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ABSTRACT

It has been 20 years since the concept of the Autonomous Ocean Sampling Network (AOSN) was first

introduced. This vision has been brought closer to reality with the introduction of underwater gliders.While in

terms of functionality the underwater glider has shown to be capable of meeting the AOSN vision, in terms of

reliability there is no communitywide hard evidence on whether persistent presence is currently being ach-

ieved. This paper studies the reliability of underwater gliders in order to assess the feasibility of using these

platforms for future AOSN. The data used are taken from nonunderwater glider developers, which consisted

of 205 glider deployments by 12 European laboratories between 2008 and 2012. Risk profiles were calculated

for two makes of deep underwater gliders; there is no statistically significant difference between them. Re-

gardless of the make, the probability of a deep underwater glider surviving a 90-day mission without a pre-

mature mission end is approximately 0.5. The probability of a shallow underwater glider surviving a 30-day

mission without a premature mission end is 0.59. This implies that to date factors other than the energy

available are preventing underwater gliders from achieving their maximum capability. This reliability in-

formation was used to quantify the likelihood of two reported underwater glider surveys meeting the ob-

servation needs for a period of 6 months and to quantify the level of redundancy needed in order to increase

the likelihood of meeting the observation needs.

1. Introduction

There has been a significant increase in the use of

autonomous underwater vehicles (AUVs) during the

last decade and this trend seems set to continue (e.g.,

see the summary of a market report at http://www.

douglas-westwood.com/shop/shop-infopage.php?longref5
902;0#.UVlK8BlBH8g). We suggest there are two key

reasons: first, ship-based field work is very expensive;

and second, these vehicles, whether in industry or sci-

entific research, have been shown to be capable of ob-

taining valuable data that augment preexisting means,

such asmoorings, towed systems, and profiling floats (see

special issue of Limnology and Oceanography, 2008,

Vol. 53, No. 5, part 2). Nevertheless, it is appropriate to

ask if they have yet fulfilled their true potential. Twenty

years ago, Curtin et al. (1993) presented the requirements

for an Autonomous Ocean Sampling Network (AOSN)

that comprised several autonomous underwater vehicles

and a distributed set of acoustic and point sensors to

enable four-dimensional ocean sampling. Since then,

several concerted efforts have developed and tested

technology to implement this vision. One of the most

significant developments is a class of autonomous under-

water vehicles denoted as underwater gliders (Stommel

1989). These slow-moving, long-endurance, compact, af-

fordable, buoyancy-driven vehicles can be used for mon-

itoring large and mesoscale processes that are currently

impossible to do using conventional, propeller-driven

AUVs or moorings, and expensive if using research
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ships and towed vehicles. A number of marine science

programs have demonstrated the benefits of underwater

gliders. For example, Perry et al. (2008) discussed using

an underwater glider to gain deep understanding of

blooms located off the coast of Washington State. Perry

et al. gathered evidence to conclude that what satellite

imagery led scientists to believe was an autumn

bloom caused by destratification was instead a vertical

redistribution of phytoplankton. Furthermore, the

authors concluded that the concentration at the chloro-

phyll maxima was 3 times that predicted using only sat-

ellite imagery. Todd et al. (2011) used underwater gliders

to assess the underwater effects of El Niño on the Cali-
fornian Current System (CCS). The authors concluded
that while the CCS was unusually warm and isopycnals
unusually deep, there were no anomalous water masses
in the region. Hátún et al. (2007) used two underwater

gliders to sample eddies in order to understand how

these contribute to the rapid restratification of the Lab-

rador Sea interior following wintertime convention.

Developments in communications, intelligent mission

planning, and sampling methods devised over the years

have brought the AOSN vision closer to reality (Curtin

et al. 2005; Leonard et al. 2010; Alvarez and Mourre

2012a,b; L’Hévéder et al. 2013). Are we now at the stage

when users can plan glider missions in full expectation of

being able to achieve missions only limited by the sensors

and the stored energy? To answer that question requires

a study of how well gliders have performed on actual

missions. However, over the years little or no study has

beenmade on the reliability of underwater gliders. Results

of risk, reliability, and availability analyses conducted for

propeller-driven autonomous underwater vehicles (Brito

et al. 2010; Brito and Griffiths 2011; Brito et al. 2012;

Podder et al. 2004; Griffiths et al. 2003) cannot be used to

infer the reliability of underwater gliders because details

of implementation in hardware and software matter.

This paper investigates the reliability of underwater

gliders, resulting in a risk profile as a function of mission

endurance based on the operational history of 56 un-

derwater gliders during the period January 2008–May

2012. The success of glider missions is dependent upon

a number of factors: the inherent reliability of the

component parts, the service history of the vehicles, the

environment in which they operate, and the practices

and procedures of the vehicle operators. We have not

attempted to separate all of these factors. The focus here

is to create a risk profile based on user experiences using

commercially available off-the-shelf (COTS) gliders.

Following the creation of the risk profile, we study the

effect of some potential covariates in the risk profile.We

close with a probabilistic method for quantifying the

likelihood of a set of underwater gliders providing

coverage for a predefined observation time. This process

allows the user to estimate howmany underwater gliders

are required in order to meet a given ocean coverage.

2. Underwater gliders

Gliders propel themselves by use of a buoyancy engine

and thus must follow a sawtooth trajectory through the

water. The horizontal speed is typically about 1 kmh21.

By traveling slowly and using minimal power, they are

able to achieve endurance of several months. The first

scientific missions with gliders were undertaken by the

teams who developed the vehicles and their collaborators

(e.g., Rudnick et al. 2004). But since about 2005, gliders

have become available to the wider scientific community

andCOTSunderwater gliders are being increasingly used

by a growing number of institutions. At the time of this

study, there were three main COTS underwater gliders:

the Slocum (Webb et al. 2001), the Seaglider 1000

(Eriksen et al. 2001), and the Spray (Sherman et al.

2001).1 These are typically equipped with conductivity,

temperature, depth, fluorescence, and optical backscatter

sensors, but many other sensors have been used.

3. Ocean coverage estimation

The term ocean coverage is used here to describe the

likelihood that a target areawill be observed for a required

period of time. The ocean coverage is therefore inherently

dependent on the glider reliability. Thus, in this section we

will first address the problem of estimating underwater

glider survival with mission endurance. Two approaches

are presented. First, we present a nonparametric method

for estimating the probability of survival of an underwater

glider. In this paper we consider two different conse-

quences of failure and therefore the term survival has two

meanings. We use probability of survival to denote the

likelihood of an underwater glider surviving a mission

without premature end. The term probability of survival is

also used to capture the likelihood of an underwater glider

surviving a mission without loss. The Kaplan–Meier sur-

vival estimator is used for modeling both scenarios. The

probability of survival varies with travel time. A second

method, the Cox proportional-hazards model, is then

presented to assess the impact of covariates.

a. Survival estimation

Methods for estimating the probability of survival

based on historic data can be parametric and

1More recent gliders such as the Exocetus coastal glider and the

SeaExplorer were not generally available during the study period.
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nonparametric (Kalbfleisch and Prentice 1980). Para-

metric models assume that the probability of failure

follows a particular trend, such as linear increasing

failure rate or constant rate over time. Nonparametric

models make no assumption with regard to the failure

distribution. The survival dataset consists of two types of

data: failure data and censored data. Failure data con-

sists of the recorded time at which failure took place. In

statistical survival modeling, a censored entry is an ob-

servation where failure was not observed. In our analysis

when a glider is known to have survived a given mission

time, this is denoted a right censored data entry. The

Kaplan–Meier estimator [Eq. (1)] is a typical method for

estimating the probability of survival based on the fail-

ure history. It estimates the probability of failure in

a given interval, from the fraction of the number of entries

that failed at that interval over the number of entries that

have not failed. The number of entries that have not failed

prior to interval i are denoted by ni. The number of entries

that have failed during interval i are denoted as di. The

estimator uses the product rule for calculating the prob-

ability Ŝ(k) of a system surviving a sequence of k intervals,

Ŝ(k)5P
i5k

i50

�
ni 2 di
ni

�
. (1)

The variance for the original Kaplan–Meier estimator is

typically computed using the ‘‘exponential’’ Greenwood

formula (Prentice and Kalbfleisch 2002), defined as

V̂(k)5
1

[logŜ(k)]2
�
n
i
,k

di
ni(ni 2 di)

. (2)

The variance is a function of the number of entries at any

given interval. It is very important to take into account the

variance, as this has a direct effect on the confidence limits

for the survival estimates as presented in Eqs. (3) and (4):

expf2exp[c1(k)]g, Ŝ(k), expf2exp[c2(k)]g , (3)

where

c6(k)5 log[2logŜ(k)]6 za/2

ffiffiffiffî
V

p
, (4)

andwhere za/2 is the uppera/2 point of the standard normal

distribution; the 5%point is used in this paper, which is 1.96.

IfZ is a randomvariable that has anormal distribution, then

the upper a/2 point of this distribution is that value of za/2,

which is such that P(Z. za/2)5 a/2. This probability is the

area under the standard normal curve to the right of za/2.

b. Proportional hazards analysis

Estimating whether other variables have an influence

on risk is almost as important as the estimation of risk

itself. The basic Cox proportional hazards model (Cox

1972) attempts to fit survival data with covariates z to

a hazard function, where z is a vector of covariates: z 5
(z1, z2, . . . , zn). In the literature, covariates are also

denoted as explanatory variables; these are variables

that may or may not have an influence on the hazard

rate. The hazard function is the ratio between the failure

density distribution and the cumulative survival func-

tion. The Cox proportional hazards model assumes that

the baseline hazard h0(t) is proportional to the explan-

atory variables by a constant coefficient b. Here b is

a vector of proportional coefficients, b 5 (b1, b2, . . . ,

bn). The formulation for the Cox proportional hazards

model is presented in Eq. (5):

h(t j z)5 h0(t)e
b
1
z
1
1b

2
z
2
1⋯b

n
z
n . (5)

The b coefficients are the unknown parameters in the

model. These can be estimated using the method of

maximum likelihood estimation (MLE). Using this

technique, b is obtained by maximizing the partial

likelihood given by the product over the r events. Cox

(1972) showed that the likelihood function for the pro-

portional for the proportional hazards model [Eq. (5)] is

given by

L(b)5P
r

j51

exp(bjzj)

�
n
j

l51

exp(bjzl)

. (6)

If the b coefficient is greater than 0, an increase in the

respective explanatory variable causes an increase in the

hazard rate. If the b coefficient is lower than 0, it means

that an increase in the respective explanatory variable

causes a decrease in the hazard. A proportional co-

efficient of 0 means that the explanatory variable has no

effect on the hazard rate.

The Cox proportional hazards model is very useful for

comparing two groups of survival times, corresponding

to, for example, two different vehicle makes for the

same operational conditions or two different operating

conditions for the same vehicle make. This hypothesis

test is a procedure that enables us to assess the extent to

which an observed set of data is consistent with a null

hypothesis, where the null hypothesis represents the

view there is no difference between two groups of sur-

vival data. In section 6, we use this approach for quanti-

fying the effect of different conditions on the hazard rate.

c. Coverage estimation

Having presented means for quantifying the likeli-

hood of a glider surviving a given time, this section ad-

dresses the question of how many gliders are needed in
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order to meet a given coverage. We start with the known

probability of failure and then use probability rules for

deriving the formulation used for calculating the coverage.

Given thatwe knowan instantiation of the probability of

failure p(T), at or before timeT, which wewill denote as p.

If we wish to improve the probability of continuous mon-

itoring during the time T, then we could deploy more than

one glider. Theprobability of r failures among a groupofN

gliders can be computed using the binomial distribution

PN(r, 1)5

�
N

r

�
pr(12 p)N2r , (7)

where

�
N
r

�
, also denoted as r choose N, rCN is

N!/r!(N2 r)!. The probability that at least one glider

survives for the time T is given by

12PN(N, 1)5 12 pN . (8)

If the period of observations required exceeds the total

endurance, then multiple missions are required for M se-

quential mission each withN gliders. The probability of at

least one glider surviving eachmission can be calculated as

Psurv5 [12PN(N, 1)]M 5 (12 pN)M . (9)

4. GROOM underwater glider operational history

The task of gathering a broad representative sample

of operational histories of glider deployments was

undertaken as part of a EuropeanUnion (EU) Seventh

Framework Programme for Research and Techno-

logical Development project, Gliders for Research,

OceanObservation andManagement (GROOM). The

GROOM project (see http://www.groom-fp7.eu/doku.

php) has 18 European partners, of which 12 operate

gliders, working together to ‘‘design a new European

Research Infrastructure that uses underwater gliders for

collecting oceanographic data.’’ The participants were

encouraged to provide operational data representative

of a period of 2 years of operation. An online survey

prompted the user to enter 1) the organization name;

2) the point of contact; 3) vehicle identifier; 4) start of

mission date; 5) vehicle type (SlocumG1 shallow, Slocum

G1 Deep, Slocum G2 Shallow, Slocum G2 Deep, Sea-

glider1000, Spray); 6) mission type (shelf deployment,

shelf-edge deployment, deep-ocean deployment); 7) mis-

sion length in days; 8) mission maximum depth in me-

ters; 9) did the mission end in failure (yes or no); 10) was

the premission test successful? and 11) was the vehicle

recovered at the end of the mission?

If the mission had ended in failure, the user was

prompted to select from 15 primary causes: 1) collision

with vessel; 2) collision with seabed; 3) collision with

nets or other obstacle; 4) Iridium communications fail-

ure; 5) leak; 6) buoyancy pump failure; 7) power/battery

failure; 8) command/control software failure (includes

BaseStation); 9) onboard software failure; 10) data-

logging failure; 11) navigation sensor failure—GPS;

12) attitude sensor failure (heading, pitch, or roll);

13) sensor failure; 14) altitude control; and 15) other failure

(in this case, the user was encourage to write more details).

If the mission had ended in failure, the user was prompted

to answer what was the status of the altimeter at the time

of the fault (bottom within range, bottom outside range).

In practice there may be a causation relation between

some of the 15 primary causes. For example, a connector

leak may cause a power failure. For this study we asked

the users to specify the root cause as the primary cause

for the incident. For the particular example, where

a leak causes a power failure, which then causes a pre-

mature end of the mission, we expect the user to di-

agnose the leak as the primary cause for the premature

mission end.

If the hypothesis is not thoroughly tested and evidence

is not considered, then the task of fault diagnosis can be

subject to epistemic uncertainty. In this study we assume

that this has not been the case and that all primary faults

are correctly diagnosed.

Among underwater glider operators the words abort

and mission can have different technical meanings, so

we clarify here themeaning as used in this paper.We use

the word mission to refer to a single glider operation

from the time of deployment to the time of recovery. A

successful mission is one where operation continued

until the planned recovery. During a mission there may

be a technical problem, but if these are resolved without

having to end the mission prematurely, we class the

mission as successful. If, however, the mission is termi-

nated prematurely because of technical issues, then we

class this as an aborted mission.

a. Mission statistics

Reports were received on 205 missions carried out by

56 underwater gliders. The number of missions and the

number of gliders used varied significantly from one

institution to another (Table 1). The statistics for dif-

ferent vehicle makes are presented below (see Table 2).

As noted previously the success of glider missions is

dependent not just on the reliability of the particular

type of glider used but also on the service history of the

vehicle, the environment in which it operates, and the

practices and procedures of the operators. Furthermore,

whether failure leads to loss of the vehicle is very much

DECEMBER 2014 BR I TO ET AL . 2861

http://www.groom-fp7.eu/doku.php
http://www.groom-fp7.eu/doku.php


dependent upon the available options for recovery. In

our survey, five of the vehicles that were lost were Sea-

gliders deployed in Arctic or Antarctic waters, where

there are very limited opportunities for emergency re-

covery. Thus, although more Seagliders were lost, it is

not possible to conclude that they are inherently more

likely to be lost than Slocums.

b. Failure modes

A total of 63 mission aborts were recorded during the

205 missions. Seventeen specific failure modes have

been identified (Fig. 1). For four failures the root cause

remains unknown. In general, there are a small number

of observations for each failure mode; therefore, it is not

possible to infer if a particular vehicle make is more

prone to a particular failure mode than another make.

However, for the three most common failure modes, we

have compared the failure rate for Slocum gliders (deep,

shallow, G1, and G2) with that for Seagliders. The re-

sults are shown in Table 3.

The hypotheses test is a procedure that enables us to

assess the extent to which an observed set of data is

TABLE 1. Summary of the data provided by the participating oceanographic laboratories.

Centre name

No. of

missions

Start date–end

date

No. of

vehicles

Median

endurance

(days)

Operation environment

Shelf

Shelf

edge (%)

Deep

ocean (%)

Centre National de la Recherche

Scientifique (CNRS)

56 Apr 2010–Mar 2012 14 32 12 84 4

Consejo Superior de Investigaciones

Científicas (CSIC)
14 Apr 2011–May 2011 5 19 — — 100

Istituto Nazionale di Oceanografia

e di Geofisica Sperimentale (OGS)

4 Jun 2008–Jul 2010 2 13 75 — 25

Alfred-Wegener-Institut für
Polar- und Meeresforschung (AWI)

8 Jul 2008–Jul 2012 4 69 — — 100

Consorcio para el Diseño,
Construcción, Equipamiento
y Explotación de la Plataforma
Oceánica de Canarias (PLOCAN)

14 Dec 2010–Oct 2012 4 13 7 22 71

University of East Anglia (UEA) 12 Mar 2010–Jan 2012 8 49 42 50 8

Oceanography Centre, University of

Cyprus (OC-UCY)

7 Mar 2009–Dec 2011 2 80 71 29

Institut für Meereswissenschaften–
Research Center for Marine

Geosciences (IFM-GEOMAR)

3 Jun 2011–Nov 2012 1 14 — — 100

Helmholtz-Zentrum Geesthacht–

Zentrum für Material- und
Küstenforschung
GMBH (HZG)

12 Dec 2010–Jun 2012 2 23 100 — —

North Atlantic Treaty Organization

(NATO) Undersea Research Centre

(NURC)

63 Jun 2010–Sep 2012 8 4 33 30 37

Scottish Association for Marine Science

(SAMS)

3 Oct 2009–Sep 2012 2 123 — 33 67

Natural Environment Research Council

(NERC)

9 Jul 2010–Aug 2012 4 39 — 33 67

TABLE 2. Glider operation statistics.

Seaglider 1000m Slocum G1 shallow Slocum G1 deep Slocum G2 shallow Slocum G2 deep

No. of missions 42 68 72 9 14

Total endurance (days) 2514.5 772.05 1728 188 550.1

Median endurance (days) 64 7.65 19.5 18 12

Upper quartile (days) 80 15 37 25 25.8

Max endurance (days) 169 56 105 48 184

No. of aborts due to failures 19 13 23 3 5

Abort rate (per day) 0.007 56 0.0168 0.0133 0.0159 0.009 09

No. of losses 7 2 1 0 0
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consistent with a particular hypothesis, known as the

null hypothesis. A null hypothesis represents a simpli-

fied view that specifies that there is no difference be-

tween the two groups of survival data. For each failure

mode, we tested the null hypothesis that the failure

rate for Slocums and Seagliders was indistinguishable.

By comparing the actual difference in failure rates with

the standard error of the difference, the probability of

true failure rates being different can be calculated

using the two proportion z test. The z test is a common

statistical significance test that can be used for testing

the hypothesis that differences in proportion of two

sets of data are not statistical significant (O’Connor

2002).

Failure due to a leak was the most observed failure

mode. Out of the 15 failures, 14 occurred on Slocum

vehicles; so, the rate of occurrence was about 3 times

greater for Slocum gliders. One possible explanation is

that Slocum vehicles are opened by users more often

than Seaglider1000s, as Seagliders have generally been

serviced by the makers. Therefore, the O-rings of the

Slocum vehicles tend to be more disturbed than the

O-rings on the Seaglider1000.

The second most common failure mode was power/

battery issues; these occurred 7 times more frequently

for Seagliders than for Slocums. Seagliders employ

lithium batteries, while Slocums can be set to employ

either lithium or alkaline batteries. This may be the root

of the observed differences in failure rate. However, we

did not collect data concerning the type of battery

employed on all Slocums in the dataset. Therefore,

without further information we cannot test whether

battery chemistry was a contributory factor in the dif-

ferent failure rates.

The third most common failure mode was buoyancy

pump failure. The failure rates for the two different

underwater glider makes are indistinguishable for this

failure mode.

c. Failure analysis

Underlying the procedure used in this section is the

assumption that there are no significant differences be-

tween survival times of each group; that is, the differ-

ence that has been observed is due to chance variation.

Two well-known tests used for comparing survival dis-

tributions are the log-rank and the Wilcoxon tests

(Collett 2003).

When we applied these tests to compare the survival

distributions of the Seaglider 1000 and SlocumG1 deep,

we concluded that there is no evidence against the null

hypothesis. As presented in column 3 of Table 4, the

values of P from both tests suggest that differences be-

tween the survival of the Seaglider 1000 and that of

a Slocum G1 deep are not statistically significant. When

we compared the Slocum G2 deep survival distribution

with the distribution of the aggregated dataset of Slo-

cum G1 deep and Seaglider 1000, we concluded that

that there is no evidence against the null hypothesis.

Since the differences between the failure distributions

of Seaglider1000, Slocum G1 deep, and Slocum G2

deep are not statistically significant, we can aggregate

the mission data of these three vehicles to make

a unique dataset that represents the operational history of

deep underwater gliders. If we consider the shallow

gliders—SlocumG1 shallow and SlocumG2 shallow—the

FIG. 1. Failure modes for all underwater gliders, shallow and

deep.

TABLE 3. Breakdown of the top three failure modes and the confidence that the failure mode is vehicle dependent.

Failure mode

Slocums Seaglider1000s

Confidence (%)No. of failures Failure rate No. of failures Failure rate

Leaks 14 0.0859 1 0.0238 91

Power/battery failure 3 0.0184 6 0.143 97

Buoyancy pump failure 5 0.0307 1 0.0238 57
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large values of P indicate that the difference in the

failure distribution for these two types of vehicles is

not statistically significant. Therefore, the operational

history for both vehicles can be aggregated to form

a unique dataset corresponding to shallow underwater

gliders.

5. Underwater gliders survival

Herewe present the results of survival analysis carried

out on the glider mission data collected from the

GROOM project participants. A mission risk profile is

created for each type of underwater glider and the Cox

proportional hazards method, presented in section 3b, is

used for estimating the effect of different covariates.

The survival analyses are carried for two scenarios:

abort and loss.

a. Likelihood of underwater glider abort

The analyses were carried out for the deep un-

derwater gliders and for the shallow underwater gliders

separately. The deep underwater gliders’ dataset con-

sisted of 128 missions; the shallow of 77 missions. The

probability of a vehicle completing its planned mission

without aborting is presented in Figs. 2a and 2b. The

95% confidence limits are presented in gray; they in-

crease with endurance, as there are fewer missions of

longer endurance.

The probability of the mission not ending in abort

decreases relatively rapidly during the first 15 days for

deep gliders and the first 5 days for shallow gliders, but

after this time the probability appears to decrease at

a constant rate. This suggests that the failure rate is al-

most constant with time beyond the first few days; that

is, for example, failures are just as likely to emerge in the

sixth week of deployment as during the fourth week.

This contrasts with the profiles for the Autosub and

International Submarine Engineering Limited (ISE)

Explorer propeller-driven AUVs, where the risk profile

reduces more significantly in the first tens of kilometers,

allowing risk mitigation by monitoring the vehicle for

this distance before committing to the mission (Brito

et al. 2010, 2012). Because of the almost constant failure

rate, a monitoring distance would not be as effective as

a risk mitigation strategy for gliders.

b. Likelihood of underwater glider loss

In the 205missions considered in this study, 10 of them

resulted in vehicle loss, 8 of the losses were for deep

underwater gliders, and 2 of the losses were for shallow

underwater gliders. The probability of a shallow un-

derwater glider surviving a deployment is presented in

Fig. 2c, and the probability of survival of a deep under-

water glider is presented in Fig. 2d. For shallow un-

derwater gliders, the survival distribution shows that the

probability of a glider surviving a 30-day mission is 0.9.

The probability of a deep underwater glider vehicle sur-

viving a 30-day mission is 0.97. For both distributions the

95% confidence interval is quite large.

6. Proportional hazards

The proportional hazardsmethod (section 4) was used

to examine evidence on whether operational factors

influenced the abort and loss outcomes. The analyses

were carried out using the JMP 7 statistical analysis tool

from the Statistical Analysis System Institute, Inc.

(SAS). The estimates for the hazard analysis are pre-

sented in Table 5.

a. Effect of operational depth

For the abort scenario, results show that there is a high

confidence in the proportional hazards estimates for

both shallow and deep gliders. Negative values for b1

indicate that the probability of an abort reduces with

increasing operational depth; see Eq. (5). For the loss

scenario, results show that there is no dependency be-

tween the probability of loss and the glider operational

depth. The P values for both shallow and deep gliders

are large.

b. Effect of altimeter status

One of the ‘‘autonomous’’ behaviors of the glider is in

its ability to detect and react to the presence of the

TABLE 4. Comparison of the survival of different underwater glider makes. Deep gliders include Seaglider1000, Slocum G1 deep, and

Slocum G2 deep. Shallow gliders include Slocum G1 shallow and Slocum G2 shallow.

Statistical test

Deep gliders Shallow gliders

Seaglider1000 compared

to Slocum G1

Seaglider1000 and Slocum

deep G1 compared to

Slocum deep G2

Slocum G1 shallow

compared to Slocum

G2 shallow

x2 P x2 P x2 P

Wilcoxon test 1.4966 0.2212 2.2008 0.3327 0.4679 0.4938

Log-rank test 1.3823 0.2697 1.3787 0.5019 0.0003 0.9872
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seafloor; that is, it can determine when to inflect if

the bottom depth is less than the commanded inflexion.

Getting this wrong could lead to collision with the sea-

floor and possible consequential damage, for example, to

the hull (leaks), the sensors, possibly the communications

antenna, and possibly the external bladder, giving rise to

a buoyancy engine problem. In this section we attempt to

establish whether there is a correlation between the ve-

hicle loss and the status of the altimeter.

For 7 of the 16 aborts that occurred on shallow vehi-

cles, the bottom was outside the range of the altimeter.

Of the 47 failures that occurred on deep underwater

gliders, for 16 of them the vehicle was within altimeter

range of the bottom. For both shallow and deep gliders,

the proportional hazards analyses confirm that there is

no correlation between the status of the altimeter and

the probability of the glider being lost. A possible ex-

planation for this is that gliders move very slowly. Thus,

unless the environment is energetic (e.g., fast near-

bottom currents) and/or strewn with obstacles, such as

fishing gear or large rocks, collision with the seafloor is

not typically traumatic. This perhaps explains the lack of

relationship between altimeter status and vehicle loss.

7. Example of coverage estimation

The previous two sections have used reliability mod-

eling methods for quantifying the reliability of un-

derwater gliders as a function of mission endurance and

the effect of explanatory variables on the risk profile. The

explanatory variables considered were the maximum

operating depth of the altimeter status. In this section we

move from a problem of a single-vehicle deployment to

a problem ofmultivehicle deployment. In this section we

assess the impact of underwater glider reliability on

TABLE 5. Statistics on the proportional hazards analysis: b1 is the

proportional constant, L is the lower confidence limit, and U is the

upper confidence limit for the proportional constant.

Covariate Scenario Statistics

Shallow

gliders

Deep

gliders

Operational

depth

Abort b1 20.009 679 20.001 615

P 0.0042 0.003

Loss b1 0.019 691 64 20.000 882 7

P 0.2526 0.5687

Altimeter

status

Loss b1 9.5424 0.1235

P 0.0959 0.7379

FIG. 2. Probability of survival distributions: (a) probability of surviving without aborting for shallow gliders;

(b) probability of surviving without aborting for deep gliders; (c) probability of surviving, without loss, for shallow

gliders; and (d) probability of surviving, without loss, for a deep glider.
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mission planning. In subsection 7a, we consider the sit-

uation where a single glider is required to survey an area

for a long period of time. Two case studies are consid-

ered, a 180-day mission and a 360-day mission. We es-

timate the likelihood of this survey being successful.

Then we consider the impact of adding redundancy, that

is, using multiple gliders to improve reliability.

A small number of glider fleet configurations have

been tested in recent years, with different degrees of

success (Rudnick et al. 2004; Hodges and Fratantoni

2009; Testor et al. 2007). In this section we consider the

impact of underwater glider reliability on the risk of

a glider network design and operation. In subsection 7b

we conduct reliability analysis of the ‘‘virtual’’ mooring

array proposed by Hodges and Fratantoni (2009). In

subsection 7c we considered the network design pro-

posed by L’Hévéder et al. (2013).

a. Single measurement location

The huge benefit of underwater gliders is the ability

for long endurance missions. However, from the dataset

available to us, few missions make use of the full en-

durance. In this case study we consider that the aim is to

have at least one glider in continuous operation for

a given period of time, in a situation where replacement

gliders cannot be deployed to cover failures. The prob-

ability of achieving this, as a function of the number of

gliders, can be calculated using Eq. (9). Taking the deep

glider example, based on Fig. 2 we assume the practical

upper limit of endurance is 180 days. For the 180-day

coverage, the minimum number of missions (M) equals

1, while for the 360-day coverage M 5 2. Figure 3

presents the probability of providing continuous cover-

age with one or more deep gliders, for the two periods of

interest: 180 days and 360 days.

Figure 3 shows that for deep underwater gliders we

would need to deploy 10 gliders in order to achieve 0.95

probability of successfully providing continuous cover-

age for 180 days without replacement. A fleet of 20

gliders would be required to have a probability of 0.92

for continuous coverage over 360 days.

However, if we were to consider a shorter mission

length, where possible, it would yield a different re-

quirement in terms of the number of gliders. For ex-

ample, for deep underwater gliders, a mission length of

25 days would have a probability of premature end of

0.27. If we were to run four gliders per a 25-day mission

over a period of 360 days, the probability of providing

coverage is 0.93. At least eight gliders would be needed,

and this would imply that we would have to rotate the

gliders 14 times during the year. The fleet size and

mission length combinations can be selected to meet

a desirable, or at least acceptable, coverage target.

The above-mentioned results indicate that shorter

deployments will achieve the same level of confidence

while having fewer gliders deployed at any one time.

However, in practice the choice of strategy would also

have to take into account the cost of different scenarios

and other factors.

The calculations given above are very conservative and

are intended to give an indication of the number of ve-

hicles required. In practice it will not always be necessary

to recover all gliders at the same time. A more efficient

strategy would be to recover each glider only when nec-

essary; however, it is important to take into consideration

the time required to organize a new deployment and for

a glider to navigate to the operational area.

b. Virtual mooring array case study

If currents are not stronger than the glider’s speed,

then a glider can be programmed to perform repeated

profiles while holding a horizontal position nearly con-

stant. This mode of sampling is known as a virtual

mooring. An example of this is the virtual mooring array

FIG. 3. Probability of successfully completing the two observation targets for a fleet of 1–10 gliders: (a) shallow gliders and (b) deep gliders.
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deployed for 10 days in the Philippine Sea, east of Luzon

Strait (Hodges and Fratantoni 2009). During this ex-

periment five Slocum shallow gliders were deployed in

five different positions.

Using the analysis in the previous section, we can

consider the likely success of this array if it were con-

tinued for a period of 6 months. The probability of at

least one virtual mooring failure is calculated as follows:

pfm 5 12 (12 pf1)(1 2 pf2)(12 pf3)(12 pf4)(12 pf5),

where pfi is the probability of the glider holding station i

failing to maintain the station for 6 months. We will as-

sume that shallow gliders are used. Given that the prob-

ability of failure for a single 60-day mission is 0.49, and

that three sequential 60-day missions are required, pfi is

easily calculated as 0.867. Therefore, the probability of at

least one failure over three deployments at each of the

five sites of the proposed network is 0.999 96. This puts

a requirement for adding underwater glider redundancy

at each station. If each station comprises four un-

derwater gliders, then the probability that at least one of

the four gliders at each site will complete a single 60-day

mission (pfm1) is 1 2 0.4945 0.9424. Thus, the probability

of continuous monitoring of three sequential de-

ployments of four gliders at one site is 0.837, and the

probability of all five sites having continuous records is

0.411. Using the binomial distribution, we evaluate the

probability of at least four, three, and two sites being

successful is 0.811, 0.967, and 0.997.

c. Glider network for a synoptic view of the oceanic
mesoscale variability case study

L’Hévéder et al. (2013) considered the minimum

number of gliders needed to sample mesoscale vari-

ability. The authors propose to deploy an array of gliders

in a comb structure. The optimal number of gliders was

selected to maximize the analysis skill evaluation ob-

jective and to minimize the objective analysis error. The

analysis skill evaluation objective was quantified by

a combination of the root-mean-square error and the

spatial pattern correlation between the glider network’s

simulated data and the controlled field data. The ob-

jective analysis error objective was calculated based on

the minimum error variance. The authors demonstrated

that the optimum number of gliders necessary to sample

mesoscale variability was 10. We will assume that all the

gilders are deep gilders. In the previous section, we

considered the number of gliders that needed to be de-

ployed, so that there would be a high probability of one

or more of them completing the mission. An alternative

strategy would be, if it is possible, to replace each glider

that fails during the mission. When large numbers of

gliders are needed, such as in this example, we expect

this strategy to require fewer resources. However,

coverage will not be as complete when we take into

account the time required to replace a vehicle. Here we

consider the number of gliders required for this strategy.

To do so we make the assumption that the failure rate is

constant in time. If the probability of a glider failing in

a given time interval DT is p(DT), given a batch of N

gliders, the probability of x of them failing is

q(x,DT)5B(x,N,p) , (10)

where B is the binomial distribution. In the limit of DT
being very small, we can ignore the possibility of mul-

tiple failures in any one time interval and so the prob-

ability of there being L failures during a time T5MDT
is approximately

Q(L,T,N)5B(L,M,q) , (11)

where

q5 q(1,DT)5Np(12 p)N21 . (12)

The probability distribution of the number of replace-

ments for a 10-glider deployment is shown in Fig. 4. For

a typical survivability of 0.5 for a 90-day deep glider

deployment, the expected number of replacements is 7

and there is a 16% chance that 10 or more gliders will be

needed.

d. Improving reliability

Reliability improvement of underwater gliders will be

possible if communication between users and manu-

facturers is proactive, enabling the discussion of failure

modes and potential mitigation activities. Such re-

liability improvement has occurred on profiling floats.

Profiling floats had a target life expectancy of 4 years,

performing 150 cycles during this period. However, in

2001 only 20% of the Autonomous Profiling Explorer

(APEX) floats could meet this requirement (Kobayashi

et al. 2009). The fact that faulty floats could not be re-

covered made it difficult to identify the root causes for

failures. Nevertheless, research institutes and the man-

ufacturer engaged in fault investigations and a number

of improvements were made as a result. For example,

the batteries of the early floats had a design vulnerability

that meant that every time a battery cell was damaged, it

caused a chain reaction, in which other battery cells in

the same pack would also fail. The battery circuit design

was changed; a diode was introduced between cells, so

that if one cell is damaged, it will not damage the cell

next to it. Another improvement was made with regard

to the piston used to control the buoyancy. The pump

used in the early APEX float allowed small sediments to

mix with the oil. This would eventually cause the piston
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to get stuck in a fixed position. A new pump was de-

signed by the manufacturer that did not have this failure

mode.

In this section we study the impact of reliability im-

provement in the confidence that the glider network

design will meet the observation target.

First, we consider the case of a single measurement

location as in section 7a. Figure 3 shows that if the re-

liability of an underwater glider is increased to 90%, this

results in a high confidence that the coverage target will

be met with fewer gliders. For deep gliders, a de-

ployment of two gliders would give a confidence of 98%

that the target measurements would be obtained with

one or more gliders for a period of 360 days.

For the multiple glider deployment considered in

section 7c, Fig. 4 shows that if the success rate for 90-day

missions can be increased from 0.5 to 0.9, then the

number of gliders required to ensure a 10-glider de-

ployment is likely to be greatly reduced, with the ex-

pected number of replacements being one and the

chance of needing three or more being only 9%.

If the top three failuremodes identified in this study—

leaks, battery failure, and buoyancy pump failure—are

mitigated, this would lead to a change in the risk profile.

Figure 5 presents the survival distribution for consider-

ing that the top three failure modes were completely

mitigated. Each failure was replaced with a censored

entry, since each failure resulted in an early mission

termination. Thus, replacing the failure flag with a cen-

sored flag would not result in a risk improvement.

Therefore, we assume that the endurance for each one

of these failure entries equals the average of the en-

durance of all missions that were successful. For shallow

underwater gliders, the average endurance of all suc-

cessful missions was 13 days, while for deep underwater

gliders this was 43 days.

The probability of shallow glider surviving, with no

premature mission end, a 60-day mission is 0.58, a 0.09

increase from the unmitigated case. The probability of

a deep glider surviving a 180-day mission is 0.48, a 0.2

increase from the unmitigated case.

8. Discussion and conclusions

The paper presents a probabilistic framework for

calculating the coverage that can be achieved by a fleet

of underwater gliders. We showed how the probability

of successfully meeting a required coverage can be cal-

culated using the survival estimate for a given mission.

We use this framework for estimating the coverage for

two proposed ocean sampling networks.

In the examples provided, we considered that all

missions were of equal endurance. In practical terms

missions can be of different endurance. In addition, in

FIG. 4. Probability density function for the number of failures in a 90-day deployment of 10

gliders. The probability of a single glider surviving a 90-day mission is assumed to be 0.5

(continuous line), 0.8 (dashed line), and 0.9 (dotted line).
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the examples, we considered that the vehicles were

deployed concurrently. Again, this may not be the case

in practice. However, despite these assumptions, the

probabilistic formalism presented in this paper still ap-

plies to the different scenarios mentioned.

A crucial aspect of this analysis is that the survival

profiles for each vehicle type were created based on

unbiased data. The users consisted of people that were

not involved in the development life cycle of underwater

gliders. For these users the underwater gliders come as

a COTS product. The framework proposed here for

estimating the coverage obtained by a fleet of under-

water gliders was derived from first principles of prob-

ability theory. This framework can be used to support

the survey design of any organization, including orga-

nizations that have been involved in the development

life cycle of underwater gliders, which comprise more

experienced users. This is possible provided that the

organization uses their own operation data to generate

the risk profiles.

We used fault history data from 205 glider missions,

provided by nondevelopers, to build risk profiles with

endurance. We concluded that the risk profiles of dif-

ferent underwater glider makes are not statistically sig-

nificant. Therefore, our analysis focused on two classes

of gliders: deep and shallow. For shallow gliders we

concluded that the probability of not aborting a 30-day

mission is approximately 0.5. For deep underwater

gliders, the probability of not aborting a 90-day mission

is approximately 0.59. A key observation is that suc-

cessful glider deployments with vehicles available today

imply conducting missions that are well below the

maximum endurance of the vehicle.

These glider failure profiles have a similarity in form

to those of relatively early APEX floats (2000–01 and

2003) in the analysis of Kobayashi et al. (2009). APEX

floats deployed in subsequent years generally showed

a growth in reliability, such that by 2006 the probability

of completing 100 cycles was over 90%, compared with

;20% in 2000–01. The challenge for manufacturers is to

achieve the same reliability growth for gliders.

In targeting this reliability issue, user feedback to

manufacturers to inform ongoing developments by

manufacturers is important. By doing so the glider re-

liability can increase, as has shown to be possible from

the APEX float experience reviewed in this paper.

If, for example, the probability of failure for a 180-day

deep glider mission could be reduced from 0.73 to 0.25,

then the number of gliders needed to be deployed si-

multaneously to achieve 95% coverage would be re-

duced from 10 to 3.

Underwater gliders are arguably one of the most sig-

nificant technology developments in autonomous un-

derwater sampling. They provide an effective way to

conduct marine science surveys and, for some missions,

they completely eliminate the costs associated with

surface vessels. The perception is that underwater

gliders are a relatively cheap alternative to measure-

ments made from ships and moorings. However, in this

paper we have shown that in order to achieve a high

level of confidence in obtaining data, multiple un-

derwater gliders are required. Therefore, when evalu-

ating the cost of underwater glider observations, the

number of vehicles required to meet the necessary level

of confidence needs to be considered. Using current

technology and practices, a high level of confidence may

require a costly operation. However, if glider manufac-

turers and operators can achieve a similar improvement

in reliability as was made for Argo floats, then the costs

will fall significantly.

Validation of risk estimation, in general, is a difficult

task. We believe that for underwater gliders this is

FIG. 5. Underwater glider survival taking into account mitigation of the top three failure modes: leaks, battery

failures, and buoyancy pump failure: (left) shallow gliders and (right) deep gliders.
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a particularly difficult task because these platforms are

constantly evolving. The faults presented in this study

generated lessons learned that were disseminated by all

partners. It is possible to validate the estimated risk

profiles for the underwater gliders by comparing the risk

profiles presented in this paper with the risk profiles

generated using data collected since this study. In

making this comparison we must take into account the

impact of fault mitigation. This can be achieved using

the approach presented in Brito et al. (2012). The sta-

tistical tests discussed in this paper—the Wilcoxon and

the log-rank tests—can be applied to compare the two

risk profiles, prior to 2012—presented in this paper—

and after 2012, the results of a future study.
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