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We present the possibility of tuning the spin-wave band structure, particularly the bandgaps in a
nanoscale magnonic antidot waveguide by varying the shape of the antidots. The effects of changing
the shape of the antidots on the spin-wave dispersion relation in a waveguide have been carefully
monitored. We interpret the observed variations by analysing the equilibrium magnetic configuration
and the magnonic power and phase distribution profiles during spin-wave dynamics. The
inhomogeneity in the exchange fields at the antidot boundaries within the waveguide is found to play
a crucial role in controlling the band structure at the discussed length scales. The observations
recorded here will be important for future developments of magnetic antidot based magnonic crystals
and waveguides. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813228]

I. INTRODUCTION

Magnonics1–4 is an emerging sub-field of solid state
physics, which studies the propagation of spin-waves (SWs)
in micro- and nanoscale magnetic structures. Magnonic devi-
ces5 aim to use the information carried by SWs to perform
their respective designated tasks. Waveguides,6 SW
interferometers,7–9 phase shifters,10 and magnonic crystals
(MCs)3,11–13 are some of the important components of mag-
nonic devices. Knowledge of spin-wave dispersion within
such structures is necessary for their design and operation.
An MC can be realized by a combination of periodic modu-
lation of structural and material parameters of a known mag-
netic material and a control over the external bias magnetic
field.14–16 These periodic modulations of magnetic potentials
within an MC interact with the spin-waves eventually yield-
ing a characteristic dispersion relation comprising of stop
and pass bands. Most MCs that form the topic of current
research in magnonics are either one-dimensional (1D)17,18

or two-dimensional (2D)19–24 as they are easier to fabricate
on a wafer when compared to three-dimensional (3D) MCs.
Nevertheless, few theoretical reports on the study of disper-
sion of SWs in 3D MCs have been made.25,26

Structured magnonic waveguides27–29 have recently
attracted considerable attention due to their selective trans-
mission of microwave bands in the micro- and nano-scales
and their potential applications in on-chip microwave signal
processing and communication. Magnetic antidots have
emerged as an important system of MCs; and a thorough
investigation of high frequency magnetization dynamics in
them has been reported in the literature.30–35 Magnonic anti-
dot waveguide (MAW) is an attractive option for manipula-
tion of transmitted spin waves towards the above
application, but it has only recently been started to be
explored.36–38 So far, a study of the dependence of spin-

wave dispersion on the shapes of the antidots has not been
reported. More importantly, how changes in the exchange
field distribution around the antidot boundary can alter the
characteristic dispersion of exchange or dipole-exchange
SWs in a MAW, has never been observed before.

This article aims to help fill that gap in research by
numerically simulating the magnonic dispersion in 1D
MAW lattices with different geometric shapes of the anti-
dots. We also study the spatial magnetization distribution for
different frequencies and wavevectors of the observed dis-
persion modes. We further plot exchange and demagnetiza-
tion fields to examine how they change with differing antidot
shapes. We have used antidots, which are n sided regular
convex polygons inscribed within a circumcircle of radius,

rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fA

n
cosec

2p
n

" #s

; (1)

such that the filling fraction f, the ratio of area of the hole to
the area A of the unit cell, remains a constant.
Micromagnetic simulations were performed for n¼ 3 (trian-
gular), 4 (square), 5 (pentagonal), and 6 (hexagonal antidots)
in Object-Oriented Micromagnetic Framework (OOMMF).39

The case of n ¼1 (circular antidots) was simulated using
Nmag.40 The paper is organized as follows. The geometrical
structure of the waveguide and method used for calculating
dispersion are described in greater detail in Sec. II. Section
III presents the results and analysis linking the ground state
field distribution with changes in the observed SW dispersion
modes. Section IV contains the concluding remarks.

II. MAW AND THE NUMERICAL METHOD

A. MAW structural and material parameters

Figure 1 depicts the MAW structures under investiga-
tions. The MAWs had both width, w and lattice constant,a)Electronic address: abarman@bose.res.in.
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a set to 24 nm and a length, l and thickness, s of 2.4 lm and
3 nm in all cases. For f¼ 0.25, A¼wa and
n 2 f3; 4; 5; 6;1g, Eq. (1) dictates rn as 21.06, 16.97, 15.56,
14.89, and 13.54 nm, respectively. The material parameters
similar to that of permalloy (Py : Ni80Fe20) were used during
simulations (exchange constant, A ¼ 13" 10#12 J=m, satura-
tion magnetization, Ms ¼ 0:8" 106 A=m, gyromagnetic
ratio, !c ¼ 2:21" 105 m=As and no magnetocrystalline
anisotropy).

B. Micromagnetic simulations

Micromagnetic simulations41 are done with the help of
the finite difference method (FDM) based OOMMF (for
n ¼ 3, 4, 5, and 6) or the finite element method (FEM) based
Nmag (for n ¼1). We have performed test simulations on
hexagonal and circular MAWs using both OOMMF and
NMag and the magnonic band structures were found to be
identical. However, for the cell size used here, Nmag repro-
duces the circular shape much better than that obtained in
OOMMF and hence we presented here results from NMag
for the circular MAW. The use of two different simulation
packages also ensures that the established results are inde-
pendent of the type of the discretization cells used in the
simulations. Both these open source platforms solve the
Landau-Lifshitz-Gilbert (LLG) equation42,43

dM

dt
¼ #!cM"Heff #

a!c
Ms

M" ðM"HeffÞ: (2)

In order to obtain the SW dispersion relations, a 2D dis-
crete Fourier transform (DFT) was performed on the
obtained results.37 Before simulating the SW dynamics, a
magnetic steady state was achieved by subjecting the MAWs
to an external bias of 1.01 T (along the length of the wave-
guide) under a Gilbert damping constant, a ¼ 0:95. This
high external field saturates the magnetization of MAWs. To
observe sharper dispersion peaks a was artificially reduced
to 10#4 during simulation of the dynamics. For simulations
done in OOMMF, cuboidal cells of dimensions dx ¼ dy
¼ d¼ 1 nm and dz ¼ s¼ 3 nm were used to span the MAWs.
The resultant gridding of antidot edges which are not aligned
with X or Y axes may cause the entire hole geometry to move
towards one of the edges of the MAW. How this intrinsic

mirror symmetry breaking affects the SW dispersion rela-
tions is the subject of a separate study.44 Nmag, being FEM
based, uses adaptive meshing and hence, its outputs do not
suffer from this issue. However, spatial interpolation needs
to be done in order to obtain magnetization values at every
1 nm interval before performing the DFT. Data were col-
lected every dt¼ 1 ps for both OOMMF and Nmag for a total
duration of 4 ns. This gives us a sampling frequency,
fs ¼ 1000 GHz. The excitation signal, Hz is normal to the
plane of the MAWs and is given by

Hz ¼ H0
sinð2pfcðt# t0Þ

2pfcðt# t0Þ

" #
" sinðkcðx# x0Þ

kcðx# x0Þ

" #

"
Xw=dy

i¼1

sinðipy=wÞ

 !

: (3)

Here, l0H0 ¼ 6 mT; fc ¼ 490 GHz; t0 ¼ 1=ðfs # 2fcÞ
¼ 50 ps; kc ¼ p=a and x0 ¼ l=2 ¼ 1 lm. This form of exci-
tation signal will excite both symmetric and antisymmetric
modes of the dispersion relations in a width confined MAW.
The aliasing associated with DFT is mitigated by the fact
that the signal given by Eq. (3) carries no power beyond fc in
the frequency domain. Similarly, power in the wavevector
domain is limited to the first Brillouin zone (BZ) from #kc

to kc.
We also calculated the SW power and phase distribution

profiles (PPDPs) for a given (k, f) pair of any dispersion rela-
tion. It was done by masking the obtained relation with a
suitable mask in wavevector domain followed by doing an
inverse Fourier transform in the same domain to yield data in
physical space. For example, in order to obtain these results
for (k, f) ¼ (K, F) a mask, Dm was created to span the entire
k vs. f space such that

Dmðk; f Þ ¼
1 if k ¼ 2cp=a6K : c is an integer
0 elsewhere:

$
(4)

After multiplying Dm with the obtained dispersion rela-
tions we then take an inverse Fourier transform in k-space to
arrive at the desired PPDPs. This mask is designed to include
power only from k¼K and nullify the power present in the
rest of the wavevector domain. Simply performing the
inverse transform in k-space without using such a mask will
allow power from the entire wavevector range to distort the
results.

III. RESULTS AND OBSERVATIONS

The calculated dispersion relations are tabulated in Fig.
2. Frequency ranges from 0 to 120 GHz and wavevector k
ranges from 0 to the first BZ boundary (p=a) are displayed.
As the bias field is kept constant at 1.01 T, a forbidden region
is observed in all the cases up to the ferromagnetic resonance
mode of about 39 GHz. SW of any k is not allowed in this
region. Bandgap I is also present in all the cases. For triangu-
lar, square, pentagonal, hexagonal and circular antidots, its
respective values are 4.3 GHz (43 GHz to 47.3 GHz),
5.6 GHz (44.1 GHz to 49.7 GHz), 4.4 GHz (44.5 GHz to
48.9 GHz), 4.4 GHz (44.8 GHz to 49.2 GHz), and 3.5 GHz

FIG. 1. (Top panel) A part of the 1D MAW structure showing square anti-
dots (white holes in grey magnetic region) disposed along the central axis of
the waveguide of width, w¼ 24 nm and lattice constant, a¼ 24 nm. The
square antidots are inscribed within a circle of radius, r4. (Bottom panel)
Other examined antidot shapes inscribed within their respective imaginary
circumcircles. For n 2 f3; 4; 5; 6;1g, rn is given by Eq. (1), where filling
fraction f¼ 0.25 and unit cell area A¼wa.
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(44.9 GHz to 48.4 GHz). In the case where the square anti-
dots were tilted by 458 (diamond shaped antidots), bandgaps
I and II were observed; and their respective values were
3.6 GHz (44.2 GHz to 47.8 GHz), and 3.5 GHz (57.8 GHz to
61.3 GHz). An additional bandgap (III) of 6.6 GHz (94 GHz
to 100.6 GHz) was observed in the case of triangular anti-
dots. Bandgaps II and III are direct, but bandgap I is indirect
suggesting a difference in their origin which can be studied
by looking at the spatial PPDPs for the modes between
which they exist.

Figure 3 shows the spatial SW PPDPs for the marked
(k, f) values in the Fig. 2. Only a part of the entire MAW
structures have been shown for convenience. Mode sa appears
to describe the uniform mode showing insignificant power or
phase variation in the medium. The power distribution profile
(PoDP) of mode sb , being at the BZ boundary, features narrow
vertical nodal lines at x ¼ x06ðcþ 1=2Þa; where c is an inte-
ger. The regions joining these nodal lines are p radians out of
phase with each other. This suggests that the positions of the
phase boundaries in the phase distribution profiles (PhDP)
depend on the location of the signal x0 used in Eq. (3). Power
distribution profiles for mode sc contains a horizontal nodal

line right down the centre of the MAWs in all cases. The
upper and lower parts of the waveguide are again p radians
out of phase with each other. This hints at the fact that modes
sa and sc correspond to zero and first order modes along the
width due to the lateral confinement of the waveguide.45

Modes sd and se are calculated at k ¼ p=2a as they become
nearly degenerate at the BZ boundary for square and hexago-
nal antidots. This degeneracy can lead one of the modes to
effect the results of the other. Vertical nodal lines for both
these modes are now located at x ¼ x06ð2cþ 1Þa. Yet again,
the positions of the phase boundaries appear to be controlled
by the location of the signal at x0. The periodicity of these
nodal lines 2 a is understandable given the location of modes
(half way from BZ boundary). Slight curvature is observed in
all the nodal lines for triangular antidots. We attribute this to
the lack of mirror symmetry within the hole geometry along a
vertical axis. Similar curvature of nodal lines was detected for
the MAW with pentagonal antidots (not shown) which also
lacked such a symmetry. Belonging to the same dispersive
branch of the spectrum, modes se and sd share a horizontal
nodal line which stems from the aforementioned lateral con-
finement. The observed effects of such confinement and the
shape of dispersion curve to which modes sa through sd belong
reminds us of the first two (nearly) parabolic dispersion curves
observed in the case of a uniform waveguide.6 In contrast,
mode se belongs to dispersive branch in the spectrum, which
curves downwards. This branch is formed by the anti-crossing
of lowest energy modes originating in the two neighbours of a
BZ; and as such mode se unlike modes sa and sb does not show
any horizontal nodal lines. Since the first two lowest energy
branches share the same upward curvature, only indirect
bandgap originating in the same BZ is possible. The third low-
est energy branch of a BZ which originates in its two neigh-
bouring BZs (aided by zone folding) has downward curvature.
Thus, only a direct bandgap can be supported between this
and the second lowest energy curve at the BZ boundary.

A quick visual comparison of different dispersion rela-
tions displayed in Fig. 2 reveals a qualitative convergence of
dispersion modes starting as early as n¼ 4 (square antidots).
No new band gaps open or close. Reference 38 talks about
such similarities between results from square and circular
antidot based MAWs and how this convergence, or insensi-
tivity towards the shape of the hole is desirable for the func-
tioning of MAWs. However, note that when the square
antidots are tilted by 45' (diamond shaped antidots) (see Fig.
2, left column middle row), one of the band gaps from n¼ 3
case is partially restored. The computations of the exchange
and the dipole field profiles (EFPs and DFPs) are done to
help understand the cause for this observation. These profiles
are shown in Fig. 4. It may be noted how the EFP around the
square antidots matches to that around the hexagonal anti-
dots. They have similar field orientations and cover similar
regions in space. Maximum value of this field is of the order
of 20% of Ms. However, their demagnetizing field profiles
do not match well. On the other hand, the demagnetizing
field profile around the tilted square antidots matches better
with the same around the hexagonal antidots (similar field
orientations and elongated coverage in space and comparable
maxima of the order of 50% of Ms). Hence, the

FIG. 2. SW dispersion results of MAW structures marked with their respec-
tive antidot shapes as insets. Indexed band gaps are highlighted with hori-
zontal bars.
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demagnetizing field or its corresponding potential distribu-
tion may not be the cause of the observed changes in the
band structure. Dipole dominated SWs, which occur in much
larger structural dimensions, are more likely to be affected
by the demagnetizing field distribution. To further test the
postulate that the dispersion in considered MAWs is largely
dependent upon the exchange field distribution, the case of
diamond shaped antidots was considered. It was anticipated
that these antidots will produce elongated regions of inhomo-
geneous exchange fields (similar to what is observed along
the slanting edges of the triangular antidots) as opposed to
chiefly circular ones (which is seen in the case of square anti-
dots). Surly enough, the exchange field profiles of triangular,
diamond shaped, and square antidots were remarkably differ-
ent from each other (as one of the edges of triangular antidot
is vertical). This establishes a correlation of observed SW
dispersion on their exchange instead of their demagnetizing
field distribution.

Exchange energy density, EexchðriÞ, which contributes to
the total energy M (Heff , is isotropic in a homogeneous mag-
netic medium with uniform exchange coefficient A. This
field is calculated in OOMMF39 as

EexchðriÞ ¼ AmðriÞ (
X

rj

mðriÞ #mðrjÞ
jri # rjj2

; (5)

where rj enumerates the region in the immediate neighbour-
hood of ri. In the absence of SW dynamics mðriÞ #mðrjÞ
’ 0 except where rj lies close to antidot boundary.
Therefore, by changing its geometrical boundary, the
exchange field distribution around an antidot can be changed.
This can conceivably scatter exchange dominated SWs dif-
ferently and alter their resultant dispersion relation.

It also needs to be considered if the simulations repre-
sent the physical reality. Particularly, how can FDM or FEM
based ordinary differential equation solvers like OOMMF or
Nmag, which necessarily discretize the continuous sample,
calculate the isotropic exchange energy and the demagnet-
ization energy46 with good accuracy? Reference 47 con-
cludes that the discrete representations should yield accurate
results for pd=a ¼ p=24) 1. This was further confirmed by
the fact that using d¼ 0.5 nm for the MAW with tilted square
antidots did not alter the exchange field distribution
significantly.

FIG. 3. Power (first and third column) and phase (second and fourth column) distribution profiles corresponding to marked (k, f) locations (sa to se ) in Fig. 2 for
MAWs with triangular, diamond, square, and hexagonal shaped antidots. Power is presented on an arbitrary logarithmic colour map, while the phase profile
representations use a cyclic colour map.
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IV. CONCLUSIONS

We have discussed the dispersion of spin-waves in
nanoscale one-dimensional magnonic antidot waveguides. In
particular, we have observed how an antidot’s geometry can
affect the said dispersion. By dint of power and phase distri-
bution profiles of different spin-wave modes, we have
explored the origin of direct and indirect bandgaps that were
encountered in the obtained dispersion relations. This under-
standing can be used, for example, to more readily design for
the direct bandgaps and avoid the indirect ones. We have
also studied the degree and nature of the inhomogeneity in
the exchange field distribution around the edges of an anti-
dot. Apart from offering a way to control the band structure
of the exchange dominated spin-waves, we have also demon-
strated their dependence on the exchange field profile around
the antidots. We demonstrated that useful direct bandgaps
can be opened at the same filling fraction without removing

additional material during fabrication. Demagnetizing field
profile, whose intensity here reached over 0:5Ms, is expected
to affect the dispersion relations on (thousand times) greater
length scales. Without considering the changes in the
exchange field distribution, the same has been established by
Ref. 48 in two-dimensional magnonic crystals where the
hole is filled up by another magnetic material. However, for-
biddingly vast computational resources will be required to
obtain those results with good frequency and wavevector do-
main resolutions without compromising the accuracy of the
dynamics.
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