

substituting back gives:

∂

∂t
ˆ̃ρ(t) = −i

ˆ̃̂
H1(t) ˆ̃ρ(0) − ∫

t

0
dt2

ˆ̃̂
H1(t)

ˆ̃̂
H1(t2) ˆ̃ρ(0) (7.7)

An important property of the stochastic evolution is that the state of the system at a

given time t = T is independent of the previous states at times 0 ≤ t < T . This assumption

simplifies ensemble average of (7.7) in the following way:

∂

∂t
ˆ̃ρ(t) = −i

ˆ̃̂
H1(t) ˆ̃ρ(0) − ∫

t

0
dt2

ˆ̃̂
H1(t)

ˆ̃̂
H1(t2) ˆ̃ρ(0)

Ð→ −i
ˆ̃̂
H1(t) ˆ̃ρ(0) − ∫

t

0
dt2

ˆ̃̂
H1(t)

ˆ̃̂
H1(t2) ˆ̃ρ(0)

(7.8)

The first term vanishes due to (7.2). Both Hamiltonians in the argument of the integral

are evaluated at different time points t ≠ t2. But neither of them depends on the form of

the other; they are uncorrelated. Therefore, absolute time coordinates may be replaced by

a relative time interval [226]:

∂

∂t
ˆ̃ρ(t) = −∫

t

0
dτ

ˆ̃̂
H1(t)

ˆ̃̂
H1(t + τ) ˆ̃ρ(0) (7.9)
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If the density operator ˆ̃ρ(0) changes much slower than the Hamiltonians
ˆ̃̂
H1(t) during the

time interval, over which the integral is evaluated, then approximately ˆ̃ρ(0) ≈ ˆ̃ρ(t). The

stochastic evolution also allows setting the integration upper limit to infinity. Eq. (7.9)

may, therefore, be rewritten as:

∂

∂t
ˆ̃ρ(t) = −∫

∞

0
dτ

ˆ̃̂
H1(t)

ˆ̃̂
H1(t + τ) ˆ̃ρ(t) ≡ ˆ̃̂

Γ ˆ̃ρ(t) (7.10)

where
ˆ̃̂
Γ is the relaxation superoperator. Finally, since the integral and the density operator

are separate, transformation back to the laboratory frame results in the so-called master

equation:

∂

∂t
ρ̂(t) = (−i ˆ̂H0 + ˆ̂Γ) ρ̂(t) (7.11)

7.1.2 Relaxation Superoperator

The relaxation superoperator ˆ̂Γ introduced by Eq. (7.10) describes various relaxation mech-

anisms, denoted by Λ in general, see Section 2.2.5. These are represented by the double

commutator of Hamiltonians
ˆ̃̂
H1(t). Such Hamiltonians are often expressed in terms of

the spherical tensor operators T̂ [226, 228]:

ˆ̂HΛ
1 (t) = cΛ

l

∑
m=−l

(−1)m [AΛ
lm(t)]L [T̂Λ

l−m]L (7.12)

where cΛ is an interaction specific constant, [AΛ
lm(t)]L and [T̂Λ

l−m]L are the spatial and spin

parts of the considered interaction Λ. The indices l and m = {−l, . . . , l} in the subscripts

denote the rank and component of the tensor, and the superscript L denotes the laboratory

reference frame.

While the spin part may be represented in the laboratory frame, the spatial part is

often expressed in the principal axis system (P ), in which the interaction tensor is diagonal.

Between the L and P frames, there is a molecular frame (M) connected with the molecular

geometry. Transformation between individual frames is carried out by Wigner rotation

matrices. These depend on the mutual angles ΩIJ of the frames, and are tabulated, e.g.,

in [229]:

[AΛ
lm(t)]L =

l

∑
p,q=−l

[AΛ
lq(t)]

P
Dl
qp(ΩΛ

PM)Dl
pm(ΩML) (7.13)

After substituting Eq. (7.13) into (7.12), and the resulting form of the Hamiltonian ˆ̂HΛ
1 (t)
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into (7.10), a complicated formula arises:

ˆ̃̂
ΓΛ,jk = −cΛ,jcΛ,k

l

∑
m,p,q=−l

l′

∑
m′,p′,q′=−l′

(∫
∞

0
dτ [AΛ,j

lq (t)]
P
[A∗Λ,k

l′q′ (t + τ)]
P

×Dl
qp(Ω

Λ,j
PM)D∗l′

q′p′(Ω
Λ,k
PM)Dl

pm(ΩML(t))D∗l′
p′m′(ΩML(t + τ)))

×(−1)m+m′[ ˆ̃TΛ,j
l−m]

L
[ ˆ̃T †Λ,k
l′−m′]

L

(7.14)

where j and k are the spin indices.

The whole expression (7.14) may, after further assumptions and modifications, be

simplified into a convenient form [226]:

ˆ̂ΓΛ,jk = −1

2
cΛ,jcΛ,k

l

∑
m=−l

(−1)mJ Λ
lm(ω)[T̂Λ,j

l−m]
L
[T̂Λ,k
lm ]

L
(7.15)

which applies for small molecules dissolved in an isotropic nonviscous solvent. J Λ
lm(ω) is

the spectral density given by [14]:

J Λ
lm(ω) = 2∫

∞

0
dτ GΛ

llmm(τ) e−iωτ = 2GΛ
llmm(0) τΛ

c

1 + (ωτΛ
c )2

(7.16)

where GΛ
llmm(τ) is the autocorrelation function and τΛ

c is the correlation time constant.

The autocorrelation function quantifies how rapidly the molecular orientation or local

magnetic field fluctuates. It is dependent on the size τ of the time interval between the

determination of the two orientations, and is connected with the correlation time τc, due

to stochastic character of the fluctuations, through:

GΛ
llmm(τ) = GΛ

llmm(0)e−∣τ ∣/τc (7.17)

The amplitude GΛ
llmm(0) denotes the mean square value of the fluctuations averaged over

the spin ensemble or over time; both lead to the same mean value for all spins. GΛ
llmm(0)

includes changes in both the spatial tensors A and the Wigner matrices D. The two-sided

spectral density (7.16) is the Fourier transform of GΛ
llmm(τ). The case with ωτΛ

c ≪ 1, is

called the extreme-narrowing [14] or fast-motion [226] limit regime. All the formulae which

follow will be evaluated in this regime.

7.1.3 Relaxation Mechanisms

The master equation (7.11) contains two superoperators, which act upon the density oper-

ator. The time-independent Hamiltonian ˆ̂H0 includes all coherent interactions, whereas the

relaxation superoperator ˆ̂Γ comprises all incoherent relaxation mechanisms. The coherent
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processes include the chemical shift and the J-coupling. The incoherent processes com-

prise the dominant intramolecular direct dipolar (DD), chemical-shift anisotropy (CSA),

spin-rotation (SR), and other (Ξ) relaxation processes such as the scalar relaxation of the

second kind [225] or the paramagnetic relaxation [230]. Though the coherent processes are

time independent, they may mix and redistribute populations of the states and, therefore,

influence the relaxation [226, 231]. The resulting form of the relaxation superoperator,

which describes relaxation of two coupled spins j and k, may be written as follows:

ˆ̂Γjk = ˆ̂ΓDD,jk + ˆ̂ΓCSA,jk + ˆ̂ΓSR,jk + ˆ̂ΓΞ,jk (7.18)

In the following text, the explicit form of the relaxation superoperators ˆ̂ΓΛ,jk are pro-

vided for the most important singlet relaxation processes.

7.1.3.1 Direct Dipolar Relaxation

Any nucleus with a nonzero spin is a source of the magnetic dipolar field. This field

fluctuates due to the motion of the molecule or its parts. If there exists another nucleus

with a nonzero spin in proximity (in either the same or another molecule), the fluctuating

field causes its relaxation.

A simplified form of the intramolecular DD relaxation superoperator is given by [226]:

ˆ̂ΓDD,jk = −
6τDD
c b2jk

5

2

∑
m=−2

(−1)m[T̂DD,jk
2−m ]

L
[T̂DD,jk

2m ]
L

(7.19)

where the values of the corresponding terms in Eq. (7.13) are:

cDD = 1 [T̂DD
20 ]

L
= (3Îjz Îkz − Î1 ⋅ Î2)/

√
6

[ADD
20 (t)]P =

√
6 bjk [T̂DD

2±1 ]
L
= ∓Î±j Îkz + Îjz Î±k /2

bjk = −
µ0

4π

γjγkh̵

r3
jk

[T̂DD
2±2 ]

L
= Î±j Î±k /2

(7.20)

bjk is the dipolar coupling constant, µ0 is the magnetic permeability, and rjk is the inter-

nuclear distance.

7.1.3.2 Chemical-Shift Anisotropy Relaxation

Chemical shift anisotropy is an indirect relaxation process, mediated by molecular elec-

trons. Electronic motion in the external field, which itself is dependent on the field strength,

induces local magnetic fields on the site of the nuclei. These fields vary in direction, with

respect to the nucleus, according to the molecular geometry, see Eq. (2.113). The resulting

field at the nuclear site causes nuclear relaxation.
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Assume the principal axis system is the same for both nuclei. Then the relaxation

superoperator is given by [226]:

ˆ̂ΓCSA,jk = −
γjγkτ

CSA
c

5

2

∑
m,q=−2

(−1)m [ACSA,j
2q ]

P
[A∗CSA,k

2q ]
P
[T̂CSA,j

2−m ]
L
[T̂CSA,k

2m ]
L

(7.21)

where:

cCSA
j = γj [ACSA,j

20 (t)]
P
=
√

3/2 ∆δj [T̂CSA
20 ]

L
=
√

2/3B0Îz

∆δj = δzz,j −Tr{δ}/3 [ACSA,j
2±1 (t)]

P
= 0 [T̂CSA

2±1 ]
L
= ∓B0Î

±
j /2

ηj = (δyy,j − δxx,j)/∆δj [ACSA,j
2±2 (t)]

P
= ηj∆δj/2 [T̂CSA

2±2 ]
L
= 0

(7.22)

∆δj is the chemical shift anisotropy, δj,iso ≡ Tr{δj}/3 is the isotropic chemical shift, and

ηj is the asymmetry parameter or biaxiality of the chemical shift tensor of the jth spin.

7.1.3.3 Spin-Rotation Relaxation

Spin-rotation relaxation is the significant mechanism for gases and for small, freely-rotating

molecules in other phases. Two different motions, molecular tumbling and intramolecular

rotations or reorientations, combine into the time-dependent space part of
ˆ̃̂
H1(t).

The form of the superoperator ˆ̂Γ, valid for spins in the liquid phase, is given by [226]:

ˆ̂ΓSR,jk = −kBT

3h̵2

1

∑
m,p,q,q′,ν,ν′=−1

(−1)mCp,q,jCp,q′,kIνν′D1
qν(Ω

SR,j
PM )D∗1

q′ν′(Ω
SR,k
PM )[T̂ SR,j

1−m ]
L
[T̂ SR,k

1m ]
L

(7.23)

where:

cSR = 1 [T̂ SR
10 ]

L
= Îjz

[ASR,j
10 (t)]

P
= Czz,jJz(t) [T̂ SR

1±1]
L
= ∓Î±j /

√
2

[ASR,j
1±1 (t)]

P
= ∓[Cxx,jJx(t) ± iCyy,jJy(t)]/

√
2

(7.24)

Here J = (Jx, Jy, Jz) is the molecular angular momentum vector, C = (C)p,q,j is the spin-

rotation coupling tensor. Its elements in the Cartesian representation are denoted by Cαα,j ,

where α = {x, y, z}. Iνν′ denotes the νν′-th element of the molecular moment of inertia

with ν, ν′ = {1,0,−1}. Iνν′ is related to the correlation function of the molecular angular

momentum Jν(t). Its form in the spherical coordinate system is given by [226]:

Jν(t)J∗ν′(t + τ) = δν∣ν′∣
kB T

h̵2
Iνν′ (7.25)

Explicitly:

Iνν′ =
1

2

⎛
⎜⎜⎜⎜⎜
⎝

Ix ex + Iy ey 0 −Ix ex + Iy ey

0 Iz ez 0

−Ix ex + Iy ey 0 Ix ex + Iy ey

⎞
⎟⎟⎟⎟⎟
⎠

(7.26)
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where eα = e−τ/τ
SR
c,α , and τSR

c,α is the correlation time for the Cartesian component α.

7.2 Field-Cycling Experiments

7.2.1 Field-Dependent Energy Eigenstates

The field cycling experiments described below are based on the transport of the spin system

under consideration between magnetic fields of different strengths. As given in Sections 5.1

and 5.3, 15N2O is characterized by:

γ(15N) < 0 , δ1 < δ2 , J12 < 0 (7.27)

where the spin indices “1” and “2” refer to the 15N15NO and 15N15NO site, respectively.

Therefore:

signJ12 = sign(Ω1 −Ω2) (7.28)

The correspondence between the high-field eigenstates of the weakly-coupled spin system

(Θ ≈ π/2) and the low-field eigenstates of the strongly-coupled spin system (Θ ≈ 0) is,

according to Eq. (3.5), the following:

∣αα⟩↔ ∣T+1⟩, ∣αβ⟩↔ ∣T0⟩, ∣βα⟩↔ ∣S0⟩, ∣ββ⟩↔ ∣T−1⟩ (7.29)

The field-dependent eigenstates ∣ξi⟩, where i = {1,2,3,4}, may then be expressed as linear

combination of the singlet and triplet states, defined in Eq. (2.102):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣ξ1⟩

∣ξ2⟩

∣ξ3⟩

∣ξ4⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 cos(Θ/2) − sin(Θ/2) 0

0 sin(Θ/2) cos(Θ/2) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣T+1⟩

∣S0⟩

∣T0⟩

∣T−1⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.30)

where Θ is the mixing angle given by Eq. (2.94).

The matrix representation of the two spins-1/2 Hamiltonian (2.93) in the basis of the

field-dependent states (7.30) is given by:

Ĥ(Θ) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣ξ1⟩ ∣ξ2⟩ ∣ξ3⟩ ∣ξ4⟩

ΩΣ + πJ12 0 0 0

0 −Ω∆sΘ − πJ12(2cΘ + 1) Ω∆cΘ − 2πJ12sΘ 0

0 Ω∆cΘ − 2πJ12sΘ Ω∆sΘ + πJ12(2cΘ − 1) 0

0 0 0 −ΩΣ + πJ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟨ξ1∣

⟨ξ2∣

⟨ξ3∣

⟨ξ4∣
(7.31)
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where sΘ = sin Θ and cΘ = cos Θ. The energies of the states ∣ξi⟩ are equal to:

E(ξ1) =
ΩΣ + πJ12

2

E(ξ2) = −
√

(Ω∆)2 + (2πJ12)2 + πJ12

2

E(ξ3) =
√

(Ω∆)2 + (2πJ12)2 − πJ12

2

E(ξ4) =
−ΩΣ + πJ12

2

(7.32)

In the case of 15N2O, ordering of the high-field and low-field eigenstates with respect to

energy leads to:

E(αα) > E(βα) > E(αβ) > E(ββ)

E(S0) > E(T+1) ≥ E(T0) ≥ E(T−1)
(7.33)

7.2.2 Adiabatic Transport

The preferred way of the transport between the different magnetic fields is the adiabatic

transport, see Figure 7.1. During such kind of a transport, the energy levels follow the

changing magnetic field immediately. At the same time, the populations re-equilibrate in

the actual field with the field-dependent T1 time constant. Adiabaticity further ensures

a low-loss transformation of the populations of the high-field states into the populations

of the low-field states and vice versa, as the transitions between the energy states are

minimized [26].

All the above mentioned characteristics of the adiabatic transport, however, constrain

the transport speed. The adiabaticity condition is usually expressed either in terms of the

Figure 7.1: 15N2O energy levels in high and low magnetic fields
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B0 field strength [2, 232]:

∣ 1

B0

dB0

dt
∣ ≪ ∣2πJ12∣ (7.34)

or by using the mixing angle Θ [2]:

∣dΘ

dt
∣ ≪ ∣2πJ12∣ (7.35)

The time-derivative of B0 and Θ in the left-hand side of the inequalities (7.34) and

(7.35) are shown in Figures 7.2 and 7.3, respectively, for the realistic experimental magnetic

field profile, also shown in Figure 7.2. The expression on the right-hand side arises from

the condition that the rate of change of the Hamiltonian eigenstates has to be slower than

the smallest difference of the eigenstate energies. Eqs. (7.32) in the low-field limit, when

Figure 7.2: Left: The realistic dependence of the B0 field strength on the vertical position

relative to the usual detection position (provided by Oxford Instruments, U.K.). Right:

The rate of change of the magnetic field strength during the field-cycling experiment.

Figure 7.3: Left: The realistic time evolution of the mixing angle Θ during the field-cycling

experiment. Right: The rate of change of the mixing angle Θ during the field-cycling

experiment.
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Ω∆ ≪ 2πJ12, give:

∣E(ξ2) −E(ξ3)∣ =
√

(Ω∆)2 + (2πJ12)2 ≈ ∣2πJ12∣ (7.36)

Alternatively, according to [48], the transport has to be slower than 1/J12 in order to

minimize transitions between the Hamiltonian eigenstates, but faster than T1 to maintain

distribution of the populations during and after the transport. The transport time τtr,

therefore, obeys:

1/∣J12∣ < τtr < T1 (7.37)

During the field-cycling experiments shown in Figures 7.4 and 7.7, the default high

magnetic field was BHF = 7046 mT at the zero reference height h0 = 0 cm inside the spec-

trometer. The lowest field was BLF ≈ 3.3 mT at the height h1 = 145 cm above the refer-

ence zero level. The transport time for reaching h1 was τtr = 12 s. The transport speed of

vtr ≈ 12.1 cm s−1 was kept fixed during all experiments. From the plots 7.2(b) and 7.3(b)

follows that:

max ∣ 1

B0

dB0

dt
∣ ≈ 1.97 s−1 (7.38)

max ∣dΘ

dt
∣ ≈ 0.263 s−1 (7.39)

which is much less than the value of the 15N2O J-coupling constant:

∣2πJ12∣ ≈ 51.5 s−1 (7.40)

The comparison of Eqs. (7.38), (7.39) and (7.40) leads to conclusion that the transport

was adiabatic.

7.2.3 Singlet Experiment

The singlet experiment shown in Figure 7.4 serves for preparation, storage and observation

of the singlet state in coupled pairs of spin-1/2 nuclei, which are weakly coupled in the

high field. It is based on a modified version of the field-cycling singlet experiment from

[57], the rf pulse sequence of which is provided in Figure 7.5, combined with the MSE

pulse sequence in order to observe SNR-enhanced singlet signals.

The initial high-field equilibrium magnetization Îz is converted by the semi-selective

πy pulse into a so-called singlet precursor state [61]. A selective inversion of, e.g., the

15N15NO site gives:

Îz = ∣αα⟩⟨αα∣ − ∣ββ⟩⟨ββ∣
π Î1yÐÐÐ→ − Î1z + Î2z = ∣βα⟩⟨βα∣ − ∣αβ⟩⟨αβ∣ (7.41)
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Figure 7.4: Scheme of the field-cycling singlet experiment. Shown are the vertical position

of the sample (1st line), theB0 field strength (2nd line), the rf pulse sequence (3rd line), and

the carrier frequency (4th line) during the experiment. Time intervals τtr and τLF denote

the adiabatic transport time and the time spent in the low-field. The carrier frequency

may be switched between the centres of 15N15NO and 15N15NO doublets either before the

first πx pulse or the (π/2)y pulse.

Figure 7.5: Scheme of the original field-cycling singlet NMR experiment [48, 57]. The carrier

frequency of the nonselective rf pulses is set to the mean of the nuclear spin precession

frequencies. Adapted from [57].
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As shown in Figure 7.4, the carrier frequency may be set either to ω
(1)
rf or ω

(2)
rf , which

corresponds to the frequency of the 15N15NO or 15N15NO doublet centre, respectively. This

semi-selective πy pulse replaces the first pair of nonselective (π/2) pulses with the carrier

at the mean of the nuclear spin precession frequencies, and a delay τ1 = π/∣ − γBHF(δ1 − δ2)∣

between the pulses, as used in the original pulse sequence for the semi-selective inversion

of the either nuclear site, see Figure 7.5 [48, 57].

The sample is then adiabatically transported into the low field region. According to

Eq. (7.29), the population difference between the high-field states ∣αβ⟩ and ∣βα⟩ transforms

into the difference between populations of the low-field states ∣T0⟩ and ∣S0⟩:

∣βα⟩⟨βα∣ − ∣αβ⟩⟨αβ∣ BHF

adiab.ÐÐÐ→ BLFÐÐÐÐÐÐÐÐÐÐÐÐ→ ∣S0⟩⟨S0∣ − ∣T0⟩⟨T0∣ (7.42)

During the relaxation interval τLF, the singlet population decays with the TS time constant,

whereas the populations of the triplet states equilibrate with the time constant T1 ≪ TS .

After τLF > T1, the spin state (singlet order) evolves in accordance with [36]:

ρ̂∝ (∣S0⟩⟨S0∣ −
∣T+1⟩⟨T+1∣ + ∣T0⟩⟨T0∣ + ∣T−1⟩⟨T−1∣

3
) e−τLF/TS (7.43)

The sample is transported back into the high-field during the transport interval τtr, which

is of the same duration as the interval of high-to-low field transport.

Finally, the carrier frequency is set to the appropriate value and the semi-selective

(π/2)y pulse triggers the subsequent acquisition of the MSE signal. The (π/2)y pulse

replaces the second pair of nonselective pulses and the inter-pulse delay τ2 = τ1/2 in the

original pulse sequence, which act as the semi-selective excitation, too.

Examples of the observed singlet relaxation of the 15N15NO doublet in the field of

B0 ≈ 4.7 mT (τtr ≈ 10.81 s) are shown in Figure 7.6. The carrier frequency was set to the

mean frequency of the 15N15NO doublet during the whole pulse sequence.

7.2.4 T1 Experiment

The field-cycling T1 experiment is used for the determination of the field-dependent T1

time constant. Its scheme is shown in Figure 7.7. The thermal equilibrium magnetization

of the sample is established in high field. The sample is then adiabatically transported

into low field. The resulting population distribution is different from that corresponding

to a new value of the magnetic field strength, see Eq. (6.1). Therefore, the equilibrium

population distribution is reestablished during the relaxation interval τLF. Finally, the
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Figure 7.6: Singlet relaxation in the magnetic field of 4.7 mT (τtr ≈ 10.81 s) observed in

15N15NO doublet. The points represent experimental integrals of the peak 1 (left) and

the peak 2 (right). The gray lines are the best fits of the relaxation model described in

Section 7.3.3.

sample is adiabatically returned back into the spectrometer. A single nonselective (π/2)y

pulse is followed by the acquisition of the FID signal.

Examples of the observed 15N2O T1 relaxation in the field of B0 ≈ 4.7 mT (τtr ≈ 10.81 s)

are shown in Figure 7.8.

7.3 Field-Dependent Relaxation Description

The field-cycling singlet and T1 experiments introduced in Sections 7.2.3 and 7.2.4 were

performed for magnetic fields of the strength between the spectrometer field (7046 mT)

and the lowest available field (3.3 mT), as stated at the end of Section 7.2.2. It is clear

from Figures 7.6 and 7.8 that four different dependencies may in principal be obtained,

using the two experiments.

Assume no prior knowledge about the individual relaxation mechanisms, which are

responsible for the observed relaxation. A phenomenological model may be constructed,

taking into account the theory introduced in Section 7.1, in order to describe the observa-

tions. The overall relaxation of the spin system will be represented by a time-dependent

exchange of populations of the individual energy levels.

7.3.1 Generalized Relaxation Model

As seen in Section 7.1.2, the relaxation superoperator ˆ̂Γ is conveniently represented by

means of spherical tensor operators. The considered spin system consists of two coupled
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Figure 7.7: Scheme of the field-cycling T1 experiment. Shown are the vertical position of

the sample (1st line), the B0 field strength (2nd line), the rf pulse sequence (3rd line), and

the carrier frequency (4th line) during the experiment. Time intervals τtr and τLF denote

the transport time and the time spent in the low-field. The carrier frequency is set to the

mean frequency of the 15N15NO and 15N15NO doublets during the whole experiment.

Figure 7.8: 15N2O T1 relaxation observed in the magnetic field of 4.7 mT (τtr ≈ 10.81 s).

The points represent experimental integrals for peak 1 (◾) and peak 2 (◽) of the 15N15NO

doublet (left), and for peak 3 (●) and peak 4 (○) of the 15N15NO doublet (right). The gray

lines are the best fits of the relaxation model described in Section 7.3.3.
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spins-1/2. The relaxation mechanisms may cause relaxation of both spins simultaneously

or of each spin separately. Therefore, one-spin and two-spins spherical tensor operators

have to be included. Their complete basis { ˆ̂Bi} is listed in Table 7.1 [35].

One-spin operators Two-spins operators

B̂1 = −Î+1 /
√

2 ≡ T̂ (1)11 B̂8 = Î+1 Î+2 ≡ 2T̂
(1,2)
22

B̂2 = Î1z ≡ T̂ (1)10 B̂9 = −Î+1 Î2z − Î1z Î
+
2 ≡ 2T̂

(1,2)
21

B̂3 = Î−1 /
√

2 ≡ T̂ (1)1−1 B̂10 = − (Î−1 Î+2 + Î+1 Î−2 − 4Î1z Î2z) /
√

6 ≡ 2T̂
(1,2)
20

B̂4 = −Î+2 /
√

2 ≡ T̂ (2)11 B̂11 = Î−1 Î2z + Î1z Î
−
2 ≡ 2T̂

(1,2)
2−1

B̂5 = Î2z ≡ T̂ (2)10 B̂12 = Î−1 Î−2 ≡ 2T̂
(1,2)
2−2

B̂6 = Î−2 /
√

2 ≡ T̂ (2)1−1 B̂13 = −Î+1 Î2z + Î1z Î
+
2 ≡ 2T̂

(1,2)
11

B̂7 = Ê/2 ≡ T̂ (1)00 ≡ T̂ (2)00 B̂14 = (Î−1 Î+2 − Î+1 Î−2 ) /
√

2 ≡ 2T̂
(1,2)
10

B̂15 = −Î−1 Î2z + Î1z Î
−
2 ≡ 2T̂

(1,2)
1−1

B̂16 = − (Î−1 Î+2 + Î+1 Î−2 + 2Î1z Î2z) /
√

3 ≡ 2T̂
(1,2)
00

Table 7.1: Spherical tensor operator basis for two spins-1/2

The conventional nomenclature of the spherical tensor operators, using the symbol

T̂
(s)
km , is on the right-hand side of each expression in Table 7.1. The subscripts k and

m = {−k, . . . , k} denote the rank and the component of the operator, and the superscript

s denotes the related spin(s).

The relaxation superoperator ˆ̂Γ is constructed as the sum of the projection superop-

erators from the basis operators B̂i in Table 7.1 as follows:

ˆ̂Γ = −
16

∑
i=1

ai
∣B̂i)(B̂i∣
(B̂i∣B̂i)

(7.44)

The constants ai represent transition probabilities per unit time and denote a contribution

of the ith projection superoperator to ˆ̂Γ. A correct and full form of the ˆ̂Γ expansion would

have to include all 256 shift superoperators. However, due to the fact that only populations

are used for relaxation description and that only four different relaxation dependencies are

available, only a tiny fraction of the superoperators is relevant, whose contribution may

be determined unambiguously.

Assume the energy level scheme for 15N2O in Figure 7.1. The population exchange

between different pairs of the levels may be described by a master equation for populations

[10]. The time evolution of the populations after the adiabatic transport into the magnetic
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field of a given strength obeys the first-order homogeneous differential equations:

d

dt
P (t, χ) = W(χ) ⋅ [P (t, χ) −P eq(χ)] (7.45)

The parameter χ = B0/BHF describes the magnetic field strength relative to the spec-

trometer field BHF. P (t, χ) is the time and magnetic-field dependent population vector

defined by:

P (t, χ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⟨ξ1(χ)∣ρ̂(t, χ)∣ξ1(χ)⟩

⟨ξ2(χ)∣ρ̂(t, χ)∣ξ2(χ)⟩

⟨ξ3(χ)∣ρ̂(t, χ)∣ξ3(χ)⟩

⟨ξ4(χ)∣ρ̂(t, χ)∣ξ4(χ)⟩

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.46)

The field-dependent states ∣ξi(χ)⟩ are defined by Eq. (7.30). ρ̂(t, χ) denotes the density

operator of the spin system. The field-strength dependence of the mixing angle (2.94) is

the following:

Θ(χ) = arctan [Ω1(χ) −Ω2(χ)
2πJ12

] = arctan [−γBHF (δ1 − δ2)
2πJ12

χ] (7.47)

The symbol W(χ) in Eq. (7.45) represents a relaxation matrix:

W(χ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣ξ1⟩ ∣ξ2⟩ ∣ξ3⟩ ∣ξ4⟩

∆1(χ) W12(χ) W13(χ) W14(χ)

W21(χ) ∆2(χ) W23(χ) W24(χ)

W31(χ) W32(χ) ∆3(χ) W34(χ)

W41(χ) W42(χ) W43(χ) ∆4(χ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟨ξ1∣

⟨ξ2∣

⟨ξ3∣

⟨ξ4∣

(7.48)

The individual matrix elements Wij(χ) denote the transition probabilities per unit time,

which characterize the population exchange between the ith and jth energy level, see

Figure 7.9. They are given by:

Wij(χ) = (∣ξi(χ)⟩⟨ξi(χ)∣ ∣ˆ̂Γ∣ ∣ξj(χ)⟩⟨ξj(χ)∣) (7.49)

Using Eqs. (7.30), (7.44) and (7.47), the transition probabilities Wij(χ) are explicitly equal

to the following expressions:

W12(χ) =W21(χ) = [3sΘ(a2 − a5) + 2(1 − cΘ)a10 + (1 + 2cΘ)a16]/12

W13(χ) =W31(χ) = [−3sΘ(a2 − a5) + 2(1 + cΘ)a10 + (1 − 2cΘ)a16]/12

W14(χ) =W41(χ) = [3(a2 + a5) − 2a10 − a16]/12

W23(χ) =W32(χ) = [3s2
Θ(a2 + a5) − 2(1 − c2

Θ)a10 − (1 − 4c2
Θ)a16]/12

W24(χ) =W42(χ) = [−3sΘ(a2 − a5) + 2(1 − cΘ)a10 + (1 + 2cΘ)a16]/12

W34(χ) =W43(χ) = [3sΘ(a2 − a5) + 2(1 + cΘ)a10 + (1 − 2cΘ)a16]/12

(7.50)
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where sΘ = sin Θ(χ) and cΘ = cos Θ(χ). The negative diagonal elements ∆i(χ), which en-

sure conservation of the populations, are given by:

∆i(χ) = −
4

∑
j=1
j≠i

Wij(χ) (7.51)

Figure 7.9: 15N2O energy-level scheme in a general magnetic field

The solution of Eq. (7.45) is of the form:

P (t, χ) = P eq(χ) + eW(χ) t ⋅ [P (0,1) −P eq(χ)] (7.52)

where P (0,1) is the population vector immediately after the transport into the region of

the field strength χBHF. The equilibrium population vector P eq(χ) in the field χBHF is

defined by:

P eq(χ) = P (t, χ)∣t→∞ = χ(−1,0,0,1)T (7.53)

After the low-field relaxation interval τLF and the adiabatic transport back into the

spectrometer, either MSE or FID signal is acquired during the singlet or T1 experiment, re-

spectively. The observed spectral peak amplitudes correspond to the population difference

across pairs of the energy levels in high field. The difference pattern Qp, which gives rise

to the peak p = {1,2,3,4}, if read in the traditional way from left-to-right, using labeling

according to Figure 5.2, is given by vectors:

Q1 = (0,1,0,−1)T

Q2 = (1,0,−1,0)T

Q3 = (0,0,1,−1)T

Q4 = (1,−1,0,0)T

(7.54)

The peaks 1 and 2 belong to the 15N15NO doublet, whereas the 15N15NO doublet comprises

the peaks 3 and 4. Combining Eqs. (7.52) and (7.54) together, the amplitudes of the
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individual peaks are equal to:

Ap(τLF, χ) =QT
p ⋅P (τLF, χ) (7.55)

Due to the evaluation of the relaxation matrix exponential eW(χ) t, the explicit form of the

solution (7.52) and the peak amplitudes (7.55) for the two field-cycling experiments may

be found numerically for a general magnetic field strength χBHF.

7.3.2 Low-Field Relaxation

7.3.2.1 Zero-Field Approximation

The relaxation in zero to low magnetic field may be described to a sufficient accuracy

by equations from Section 7.3.1 for χ = 0. The elements Wij(χ) of the relaxation matrix

W(χ) given by Eq. (7.50) simplify to:

W12(0) =W21(0) = a16/4

W13(0) =W31(0) = (4a10 − a16)/12

W14(0) =W41(0) = [3(a2 + a5) − 2a10 − a16]/12

W23(0) =W32(0) = a16/4

W24(0) =W42(0) = a16/4

W34(0) =W43(0) = (4a10 − a16)/12

(7.56)

Assuming that the zero-field eigenstates (7.30) are equal to:

(∣ξ1(0)⟩, ∣ξ2(0)⟩, ∣ξ3(0)⟩, ∣ξ4(0)⟩)
T = (∣T+1⟩, ∣S0⟩, ∣T0⟩, ∣T−1⟩)

T
(7.57)

the three unique values of the transition probabilities per unit time in (7.56) may be

relabelled in the following way:

W12(0),W21(0),W23(0),W24(0),W32(0),W42(0) Ô⇒ W ST

W13(0),W31(0),W34(0),W43(0) Ô⇒ WTT
1

W14(0),W41(0) Ô⇒ WTT
2

(7.58)

The three newly defined transition probabilities per unit time are depicted in Fig-

ure 7.10. W ST characterizes transitions between the singlet state and the three triplet

states. WTT
1 describes transitions between the central triplet state and the two outer

triplet states. Finally, WTT
2 represents the rank-2 transition between the outer triplet

states.
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Figure 7.10: 15N2O energy-level scheme in low magnetic field

The relaxation matrix W0 ≡ W(0) is then:

W0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣T+1⟩ ∣S0⟩ ∣T0⟩ ∣T−1⟩

∆T
+1 W ST WTT

1 WTT
2

W ST ∆S
0 W ST W ST

WTT
1 W ST ∆T

0 WTT
1

WTT
2 W ST WTT

1 ∆T
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⟨T+1∣

⟨S0∣

⟨T0∣

⟨T−1∣

(7.59)

where:

∆T
±1 = −W ST −WTT

1 −WTT
2

∆S
0 = −3W ST

∆T
0 = −W ST − 2WTT

1

(7.60)

The eigenvalues and eigenvectors of the relaxation matrix W0 are listed in Table 7.2.

Eigenvalue Eigenvector

0 (1,1,1,1)T

−4W ST = −a16 ≡ −1/TS (1,−3,1,1)T ≡ V0

−W ST − 3WTT
1 = −a10 ≡ −1/T#2 (1,0,−2,1)T ≡ V2

−W ST −WTT
1 − 2WTT

2 = −(a2 + a5)/2 ≡ −1/T1 (−1,0,0,1)T ≡ V1

Table 7.2: Eigenvalues and eigenvectors of the zero-field relaxation matrix W0

The zero eigenvalue corresponds to a uniform population distribution, i.e., equilibrium

populations in zero field without any relaxation. The eigenvector V0 corresponds to singlet

spin order, i.e., the difference between the singlet and the mean triplet populations. The

corresponding eigenvalue is the inverse of TS . The eigenvector V2 represents a rank-2 spin

order, i.e., the difference between the populations of the central triplet and the mean of the

outer triplet states. The corresponding time constant is denoted T#2. Finally, V1 denotes
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the population distribution during the low-field T1 experiment with the corresponding

relaxation time constant T1.

The time evolution of the populations (7.45) for χ = 0 is simply:

P (t,0) = eW0 t ⋅P (0,1) (7.61)

7.3.2.2 Singlet Experiment

The description of the singlet experiment follows Figure 7.4. The spin system is initially in

the thermal equilibrium. The populations of the energy levels may be described according

to Eq. (7.53) by:

P eq(1) = (−1,0,0,1)T (7.62)

After the semi-selective inversion and the adiabatic transport into low field, the initial

low-field population vector P (0,1) is given either by:

P eq(1)
π1,x + adiab.

ÐÐÐÐÐÐÐÐÐ→ P (0,1) = (0,−1,1,0)T (7.63)

if the inversion is applied to the 15N15NO site, or by:

P eq(1)
π2,x + adiab.

ÐÐÐÐÐÐÐÐÐ→ P (0,1) = (0,1,−1,0)T (7.64)

if the 15N15NO site is selectively inverted. Continuing with, e.g., Eq. (7.63), such a popu-

lation distribution is the linear combination of the singlet and rank-2 spin orders:

(0,−1,1,0)T = (V0 −V2)/3 (7.65)

Each of the spin orders relaxes with its own time constant, see Table 7.2. Therefore, the

overall time evolution after the relaxation interval τLF in low field is described by:

P (τLF,0) = eW0 τLF ⋅P (0,1) = 1

3
(V0 e−τLF/TS −V2 e−τLF/T#2) (7.66)

After the adiabatic transport back into the spectrometer, the semi-selective (π/2)k,y pulse

is used to read out the remaining population distribution. The time-dependence of the peak

amplitudes in the frequency spectrum is given by, using Eqs. (7.54), (7.55) and (7.66):

Ap(τLF, χ) =QT
p ⋅P (τLF,0) =QT

p ⋅ eW0 τLF ⋅P (0,1) (7.67)

or explicitly by:

A1(τLF) = −
4

3
e−τLF/TS + 1

3
e−τLF/T#2

A2(τLF) = −e−τLF/T#2

A3(τLF) = e−τLF/T#2

A4(τLF) =
4

3
e−τLF/TS − 1

3
e−τLF/T#2

(7.68)
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In the other case (7.64) of the initial low-field population vector, peak amplitudes with

opposite signs are obtained.

An example of the time evolution of the 15N15NO doublet in the low field of 3.3 mT

is shown in Figure 7.11.

Figure 7.11: The low-field singlet experiment spectra of the 15N15NO doublet as a function

of the low-field interval τLF (B0 ≈ 3.3 mT). The carrier was set to ω
(2)
rf during the whole

experiment. The displayed τLF intervals are approximately equally spaced on a logarithmic

scale.

7.3.2.3 T1 Experiment

The low-field T1 experiment is described by Figure 7.7. The initial high-field population

distribution, given by Eq. (7.62), is adiabatically transported into low field. The initial

low-field population vector remains unchanged:

P eq(1)
adiab.ÐÐÐÐÐ→ P (0,1) = (−1,0,0,1)T (7.69)

Such a population distribution is equivalent to the eigenvector V1 in Table 7.2. It re-

laxes with the time constant T1. Therefore, after the low-field relaxation interval τLF, the

populations are given by:

P (τLF,0) = eW0 τLF ⋅P (0,1) = V1 e−τLF/T1 (7.70)

Using Eqs. (7.54), (7.55) and (7.70), all four peak amplitudes in the frequency spectrum

undergo the same time evolution:

Ap(τLF) = −e−τLF/T1 (7.71)

for p = {1,2,3,4}.
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7.3.3 Intermediate-Field Relaxation

The description of the case, in which the magnetic field spans between the lowest used

field (BLF ≈ 3.3 mT) and the spectrometer field (BHF ≈ 7046 mT) may be computed nu-

merically by using Eqs. (7.52) and (7.55). The time evolution of the peak amplitudes in

the frequency spectrum is given by:

Ap(τLF, χ) =QT
p ⋅ {P eq(χ) + eW(χ) τLF ⋅ [P (0,1) −P eq(χ)]} (7.72)

The equilibrium population vector P eq(χ) in the magnetic field of the strength χBHF

is given by Eq. (7.53). The high-field population difference patters Qp, which give rise to

the spectral peaks are given by Eq. (7.54). Both Qp and P eq(χ) remain the same for the

field-dependent “singlet” and T1 experiments in the field of the strength χBHF.

The population vector P (0,1) immediately after adiabatic transport into low field

varies. In the case of the field-dependent “singlet” experiment, P (0,1) is given by

Eq. (7.63), if the semi-selective inversion is applied to the 15N15NO site, and by

Eq. (7.64), if the 15N15NO site is selectively inverted. In the case of the field-dependent

T1 experiment, P (0,1) is given by Eq. (7.69).

There are two extreme cases of the field-dependent relaxation. The case of zero field

(χ = 0, Θ = 0) has already been treated in detail in Section 7.3.2. In the case of the spec-

trometer field (χ = 1, Θ = π/2), for completion, the relaxation matrix elements Wij in

Eq. (7.50) simplify into:

W12(1) =W21(1) =W34(1) =W43(1) = [3(a2 − a5) + 2a10 + a16]/12

W13(1) =W31(1) =W24(1) =W42(1) = [−3(a2 − a5) + 2a10 + a16]/12

W14(1) =W41(1) =W23(1) =W32(1) = [3(a2 + a5) − 2a10 − a16]/12

(7.73)

The eigenvectors and eigenvalues of the relaxation matrix W(1) are given in Table 7.3.

Eigenvalue Eigenvector

0 (1,1,1,1)T

−a2 ≡ 1/T (1)1 (−1,1,−1,1)T

−a5 ≡ 1/T (2)1 (−1,−1,1,1)T

−(2a10 + a16)/3 (1,−1,−1,1)T

Table 7.3: Eigenvalues and eigenvectors of the high-field relaxation matrix W(1)

The eigenvalue a2 and the corresponding eigenvector denote the high-field relaxation

time constant T
(1)
1 and the z-magnetization for the 15N15NO site. Similarly the eigenvalue
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a5 and the related eigenvector denote the high-field relaxation time constant T
(2)
1 and

the z-magnetization for the 15N15NO site. The third nontrivial pair of the eigenvalue and

eigenvector corresponds to the longitudinal two-spin order of 15N15NO and 15N15NO sites.

In the spectrometer field, the low-field singlet experiment turns into inversion recovery

with the peak amplitude trajectories given by Eq. (2.32). The T1 experiment becomes the

one pulse experiment giving constant peak amplitudes.

The constants ai defined in Eq. (7.44), which appear in the relaxation matrix W(χ),

are those with indices i = {2,5,10,16}. They are used as fitting parameters. Comparison of

the corresponding spherical tensor operators in the form of projection superoperators with

the concrete forms of the relaxation superoperators of individual relaxation mechanisms

in Section 7.1.3 reveals that the a2 and a5 constants include CSA and SR relaxation

mechanisms. Being equal to the longitudinal relaxation rates of the individual 15N nuclear

sites, they also include DD relaxation. a10 comprises contribution from the DD relaxation,

and a16 represents other mechanisms.

7.4 Analysis of Results

7.4.1 Low-Field Relaxation

7.4.1.1 Singlet Experiment

The pulse sequence in Figure 7.4 was used for observation of the low-field singlet relax-

ation. In order to resolve individual peaks of the observed doublet, MSE signals consisting

of Ne = 104 echoes with π-pulse spacing of τ = 2 s were acquired. The achieved SNR en-

hancement was between a factor of 4 and 5.

As derived in Section 7.3.2.2, irrespective of which 15N site was selectively inverted in

order to prepare the singlet precursor state, or later selectively excited to observe the pop-

ulation distribution after the low-field relaxation, there are only two distinct dependencies

of the peak amplitudes:

∣A1(τLF)∣ = ∣A4(τLF)∣ =
4

3
e−τLF/TS − 1

3
e−τLF/T#2

∣A2(τLF)∣ = ∣A3(τLF)∣ = e−τLF/T#2

(7.74)

To confirm this statement, the low-field relaxation of 15N2O dissolved in DMSO was mea-

sured, while applying the semi-selective inversion and excitation to either of the two 15N

sites. The peak integrals from these measurements are shown in Figures 7.12.
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Since the time evolution of the peak integrals was similar for all four combinations

of the carrier frequency, all four sets of peak integrals were averaged and fitted by the

functions in (7.74). Mean values and standard deviations of the peak integrals, together

with the best fits are shown in Figure 7.13.

Figure 7.12: 15N2O relaxation observed during the low-field singlet experiment for the

different combinations of the selectively inverted and excited 15N sites. The first πj,x and

the second (π/2)k,y rf pulses were applied to the {j, k} combination of the 15N sites, where

j, k = {1,2}. Top: Normalized integrals of the 15N15NO doublet peaks 1 and 2 for the {2,2}

(◾) and the {1,2} (◽) combinations of the 15N sites. Bottom: Normalized integrals of the

15N15NO doublet peaks 3 and 4 for the {2,1} (●) and the {1,1} (○) combinations of the

15N sites. The gray curves denotes the best fit of the averaged data by function given in

Eq. (7.74).
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Figure 7.13: 15N2O relaxation observed during the low-field singlet experiment. The av-

eraged data from Figures 7.12 were fitted by the function given in Eq. (7.74). The gray

curve denotes the best fit.

All fitting was performed using Mathematica v. 8 [176]. Despite the use of both local

and global optimization methods available, it was difficult for the fitting routines to get a

better agreement with the data than that shown in Figure 7.13. The numerical values of

the transition probabilities per unit time and the corresponding time constants, derived

by using relationships in Table 7.2, are [61]:

W ST = (0.216 ± 0.004) × 10−3 s−1

WTT
2 = (0.140 ± 0.140) × 10−3 s−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩

TS = 1155 ± 23 s

T#2 = 76 ± 4 s
(7.75)

When compared to the reference values from [57], measured in the magnetic field of

2 mT (T#2 not determined):

Low field: TS = 1583 ± 57 s, T1 = 197 ± 5 s

High field: T
(1)
1 ≈ 198 s, T

(1)
1 ≈ 114 s

(7.76)

mainly the singlet relaxation time TS is substantially lower. Nevertheless, when the ex-

pected values (7.76) were tentatively substituted into Eqs. (7.74), the theoretical depen-

dencies were in a significant disagreement with the experimental data. One reason may

arise from averaging of the four datasets. Another reason was the discussed difficulties

during data fitting as may be seen in Figures 7.12 and 7.13. Less likely, the value reported

in [57] might be slightly overestimated, since a single exponential was used for fitting of

the singlet relaxation dependence, see Eq. (7.43), which is currently an usual practice.
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7.4.1.2 T1 Experiment

The low-field T1 relaxation was observed by means of the pulse sequence in Figure 7.7.

The SNR enhancement by means of the MSE signal acquisition was avoided. The peak

integrals for the 15N15NO and 15N15NO doublets (not for individual peaks) are shown in

Figure 7.14.

Figure 7.14: The 15N15NO (◾) and 15N15NO site (○) relaxation observed during the low-

field T1 experiment. The gray curve denotes the best fit of the averaged data by function

given in Eq. (7.77).

In accordance with Eq. (7.71), both 15N sites are expected to relax exponentially with

only one time constant:

∣A(τLF)∣ = e−τLF/T1 (7.77)

Due to similarity of the time evolution of the peak integrals of both doublets, both datasets

were averaged and fitted by (7.77), see Figure 7.15. Using the values of the transition prob-

abilities per unit time in (7.75), the remaining relaxation time constant was determined:

WTT
1 = (4.32 ± 0.23) × 10−3 s−1 ⇐⇒ T1 = 207 ± 7 s (7.78)

The T1 value is in agreement with (7.76).

7.4.1.3 Spin-Rotation Relaxation Effects (Low-Field Relaxation)

The obtained values of the transition probabilities per unit time and the relaxation time

constants given in (7.75) and (7.78) were used to resolve the role of the spin-rotation

relaxation on the singlet state in 15N2O dissolved in DMSO. It is known that spin-rotation

relaxation dominates for the gas phase 15N2O [233–235].
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Figure 7.15: 15N2O relaxation observed during the low-field T1 experiment. The averaged

data from Figure 7.14 were fitted by the function given in Eq. (7.77). The gray curve

denotes the best fit.

When the double-quantum DD contribution WTT
2 to T1 is subtracted, considering that

WTT
2 (DD) = 2WTT

1 (DD), the modified time constants are obtained:

W ST(no DD) = (0.216 ± 0.004) × 10−3 s−1 ≡W ST

WTT
1 (no DD) = (4.25 ± 0.24) × 10−3 s−1

WTT
2 (no DD) ≡ 0

(7.79)

The ratio of the above transition rates per unit time is equal to:

WTT
1 (no DD)

W ST
= 19.7 ± 1.2 ≡Rexp

W (7.80)

From [226], the following relationships hold for the largest principal values C1 and C2

of the spin-rotation coupling tensors of the 15N15NO and 15N15NO site, respectively:

W ST(SR) = 1

2
(C1 −C2)2 J2

RMS τ
SR
c

WTT
1 (SR) = 1

2
(C1 +C2)2 J2

RMS τ
SR
c

(7.81)

JRMS denotes the RMS value of the fluctuating molecular angular momentum, and τSR
c is

the correlation time. Therefore:

WTT
1 (SR)

W ST(SR)
= (C1 +C2)2

(C1 −C2)2
≡RW ⇐⇒ TS(SR)

T1(SR)
= C2

1 +C2
2

2 (C1 −C2)2
≡RT (7.82)

Two distinct estimates of the C1 and C2 values have been published so far. Molecular

beam electric resonance experiment carried out by Reinartz and coworkers on the ground
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vibrational state of 14N14N16O gave [236]:

C1 = 1.829 ± 0.065 kHz

C2 = 3.06 ± 0.12 kHz
(7.83)

The corresponding ratios (7.82) are equal to:

RRei
W = 15.8 ± 3.1

RRei
T = 4.19 ± 0.78

(7.84)

These values are in good agreement with the current values of Rexp
W in Eq. (7.80) and with:

Rexp
T = 5.14 ± 0.30 (7.85)

evaluated from values in (7.75) and (7.78).

Based on nuclear spin-lattice relaxation data, Jameson and coworkers provided a dif-

ferent set of values [233–235]:

C1 = 2.48 kHz

C2 = 3.35 kHz
(7.86)

These values were published without confidence limits. Values of the corresponding ratios

are equal to:

RJam
W = 44.9

RJam
T = 11.5

(7.87)

The values of ratiosRJam are almost a factor of 2 bigger than the experimental valuesRexp

and a factor of 3 bigger compared to RRei. If Jameson was right, then the spin-rotation

relaxation would proceed two- to three-times faster than what is observed experimentally.

Further detailed study is needed to resolve this contradiction.

7.4.2 Intermediate-Field Relaxation

7.4.2.1 Field-Dependent Experiments

Data for the field-dependent relaxation study were acquired in a similar way to the low-

field experiments. The carrier frequency was set to ω
(2)
rf , i.e., the centre of the 15N15NO

doublet, during all experiments. The MSE sequence was not use. Acquired time-domain

signals were treated by a decaying exponential matched filter (6.25), and the spectral

peak areas were integrated. Examples of the experimental data for different magnetic field

strengths are shown in Figures 7.16, 7.17 and 7.18.
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All the datasets from both the field-dependent “singlet” and T1 experiments were fitted

simultaneously using the peak amplitude dependencies derived in Section 7.3.3. The best

fit values of the constants ai and the corresponding relaxation time constants are the

following, using relationships in Tables 7.2 and 7.3:

a2 = 3.66 × 10−3 s−1

a5 = 7.04 × 10−3 s−1

a10 = 1.74 × 10−2 s−1

a16 = 6.57 × 10−4 s−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(1)
1 ≈ 273 s (high field)

T
(2)
1 ≈ 142 s (high field)

T#2 ≈ 57 s

TS ≈ 1522 s

T1 ≈ 187 s (low field)

(7.88)

Unfortunately, the global optimization routines built in Mathematica do not provide con-

Figure 7.16: 15N2O relaxation in the magnetic field of 23.6 mT (τtr ≈ 6.48 s). The points

represent peak integrals. a) The integrals of the peak 1 during the field-dependent “singlet”

experiment. b) The integrals of the peak 2 during the field-dependent “singlet” experiment.

c) The integrals of the 15N15NO doublet during the field-dependent T1 experiment. d) The

integrals of the 15N15NO doublet during the field-dependent T1 experiment. The gray lines

are the best fits of the relaxation model described in Section 7.3.3.
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fidence limits. The TS value is only 4 % lower than the reference value in (7.76). The

low-field T1 value is lower by 10 % than that in (7.78). The low-field T#2 and the high-

field T1 values deviate by up to 25 % from the values in Eq. (7.75) and Table 5.2.

Besides the global fitting of the full dataset, individual sub-datasets of the peak inte-

grals from the intermediate-field “singlet” and T1 relaxation experiments were fitted by

a single decaying exponential function in order to extract the relaxation time constants.

These may be compared to the time constants predicted by the field-dependent relax-

ation model. Using the intermediate-field “singlet” relaxation experiment datasets, the

magnetic-field strength dependence of TS and T#2 was obtained from the integrals of the

peaks 1 and 2, respectively. The values of T
(1)
1 and T

(2)
1 were obtained from integrals of

the 15N15NO and 15N15NO doublets from the intermediate-field T1 relaxation experiment.

Figure 7.17: 15N2O relaxation in the magnetic field of 235.7 mT (τtr ≈ 3.33 s). The points

represent peak integrals. a) The integrals of the peak 1 during the field-dependent “singlet”

experiment. b) The integrals of the peak 2 during the field-dependent “singlet” experiment.

c) The integrals of the 15N15NO doublet during the field-dependent T1 experiment. d) The

integrals of the 15N15NO doublet during the field-dependent T1 experiment. The gray lines

are the best fits of the relaxation model described in Section 7.3.3.
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The comparison of the experimental and the model-predicted field-dependent time

constants is shown in Figure 7.19 for TS , in Figure 7.20 for T#2, in Figure 7.21 for T
(1)
1 ,

and in Figure 7.22 for T
(2)
1 . Despite its simplicity, except for the high-field region above

500 mT of the T
(1)
1 and possibly also T

(2)
1 dependencies, the model describes the field-

dependence of the relaxation time constants satisfactorily well.

Figure 7.18: 15N2O relaxation in the magnetic field of 2357 mT (τtr ≈ 1.85 s). The points

represent peak integrals. a) The integrals of the peak 1 during the field-dependent “singlet”

experiment. b) The integrals of the peak 2 during the field-dependent “singlet” experiment.

c) The integrals of the 15N15NO doublet during the field-dependent T1 experiment. d) The

integrals of the 15N15NO doublet during the field-dependent T1 experiment. The gray lines

are the best fits of the relaxation model described in Section 7.3.3.
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Figure 7.19: The magnetic field strength dependence of the time constant TS . The exper-

imental integrals (points) are compared to the theoretically predicted dependence using

the model described in Section 7.3.3.

Figure 7.20: The magnetic field strength dependence of the time constant T#2. The exper-

imental integrals (points) are compared to the theoretically predicted dependence using

the model described in Section 7.3.3.
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Figure 7.21: The magnetic field strength dependence of the time constant T
(1)
1 . The exper-

imental integrals (points) are compared to the theoretically predicted dependence using

the model described in Section 7.3.3.

Figure 7.22: The magnetic field strength dependence of the time constant T
(2)
1 . The exper-

imental integrals (points) are compared to the theoretically predicted dependence using

the model described in Section 7.3.3.
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7.4.2.2 Spin-Rotation Relaxation Effects (Intermediate-Field Relaxation)

The values of ratios Rexp
W and Rexp

T , computed from the results of fitting in (7.88), may be

compared to those in Section 7.4.1.3:

Rexp
W = −3(a2 + a5) + 10a10 − a16

6a16
≈ 35.8 (7.89)

Rexp
T = −3(a2 + a5) + 10a10 + 5a16

24a16
≈ 9.2 (7.90)

These values are closer to Jameson’s rather than Reinartz’s findings shown in (7.87) and

(7.84), respectively.
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Chapter 8

Conclusions

The aim of this research was to extend the scope of singlet NMR of 15N2O. The procedure

presented in Chapter 6 allows enhancement of the spectral SNR by up to an order of

magnitude through the acquisition and proper processing of the multiply refocused spin-

echo (MSE) signal. In combination with singlet NMR, this method was used for the detailed

study of low-field relaxation of the 15N2O singlet state in Chapter 7. Investigation of

15N2O relaxation was extended to the whole range of field strengths between low field and

the spectrometer high field. The observed field-dependent relaxation was described by a

general relaxation model.

8.1 SNR Enhancement

The MSE signal was acquired during the CPMG spin-echo train. The use of (semi-)selective

rf pulses, which avoided J-modulation of the MSE signal, and minimization of resonance

offset effects, allowed up to thousandfold refocusing of the 15N signal and acquisition of

≳ 105 samples during time intervals of several T2.

Two distinct techniques were used for the MSE signal processing. The linear MF-MSE

technique exploited matched weighting. The achievable SNR enhancement depends on the

values of the transverse relaxation time constant T2, time constant T ′2 characterizing B0

inhomogeneity, and spacing τ of the (semi-)selective π pulses. The larger the value of

the ratios T2/T ′2 and T2/τ , the higher the SNR enhancement. While the value of T2/T ′2
is fixed, τ may be varied. Since the spectral resolution of the processed MSE signal is

inversely proportional to τ , a balance has to be found between the SNR enhancement and

the spectral resolution.
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The MF-MSE technique is applicable to signals of any strength. It exploits the full

recorded NMR signal, and does not lead to additional spectral distortions. Its weak point

is the accuracy of determination of the T2 value, which the matched filter and the achieved

SNR enhancement depend on.

The nonlinear SVD-MSE technique reduces noise by means of singular value decompo-

sition. Its performance is independent of T2. However, either a certain initial spectral SNR

(≳ 10) and/or a large number of echo signals (Ne ≳ 100) is required for efficient operation

of SVD-MSE and minimization of spectral distortions after FT of the processed signal.

When combined with signal apodization, the SVD-MSE technique gives a similar SNR

enhancement to the MF-MSE technique.

8.2 Field-Dependent 15N2O Relaxation

Field-dependent relaxation of 15N2O was described by a general model, which represented

relaxation as a time-dependent exchange of populations of the field-dependent energy

eigenstates. Predicted dependencies of the peak amplitudes in the case of low-field and

field-dependent relaxation were fitted to the experimental data.

Fitting of the low-field relaxation data gave an unexpectedly low value of the singlet

relaxation time constant TS compared to the previously published one [57]. A possible

cause of this discrepancy was discussed. The value of low-field T1 was in agreement. A

new relaxation time constant T#2 of the rank-2 spin order was introduced and determined.

Fitting of the field-dependent relaxation gave values of TS and T1 differing by less than

10 % from the reference low-field values, while the values of low-field T#2 and high-field T1

for both 15N sites differed by more than 20 % from the experimentally determined values.

The obtained values of the transition probabilities per unit time and the relaxation time

constants were used for an analysis of spin-rotation relaxation of the 15N2O singlet state.

Two published estimates of the spin-rotation tensors, which determine the values of the

transition probabilities per unit time and the relaxation time constants, were considered.

One set, provided by Reinartz, was obtained from molecular beam electric resonance mea-

surements on the ground vibrational state of 14N14N16O [236]. The other set, reported by

Jameson, was obtained from nuclear spin-lattice relaxation experiments [233–235]. Jame-

son’s results, however, imply that the spin-rotation relaxation proceeds by up to a factor

3 faster compared to Reinartz findings. Fitting of the low-field relaxation agreed best with

Reinartz’s conclusions, whereas fitting of the field-dependent relaxation gave results closer
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to Jameson’s findings.

Based on the comparison of the field-dependence of the experimental and theoretically

predicted relaxation time constants, the relaxation model can describe low- and medium-

field relaxation below ∼ 1 T. Predictions for higher field strengths agree only partially. With

increasing field strength, field-dependent relaxation processes, such as CSA relaxation,

become more significant, which is a possible cause of the discrepancy.

8.3 Future Prospects

The proposed MSE pulse sequence may easily be transferred to other NMR experiments,

which detect isolated resonances or use (semi-)selective rf pulses. The MSE sequence itself

may possibly be enhanced by including magnetic field gradients and phase modulation

[237, 238], and its performance improved by means of composite pulses [75] or Optimal

Control Theory [239–242].

Processing of the MSE signal may be made fully automatic. In the case of large and/or

higher-dimensional datasets, Principal or Independent Component Analysis might be used

for further SNR boosting or for obtaining additional information from the data [171, 173].

15N2O field-dependent relaxation measurements did not provide an unambiguous con-

clusion about which set of the spin-rotation tensor principal values is closer to reality.

More accurate determination of the 15N2O spin-rotation tensors should be performed ei-

ther experimentally or computationally, if needed.

135



136



Appendices

A Basic Algebraic Definitions

A.1 Vectors

Assume a complex column vector a in n-dimensional space. Transpose of a returns a row

vector:

aT =

⎛
⎜⎜⎜⎜⎜
⎝

a1

⋮

an

⎞
⎟⎟⎟⎟⎟
⎠

T

= (a1, . . . , an) (A.1)

The vector Hölder or 2-norm is defined as [126]:

∥a∥2 = (
n

∑
i=1

∣ai∣2)
1/2

= (
n

∑
i=1

a∗i ai)
1/2

(A.2)

where the asterisk denotes complex conjugate.

The dot product of two vectors a and b of the same length is defined by:

a ⋅ b =
n

∑
i=1

aibi = aTb (A.3)

The cross product of two vectors a and b in three-dimensional space returns another

vector c:

c = a × b =

⎛
⎜⎜⎜⎜⎜
⎝

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎞
⎟⎟⎟⎟⎟
⎠

=

RRRRRRRRRRRRRRRRRRRRR

ex ey ez

a1 a2 a3

b1 b2 b3

RRRRRRRRRRRRRRRRRRRRR

(A.4)

where the rightmost expression denotes the determinant, and ex, ey, and ez are the unit

vectors pointing along the corresponding Cartesian axes.

A.2 Matrices

Consider an m × n complex matrix A with elements Aij . The matrix is symmetric, when:

Aij = Aji (A.5)
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and antisymmetric, when:

Aij = −Aji (A.6)

Transpose of the matrix gives:

AT = (AT)ij = Aji (A.7)

Adjoint of the matrix returns:

A† = (A†)ij = A∗
ji (A.8)

An n × n matrix A is Hermitian, if:

A = A† ⇐⇒ Aij = A∗
ji (A.9)

and unitary, if:

A†A = AA† = En (A.10)

En denotes n × n diagonal unit matrix:

En = diag (1, . . . ,1) (A.11)

A general m × n matrix B is diagonal, if only matrix elements Bij , where i = j, are

nonzero. The simplified notation is:

B = diag (B11, . . . ,Bpp) (A.12)

where p = min(m,n).

The Frobenius or F -norm of m × n matrix B is defined as [126]:

∥B∥F =
⎛
⎝

m

∑
i=1

n

∑
j=1

B∗
ijBij

⎞
⎠

1/2

=
⎛
⎝

m

∑
i=1

n

∑
j=1

∣Bij ∣2
⎞
⎠

1/2

(A.13)

The trace of n × n matrix A denotes:

Tr{A} =
n

∑
i=1

Aii (A.14)

The matrix A is called traceless, when:

Tr{A} = 0 (A.15)

The following equality holds for the trace of product of several square matrices of the same

dimensions:

Tr{ABC} = Tr{BCA} = Tr{CAB} (A.16)
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The commutator of two n × n matrices A and B is defined as:

[A,B] = AB −BA (A.17)

The Kronecker product of i × j matrix A and r × s matrix B leads to a ir × js matrix

A⊗B given by:

A⊗B =

⎛
⎜⎜⎜⎜⎜
⎝

A11B ⋯ A1jB

⋮ ⋱ ⋮

Ai1B ⋯ AijB

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

A11B11 ⋯ A1jB1s

⋮ ⋱ ⋮

Ai1Br1 ⋯ AijBrs

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

(A⊗B)11;11 ⋯ (A⊗B)11;js

⋮ ⋱ ⋮

(A⊗B)ir;11 ⋯ (A⊗B)ir;js

⎞
⎟⎟⎟⎟⎟
⎠

(A.18)

The matrix representation of the Kronecker product is described by [243]:

(A⊗B⊗C⊗ . . .)ijk...;rst... = AirBjsCkt . . . (A.19)

The ordinary product, adjoint, inverse, and trace of the Kronecker products are defined

as follows:

(A⊗B⊗C⊗ . . .)(A′ ⊗B′ ⊗C′ ⊗ . . .) = AA′ ⊗BB′ ⊗CC′ ⊗ . . . (A.20)

(A⊗B⊗C⊗ . . .)† = A† ⊗B† ⊗C† ⊗ . . . (A.21)

(A⊗B⊗C⊗ . . .)−1 = A−1 ⊗B−1 ⊗C−1 ⊗ . . . (A.22)

Tr{A⊗B⊗C⊗ . . .} = Tr{A}Tr{B}Tr{C} . . . (A.23)

As an example, the Kronecker product of two 2 × 2 matrices A =
⎛
⎜
⎝

A11 A12

A21 A22

⎞
⎟
⎠

and
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B =
⎛
⎜
⎝

B11 B12

B21 B22

⎞
⎟
⎠

equals:

A⊗B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A11

⎛
⎜
⎝

B11 B12

B21 B22

⎞
⎟
⎠

A12

⎛
⎜
⎝

B11 B12

B21 B22

⎞
⎟
⎠

A21

⎛
⎜
⎝

B11 B12

B21 B22

⎞
⎟
⎠

A22

⎛
⎜
⎝

B11 B12

B21 B22

⎞
⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(A⊗B)11;11 (A⊗B)11;12 (A⊗B)11;21 (A⊗B)11;22

(A⊗B)12;11 (A⊗B)12;12 (A⊗B)12;21 (A⊗B)12;22

(A⊗B)21;11 (A⊗B)21;12 (A⊗B)21;21 (A⊗B)21;22

(A⊗B)22;11 (A⊗B)22;12 (A⊗B)22;21 (A⊗B)22;22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(A.24)

B Rotation Matrices

The rotation matrices, which generate rotations around x-, y- and z-axes by an angle φ

in the three-dimensional Euclidean space are defined as follows [31]:

Rx(φ) =

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

⎞
⎟⎟⎟⎟⎟
⎠

(B.1)

Ry(φ) =

⎛
⎜⎜⎜⎜⎜
⎝

cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

⎞
⎟⎟⎟⎟⎟
⎠

(B.2)

Rz(φ) =

⎛
⎜⎜⎜⎜⎜
⎝

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

(B.3)

The three matrices are unitary:

R∗
α Rα = Rα R∗

α = E3 for α = {x, y, z} (B.4)

The inverse is defined as:

R−1
α (φ) = Rα(−φ) (B.5)
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The explicit form of the general composite rotation, given by Eq. (2.26) equals:

R(β,ϕ, θ)

≡ Rz(ϕ)Ry(θ)Rz(β)Ry(−θ)Rz(−ϕ)

=

⎛
⎜⎜⎜⎜⎜
⎝

c2
φ(cβc

2
θ + s

2
θ) + cβs

2
φ −cθsβ + s2

β/2s
2
θs2φ sθ[sβsφ − (cβ − 1)cθcφ]

cθsβ + s2
β/2s

2
θs2φ cβc

2
φ + (cβc2

θ + s
2
θ)s

2
φ −sθ[cφsβ + (cβ − 1)cθsφ]

−sθ[(cβ − 1)cθcφ + sβsφ] sθ[cφsβ − (cβ − 1)cθsφ] c2
θ + cβs

2
θ

⎞
⎟⎟⎟⎟⎟
⎠

(B.6)

where sα = sinα and cα = cosα.

C Schrödinger Equation

Solution of the Schrödinger equation (2.36) with the time-independent Hamiltonian Ĥ

may be derived as follows [30]. The Taylor series expansion of the wavefunction ∣Ψ(t)⟩

about a point t0 ≤ t is:

∣Ψ(t)⟩ =
∞

∑
k=0

1

k!

∂k

∂tk
∣Ψ(t)⟩∣

t=t0

(t − t0)k (C.1)

The kth derivative of Eq. (2.36) with respect to time leads to:

∂k

∂tk
∣Ψ(t)⟩∣

t=t0

= (−iĤ)k∣Ψ(t0)⟩ (C.2)

Inserting (C.2) into (C.1) results in:

∣Ψ(t)⟩ = [
∞

∑
k=0

[−iĤ(t − t0)]k

k!
] ∣Ψ(t0)⟩ = exp[−iĤ(t − t0)] ∣Ψ(t0)⟩ (C.3)

The Schrödinger equation with the time-dependent Hamiltonian Ĥ(t) is solved in a

different way [244]. Derivative of Eq. (2.37) with respect to time equals:

∂

∂t
∣Ψ(t)⟩ = d

dt
Û(t, t0)∣Ψ(t0)⟩ = −iĤ(t)Û(t, t0)∣Ψ(t0)⟩ (C.4)

This leads to equation for the propagator:

d

dt
Û(t, t0) = −iĤ(t)Û(t, t0) (C.5)

Integration of (C.5) over a time interval t ∈ [t0, t] gives:

Û(t, t0) = Ê − i∫
t

t0
dt1 Ĥ(t1) Û(t1, t0) (C.6)
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where Û(t0, t0) = Ê is the unity operator. Eq. (C.6) is formally solved by successive itera-

tion:

Û(t, t0) = Ê − i∫
t

t0
dt1 Ĥ(t1) (Ê − i∫

t1

t0
dt2 Ĥ(t2) [Ê − i∫

t2

t0
dt3 Ĥ(t3) ... ])

= Ê +
∞

∑
k=1

(−i)k ∫
t

t0
dt1∫

t1

t0
dt2 ... ∫

tk−1

t0
dtk

ˆ̂T [Ĥ(t1)Ĥ(t2) ... Ĥ(tk)]
(C.7)

where the operator product time-ordering superoperator ˆ̂T is defined as:

ˆ̂T [Ĥ(t1)Ĥ(t2)] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ĥ(t1)Ĥ(t2) for t1 ≥ t2

Ĥ(t2)Ĥ(t1) for t1 < t2
(C.8)

If t > t0, Eq. (C.7) may be simplified:

Û(t, t0) = Ê +
∞

∑
k=1

(−i)k

k!
∫

t

t0
dt1∫

t

t0
dt2 ... ∫

t

t0
dtk

ˆ̂T [Ĥ(t1)Ĥ(t2) ... Ĥ(tk)] (C.9)

By writing Eq. (C.9) in a formal and compact way, solution of the Schrödinger equation

equals:

∣Ψ(t)⟩ = ˆ̂T exp [−i∫
t

t0
dt′Ĥ(t′)] ∣Ψ(t0)⟩ (C.10)

D Spin-1/2 Operators

D.1 One Spin-1/2 Cartesian Operators

The nuclear spin angular momentum Î is a vector. Using a Cartesian coordinate system,

Î denotes:

Î = (Îx, Îy, Îz) (D.1)

The individual Cartesian spin operators have the following matrix representations (Pauli

matrices), including the unity operator Ê :

Îx =
1

2

⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠
, Îy =

i

2

⎛
⎜
⎝

0 −1

1 0

⎞
⎟
⎠
, Îz =

1

2

⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠
, Ê =

⎛
⎜
⎝

1 0

0 1

⎞
⎟
⎠

(D.2)

Magnitude of Î is expressed as the square root of the square of Î:

Î2 = Î ⋅ Î = Î2
x + Î2

y + Î2
z (D.3)

The squares of the operators are equal to:

Î2
x = Î2

y = Î2
z =

1

4
Ê (D.4)

Î2 = 3

4
Ê (D.5)
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For convenience, four other spin operators are introduced [14]:

Îα =
1

2
Ê + Îz (D.6)

Îβ = 1
2 Ê − Îz (D.7)

Î± = Îx ± i Îy (D.8)

Here Îα and Îβ are the polarization operators, in other words, projection operators onto

states ∣α⟩ and ∣β⟩ given by (2.89). Î± are the shift operators. The corresponding matrix

representations are:

Îα =
⎛
⎜
⎝

1 0

0 0

⎞
⎟
⎠
, Îβ =

⎛
⎜
⎝

0 0

0 1

⎞
⎟
⎠
, Î+ =

⎛
⎜
⎝

0 1

0 0

⎞
⎟
⎠
, Î− =

⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠

(D.9)

The individual operators are connected through cyclic commutation relationships. The

most important are:

[Îx, Îy] = i Îz ⇐⇒
x

z↻y (D.10)

[Îz, Î±] = ±Î± (D.11)

[Î+, Î−] = 2Îz (D.12)

[Î2, Îκ] = 0 (D.13)

where the symbol
x

z↻y denotes cyclic permutation of indices x→ y → z → x, and

κ = {x, y, z,+,−}.

D.2 Two Spins-1/2 Cartesian Operators

Two spins-1/2 operators are constructed from the one spin-1/2 operators according to

Eq. (2.91). All relationships from Section D.1 are similarly valid for the two spins-1/2

operators. In addition, the scalar product of two vector operators is given by:

Î1 ⋅ Î2 = Î1xÎ2x + Î1y Î2y + Î1z Î2z (D.14)

where:

Î1xÎ2x + Î1y Î2y =
1

2
(Î+1 Î−2 + Î−1 Î+2 ) (D.15)

The total spin operators are defined as follows:

Îκ = Î1κ + Î2κ (D.16)
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D.3 Two Spins-1/2 Operators Nomenclature

As mentioned in Section 2.2.4, the spin operators bear special names related either to

their relation to the vector model, or to their spectral appearance, when contained in the

spin-system density operator. Taking into account also shift operators (D.8), except for

the unity operator Ê, the directly observable operators, are [10, 31]:

• Îkx, Îky: transverse x- and y-magnetization; x- and y-coherence of spin k, in-phase

with respect to spin l;

• Î±k : in-phase (±1)-quantum coherence of spin k.

The indirectly observable spin operators are:

• Îkz: longitudinal z-magnetization; equal population difference across all transitions

of spin k;

• 2ÎkxÎlz, 2Îky Îlz: x- and y-coherence of spin k, antiphase with respect to spin l;

• 2Î±k Îlz: (±1)-quantum coherence of spin k, antiphase with respect to spins l;

• 2Îkz Îlz: longitudinal two-spin order of spins k and l; nonequilibrium population dis-

tribution without net polarization and without observable polarization;

• 2ÎkxÎlx, Îky Îly, 2ÎkxÎly, Îky Îlx: two-spin coherence of spins k and l containing the

unobservable 0- and (±2)-quantum coherences;

• 2Î±k Î
∓
l : in-phase zero-quantum coherence of spins k and l;

• 2Î±k Î
±
l : in-phase (±2)-quantum coherence of spins k and l.

E Laboratory-to-Rotating Frame Transformation

The laboratory frame Hamiltonian Ĥ and the density operator ρ̂ transform into a rotating-

frame quantities according to [2]:

ˆ̃H(t) = ˆ̂U−1(t) Ĥ(t) = Û−1(t) Ĥ(t) Û(t) (E.1)

ˆ̃ρ(t) = ˆ̂U−1(t) ρ̂(t) = Û−1(t) ρ̂(t) Û(t) (E.2)

where ˆ̂U is given by Eq. (2.118).

The laboratory-frame Liouville-von Neumann equation:

∂

∂t
ρ̂(t) = −i[Ĥ(t), ρ̂(t)] (E.3)
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transforms into the rotating frame in the following way. Consider the time derivative of

the identity operator Ê = Û−1(t) Û(t):

d

dt
Ê = d Û−1(t)

dt
Û(t) + Û−1(t) d Û(t)

dt
= 0̂ (E.4)

Then:

∂

∂t
ˆ̃ρ(t) = ∂

∂t
[Û−1(t)ρ̂(t)Û(t)]

= Û−1(t) ∂ρ̂(t)
∂t

´¹¹¹¹¸¹¹¹¹¶
(E.3)

Û(t) + d Û−1(t)
dt

ρ̂(t)Û(t) + Û−1(t)ρ̂(t)d Û(t)
dt

= −i Û−1(t)Ĥ(t)Û(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(E.1)

Û−1(t)ρ̂(t)Û(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(E.2)

+i Û−1(t)ρ̂(t)Û(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(E.2)

Û−1(t)Ĥ(t)Û(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(E.1)

+d Û−1(t)
dt

Û(t) Û−1(t)ρ̂(t)Û(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(E.2)

+ Û−1(t)ρ̂(t)Û(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(E.2)

Û−1(t)d Û(t)
dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(E.4)

= −i ˆ̃H(t) ˆ̃ρ(t) + i ˆ̃ρ(t) ˆ̃H(t) + d Û−1(t)
dt

Û(t) ˆ̃ρ(t) − ˆ̃ρ(t)d Û−1(t)
dt

Û(t)

= −i [ ˆ̃H(t) + i
d Û−1(t)

dt
Û(t), ˆ̃ρ(t)]

(E.5)

Finally, assuming Eq. (2.118):

∂

∂t
ˆ̃ρ(t) = −i [ ˆ̃H(t) − ωrf Îz, ˆ̃ρ(t)] (E.6)

F Law of Error Propagation

Assume that x is a function of u and v:

x = u ◻ v (F.1)

where the symbol “◻” denotes an operation combining u and v into x. Each quantity is

characterized by a mean value µ and a variance σ2 or a standard deviation σ, which is the

square root of the variance:

u = µ(u) ± σ(u) (F.2)

v = µ(v) ± σ(v) (F.3)

Assume that the values of the quantities u and v were determined during n independent
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measurements. The mean values are equal to:

µ(u) = 1

n

n

∑
i=1

ui (F.4)

µ(v) = 1

n

n

∑
i=1

vi (F.5)

The variances are given by:

σ2(u) = 1

n − 1

n

∑
i=1

[ui − µ(u)]2 (F.6)

σ2(v) = 1

n − 1

n

∑
i=1

[vi − µ(v)]2 (F.7)

A covariance between the quantities u and v is defined by [245]:

σ2(u, v) = 1

n − 1

n

∑
i=1

[ui − µ(u)][vi − µ(v)] (F.8)

The mean value of x is equal to:

µ(x) = µ(u) ◻ µ(v) (F.9)

The variance of x is given by [245]:

σ2(x) = (∂x
∂u

)
2

σ2(u) + (∂x
∂v

)
2

σ2(v) + 2(∂x
∂u

)(∂x
∂v

)σ2(u, v) (F.10)

In the case that u and v are uncorrelated, the value of σ2(u, v) is expected to be equal to

zero. Therefore:

σ2(x) = (∂x
∂u

)
2

σ2(u) + (∂x
∂v

)
2

σ2(v) (F.11)
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[16] I. Burghardt, J.-M. Böhlen, and G. Bodenhausen. Broadband multiple-quantum

nuclear magnetic resonance with frequency-modulated “chirp” pulses: Applications

to pairs of scalar-coupled spin I = 1/2 nuclei. J. Chem. Phys., 93(11):7687–7697,

1990.

[17] H. Geen and R. Freeman. Band-selective radiofrequency pulses. J. Magn. Reson.,

93(1):93–141, 1991.
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The singlet states of nuclear spin-1/2 pairs often display extended lifetimes that can be an order of

magnitude longer than conventional relaxation times. We show that, in favourable circumstances,

acquisition of the NMR signal during an extended multiple spin-echo train, followed by suitable

data processing, enhances the signal-to-noise ratio of singlet NMR by up to an order of

magnitude. The achievable enhancement depends on the transverse relaxation time constant,

the magnetic field inhomogeneity, and the acceptable degradation in digital spectral resolution.

We use the combination of singlet NMR and multiple spin-echo data acquisition to study the

low-field nuclear relaxation processes of 15N-labelled nitrous oxide (15N2O) in solution. A general

relaxation theory for coupled 2-spin-1/2 systems in low magnetic field is developed. Experimental

trajectories of the nuclear spin observables are compared with theoretical expressions, including

dipole–dipole and spin-rotation relaxation mechanisms. The estimated values of the spin-rotation

tensors are compared with previous estimations from NMR and molecular beam electric resonance.

1. Introduction

When a molecule contains two nuclear spins-1/2, the spins

may combine to generate three states with total nuclear spin

I = 1 (the nuclear triplet states) and a state with total nuclear

spin I=0 (the nuclear singlet state). Due to its immunity against

relaxation processes symmetric with respect to exchange of the

two nuclei, e.g., the intramolecular dipole–dipole mechanism,

singlet spin order often displays an extended lifetime TS, which

may be more than an order of magnitude longer compared to the

conventional longitudinal relaxation time T1. In magnetically

inequivalent systems, the long singlet lifetime is normally

concealed by rapid singlet–triplet transitions induced by the

chemical shift difference. However, recent experiments have

shown that it is possible to suppress the singlet–triplet transitions,

revealing the long lifetime of singlet spin order.1–7 The long-

lived nuclear singlet order may be exploited to study slow

motional processes,8–12 local molecular geometry,13,14 or to

transport hyperpolarized nuclear spin order.15–17

A remarkable example of long-lived nuclear singlet order is

displayed by the coupled 15N-pair in doubly-labelled nitrous

oxide 15N2O. The singlet lifetime TS exceeds 25 minutes for
15N2O dissolved in a deuterated solvent.5 The TS value is

reduced in protonated solvents, but still exceeds 7 minutes for
15N2O dissolved in blood.18 This time constant is much longer

than that of any other known agent when dissolved in blood,

and suggests the prospect of clinical NMR imaging investiga-

tions employing 15N2O. A step in this direction was taken with

the development of an experimental procedure for converting

nuclear magnetization into nuclear singlet order outside the

NMR magnet.5,7

The study of the 15N2O singlet state and the optimization of

experimental protocols is hampered by the weak nuclear

magnetism of 15N nuclei and the limited solubility of nitrous

oxide in common solvents. In principle, the nuclear polarization

may be enhanced by many orders of magnitude by hyper-

polarization techniques such as dissolution-DNP (dynamic

nuclear polarization).19 However, at the time of writing, such

hyperpolarization methods have not been successful for the

case of 15N2O in solution.

For small molecules in solution, the decay of the NMR signal is

often dominated by reversible dephasing under the inhomogeneity

of the static magnetic field, rather than the irreversible decay

associated with the transverse relaxation time T2. Multiple

refocussing using trains of p pulses20,21 extends the duration of

the NMR signal and hence increases the available signal

energy, leading to an enhanced signal-to-noise ratio (SNR)

after appropriate data processing. The NMR signal may be

acquired during the entire spin-echo train, and processed to

obtain the ordinary NMR spectrum.22–28 We now show that

the singlet NMR experiments are also amenable to SNR

enhancement by MSE signal acquisition.

The enhancement of signal-to-noise byMSE signal acquisition

allows a detailed study of the low-field relaxation processes for
15N2O in solution, at low magnetic field. The peak amplitudes

observed in singlet NMR experiments have a characteristic

dependence on the low-field relaxation interval, which may be

analysed to estimate the three distinct transition probabilities

between the nuclear singlet and triplet states. These transition

probabilities are analysed using a relaxation model, involving
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dipole–dipole relaxation caused by rotational modulation of

the 15N–15N dipole–dipole coupling, as well as coupling

between the 15N nuclear spins and the fluctuating molecular

angular momentum.

2. Multiple spin echoes

2.1 Pulse sequence

A basic MSE timing sequence is shown in Fig. 1. The

transverse magnetization is excited by a p/2 pulse, oscillates

and decays for a time t/2, and is subjected to a series of p
pulses, which have equal spacing t, and a phase shift of p/2
with respect to the initial pulse (CPMG procedure).20,21 The

NMR signal is acquired continuously during the entire

sequence, except for the short blanking intervals during and

after each pulse. This leads to an NMR signal of total duration

TMSE E (N + 1
2
)t, where N is the number of echoes. For

maximal SNR enhancement, TMSE should be several multiples

of the intrinsic relaxation time T2.

Singlet NMR involves the spectroscopy of coupled nuclear

spins. It is well-known that in such cases, spin echoes are often

modulated by spin–spin couplings – indeed the existence of

the J-coupling interaction was first demonstrated through

the modulation of a spin echo.29 Such effects can be very

complicated for MSE trains30–33 and may involve resonances

with zero-quantum transitions.6,7,34 In the current work, echo

modulation is suppressed by using weak, long, p pulses, with

enough frequency selectivity to avoid perturbation of the

coupling partner. This allows the full SNR enhancement to

be achieved on the selected nuclear site while observing

undistorted NMR spectra. The frequency selectivity could be

further enhanced, if required, by using shaped radiofrequency

pulses.35

2.2 Multiple spin-echo signal

Several methods exist for acquiring and processing the MSE

signal to achieve a SNR enhancement.22–24 We used a procedure

adapted from the superposition method of Hu et al.24 by including

a matched weighting function and a variable phase parameter,

to obtain the optimum SNR. For completeness, a brief but

explicit description is now given.

The complex MSE signal corresponding to a single NMR

peak, excluding echo-modulation effects, finite duration of the

radiofrequency pulses and the subsequent receiver blanking

intervals, may be described by:

sMSE(t) = hMSE(t)s
0
MSE(t) (1)

hMSE is the signal envelope and s0MSE is the undecaying

NMR signal.

The signal envelope is given by a superposition of the

homogeneous decay and the reversible effect of magnetic field

inhomogeneity. If diffusion effects are neglected,20,21 the homo-

geneous transverse relaxation is approximately exponential with

time constant T2, leading to the following signal envelope

function during the MSE train:

hMSE(t) C exp{�t/T2}g(|t � ne(t)t|) (2)

where the inhomogeneous broadening is described by a decaying

function g(t) with g(0) = 1 and g(N) = 0, and the integer ne(t) is

the index of the echo appropriate for time point t:

neðtÞ ¼
t

t
þ 1

2

� �
ð3Þ

Here the bracketsI� � �m denote the floor function, which rounds

any real number to the nearest smaller integer.

For simplicity, we assume an exponential decay model for

inhomogeneous dephasing with time constant Tinh
2 :

g(t) = exp{�t/Tinh
2 } (4)

so that the decay of the unrefocussed NMR signal is described

as a single exponential with a time constant T�2 :

fT�2g
�1 ¼ fT2g�1 þ fT inh

2 g
�1 ð5Þ

The idealised form of s0MSE for a single peak with resonance

offset O, in the absence of dephasing or relaxation, may be

written as follows:

s0MSE(t) = |a(0)|exp{i[O(t � ne(t)t) + (�1)ne(t)f0 + finst]}

(6)

This includes the alternation of the signal phase f0 induced by

the p pulses, and a constant instrumental phase shift finst. The

complex signal amplitude at the start of the echo train is

denoted a(0).

2.3 Signal processing

The MSE signal is corrected for a constant instrumental offset,

multiplied by a weighting function hproc(t), and split into half-

echoes each of duration t/2. The increasing half-echoes are

time-reversed and complex-conjugated before adding to the

combined set of decaying half-echoes. This provides a processed

signal of duration t/2 of the form:

sprocðtÞ ¼
XN
j¼0

sMSEðjtþ tÞhprocðjtþ tÞexpfifprocg

þ
XN
j¼1
fsMSEðjt� tÞg�hprocðjt� tÞexpf�ifprocg ð7Þ

where 0r tr t/2. The optimum is attained when the processing

phase fproc compensates the initial phase of the signal (including

the instrumental phase shift finst), and the weighting function

matches the signal envelope:36,37

fproc = �f0 � finst

Fig. 1 MSE timing sequence. The first excitation pulse is followed by

train ofN equidistant refocusing pulses spaced by intervals t. The NMR

signal is acquired between the pulses during the entire pulse sequence.
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hproc(t) = hMSE(t) (8)

The resultant signal sproc resembles a free-induction decay

(FID) signal obtained after a single excitation pulse in the

usual way, but truncated at time t/2. The spectrum is obtained

by Fourier transformation of the signal after apodisation and

zero-filling.

The frequency resolution of the final spectrum is given

by the inverse of the echo spacing, and may be severely

compromised if the echoes are too closely spaced. Truncation

of the signal can also result in spectral distortions such as sinc-

function oscillations. The bandwidth of the final spectrum, on

the other hand, is determined by the inverse of the sampling

interval, which is independent of the MSE acquisition procedure.

However, for very long echo trains, the data capacity of the

acquisition processor may limit the number of complex points

that may be accommodated in a single acquisition, requiring a

compromise to be made on the sampling rate.

In the context of MSE-enhanced singlet NMR, the digital

resolution of the processed MSE spectrum should be sufficient

to resolve the components of the J-coupled doublet. A pro-

cessed MSE spectrum of the central 15N site of 15N2O is shown

in Fig. 2b.

2.4 SNR enhancement

The maximum achievable SNR enhancement eMSE of the

Fourier transformed MSE signal with respect to the ordinary

FID may be estimated by comparing the signal energies.37

Assuming complete decay of the both signals during acquisition,

this leads to:

eMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
0 hMSEðtÞ2dtR1
0 hFIDðtÞ2dt

vuut ð9Þ

Equations (2) and (4) lead to the following expression:

eMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðea�a=b � 1Þ
ðe2a � 1Þðb� 1Þ

s
ð10Þ

where a= t/T2 and b= Tinh
2 /T2. The variable a corresponds to

the echo spacing in units of T2, while b quantifies the relative

contributions of the inhomogeneous and homogeneous decay.

Small values of a represent closely-spaced echoes, while small

values of b imply large amounts of inhomogeneous dephasing.

The SNR enhancement is maximised when the inhomo-

geneous dephasing is strong and a short echo spacing is used,

{a, b} - 0. However, this rapid-echo regime is often undesir-

able due to the heavily compromised frequency resolution, the

introduction of truncation artefacts, and the accumulation of

pulse imperfections over large numbers of echoes. In practice,

the appropriate value of the p pulse spacing t is a compromise

between SNR enhancement, the effect of pulse imperfections

and acceptable spectral resolution.

Spectra of 15N2O obtained by MSE signal acquisition and

conventional single-pulse signal acquisition are compared in

Fig. 2. The enhancement of SNR is obvious, although the

MSE spectrum does show the limited digital resolution and

oscillatory distortions associated with signal truncation.

Theoretical and experimental estimates of SNR enhance-

ment by MSE data acquisition are compared for 15N2O in

Fig. 3, as a function of the number N and spacing t of the

refocusing pulses. The agreement is generally good, with

enhancements of around 10 being observed when a large

number of closely-spaced p pulses are used. However, the

observed SNR enhancement tends to be less than that antici-

pated from theory for t> 1 s and No 200. This might be due

to molecular diffusion in an inhomogeneous magnetic field,38

which has not currently been included.

Fig. 2 (a) Initial part of the MSE signal after selective excitation of

transverse magnetization of the central 15N site of 15N2O, using weak

rectangular pulses with a nutation frequency of 235 Hz. The p pulses

were spaced by 1 s. The displayed signal is the average of 64 transients.

(b) Processed MSE signal showing the central 15N doublet of 15N2O.

The MSE echo train consisted of 402 echoes spaced by 0.52 s, SNR =

188.7 � 12.2. Signal processing involved a matched weighting function

described by (2) with T2 = 46.2 s and Tinh
2 = 219 ms. (c) Signal

acquired with a single p/2 pulse for comparison, SNR = 18.5 � 1.2.

The spectra (b) and (c) result from single transients. Further experi-

mental details are provided in Section 4.

Fig. 3 Sensitivity enhancement for 15N2O dissolved in DMSO-d6 as a

function of the number and spacing of refocusing p pulses in the MSE

sequence. The experimental SNR enhancement was estimated from

the ratio of the mean SNR for all four 15N2O peaks in the case of MSE

acquisition and for a single fully-decayed NMR signal. The solid line is

the maximal theoretical SNR enhancement eMSE.
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3. Multiple spin-echo singlet NMR

3.1 Pulse sequence

The SNR of field-cycling singlet NMR2,5,39 may be enhanced

by incorporating MSE data acquisition. The experimental

procedure is shown in Fig. 4. The method applies to systems

of spin-1/2 pairs with a large difference in chemical shifts

between the coupling partners, so that the spin system is

weakly-coupled in high magnetic field (HF):40

|gBHF(d1 � d2)| c |pJ12| (11)

The value of the low magnetic field (LF) satisfies:

|gBLF(d1 � d2)| t |pJ12| (12)

so that the low-field spin Hamiltonian eigenstates are given, to

a good approximation, by the singlet state and the three triplet

states.2,39

In the current implementation, the change in static magnetic

field is accomplished by transporting the sample out of the

NMR magnet. Fig. 4 shows the trajectory of the sample

vertical position H and the resulting trajectory of the static

magnetic field B0, calculated using the known field profile of

the spectrometer magnet and the transportation rate.

All radiofrequency pulses are sufficiently weak to be

selective on nuclear spins in one of the coupled molecular

sites. The carrier frequency may be switched before both the

first p pulse and the read-out MSE train so as to switch the

resonant site between the preparation stage of the sequence

(the initial p pulse) and the read-out stage (the p/2 pulse and

the spin echo train).

The FT spectrum of the processed MSE signal is a doublet

due to spin–spin coupling with the passive nucleus. As shown

in Fig. 5, the doublet peak intensities vary with the duration

of the low-field interval tLF, due to relaxation processes

occurring in low magnetic field. The right-hand component

of the doublet decays rapidly as a function of the tLF interval,

while the left-hand doublet component initially increases in

intensity, decaying slowly at long times.

3.2 Principles of low-field relaxation

The data shown in Fig. 5 indicate multi-exponential relaxation

dynamics in low magnetic field, with a rich kinetic structure.

Previous analyses of low field relaxation for spin-1/2 pairs39,41

have concentrated on the decay of only one spin order term

(singlet order). We now provide a fuller analysis, including the

relaxation properties of the nuclear spin magnetization and the

rank-2 spin order, which are all significant for a detailed

understanding of the relaxation trajectories shown in Fig. 5.

The energy eigenstates of the nuclear spin system in low

magnetic field are the singlet state |S0i and the three triplet

states |TMi with M A {�1,0,1} defined as follows:

jS0i ¼ ðjabi � jbaiÞ=
ffiffiffi
2
p

jTþ1i ¼ jaai

jT0i ¼ ðjabi þ jbaiÞ=
ffiffiffi
2
p

jT�1i ¼ jbbi

ð13Þ

The populations of the states are exchanged according to

transition probabilities per unit time denotedWTT
M for triplet–triplet

Fig. 4 Timing sequence for field-cycling MSE singlet NMR experi-

ment, showing the transport intervals ttr and the low-field relaxation

interval tLF. Trajectories are shown for the vertical sample position

measured from the spectrometer centre (H), the corresponding static

magnetic field (B0), and the sequence of site-selective radiofrequency

pulses (RF). The radio-frequency carrier (otx) may be switched before

both the first p pulse and the read-out MSE train so that the pulses are

resonant with different molecular sites.

Fig. 5 (a) MSE NMR spectra of the central 15N site, as a function of

the low-field interval tLF in the MSE singlet NMR experiment. All

radiofrequency pulses, including the preparation pulse, were selective

for the central 15N site. The displayed tLF intervals are approximately

equally-spaced on a logarithmic scale. (b) Integrated amplitudes of the

two 15N peaks as a function of tLF interval. The experimental data is

the mean of four different experimental series, obtained using the MSE

sequence in Fig. 4 with N = 104 and t = 2 s, selectively exciting all

possible combinations of 15N sites. The solid lines are theoretical

curves calculated using the relaxation model described in the text.
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transitions andWST
M for singlet–triplet transitions (Fig. 6). The

transition probabilities in opposite directions are assumed to

be equal, since the low-field energy differences are very small

with respect to thermal energy. In addition, the relaxation

superoperator is rigorously isotropic in low magnetic field,

providing the physical phase of the material is also isotropic. As

shown in the Appendix, this leads to the following equalities:

WTT
+1 = WTT

�1

WST
+1 = WST

0 = WST
�1 (14)

The population kinetics of the system is therefore described,

with high generality, using only three transition probabilities,

namely the singlet–triplet transition probability WST (which is

the same for all three transitions), the single-quantum triplet–

triplet transition probability WTT
1 , and the double-quantum

triplet–triplet transition probability WTT
2 .

In general, the populations of the singlet and triplet states

evolve in low magnetic field according to the first-order

homogeneous differential equations

d

dt
PLðtÞ ¼W � PLðtÞ ð15Þ

where W is the kinetic matrix:

W ¼

DS WST WST WST

WST DT
�1 WTT

1 WTT
2

WST WTT
1 DT

0 WTT
1

WST WTT
2 WTT

1 DT
þ1

0
BBBBB@

1
CCCCCA ð16Þ

and the diagonal terms, required for detailed balance, are

defined as follows:

DS = �3WST

DT
�1 = �(WST + WTT

1 + WTT
2 )

DT
0 = �(WST + 2WTT

1 ) (17)

The elements of the low-field population vector PL are given

by the singlet and triplet state populations:

P LðtÞ ¼

hS0jrðtÞjS0i
hT�1jrðtÞjT�1i
hT0jrðtÞjT0i
hTþ1jrðtÞjTþ1i

0
BBBB@

1
CCCCA ð18Þ

where r(t) is the spin density operator. Note that in low

magnetic field, where the spin order vanishes at thermal

equilibrium, no term for the equilibrium density operator is

required in (15).

The four eigenvalues of the kinetic matrix W include one

zero and three negative eigenvalues {�R0, �R1, �R2} given

as follows:

R0 = 4WST

R1 = WST + WTT
1 + 2WTT

2

R2 = WST + 3WTT
1 (19)

The eigenvector related to the zero eigenvalue corresponds

to a uniform distribution of populations, i.e., {1,1,1,1}, as

required by the conservation of the total state population. The

other three eigenvectors are as follows:

V0 = {�3,1,1,1}

V1 = {0,1,0,�1}

V2 = {0,1,�2,1} (20)

The eigenvectorV0 corresponds to singlet spin order (a difference

between the singlet state population and the mean of the three

triplet populations). The eigenvector V1 corresponds to long-

itudinal magnetization. Therefore, the rate constants R0 and

R1 may be identified with the inverse of the singlet relaxation

time TS and the low-field magnetization relaxation time T1,

respectively. The eigenvector V2 corresponds to rank-2 order

(a population deviation of the central triplet state with respect

to the two outer states). The corresponding relaxation time

constant is denoted T#2, in order to avoid confusion with the

conventional symbol T2 for the transverse relaxation time:

R0 = T�1S

R1 = T�11

R2 = T�1#2 (21)

The three relaxation eigenvalues R, and hence all of the

transition probabilities W, may be obtained by conducting a

set of experiments, in which the relaxation of at least three

independent population distributions are followed as a function

of storage time in low magnetic field.

Initial low-field population vectors PL are constructed by

thermal equilibration of the spin system in high magnetic field,

followed by a radiofrequency pulse sequence to manipulate the

population distribution and consequent adiabatic transport

into low magnetic field. The population distribution of the

weakly-coupled spin system in high magnetic field, before

transport, may be described in a similar way to (18):

P H ¼

haajrðtÞjaai
habjrðtÞjabi
hbajrðtÞjbai
hbbjrðtÞjbbi

0
BBBB@

1
CCCCA ð22Þ

Ideal adiabatic transport transforms the populations from

the high-field to the corresponding low-field eigenstates

Fig. 6 Energy level scheme of the two spin-1/2 system in low field.

Individual populations exchange with the indicated transition prob-

abilities per unit time.
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without loss. In the case of 15N2O , where the 15N–15N scalar

coupling constant is positive, the 15N magnetogyric ratio is

negative, and the chemical shifts of the terminal and central
15N comply d1 o d2, an ideal adiabatic transport from high to

low field may be described as follows:

PL = ALH�PH (23)

where the adiabatic transport matrix is given by:

ALH ¼

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

0
BB@

1
CCA ð24Þ

At the end of the low-field evolution, adiabatic transport in the

opposite sense takes place, leading to the following idealised

correspondence between low-field and high-field populations:

PH = AHL�PL (25)

where the matrix AHL is given by transpose of ALH.

The final population distribution is read out by applying a

selective p/2 pulse and the following MSE train to generate

NMR signals. Each spectral peak is proportional to the

population difference across a pair of high-field eigenstates.

The amplitude of a single NMR peak in a general field-cycling

NMR experiment, and its dependence on the low-field interval

tLF, may therefore be described as follows:

ap(tLF) = QT
p �AHL�exp{WtLF}�ALH�PH(0) (26)

where the row vector QT
p represents the pattern of high-field

spin state populations giving rise to a particular NMR peak p

after selective excitation. In the case of 15N2O , there are four

such peaks, one for each of the doublet components of the

two 15N sites. The vectors associated with the four 15N peaks

in 15N2O , reading from left-to-right in a conventionally

presented NMR spectrum, are as follows:

QT
1 = {1,�1,0,0}

QT
2 = {0,0,1,�1}

QT
3 = {1,0,�1,0}

QT
4 = {0,1,0,�1} (27)

A variety of initial high-field population distributions PH(0)

may be prepared. For example, if the system is allowed to

establish thermal equilibrium in high field, and no manipula-

tions are applied before transport, the high-field population

vector is given as follows (omitting constant numerical factors):

PH(eq) = {�1,0,0,1} (28)

This indicates excess population in the low-energy |bbi state
and depleted population in the high-energy |aai state (this

applies to 15N which has a negative magnetogyric ratio).

After adiabatic transport, the low-field population distribu-

tion is as follows:

PL(no initial pulse) = ALH�PH(eq) = {0,1,0,�1} (29)

which indicates preparation of the V1 population eigenvector.

Since V1 is the eigenvector of the kinetic matrix W, all peak

amplitudes decay in a uniform way, characterized by the

common exponential decay time constant T1, and it does not

matter which doublet is observed. A series of field-cycling

experiments performed without the initial selective p pulse,

varying the low-field interval tLF, therefore allows a straight-

forward estimate of the low-field relaxation time constant T1.

More complex behaviour is observed when a selective p pulse

is used before transport to low field. Assuming, for example,

application of selective inversion on the terminal 15N site, the

high-field population vector is given as:

PH(p
(1)) = {0,�1,1,0} (30)

The corresponding low-field vector is a superposition of the

two population eigenvectors V0 and V2:

PL(p
(1)) = ALH�PH(p

(1)) = {�1,0,1,0} = (V0 � V2)/3 (31)

indicating a superposition of singlet and rank-2 spin order.

These two forms of spin order decay independently during the

low-field interval tLF with rate constants R0 and R2, so that the

populations at the end of the low-field interval are given by:

PL(p
(1),tLF) = (V0exp{�R0tLF} � V2exp{�R2tLF})/3 (32)

The four peak amplitudes observed after adiabatic transport

to high field and selective excitation of the appropriate coupled

site are given by:

ap(p
(1),tLF) = QT

p �AHL�PL(p
(1),tLF) (33)

Observation of the two central 15N site doublet components

yields the following trajectories:

a1(p
(1),tLF) = 4

3exp{�R0tLF} � 1
3exp{�R2tLF}

a2(p
(1),tLF) = exp{�R2tLF} (34)

whereas observation of the two terminal 15N site doublet

components gives:

a3(p
(1),tLF) = �exp{�R2tLF}

a4(p
(1),tLF) = �4

3
exp{�R0tLF} + 1

3
exp{�R2tLF} (35)

Apart from the sign change, the trajectories in (35) are identical

to those in (34). In fact, all combinations of selective inversion

pulses and observed sites generate the same pair of trajectories,

except for the sign, which was also experimentally verified. The

experimental trajectories shown in Fig. 5 were derived by combin-

ing the results from all four equivalent experiments.

3.3 Relaxation analysis

In the current case of 15N2O dissolved in DMSO-d6 , fitting the

decay curves led to the following estimates of the relaxation

time constants:

TS = 1155 � 23 s

T1 = 207 � 7 s

T#2 = 76 � 4 s (36)

The corresponding rate constants, evaluated according to

(21), are:
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R0 = (0.87 � 0.02) � 10�3 s�1

R1 = (4.83 � 0.16) � 10�3 s�1

R2 = (13.1 � 0.7) � 10�3 s�1 (37)

and the transition probabilities per unit time, using (19), are as

follows:

WST = (0.216 � 0.004) � 10�3 s�1

WTT
1 = (4.32 � 0.23) � 10�3 s�1

WTT
2 = (0.14 � 0.14) � 10�3 s�1 (38)

Note that the singlet–triplet transition probability WST is

small, but is determined with good precision. The double-

quantum transition probability WTT
2 is also very small but is

poorly defined by the data. The best-fit relaxation curves are

compared to the experimental data in Fig. 5b.

The only relaxation mechanism that leads to double-quantum

transitions is the dipole–dipole (DD) mechanism deriving

from motional modulation of the dipolar coupling between

the two 15N nuclei. Dipole–dipole relaxation does not induce

singlet–triplet transitions, and is associated with the following

ratio of triplet–triplet transition probabilities:

WTT
2 (DD) = 2WTT

1 (DD) (39)

The dipole–dipole contributions may therefore be subtracted

from (38), leading to:

WST(no DD) = (0.216 � 0.004) � 10�3 s�1

WTT
1 (no DD)= (4.25 � 0.24) � 10�3 s�1

WTT
2 (no DD) � 0 (40)

The ratio of the triplet–triplet and singlet–triplet transition

probabilities (excluding dipole–dipole contributions) is

given by:

WTT
1 (no DD)/WST = 19.7 � 1.2 (41)

It is instructive to compare this ratio with that expected for

spin-rotation relaxation, which dominates for 15N2O in the gas

phase.42,43 The linear geometry of the nitrous oxide molecule

constrains the spin-rotation tensors of the two 15N sites,

and also the molecular inertial tensor, to be uniaxial and

colinear. In this case, the local magnetic field fluctuations

caused by changes in the molecular angular momentum

are completely correlated, and the theoretical transition prob-

abilities generated by the fluctuations of molecular angular

momentum are as follows:41

WST(SR) = 1
2
(C1�C2)

2J2rmstJ

WTT
1 (SR) = 1

2
(C1+C2)

2J2rmstJ (42)

where C1 and C2 are the largest principal values of the spin-

rotation tensors for the terminal and central 15N sites, respec-

tively. The fluctuating molecular angular momentum has

a root-mean-square value denoted Jrms and a correlation

time tJ. The spin-rotation mechanism leads to the following

theoretical ratio of transition probabilities:41,44

WTT
1 ðSRÞ

WSTðSRÞ ¼
ðC1 þ C2Þ2

ðC1 � C2Þ2
ð43Þ

There is disagreement in the literature about the magnitudes

of the spin-rotation tensors in 15N2O. The estimates C1 =

1.829 � 0.065 kHz and C2 = 3.06 � 0.12 kHz were obtained

by molecular beam electric resonance experiments45 on the ground

vibrational state of 14N14N16O. Assuming that the spin-rotation

constants are in proportion to the nuclear magnetic moments,

these estimates correspond to the following ratio of transition

probabilities in 15N2O: WTT
1 (SR)/WST(SR) = 15.8 � 3.1,

which is in good agreement with the experimental estimate

in (41). However, Jameson et al.42,43,46 proposed a revised

estimate for the central 15N site of C2 = 3.35 kHz, based

on nuclear spin-lattice relaxation data. She found that the

molecular beam estimates conflicted with measurements of

nuclear spin-lattice relaxation rates and chemical shift data,

and concluded that the molecular beam data had been

misinterpreted. The revised figures42,43 of {C1,C2} = {2.48,

3.35} kHz (no confidence limits provided) correspond to a

transition probability ratio ofWTT
1 (SR)/WST(SR) = 44.9. This

exceeds the experimentally determined transition probability

ratio (eqn (41)) by a factor of more than 2.

A similar conclusion may be drawn from the ratio of TS and

T1, excluding DD contribution:

TSðSRÞ
T1ðSRÞ

¼ C1
2 þ C2

2

2ðC1 � C2Þ2
ð44Þ

Values of the spin-rotation tensor components C1 and C2

determined by Reinartz et al.45 give rise to a value 4.19 � 0.78,

while results of Jameson et al.42,43 lead to 11.5. The experi-

mental value of 5.14 � 0.30 is in better agreement with the

molecular beam measurement.45

Further study is needed to resolve this issue. If the spin-

rotation tensors proposed by Jameson are correct, then pure

spin-rotation relaxation would give rise to singlet relaxation

rates which are more than twice those observed experimen-

tally. The discrepancy may be due to the existence of small

additional mechanisms, such as intermolecular interactions

with solvent nuclei and paramagnetic impurities, such as O2

or NO, which contribute to an acceleration of the singlet

relaxation.

4. Experimental

The NMR experiments were performed on a 300 MHz Varian

NMR spectrometer equipped with a 10 mm direct-detection

liquid-state probe. The sample was a 0.3 M solution of 15N2O

gas (CK-gas, UK) dissolved in DMSO-d6 under a pressure

of 3.5 bar. The 15N resonance frequency was 30.3879 MHz.

The isotropic chemical-shift difference of the 15N sites and

their scalar coupling were 83.19 � 0.03 ppm (2528 � 1 Hz) and

8.20 � 0.06 Hz, respectively.

The sample transport system was the same as used in

previous works.5,47 The field at the magnet centre (H0 = 0)

was BHF = 7.0461 T. Low-field relaxation was observed in a
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field BLF = 3.3� 0.1 mT at a distanceH1 = 145� 2 cm above

the magnet centre. The sample was transported between the

two positions during transport intervals ttr = 10 s.

All radiofrequency pulses were rectangular in shape and

employed an rf field corresponding to a 15N nutation frequency

of 235� 1 Hz. The p/2 and p pulses had durations of 1066� 6 ms
and 2132 � 12 ms, respectively.

Multiple-spin echo signals were obtained for up to 1007 p
pulses with spacings varying between 0.208 and 10.228 s. The

low-field interval tLF varied between 1 and 4800 s. The MSE

signals contained up to 256 k complex points with a total

acquisition time tacq up to 210 s.

The processing of all MSE signals was performed using

Mathematica48 software. The time constants for the matched

weighting functions were T2 = 46.2 � 3.4 s and Tinh
2 = 219 �

18 ms. The phase correction fproc was 1501 � 11 for all signals

and no further phase correction was needed. Zero-filling up to

16 k samples was applied before Fourier transformation.

5. Discussion

Multiple-spin echo data acquisition, followed by optimised

data processing, can lead to considerable enhancement in SNR

for singlet NMR experiments on small molecules. We have

observed enhancements in SNR of around an order of magnitude

in a single scan, although the achievable degree of enhancement is

often limited by the required spectral resolution. Nevertheless, we

performed MSE-enhanced singlet NMR experiments in which the

doublet peaks of 15N2O were clearly resolved and in which SNR

was enhanced by a factor of 4 (Fig. 5) or a factor of 10 (Fig. 2)

relative to conventional single-pulse acquisition.

We anticipate that this method will be useful for systems

other than 15N2O. The main requirement is that the system has

a long T2 relaxation time. The case of 15N2O is particularly

favourable since there are no other magnetic nuclei in the most

abundant isotopologue besides 15N.

We exploited the sensitivity enhancement offered by MSE

data acquisition to perform a detailed study of the low-field

relaxation of 15N2O in solution. The experimental curves were

fitted well by a developed relaxation model involving three

distinct transition probabilities, as expected for relaxation of a

spin-1/2 pair system in low magnetic field. The double-quantum

transition probability WTT
2 showed to be very small, indicating

that dipole–dipole relaxation is of negligible importance in this

case. The ratio of the two other transition probabilities,WTT
1 /WST

was compared with that expected for fully correlated spin-rotation

relaxation. The ratio agrees reasonably well with that pre-

dicted from experimental estimates of the spin-rotation tensors

obtained by microwave spectroscopy. However, there is a

discrepancy by a factor of more than two using revised

estimates of the spin-rotation tensors. Provided that the

revised values are correct, additional contributions to the

singlet relaxation need to be taken into account.

We expect to use MSE-enhanced field-cycling NMR to

study signals from 15N2O and other small biologically signifi-

cant molecules, dissolved under atmospheric pressure in blood

and other substances, in order to observe ongoing transport or

metabolic processes. Performing the experiment in magnetic

fields of different strength and at different temperatures should

quantify the mechanisms of 15N2O relaxation. MSE data acqui-

sition may be combined with other hyperpolarization techniques

to further enhance the detection sensitivity.

Appendix: symmetry properties of low-field

relaxation

In this appendix we show that in low magnetic field and

isotropic material phase, the three singlet–triplet transition

probabilities are equal, and that the two single-quantum

triplet–triplet transition probabilities are also equal.

Denote the singlet and triplet states using the notation

|I,Mi, where I is the total spin quantum number:

|S0i = |0,0i

|TMi=|1,Mi (45)

with M A {�1,0,1}. The transition probability per unit time

between the singlet state and one of the triplet states is

given by:

WST
M = (|0,0ih0,0||Ĝ||1,Mih1,M|) (46)

where Ĝ is the relaxation superoperator and (A|B) denotes the

Liouville bracket,49 defined as:

(A|B) = Tr{AwB} (47)

In an isotropic material phase, and low magnetic field, the

relaxation superoperator is isotropic, i.e. invariant to rotations

of the system in space, which implies:

Ĝ = R̂w(O)ĜR̂(O) (48)

where R̂(O) is the superoperator for an arbitrary three-dimensional

rotation O. This may be combined with (46) to obtain:

WST
M = (|0,0ih0,0||R̂w(O)ĜR̂(O)||1,Mih1,M|) (49)

Rotation superoperators have the following property:49

R̂(O)|A) = |R(O)ARw(O)) (50)

where R(O) is a rotation operator. Spin states transform under

rotations as follows:

RðOÞjI ;Mi ¼
XþI

M0¼�I
j1;M0iDI

M0MðOÞ ð51Þ

where DI
M0MðOÞ are Wigner matrix elements. These equations

may be combined to obtain:

WST
M ¼

Xþ1
M0¼�1

ðj0; 0ih0; 0jjĜjj1;M0ih1;M00jÞD1
M0MðOÞD1

M00MðOÞ
�

ð52Þ

Both sides of the equation may be integrated over the space

of all three-dimensional orientations O. Wigner functions are

orthogonal when integrated over the entire 3D rotational

space:50Z
allO

DI
M0MðOÞDI

M00MðOÞ
�dO ¼ 8p2

2I þ 1
dM0M00 ð53Þ
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where dM0M00 is the Kronecker delta. This leads to

WST
M ¼ 1

3

Xþ1
M0¼�1

ðj0; 0ih0; 0jjĜjj1;M0ih1;M0jÞ

¼ 1

3

Xþ1
M0¼�1

WST
M0

ð54Þ

Hence all three transition probabilities WST
M are equal.

A similar argument may be used to prove that the two

single-quantum triplet–triplet transition probabilities WTT
�1 are

equal. These probabilities are given by

WTT
M = (|1,0ih1,0||Ĝ||1,Mih1,M|) (55)

For the spin-1 triplet manifold, a rotation by p around the

x-axis has the following effect:

R(p)|1,Mi = �|1, �Mi (56)

Since the relaxation superoperator is isotropic, a p rotation

may be inserted in (55), which leads to the desired result:

WTT
M = (|1,0ih1,0|R̂w

x(p)ĜR̂x(p)||1,Mih1,M|)

= (Rx(p)|1,0ih1,0|Rw
x(p)|Ĝ|Rx(p)|1,Mih1,M|Rw

x(p))

= WTT
�M (57)

These results apply to any relaxation mechanism in low

magnetic field and isotropic material phase.
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