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Transitional supersonic axisymmetric wakes are investigated by conducting various
numerical experiments. The main objective is to identify hydrodynamic instability
mechanisms in the flow at M =2.46 for several Reynolds numbers, and to relate
these to coherent structures that are found from various visualization techniques.
The premise for this approach is the assumption that flow instabilities lead to the
formation of coherent structures. Three high-order accurate compressible codes were
developed in cylindrical coordinates for this work: a spatial Navier–Stokes (N-S)
code to conduct direct numerical simulations (DNS), a linearized N-S code for linear
stability investigations using axisymmetric basic states, and a temporal N-S code for
performing local stability analyses. The ability of numerical simulations to exclude
physical effects deliberately is exploited. This includes intentionally eliminating certain
azimuthal/helical modes by employing DNS for various circumferential domain sizes.
With this approach, the impact of structures associated with certain modes on the
global wake-behaviour can be scrutinized. Complementary spatial and temporal
calculations are carried out to investigate whether instabilities are of local or global
nature. Circumstantial evidence is presented that absolutely unstable global modes
within the recirculation region co-exist with convectively unstable shear-layer modes.
The flow is found to be absolutely unstable with respect to modes k > 0 for ReD > 5000
and with respect to the axisymmetric mode k = 0 for ReD > 100 000. It is concluded
that azimuthal modes k = 2 and k = 4 are the dominant modes in the trailing wake,
producing a ‘four-lobe’ wake pattern. Two possible mechanisms responsible for the
generation of longitudinal structures within the recirculation region are suggested.

1. Introduction
It is well known that for subsonic (incompressible) wakes, the dynamics of large

(coherent) structures play a dominant role in the local and global behaviour of the
flow. This evidence was found from both experimental investigations and numerical
simulations and was confirmed by theoretical studies. For example, in experiments of
the flow around a sphere, Aschenbach (1974) detected large structures and identified
two different modes of vortex shedding: a shear-layer mode for moderate Reynolds
numbers with a Strouhal number increasing with Reynolds number, and a second
mode of shedding that has an approximately constant Strouhal number. Aschenbach
showed that the shedding from the second mode was in the form of two counter-
rotating helices. Monkewitz (1988) found analytically that the first helical mode is
absolutely unstable in the near wake behind a bluff body for Reynolds numbers in
excess of 3300 (based on wake-diameter and free-stream velocity). Monkewitz also
found that large-scale structures co-exist with a recirculation region, which was later
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confirmed experimentally by Cannon & Champagne (1991). The experiments also
revealed that these large-scale structures are predominantly helical with a dominant
first azimuthal mode. Using numerical simulations in conjunction with linear stability
theory (LST), absolute/global instabilities were found for a two-dimensional bluff
body with a blunt base by Hannemann & Oertel (1989). For three-dimensional results,
see Oertel & Delfs (1995). In addition, numerical simulations for an axisymmetric
body with a blunt base (Schwarz, Bestek & Fasel 1994) revealed the existence of
absolutely/globally unstable modes that are of helical nature.

For supersonic flows, on the other hand, little is known yet about the origin and
dynamical behaviour of large coherent structures in the near-wake region behind
an axisymmetric body. This certainly cannot be attributed to a lack of interest in
the physical problem. On the contrary, a detailed understanding of the physical
mechanisms in the near-wake region could be highly rewarding in terms of reducing
drag of flight vehicles at supersonic speeds (Rollstin 1990, showed that the base drag,
caused by the low mean pressure at the base, accounts for up to 35 % of the total
drag). The scarcity of knowledge concerning this particular flow scenario originates
rather in the complexity of the physical problem and difficulties, uncertainties and
high costs associated with experiments. For instance, wind-tunnel experiments suffered
from the difficulty of properly supporting the (axisymmetric) base model so as not to
cause undue effects on the flow field behind the base (cf. Chapman 1951; Donaldson
1955; Dayman 1963). Other factors that can compromise experimentally obtained
data include the use of intrusive probes and wind-tunnel interference, i.e. vibrations,
upstream sound, noise radiated from turbulent boundary layers of the wind-tunnel
walls and blockage, to name a few. The strong sensitivity of the flow to perturbations
(in the form of sound, solid surfaces, such as probes, etc.) is most probably due to a
global instability that may be present in the recirculation region. Therefore, most of the
early work (cf. Demetriades 1968a, b) employing intrusive probes was restricted to the
far wake. Nevertheless, some quantitative evidence of the existence of dominant large
structures in supersonic axisymmetric wake flows was provided; amplitude spectra
(see figures 11 to 14 in Demetriades 1968b) displayed distinct peaks at relatively low
frequencies, thus indicating the presence of dominant modes (structures). In addition,
the amplitude distribution for the velocity fluctuations (figures 2 and 3, respectively, of
Demetriades 1968b) resembled that of an incompressible axisymmetric wake, where it
is known that the resulting profile is due to the presence of dominant large coherent
structures (see, e.g. Cannon & Champagne 1991). For supersonic jet flows, Crow &
Champagne (1971) observed coherent structures in their experiments (calling them
‘orderly structures’). Large coherent structures were also observed in experiments of
supersonic jets by Oertel (1979).

The use of a forward sting support for experiments of supersonic axisymmetric
wakes in a specifically constructed supersonic blowdown-type wind tunnel (see, e.g.
Herrin & Dutton 1994, 1995) appears to have alleviated many of the above-mentioned
problems of experimental investigations. In addition, the use of the non-intrusive laser-
Doppler velocimetry (LDV) technique made the investigation of the near-wake region
possible. Bourdon & Dutton (1999) were able to show clearly the presence of large
coherent structures in the axisymmetric base flow by employing planar visualizations.
The observed structures appeared to be of significant size relative to the shear-layer
thickness. Thus, it appears safe to say that large coherent structures are present in
supersonic axisymmetric flows and may indeed play an important role.

There is considerable evidence that the formation of large-scale structures is
due to hydrodynamic instabilities of the (time-averaged) mean flow and that the
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development of these structures can be captured by stability theory (see, e.g. Gaster,
Kit & Wygnanski 1985; Oertel 1990; Theofilis 2003). In fact, certain aspects of
the development can be captured with linear stability theory, although intensities
(amplitudes) of the structures are often too large for the linear stability theory
to be valid. Experimental results for incompressible turbulent mixing layers, two-
dimensional turbulent wakes, and axisymmetric wakes with a blunt base have shown
that certain key features, such as dominant frequencies, mode shapes (amplitude
distributions), and streamwise spacing (streamwise wavelengths) of the structures can
be predicted well by linear stability theory (Wygnanski, Champagne & Marasli 1986;
Marasli, Champagne & Wygnanski 1989). These investigations support the notion
that hydrodynamic instabilities give rise to the generation of large-scale structures
and affect their spatial and temporal development.

For the present investigation, numerical experiments were conducted exploiting the
ability of numerical simulations to exclude physical effects deliberately and, therefore
assess their importance. Three separate approaches were employed: direct numerical
simulations (DNSs); temporal DNS (TDNS); and linearized Navier–Stokes (LNS)
calculations. The motivation for each of the methods is given in the following.

Classical linear stability theory (LST) deals with instabilities of infinitesimally
small amplitudes that develop in a parallel flow, containing only one inhomogeneous
spatial direction. Mathematically, the problem can be formulated as an eigenvalue
problem (EVP) that requires the solution of the system of the Orr–Sommerfeld and
Squire equations. The coupling of slightly damped solutions of the EVP can lead to an
algebraic, or transient, growth; however, in the current investigation, only the classical
view of unstable modes leading to transition will be considered. In spite of (or because
of) the restrictions of parallel flow theory, LST has been applied by many workers. For
example, Huerre & Monkewitz (1985) presented the distinction between convective
and absolute instabilities in parallel shear flows, a terminology that originated from
plasma physics. According to their definition, a flow is convectively unstable if a
pulse disturbance decays to zero in time at all locations in the flow. On the other
hand, an absolute instability is present if a disturbance leads to exponential growth
in the entire field. Here, instead of solving the EVP, local stability investigations of a
parallel basic state are conducted employing a temporal compressible Navier–Stokes
code in cylindrical coordinates (for a detailed discussion of the spatial versus temporal
approach see Fasel 1990). This method was chosen because it also allowed for local
stability calculations of disturbances with nonlinear amplitudes. It is sought to exploit
the fact that the effects caused by streamline curvature, pressure gradients, shocks
and expansion waves, etc. are eliminated by this model. In the present investigation,
by comparing with results from spatial calculations, the importance of the omitted
physical mechanisms can be evaluated.

The mean flow topology of the near-wake region downstream of an axisymmetric
cylinder with a blunt base is shown schematically in figure 1. The supersonic approach
boundary layer (i) separates at the body corner producing an expansion (ii) with a
large turning angle. A thin, yet very energetic free shear-layer forms (iii) separating
the outer inviscid fluid from a large recirculation region (iv) downstream of the
base. A recompression (v) process realigns the flow with the axis of symmetry and
subjects the shear layer to a strong adverse pressure gradient. Downstream of the
mean reattachment point (vi) a trailing wake (vii) develops. It is evident that the
mean basic state is strongly non-homogeneous in the streamwise direction. Thus, it
is desirable to conduct stability investigations accounting for the strong non-parallel
effects of the basic state.
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Figure 1. Schematic of the mean flow field of a supersonic base flow; dotted line denotes the
sonic line.

In an extensive review on different classes of instabilities for spatially growing
flows, Huerre & Monkewitz (1990) introduced the concept of global instability in
the context of slow variations of the basic flow in the streamwise direction. Another
approach for solving the stability equations where the basic state features a weak
dependence of the streamwise coordinate was accomplished by the derivation of the
parabolized stability equations (Herbert 1997). If, however, the basic state is truly non-
parallel, another approach is required. A multidimensional eigenvalue problem can be
solved with the underlying basic state being a fully two-dimensional steady or time-
periodic non-parallel flow, as presented in Theofilis (2003). The numerical integration
of the LNS equations appears to be an efficient alternative for conducting linear
stability investigations of a strongly non-parallel, steady or time-periodic basic state.
Therefore, an LNS code in cylindrical coordinates was developed for linear stability
investigations using a two-dimensional basic state. In particular, by conducting spatial
and temporal simulations in a complementary fashion, instabilities could be identified
as local or global modes. Using the temporal approach, it can be determined whether
disturbances are locally unstable in the absence of the global effects mentioned above.

Once the nonlinear behaviour becomes of interest, which is the case when
investigating disturbances with nonlinear amplitudes (such as coherent structures),
the full Navier–Stokes equations must be solved, i.e. DNSs must be conducted.
Thus, a high-order accurate compressible Navier–Stokes (N-S) solver in cylindrical
coordinates was developed. As mentioned above, the flow contains a large variety of
difficulties such as the combination of shock waves, thin free shear layers, boundary
layers, and recirculating regions that have to be captured correctly in a numerical
simulation. In addition, high-Reynolds-number flows exhibit a very broad spectrum
of time and length scales that, in the case of DNSs, must be fully resolved by the
computational grid. For that reason, fully resolved DNSs of wakes at Reynolds
numbers of the order of O(106), as investigated in experiments by Dutton and co-
workers, are out of reach, even with present supercomputers, and probably will be
for a considerable time. Therefore, transitional supersonic base flows were chosen
for stability investigations using DNS. Although at the lower Reynolds numbers
investigated here, the flow is not fully turbulent, it was shown that many of the
qualitative features found in the experiments by Dutton and co-workers can be
captured (see, e.g. Fasel, Von Terzi & Sandberg 2006; Sandberg & Fasel 2004, 2006).
Moreover, transitional flows facilitate the investigation of the initial development of
the large-scale structures because the breakdown to small-scale turbulence either does
not fully occur, or takes place on a relatively slow time scale, leading to a well-defined
separation of scales.
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The objective of this work is to contribute towards the understanding of the
origin and the dynamics of coherent structures in supersonic axisymmetric wakes
behind bluff bodies. The premise for this study is the underlying assumption that
flow instabilities lead to the formation of coherent structures and determine their
evolution. In § § 2 and 3, the governing equations and the numerical methods of the
numerical codes are presented, respectively. Section 4 first presents the results obtained
from linear stability investigations, subdivided into results from spatial and temporal
simulations. Then DNS results are discussed with an emphasis on coherent structures
followed by mean flow data. All results are summarized in § 5 and numerical details
are given in the Appendix.

2. Governing equations
2.1. Navier–Stokes equations

The physical problem under consideration is governed by the full compressible Navier–
Stokes equations, consisting of conservation of mass, momentum and total energy.
The flow is assumed to be an ideal gas with constant specific heat coefficients. For
simplicity, all equations in this section are presented in tensor notation. For the full
set of governing equations in cylindrical coordinates, see Appendix A.

All dimensional quantities, denoted by an asterisk, are made dimensionless using
the flow quantities at a reference location in the flow; here the free-stream/inflow
location is used. The radius of the body was chosen as the reference length. The non-
dimensionalization results in the following dimensionless parameters Re= ρ∗

∞u∗
∞r∗/µ∗

∞,
M = u∗

∞/a∗
∞, Pr= µ∗

∞c∗
p/κ∗

∞ and Ec = u∗2
∞ /c∗

pT ∗
∞. The non-dimensional continuity,

momentum and the energy equations are:

∂ρ

∂t
+

∂

∂xk

(ρuk) = 0, (2.1)

∂

∂t
(ρui) +

∂

∂xk

(ρuiuk + pδik − τik) = 0, (2.2)

∂

∂t
(ρE) +

∂

∂xk

(ρukH + qk − uiτik) = 0, (2.3)

with the total enthalpy H =E + p/ρ where the total energy is defined as E = cvT +
(1/2)uiui . The molecular-stress tensor and the heat-flux vector are computed as

τik =
µ

Re

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂uj

∂xj

δik

)
, qk = − µ

PrEcRe

∂T

∂xk

, (2.4)

respectively, where the Prandtl number is assumed to be constant at Pr =0.70 and
the Eckert number is Ec =(γ − 1)M2 with γ = 1.4. The pressure is obtained from
the equation of state p = ρT/γM2. To close the system of equations, the molecular
viscosity µ and the thermal conductivity are computed according to Sutherland’s law
(cf. White 1991)

µ (T ) = κ (T ) = T 3/2

(
1 + RSu

T + RSu

)
with RSu =

110.6K

T ∗
∞

. (2.5)

2.2. Temporal Navier–Stokes simulations

For temporal simulations, the full Navier–Stokes equations are solved. However, with
the radial velocity component of the basic state set to zero and the lack of streamwise
gradients of the basic state, the governing equations of the streamwise and azimuthal
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mean flow reduce to a pure diffusion equation. A forcing term must be added to
the right-hand side of the governing equations in order to avoid a significant change
of the basic state over time. For a detailed discussion of applying forcing terms in
order to maintain the basic state, see e.g. Laurien & Kleiser (1989). In addition, the
assumption of a parallel basic state leads to different inflow and outflow boundary
conditions as discussed in § 3.

2.3. Linearized Navier–Stokes equations

The full compressible Navier–Stokes equations in cylindrical coordinates are used
as the basis for obtaining the linearized Navier–Stokes equations. All variables are
decomposed into a steady two-dimensional basic-state component and disturbance
quantities φ = φ̆ + φ́. Terms that contain only basic-state variables can be subtracted
because they satisfy the Navier–Stokes equations for the basic state. All products
containing more than one disturbance variable are neglected as they are considered
small compared to products of disturbance variables and basic state variables. Because
only two-dimensional basic states will be considered for the present work (w̆ =0), all
azimuthal derivatives of basic-state terms vanish. The set of equations that must be
solved is derived in detail in Appendix B.

3. Numerical method
The governing equations are solved numerically at discrete points. High com-

monality between the spatial codes and the temporal code was desired in order to
allow attributing discrepancies in the solution to physical differences and not to
numerical issues. The linearized code is based on the full Navier–Stokes code. The
same numerical method was used, keeping close to all subroutines unchanged. Only
the transport equations were substituted with the linearized equations.

3.1. Temporal and spatial discretization

All codes developed share the same explicit time advancement, employing a standard
four-stage Runge–Kutta scheme. A further commonality of all codes is the use
of sixth-order accurate split compact finite differences in the radial direction. As
described in Sandberg (2004), compact finite-difference stencils are derived that are
valid on a non-equidistant grid in contrast to mapping the computational domain
to a uniform grid. This method was chosen because it was shown to lead to a
lower truncation error (see Meitz & Fasel 2000). For the spatial calculations, fourth-
order accurate standard split differences are used to facilitate a streamwise domain-
decomposition. The fourth-order accurate standard split differences are also derived
for non-equidistant grids. For temporal simulations, the parallel flow assumption
allows for a pseudospectral approach in the streamwise direction, i.e. azimuthal
derivatives are taken and the governing equations are advanced in Fourier space;
however, nonlinear terms are computed in physical space. Grid stretching for the
radial and the streamwise directions was employed to enable clustering of points in
regions of high gradients, e.g. in the approach flow boundary layer, the shear layer, and
the corner of the after-body. For the current investigation, the grids were generated
using polynomial functions. Chung & Tucker (2003) showed that the accuracy of
high-order finite-difference schemes suffers significantly once the grid is very strongly
stretched. Therefore, in the radial direction the grid was designed to be equidistant
behind the base (0 � r � 1) to achieve the highest possible accuracy. By the same
token, a large number of grid-points was used in the streamwise direction to enforce
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Figure 2. (a) Computational domain and (b) typical streamwise/radial grid for spatial
calculations; for clarity, only every fourth grid point is shown in the streamwise and the
radial directions in the grid picture.

very benign grid stretching with ratios of �zmax/�zmin � 20. A typical distribution of
grid points is shown in figure 2.

The axisymmetric wake is a natural application for the use of a spectral
discretization in the azimuthal direction owing to the periodicity of the physical
problem. For a plane geometry, on the other hand, domain-width studies must be
conducted to determine which spanwise wavelengths are most amplified because,
using Fourier transforms, only integer multiples of the fundamental wavenumber can
be captured. For example, when using a domain width of Lz = 3, not only waves with
wavelengths larger than λz > 3 are omitted, but also a disturbance with a wavelength
of λz = 2 would be excluded. In the cylindrical coordinate system, theses studies are
not necessary because the geometry requires the wavelength of the disturbance wave
to be an integer fraction of the fundamental wave (λθ = 2π). Thus, the full DNS code
and the temporal code employ a pseudospectral approach in the azimuthal direction.
Owing to the use of symmetric Fourier transforms, the magnitudes and distributions
of azimuthal Fourier modes k and −k will be identical. Therefore, throughout the
remainder of this paper, we will not distinguish between positive and negative modes.
Note that for simplicity, the technically correct notation of k = ±1, ±2, . . . is replaced
by k = 1, 2, . . . . For the linearized code, in the absence of nonlinear terms, a genuine
spectral approach can be chosen, advancing the linearized equations entirely in Fourier
space. Further details on the spatial and temporal discretization, in particular on the
benefits of employing splitting for the finite-difference stencils, are given in Sandberg
(2004).

3.2. Boundary and initial conditions

The computational domain for a spatial calculation is shown in figure 2. Only the
last part of the approach flow is computed (region 1). For the DNS code, the
boundary conditions were as follows. At the inflow boundary, the axial and azimuthal
velocity and the temperature were set to a constant value. The pressure was fixed
in the supersonic region and a Neumann condition was used in the subsonic part
of the approach boundary layer. The outflow boundary was computed via one-
sided stencils, setting the second derivative to zero. The free-stream boundary was
represented by Neumann conditions on all variables. Alternatively, a decay condition
was implemented requiring the specification of an appropriate wavenumber. At the
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λz

Figure 3. Computational domain for temporal calculations.

walls, no-slip and no-penetration were enforced for all velocity components. The
pressure at the wall was computed from the applicable momentum equation, i.e. the
radial momentum at the approach flow wall, and the axial momentum for the base
wall. An adiabatic wall was enforced by computing temperature through a high-
order accurate extrapolation. For all boundaries mentioned above, the density was
computed through the equation of state for a perfect gas. For axisymmetric wake
calculations, a compressible similarity solution was interpolated onto the grid used
in the approach boundary-layer region and extended downstream of the base in the
region 1 � r � rmax . Behind the base (0 � r < 1), all variables were set to the value of
the corner-point. For three-dimensional calculations, a converged axisymmetric flow
field was used as initial condition for the zeroth Fourier mode and the higher modes
were set to zero.

In LNS calculations, only the disturbance quantities are solved for, requiring
several modifications to the boundary conditions. At walls, in addition to setting
the fluctuations of the velocity components to zero, temperature fluctuations were
also prohibited, even when an adiabatic boundary condition was used for the basic
state. Further, all fluctuations were set to zero at the inflow. All other boundary
conditions were treated as in the full N-S code. The initial condition for the linearized
calculations always consisted of a two-dimensional basic state that was a converged
axisymmetric solution from the full Navier–Stokes code.

For temporal simulations, the streamwise extent of the domain is small to justify the
assumption of locally parallel flow. The measure for the domain length thereby is the
wavelength of the fundamental instability wave. Hence, periodic boundary conditions
can be employed for the inflow and outflow boundaries. All other boundaries were
treated as in the spatial DNS. Figure 3 shows the computational domain for temporal
wake calculations. The radial profiles of the conservative variables at a specific location
were specified as initial conditions for all temporal simulations and constituted the
basic state, i.e. the mode (l, k) = (0, 0), where l denotes the streamwise Fourier mode.
The radial velocity component was set to zero in order to be consistent with the
temporal assumption of parallel flow.

3.3. Axis treatment

Owing to a pseudospectral approach in the azimuthal direction, the flow field is
represented in Fourier modes. A state-of-the-art axis treatment is implemented,
exploiting parity conditions. Even parity implies that the even azimuthal modes
of a variable have an even symmetry and, conversely, the odd modes have an odd
symmetry at the axis. On the other hand, for odd parity, the even azimuthal modes
of the variable have an odd symmetry and the odd modes have an even symmetry at
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Variable/equation 1
2

1
4

1
6

1
8

1
16

ρ, ρu, ρE/r-momentum, Even/odd Even/even Even/odd Even/even Even/even
θ -momentum

ρv, ρw/continuity, Odd/even Odd/odd Odd/even Odd/odd Odd/odd
z-momentum, energy

Table 1. Symmetries of computational azimuthal Fourier modes (even modes/odd modes) at
the axis for all variables and equations for different azimuthal domain-sizes.

Variable Mode kN
1
2

1
4

1
6

1
8

1
16

ρ, ρu, ρE 0 Non-zero Non-zero Non-zero Non-zero Non-zero
1 Zero Zero Zero Zero Zero

> 1 Zero Zero Zero Zero Zero

ρv, ρw 0 Zero Zero Zero Zero Zero
1 Non-zero Zero Zero Zero Zero

> 1 Zero Zero Zero Zero Zero

Table 2. Boundary conditions of computational azimuthal Fourier modes at the axis for all
variables for different circumferential domain-sizes.

the axis. A rigorous derivation of the parity can be found in Lewis & Bellan (1990).
The resulting boundary conditions at the axis are as follows. The zeroth azimuthal
mode of all quantities evolves according to the governing equations, except for the
radial and the azimuthal velocity components, which are set to zero. The first mode
of the radial and azimuthal velocity components are permitted to be non-zero at the
axis; however, all other higher modes are set to zero at the axis.

A modification of this axis treatment was implemented to allow for calculations
of domain sizes with an azimuthal extent of less than π. In the case of a quarter-
cylinder, the numerical modes kN = 1, 2, 3, . . . , kmax correspond to the physical modes
k = 2, 4, 6, . . . , kmax in the half-cylinder case, hence all higher modes have to be set
to zero at the axis. Also, for the quarter-cylinder case, the parity conditions have to
be changed, because all corresponding physical modes are even. For the option of
computing 1/8 or 1/16 of a cylinder, only the azimuthal modes k = 4, 8, 12, . . . , kmax

or k = 8, 16, 24, . . . , kmax are computed, respectively. They require the same axis
treatment as in the quarter-cylinder case.

An investigation of 1/6 of a cylinder contains only the physical modes
k = 3, 6, 9, . . . , kmax and therefore, as above, all higher modes are set to zero for
this case. However, as opposed to the quarter-, 1/8- or 1/16-cylinder cases, the odd
numerical azimuthal modes correspond to odd physical modes (e.g. kN = 1 → k = 3)
and the even numerical azimuthal modes correspond to even physical modes (e.g.
kN = 2 → k = 6). Hence, the same parity conditions as in the half-cylinder case can be
used. A compilation of all symmetry and boundary conditions at the axis is given in
tables 1 and 2.

4. Results
4.1. Linear stability simulations

Linear stability calculations of supersonic axisymmetric wakes were carried out at
Reynolds numbers between 5000 and 200 000. For all cases, the Mach number was
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Figure 4. Centreline streamwise velocity obtained from axisymmetric N-S calculations for
different Reynolds numbers; δc = 0.1, M = 2.46.

chosen to be M = 2.46 to match the flow parameters of experiments by Bourdon &
Dutton (1999) and kept constant to show whether certain trends could be established
as a function of Reynolds number only. Both spatial and temporal stability calcula-
tions were conducted in order to determine whether local and/or global instabilities
are present in the flow. To investigate whether the flows are absolutely unstable with
respect to azimuthal/helical perturbations, initial pulse disturbances were introduced
within the recirculation region. The amplitudes of the Fourier modes at the disturbance
location were monitored over time to determine whether the disturbances grow or
decay. For cases where the pulse response decayed in time, periodic forcing was
applied to the shear layer and the spatial growth or decay of the perturbations was
observed to identify whether the flow is subject to convective instabilities.

4.1.1. Basic state

In order to obtain a basic state for the linear stability calculations, axisymmetric
calculations were conducted with the full N-S code for Reynolds numbers up to
ReD = 200 000. The converged axisymmetric flow fields served as the basic state for
the three-dimensional spatial and temporal stability calculations. The boundary-
layer thickness at separation, δc, has a pronounced effect on the global flow-
field, even for axisymmetric calculations. To match the approach boundary-layer
thickness measured in experiments by Bourdon & Dutton (1999), the approach
boundary layer was designed such that δc =0.1 for all cases. For all calculations with
ReD < 100 000, the computational domain was discretized using 780 × 130 points in
the streamwise direction and the radial direction, respectively. For larger Reynolds
numbers, 1280 × 160 points were used. For all cases, the distance from the base to the
outflow boundary and from the axis to the free-stream boundary was zout − zin = 16
and rmax =6, respectively. The finest grid-spacing was enforced at the base-corner,
where �zc =�rc =0.008 and the computational time step was dt = 2.4 × 10−3. Several
calculations were repeated on different computational grids to verify that the grid-
resolution was sufficient. The axisymmetric calculations converged to a steady-state
solution for all Reynolds numbers ReD � 100 000, implying that no absolute instability
with respect to axisymmetric disturbances is present. However, for ReD > 100 000, the
flow became unsteady, suggesting that the flow may be absolutely unstable with
respect to the axisymmetric mode.

The streamwise velocity component at the axis obtained from the axisymmetric
N-S calculations is shown in figure 4. Similar to incompressible results obtained
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by Schwarz et al. (1994), the maximum reverse velocity is fairly constant for all
Reynolds numbers investigated when keeping the approach boundary-layer thickness
constant. However, the recirculation length varies considerably and increases for larger
Reynolds numbers. The streamwise axis-velocity at the outflow boundary is supersonic
for ReD < 20 000. For larger Reynolds number, the flow becomes marginally subsonic
close to the axis. Because the cases at ReD > 100 000 became unsteady, an averaged
solution is shown.

4.1.2. Spatial results

The same computational grids were used for the linear stability simulations as
for converging the basic state with the DNS code. Initial pulse disturbances were
introduced using the following procedure: higher Fourier modes (k > 0) initialized to
zero were added to the basic state (k = 0). Within the recirculation region, a top-hat
function with an extent of six grid points in the streamwise and the radial directions
was specified in all Fourier modes of density with a small amplitude (typically of
order 10−4). This distribution served as initial condition and, thus, constituted a
pulse disturbance in both space and time. For all Reynolds numbers investigated,
nine Fourier modes were used. In contrast to temporal calculations employing a
Fourier decomposition in the streamwise direction, for each azimuthal mode the most
amplified streamwise wavelengths are included in the calculations and cannot be
excluded by an unfortunate choice of the streamwise domain length. Note that in the
spatial case, the temporal behaviour of each azimuthal mode can be a superposition
of multiple unstable streamwise wavelengths. The temporal development of the
azimuthal Fourier modes of the streamwise velocity component was monitored at
the disturbance point (here z = 2.5 and r = 0.5, which is representative of various
pulse locations within the recirculation region) and is shown in figure 5 for several
Reynolds numbers.

At ReD = 5000, all azimuthal modes decay rapidly, implying that, at this Reynolds
number, the supersonic flow is linearly stable with respect to axisymmetric and helical
modes. This illustrates the strong damping effect of compressibility, considering that
incompressible wakes are subject to absolute instabilities with respect to helical modes
at lower Reynolds numbers (see, e.g. Monkewitz 1988; Hannemann & Oertel 1989;
Schwarz et al. 1994). Even though k =0 and k = 1 are the least damped modes at
ReD = 5000, when increasing the Reynolds number to 10 000, these two modes still
are not amplified, but the azimuthal Fourier modes k = 2 and k = 3 become amplified.
It should be noted that mode k =2 grows monotonically, while mode k =3 and
several higher modes exhibit an oscillatory behaviour in time with a regular period of
F ≈ 12. The absolute values of the data are shown in order to display the results on a
logarithmic scale; therefore, sign changes appear as local minima. Further increasing
the Reynolds number to ReD = 30 000, the first azimuthal mode also becomes unstable
and modes k =1−4 all exhibit monotone growth with modes k = 3 and k = 4 featuring
the largest growth rates. At this point, it would be of interest to solve the multi-
dimensional eigenvalue problem for the basic states under consideration according
to Theofilis (2003). This could determine whether the modes exhibiting monotonous
growth possess a purely imaginary complex frequency, i.e. are non-oscillatory.

The main difference that can be observed for both the ReD = 60 000 and
ReD = 100 000 cases (besides the increased amplification rates) is that modes k =7
and k =8 possess growth rates exceeding those of most other modes, except for k =3
and k = 4. Only when increasing the Reynolds number to 200 000, can a qualitative
change be noticed. For this case, mode k = 1 is the most amplified Fourier mode and
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Figure 5. Temporal development of azimuthal Fourier modes of the streamwise velocity
component obtained from LNS calculations for various Reynolds numbers; pulse location
z = 2.5, r = 0.5; M =2.46. (a) ReD = 5000; (b) 10 000; (c) 30 000; (d) 60 000; (e) 100 000;
(f ) 200 000.

the axisymmetric mode exhibits a larger growth rate than all remaining modes. This
confirms the suspicion, that, at this Reynolds number, an absolute instability of the
axisymmetric mode could be present for the high-Reynolds-number conditions of the
experiments by Dutton and co-workers.

To exclude the possibility that reflections from the domain boundaries introduced
non-physical perturbations in the region of interest and continuously excited
convective instabilities, the calculation for ReD =30 000 was repeated with a
significantly larger domain size. The outflow boundary was chosen such that the
flow was supersonic at each radial point to eliminate upstream-travelling reflections
from the outflow boundary. The inflow of the computational domain was also moved
to 2 radii upstream of the base. Furthermore, no perturbations from the free stream
were anticipated for the radial domain size chosen. The Mach angle at M = 2.46 is
∼ 24◦, therefore, for a domain height of r = 6, the expansion wave emanating from
the base corner reaches the free stream at approximately z = 11. Hence, reflections
from the free-stream boundary will not interfere with the wake until well downstream
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Figure 6. Two-dimensional mode shape of Fourier mode k =3 of the streamwise velocity
component for different pulse locations obtained from LNS calculations; (a–d) ReD = 30 000,
(e, f ) ReD =100 000, M = 2.46.

of the potentially absolutely unstable region. The calculation with a different domain
size showed no significant difference from the original computation, giving confidence
in the results discussed above.

All LNS simulations were repeated inserting the initial pulse at different locations in
order to investigate whether the resulting amplitude distribution is dependent on the
initial condition. For all cases, once an initial transient is overcome, a two-dimensional
amplitude distribution forms that remains unchanged in shape for increasing time.
Representative of most cases, the mode shape of the third azimuthal Fourier mode
of the streamwise velocity component is illustrated for various forcing locations at
two instances each in figures 6(a) to 6(f ). Comparing figure 6(c, d) with figure 6(a, b)
shows no difference in the mode shape in spite of the disparate initial pulse locations.
When inserting the initial disturbance at z = 1.0 and r = 1.0, i.e. into the shear layer,
the same mode-shape is obtained, but with an opposite sign. The two instances shown
for different forcing locations verify that even though the amplitude increases by
an order of magnitude, the shape of the mode does not change. All simulations
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produced a local maximum close to the base. Scrutinizing the amplitude distribution
at ReD = 100 000, shown in figure 6 (g, h), a fairly similar mode shape can be observed
as for the lower Reynolds numbers with an additional local maximum close to the axis
at z ≈ 2.0. Again, for two sequential instances, the amplitude of the mode grows while
the two-dimensional mode shape is maintained. It is also noteworthy that a similar
two-dimensional mode shape was obtained from calculations at Reynolds numbers
that were below the threshold of an absolute instability with respect to azimuthal
modes. The presence of a two-dimensional mode arising independent of the pulse
locations is an indication of the presence of a global mode. In order to verify that this
might be the case, temporal calculations were conducted, which, owing to the parallel
assumption of the basic state, inherently exclude the presence of global modes. The
temporal results are presented in § 4.1.3.

Radial profiles of azimuthal Fourier modes for the most energetic (streamwise)
velocity component, obtained from LNS calculations, are shown in figure 7 in order to
establish the effect of Reynolds number on the amplitude distributions. A streamwise
location within the recirculation region, z = 2.5, was selected. For all data sets, the
azimuthal modes were scaled with the global maximum of the first azimuthal Fourier
mode. The amplitudes among separate Fourier modes were not considered crucial, as
all modes are decoupled in the linearized calculations and, therefore, do not interact
with each other.

For all Reynolds numbers investigated, the radial profiles of the axisymmetric
mode k = 0 possess their maximum in the vicinity of the shear layer. In contrast,
for Reynolds numbers up to ReD =100 000, the amplitude distribution of the first
azimuthal mode exhibits a global maximum at r ≈ 0.2. For ReD � 200 000, however,
the radial profiles exhibit an entirely different behaviour, with the global maximum
of the first mode located in the shear layer. The above observations lead to the
conclusion, that, in spite of being damped up to ReD = 10 000 and amplified for
ReD � 20 000, the shape of the first azimuthal mode is fairly independent of Reynolds
numbers up to ReD = 100 000 at M =2.46.

For azimuthal modes with k > 1, a similar behaviour can be observed as for
the first mode, i.e. for lower Reynolds numbers, the global maxima are located
within the recirculation region and for increasing Reynolds numbers, an additional
local maximum develops in the shear layer, becoming the absolute maxima for
ReD � 200 000. As opposed to the first azimuthal mode, for higher modes the presence
of a local maximum in the shear-layer region occurs for considerably smaller Reynolds
numbers, starting at ReD = 10 000.

This behaviour leads to the suggestion that two distinct instability mechanisms for
the higher azimuthal modes might be present in the flow: A global mode within the
recirculation region, and a convective shear-layer mode. The fact that the convective
shear-layer mode becomes visible in the radial profiles only for higher Reynolds
numbers is expected. The convective shear-layer mode is subject to strong damping
in high-compressibility environments. A measure for the compressibility of the flow
is the convective Mach number Mc, introduced by Bogdanoff (1983). When using the
isentropic definition of Mc, the largest convective Mach number is reached at the
streamwise location where the maximum reverse velocity can be found, i.e. in the
initial shear layer. In fact, because of the rapid expansion at the base, the free-stream
velocity also possesses its largest value at the same streamwise location. Therefore,
large Reynolds numbers are required in order to enable the convective shear-layer
instability to be amplified. Several azimuthal modes with k > 1 display a strong
contribution of the convective shear-layer mode at lower Reynolds numbers. This
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can be attributed to the fact that oblique disturbances have larger amplification rates
under high-compressibility conditions.

The location z = 2.5 was selected for the above discussion because it is representative
of a large part of the recirculation region. In light of the position of the local maxima
of the two-dimensional mode shapes presented in figure 6, radial mode shapes were
also scrutinized at the streamwise location z =0.5. In contrast to the location z =2.5,
the global mode appeared to be dominant for all Reynolds numbers with merely a
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small contribution of the convective shear-layer mode visible in the data. The radial
profiles of the azimuthal modes at a streamwise location downstream of the recom-
pression region were also investigated. All mode shapes exhibited only one maximum,
contracted to a smaller radial extent owing to the lesser circumference of the wake
at the location further downstream. In the absence of a recirculation region, only the
convective shear-layer mode was present at the location within the trailing wake.

From the spatial LNS simulations, circumstantial evidence was found for an
absolute instability with respect to higher azimuthal modes, k > 0, at M =2.46 for
ReD > 5000. For ReD > 100 000, the flow appears to be absolutely unstable with respect
to the axisymmetric mode, k =0. For the Reynolds number range 10 000 � ReD �
100 000, the linearly most amplified modes are k = 2, 3, 4. It is suggested that, for
higher azimuthal modes, a global mode and a convective shear-layer mode co-exist.
For increasing Reynolds numbers, the shear-layer mode gains in importance.

4.1.3. Temporal results

In order to determine whether the flow is locally or globally unstable with
respect to axisymmetric or azimuthal/helical modes, stability investigations at various
streamwise positions were conducted with the temporal code. Three positions were
assumed to yield characteristic results. (i) A location fairly close to the base, at z = 0.5.
Here, the highest reverse velocity is reached for all Reynolds numbers investigated
(see figure 4) and the shear layer features a large radial gradient just downstream
of separation. In the spatial calculations, the maximum of the global mode was
found at this position. (ii) A position farther downstream, at z = 2.5, was chosen,
where the shear layer has grown and the radial gradient is reduced. This location
is representative of a large area within the recirculation region. (iii) A location
downstream of the reattachment point, at z =7 or z = 9, was selected. No reverse
flow is present within the trailing wake; however, a significant velocity deficit occurs.
The same numerical grid in the radial direction was used in the temporal case as
for the spatial calculations. The azimuthal extent of the domain was 0 � θ � π for all
cases. However, which streamwise length of the domain to choose was not obvious.
Therefore, several calculations were conducted with a fairly long streamwise extent
(λz = 4π) and a large number of streamwise Fourier modes (l =32). The calculations
revealed that no modes with l � 2 or l � 12 were strongly amplified. Thus, all stability
computations were done with 8 streamwise modes for a domain length of λz = 2π.
An initial pulse was introduced at the inflection point of the respective profile and
the development of the streamwise and azimuthal Fourier modes was monitored at
the forcing location.

Results for Reynolds numbers 5000, 30 000 and 100 000 are shown in figure 8.
For clarity, only the most amplified Fourier modes are shown. Recall that the mode
numbers are given in the format (l, k), where l denotes the streamwise mode number
and k denotes the azimuthal wavenumber. Each azimuthal mode is assigned one
symbol and the streamwise modes are distinguished through separate line styles. In
general, it can be observed that the growth rates of the most amplified modes increase
drastically with increasing Reynolds numbers. Also, the closer the location of the
profile under investigation is to the base, the higher the growth rates appear to be
and the more modes experience strong amplification. The graphs also reveal that the
most unstable modes are always helical (oblique) modes, i.e. k, l �= 0. In fact, unstable
axisymmetric modes (k = 0) are only found for the two upstream locations, and no
unstable streamwise modes (l =0) were found at all in the linear regime.
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For the lowest Reynolds number investigated (5000), at z = 0.5, modes with
k = 2, 3, 4 are most amplified with the streamwise mode numbers being l � 3. Further
downstream, at z = 2.5, where the reverse velocity is reduced and the radial shear-
layer gradient is diminished, only the first two azimuthal modes are amplified for long
streamwise wavelengths. Within the trailing wake, the local analysis shows that only
the first azimuthal mode is unstable for l = 1, 2. Increasing the Reynolds number, a
trend, that larger azimuthal mode numbers also become strongly amplified, can be
established. However, a significant difference can be observed when comparing the
three streamwise locations. For the location within the trailing wake, the streamwise
mode number of the most unstable modes does not increase considerably, i.e. l = 2, 3
for all k. In contrast, at z = 0.5, the streamwise wavenumber of the most amplified
Fourier modes increases steadily with Reynolds number such that, at ReD = 100 000,
modes with l � 4 are most amplified for all k. The location at z =2.5 shows a
similar behaviour, however, the shift towards higher streamwise wavenumbers is not
as pronounced. In order to assert that no streamwise modes higher than l = 8 were
significant, the calculations at z = 0.5 for the higher Reynolds numbers were repeated
with a streamwise domain length eight times smaller, i.e. λz =0.25π. For these cases,
l =1 corresponds to l = 8 in the calculations with the longer domain length. The
additional calculations revealed that no modes with l > 8 (in the original case) were
strongly amplified for the Reynolds numbers investigated.

In contrast to the temporal case, in the spatial calculations, the flow showed no signs
of being unstable with regard to higher azimuthal modes at ReD = 5000. Owing to
the periodic boundary conditions in the streamwise direction, the temporal approach
converts every physical problem to a closed system, i.e. disturbances cannot leave the
system. If the flow is convectively unstable, the disturbance will, therefore, grow in
time, which in the spatial case would be defined as an absolute instability. In order
to verify that the instabilities detected for ReD = 5000 in the temporal code are of a
convective nature, i.e. require continuous excitation in order to remain in the region
of interest, an additional spatial calculation was conducted. Here, a time-periodic
volume forcing was introduced in the shear layer immediately after separation (centre
of disturbance at r = 1.05, z = 0.04). The periodic forcing at a frequency of ω = 0.5,
which appeared to be the most amplified one in the temporal calculations, was active
for the time-interval 0 � t � 32. The forcing was then switched off, in order to evaluate
whether the disturbances were entirely convected out of the computational domain.
The result for the third azimuthal mode of u is shown in figure 9.
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Figure 10. Radial mode-shapes of Fourier modes of the streamwise velocity component,
obtained from TDNS; (a) z = 0.5, (b) z = 2.5; (i) ReD = 30 000, (ii) ReD = 100 000; M = 2.46.

At t = 29.6, while the forcing is still active, it can be observed that the disturbances
grow in the streamwise direction up to the end of the recirculation region (the
recirculation length of the basic state is z = 4.4) and then start to decay. Thus, the
disturbances experience a spatial amplification. At t = 41.6, the forcing was switched
off and the disturbances are convected downstream. At a later time (not shown here),
no disturbances remain in the region of interest. To verify that the disturbances
contained in the recirculation region truly decay once the forcing is switched off,
the temporal development of the Fourier modes is also shown in figure 9. While
the forcing is still active, no temporal growth can be observed at the probe point.
All modes exhibit an oscillation with the forcing frequency and the amplitude being
similar to the forcing amplitude. After switching off the periodic forcing, all modes
start decaying (t ≈ 34) once the last disturbance generated at the forcing location
(r =1.05, z = 0.04) has passed the probe point (r = 0.5, z = 2.5). This behaviour is a
clear indication that, for this Reynolds number, the flow is convectively unstable (and
not absolutely unstable) with regard to the higher azimuthal modes.

For all Reynolds numbers and locations z � 2.5 investigated with the temporal code,
the radial mode shapes exhibit a maximum exclusively in the shear-layer region. As
shown in figure 10(b), virtually no variation can be observed within the recirculation
region, implying that, at this location the local analysis only captures the convective
shear-layer mode. This supports the conjecture that the inner maximum found in
the radial profiles obtained from spatial calculations might indeed be caused by
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global modes. The above results also substantiate the view that the convective shear-
layer instability is generated locally. Non-zero phase speeds found for all unstable
modes confirm that the shear-layer mode is a convective instability. However, at
the streamwise location z = 0.5, which corresponds to the maximum of the two-
dimensional mode shape shown in figure 6, a considerable variation within the
recirculation region can be observed (see figure 10a). It is suggested that this is
a consequence of the TDNS capturing a local absolute instability at this location.
This phenomenon was observed for the region 0.1 � z � 1. According to Huerre &
Monkewitz (1990), a region of local absolute instabilities is the necessary condition for
a global mode. Therefore it is suggested that the temporal results constitute further
evidence for the presence of global modes.

Radial profiles obtained from local stability calculations using profiles from the
trailing wake (not shown here) showed a similar behaviour to the spatial results.
This supports the notion that the trailing wake region contains only the convective
shear-layer mode.

Summarizing the results obtained from TDNS calculations, for all Reynolds
numbers and streamwise positions investigated, unstable helical/oblique modes
were found. For z � 1, only convectively unstable shear-layer modes were detected,
supporting the view that the shear-layer modes are generated locally. For streamwise
locations closer to the base, it appears as if the basic state becomes absolutely
unstable, satisfying the necessary condition for a global mode.

4.2. Direct numerical simulations

The results presented in the previous subsection have given valuable insight into the
linear stability characteristics of supersonic axisymmetric wakes at various Reynolds
numbers. Nevertheless, by excluding nonlinear effects, the occurrence of coherent
structures and the breakdown to turbulence is not permitted. The main objective
of this work is, however, to investigate the formation of coherent structures that
are a consequence of physical flow instabilities. To that end, DNS were employed
to investigate the near-wake region in supersonic axisymmetric wakes. It was of
particular interest to determine the significance of certain modes and their effect
on the mean flow. This was accomplished by exploiting one of the strengths of
conducting numerical simulations: deliberately simplifying the physical problem at
hand. Here, simulations were conducted for various circumferential domain sizes,
thereby intentionally eliminating different azimuthal/helical modes. Thus, the effect
of large-scale structures associated with particular azimuthal/helical modes on the
global flow behaviour could be evaluated.

For all Reynolds numbers investigated in this work, initially a DNS for a half-
cylinder (domain with 0 � θ � π, due to the use of symmetric Fourier transforms) was
conducted. The DNS for ReD =30 000 was repeated on a separate computational
grid and it was shown that the solution was independent of the grid-resolution (see
Sandberg & Fasel 2006). In addition, the turbulent dissipation rate was evaluated in
all simulations and used to calculate the Kolmogorov length in the entire integration
domain. It was found that the local grid spacing was fine enough to resolve all
relevant length scales (cf. Sandberg & Fasel 2006). Once it was verified that the
grid resolution was adequate, simulations of integration domains with an azimuthal
extent of θ < π were also conducted, deliberately suppressing various modes of the
half-cylinder case. Note that in the following, the mode numbers denoted by k refer
to the corresponding positive and negative mode numbers in the half-cylinder case,
not the computational mode of the respective calculation, i.e. mode k =2 always has
a wavelength of π, for example. The DNS calculations at M = 2.46 were conducted
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for several Reynolds numbers. The lowest Reynolds number investigated was ReD =
30 000. Here, the computational domain was discretized using 516 × 200 points in
the streamwise and the radial direction, respectively, with the smallest grid spacing
at the corner, where �zc = �rc = 0.008. In the azimuthal direction, the simulation
of the half-cylinder case was carried out with 65 symmetric spectral modes. The
number of Fourier modes for the calculations with smaller circumferential domain
sizes was chosen such that the azimuthal resolution remained constant, i.e. 33, 25, 17
and 9 modes were used for the quarter-cylinder, 1/6-cylinder, 1/8-cylinder and the
1/16-cylinder calculations, respectively.

The largest Reynolds number chosen was ReD = 100 000, as this constituted
the highest Reynolds number possible with the resources available. DNS of a
half-cylinder, a quarter-cylinder, 1/8 and 1/16 of a cylinder were conducted. All
calculations were performed on the same streamwise/radial grid with 1272 × 160
points in the streamwise and the radial directions, respectively. The smallest grid
spacing at the corner was �zc = �rc = 0.008. In the azimuthal direction, the simulation
of the half-cylinder was conducted with 129 symmetric spectral modes; for the cases
with smaller circumferential extents, 65, 33, 25 and 17 Fourier modes were used.
For all cases, the approach flow was laminar, and transition to turbulence occurred
downstream of the separation point.

The response of the higher azimuthal density modes to the initial pulse was
monitored at the disturbance location for all cases investigated. Rapid growth was
observed for all domain sizes and Reynolds numbers until a nonlinear saturation
state was attained. A discussion of the temporal development of the azimuthal Fourier
modes and a temporal Fourier analysis was presented in Sandberg & Fasel (2006). The
authors found that the flow is strongly intermittent up to ReD = 30 000, but shows
no sign of intermittency for larger Reynolds numbers. Temporal spectra revealed
peaks with low frequencies for the small-wavenumber modes in all cases, suggesting
the presence of large-scale structures. For Reynolds numbers exceeding 30 000, a
considerable amount of energy was also found in frequencies with StD � 1. It was
demonstrated that dominant peaks in the temporal spectra of the axisymmetric mode
k = 0 could be attributed to the nonlinear interaction of the most important helical
modes with themselves or k = 0. For small circumferential domain sizes, a viscous
cutoff of the high wavenumbers was shown to prevent the high azimuthal modes from
growing linearly. In addition, because the long wavelengths are eliminated in these
cases, the large wavenumbers could not be generated nonlinearly either. Consequently,
no small-scale structures were generated in these cases. In the current discussion, the
main focus will be on coherent structures generated by the flow instabilities and their
effect on the mean flow.

4.2.1. Coherent structures

In order to identify what kind of structures are generated in the flows under
investigation and how those structures evolve, a vortex-identification method was
employed. Terzi, Sandberg & Fasel (2006) performed a study of various vortex
eduction methods and concluded that the Q-criterion is an adequate choice even for
compressible flows as the desired information can be obtained from available data at
low computational cost and the method can be implemented easily. The Q-criterion
is named after the second invariant of the gradient of the velocity vector and for
compressible flows is computed as

Q = 0.5

[(
∂ui

∂xi

)2

+ WikWik − SikSik

]
,
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Figure 11. Instantaneous iso-contours of Q = 0.1 for half-cylinder case, (a) top- and sideview
(top and bottom) and (b) perspective view from inflow towards outflow; ReD =30 000,
M =2.46.
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Figure 11 shows several views of instantaneous iso-contours of Q =0.1 for the
half-cylinder case at ReD = 30 000. In figure 11(a), top- and sideviews are shown and
in figure 11(b) a perspective view, looking from the inflow towards the outflow, is
visualized with the dark-grey surface marking the base. Comparing the visualizations
of Q for the supersonic case with results obtained for subsonic wakes (see, e.g.
Hannemann & Oertel 1989; Huerre & Monkewitz 1990; Schwarz et al. 1994), the
considerable difference in Mach number appears to lead to a fundamentally different
flow behaviour. In the subsonic case, large vortex loops are shed alternately on the
upper and lower side, highlighting the dominance of the first helical mode. In contrast,
in the current supersonic case, close to the base, oblique, or helical, structures can be
seen in the initial shear layer, denoted by ‘A’. Because of the large convective Mach
number Mc in this region, the generation of oblique, or in this case, helical disturbances
can be expected. Also, the local analysis using temporal simulations showed that the
unstable local convective shear-layer modes are of a helical nature with k, l �= 0. This
implies that the helical structures in the shear layer are a consequence of the local
convective shear-layer mode. In addition, longitudinal structures are present within
the recirculation region that protrude into the trailing wake.

Farther downstream, the convective Mach number decreases (as the magnitude
of reverse velocity in the recirculation region decreases) and mainly longitudinal
structures and several vortex loops appear. The structures observed within the trailing
wake strongly resemble hairpin structures, commonly observed in boundary-layer
transition (one of them marked with ‘B’). The ‘legs’ of these structures can be seen
to extend into the recirculation region and the ‘heads’ of the hairpin vortices form
vortex loops which travel downstream and move away from the axis. Similar to the
boundary-layer transition scenario, once the ‘heads’ of the hairpin vortices are lifted,
an instantaneous layer of high shear is developed, which is highly unstable and is the
basis for further instabilities that generate high-frequency oscillations. This process
appears to be one of the mechanisms responsible for the generation of small-scale
structures that can be observed farther downstream in the trailing wake.

The helical structures appearing within the shear layer exhibit a sinusoidal modula-
tion with a fairly large wavelength, implying that azimuthal modes with a small
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(a) (b) (c)

Figure 12. Instantaneous iso-contours of Q = 0.1; perspective view from inflow towards
outflow of (a) quarter-cylinder, (b) 1/6-cylinder and (c) 1/8-cylinder cases; ReD = 30 000,
M = 2.46.

wavenumber are significant. In addition, the lateral motion (flapping) of the entire
wake in the (r, z)-plane at θ =0, π can also be observed in figure 11, particularly in
the sideview, although not as pronounced as for incompressible flows. This suggests
that the first azimuthal mode plays a considerable role.

In figure 12, perspective views of iso-contours of Q =0.1 are presented for cases with
a smaller azimuthal extent. Even though the low wavenumber modes are excluded,
qualitatively, the same flow features can be observed as for the half-cylinder case,
i.e. helical structures within the shear layer and hairpin vortices with ‘legs’ extending
from the trailing wake, into the recirculation region. However, when visualizing larger
values of Q (not shown here), considerably fewer small-scale structures are visible than
for the half-cylinder case. This is an indication that the modes with low wavenumbers
are partly responsible for the creation of small-scale structures, either directly or
through the generation of further instabilities.

For all cases shown so far, a large number of longitudinal structures was not only
seen in the trailing wake, but also within the recirculation region. An effort is now
made to unveil how these vortices are generated. One possible mechanism is proposed
here: on the basis of linear stability calculations (see § 4.1) it was suggested that
the flow is absolutely unstable with respect to global modes within the recirculation
region. Once the amplitudes of these global modes reach sufficiently large values,
chevron-like patterns are imposed onto the recirculating fluid. These patterns are
similar to those illustrated in figure 18. For a fully developed recirculation region,
most probably multiple mechanisms compete, complicating the reconstruction of the
most dominant events. For that reason, a time-sequence of the initial start-up of the
1/8-cylinder calculation is shown in figure 13 in order to isolate individual events.
Iso-contours of Q =0.4 are shown in a perspective view, looking from downstream
towards the base.

Initially, the amplitudes of the higher azimuthal modes are small and the flow is
fully axisymmetric, with an axisymmetric structure ‘A’ generated by the stagnation
point flow at the base (marked by a black surface). In the second figure of the time-
sequence, a significant azimuthal modulation of the axisymmetric structure can be
observed (‘B’). The circumferential variation occurs within the recirculation region and
not in the shear layer. Linear stability calculations at ReD =30 000 (figure 7) showed
that mode k = 4, which is the fundamental azimuthal mode for the 1/8-cylinder case,
possesses the largest amplitude at r ≈ 0.45 and was, therefore, classified as a global
mode. Consequently, it can be speculated that the global modes are responsible for the
azimuthal modulation of structure A. This sinusoidal variation in the circumferential
direction appears to be the cause for the development of longitudinal structures,
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Figure 13. Time-sequence of instantaneous iso-contours of Q = 0.4 for initial transient of
1/8-cylinder case; perspective view from the trailing wake towards the base; ReD =30 000,
M =2.46.

visible at the next time instant, t = t0 + 25.6, and marked with ‘C’. In the following
graph, it can be seen that another streamwise structure has been generated (‘D’), which
pushes C toward the shear layer through induction of radial velocity. The structure
C reaches the part of the shear layer where the streamwise velocity component is
positive and the outer part of C is convected downstream, thereby stretching the
vortex. Another structure, similar to C, is present, albeit the iso-value at this time
instant is smaller than that of C and, therefore, only the outermost part can be seen,
denoted by ‘E’. Going further in time, to t = t0 + 32, it can be observed that the outer
parts of C and E have travelled downstream and the structures have been stretched
in the streamwise direction. In the last time instant shown, several observations can
be made. The outer part of C appears to have overcome the adverse pressure gradient
in the recompression region and has travelled a considerable distance downstream.
D, on the other hand, remains fully within the recirculation region and actually
travels slowly upstream again. The structure E follows C and the next structure,
marked ‘F’, appears. Once the initial transient is overcome, the recirculation region
continuously contains several streamwise structures and, in addition, vortex loops
can be observed (see, e.g. the structures at the base seen in the perspective view of
the half-cylinder case in figure 11). These structures constantly impinge on the shear
layer and thereby introduce disturbances. Because the shear layer was shown to be
convectively unstable, the perturbations experience amplification in the streamwise
direction which most probably results in the generation of additional structures.

To support the observation that the longitudinal structures within the recirculation
region are generated when global modes reach large amplitudes, additional temporal
calculations were performed. The local stability calculations conducted with the
temporal code, presented in § 4.1.3 were continued into the nonlinear regime. The
resulting flow fields obtained from the temporal simulations at several streamwise
locations are shown in figure 14. At the location close to the base, the occurrence
of helical structures in the shear layer, as seen in the spatial calculations, is clearly
visible. When the temporal calculation is conducted using the local profile at z = 2.5,
several large vortex loops develop which are most probably a consequence of the
nonlinearly strongly amplified modes k = 4 and k =6. However, for both locations, no
streamwise structures can be observed within the recirculation region. This reinforces
the suggestion that the longitudinal structures are a consequence of additional
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(a) (b) (c)

Figure 14. Perspective views of iso-contours of Q = 0.1 from temporal calculations of
half-cylinder case, (a) z = 0.5, (b) z = 2.5 and (c) z = 9; ReD = 30 000, M = 2.46.
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Figure 15. Instantaneous iso-contours of Q = 0.1 for 1/16-cylinder case; time-sequence of
sideviews; ReD = 100 000, M = 2.46.

instabilities occurring when global modes within the recirculation region reach finite
amplitudes. Looking at the flow field obtained from a temporal simulation using
a profile from the trailing wake, large vortex loops, similar to those observed in
subsonic wakes, can be seen. These vortices are a consequence of modes k = 2 and
k = 4 reaching a nonlinear saturation level. It can be speculated that in the presence of
streamwise pressure gradients, significant stretching of these structures would occur,
which might lead to similar structures to those observed in the spatial case. Therefore,
it can be assumed that the hairpin vortices in the trailing wake might be partly
generated locally. The results obtained from the temporal simulations suggest that
the helical structures in the shear layer and the hairpin structures in the trailing wake,
observed in the spatial calculations, are a consequence of local instabilities and are
not caused by global effects. In contrast, because the longitudinal structures within the
recirculation region could not be reproduced with local calculations, it is conjectured
that these structures are most probably a consequence of a global instability.

In addition to the above described mechanism, the data extracted from simulations
conducted at ReD = 60 000 and ReD = 100 000 suggest that an additional mechanism
might be responsible for the generation of longitudinal structures within the recircula-
tion region: the structures might possibly be a consequence of centrifugal instabilities
(as introduced by Rayleigh 1916) that arise in the presence of strong instantaneous
streamline-curvature. The time-sequence for the 1/16-cylinder case at ReD =100 000 is
shown in figure 15 to support this conjecture. A pair of axisymmetric rollers, that are
composed of several smaller-scale structures, are present in the recirculation region
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at t = t0 and are denoted by ‘A’ and ‘B’. The streamwise structure (‘C’) has strong
similarity with structures observed in LES of a mixing layer by Lesieur & Metais
(1996). It is most probably formed as a consequence of a centrifugal instability, caused
by strong instantaneous streamline curvature. Furthermore, an axisymmetric structure,
denoted by ‘D’ is positioned close to the axis, roughly one radius downstream of the
base. At the next time step, the two clockwise rotating rollers are located farther
upstream, with C following their motion. In the following time instant, it can be
observed that D is deflected off the base in the radial direction towards the shear layer.
Just shy of the body corner, the flow separates off the base and the structures impinge
on the shear layer, introducing disturbances. Because the shear layer is convectively
unstable, the perturbations experience amplification in the streamwise direction which
most probably results in the generation of additional structures. The lack of azimuthal
variation of D indicates that an axisymmetric stagnation point flow impinges on the
base. This leads to a pressure peak at the axis, as shown in Sandberg & Fasel (2006).
At t = t0 + 3.2, streamwise structures (‘E’) can be observed which closely resemble
those found in figure 13 for the 1/8-cylinder case at ReD = 30 000. In the last time
instance shown, even smaller axisymmetric rollers can be observed (‘F’), which in
turn appear to generate additional streamwise structures within the recirculation
region. Thus, it appears as if at least two separate mechanisms for the generation of
longitudinal structures are present within the recirculation zone: (i) as discussed for
the ReD = 30 000 case, global modes lead to the generation of longitudinal structures
within the recirculation region; (ii) braid-like structures appear to be generated in the
presence of axisymmetric rollers and are, therefore, most probably a consequence of
a centrifugal instability.

Figure 15 also reveals a significantly larger number of small-scale structures com-
pared to the ReD = 30 000 case. This was expected because of a broader range of un-
stable modes and increased growth rates for increasing Reynolds numbers. However,
a qualitative difference was also observed at the highest Reynolds number case invest-
igated. Streamwise structures appeared within the initial shear layer. The visualization
of iso-surfaces of vorticity magnitude |Wik| =5, shown in figure 16(a) confirms the
presence of these streamwise vortices within the shear layer. The streamwise vortices
are responsible for mushroom-shaped structures that can be observed in endviews of
instantaneous local Mach number (figure 16b) at the streamwise location z =3.5.

These structures strongly resemble those visualized in experiments of a significantly
higher Reynolds number flow at a comparable streamwise position (location C
in Bourdon & Dutton 1999). Over a longer time interval, approximately 12–14
mushroom-like structures were observed instantaneously, in good agreement with
the typical number of 10–14 observed in the experiment. The streamwise structures
undergo an amalgamation in the streamwise direction which intuitively seems inevi-
table in light of the lateral convergence of the shear layer. In the developing
wake, at z = 6.5 (corresponding to location E in Bourdon & Dutton 1999), only
four structures are visible for some instances, as in the experiments. This ‘four-
lobe’ structure is a further indication that modes k = 2 and k = 4 are the dominant
modes, both in the DNS at ReD = 100 000 and experiments at ReD = 3 300 000, as will
be explained in the following section. The perspective view of vorticity magnitude
confirms that the streamwise structures do not persist throughout the recompression
region. Instead, they seem to break up, forming a considerable number of hairpin
vortices downstream of the recompression region. Because of the strong similarities
between the DNS results and the experimental data, it is conjectured that the same
instability mechanisms might be present. The resemblance of the results also suggests
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Figure 16. Instantaneous perspective view of iso-contours of vorticity magnitude |Wik | = 5 (a),
and endviews of instantaneous contours of M at (b) z = 3.5 and (c) z = 6.5 for half-cylinder
case; ReD =100 000, M = 2.46.

that the absolute instability of the flow with respect to the axisymmetric mode k =0
that was observed for ReD > 100 00 (see discussion in § 4.1.2) does not alter the wake
significantly. It is presumed that the reason for this lies in the unsteady nature of the
flow that leads to a continuous excitation of the zeroth mode which is convectively
unstable at lower Reynolds numbers.

In addition, compressibility itself also might be responsible for the generation
of vortical structures. The vorticity equation for compressible flows distinguishes
itself from the incompressible formulation through an additional term, the baroclinic
torque. The misalignment of the density gradients with the pressure gradients can lead
to vorticity generation and destruction. At the base corner, for example, the rapid
expansion produces strong density and pressure gradients. These two gradients are not
aligned with each other and, therefore, the r − z, or axisymmetric, component of the
baroclinic torque will be non-zero. As already stated above, axisymmetric disturbances
are not significantly amplified in this region owing to the compressibility of the flow.
However, once structures are present within the flow field, instantaneous density
and pressure gradients will be present that move with the structures and produce
all components of the baroclinic torque vector. Iso-contours of the magnitude of
baroclinic torque (1/ρ2 |∇ρ × ∇p| = 0.2) are shown in figure 17. For both Reynolds
numbers shown, the main contribution of vorticity production or destruction can
be found in the outer shear layer and the trailing wake, i.e. where the flow is
supersonic and the density gradients are significantly larger than in low-speed regions.
The axisymmetric distribution of the magnitude of baroclinic torque observed just
downstream of the base can be attributed to the steady rapid expansion mentioned
above, which results in a large contribution of the r − z-component. Further
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(a) (b)

Figure 17. Instantaneous iso-contours of magnitude of baroclinic torque for half-cylinder
case at (a) ReD = 30 000 and (b) ReD = 100 000; perspective view from inflow towards outflow;
iso-level 0.2; M = 2.46.

downstream, the helical nature of the instantaneous structures can be observed
with the degree of obliqueness decreasing in the downstream direction. This might be
due to the diminishing convective Mach number, leading to a stronger axisymmetric
organization of the structures. At ReD = 100 000 (figure 17b), the iso-surface of the
magnitude of baroclinic torque becomes considerably more complex, connected to
the much larger number of structures. In the trailing wake, a distribution can be
observed that suggests the presence of hairpin vortices. This led Terzi et al. (2006)
to classify baroclinic torque as a suitable vortex identification criterion. It can also
be observed that just downstream of separation, ‘patches’ with a regular azimuthal
spacing are present. These might be connected to the generation of the longitudinal
vortices visible in contours of vorticity magnitude. Upstream of the recompression
region, it seems as if mainly the axisymmetric vorticity component is produced by the
baroclinic torque mechanism, albeit experiencing a strong circumferential variation.

The visualization of coherent structures demonstrated that helical structures are
present within the initial shear layer, confirming results from linear local analysis with
the temporal code. Circumstantial evidence was presented, showing that longitudinal
structures within the recirculation region are generated as a consequence of global
modes reaching large amplitudes. Additionally, it was suggested that these structures
might be generated by centrifugal instabilities associated with axisymmetric rollers.
Endviews at ReD =100 000 were compared with data from experiments at a much
higher Reynolds number and a remarkable resemblance was found. Finally, the
baroclinic torque was identified as another important vorticity production mechanism.

4.2.2. Mean flow

To assess the impact of the large-scale structures, on the mean flow, averaged
flow quantities must be evaluated. The DNS were conducted until running averages
converged, which required approximately twelve flow-through times, i.e. t ≈ 12 ×
(zoutflow − zinflow)/U∞ for all cases. One of the figures of merit for judging which
azimuthal Fourier modes are dominant and what effect they have on the mean flow
is the visualization of endviews at different downstream locations. In order to give
an impression of what kind of wake patterns (when looking at an endview) are
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Figure 18. Schematic of wake patterns generated by various azimuthal modes.

generated by various azimuthal modes, several examples were computed analytically,
superimposing individual azimuthal Fourier modes with the axisymmetric mode.
For calculations employing symmetric Fourier transforms, scalar quantities, such as
vorticity magnitude, are represented by a cosine series. The polar representation of
the endview of the wake then becomes a function of the azimuthal mode number, k,
the mean radial extent of the shear layer, r0, chosen as unity here, and an amplitude,
A, according to r = r0+A cos (kθ). Two fundamentally different solutions can be gene-
rated depending on how the amplitude A is treated: the sign of A can be kept constant,
here the choice was a positive sign; or the sign of the constant can alternate, which
would be the case if the respective mode exhibits an oscillatory behaviour in time.
The resulting patterns are illustrated in figure 18 with the dashed line representing the
undisturbed axisymmetric state. The results for an oscillating constant A are shown
in figure 18(a–d), and the solutions obtained when keeping the sign of A constant
are shown in figure 18(e–h). The same qualitative wake pattern can be produced
with different modes. As shown in figures 18(a) and 18(e), a similar shape of wake
can be generated through either a flapping of the wake in the lateral direction,
caused by an oscillatory mode k = 1, or the presence of a steady mode k = 2. A ‘four-
lobe’ structure is possible through either an oscillating mode k = 2 or a dominant
steady fourth mode as illustrated in figures 18(b) and 18(f ). A ‘six-lobe’ pattern
would be the consequence of either an oscillating dominant mode k =3 (figure 18c)
or a steady mode k = 6 (figure 18g), and in the case where the fourth mode (oscillatory,
figure 18d) or k = 8 (steady, figure 18h) exhibit the largest amplitudes, an ‘eight-lobe’
shape could occur. Naturally, any combination of the above patterns could also be
generated if multiple azimuthal modes are significant in a particular case.

Figure 19 shows endviews of the time-averaged vorticity magnitude and the
streamwise vorticity component of three azimuthal domain-sizes for the ReD = 30 000
case. Two characteristic streamwise locations are chosen. One region of interest is
upstream of the recompression region, z = 2.5, where the flow has not yet fully
transitioned and considerable reverse flow occurs. The second region chosen is within
the far wake, z = 9, as the question arises whether the wake structure is affected by
the strong adverse pressure gradient in the recompression region and by the highly
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Figure 19. Endviews of time-averaged contours of vorticity magnitude and the streamwise
vorticity component (a) upstream (z = 2.5) and (b) downstream (z = 9) of the recompression
region for half-, quarter- and 1/6-cylinder (from top to bottom); for streamwise vorticity
component, range [−0.2; 0.2] with spacing 0.02 and negative values dashed; for vorticity
magnitude, range [0.8; 4] and [0.8; 2.5] for z = 2.5 and z = 9.0, respectively, with spacing 0.2
and values smaller than 1.5 dashed; ReD = 30 000, M = 2.46.

unsteady flow behaviour. For the quarter- and 1/6-cylinder cases, the data from the
calculations were mirrored and duplicated the respective number of times to show the
results for the entire cylinder. This allows for a more convenient comparison between
results for different domain sizes and provides a better impression of the resulting
wake patterns. The shear layer (at r ≈ 0.7) is most prominent in the visualization of
vorticity magnitude, as this quantity includes the radial derivative of the streamwise
velocity component. However, several distortions can be observed on the inside of
the shear layer, which indicate that structures might be present in the mean flow. To
assess whether these structures are of longitudinal nature, the focus is shifted to the
visualization of the mean streamwise vorticity component, which does not include
any component of the streamwise derivatives. As opposed to the vorticity magnitude,
the streamwise vorticity component also contains information about the direction of
rotation. The positive (solid lines) and negative (dashed lines) values denote clockwise
and counterclockwise rotation, respectively.

Within the shear layer, negative values of the streamwise vorticity component
are found in the mean flow for 0 � θ � 2π/3, pinched at θ ≈ π/3. Positive values
of the streamwise vorticity component are seen for 2π/3 � θ � π. In the interior of
the recirculation region, the same behaviour can be observed, except for a reversed
orientation and a more pronounced separation of the structures. The occurrence of
only one sign change and the presence of distinctive features at θ ≈ π/3 and θ ≈ 2π/3
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implies that the mean flow is mainly the result of a superposition of modes k = 2 and
k = 3.

For the other circumferential domain sizes, scrutinizing the visualizations of
streamwise vorticity shows two pairs of counter-rotating structures within the
integration domain. One pair is embedded in the shear layer, the other is present
within the recirculation region, with a reversed orientation. When looking at contours
of vorticity magnitude, it seems that for each pair of counter-rotating structures
observed in contours of the streamwise vorticity component, one peak appears in the
shear layer. This behaviour is caused by the entrainment and ejection of fluid from the
recirculation region in the presence of longitudinal structures. The quarter-cylinder
case therefore exhibits a ‘four-lobe’-structure, the 1/6-cylinder calculation a ‘six-lobe’
structure as sketched in figure 18.

Downstream of recompression (figure 19b), the mean values of vorticity magnitude
are reduced, mainly because the radial gradient of the streamwise velocity component
is significantly smaller in the trailing wake than in the shear layer. The maximum
values of the streamwise vorticity component remain roughly unchanged. This
indicates that in the mean, the longitudinal structures persist throughout the strong
pressure gradient in the recompression region. This supports the assumption that
longitudinal structures are generated within the recirculation region and eventually
travel downstream. In the half-cylinder case, a ‘four-lobe’ structure emerges, with the
largest extension at θ =0 and θ = π. This can be attributed to a ‘flapping’ motion
of the wake, which, because of the imposed symmetry, is restricted to the θ = 0 and
θ = π plane. If full Fourier transforms were employed, the flapping movement could
continuously select different planes and the average could therefore be more circular.
This explanation is substantiated by the endview of the quarter-cylinder case, where
mode k =1 is excluded and the ‘four-lobe’ structure is more prominent. The results
from the 1/6-cylinder case also suggest that streamwise structures that form within
the recirculation region persist into the developing wake, here causing a pronounced
‘six-lobe’ structure.

Endviews of time-averaged vorticity magnitude for simulations at ReD = 100 000 are
shown for z = 1 and z = 7 in figure 20. In contrast to the lower-Reynolds-number case,
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the visualization of contours of vorticity magnitude at z = 1 reveals a strong azimuthal
variation within the shear layer. This suggests that the streamwise structures reside
in the shear layer over long periods of time. At the streamwise location z =7, as for
the lower-Reynolds-number case a pronounced ‘four-lobe’ structure is visible. This
implies that the ‘four-lobed’ wake pattern found in instantaneous endviews occurs not
only on rare occasions, but is a frequently repeated process. For the smaller domain
sizes, the results correspond to data that can be deduced from radial mode shapes
(see discussion below). Thus, as the dominant modes of the respective case are the
first subharmonic of the fundamental wavelength, a ‘k-lobe’ structure is visible, with k

being the number of the dominant mode. The results resemble those presented above
for the ReD =30 000 case and are, therefore, not shown here.

From the observations made so far, no definite statement can be made about which
modes cause the patterns seen. In order to determine which mode is responsible
for the resulting wake pattern, additional data must be considered. Time-averaged
radial amplitude distributions of several azimuthal Fourier modes for the streamwise
velocity component are shown in figure 21. In contrast to the radial distributions
obtained from linear calculations, the amplitudes of the individual azimuthal modes
obtained from DNS are relevant as they determine the degree of interaction between
separate modes. Therefore, none of the modes is rescaled in the graphs to allow for
a direct evaluation of the significance of individual modes.

When comparing the results obtained from DNS of the half-cylinder calculation
at ReD =30 000 and z = 2.5 (figure 21a top) with the result presented for the linear
calculations in figure 7, the following differences can be found. The shape of the
first mode of the streamwise velocity component is significantly changed versus the
result obtained in the linear calculation, showing similarities to several higher modes
(regarding the locations of maxima, inflection points and slopes). Also, the overall
values of the first mode are of the same order as those of the other dominant modes, in
spite of a significantly smaller amplification rate determined in the linear calculations.
This alludes to the possibility that the first azimuthal mode might be governed by
nonlinear interaction of higher modes. Plots of the temporal development of the
Fourier modes (not shown here) hinted at modes k = 3 and k = 4 most probably
producing large amplitudes of k =1. The second azimuthal mode displays strongly
altered mode shapes in comparison to the linear results. In contrast, the radial
profiles of the third and fourth modes correspond very well with the data obtained
from the linear calculations. This suggests that at this streamwise location (within
the recirculation region, upstream of recompression), the azimuthal modes that were
found to exhibit linearly the largest amplification rates also dominate in the nonlinear
case. Recalling that the flow field appeared to be a result of modes k = 2 and k = 3
(see endviews in figure 19), it can be argued that mode k =3 is non-oscillatory in time
(see discussion of figure 18).

Downstream of the recompression region, however, the picture changes drastically.
When reviewing figure 21(b, top), it can be concluded that the radial distributions of all
modes deviate noticeably from the linear solution, suggesting that a strong nonlinear
interaction between all modes occurs in, or downstream of, the recompression region.
This notion is supported by the observation that most modes shown in the graphs,
except k =1, exhibit similar mode shapes. The maximum amplitude of the first mode
is exceeded by the higher azimuthal modes, in particular modes k = 2, 4, 6. Mode
k = 3 is not among the most significant modes, in spite of the largest growth rate
found in the linear case (within the recirculation region) and the highest amplitudes
at z = 2.5. The strongly decreased magnitude of the third mode seen in the amplitude
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Figure 21. Time-averaged radial mode shapes of (ρu)k obtained from DNS for half-,
quarter- and 1/6-cylinder (from top to bottom); (a) z = 2.5, (b) z = 9, ReD = 30 000, M = 2.46.

distribution at z = 9 suggests that the wake structure appears to be governed by even
modes. In fact, the ‘four-lobe’ structure observed in the endviews for this case implies
that it is caused by an oscillatory mode k = 2 and a steady mode k = 4.

Now we will discuss the mode shapes obtained from DNS of different circumferen-
tial domain sizes. At z = 2.5, when excluding all odd modes (quarter-cylinder calcula-
tion), the mode shape of k = 2 is considerably different from the half-cylinder case; in
fact, it resembles the profile of mode k = 4. The fact that the shape of k = 2 is strongly
altered in the absence of k = 1 indicates that the two modes strongly interact with each
other in the half-cylinder case. This was also concluded in Sandberg & Fasel (2006)
when discussing the temporal spectra. The change in the amplitude distribution in the
second mode, for the case where the first mode is omitted, is even more pronounced at
z = 9, especially for the streamwise component. The amplitude distributions of modes
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k = 4, 6, 8, 12 appear to remain fairly unchanged from the half-cylinder case for both
streamwise locations, with k = 4 exhibiting the largest maximum amplitude. Presum-
ably, this is because, in the absence of all odd modes, energy from k =0 is transferred
to the even modes through nonlinear interactions. In addition, mode k = 4 has the
largest (linear) growth rate of the modes included in the quarter-cylinder calculations.

For the 1/6-cylinder calculations, the most dominant mode is k = 6, in contrast to
the half-cylinder case, where, in the recirculation region, the amplitude of k = 3 was
considerably larger. For all domain sizes where mode k =6 is included, the same radial
amplitude distribution is found, implying that this wavenumber does not significantly
interact with wavenumbers that are excluded for domain sizes with θmax < π.

Overall, the most striking observation when comparing the results for the different
domain sizes with each other is that it is always the first higher harmonic of the
fundamental wavelength that is the most dominant one, i.e. in the quarter-cylinder
case the most dominant mode is k = 4, in the 1/6-cylinder case mode k =6, etc.
Furthermore, regardless of the wavenumber, the mode shape of the most dominant
mode is always the same for all domain sizes. For all domain sizes with θ < π, the
magnitude of the dominant mode is significantly larger than those in the half-cylinder
case. This can be attributed to the fact that the dominant mode obtains energy directly
from the spatial mean and does not have to ‘share’ this energy with the excluded
modes through nonlinear interaction.

The averaged radial profiles of several azimuthal Fourier modes for the streamwise
conservative velocity component at ReD = 100 000 are shown in figure 22. The
amplitude distribution of the first azimuthal mode at z = 2.5 is similar to that found in
the linear calculations (see figure 7), suggesting that k = 1 is generated autonomously.
This is in contrast to lower-Reynolds-number cases, where the shape found by
DNS was fundamentally different from that obtained in the linear calculations,
indicating that the first mode might be a subharmonic of some of the higher modes.
As opposed to the lower-Reynolds-number cases, all higher modes exhibit their
maxima at z ≈ 0.65. This also confirms the findings of the linear stability calculations:
the local convective shear-layer mode becomes increasingly dominant for larger
Reynolds numbers. Several mode shapes resemble each other and possess similar
amplitudes, with the most significant modes being k = 2, 4, 6, 8. The large amplitudes
of higher modes within the shear layer constitute further evidence for the presence of
longitudinal structures in the shear layer that were observed in the endviews.

For the downstream location (figure 22b top), several qualitative differences com-
pared to the lower Reynolds numbers can be observed. First, all modes exhibit smaller
amplitudes, in particular the low-wavenumber modes. It is suggested that an increased
energy transfer to higher modes, caused by the considerably increased level of turbu-
lence, is the reason for this observation. Secondly, the maximum amplitude of the first
azimuthal mode is close to an order of magnitude smaller than the dominant modes,
even though it was the most dominant mode at the upstream position. In addition, it
can be observed that modes k = 2 and k = 4 display the largest amplitudes in the mean.
This confirms that they might be the dominant modes, as was supposed when ob-
serving a ‘four-lobe’ wake-pattern in endviews both instantaneously (figure 16) and for
the mean flow (figure 20). The amplitude distributions obtained for all other domain
sizes at ReD =100 000 are omitted for brevity. However, they again illustrate that for
all domain sizes with θmax < π, the first higher harmonic of the fundamental wavelength
is the most dominant mode with the shape being highly similar for all cases.

For all Reynolds numbers that were investigated, k =2 and k = 4 appeared to be
the most dominant modes in the developing wake, and for all cases, a ‘four-lobe’
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Figure 22. Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained from
DNS for half-, quarter- and 1/8-cylinder (from top to bottom); (a) z = 2.5, (b) z = 7,
ReD = 100 000, M = 2.46.

wake structure was observed. Referring to the discussion of figure 18, k = 2 and k =4
are therefore oscillatory and steady modes, respectively. The occurrence of a steady
mode k = 4 contributing to the same wake pattern as an oscillatory mode k = 2 can be
explained as follows. Sandberg & Fasel (2006) showed that the dominant azimuthal
modes k showed pronounced peaks in temporal spectra which can be denoted as
temporal mode n. They further demonstrated that certain modes (n, k) interact
nonlinearly with themselves, producing either a response of the azimuthal mean with
twice the frequency, (n, k)+(n, −k) = (2 × n, 0), or a higher azimuthal mode with twice
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the frequency (n, k) + (n, k) = (2 × n, 2 × k). However, there is an additional scenario:
a dominant mode interacting with itself also can produce (n, k) − (n, −k) = (0, 2 × k).
Thus, an oscillatory mode k will most probably produce a time-steady mode 2 × k.
These results suggest that this mechanism is quite strong, as evidenced by the large
amplitudes found for the steady modes 2 × k. Furthermore, the fact that the first
higher harmonic of the fundamental wavelength is the most dominant mode in all
cases constitutes further evidence that this mechanism is highly effective.

5. Conclusion
Transitional axisymmetric wakes were investigated numerically using DNS, TDNS

and LNS calculations. Particular emphasis was placed on identifying hydrodynamic
instability mechanisms, and relating these to coherent structures that were identified
with various visualization techniques. The premise for this approach was the
assumption that flow instabilities lead to the formation of coherent structures.

Linear stability simulations were conducted of axisymmetric wakes at M = 2.46
with an approach boundary-layer thickness δc = 0.1. For larger Reynolds numbers,
an initial pulse disturbance led to temporal amplification of higher azimuthal modes
k > 0. It was concluded that the flow is absolutely unstable with respect to modes k > 0
for ReD > 5000, with k = 3 possessing the highest (linear) growth rate for Reynolds
numbers up to ReD = 100 000. In addition, for ReD > 100 000, the flow becomes
absolutely unstable with respect to the axisymmetric mode, k = 0. By comparing
spatial with temporal results, circumstantial evidence was found suggesting the
co-existence of absolutely unstable global modes within the recirculation region
and convectively unstable shear-layer modes. Mode shapes obtained from spatial
simulations illustrated that the global mode is dominant for low Reynolds numbers.
For increasing Reynolds numbers, the shear-layer mode appears to overcome the
damping effect of compressibility and gains in importance. Local stability calculations
revealed that the shear-layer modes have non-zero streamwise wavenumbers, implying
that they are of a helical nature.

DNSs were carried out for three Reynolds numbers and M =2.46. Special emphasis
was placed on identifying coherent structures and the most important modes for each
case and their effect on the mean flow. This was accomplished by conducting simu-
lations of various circumferential domain sizes, deliberately eliminating azimuthal/
helical modes. Thus, the effect of large-scale structures associated with particular
azimuthal/helical modes on the global flow behaviour could be evaluated.

The Q-criterion was employed to identify vortical structures within the flow. For all
Reynolds numbers investigated, helical structures within the initial shear-layer were
detected. All cases revealed a considerable number of longitudinal structures within
the recirculation region. It is proposed that at least two instability mechanisms are
responsible for the generation of these structures. First, it is suggested that global
modes cause a noticeable azimuthal modulation of the flow within the recirculation
region. Therefore, a chevron-like pattern is imposed onto the recirculating fluid,
leading to the formation of streamwise structures. Secondly, simulations of small
circumferential domain sizes enabled the observation of axisymmetric rollers. These
rollers result in instantaneous streamlines with strong curvature, most probably
leading to a centrifugal instability which is responsible for the formation of braid-like
longitudinal structures. Furthermore, structures within the recirculation region are
entrained by the shear layer. The vortices are strongly stretched and develop into
hairpin vortices. These hairpin vortices lead to additional instabilities responsible
for the generation of small-scale structures. Local stability calculations using TDNS
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suggest that the helical structures present in the shear layer and the longitudinal
structures in the trailing wake are a consequence of local instabilities. The baroclinic
torque was identified as another important vorticity production mechanism. The
largest contribution of vorticity production or destruction through baroclinic torque
was found in regions subject to high compressibility, i.e. the initial shear-layer and
the trailing wake.

Considerable evidence was found that the first azimuthal mode receives a significant
amount of its energy through the nonlinear interaction of higher modes, mainly
between k = 3 and k = 4. Only at ReD = 100 000 does the first azimuthal mode k =1
appear to be generated autonomously. Another qualitative difference that could
be observed at the highest Reynolds number simulated was the development of
streamwise structures within the initial shear layer. These structures reside in the
shear layer over long time periods, evidenced by their presence in time-averaged
quantities. They lead to the presence of mushroom-shaped structures in the shear
layer, observed in endviews. The mushroom-like structures are similar in shape and
number to those detected in high-Reynolds-number experiments. At a location farther
downstream, a ‘four-lobe’ wake pattern was observed, both instantaneously and in
time-averaged data, in good agreement with experimental results. This ‘four-lobe’
pattern was found for all Reynolds numbers investigated, suggesting that modes
k = 2 and k = 4 are the most important modes in the trailing wake. In this case, mode
k = 2 is oscillatory in time and through nonlinear interaction with itself produces the
time-steady mode k =4 according to (n, k) − (n, −k) = (0, 2 × k).

The results obtained from DNS at ReD = 100 000 were shown to be highly
similar to the experiments at ReD = 3 300 000. This implies that the most important
hydrodynamic instability mechanisms dominating the flow in the experiments can be
studied with DNS at the Reynolds numbers discussed here.

Work presented here was supported by the Army Research Office (ARO)
under grant number DAAD 19-02-1-0361 #1. Dr Thomas Doligalski served as
program manager. Computer time on the ERDC/HPC under Challenge project
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Appendix A. Navier–Stokes equations
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The individual components of the viscous stress-tensor and the strain-rate tensor are,
respectively,

τzz =
2µ

Re

[
Szz − 1

3
(Szz + Srr + Sθθ )

]
, τrr =

2µ

Re

[
Srr − 1

3
(Szz + Srr + Sθθ )

]
,

τθθ =
2µ

Re

[
Sθθ − 1

3
(Szz + Srr + Sθθ )

]
, τrz =

2µ

Re
Srz, τθz =

2µ

Re
Sθz, τrθ =

2µ

Re
Srθ ,

Szz =
∂u

∂z
, Srr =

∂v

∂r
, Sθθ =

1

r

∂w

∂θ
+

v

r
,

Srz =
1

2

(
∂u

∂r
+

∂v

∂z

)
, Sθz =

1

2

(
∂w

∂z
+

1

r

∂u

∂θ

)
, Srθ =

1

2

(
1

r

∂v

∂θ
+ r

∂

∂r

w

r

)
.

Appendix B. Derivation of linearized Navier–Stokes equations
The derivation of the linearized Navier–Stokes equations is demonstrated in detail

for the continuity equation. For brevity, only the final result is given for the remaining
equations. The continuity equation is

∂
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∂z
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∂r
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r

∂

∂θ
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r
(ρv) = 0. (B 1)

Decomposing all variables into a basic state (φ̆) and a disturbance variable (φ́), as
described in § 2.3, yields
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Subtracting products of basic-state variables, as they satisfy the continuity equation
for the basic state, setting w̆ = 0 and dropping all products containing more than one
disturbance variable results in
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The final form of the linearized axial momentum equation is
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(ρ́ŭ + ρ̆ú)+

∂

∂z
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where the viscous stresses were linearized as follows:
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Using only the leading-order term of a Taylor series approximation of Sutherland’s
law, the linearized disturbance viscosity becomes
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Following the procedure discussed above, the final form of the linearized radial
momentum, azimuthal momentum and energy equations are
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(ρ̆ẃ) +

∂

∂z
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+
∂

∂r
(ρ̆v̆H́ + ρ̆v́H̆ + ρ́v̆H̆ + q́r − (uτ́rz) − (vτ́rr ) − (wτ́rθ ))

+
1

r

∂

∂θ
(ρ̆ẃH̆ + q́θ − (uτ́θz) − (vτ́rθ ) − (wτ́θθ ))

+
1

r
(ρ̆v̆H́ + ρ̆v́H̆ + ρ́v̆H̆ + q́r − (uτ́rz) − (vτ́rr ) − (wτ́rθ )) = 0. (B 9)

The total energy of the basic state, the linearized total energy and the linearized
heat-flux vector are

Ĕ =
1

γEc
T̆ + 1

2
(ŭŭ + v̆v̆), É =

1

γEc
T́ + (ŭú+ v̆v́) , q́i = − 1

PrEcRe

(
κ̆

∂T́

∂xi

+ κ́
∂T̆

∂xi

)
,

(B 10)

respectively. The total enthalpy of the basic state and the linearized total enthalpy,
obtained by using a Taylor series approximation of the ratio of pressure and density
are

H̆ = Ĕ +
p̆

ρ̆
, H́ = É +

ṕ

ρ̆
− p̆ρ́

ρ̆2
. (B 11)

Finally, the linearized dissipation terms are

(uiτ́ik) = ŭi τ́ ik + úi τ̆ik with τ̆ik =
2µ̆

Re

[
S̆ik − 1

3
S̆jj δik

]
. (B 12)

In the linearized code, the variables

U =

⎛
⎜⎜⎜⎜⎝

U1

U2

U3

U4

U5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ρ́

ρ́ŭ + ρ̆ú

ρ́v̆ + ρ̆v́

ρ̆ẃ

ρ̆É + ρ́Ĕ

⎞
⎟⎟⎟⎟⎠ (B 13)

are solved for. The primitive disturbance quantities are deduced from the conservative
variables as follows

ú =
U2 − ρ́ŭ

ρ̆
, v́ =

U3 − ρ́v̆

ρ̆
, ẃ =

U4

ρ̆
, T́ = γEc

[
U5 − ρ́Ĕ

ρ̆
− (úŭ+ v́v̆)

]
. (B 14)

In order to close the system of equations, the disturbance pressure is then computed
through the linearized equation of state for a perfect gas ṕ =(ρ̆T́ + ρ́T̆ )/γM2.
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