Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments
Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments
Tidal embayments are characterized by a wide variety of landscape features, often including either complex tidal channel networks or extensive flood-tidal deltas. The origin of these features and the influence of hydrodynamic drivers and initial geological setting on their long-term characteristics are essentially unexplored. A model was applied to simulate the long-term morphological evolution of tidal embayments, with the purpose of providing insight into the environmental conditions that lead to the differences in tidal embayment morphology. Numerical simulations indicated that the interaction between hydrodynamics, sediment transport, and the evolving topography gives rise to the formation of channel networks. The tidal range and the depth of the initially unchannelized tidal basin controlled the way in which the morphology evolved and determined the timescale over which channels and intertidal areas developed. Channel network formation occurred more rapidly when the tidal range increased and/or when the initial basin depth decreased. Tidal basins with a large initial depth showed the development of a flood-tidal delta and for these deep basins channel incision could remain absent over long timescales. Both tidal range and initial bathymetry affected final basin hypsometry and channel network characteristics, including the channel density and the fraction of the basin occupied by the channels. All the simulated morphologies, with different combinations of the tidal range and depth of the basin, evolved towards a state of less morphodynamic activity for which the relative intertidal area was proportional to the ratio of tidal amplitude to basin depth
23-34
van Maanen, B.
47cb6ae2-9baf-4f37-a138-067d72966597
Coco, G.
2fd53078-aedb-4f12-bb28-d69b74d8ad64
Bryan, K.R.
02d42071-7100-4ef5-9bba-4b14bdbd9277
June 2013
van Maanen, B.
47cb6ae2-9baf-4f37-a138-067d72966597
Coco, G.
2fd53078-aedb-4f12-bb28-d69b74d8ad64
Bryan, K.R.
02d42071-7100-4ef5-9bba-4b14bdbd9277
van Maanen, B., Coco, G. and Bryan, K.R.
(2013)
Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments.
Geomorphology, 191, .
(doi:10.1016/j.geomorph.2013.02.023).
Abstract
Tidal embayments are characterized by a wide variety of landscape features, often including either complex tidal channel networks or extensive flood-tidal deltas. The origin of these features and the influence of hydrodynamic drivers and initial geological setting on their long-term characteristics are essentially unexplored. A model was applied to simulate the long-term morphological evolution of tidal embayments, with the purpose of providing insight into the environmental conditions that lead to the differences in tidal embayment morphology. Numerical simulations indicated that the interaction between hydrodynamics, sediment transport, and the evolving topography gives rise to the formation of channel networks. The tidal range and the depth of the initially unchannelized tidal basin controlled the way in which the morphology evolved and determined the timescale over which channels and intertidal areas developed. Channel network formation occurred more rapidly when the tidal range increased and/or when the initial basin depth decreased. Tidal basins with a large initial depth showed the development of a flood-tidal delta and for these deep basins channel incision could remain absent over long timescales. Both tidal range and initial bathymetry affected final basin hypsometry and channel network characteristics, including the channel density and the fraction of the basin occupied by the channels. All the simulated morphologies, with different combinations of the tidal range and depth of the basin, evolved towards a state of less morphodynamic activity for which the relative intertidal area was proportional to the ratio of tidal amplitude to basin depth
This record has no associated files available for download.
More information
Published date: June 2013
Organisations:
Energy & Climate Change Group
Identifiers
Local EPrints ID: 354887
URI: http://eprints.soton.ac.uk/id/eprint/354887
ISSN: 0169-555X
PURE UUID: c77ff77c-5863-47d3-a7a3-8a3401ece0c8
Catalogue record
Date deposited: 25 Jul 2013 14:09
Last modified: 14 Mar 2024 14:25
Export record
Altmetrics
Contributors
Author:
B. van Maanen
Author:
G. Coco
Author:
K.R. Bryan
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics