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Abstract

In this paper a new method for choosing the parameters of a Two Degree-of-Freedom
(2DOF) Tuned Vibration Absorber (TVA) with translational and rotational degrees of
freedom is described. The dynamic stiffness approach is used to model the device, which is
constrained to move in the translational direction and to rotate. The choice of the parameters
involves a procedure similar to that proposed by Den Hartog in the optimization of a single
DOF TVA, in which the invariant (fixed) points of the frequency response function of the
TVA and the host structure are used to determine the stiffness of the TVA for a given mass. In
this paper the approach is extended and applied to the design of a 2DOF TVA, and a
numerical procedure is used to determine the optimum amount of damping. The method is
simple and easy to implement. A numerical example is presented to compare the performance
of the 2DOF TVA designed using the method described here with the optimal 2DOF TVA. It

is shown that the performances of the TVAs are similar, validating the new approach.
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1. Introduction

A conventional Tuned Vibration Absorber (TVA) is a Single Degree-of-Freedom (SDOF)
system, which can be used to suppress a troublesome resonance or to attenuate the vibration
of a structure at a particular forcing frequency. The SDOF TVA is a well established vibration
control device which has attracted the interest of many researchers since it was firstly
proposed by Frahm about a century ago [1] in the configuration of a mass-spring system.
Ormondroyd and Den Hartog [2] showed that the introduction of damping in the TVA can
broaden the frequency range over which the device is effective. Den Hartog [3] suggested a
two-step design technique which is still in use today. First, the resonance frequency is chosen,
and second the optimal level of damping is determined. This technique is based on the
observation of the existence of two invariant (fixed) points in the frequency response function
of the TVA and the host structure, which do not change with the damping in the TVA. The
TVA is optimally tuned when the responses of the system at the two fixed points is set to be
equal [3]. The optimal value of damping is then obtained by averaging the two damping
coefficients obtained by setting to zero the derivative at the two fixed points [3,4]. This
pragmatic approach is a simple design procedure which gives very good performance.
However, this approach does not give an optimal design for the system response to broadband
vibration. Crandall and Mark [5] proposed an optimization method for the optimal design of
the TVA which minimizes the H, norm of the response of the system. When the host
structure is damped, different optimal values are obtained and different design techniques
have been proposed [6,7] to determine the optimal parameters of the TVA. More recently,
Asami et al. [8] summarized the above research when the host structure is damped for three

different optimization criteria: £/ optimization, /, optimization and most rapid
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attenuation of free vibration. In recent times, the simple configuration of an SDOF TVA has
been modified with the aim of improving the performance of such a device. For example,
Snowdon [9] considered a three-element TVA in which the damper is connected in series with
a spring and showed that such a device can be more effective than a conventional TVA of the
same mass. More recently Cheung and Wong [10-12] studied a TVA where the damper is
connected to the ground instead of the mass of the host structure. Other researchers have tried
also to introduce nonlinearities in the TVA to improve the performance, for example [13,14].

The use of multiple TVAs has also been considered. Snowdon [9] suggested the use of an
undamped TVA of small mass tuned to the problematic frequency connected in parallel with a
conventional damped TVA. He showed an improvement in the response of the conventional
TVA by the introduction of a significant trough in the frequency response function. The initial
idea of using two TVAs in parallel has been further developed providing different design
guidelines by Snowdon et a/ [15]. Brennan [16] demonstrated that the use of multiple TVAs
in parallel tuned to slightly different frequencies can be used to create an effective broadband
device. Techniques for the optimal design of multiple TVAs have been recently proposed by
Zuo and Nayfeh [17]. Zuo [18] has also proposed to connect multiple TVAs in series. He
showed that this configuration is more effective than an SDOF TVA of the same mass, and he
provided ready-to-use design charts for the use of two TVAs in series.

In this paper a single TVA with two degrees-of-freedom (2DOF) is of interest. Zuo and
Nayfeh [19] first introduced the concept of a multi-degree-of-freedom TVA of this type. They
suggested a numerical procedure to find the optimal stiffness and damping coefficients of the
TVA that maximize the minimal damping of the multiple modes in a prescribed frequency

range. They treated the springs and dampers as position and velocity feedback elements



respectively and numerically solved for the static decentralized control problem. Jang and
Choi [20] considered an undamped multi-degree-of-freedom TVA, and tuned its six modes to
those of the main structure, providing analytical tuning conditions for its design. Zuo and
Nayfeh also presented a more detailed study on a 2DOF TVA [21] obtained by connecting a
planar mass to an SDOF main structure by two connection points. They obtained the optimal

values of the two sets of spring and damper coefficients which minimize the H, or H,

norms of the transmissibility when the system is subject to base excitation. They showed that
the 2DOF TVA can outperform two separate SDOF TVAs of the same mass. Recently Jang et
al [22] provided a further insight in the physics of the 2DOF TVA by examining the behavior
of a 2DOF TVA with very small moment of inertia. In this case the model of the device can
be simplified and reasons why it marginally outperforms the conventional SDOF TVA [21]
were given.

In this paper, the authors develop a model of a 2DOF with translational and rotational
degrees of freedom using the dynamic stiffness approach. Preliminary results of this study
were given in [23]. First, the dynamic stiffness of the TVA is derived, and this is used to study
the basic dynamics of the TVA as the moment of inertia is increased. Next, a design process
to determine the parameters of the 2DOF TVA based on Den Hartog’s method of fixed points
is described. Lewis [24] proved the existence of fixed points in the frequency response of
undamped multi-degree-of-freedom host structure with a damped SDOF TVA attached, and
Ozer and Royston [25] extended Den Hartog’s method to such systems. Here, Den Hartog’s
method of fixed points is extended to the case of a 2DOF TVA attached to an SDOF host

structure. Although this does not give an optimal result, it gives a result that is very close to



the optimal result, in the same way as when the method is applied to a SDOF TVA. It does,

however, have the advantage of being simple to apply.

2. DYNAMIC STIFFNESS MODEL OF THE TVA

The 2DOF TVA of interest attached to an undamped SDOF host structure is shown in Fig. 1.

The TVA mass m with moment of inertia J is connected to the host structure of mass 72, and

stiffness k, through two sets of springs and dampers k,, ¢, and k,, c,, respectively. It
may translate in the vertical direction and rotate around the mass center, as the host structure,
which is subject to base excitation, is constrained to vibrate in the vertical direction only. The
distances from the mass center to the set of springs and dampers are given by d, and d,.
The 2DOF TVA is shown in Fig 2(a). It may be described by a mass 7 and complex,

frequency dependent dynamic stiffness K as shown in Fig. 2(b).

To determine the dynamic stiffness K, the mass is blocked to translation, but rotation is
allowed, i.e., a pinned boundary condition is applied at the mass centre. Such dynamic
stiffness will take into account the rotational inertia of the mass. The effect of the
translational mass will be taken into account later. Using the mechanical impedance approach
[26], the two forces that pass through the set of springs and dampers are given by

Fi=aX +pX, (1a,b)
F,=pX +rX,
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stiffness of the two sets of springs and dampers is given by [26] K, =jaoc, +k, ,
K, =joc, +k, respectively, the forces and the moments about mass center of the mass

element can be summed to give
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The specific conditions for the system in Fig. 2 are FF=F +F, and X =X, =X,, so Egs.

(1a, b) combine to give
r 2
—=(a+2p8+ (2)
X ( p+7)

Substituting the values obtained for «, £ and y into Eq. (2) results in the following

expression for the dynamic stiffness

K_E_(dl+d2)2K1K2_Ja)2(K1+K2) (3)
X d’K, +d:K, - Jo’ '

When the frequency and/or the moment of inertia is large such that J@® is large, then the
mass is prevented from rotation, and Eq. (3) reduces to

K=(K, +K,) (4)
which is simply the dynamic stiffness of the parallel combination of stiffness and damping
elements of an SDOF TVA. When the frequency and/or the moment of inertia is small such
that Je® is small, then the force transfers from one spring damper set to the other through

the mass, largely unattenuated so that Eq. (3) reduces to



_(di+d,) KK, (5)
dl K, +d:K,

which represents a series combination of dynamic stiffness ¢,K;, and ¢, K, where
d+d,
+ o
q, = (‘sz . In both of these extreme cases, the inertia of the mass element plays no part
in the dynamics of the absorber as discussed in [22], but in the general case, away from these

extremes, the inertia does have an effect, causing a peak in the dynamic stiffness K at a

(d+d,) KK
(K, +K,)J

d K, +d;K,
J

frequency of o= 2 Itis

and a trough at a frequency of w= \/

this dynamic effect on the effectiveness of the TVA that is of interest in this paper. Note that

¢, and ¢, determine the contribution to the system of K, and K, respectively. When
d/d,—>0, ¢/q,>% and K~K,; and when d,/d, >» ¢,/q, >0 and K=K, .

When d,=d,, q,=q,=1/4 and the two sets of dynamic stiffness elements contribute

equally to the overall stiffness; additionally, if both sets of stiffness and damping are the same,

then the total dynamic stiffness is simply twice that of one of the sets of elements.

The dynamic stiffness the 2DOF TVA is the series combination of K and the mass m as
shown in Fig. 2(b), and is given by
1

i_ 1
K o'm

KTVA =

(6)

Substituting for K from Eq. (3) into Eq. (6) results in



~o’'m(K,K,-bo’ (K, +K,))

K. =
™ e’ —((b+q1m)K1 +(b+c]2m)K2)a)2 +K K, (7)
J
where 2=-""—"7 is the scaled inertia term.
(d,+d,)
3. Design of a 2DOF TVA

3.1 Undamped 2DOF TVA

To investigate the behavior of the 2DOF TVA, it is assumed that the springs and dampers
are placed equidistant from the centre of mass, such that d,=d, so ¢, =¢, = 1/4 . This does
not affect the generality of the approach, but reduces the algebraic complexity in this

illustration of the methodology. In this case, Eq. (7) reduces to

_ —40'm(K K, - bo* (K, + K,))
4bma* —(4b+m)K, + K, )o* +4K K,

TVA

®)
The peaks in the dynamic stiffness of the 2DOF TVA effectively become the anti-resonances

of the complete system when the TVA is attached to the host structure. Therefore, they play a
crucial role in the dynamics of the overall system. To determine the frequencies @, at

which they occur, the damping coefficients ¢, and ¢, are set to zero, and the denominator

in Eq. (8) is set to zero and solved to give

o) )= P (U, ) 160, ©)
1,2 s
’ au,

where



Fixing the ratio between the inertia term 4b and the mass 7 of the device, the gap
between the two tuning frequencies @, only depends on the stiffness ratio 4 . It is thus
possible to tune the two anti-resonance frequencies of the system by choosing the parameters

b, m, k and k,. Figure 3 shows these frequencies as a function of 4, for various

values of the stiffness ratio 4, . The advantage of a 2DOF TVA compared to an SDOF TVA

is that a smaller mass can be used to obtain the same performance, because of the exploitation

of the rotational inertia in the 2DOF TVA.

3.2 Damped 2DOF TVA

In this section, the damped 2DOF TVA is used to attenuate the single resonant peak of an
undamped SDOF system subject to base excitation. The aim is to reduce the vibration of the
host structure over a frequency band and not at a particular harmonic excitation frequency. To
achieve this, the fixed point technique for the damped SDOF TVA [2] is extended to the
2DOF TVA. This approach makes the design process very quick and simple. The
performance of the TVA designed using strategies based on optimal control theory [21] is
compared with the proposed method.

Since the fixed points occur if the system has a single damper, a damped 2DOF TVA with

single damper ¢, is now considered. Moreover, as previously shown, the presence of the

second damper only influences the frequency response at high frequencies, well above the

tuned frequencies of the TVA. Its effect on the performance around the resonance frequencies
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of interest is thus negligible. It is noted that the optimal results obtained from numerical work
in [21] were also for a 2DOF TVA with a single damper, i.e., ¢, =0.

For an undamped SDOF host structure, with dynamic stiffness K, =k, — @’m_, the motion
transmissibility from the base to the mass of the host structure is given by [22]

T_Xs _ ks
Xe KS+KTVA ’

(10)
The magnitude of 7 can be obtained by substituting for K and Ky, . This can be

rewritten in terms of non-dimensional variables to give

0| —

|T|= (_Q4+2V292_4v4ﬂa7l(l_ﬂa)(2_72’1))2+4§2(VQ3—4v3/1a(1—/1u)(2—71)Q)z . (11)
Q° ~(1+2v" + 2 0" —v(l+ p, 1)’
v+ av (1= i+ 2= )07 | +4¢7) vl avi, (1= 1, N1+ )27 )00

=4yt p,)2-7) —avy (1- 1, \2-7, )02
w _ w
Where Q:_a a)s: kS 9ma: 4bm :m(l—}_lun;l)la ka:k1+k2, a)a: ka B V= aa
a)s m, 4b+m 2 m, a)s
p= e (L) G =S and = =214 )
ms ) /Lla m /le ) zmaa)a ) 1 ka k .

Ormondroyd and Den Hartog [2] discovered the existence of two fixed points in the
frequency response of a force excited undamped SDOF system with an attached an SDOF
damped TVA. They observed that all the curves pass through the same two points regardless
of the damping in the TVA. Moreover these two points move depending on the ratio of the
stiffness of the TVA to the host structure. They then found the most suitable parameters for

the TVA by
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1. Adjusting the stiffness of the TVA so that the response at the invariant points
was the same

2. Adjusting the damping so that the frequency response curves had a
horizontal tangent through one of them (to reduce the frequency response to
a minimum).

The existence of invariant points can also be observed when a 2DOF TVA is mounted on a
SDOF undamped system, such as that shown in Fig 1. Figure 4 shows the frequency response
given by Eq. (11) for the parameters used in [21]. When the damping is zero there are two
anti-resonances, where the response is zero, as discussed in the last section, and there are

three resonances. When the damping is infinite the TVA behaves as an SDOF TVA, since the
mass can only pivot around the point of connection with K, and thus only one antiresonance
and two resonances are observed. However, when moderate damping is present the
amplitudes at the resonance frequencies are reduced and the response at the anti-resonances is
no longer zero. When the damping ratio is ¢ =0.1482 an optimal design, as discussed in

[21] is obtained, and this is illustrated next.

The four frequency response functions in Fig. 4 intersect at four invariant points (expressed
as red dots). These are the fixed points [2] and are used to determine the optimum parameters
of the 2DOF TVA. The location of the fixed points can be found observing that at certain
frequencies Eq. (11) is not dependent on damping [3]. Thus, equating the transmissibilities at

¢ =0 and © from Eq. (11) yields [27]

4_,
B

wlle)

(12)
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where

A=-Q' + 2’ 4ty y, (1— w1, )2 - 7,)

B=0F —(1+207 + 2021, 100" + (207 +4v* 1,3, (1= p1, 2 — 7, U+ )2 =40 1,1, (1- 1, )2~ 7,)
C=1" =4 p, (1- 1, )2 -7, )02

D =—v(1+ )" +v(1+ 402, (1= 1, N1+ )2 =7, )00 =401, (1- 1, )2 - 7 )02

The transmissibilites with zero and infinite damping ratio are in opposite phase at the fixed

points. The negative sign on the right side of Eq. (12) is thus taken and expanding it yields

(24 a1, )00 =201+ 207 + 202, (4 (2= 7, 1 - g1, Y2+ )JO2°
w421+, 2=y MU= N2+ 42 V2 2y, 4 @4 7 1+ )20
=80, 2= 7 MU, 2k 7 (1 42, (2= 7 o= g N+ )02
+36v yus (27, ) (1, ) =0

(13)

Solving Eq. (13) yields four Qf.. (i = 1~--4) which are related to the frequencies of the
fixed points. The sum of them is another invariant that can be used in the TVA design and is

given by

4 211+ 2v? +Q2=-y 1-u )2+
ZQéxcd,i: ( V/'la(/u 2(+/u7//1u)( /’la)( lu))) (14)

It is also possible to find the frequencies, Qionst’,- (i = 1---4) corresponding to the four points

with the same amplitude of response |T from Eq. (11) with ¢ — o, which results in

const

Qv (1- p,)2-7) |

|
T = i
onst (1 )+ (L a2, (1=, N+ )27 )02 = 4v2 (-, N2 - 7))

(15)

Squaring both sides of Eq. (15) and rearranging yields

13



T (P Q8 2T (14, a)1+-4v 2, (14 )2 =7, )1 - g1, )0
141 +8TE v - )-u,) o
(ot gt a1, (402 + =225, (1= g2, N1 12 +200, (14 0} —202+ ))) (16)
—8v2 0, (2 N g N1+ T +ATE v, (1= 1, o 2
)

16227 P -, P, )=0

const const

+

From Eq. (16), the sum of the squares of the four frequencies, Qf,onst,,- is given as

ZQZOHS” 2+ 4, (1= N1+ 1, )2 )

17
I+ p,p (17)

The first step in Den Hartog’s method to determine the optimum parameters for an SDOF

TVA is to find the values of stiffness and mass which align the two fixed points. In the 2DOF
TVA the parameters (4, #,, 7,,and V) need to be adjusted to align the four fixed points in

the same amplitude of response. To ensure that the response does not have any peaks in the
frequency range of interest, such that the response is relatively flat, Eqs. (14) and (17) are set

to be equal. This results in

1
) \/2 + 241, (= 40+ )+ 7, (U= g2, 2+ 2B+ g, )+ 1, (4= a6+ (1 -212,)))

(18)

By fixing the mass ratio #, it is possible to find the value of vV for any pair of (4,, 7,) in

the ranges 0<u, <1 and 0<py, <2 (these ranges correspond to the minimum and

maximum values of the non-dimensional parameters). Substituting the values into Eq. (13),
the frequencies at which the fixed points occur can be obtained. However, Eq. (18) gives only
a necessary, but not sufficient condition for the four fixed points to have the same

transmissibility. Thus another constraint is needed. As a measure of the difference between

the transmissibilities of the fixed points, the standard deviation S(,U,ﬂa,%) 1s calculated. As
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with the SDOF case, this quantity does not vary with ¢ . Fig. 5 shows the standard deviation
in the transmissibilities of the fixed points when the mass ratio # has been fixed to 0.05. As
shown in Fig. 6, for every # there are two minima in the functions, that is there are only
two optimal values of the pair (£,, 7,). The minimum values have been found numerically
and their values as function of the mass ratio # are shown in Fig. 6(a) and 6(b). Fig. 6(c)
shows that the standard deviation is generally very small for the optimum values and
becomes increasingly smaller for a larger mass ratio.

The parameters of the 2DOF TVA can be selected by the following two steps.

1. Fix the mass ratio, #. Fig. 5 can then be used to select the pair of £, and

7, which gives the smallest standard deviation and consequently the
parameter V is found from Eq. (18).

2. The damping ratio ¢ which minimizes the frequency response is chosen.
This could be done by taking the average of the values which bring to zero
the derivative of the transmissibility at the fixed points, similar to Den
Hartog’s method. However, here a numerical method which minimizes the

area of the transmissibility is used, to achieve a better performance.

4. Numerical example

To demonstrate the design process, a host structure consisting of an undamped SDOF

system is considered. Assuming a mass ratio £ =0.05 the two points where the standard
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deviation becomes very small correspond to 7, =0.8648 1, =0.3809 and y, =1.088,

1, =0.5964 . Choosing y, =1.088 and r, =0.5964, v is found to be 0.9220.
The non-dimensional frequencies of the fixed points are 0.8174, 0.8495, 0.9412, and 1.0901
and the magnitude of transmissibility at these frequencies is 14.7 dB to one decimal place.
Finally, substituting all the parameters into Eq. (11) and searching numerically for the
damping coefficient which gives the minimum area of the transmissibility yields ¢ =0.1510.
The obtained parameters of the 2DOF TVA are listed in Tab 1. Figure 7 gives the frequency
response of the transmissibility for three damping values, in which it is shown that the four
fixed points have the same amplitude.

The transmissibility of the system optimised according to the method proposed above is

compared with that obtained in [21] where an optimal control approach was used to

determine the optimum parameters of the TVA. The ||H ||2 value obtained from [21] is
2.0189 and the design method proposed here gives an ||H ||2 value of 2.0480, which is only

about 1.5% larger than the optimal value. For every pair of », and #,, the optimal ||H ||2
value of transmissibility of the system is found by numerical optimization for each v and
¢, and is illustrated in Fig. 8. The design point, (1.088, 0.5964) determined using the

method in this papers (expressed as a white dot) is located very close to the optimum point.
Figure 9 shows the transmissibility of the system in Fig 1 when the 2DOF TVA is optimized
using the method in [21] and also when the parameters of the 2DOF TVA are chosen

according to the method described in this paper. The performance of an optimally tuned

SDOF TVA [4], which has an ||H ||2 value of 2.1241, for comparison. It can be seen that the

16



2DOF TVA designed using the method proposed above outperforms the SDOF TVA and

slightly underperforms the optimal 2DOF TVA.

5. Conclusions

This paper has described a method of choosing the parameters of a 2DOF TVA by
developing the method of fixed points proposed by Den Hartog. A dynamic stiffness model of
a damped 2DOF TVA with translational and rotational degrees of freedom was first derived.
It was shown that the dynamic characteristics of such a system are strongly influenced by the
rotational inertia of the TVA. In particular, for a small moment of inertia, or at low frequency,
the effect of the rotational inertia is negligible and the two spring-damper elements behave as
if they are connected in series. For a large moment of inertia, or at high frequencies, the
system reduces to a conventional SDOF TVA. Between these two extremes the characteristics
of the TVA change allowing the performance of the TVA to be marginally enhanced with
respect to a conventional device.

Design guidelines for the use of 2DOF TVA with an SDOF undamped host structure have
been given. The design procedure guides the choice of stiffness and mass, leaving only the
damping to be determined numerically. It has been shown that the performance of 2DOF TVA
with parameters chosen using the simple and pragmatic design procedure given in this paper

is broadly comparable to that of an optimally designed 2DOF TVA.
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Figures

Fig. 1. Base-excited SDOF system with 2DOF TVA attached.
Fig. 2. A 2DOF TVA. (a) actual TVA, (b) equivalent model in which K is the dynamic

stiffness of the combination of stiffness, damping and rotational inertia of the TVA.

Fig. 3. Anti-resonance frequencies @, of the 2DOF TVA for different stiffness ratios:
#,=0.01 (*), 0.1 (o), 1 (solid line), 10 (<), and 100 (D).

Fig. 4. The transmissibility amplitude of the system in Fig. 1 for different values of the
damping ratio: dotted red line ¢ =0, thin green solid line ¢ =0.05, thick black solid line
¢ =0.1482, dashed blue line ¢ =00, The fixed points are expressed as red dots. (£ =0.05,
u,=0.3781, v=1.0828, y, =0.8528)

Fig. 5. Contour map for standard deviations of the magnitudes of the fixed points in dB for a
fixed mass ratio of £ =0.05.

Fig. 6. (a) and (b): Optimal values of the two pairs (4,, y,) which give the minimum

standard deviation in the four invariant points. (¢) minimum standard deviation for the two
optimal pairs. Pair 1: continuous line, Pair 2: dashed line.

Fig. 7. Transmissibility of the system in Fig 1 with the following non-dimensional
parameters: 4#=0.05 n, =0.5964 v =0.9220, y, =1.088, and three different values of

damping in the TVA; ¢ =0 (dotted red line), ¢ =0.1510 (solid blue line: optimal), and
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¢ = (dashed green line). The horizontal line shows the leveled magnitude of
transmissibility of fixed points.

Fig. 8. Contour map for optimal ||H ||2 values in dB for every y, and g,. The white dot

shows the proposed design point using the method described in this paper.
Fig. 9. Comparison of the transmissibilities of the system in Fig 1 when the parameters of the

2DOF TVA are chosen in different ways: optimal SDOF TVA [4] (dotted green line), optimal
||H ||2 2DOF TVA [21] (dashed red line), 2DOF TVA with design parameters given in Table 1

(solid blue line)

Tables

Table 1. Design parameters for a damped 2DOF TVA applied to a main structure
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Figure 2b
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Figure 6a
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Table(s)

Tables
The present method Optimal |H|, [21]
# 0.05 0.05
H, 0.5964 0.3781
7 1.088 0.8528
v 0.9220 1.0828
& 0.1510 0.1482

Table 1. Design parameters for a damped 2DOF TVA applied to a main structure



