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Abstract

Purpose – Electromagnetic design utilising finite element or similar numerical methods is
computationally expensive, thus efficient algorithms reducing the number of objective function calls to
locate the optimum are sought. The balance between exploration and exploitation may be achieved
using a reinforcement learning approach, as demonstrated previously. However, in practical design
problems, in addition to finding the global optimum efficiently, information about the robustness of
the solution may also be important. In this paper, the aim is to discuss the suitability of different
search algorithms and to present their fitness to solve the optimization problem in conjunction with
providing enough information on the robustness of the solution.

Design/methodology/approach – Two novel strategies enhanced by the surrogate model based
weighted expected improvement approach are discussed. The algorithms are tested using a
two-variable test function. The emphasis of these strategies is on accurate approximation of the shape
of the objective function to accomplish a robust design.

Findings – The two novel strategies aim to pursue the optimal value of weights for exploration
and exploitation throughout the iterative process for better prediction of the shape of the objective
function.

Originality/value – It is argued that the proposed strategies based on adaptively tuning weights
perform better in predicting the shape of the objective function. Good accuracy of predicting the shape
of the objective function is crucial for achieving a robust design.

Keywords Optimisation, Kriging, Surrogate modelling, Robust design, Electromagnetics,
Electromagnetic devices, Reinforcement learning, Optimization techniques, Electromagnetism

Paper type Research paper

1. Introduction
Design problems in electromagnetic devices are commonly solved using
time-consuming numerical techniques, such as the finite element method. In order to
relieve the heavy burden of computation in such designs, kriging has been suggested
as one of the reliable surrogate models with low computational cost and good accuracy
of predicting the shape of the objective function. In the optimisation task, the main
target is using as few “expensive” objective function calls as possible to find the
global optimum. The balance between exploration (searching the region with high
uncertainty) and exploitation (searching the highly confident space) has been
discussed before (Lebensztajn et al., 2004; Jones et al., 1998; Sobester et al., 2005;
Xiao et al., 2012). This paper puts main emphasis on improving the existing
strategies to predict the shape of the objective function as accurately as possible – in
addition to locating the global optimum – in order to assess the robustness of the
solution.

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0332-1649.htm

COMPEL: The International Journal
for Computation and Mathematics in
Electrical and Electronic Engineering
Vol. 32 No. 4, 2013
pp. 1176-1188
q Emerald Group Publishing Limited
0332-1649
DOI 10.1108/03321641311317004

COMPEL
32,4

1176



2. Kriging with different strategies
2.1 Kriging and different strategies
Kriging (Lebensztajn et al., 2004) can exploit the spatial correlation of data in order to
predict the shape of the objective function based only on limited information and
estimates the accuracy of this prediction, which is helpful in assisting the main
decision of the optimisation process in how to choose the next design vector for
evaluation. In general, an estimate of the accuracy (called the potential error) by the
kriging model is commonly used to build a range of different “utility functions” such as
the expected improvement (EI) ( Jones et al., 1998), or weighted expected improvement
(WEI) (Sobester et al., 2005). The EI function is defined as:

if sðxÞ . 0 EI ¼ ð fmin 2 ŷðxÞÞF
fmin 2 ŷðxÞ

sðxÞ

� �
þ sðxÞf
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� �
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if sðxÞ ¼ 0 EI ¼ 0 ð2Þ

where ŷðxÞ is the predicted value of objective function by the kriging model, and s(x) is
the root mean squared error in this prediction. The first term, called the Gaussian
density, favours searching promising regions, whereas the second term (Gaussian
distribution function) is related to exploration, which favours searching regions with
high uncertainty. Finding the global optimum of the objective function is one of the
significant aims for an optimization problem. In practical experiments, the exploration
term performs dramatically better in terms of finding the global optimum of the
objective function, while the exploitation often can only find the local minimum. Since
EI applies equal weights on the two terms, it may be seen as a fixed compromise
between exploration and exploitation. The WEI is derived from the EI by adding a
tuneable parameter which can adjust the weights on exploration and exploitation.

As suggested by previous tests (Xiao et al., 2012), the optimal choice of the weights
is critical in terms of the ability of the algorithm to achieve the global optimum and
doing it efficiently; unfortunately the optimal weights are normally hard to find and
require numerous tests. Therefore, two novel algorithms using reinforcement learning
(Sutton and Barto, 1998) called Adaptive Weighted Expected Improvement (AWEI)
and Surrogate Model based WEI approach with rewards (Sykulski et al., 2010)
(SMWEI) (Xiao et al., 2012) have been proposed to make the process of tuning weights
more intelligent and self-guiding.

The mean square error (MSE) from the kriging model is used to calculate the
rewards. The AWEI algorithm can tune the weights automatically based on the
comparison between the potential rewards from two different weight distributions
emphasising exploitation and exploration, respectively. After comparison, the weights
are redistributed on the two terms of (1) to encourage exploration or exploitation
depending on the results of the initial pre-test. However, AWEI only takes account of the
short-term rewards at a given iteration step, whereas SMWEI can predict the cumulative
rewards likely to occur in the long-term as a consequence of a particular choice of actions.
Furthermore, SMWEI creates a surrogate model based on potential error and kriging
prediction to use in a pre-test, rather than using the information from the time-consuming
finite element modelling software. In the pre-test, two distinct weights are used – one
favouring exploration and the other one exploitation – and iterations continue using
the surrogate model independently in parallel until overall rewards have been found.
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The optional weight with better reward of the two is then used to feed back – via the FEM
module – into the main iterative loop of the design process.

2.2 SMWEI with multi-weights in the pre-test
In practical electromagnetic problems, the robustness of the design is a significant
requirement that needs to be considered. Through testing it has been found that the
SMWEI algorithm with certain pairs of weights in the pre-test performs better in terms of
estimating the shape of the objective function, a feature which might be helpful when
assessing the robustness of the design. As SMWEI is limited by the pre-set pair of
weights in the pre-test, a number of experiments may be necessary to find the pair
resulting in more faithful representation of the shape. As the pre-test is “cheap”, more
weights can be selected to broaden the base for comparisons. The new version of SMWEI
with multi-weights is described in Figure 1. Because there is only one pair of weights (one
emphasising exploration and the other emphasising exploitation) provided in the pre-test
of SMWEI described previously in (Xiao et al., 2012), if one of the rewards is not assessed
properly or fails the pre-test for some other reason, there is only one “back-up” action
available, that is apply EI rather than continuing comparing the rewards produced by
the two weights. Thus, applying more optional weights in the pre-test will allow the
comparisons to continue, even if some combinations of weights may fail in the pre-test.

2.3 SMWEI with the strategy of adaptively tuning weights
In the pre-test of SMWEI, a pair of fixed weights (one emphasising exploration and the
other one exploitation) needs to be set initially; the guidelines for how to select such
weights are subject to further experiments. However, the strategy of tuning the weights
automatically and adaptively in the pre-test of AWEI can also be used in SMWEI in
order to avoid the need for setting initial optional weights. The decision-making chart
of the actual implementation is shown in Figure 1.

Because all pre-tests in SMWEI apply a “cheap” simplified surrogate model based
on the specific prediction and potential error produced by kriging, the MSE might be
directly used in each pre-test’s remaining iterations instead of the EI. The simplified
surrogate model in the pre-test, quite rough initially, is increasingly accurate as a result
of adding objective function calls; therefore the MSE might guide the kriging model
directly to search the region of the simplified surrogate model with high uncertainty.

3. Practical performance of the kriging with different strategies
3.1 A two-variable Schwefel test function
The efficiency of finding the global optimum using kriging with normal EI and with the
other two novel strategies has been tested with the two-variable Schwefel test function
(Schwefel, 1981) as an objective function in the range (x1 [ [2500 500], x2 [ [2500
500]). The two-variable Schwefel test function is defined as follows (d ¼ 2):

f ðxÞ ¼
Xd
i¼1

2 xisin
ffiffiffiffiffiffiffi
jxij

p� �
ð3Þ

Figure 2 shows the contour of the two-dimensional Schwefel test function including
one global minimum and several local minima, which are distributed irregularly; this
function is acknowledged to provide a stern test for optimization algorithms.
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Figure 1.
The flowchart

for SMWEI with
multi weights in the

pre-test
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3.2 The performance of the kriging with different strategies
In order to analyse and compare the effects of applying different strategies to assist the
kriging method, the two-variable Schwefel function with the initial samples imposed at
x1 ¼ 2450, x2 ¼ 2480; x1 ¼ 2300, x2 ¼ 280; x1 ¼ 2300, x1 ¼ 2280; x1 ¼ 2450,
x1 ¼ 380; x1 ¼ 450, x2 ¼ 2380; x1 ¼ 2450, x2 ¼ 2480; x1 ¼ 2300, x2 ¼ 2280;
x1 ¼ 0, x2 ¼ 0 was used to test the EI, the SMWEI with multi-weights and the SMWEI
with the adaptively tuning weights algorithms. The following graphs show the
“history” of how the points were added throughout the iterative process. The points
found using the two different strategies used in this process – exploitation and
exploration – are shown in Figures 3-5. Figure 3 shows that 12 iterations are needed to
find the global minimum of the objective function when using EI.

When using the strategy of adaptively tuning the weights, a slightly better
performance is obtained as only 11 iterations are needed to find the global minimum
(Figure 4). In Figure 5, SMWEI with the strategy of multi-weights still needs the same
number of iterations as EI to find the global minimum. The optimal weights for each
iteration are presented in Table I.

As the two algorithms were originally designed to pursue the optimal weights by
minimizing the average MSE, they have the potential of representing correctly the
shape of the objective function in addition to finding the location of the global
optimum efficiently. The algorithms do not stop automatically once the global
minimum has been found but instead continue until the termination a criterion is
triggered (finding a repeated sample point with prescribed tolerance). Hence, the
kriging surrogate model might improve the prediction of the shape of the objective
function further after locating the global minimum. However, the two-variable

Figure 2.
The contour of the
two-variable Schwefel
function in the x1 [[2500
500], x2 [[2500 500] and
y [[2500 500] domain

COMPEL
32,4

1180



Figure 3.
The performance of the

kriging with EI to
predict the two-variable

Schwefel function

Figure 4.
The performance of the

kriging assisted by
SMWEI with adaptively

tuning weights to predict
the two-variable

Schwefel function
Notes: The circle with a number means more exploration at that iteration; the double
square means EI; the square with a number means more exploitation at that iteration

Exploration and
exploitation

1181



Schwefel function may not be the best test for a robust design and thus a special
function has been built for that purpose.

4. A robust design
A design engineer is always expected to have an appreciation of how small changes in
parameters will affect the device performance (Di Barba, 2010). It may be the case,

Figure 5.
The performance of the
kriging assisted by
SMWEI with
multi-weights to predict
the two-variable
Schwefel function

Notes: The circle with a number means more exploration at that iteration; the double square
means EI; the square with a number means more exploitation at that iteration

Iteration number x1 x2 y The optimal weights

1 2280 2280 2478.7100 0.3 (emphasis exploration)
2 2300 2270 2478.5300 0.6 (emphasis exploitation)
3 2310 2300 2593.2100 0.9 (emphasis exploitation)
4 2300 2310 2593.2100 0.7 (emphasis exploitation)
5 2300 2300 2599.4800 0.7 (emphasis exploitation)
6 500 420 2238.2800 0.4 (emphasis exploitation)
7 350 500 229.8700 0.3 (emphasis exploration)
8 500 500 361.1800 0.4 (emphasis exploration)
9 440 420 2792.6300 0.2 (emphasis exploration)

10 440 380 2601.9300 0.4 (emphasis exploration)
11 410 420 2822.8200 0.1 (emphasis exploration)
12 420 420 2837.7300 0.5 (EI)

Table I.
The optimal weights of
the kriging assisted by
SMWEI with
multi-weights at each
iteration within the
iterative process
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however, that even when an optimal design method is applied to a practical engineering
problem, a theoretically optimal solution with excellent predicted performance in
reality performs poorly when it is manufactured (Koh et al., 1997), because in real-world
implementations the nominal values are often subject to uncertainties or tolerances
(Steiner et al., 2004). The theoretically optimal values may also be affected by
uncontrollable external perturbations which can result in considerable deterioration
of the target performance compared with the nominal solution (Steiner et al., 2004).
In order to increase the reliability of the product, it is sometimes the case that the
theoretically best solution which is not robust enough has to be abandoned in favour of
a more robust solution which otherwise may not perform as well as under ideal
circumstances. Clearly the first prerequisite for solving a robust design problem is that
the surrogate model must be able to predict the shape of the objective function as well as
locating the global optimum precisely.

The efficiency of the two proposed strategies in finding the global optimum has been
investigated in the previous section. The new challenge is now to assess the quality of the
shape representation to allow judgements to be made regarding the robustness. For this
purpose a test function with two variables Fðx1; x2Þ has been built as plotted in Figure 6.
The function has a global minimum (x1 ¼ 46, x2 ¼ 46, y ¼ 700) and a local one in Region
B (x1 [[16 26], x2 [[16 26], y ¼ 790). Any small departure from the position of the global
minimum (Point A) will result in a significant increase in the value of the objective
function (making the performance of the device unacceptable), whereas in Region B the
objective function is far less sensitive to changes in the two variables (x1,x2). Thus,
compared with the “sharp” global minimum (Point A), all solutions within the marked
square of Region B may be considered as robust as the practical performance of the device
will be consistent even when actual dimensions change due to tolerances or the material

Figure 6.
The objective function

for the robust test
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properties are variable within prescribed limits. Thus, the function of Figure 6 may be
argued to be a possible simple representation of the robust design problem.

4.1 Testing the algorithms for the quality of the prediction of the robustness
In order to compare the predictions of different strategies, the kriging method with EI
has been tested first. Six initial sample points have been chosen as shown in Table II.

These six initial points have been used in all the robust design tests. The kriging
method with EI needs 177 iterations to find the global minimum and the predicted
function shape after 177 iterations is shown in Figure 7. The picture on the right hand
side shows the error between the actual robust test function and the prediction by
kriging with EI. The error is calculated as the absolute value of the difference between
the value of the objective function and the value of the approximation.

This graphical representation of the results should aid the understanding of the
quality of the prediction. For example, in Figure 7(b), the error around the boundary of
Region B containing the robust solution indicates that the quality of the shape prediction
is not that accurate at that region. The rugged shape of the prediction by EI around
Region B is therefore likely to misguide the judgement regarding the robust solution.

The test of SMWEI with adaptively tuning weights used the same initial conditions.
Compared with EI, the SMWEI approach is more efficient in finding the global
minimum (only 85 iterations – see Figure 8); however, the error between the objective

x1 x2 Objective function value ( y)

10 10 850
13 12 810
19 13 805
10 41 1,000
41 10 1,000
46 44 840

Table II.
Initial sampling points

Figure 7.
(a) The performance of the
kriging with EI when
facing the robust problem
and (b) the error between
the robust test function
and prediction by kriging
model with EI

(a) (b)
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function and the predicted function is worse, which is a direct consequence of having
fewer points available for shape representation.

In this work we have used the Gaussian correlation model as it outperforms most of
other models used with kriging when objective functions with densely distributed
valleys and hills are approximated (Lebensztajn et al., 2004). In the robust test discussed
here the test function is very simple: it has only two minima and is flat around these
two regions (Figure 6). Due to the nature of the Gaussian correlation model the error
introduced in the approximation of the flat regions of the function with a reduced
number of sampling points can be relatively large. Although the error is reduced
dramatically as the number of sampling points in the flat zones increases (Figure 7(b)),
having such extra points might be otherwise useless as these regions are of no interest
to the optimization routine. The advantage of SMWEI with adaptively tuning weights
over the EI strategy is also apparent when the local minimum plateau is considered.
The important areas of the searching space are much better approximated by the
SMWEI as this strategy concentrates more sampling points around these areas
(Figure 8(b)) whereas EI distributes the sampling points more evenly throughout the
searching space therefore the error in these regions is larger (Figure 7(b)).

A similar observation can be made for the kriging model using the SMWEI with
multi-weights (Figure 9). A somewhat better distribution of sampling points results in
improved approximations of the two minima and fewer iterations for finding the global
minimum as compared with EI, although – as mentioned before – the flat regions of
the objective functions are not well approximated due to the Gaussian correlation
model and the number of sample points in these areas.

Figure 10 shows the history of the kriging assisted by SMWEI using the
multi-weights process. The graph describes the variation of the optimal weight at
each iteration. Rather than applying equal weights of EI within the whole predicting
process, the SMWEI with multi-weights has a more flexible and adaptive approach
in choosing the best-performing weights in the pre-test. This method makes
the process of reducing the average MSE more efficient and specific to the problem
being solved.

Figure 8.
(a) The performance of the
kriging model assisted by

SMWEI with adaptively
tuning weights when

facing the robust problem
and (b) the error between

the robust test function
and prediction by the

kriging model assisted by
SMWEI with adaptively

tuning weights when
facing the robust problem

(a) (b)
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5. Conclusion
As the main target of this paper a robust design problem has been considered. The
critical prerequisite for solving the robust problem is providing accurate prediction
of the shape of the objective function. Two novel strategies for selecting weights in
the pre-test have been proposed in order to balance exploration and exploitation.

Figure 9.
(a) The performance of the
kriging assisted by
SMWEI with
multi-weights when facing
the robust problem and (b)
the error between the
robust test function and
prediction by the kriging
model assisted SMWEI
with multi-weights

(a) (b)

Figure 10.
The detailed situation of
choosing optimal weights
at each iteration
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Both algorithms are based on kriging surrogate modelling and use the notion of
rewards from the kriging model itself for better prediction of the shape of the objective
while finding the global optimum efficiently. The algorithms have been tested using a
two-variable Schwefel function and a specially devised robust test function and are
shown to perform better than the traditional utility function. Both will be implemented
in practical design systems, especially for the purpose of electromagnetic robust design
optimization.
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