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Abstract The isometric force response of the locust hind

leg extensor tibia muscle to stimulation of a slow exten-

sor tibia motor neuron is experimentally investigated, and a

mathematical model describing the response presented. The

measured force response was modelled by considering the

ability of an existing model, developed to describe the re-

sponse to stimulation of a fast extensor tibia motor neuron,

to also model the response to slow motor neuron stimulation.

It is found that despite large differences in the force response

to slow and fast motor neuron stimulation, which could be

accounted for by the differing physiology of the fibres they

innervate, the model is able to describe the response to both

fast and slow motor neuron stimulation. Thus, the presented

model provides a potentially generally applicable, robust,

simple model to describe the isometric force response of a

range of muscles.
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1 Introduction

Mathematical models of muscle contractile forces are often

developed for a specific role or purpose so that their level

of complexity is dependent on their application or the moti-

vation for the model (Winters, 1995; Alexander, 2003). An

overly specialised model, however, does not shed any light

on general muscle mechanics since it is effectively an over-

fit that describes a very specific and well defined system. A

muscle model capable of describing the response to differ-

ent neural inputs provides a potentially generally applicable,

robust strategy for modelling the muscle force response of a

range of muscles across a range of species. Such a model

could increase our understanding of the important processes

involved in contraction. This study aims to test the robust-

ness of a previously developed model by evaluating whether

it is capable of describing the very different force profiles

measured in response to stimulation of different motor neu-

rons that both innervate the locust hind leg extensor tibia

muscle (ETi).

The interaction between neural and muscular systems

in the control of simple tasks, such as locomotion, is still

poorly understood (Dickinson et al., 2000). By studying mus-

cular function in a system where the neural components are

simple and well understood, a greater insight into the neu-

romechanical system can be gained (Guschlbauer et al., 2007).

Previous research into insect muscle has shown that the struc-

ture of the excitation contraction systems, and muscle are

similar to those of any other striated muscle (Klowden, 2002).

Insect muscle can, therefore, be used to gain insight into

the basic properties of muscle. In this study the force re-

sponse of the locust hind leg extensor tibia muscle (ETi)

during stimulation of a slow extensor tibia motor neuron

(SETi) is considered, and this response compared to the pre-

viously studied response to fast extensor tibia motor neu-
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ron (FETi) stimulation. These neurons independently excite

the slow and fast fibers, contained within the same extensor

tibia muscle. The neural networks that control this muscle

have already been well described in the literature (Hoyle,

1955a,b, 1978; Burrows, 1996; Bennet-Clark, 1975; Bur-

rows and Horridge, 1974; Newland and Kondoh, 1997). Fur-

thermore, the slow axon can be stimulated independently of

the fast axon as it leaves the ganglion by a different nerve

(N.3b. as opposed to N.5.) (Usherwood, 1975). In most in-

sect muscle the slow axons have higher thresholds for elec-

trical stimulation and travel in the same nerve trunk as the

fast axons, meaning the slow behaviour can only be studied

during spontaneous or reflex actions, or by chance (Usher-

wood, 1975). Thus the locust ETi lends itself to studying fast

and slow behaviours. The slow fibers are responsible for the

majority of movements, with the function of the fast fibers

being for jumping, kicking, or hopping (Heitler, 1977; Bur-

rows, 1996; Hoyle, 1978).

The slow and fast motor neuron responses of muscles

have been found to be different (Baylor and Hollingworth,

2003; Klowden, 2002; Hoyle, 1978). The response to slow

motor neuron activation is characterised by very weak twitch

contractions that generate only a small proportion of the

maximum force at high stimulation rates. The responses to

multiple contractions sum to give contractions that are much

stronger at high stimulation frequencies than at low frequen-

cies, relaxation rates are relatively long, and the response is

reasonably resistant to fatigue (Hoyle, 1978). In contrast the

response to fast axon stimulation fatigues relatively quickly,

twitch responses are brisk and strong with the tetanus:twitch

force ratio being of the order of about 10:1 (Hoyle, 1978).

These differences can likely be attributed in part to fast mus-

cle fibers having shorter sarcomeres, more extensive Sar-

coplasmic Retictulum (SR) and a 3:1 ratio of actin:myosin

filaments (Klowden, 2002). Slow muscle fibers have less

SR, longer sarcomeres and a 6:1 ratio of actin:myosin (Klow-

den, 2002).

A model has been previously developed to describe the

isometric force response of ETi to fast extensor tibia mo-

tor neuron (FETi) activation (Wilson, 2010; Wilson et al.,

2011). In this study the isometric force response to SETi

stimulation is analysed, and the ability of the model, de-

veloped to describe FETi stimulation, to also describe the

response to SETi stimulation considered. The responses to

each stimulation type are expected to generate very differ-

ent behaviours, with the twitch to tetanus ratios expected to

range from almost zero in the response to SETi stimulation

up to approximately 0.15 in the response to FETi stimula-

tion (Usherwood, 1975). Although different behaviours will

again be seen in other species, testing the model’s ability to

describe such different responses provides a good test of its

robustness and ability to fit to different types of data. This

is likely to be transferable to other species, especially given

that the differences between the response of the locust ETi

muscle to FETi and SETi stimulation may be greater than

the differences across some species. For example the twitch

to tetanus ratio and the frequency at which maximum force

is reached in response to the FETi stimulation are of the

order of 0.15 and 70Hz respectively (Wilson et al., 2011):

these values are similar to the values of 0.1-0.7 and 20-60Hz

(Enoka, 2008) measured in human muscles, but very differ-

ent to the SETi response in which no saturation has occurred

at 70Hz, and twitch to tetanus ratios are negligible.

2 Materials and Methods

Adult locusts (Schistocerca gregaria, Forskål) of both sexes,

taken from a colony at the University of Southampton, were

used for experiments.

2.1 Preparation for SETi measurements

Locusts were securely fixed, ventral side up in modelling

clay. A small window was cut in the ventral thorax cuticle

and underlying airsacs removed to expose the nerves sup-

plying the left (ventral view with head at top) metathoracic

leg. A pair of small hook electrodes were placed under nerve

N.3b. in the thorax and insulated with petroleum jelly. The

remainder of the open thorax was bathed in saline. These

hook electrodes were used to excite SETi by delivering stim-

ulation voltage pulses of 3ms duration. The electrodes could

also be used to record the nerve activity.

The extensor muscle apodeme was exposed for length

measurements by cutting a small window at the distal end of

the femur, close to the femoral tibial (FT) joint. The flexor

muscle apodeme and airsacs were removed to expose the

ETi apodeme. The ETi apodeme was clamped in the forceps,

close to the FT joint. The apodeme distal to the forceps was

cut and the tibia removed. The forceps were mounted so that

the force they measured was in line with the global direction

of muscle force (i.e. in line with the apodeme). Prior to mea-

surement, the ETi muscle was extended until it was just in

tension when the input to the muscle was zero, i.e. the mus-

cle set to its resting length.

2.2 Recording evoked SETi force response

Six locusts with mean length of 48.0±1.2mm and mass of

2.05±0.14g were used to measure the force response to di-

rect SETi stimulation. To stimulate SETi, the amplitude of
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the voltage pulses was set just supra threshold to elicit a

twitch when a spike in SETi was evoked. The resultant mus-

cle tension was measured by clamping the extensor muscle

apodeme in a pair of forceps attached to a S100 SMD thin

film load cell with range up to 20N (Strain Measurement De-

vices, USA). The load cell forceps system deforms linearly

with force, at the maximum recorded tension (0.5N) the de-

flection of the system was measured to be 0.1mm; consid-

ering that the total range of movement of this muscle is of

the order of ±0.5mm there is likely to be some departure

from the assumption of isometric conditions when measur-

ing larger forces. The consequence of this is that there are

likely to be small errors in the measurement of the force

when the forces being measured are high.

The output of the load cell was fed into a Flyde FE-396-

TA transducer amplifier to low-pass filter (cut-off frequency

1KHz (-3dB)) and amplify the signal prior to acquisition.

The force output (and corresponding input stimulus signal)

was recorded using Spike2 software at a sampling frequency

of 10,417Hz on a Cambridge Electronic Design 1401 A/D

converter. This sampling frequency is much higher than nec-

essary for the force signal. However, it was chosen to be

consistent with the frequency at which the neural signal was

sampled. The actual muscle force was calculated by calibrat-

ing the forceps load-cell system using weights hung from the

forceps such that the force due to the weights had the same

line of action relative to the forceps load cell system as did

the muscle force. This was carried out for a range of loading

and unloading conditions, and voltage output plotted against

the force. A straight line was fitted and a calibration factor

obtained to convert voltage to force.

2.2.1 Muscle inputs

Activity of the SETi motor neuron is associated with slow

behaviours such as walking and scratching (Hoyle, 1955b).

Recordings of SETi activity during a scratch made by Zakot-

nik et al. (2006) were used to provide physiologically rele-

vant inputs and to determine general properties of the SETi

activity, namely minimum, maximum and average spike fre-

quencies. The maximum and minimum instantaneous spike

frequencies across 3s of recording during a scratching move-

ment were measured as 500Hz and 10Hz respectively, with

the average spike frequency being 50±10Hz.

The muscle was stimulated with single isolated stim-

uli, constant frequency pulse trains (CFTs), general non-

constant frequency pulse trains (NCFTs) and physiologically

relevant NCFTs. Twenty pulse CFTs with interpulse fre-

quencies (IPFs) of 10, 13, 20, 40, and 67Hz were used. Gen-

eral NCFTs consisted of a 29 pulse train which increased

and then decreased in frequency (to the initial value), with

a maximum frequency of 100Hz and minimum of 10Hz,

and a 60 pulse train which decreased and then increased

in frequency (again to the initial value) with a minimum

frequency of 1Hz and maximum of 50Hz. The physiolog-

ically relevant NCFT inputs were taken directly from Za-

kotnik et al. (2006).

This stimulus range was chosen as it contains a rich range

of frequencies that coincide with the frequency of SETi ac-

tivity, this enables the model to be tested across a range

of relevant inputs. No frequencies as high as the maximum

measured instantaneous frequency of 500Hz (as measured

from Zakotnik et al. (2006)) were used in the CFTs or gen-

eral NCFTs as on average the frequency of SETi stimulation

is a lot lower (from Zakotnik et al. (2006)). The data was

split into training and test data. Training data consisted of

a twitch, a 20 pulse 67Hz CFT and the two general NCFT

pulse trains (described above) and was used to estimate the

model parameters. The particular training data was chosen

as it stimulates a rich range of behaviours, whilst keeping

the size of the training data small. The test data can be split

into general and physiologically relevant data and was used

to ensure that the model does not overfit the data and to as-

sess the ability of the model to predict the force response to

different inputs. The SETi response was trained separately

to the FETi response, to estimate two different sets of model

parameters to describe each behaviour.

2.3 Recording voluntary SETi force response

A separate set of four locusts were used to measure the force

response to voluntary SETi inputs. The locusts were pre-

pared as described above, and the end of a paintbrush used to

brush the locusts head to stimulate voluntary SETi activity.

The hook electrodes under nerve N.3b. were set to record

the activity of the nerve and this output was amplified and

recorded using Spike2 software with a sampling frequency

of 10,417Hz on a Cambridge Electronic Design 1401 A/D

converter. The corresponding muscle force was measured by

the load-cell forceps system described above.

2.4 Recording evoked FETi force response

The method of measuring the response to FETi stimulation,

to provide a comparison to the SETi response, was reported

in detail in (Wilson et al., 2010; Wilson, 2010). Briefly, a

separate set of five adult locusts to those used for SETi mea-

surement, with mean length of 46.4±2.3mm and mass of

1.73±0.30g, were taken from the colony at Southampton

University. The locusts were again fixed ventral side up in

modelling clay. The left (ventral view with head at top) hind
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leg was clamped ventral side up with the femur securely

fixed and the tibia free to move. The angle between the fe-

mur and the tibia was set to 80◦ with a pin. The extensor

muscle was stimulated directly with implanted electrodes

with pulses of 3ms duration and approximately 5V magni-

tude. The method of stimulation differs to the direct nerve

stimulation used to excite SETi, this is due to the fact that

FETi can be stimulated at a lower threshold than SETi. An

S100 SMD thin film load cell with range up to 1N was used

to measure the force at the tibia. The output of the load cell

was fed into a Flyde FE-396-TA transducer amplifier to am-

plify and low-pass filter the signal prior to acquisition, with a

cut-off frequency of 1KHz (-3dB), and a sampling frequency

of 2.2KHz.

The method of measuring the force produced by the ETi

in response to FETi and SETi stimulation differed due to the

different force magnitudes associated with each motor neu-

ron type. When the force response to a single SETi stimulus

pulse was measured at the tibia the resultant twitch force was

too small to resolve (see also Hoyle (1978)). On the other

hand, the large muscle force generated in response to FETi

stimulation meant that for large inputs the deflection of the

load cell, and the departure from isometric conditions, was

significant when the force was measured at the apodeme in

the same way as described for SETi responses. Furthermore,

for high forces the apodeme often snapped at the point of at-

tachment to the forceps.

2.5 Force Model

A previous comparison of the ability of seven different mod-

els to describe the isometric force response of the locust

hind leg ETi muscle to FETi stimulation found an ‘Adapted

model’ developed by the authors to perform best (with the

measure of best quantified by the least squares error between

model and measurement and Aikaike’s and Bayesian Infor-

mation Criteria) (Wilson et al., 2011). A simplified version

of this model (Simplified Adapted model) also provided rea-

sonable fits to data with one less model parameter. The abil-

ity of these two models to also describe the isometric re-

sponse to SETi stimulation is considered. These models give

the muscle force F(t) as an output and take an input pulse

train u(t) as an input where,

u(t) =
n

∑
i=1

δ (t− ti) (1)

where n defines the number of input pulses, t the time and ti
the time at which the ith pulse occurs. Using this as an input

makes the assumption that the input pulses can be approxi-

mated as impulses. The Adapted model equations are

ĊN(t)+
CN(t)

τc

= u(t) (2)

x(t) =
CN(t)

m

CN(t)m + km
(3)

Ḟ(t)+
F(t)

τ1 + τ2x(t)
= Ax(t) (4)

This model has 6 parameters, τc, τ1, τ2, m, k, A and consists

of a first order linear ordinary differential equation, followed

by a differential equation that includes non-linear saturation

terms. The variable x(t) is an intermediate stage in the model

and describes the non-linear saturation, with the parameters

m and k defining the shape of this non-linearity. The variable

CN is another intermediate stage in the model that is likely

to be a measure of the free calcium concentration. The pa-

rameters τc, τ1 and τ2 are time constants, and A a gain. The

Adapted model was developed from the model of Ding et al.

(2002) and has a similar form to the model of Bobet and

Stein (1998). The development of the model is discussed in

more detail in Wilson et al. (2011); Wilson (2010). In the

Simplified Adapted model τ2 is assumed to be zero, and so

the model equations become

ĊN(t)+
CN(t)

τc

= u(t) (5)

x(t) =
CN(t)

m

CN(t)m + km
(6)

Ḟ(t)+
F(t)

τ1
= Ax(t) (7)

2.5.1 Estimation Algorithm

Parameters were estimated by finding the values that gave

the smallest least squares error between the model output

and measured ETi force data, when using the complete set

of training data. The parameters for each locust were opti-

mised separately due to the high variability of the force data.

This was done using the MATLAB function lsqnonlin and

a fixed step ordinary differential equation (ODE) solver. The

step size of the solver was equal to the sampling time of

the data, i.e. 9.6× 10−5. Initial conditions were set to zero

and a fourth order Runge-Kutta approximation was used. An

initial estimate of parameter values was made and an iter-

ative method using a trust-region-reflective algorithm was

then used to find the parameters which provide the best fit to

data (The MathWorks Inc, 2001). The parameter optimisa-

tion routine was re-run using a range of initial parameter es-

timates to avoid estimating local minima. Initial parameters

were randomly varied about fixed points, this was done by

generating initial estimates from normal distributions with

given standard deviations and mean values for each param-

eter. The standard deviation and means used to generate ini-

tial estimates of each parameter are summarised in Table 1.
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For each locust the estimation routine was rerun with seven

different start values. Functions were evaluated until lower

bounds on the step size or change in object value during a

step were met. These bounds were defined by setting the

lower bound on step size (TolX) and the lower bound on

change in object value (TolFun) to 1×10−7 (tolerances are

an order of magnitude smaller than those used previously in

modelling the response to FETi stimulation (Wilson et al.,

2011). Tighter tolerances were used to ensure that the final

estimates converged for the full range of intial parameter

values). If the maximum allowed number of function eval-

uations was exceeded before these limits were reached the

optimisation was re-started from the final values until the

specified tolerances were reached.

Table 1 Mean and standard deviation of the normal distribution used

to randomly generate each initial parameter.

τ1 τ1 τ2 k A m

Mean 0.1 0.1 0.1 5 10 2

Standard deviation 0.1 0.1 0.1 1 1 0.5

Presented errors, E , between the data and estimated model

are calculated as,

E =

∑
i

(

Fi− F̂i

)2

∑
i

(Fi)
2

(8)

where F̂i is the model estimate and Fi the actual data at the

ith time step, the sums being taken over all measured data

points. The errors minimised during the fitting routine are

defined as ∑
i

(

Fi− F̂i

)2
. As the length of training data is fixed

this is equivalent to minimising the error as defined in Eq.

(8). In Sec. 3 the data is split into all data, training data,

general test data and physiological type data and the errors

are given for each group of data.

3 Results

3.1 Force Measurements

The force response of the ETi muscle and corresponding

neural activity in nerve N.3b. during ‘voluntary movements’

(i.e. no external stimulation) were recorded (Fig. 1). Record-

ings of SETi activity in nerve N.3b. (Fig. 1) reveal that SETi

can be spontaneously active with each spike followed by a

small contraction of the ETi muscle lasting from 0.3-0.5s

and with an amplitude of 0.005-0.01N. Where spikes are

closely spaced (less than 0.5s apart) the force responses sum

non-linearly with the maximum force reaching around 0.03N

(Fig. 1). A slight delay of 0.013s exists between the neural

and force recordings. This lag between muscle force pro-

duction and muscle activation is well known to exist, and

is termed electromechanical delay (EMD) (Cavanagh and

Komi, 1979). The force responses were time shifted by 0.013s

to remove the EMD between input and output signals for

further analysis.
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Fig. 1 a) Example of neural activity recorded from nerve N.3b. in the

thorax and the corresponding muscle force, b) simplification of neu-

ral recording, used as model input, each pulse above a threshold that

causes an increase in muscle force is approximated as a single pulse of

3ms duration.

3.1.1 Twitch Response

The evoked twitch response to SETi stimulation is shown

for one locust in Figure 2a and a further six locusts in Fig-

ure 2c. The total duration of the contraction ranges between

0.3-0.5s with the peak force ranging from 0.003-0.013N and

occurring after approximately 0.06s. These measurements

are consistent with responses measured during spontaneous

activation of SETi (Fig. 1). The following measurements (as

defined by Frey Law and Shields (2005)) were used to quan-

titatively characterise each twitch response: peak force (PF),

defined as the maximum recorded force; force-time integral

(FTI), defined as the area under the force-time trace; half

relaxation time (HRT), defined as the time for the force to

decay from 90% to 50% of the peak force; late relaxation

time (LRT), defined as the time for the force to decay from

40% to 10% of the peak force; and the time to peak tension

(TPT) defined as the time required to reach 90% of the peak

force from time zero. These measurements are given in Ta-

ble 2. On average the SETi twitch response has a peak force

of 0.007N and takes 53ms to reach 90% of the maximum

tension, with relaxation taking over twice as long. The mea-

surements show variation of up to 500% between locusts.

The twitch response to SETi stimulation can be com-

pared to the response to FETi stimulation (Fig. 2b, 2d, and

Table 2). The peak force recorded in response to SETi stimu-

lation is of the order of 100 times smaller than that recorded

in response to FETi stimulation, with the contraction times

being on average 1.5 times greater for the SETi response.



6

0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

x 10
−3a)

F
o

rc
e

 [
N

]

Time [s]
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

b)

F
o

rc
e

 [
N

]

Time [s]

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

F
o

rc
e

 [
N

]

Time [s]

c)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

F
o

rc
e

 [
N

]

Time [s]

d)

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

Time [s]

F
o

rc
e

 [
N

]

e)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

Time [s]

F
o

rc
e

 [
N

]

f)

IPF=67Hz, n=20

IPF=40Hz, n=20

IPF=20Hz, n=20

IPF=13Hz, n=20
IPF=10Hz, n=20

IPF=40Hz, n=40

IPF=20Hz, n=20

IPF=14Hz, n=20

IPF=10Hz, n=10

IPF=67Hz, n=40

Fig. 2 Comparison between the force response of ETi to SETi and FETi stimulation, the peak twitch force measured in response to SETi stimulation

is approximately 100 times less than that measured in response to FETi stimulation (note widely different scales between SETi and FETi are used

for the force axes). a) Twitch response to SETi stimulation, b) twitch response to FETi stimulation in the same locust as a), c) twitch response

to SETi stimulation of six different locusts, d) twitch response to FETi stimulation in a different set of six locusts. e) response of one locust to

constant frequency (CFT) stimulation of SETi for inputs with different interpulse frequencies (IPF) and numbers of input pulses (n), f) response

of one locust to CFT stimulation of FETi for inputs with different interpulse frequencies (IPF) and numbers of input pulses (n).

3.1.2 Response to Constant Frequency Pulse Trains

The response to CFT stimulation of SETi for a range of

pulse frequencies (i.e. a range of different interpulse inter-

vals (IPIs)) for one locust is shown in Figure 2e, with the

response of six different locusts shown in Figure 3. Vari-

ability exists between locusts. However, the responses are

qualitatively similar. The twitch force is much smaller than

the summed forces, with the peak twitch force being approx-

imately 100 times smaller than the peak force in response

to a 20 pulse CFT with 67Hz IPF. The maximum force in-

creases with frequency, no maximum force appears to have

been reached when the IPF is 67Hz. For a comparison, the

response to CFT stimulation of FETi for one locust is pro-

vided in Figure 2f. For all frequencies a constant force level

is reached faster in response to FETi stimulation, the SETi

responses sum to increase the force level over a greater num-

ber of input pulses (for the higher frequency CFTs fewer

pulses are applied during SETi stimulation. However, after

an equivalent number of pulses the FETi response still ap-

pears closer to reaching a constant force level). In the FETi

response there is less of a difference between the twitch
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Table 2 A comparison of the properties of the ETi twitch response to SETi and FETi stimulation. The measured twitch characteristics are peak

force (PF), force time integral (FTI), half relaxation time (HRT), late relaxation time (LRT), and time to peak tension (TPT) and defined in the text.

Locust PF (N) FTI (Nms) HRT (ms) LRT (ms) TPT (ms)

FETi

LFa 0.84 99.4 45.5 95.2 31.3

LFb 0.39 38.8 30.4 62.6 35.0

LFc 0.66 56.9 20.2 52.0 35.0

LFd 0.89 108.4 52.4 114.1 31.7

LFe 0.93 114.7 51.5 62.6 46.0

LFf 0.36 40.7 32.7 30.8 50.6

SETi

LSa 0.013 2.3 71.3 112.4 61.6

LSb 0.003 0.4 49.7 87.4 58.6

LSc 0.003 0.4 62.9 122.7 51.4

LSd 0.005 0.7 60.0 155.9 57.1

LSe 0.005 0.6 49.0 97.9 40.0

LSf 0.014 2.1 56.0 135.7 50.8

Average

Mean FETi 0.68 76.5 38.8 69.6 38.3

Mean SETi 0.007 1.1 58.2 118.7 53.3

magnitude and maximum tetanic force, with the peak twitch

force being approximately 10 times smaller than the peak

force in response to a 20 pulse CFT with 67Hz IPF. Satu-

ration of the maximum force level is close to occurring in

the FETi response, in that there is almost no further increase

in the maximum force level when the stimulation frequency

is increased from 40Hz to 67Hz. This saturation is not evi-

dent in the SETi responses, in all cases there is a significant

increase in the force level with input frequency.

3.1.3 Response to Non-Constant Frequency Pulse Trains

The response to NCFT stimulation of SETi for a range of in-

put types and six different locusts is shown in Figure 4. Fig-

ures 4a and b show the responses to general NCFT inputs

and Figures 4c-f the response to physiologically relevant

SETi type inputs. Again, the specific details of the responses

vary from one locust to another, yet the responses are quali-

tatively similar. The durations of responses to the SETi type

inputs are of the order of 1s, with the maximum recorded

force of the order of 0.4N. During walking movements it is

SETi that is active, step periods are commonly 200-500ms

(Usherwood and Runion, 1970), the time courses of the re-

sponses given in Figures 4c-f are of the same order of mag-

nitude. The SETi signals were taken from scratching record-

ings made by Zakotnik et al. (2006) who measure resultant

movements that last for around 1s, so the time courses of

contraction presented in Figure 4c-f seem reasonable. The

measured force levels are consistent with the observation

that the maximum forces measured in response to SETi stim-

ulation are of the order of 1N (Hoyle, 1955b).

3.2 Modelled Force

The estimated parameters that give the lowest errors between

the estimated and actual SETi responses across the train-

ing data for five of the six locusts are presented in Table

3 for both the Adapted and Simplified Adapted models. Due

to voluntary movements affecting the force response whilst

recording training data in one of the six locusts (Lsb), a com-

plete set of training data could not be recorded, and con-

sequently no model parameters were estimated for this lo-

cust. For the range of starting parameters, the final values of

the parameters were within 0.01% of each other, with small

variations due to the tolerances on the convergence condi-

tions. This suggests that global, as opposed to local minima

are estimated. Furthermore, once estimated, each parame-

ter was manually varied in turn and the resulting change in

error plotted against the change in parameter value. All of

the variations of estimated error as functions of the parame-

ters had slopes which were monotonic with single minima,

which also indicates that global minima are estimated. The

errors given in Table 3 are calculated as described by Eq

(8). The errors refer to the error in fit to all data (Eall), error

in fit to training data (Etrain), error in fit to all data except

the training data (Etest) and the error in fit to the physiologi-

cally relevant data (Eseti). The average parameters estimated

when fitting to the FETi response in a separate set of six lo-

custs (Wilson et al., 2011) and the relevant errors are also

provided in Table 3. For each locust all errors (Eall, Etrain,

Etest, Eseti) are of comparable magnitudes, so that the esti-

mates are not particularly sensitive to the set of data used

for the estimations. Furthermore, sometimes the errors for
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Fig. 3 Muscle force recorded in six different locusts (each trace represents a different locust) in response to constant frequency SETi stimulation

with the input pulse trains shown above each force response a) Twitch response, b) response to 20 pulse CFT with IPI=0.1s (IPF=10Hz), c)

response to 20 pulse CFT with IPI=0.075s (IPF=13Hz), d) response to 20 pulse CFT with IPI=0.05s (IPF=20Hz), e) response to 20 pulse CFT

with IPI=0.025s (IPF=40Hz), f) response to 20 pulse CFT with IPI=0.015s (IPF=67Hz).

the test and SETi data are lower than those for the training

data used to estimate the parameter values. This indicates

that the model is good and does not overfit to the training

data.

There is some variability in the estimated parameters,

consistent with variability in the force responses between

animals. The parameter A, which is a constant gain, varies

by around 700% for the Adapted model, and 400% for the

Simplified Adapted model. However, this is reasonable con-

sidering the variation in PF seen in the twitch measurements

is about 500% (Table 2). For the fit to SETi data using the

Adapted model the parameter τ2 varies between being small

and negative and small and positive, resulting in τ2 being on

average 0.00. In most locusts, with the exception of Locust

LSa, the Adapted model errors are only marginally better

than the Simplified Adapted model errors, and greater dif-

ferences are seen in the FETi fits. The main difference be-

tween the parameters estimated for the response to SETi and

FETi stimulation is in the estimate of k which is an order of

magnitude larger when fitting to SETi data. Some of the es-

timates for the parameter A estimated for responses to SETi

stimulation are also much greater than the average value of A

for the fit to FETi data. The estimates for τc are consistently

slightly larger in the SETi response, with the estimates of τ1

being consistently smaller. The parameter m does not show

much dependency on stimulation type. Differences between

estimates of m for the SETi and FETi response are small

enough that they could be due to the fact that different sets

of locusts were used to estimate the SETi and FETi parame-

ters.

The errors in the fit to SETi data are consistently greater

than those when fitting to FETi data, suggesting the models

are better at describing the FETi response. However, the er-

rors in fit to SETi data are still low, especially when consid-

ering the fit to physiologically relevant data where average

estimated errors are 1.65% and 1.72% for the Adapted and

Simplified Adapted models respectively. The increased error

in fitting to SETi data could be due to the fact that the be-

haviour in response to SETi stimulation has a much greater

range, with twitch forces being very small in comparison to

cases where stimuli are closely spaced and sum. The errors

and estimated parameters are discussed further in Sec. 4.

Figure 5 shows the fit to CFT inputs using both mod-

els in locust LSa. With the exception of the twitch response,

the force response estimated by both models is very simi-

lar, the modelled force responses almost lie on top of each
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Fig. 4 Muscle force recorded in six different locusts (each trace represents a different locust) in response to NCFT SETi stimulation. The input

pulse patterns are given above each force response. a,b) response to general non-constant frequency inputs, c-f) response to typical physiological

SETi inputs, input pulses were taken from the SETi recordings shown in Figure 3 of Zakotnik et al. (2006).

other, hence differentiating the response to each model is

hard. Both the Simplified Adapted and Adapted models pro-

vide a good description of the behaviour.

From Table 3 it is evident that the errors in fit are the

lowest in the locust presented in Figure 5. In other locusts

there were some discrepancies in the fit to low and mid fre-

quency CFT inputs. Figure 6 is provided to show how the

fit differs between locusts, and to demonstrate the problems

with the fit in some locusts for intermediate frequency pulse

trains. From Figure 6 it can be seen that in some locusts the

models predict that the force rises too quickly and to the

wrong force amplitude; this problem is evident for both the

Adapted and Adapted Simplified models. In comparing the

traces in Figure 6 it is evident that the responses that reach

an apparent steady state are better described by the models.

However, the response to SETi stimulation is expected to in-

crease over a large number of pulses (Hooper et al., 2007a),

as is the case in the force traces that are less well modelled,

hence these traces may provide a better description of the

expected behaviour. This suggests that the models are un-

able to capture the exact response to low or mid frequency

pulse trains.

The fits to NCFT data using both the models for the lo-

cust with the lowest overall errors in fit (LSa) and that with

the highest overall errors in fit (LSc) are given in Figure 7

and 8 respectively. In both cases the models provide a good

description of the force response. Unlike for the mid fre-

quency CFT trains, in which the model behaviour was differ-

ent to the actual behaviour for LSc (Fig. 6b) the description

of NCFT data is much better. Despite discrepancies in the fit

to low-mid frequency CFT data, the fits to general NCFTs

and physiologically relevant NCFTs are much better.
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Table 3 Estimated model parameters and associated errors for five locusts when fitting to SETi data using both the Adapted and Simplified

Adapted models. The average FETi parameters and error for a different set of locusts is also shown for comparison.

Locust τ1 τ1 τ2 k A m Eall Etrain Etest Eseti

Adapted Model (SETi fit)

LSa 0.10 0.07 0.06 3.21 5.53 1.76 1.08 1.06 1.09 0.98

LSb - - - - - - - - - -

LSc 0.12 0.04 -0.01 10.90 42.64 1.90 2.82 2.57 3.03 1.93

LSd 0.10 0.05 -0.04 6.92 30.56 2.25 1.80 1.98 1.63 1.60

LSe 0.10 0.05 -0.04 6.92 30.54 2.25 2.38 1.62 2.97 2.01

LSf 0.11 0.03 0.02 4.78 12.67 1.39 2.07 1.97 2.17 1.73

Simplified Adapted Model (SETi fit)

LSa 0.12 0.08 - 4.32 8.19 1.89 1.20 1.11 1.27 1.25

LSc 0.13 0.06 - 5.45 9.73 2.22 2.83 2.57 3.04 1.95

LSd 0.12 0.04 - 9.53 34.65 1.90 1.82 1.99 1.66 1.62

LSe 0.10 0.05 - 4.93 17.54 2.31 2.38 1.68 2.92 1.94

LSf 0.12 0.04 - 6.52 18.06 1.44 2.09 1.98 2.20 1.86

Averages

SETi Adapted 0.11 0.05 0.00 6.55 24.39 1.91 2.03 1.84 2.18 1.65

SETi Simplified Adapted 0.12 0.05 - 6.15 17.63 1.95 2.06 1.87 2.22 1.72

Ekick

FETi Adapted 0.070 0.083 0.10 0.57 5.8 1.8 1.05 1.30 0.80 0.82

FETi Simplified Adapted 0.071 0.13 - 0.75 7.4 2.5 1.25 1.50 1.00 0.81

As described in the Materials and Methods section, prior

to stimulation the neural activity of nerve N.3b. and the cor-

responding voluntary muscle force were recorded. This pro-

vides further physiologically relevant data to test the model’s

ability to describe the force response to stimulation of SETi.

Figure 1a gives an example of the neural recordings and as-

sociated forces made in one locust. Large amplitude spikes

in the neural recordings were approximated as impulses, and

these used as model inputs. An example of the extracted

model input is given in Figure 1b. Not every large ampli-

tude spike in the SETi recording results in a contraction of

ETi (for example the spike in the neural recording at t=0.04s

does not result in any contraction). The location of these

spikes were not included in the input pulse trains.

Figure 9 shows the measured voluntary force and the re-

sultant modelled force where the model input was extracted

from the neural recording as shown in Figure 1. Both the

Simplified Adapted, and Adapted models were used to sim-

ulate the responses. There is very little difference between

the response predicted by each model, but the Simplified

Adapted model has one fewer parameter. The sets of data

shown in Figure 9a were used to train the model and estimate

the model parameters, with the data in Figure 9b used as test

data. From Figure 9 it is clear that the Simplified Adapted

model provides a good description of the response to volun-

tary SETi stimulation. The fit to training data is very good,

and the model is also able to accurately predict the force re-

sponse when applied to test data.

4 Discussion

4.1 Variability of Responses

Due to the variability of force responses a separate set of

parameters is estimated for each locust. This variability be-

tween locust force measurements is also seen in other stud-

ies of insect muscle (Guschlbauer et al., 2007; Ahn and Full,

2002; Burns and Usherwood, 1979). This suggests that the

variability is more likely to be a property of insect muscles,

as opposed to an error in the preparation and force record-

ing. Furthermore, the ETi muscle mass, total locust mass

and dimensions of the locust were measured across a sam-

ple of six locusts taken from the colony. These values varied

by up to 260% and so the variability in the force recordings

can be explained, at least in part, by variability in the mor-

phology of individual locusts. The correlation between the

muscle mass (invasively measured) and locust mass (non-

invasively measured) was found to be 0.42-0.98 at the 95%

confidence level. An extension to this work would be to es-

tablish if measurable variables such as locust mass are able

to explain the force variations between locusts, and modify

the model accordingly. However, a much larger set of locusts

is required to study correlations to obtain small confidence

intervals between measured model parameters, and measur-

able variables.
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Fig. 5 Force response (—) and fit using the Adapted (− ·−) and Simplified Adapted (- - -) models for locust LSa (the two modelled responses

are very similar, hence, differentiating the two traces is hard). The corresponding input stimuli are shown above each force trace where the inputs

were; a) single pulse, b) 20 pulse, 10Hz CFT, c) 20 pulse, 13Hz CFT, d) 20 pulse, 20Hz CFT, e) 20 pulse, 40Hz CFT, f) 20 pulse, 67Hz CFT.
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Fig. 6 Example of fit to the force response to a 20 pulse CFT with IPI=0.075s (—) across the ensemble of locusts using the Adapted (−·−) and

Simplified Adapted (- - -) models (the two modelled responses are very similar, hence, differentiating the two traces is hard). a) Locust LSa, b)

Locust LSc, c) Locust LSd, d) Locust LSe, e) Locust LSf.

4.2 SETi Response

The SETi force response to a range of different inputs is pre-

sented above. Measured SETi forces range on average from

a maximum of 0.007N in response to a single stimulus up

to around 0.4N in response to a 20 pulse 67Hz CFT. These

measurements are consistent with previous studies that finds

the twitch response to be just a few percent of the maximum

force (Usherwood, 1975).

For high frequency SETi inputs the responses to individ-

ual pulses fuse together to produce smooth responses, how-

ever, the response to SETi stimulation, unlike that to FETi

stimulation, doesn’t appear to have saturated in maximum

force level at the maximum input frequency of 67Hz. This is

in contrast to mammalian muscles in which the responses to
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Fig. 7 Force response (—) and fit using the Adapted (− ·−) and Simplified Adapted (- - -) models for locust LSa. The pulses occur at times

indicated in the bar above each figure. a,b) The response to general NCFTs, c-f) response to physiological SETi type inputs.
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Fig. 8 Force response (—) and fit using the Adapted (− ·−) and Simplified Adapted (- - -) models forF locust LSc. The pulses occur at times

indicated in the bar above each figure. a,b) The response to general NCFTs, c-f) response to physiological SETi type inputs.
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Fig. 9 Modelled fit using Simplified Adapted (- - -) and Adapted (- - -) models to measured voluntary activity (—). The times at which pulses

occur are estimated from recorded neural activity of nerve N.3b. and indicated in the bar above each figure. a) Fit to training data, b) fit to test data.

Note that the modelled force responses are very similar, so traces overlay each other.

slow fibers generally saturate at a lower frequency than those

of fast fibers (Mrowczynski et al., 2006). This difference is

attributed to the structural specialisations of the slow fibers

innervated by SETi, but not FETi Hoyle (1978). These fibers

have a slowly relaxing core that is only activated during pro-

longed activation. The model has been shown to be capable

of modelling both force responses that saturate at very high

frequencies (SETi) and those that saturate at lower frequen-

cies (FETi) by estimating different sets of model parameters

for each case. Therefore, it should also be able to capture the

dynamics of other muscles that saturate at different frequen-

cies.

The responses to physiological SETi type inputs are sim-

ilar, with all contractions lasting around 1s with maximum

forces of the order of 0.4N. In the stick insect extensor tibia

muscle, bursts with approximately the same spike numbers

and overall frequencies result in contractions that have very

similar rises, even if the bursts have differing spike patterns

(Hooper et al., 2007a). In other words variable inputs can

produce similar outputs. A similar effect is seen in the phys-

iological data, however, in many of the other recordings the

average spike frequencies differ and so the resultant behaviour

differs.

4.3 Force Model

In response to SETi stimulation the maximum measured forces

(where multiple pulses sum) are about 60 times larger than

the maximum force reached in response to a single stim-

ulus. This is a much increased range than that of the re-

sponse to FETi stimulation where the maximum measured

forces were about 10 times larger than the maximum force

response to a single stimulus. Attempting to model such a

range of behaviour with a model developed for a different

neuron provides a very good test of the model’s capability

to describe the response to a range of inputs, and potentially

of a range of different muscles. Our model fits the SETi re-

sponse well with errors of around 2%. The errors in fit to

the FETi response are consistently smaller, however the re-

sponse to SETi stimulation is still well modelled.

The main discrepancies between the model predictions

and actual force responses were in the fits to low-mid fre-

quency CFT input, where the force was predicted to rise too

quickly. This may be due to the model not capturing all the

important mechanisms in the response to SETi stimulation.

Hoyle (1978) proposes that calcium only reaches the core

myofilaments during a relative long period of stimulation,

that this core is slowly relaxing, and that during a twitch

only the periphery of the fibres is recruited whereas during

tetanus the core is progressively recruited. A model in which

the core was progressively recruited (with time) could po-

tentially result in the early rise in contraction being steadier

and provide a better fit to data in response to low-mid fre-

quency CFT inputs. Such a mechanism was included in our

model to describe CFT stimulation by allowing the model

parameters to change in a linear way with time since the

first pulse. However, this did not improve fits and a good

fit over the initial force rise in lower frequency CFTs re-

sulted in the relaxation times being too great for high fre-

quency CFTs (this indicates that the actual mechanism is

more complicated than that proposed, it is likely to involve

non-linearities, and perhaps other factors). Furthermore, this

complicated the simple models and using the time after the
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first pulse in a contraction in the model equations does not

provide a good general model for NCFT stimulation.

Although the models show some discrepancies in the fit

to low-mid frequency CFT data they still provide a good

model of the SETi response. For the low-mid frequency in-

puts for which the models do not predict the behaviour well

the overall forces are low and so the absolute differences

in the predicted and actual forces are still very small. Fur-

thermore, although the frequency ranges are within those

expected during natural SETi activity, a constant frequency

input is an unrealistic input and the models are much bet-

ter at describing the response to more physiologically rele-

vant inputs, which are more applicable and relevant inputs.

The models are able to predict the response to physiological

SETi type inputs consistently across the ensemble of locusts

and capture the dynamics of the behaviour well. In further

support of the models, measured voluntary movements are

very well reproduced when using the Simplified Adapted

model (as seen in Fig. 9).

With the exception of one locust (LSa) the errors in fit

to the Adapted model are little better than those when fitting

to the Simplified Adapted model. The small improvement in

errors when τ2 is included in the model and the fact the the

value of τ2 varies between being positive and negative sug-

gests that the parameter τ2 may not be required to model the

SETi behaviour. The parameter τ2 modifies the time con-

stant of equation (4), it is multiplied by the term x(t) and

added to the time constant τ1. In the case of the FETi re-

sponse the value of τ2 is consistently positive, hence it acts

to increase the time constant with increasing input, until sat-

uration is reached. As the sign of τ2 is inconsistent in the re-

sponse to SETi stimulation any biophysical interpretation of

what τ2 represents is inconsistent as in some cases the time

constant is increased with input, and in others decreased.

Therefore, the Simplified Adapted model (equivalent to the

Adapted model with τ2 = 0) may provide a better descrip-

tion of the SETi response, and in any event involves one

fewer parameter, and so is a more parsimonious model. This

is further supported by the fact that in most cases the force

responses predicted by the Adapted and Simplified Adapted

model are almost identical, but the Adapted model has one

more parameter.

4.4 Comparison with response to FETi stimulation

The response of ETi to stimulation of the SETi motor neu-

ron considered in this study can be compared to stimulation

of the the fast counterpart, FETi, which was investigated

in previous work (Wilson et al., 2010, 2011). Each fiber

type is contained within the same ETi muscle, as described

in Hoyle (1978). Stimulation of FETi produces twitches of

large magnitude that, in response to CFT stimulation, sum

to reach a steady state within a few spikes (≈ 10). This

all-or-nothing response is characteristic of the behaviour of

vertebrate muscles (Hoyle, 1978). In contrast, stimulation

of SETi produces very small twitches, approximately 100

times smaller in magnitude than the response to FETi, that

sum over a large number of pulses. In the presented results,

in response to CFT stimulation of SETi a steady state force

was often not reached after 20 input pulses and Hooper et al.

(2007b) report that slow muscles can take hundreds of spikes

to achieve steady state. Further differences exist between the

contraction times of the muscles, with the time course of

contraction in response to SETi stimulation being around

1.5 times that in response to FETi stimulation. The con-

tractile properties of the slow and fast fibers differ as they

are responsible for different types of movements and so the

physiology of their fibers and contractile mechanisms have

evolved differences. Slow fibers have less Sarcoplasmic Retic-

ulum (Klowden, 2002), and 0.3-0.5 times the number of

SR Ca2+ pump molecules (Baylor and Hollingworth, 2003).

This means that calcium remains in the Sarcoplasm longer

so that they have longer rates of relaxation. Furthermore,

slow fibers have longer sarcomeres and a 6:1 ratio of actin:mysosin,

compared to 3:1 in fast fibres, which may be in part respon-

sible for the reduced force produced in comparison to fast

fibres when the slow fibers contract.

We previously postulated the biophysical mechanisms

that each model equation may describe (Wilson et al., 2011),

suggesting that the quantity CN represents the calcium con-

centration in muscle filaments, with the time constant τc

describing the time constant for calcium release from the

SR. The last equation (Eq. (6)) was speculated to describe

the rate-determining step in the formation of a cross-bridge

between thick and thin filaments, with the non-linearity in

magnitude accounting for the fact that the binding of cal-

cium ions to troponin is a saturable non-linear reaction, with

saturation occurring due to the limited number of binding

sites. By comparing the response of each stage in the model

for both FETi and SETi stimulation, the ability of the model

to describe the expected differences, as related to the under-

lying physiology and structure, between the fiber types pro-

vides a test of how likely it is that these are the mechanisms

described by each equation. Figure 10 shows the response at

each stage in the Simplified Adapted model for a 13Hz CFT

input using the average estimated parameters for both FETi

and SETi stimulation.

From Figure 10a it is evident that the time course of cal-

cium decay is similar but slightly increased in the response

to SETi. This is consistent with slow fibers having fewer

pump molecules, resulting in calcium remaining in the SR

longer. Rather than CN representing the absolute value of
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Fig. 10 Comparison of the response at each stage in the model for

average parameters estimated in response to FETi (—) and SETi (· · ·)

stimulation with a 13Hz CFT input. a) total CN , b) variation in x with

CN , c) total x, d) overall force.

calcium concentration in muscle filaments, it is more likely

that it is a relative quantity that describes the time course

of the calcium decay, especially considering that Eq. (5)

contains no scaling factor, just a time constant of decay.

One would expect the absolute calcium concentration to be

higher in response to FETi stimulation due to the more ex-

tensive SR (Klowden, 2002) and the fact that fast fibres con-

tain about 2.5 times the number of Ca2+ release channels of

the SR in comparison to slow fibres (Baylor and Holling-

worth, 2003). This supports the theory that CN is a rela-

tive quantity that represents the time course of calcium de-

cay and gives the relative amount of calcium in muscle fil-

aments for each particular fibre, so one can not draw com-

parisons between the magnitudes of the two values of CN at

this stage. The amount of available calcium to form cross-

bridges (x(t)) (Fig. 10c) is predicted by the model to be

much greater in response to FETi stimulation, as expected.

Saturation occurs much later in the SETi response, shown

by the fact that the non-linearity is still a long way from the

maximum of 1 (Fig. 10c). This correlates with the fact that a

steady state force is reached much faster in response to FETi

stimulation.

These biomechanical processes are suggested rate-limiting

steps that the model describes. Without monitoring calcium

concentrations directly they cannot be verified. However, the

Simplified Adapted model provides a good description of

the expected behaviour of both fast and slow fibers.

The advantage of fitting models to data is that changes in

model parameters can be investigated and interpreted, thus

providing some quantification of the change in behaviour.

The differences between the responses of the two fibre types

can be quantified by both the differences in twitch character-

istics and by the differences in parameter estimates (given

in Tab 3). Different sets of locusts were used to estimate

the SETi and FETi parameters, hence this discussion of pa-

rameter differences focuses on broad average changes be-

tween the two stimulation types. The parameter that varies

the most between the FETi and SETi response is k, being

an order of magnitude larger in the fit to SETi data. The

value of k determines the shape of the nonlinear function

x(t). A larger value of k corresponds to saturation in the

force level occurring at a larger input value which is seen

to be the case in the SETi data. A comparison of the non-

linear functions is provided in Figure 10b, the main differ-

ences between the lines being due to the differences in the

parameter k. The parameter A is a gain, the value of A esti-

mated for the SETi response is consistently larger than that

estimated for the FETi response. However, the magnitude of

the FETi response is much larger, the majority of the differ-

ence in force levels is hence accounted for in the modelled

response by the difference in k, as opposed to A. The param-

eter τc is on average 1.7 times greater for the fit to SETi data.

This corresponds well with the increased contraction time of

the SETi response, the other time constant, τ1, being slightly

smaller for the SETi estimate. There are slight differences in

the estimate of m, however these differences are similar to

the differences observed across different locusts for the SETi

response (see Table 3). Thus the differences may simply be

due to the different sets of locusts used to estimate the mus-

cle parameters in response to each type of stimulation. Pre-

vious studies (Bernotas et al., 1986; Bobet and Stein, 1998)

that have fitted models to both the cat Soleus (a purely slow

muscle) and Plantaris (a fast, fatigable muscle composed of

mixed fibers), also report different parameter values for the

fit to the different muscle types. In the model of Bobet and

Stein (1998), which has a very similar form to the Simplified

Adapted model (see Wilson et al. (2011)) for further com-

parisons of models), the rate constants and gain were greater

( 2-3 times) for the Plantaris compared to the Soleus, while

the other parameters did not vary much.

5 Conclusions

In this study the isometric response of the locust hind leg

extensor muscle to SETi stimulation was investigated, pro-

viding more data on the relatively poorly understood me-

chanical response to SETi stimulation. The measured force
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response was compared to the response of ETi to FETi stim-

ulation, and the responses seen to differ significantly. De-

spite the significant differences in the force traces, a model

developed to describe the response to FETi stimulation also

provided a reasonable description of the SETi response if

the parameters took different values. The presented model is

thus able to describe the response to different neural inputs,

across a wide range of different output forces, and hence

provides a potentially generally applicable model of muscle

response.
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