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ABSTRACT 

This paper presents the application of semi-active control for power harvesting using an electro-

mechanical energy harvester. Two semi-active control strategies are proposed in the form of a 

time-periodic damper and a nonlinear cubic damper. For the periodic time-varying damper the 

average harvested power and the throw are obtained based on the Fourier series. The semi-active 

periodic time-varying damper is optimised to maximise the harvested power. The performance of 

the optimum semi-active periodic damper is compared with the optimum passive and semi-active 

on-off model at a particular frequency. It is demonstrated that the periodic time-varying damper 

can significantly increase the harvested power at all frequencies of interest. For the nonlinear 

damper, the harvested power and the throw are derived using the concept of the describing 

function. The results are compared with the linear damper. It is demonstrated that the nonlinear 

damper can significantly increase the absorbed power despite having much lower displacement 

compared to the linear damper. This makes the semi-active nonlinear damper very attractive for 

mechanical energy harvesters.  

1. INTRODUCTION 

Semi-active control is achieved by altering a system parameter, such as damping or stiffness, 

in real-time to enhance the performance of the system through vibration isolation or energy 

harvesting [1]. Semi-active control has the advantages of showing similar vibration control 

performance to active control methods, while maintaining the advantages of passive methods 

such as simplicity and low cost implementation.  

Vibration isolation systems in the form of semi-active control have been widely used in 

engineering applications. Examples include stay-cabled bridges [2, 3], buildings [4], 

automotive suspension systems [5, 6] and seat suspension [7].  

Energy harvesting from the ambient vibration has also attracted significant attention in recent 

years [8]. Some interesting applications include low-power electronics, wireless sensors [9], 

electrostatic MEMS vibration energy harvester [10] and large-scale energy harvesters [11]. In 

many applications, the vibration amplitude is too low to be harvested efficiently. Hence, 
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methods have been proposed to improve the energy harvesting rate by both mechanical and 

electrical approaches [12-16]. In order to increase the frequency range and the dynamic range 

of the excitation amplitude over which the vibration energy harvester operates, various 

nonlinear arrangements have been suggested, particularly using nonlinear springs [17, 18]. In 

this paper nonlinear damping will be investigated, which has previously been mainly used for 

vibration isolation [19, 20]. 

2. SEMI-ACTIVE TIME PERIODIC DAMPER 

A single degree-of-freedom system (spring-mass-damper) shown in Figure 1 is considered, which 

is subjected to a base excitation, where m  is the mass, k  is the suspension stiffness, c is a semi-

active damper, x is the mass displacement and y  is the base displacement. The system is 

harmonically excited at frequency   and the amplitude Y  and the theory governing the 

mechanical behaviour of such system is examined here. The time-varying damping coefficient is 

assumed to harvest useful energy that there is no other mechanical dissipation. 

 
Figure 1. Single degree-of-freedom base excited system with semi-active damper 

 

The governing dynamic equation can be written as: 

     .0)(  yxkyxtcxm   (1) 

For harmonic base excitation, 

  ,cos tYy   (2) 

the fundamental component of the relative displacement is assumed to be, 

  .cos   tZyxz  (3) 

The dynamic Eq.(1) can be rewritten as: 

  .cos)( 2 tYmymkzztczm    (4) 

The instantaneous power absorbed at the fundamental frequency by the damper is,  
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It can be seen that the instantaneous power is composed of a constant part and a time 

dependent part having frequency of 2 . 

The average absorbed power can be obtained from the energy harvested per cycle: 
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For semi-active control, the time-varying damper is assumed to have the form of, 
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To obtain an analytical solution for the average absorbed power, we use the harmonic balance 

method. Thus the solution to Eq.(3) now takes the form of the Fourier series: 
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Taking derivatives of Eq.(8) and substituting into Eq.(1) yields the approximate analytical 

solution. The derivation of the response is given in more detail in [21]. 

The approximate analytical response of the system can be found from solving the coefficients 

in Eq.(8) for nA  and nB : 
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Substitution of nA , nB  in )(tz allows the calculation of the average absorbed power using Eq. 

(6). 

3. NONLINEAR DAMPING 

The dynamic equation with nonlinear damping in the form of cubic damping is written as: 

  .cos)()()()( 23   tYmtymkztzctzctzm n
  (10) 

We use the method of harmonic balance to approximate the response with the fundamental 

frequency of  . 

  ,cos)( tZtz   (11) 

Substitute )(tz  and its derivatives into Eq.(11), partitioning Sine and Cosine and ignoring 

higher order harmonics  yields, 
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and the throw can be obtained analytically as, 
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The linearized equivalent damping is thus, 
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The instantaneous power absorbed by the damper is, 
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The average absorbed power can be obtained as, 
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4.  SIMULATION RESULTS 

The simulation parameters for the single degree-of-freedom system are:  

      N/m4.107    kg1075.0 3   km  

so that the natural frequency of the system is 60.2 Hz. These values are realistic for a linear 

inductive generator of about 1 cm
3
 as described in [14]. In this case, for simplicity, the 

stiffness is assumed to be linear. 

4.1 Periodic time-varying damper 

A periodic time-varying damper having a constant term 0c  and time-varying terms as a 

function of t  and t2  are initially considered, so that, 

        tdtdtctcctc  2sinsin2coscos)( 21210   (18) 

Numerical simulations are conducted with a sweep sine excitation with linearly increasing 

frequency in the range of 20 - 120 Hz with m10 4Y to construct the frequency response of 

the system.  

Figure 2 shows that expanding the Fourier series of the response )(tz  for 2n  is sufficient to 

represent the dynamic response accurately. This could be justified by the fact that the 2  

terms are present in the damping Eq.(18). In this example 0.0710Ns/m0 c , 

while m-0.0355Ns/21  cc , and 021  dd .  

The average absorbed power and the throw are obtained using both the approximated 

analytical approach above and a time-domain numerical method (using ode45) and the results 

are also shown in Figure 2. The throw is defined using the amplitude response of the 

fundamental frequency. When including two terms in the response of the system, the 

approximated analytical harvested power and throw are in good agreement with the ones 

obtained from the numerical approach. Further increase of the number of terms in the 

response, for example to 3n , does not significantly improve the accuracy of the results. 

 
 

(a) (b) 

Figure 2. Time-periodic damper: (a) average absorbed power and (b) throw 
 

An optimisation is now considered in order to obtain the parameters of the time-varying 

damper in Eq.(18), by maximising the average absorbed power. In this example, optimisation 

is carried out at a single frequency of 80 Hz; however, we can run the optimisation over the 



 

 

frequency range of interest.  A genetic algorithm from Matlab optimisation toolbox is used to 

find the five unknown damping parameters 0c , 1c , 2c , 1d  and 2d . In the optimisation 

procedure, solutions, which give negative damping, are excluded. The optimum coefficients 

for the time-varying damper in Eq.(18) are shown in Figure 3 at 80 Hz. 

 

 

Figure 3. Optimum damping  ttc 2cos11886.0)(   and velocity waveforms at 80Hz  

The performance of the optimum time periodic damper is compared with the optimum passive 

damper 1633Ns/m.0c  , with the passive damper having the same throw as the optimum 

time periodic damper  at resonance Ns/m933750.0c  and the on-off skyhook semi-active 

models. The optimum damping coefficient for the passive model and the on-off switch 

models are provided in Table1. For the on-off skyhook semi-active model, the switch occurs 

between the two levels of damping when the sign of the product of the relative velocity and 

the absolute velocity changes.  

 

Damper Optimum Damper Coefficients Average 

Harvested Power 

Passive 1633Ns/m.0c  0.55 mW 

Passive 2 Ns/m933750.0c  0.47 mW 
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0.95 mW 

Table 1. Optimal damping parameters for three different damping strategies at 80 Hz 

Figure 4 compares the average harvested power and the throw for the four different optimised  

dampers. At 80 Hz, the average harvested power for these four strategies is also shown in 

Table 1. Although the on-off semi-active model is useful for minimizing the absolute 

displacement it is not suitable for energy harvesting. The time-varying damper has increased 

the average absorbed power more than 70% with respect to the optimum passive one. 

Although the optimisation is carried out at 80 Hz, the average absorbed power and the throw 

are increased over the whole range of frequency.   

 



 

 

  

(a) (b) 

Figure 4. The average absorbed power (a) and throw (b) for the optimum passive, passive 

with skyhook and time-varying damping models optimised at 80Hz as a function of excitation 

frequency 

4.2 Nonlinear damper 

The average absorbed power and the throw are plotted in Figure 5 for a harvester with base 

excitation amplitude of m10   3Y , a linear damper Ns/m05.0c    and various values of the 

cubic dampers nc  . 

  
(a) (b) 

 

Figure 5. The average absorbed power (a) and throw (b) as a function of excitation 

frequencies for the system with Ns/m05.0c    and various values of nonlinear damper nc   

The amplitude of the throw reduces when the damping is increased, as expected. At low 

frequencies, the increase of damping does not have much effect on the average harvested 

power. At resonance, the average harvested power reduces when the damping increases. At 

frequencies much higher from the resonance, the increase of damping however increases the 

harvested power, since the mass is almost stationary, and the average power harvested 

increases with the square of frequency.  

 

Figure 6 shows the average absorbed power and the relative displacement magnitude as a 

function of the base excitation amplitude for the linear system, when  0Ns/mn c , and the 

nonlinear system, when 0.05Ns/m c  
33

n /m0.05Ns c , at resonance.  For a limited throw 

of mm3Z , the maximum base excitation amplitude for the linear system is 0.52mm. This is 

a larger value (1.03mm) for the nonlinear system.  For the maximum base excitation 



 

 

amplitude in which the two devices are operational, the nonlinear harvester can harvest much 

more power compared to the linear harvester as shown in Figure 6. 

 

  

(a) (b) 

Figure 6. The average absorbed power (a) and relative displacement (b) for the system with 

linear and nonlinear damping when excited at resonance.  

5. CONCLUSIONS 

This paper has investigated a periodic time-varying damper for idealised energy harvester. 

When the system is harmonically excited, the semi-active control determines the damping of 

the system. An analytical solution is presented for the average absorbed power using the 

harmonic balance method. The optimal value of damping is obtained based on maximising the 

average absorbed power at a specific frequency. The average harvested power is also 

increased at other frequencies, even though the optimisation is considered for a single 

frequency, although the throw is also increased.  

A nonlinear damper is also considered and the harvested power and the throw are derived 

using the describing function. It is demonstrated that for a limited throw, the nonlinear 

harvester can have higher amplitude of base excitation as well as can harvest much more 

power compared to the linear harvester. 
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