
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Error Resilient Techniques for Storage Elements of Low Power Design

by

Sheng Yang

Thesis for the degree of Doctor of Philosophy

July 2013

mailto:sy08r@ecs.soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

ERROR RESILIENT TECHNIQUES FOR STORAGE ELEMENTS OF LOW

POWER DESIGN

by Sheng Yang

Over two decades of research has led to numerous low-power design techniques being

reported. Two popular techniques are supply voltage scaling and power gating. This

thesis studies the impact of these two design techniques on the reliability of embedded

processor registers and memory systems in the presence of transient faults; and with the

aim to develop and validate efficient mitigation techniques to improve reliability with

small cost of energy consumption, performance and area overhead.

This thesis presents three original contributions. The first contribution presents a tech-

nique for improving the reliability of embedded processors. A key feature of the technique

is low cost, which is achieved through reuse of the scan chain for state monitoring, and

it is effective because it can correct single and multiple bit errors through hardware and

software respectively. To validate the technique, ARM R© Cortex
TM

-M0 embedded mi-

croprocessor is implemented in FPGA and further synthesised using 65-nm technology

to quantify the cost in terms of area, latency and energy. It is shown that the presented

technique has a small area overhead (8.6%) with less than 4% worst-case increase in

critical path. The second contribution demonstrates that state integrity of flip-flops is

sensitive to process, voltage and temperature (PVT) variation through measurements

from 82 test chips. A PVT-aware state protection technique is presented to ensure state

integrity of flip-flops while achieving maximum leakage savings. The technique consists

of characterisation algorithm and employs horizontal and vertical parity for error de-

tection and correction. Silicon results show that flip-flops state integrity is preserved

while achieving up to 17.6% reduction in retention voltage across 82-dies. Embedded

processors memory systems are susceptible to transient errors and blanket protection

of every part of memory system through ECC is not cost effective. The final contri-

bution addresses the reliability of embedded processor memory systems and describes

an architectural simulation-based framework for joint optimisation of reliability, energy

consumption and performance. Accurate estimation of memory reliability with targeted

protection is proposed to identify and protect the most vulnerable part of the mem-

ory system to minimise protection cost. Furthermore, L1-cache resizing together with

voltage and frequency scaling is proposed for further energy savings while maintaining

performance and reliability. The contributions presented are supported by detailed anal-

yses using state-of-the-art design automation tools, in-house software tools and validated

using FPGA and silicon implementation of commercial low power embedded processors.

mailto:sy08r@ecs.soton.ac.uk


iv



Contents

Declaration of Authorship xv

Acknowledgements xvii

1 Introduction 1

1.1 Impacts of Technology Scaling . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Power Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Dynamic Power Reduction . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Leakage Power Reduction . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Reliability of Digital Designs . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Permanent Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Transient Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Error Control Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 CRC Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Low Power Reliable Design Challenges . . . . . . . . . . . . . . . . . . . . 13

1.6 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.1 Journal Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.2 Conference Publication . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Review 17

2.1 Reliability of Power-gated Designs . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Reliability of Voltage Scaled Designs . . . . . . . . . . . . . . . . . . . . . 20

2.3 Impacts of Process Variation on Reliability . . . . . . . . . . . . . . . . . 21

2.4 Impacts of Soft Errors on Reliability . . . . . . . . . . . . . . . . . . . . . 24

2.5 Embedded Processor Reliability . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Improving The Reliability of State Retention Designs 29

3.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Step 1: Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Step 2: Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Step 3: Synthesis Flow . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Case Study 1: FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Error Generation and Injection . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Trade-off Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



vi CONTENTS

3.3 Case Study 2: ARM Cortex-M0 . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Processor System Components . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Error Generation and Injection . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.4 Trade-off Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Improving the State Integrity of Flip-flops under PVT Variation 71

4.1 State Integrity Challenges under PVT Variation . . . . . . . . . . . . . . 72

4.1.1 Measuring Inter-die Process Variation Impact on State Retention . 75

4.1.2 Effect of within Die Process and Voltage Variation . . . . . . . . . 78

4.1.3 Effect of Temperature Variation . . . . . . . . . . . . . . . . . . . 80

4.2 PVT Aware State Protection Technique . . . . . . . . . . . . . . . . . . . 83

4.2.1 MRV Characterisation Algorithm . . . . . . . . . . . . . . . . . . . 84

4.2.2 MRV Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Two-dimensional Parity for Improving Flip-flops State Integrity . . 86

4.3 Test Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Improved State Integrity . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.2 Aggressive Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Modelling Framework to Optimise Memory System Reliability 101

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Framework for Memory System Reliability Analysis . . . . . . . . . . . . 103

5.2.1 Hardware Configuration Method . . . . . . . . . . . . . . . . . . . 104

5.2.2 Benchmark Applications . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.3 Reliability, Performance and Energy Profiling . . . . . . . . . . . . 108

5.2.4 Modelling voltage and frequency scaling . . . . . . . . . . . . . . . 114

5.3 Reliability, Performance and Power Analysis . . . . . . . . . . . . . . . . . 116

5.3.1 Impact of VFS on reliability, performance and energy . . . . . . . 117

5.4 Cost Effective Reliable Design Methodology . . . . . . . . . . . . . . . . . 122

5.4.1 Improve L1-cache Reliability through Resizing . . . . . . . . . . . 123

5.4.2 Energy Minimization through Dynamic ECC Protection and Cache
Resizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusion and Future Work 135

6.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Future Work Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 Improving Reliability of Power Management Hardware . . . . . . . 139

6.2.2 Reliability Enhancement of Multi-core Processors through
Hardware-Software Co-design . . . . . . . . . . . . . . . . . . . . . 139

A Low Power Embedded Processors 141

B Embedded Processor Power Domain Description 143



CONTENTS vii

C Firmware For Software Recovery 147

D HSPICE Monte-Carlo Simulation 153

E Example Script for Joint Optimisation 157

References 159





List of Figures

1.1 Clock gating architecture [22]. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Power gating design architecture . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 State Retention Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Scaled voltage leakage reduction . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Relation between leakage power and supply voltage when ARM926 pro-
cessor is in idle mode for 65nm technology . . . . . . . . . . . . . . . . . . 8

1.6 Available leakage reduction techniques and their trade-offs . . . . . . . . . 8

1.7 CRC generation using Linear Feedback Shift Register (LFSR) [64]. . . . . 13

1.8 Technology scaling and its effects on performance, power and reliability . 14

2.1 Ground bounce in power-gated design [65]. . . . . . . . . . . . . . . . . . 18

2.2 Change power switches arrangement for ground bounce reduction [65]. . . 19

2.3 Energy dissipation under different supply voltage [74]. . . . . . . . . . . . 20

2.4 Archiecture of the Canary-based feedback loop for SRAM standby VDD

scaling [79]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Schematic of Canary cell (a) for storing ‘1’ and (b) for storing ‘0’ [79]. . . 22

2.6 Variations of threshold voltage, effective channel length and carrier mo-
bility for 65nm CMOS [90]. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Charge collection in a silicon junction (a) after an ion strike, (b) during
drift collection, (c) during diffusion collection, and (d) junction current
induced as function of time [13]. . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Critical charge and supply voltage in the presence of process variation. . . 26

3.1 Architecture of State Monitoring and Recovery Block (SMRB). . . . . . . 31

3.2 Reuse and partition manufacturing test scan chain for state monitoring. . 33

3.3 Scan chain configurations (a) state monitoring (b) manufacturing test. . . 33

3.4 Control sequence (a) conventional (b) proposed Power and State Moni-
toring Controller (PSMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Power and State Monitoring Control timing diagram . . . . . . . . . . . . 35

3.6 Power and State Monitoring Controller block diagram . . . . . . . . . . . 35

3.7 Example code snippet for (a) power gating control and (b) scan based
ECC control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Proposed design flow for reliable state retention power gating design . . . 38

3.9 Xinlinx ML505 FPGA evaluation board for functional verification of the
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.10 FPGA test bench for functional verification of the method . . . . . . . . . 39

3.11 Error injection architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Error injection patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.13 Linear Feedback Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



x LIST OF FIGURES

3.14 FIFO case study: CRC code implementation trades offs . . . . . . . . . . 44

3.15 FIFO case study: Hamming code implementation trades offs . . . . . . . . 45

3.16 The probability of erroneous test sequence after error correction when
multiple errors injected in each test sequence of 1000 flip-flops . . . . . . . 46

3.17 ARM Cortex-M0 processor platform block diagram . . . . . . . . . . . . . 48

3.18 ARM Cortex-M0 processor platform with state monitoring and recovery
block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.19 Block diagram of the proposed state monitoring and recovery technique
using ARM Cortex-M0 as a case study. . . . . . . . . . . . . . . . . . . . 50

3.20 Control flow of error detection and state recovery mechanism. . . . . . . . 51

3.21 General purpose input and output port schematic . . . . . . . . . . . . . . 52

3.22 Universal asynchronous receiver and transmitter schematic . . . . . . . . 53

3.23 Sleep controller state machine . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.24 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.25 Interrupt controller state machine . . . . . . . . . . . . . . . . . . . . . . . 55

3.26 Programmer converts text file to data in ROM . . . . . . . . . . . . . . . 56

3.27 Processor Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.28 Cluster error injection implementation . . . . . . . . . . . . . . . . . . . . 58

3.29 Error distribution using error injection method shown in Algorithm 1 . . 59

3.30 Hardware error injection architecture . . . . . . . . . . . . . . . . . . . . . 59

3.31 Detection Capability of CRC-8 and CRC-16 on Cortex-M0 as a case study 60

3.32 The system failure rate with and without hardware error recovery on
Cortex-M0 as a case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.33 Error correction capability of Hamming codes and error detection capa-
bility of CRC-16 at bit error probability of 0.005 to 0.05 errors/bit. . . . . 62

3.34 Trade-off analysis between leakage power saving and sleep frequency of
the processor core at 0.5-V supply voltage . . . . . . . . . . . . . . . . . . 68

4.1 Test silicon fabricated and packaged for evaluation. . . . . . . . . . . . . . 73

4.2 Schematic of master-slave flip-flop. . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Simulated results showing noise margins of a typical flip-flop for state
retention (Figure 4.2) when operating at 0.3-V, and reduced noise margins
due to process variation at fast-slow and slow-fast corners. . . . . . . . . . 74

4.4 Results from 82 dies and Monte-Carlo simulations showing the spread of
first failure voltage point of voltage-scaled flip-flop for state retention in
room temperature (25◦C). . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Measured results showing failure bit locations mapped on the circuit phys-
ical layout in the retention register block of the test chip. . . . . . . . . . 77

4.6 Measured results showing the distribution of failing voltage point of flip-
flops at reduced supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Measured results from 82 dies showing voltage difference between flip-
flop’s first failure voltage and subsequent failure voltages, three dies were
selected from the population and re-numbered 1-2-3. . . . . . . . . . . . . 80

4.8 Measured results showing the first failing voltage point of flip-flops due
to within-die temperature variation. . . . . . . . . . . . . . . . . . . . . . 81



LIST OF FIGURES xi

4.9 Measured results of Intra-Die PVT Variation on delay of the test chip.
These results demonstrate that due to change in temperature the effect
of within die process variation gets worse as shown by within die higher
normalised delay variation. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 Measured test chip leakage power normalised to 1.2V nominal supply
voltage at 25◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Process and Temperature Variation Aware Minimum Retention Voltage
(MRV) Characterisation Algorithm at 25◦C. . . . . . . . . . . . . . . . . . 84

4.12 Control Flow for State Monitoring and Protection of Flip-Flops for Voltage-
Scaled State Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.13 Vertical and horizontal parity protected retention register block. . . . . . 87

4.14 Vertical and horizontal parity insertion synthesis flow. . . . . . . . . . . . 88

4.15 Test chip architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.16 8192 flip-flops divided into 8 blocks register array each with 128 flip-flops,
there are two mode of operations . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 Power configuration of flip-flop state integrity experiment. . . . . . . . . . 91

4.18 Memory map of components used for flip-flop state integrity experiments. 91

4.19 Power intent of flip-flop state integrity experiment. . . . . . . . . . . . . . 93

4.20 Level shifter schematic [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.21 Synthesis and physical implementation flow. . . . . . . . . . . . . . . . . . 96

4.22 Final layout of test chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.23 Measured Leakage Power at room temperature normalised to 1.2 V supply
voltage: With ECC vs. Without ECC. . . . . . . . . . . . . . . . . . . . . 99

5.1 ECC overhead in terms of (a) area (b) energy [169]. . . . . . . . . . . . . 102

5.2 Low-medium performance microprocessor memory hierarchy . . . . . . . . 103

5.3 Proposed framework to analyse reliability, performance and energy con-
sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Example Python script for GEM5 used to configure (a) processor core (b)
cache memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Code and data size of MiBench benchmark applications (Memory footprints)109

5.6 Storage cells data lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Collection of vulnerable time slices. . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Memory system architecture and read/write access monitor . . . . . . . . 111

5.9 Example code for main memory (DRAM) read and write monitoring . . . 112

5.10 Example code for cache (L1 and L2) read and write monitoring . . . . . . 113

5.11 Block diagram of McPAT [178] . . . . . . . . . . . . . . . . . . . . . . . . 114

5.12 (a) Measured clock frequency under supply voltage scaling for 65nm low-
power technology library, (b) Measured leakage power under supply volt-
age scaling for 65nm low-power technology library at room temperature. . 115

5.13 Power domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.14 Memory components vulnerable storage . . . . . . . . . . . . . . . . . . . 118

5.15 Average, minimum and maximum vulnerable storage of memory compo-
nents across applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.16 Distribution of memory component error rate for MiBench benchmark
applications: (a) L1 Instruction Cache (I-Cache), (b) L1 Data Cache (D-
Cache), (c) L2 cache and (d) DRAM. The error rate is normalised to the
worst case error rate of each memory component. . . . . . . . . . . . . . . 119



xii LIST OF FIGURES

5.17 Processor system power distribution at nominal supply voltage of 1.2V . . 120

5.18 The power reduction through VFS when compared with nominal supply
voltage of 1.2V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.19 The processor core and L1-cache power consumption as a percentage of
system power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.20 The impact of VFS on performance measured with Instruction Per Cycle
(IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.21 The L1-cache miss latency expressed as percentage of runtime under VFS. 121

5.22 Energy reduction through VFS when compared with nominal supply volt-
age of 1.2V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.23 The impact of voltage and frequency scaling on L1-cache reliability. . . . . 122

5.24 Cost effective and reliable processor system design flow. . . . . . . . . . . 124

5.25 L1-cache resizing impact on (a) L1-cache reliability and (b) L2 cache
reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.26 The impact of L1-cache resizing on vulnerable time. . . . . . . . . . . . . 126

5.27 The impact of L1-cache resizing on performance. . . . . . . . . . . . . . . 126

5.28 The impact of L1-cache resizing on (a) reliability, (b) performance, (c)
energy under 0.85V supply voltage across applications. . . . . . . . . . . . 128

5.29 Combined effects of VFS and L1-cache resizing on (a) energy (b) reliability.129

5.30 Reliability and performance constrained energy optimisation algorithm. . 130

5.31 Example of Reliability, Power and Performance Profiles (RPPP). . . . . . 131

5.32 Example of reliability and performance constrained energy optimisation
for application “lame”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Various Aging Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 ARM Cortex-M0 processor block diagram [187]. . . . . . . . . . . . . . . . 142

A.2 ARM Cortex-M0 based embedded processor system block diagram. . . . . 142



List of Tables

3.1 FPGA fault injection, error detection and correction result . . . . . . . . 43

3.2 Encoding and decoding circuit area overhead, power, latency and energy
consumption for CRC-16 code with different scan chain configurations . . 43

3.3 Encoding and decoding circuit area overhead, power, latency and energy
consumption for Hamming (7,4) code with different scan chain configura-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Encoding and decoding circuit area overhead, power, latency and correc-
tion capability of code to protect state for different Hamming codes . . . 46

3.5 Parameters for calculating area, latency, power and energy consumption
for hardware corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Error detection (CRC-16) overhead on timing, area, latency, power and
energy consumption using different scan chain configurations . . . . . . . 65

3.7 Error correction (Hamming) overhead on timing, area and energy con-
sumption using different scan chains configuration . . . . . . . . . . . . . 67

4.1 Measured results for three selected dies shown in Figure 4.7 at 79◦C in
“Sleep State”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 System configuration used in analysis . . . . . . . . . . . . . . . . . . . . . 106

5.2 MiBench benchmarks [177] . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Benchmarks size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Normalised voltage and frequency scaling table . . . . . . . . . . . . . . . 115

5.5 Energy saving by combining VFS, L1-cache resizing and dynamic protec-
tion under memory components reliability constraint of 2.5× 105λbit, the
constraint is chosen for demonstration purposes . . . . . . . . . . . . . . . 132

xiii





Declaration of Authorship

I, Sheng Yang , declare that the thesis entitled Error Resilient Techniques for Storage

Elements of Low Power Design and the work presented in the thesis are both my own,

and have been generated by me as the result of my own original research. I confirm

that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as listed in Chapter 1 Section 1.7

Signed:.......................................................................................................................

Date:..........................................................................................................................

xv

mailto:sy08r@ecs.soton.ac.uk




Acknowledgements

I am indebted to my supervisor professor Bashir M. Al-Hashimi for his supervision and

continuous guidance throughout my PhD. I have learnt tremendous amounts from him,

and especially, I am inspired by his research vision and devotion to work. This PhD

project would not have been possible without his supports and encouragement. I would

also like to extend my deepest gratitude to my industrial advisor professor David Flynn

for his excellent technical advice and suport, and invaluable discussions on research

ideas. My thanks also go to Dr. Saqib Khursheed and Dr. Harry Oldham for their

insightful discussions and reviewing of this work.

I would like to thank the Engineering and Physical Sciences Research Council (EPSRC)

for supporting my work by means of scholarship, the ARM-ECS Research Center in the

School of Electronics and Computer Science, University of Southampton for providing

state of the art research facilities. I want to thank ARM Ltd. for allowing me to spend

4 months working at their offices for my Ph.D. My special thanks goes to James Myers,

John Biggs, Anand Savanth and Karthik Sivashankar from ARM, and Matthew Swabey

from Purdue University, for their technical support in successfully fabricating and testing

the silicon chip used in this thesis. I also benefited from the technical discussions with Dr.

Shidhartha Das, David Bull, Sachin Idgunji, Dave Howard and Dr. Paul Whatmough

during my time in ARM.

I would like to take this opportunity to acknowledge my colleagues for their invaluable

support and useful discussions throughout my Ph.D. These people include, but are not

limited to: Dr. Rishad Shafik, Dr Geoff Merrett, Dr. Amit Acharyya, Dr. Saqib

Khursheed, Dr. Mustafa Imran-Ali, Dr. Zhou Dafeng, Dr. Aissa Melouki, Hamed

Shahidipour, Dr. Jatin Mistry, Dr. Zhong Shida, Jedrzej Kufel and Luis Maeda-Nunez.

And finally, I like to offer warmest thanks to my father Shuijin Yang, my mother Ping

Zhang, and my girl friend Yunxu Zhang for their love and support, without which it

would not have been possible for me to do my research.

xvii





Chapter 1

Introduction

Since the invention of integrated circuits in 1958, and driven by the demand for cost

reduction and increasing functionality, CMOS transistor technology scaling (including

transistor size scaling and supply voltage scaling) has enabled the IC industry to in-

tegrate more transistors within the same silicon area. Borkar, et al. [1] showed that

each transition to a new generation, reduces transistor size and supply voltage by 30%,

doubles the chip density, reduces gate delay by 30%, reduces overall power by 50% and

increases leakage power by around 5x. The side effect of technology scaling is the re-

duction of system reliability. This is because smaller transistors lead to lower critical

charge and higher integration level increases system complexity. The other side effect

of technology scaling is the increase in power density due to the increase in transistor

density. Historically dynamic power has dominated the power consumption of digital

integrated circuits and has been the main focus of power reduction. As technology

scaling continues, leakage power consumption continues to grow in dominance and leak-

age power reduction also becomes an important part of modern digital circuits. Both

leakage and dynamic power reduction techniques exacerbate reliability problems. This

thesis describes new methods to improve the reliability of modern low power digital cir-

cuits. These methods have been implemented using standard EDA tools and validated

on commercial low power processors.

This chapter gives an overview of reliability and low power design of digital integrated

circuits and provides preliminary information for the subsequent thesis chapters. Tech-

nology scaling and its major impacts are discussed in Section 1.1. Digital circuit power

reduction techniques are discussed in Section 1.2, which includes dynamic power reduc-

tion and leakage power reduction techniques. Digital circuit reliability problems are

discussed in Section 1.3. Error control coding is an effective technique for ensuring data

integrity which can be applied to improve system reliability, which is discussed in Sec-

tion 1.4. The challenges facing low power reliable design are discussed in Section 1.5.

The contribution of each chapter is summarised in Section 1.6 and finally the list of

publications generated from the research in this thesis is given in Section 1.7

1



2 Chapter 1 Introduction

1.1 Impacts of Technology Scaling

Cost reduction of IC fabrication is the main reason behind technology scaling. For the

past 50 years semiconductor technology scaling has reduced transistor size by 30% and

doubled the performance every two to three years. Transistor performance is inversely

proportional to propagation delay which can be approximated as Equation 1.1 [2]:

Td ∝

CL · Vdd

Vdd − Vth
(1.1)

where CL is load capacitance, Vdd is supply voltage and Vth is threshold voltage. Transis-

tor size scaling reduces load capacitance and leads to shorter propagation delay. However

supply voltage scaling increases propagation delay, so to maintain or further reduce prop-

agation delay the threshold voltage has to be scaled down. Transistor dynamic power

consumption is described using Equation 1.2 [3]:

pdynamic = α · V 2
dd · CL (1.2)

where α is activity factor, CL is load capacitance and Vdd is supply voltage. Dynamic

power is proportional to load capacitance and the square of supply voltage. Both load

capacitance and supply voltage reduce with technology scaling, and dynamic power

reduces with technology scaling. There are two main components of leakage power: gate

leakage and sub-threshold leakage. Gate leakage current increases exponentially with

reduction in gate oxide thickness [4]; however high-k metal gate reduces the leakage

by 2-3 order of magnitude [5, 6]. The most significant contributor to leakage power

consumption of current technology generation is sub-threshold leakage current which is

calculated by Equation 1.3 [3]:

Ids ∝ e
Vgs−Vth

n·VT · (1− e
−

Vds
VT ) (1.3)

where Vgs is gate to source voltage, Vth is transistor threshold voltage, Vds is drain to

source voltage and VT is thermal voltage KT
q . For Vds ≫ VT 1 − e−Vds/VT ≈ 1, which

means that if Vds is larger than 100-mV then sub-threshold leakage is almost independent

of Vds. Sub-threshold leakage can be approximated as:

Ids ∝ e
Vgs−Vth

n·VT (1.4)

Sub-threshold leakage current increases exponentially with the reduction of threshold

voltage Vth. Threshold voltage is reduced in order to maintain the performance of



Chapter 1 Introduction 3

the transistor (Equation 1.1). As the result, sub-threshold leakage current increases

exponentially with technology scaling.

Technology scaling also has a number of impacts on system reliability. This is because

small transistor size and high integration density increases system soft error rate [7]. As

transistor size continues to shrink, process variation in transistor channel length, width,

oxide thickness and dopant concentration increases. These variations cause the difference

in transistor threshold voltage [8, 9] that leads to the uncertainty in circuit delay of

timing paths and performance of fabricated chips. Process variation also exacerbates

the reliability problem by reducing the critical charge and noise margin of the storage

units. The degradation of reliability and the increases in leakage power are becoming

major obstacles for further transistor scaling [10–13].

1.2 Power Reduction Techniques

There are two power consumption components in an digital circuit: dynamic power and

leakage power. Various power reduction techniques are described in this section, which

is divided into dynamic power reduction and leakage power reduction techniques.

1.2.1 Dynamic Power Reduction

Dynamic power has been the dominant part of digital circuit power consumption for

many years. It can be seen from Equation 1.2 that switching activity, load capacitance

and supply voltage are three contributing factors of dynamic power. Load capacitance

is reduced with transistor size scaling inherently. Dynamic power reduction techniques

involve reducing switching activity, reducing supply voltage or both.

In synchronous digital circuits, the clock tree dominates dynamic power consumption

due to the constant switching of clock signals and the large fan-out of clock tree. Clock

gating can reduce clock tree power consumption [14–18]. Registers are used to store data

and states information, whose update is controlled by clock signals. Not all registers

require update in every clock cycle; hence clock gating was introduced to stop the

switching of parts of clock tree where registers do not need updating. This is achieved

by inserting a clock gating cell between clock tree buffers and registers, which allows the

clock control signal to enable or disable the register’s clock input. Figure 1.1 shows the

difference between designs with and without clock gating. Figure 1.1.(a) shows a circuit

without clock gating. To enable or disable the updates of an register, a multiplexer is

inserted which selects the input between updating new data or recirculating old data

stored in the register. Figure 1.1.(b) shows a circuit with clock gating, where a clock

gating cell including a latch and an AND gate is used to stop the toggling of the clock

signal. When multiple registers are controlled by one enable signal, clock gating can



4 Chapter 1 Introduction

Flip-

Flop Register

Bank

QD

ENCLK

Multiplexer

DATA

OUT

0

1

Control

Logic

DATA IN

(a) without clock gating

Control

logic
Register

bank

QD

DATA

IN
EN

CLK

DATA

OUT

ENCLK

ENL

CLK

LQ

LATCH

LD

LG

Flip-

flop

(b) with clock gating

Figure 1.1: Clock gating architecture [22].

even reduce the chip area. This is because, without clock gating, each register requires

one multiplexer, whereas with clock gating, a group of registers can share a single clock

gating cell. Various automatic clock gating insertion algorithms [19–21] were developed

to improve the effectiveness of clock gating designs, which are well supported by standard

EDA (Electronic Design Automation) tools such as the Synopsys Power Compiler.

As the dynamic power is proportional to the square of the supply voltage (Equation 1.2),

the most effective way to reduce dynamic power is through supply voltage scaling. When

supply voltage is reduced circuit delay is increased (Equation 1.1); however digital cir-

cuits do not always operate at their maximum frequency due to workload demands [23].

Dynamic Voltage and Frequency Scaling (DVFS) reduces the supply voltage and oper-

ating frequency of circuits under light workload to improve energy efficiency. Various

DVFS algorithms [17,24–29] were developed to maximise energy reduction.

1.2.2 Leakage Power Reduction

Leakage power becomes an increasingly significant part of overall chip power consump-

tion with CMOS technology scaling [30]. There are three types of leakage current in a

MOSFET transistor: gate leakage, sub-threshold leakage and junction tunnelling leak-

age. Gate leakage current increases exponentially with reduction in the gate oxide

thickness [4]. With silicon dioxide gate thickness approaching scaling limits there is a



Chapter 1 Introduction 5

rapid increase in gate leakage current [31, 32]. When the transistor size is scaled below

40nm, with SiO2 as the gate dielectric, the gate leakage current density would exceed the

current density limit [30]. The threshold voltage of MOSFET transistors is reduced to

increase the performance, but the sub-threshold leakage current increases exponentially

with the reduction of threshold voltage (equation 1.4). Junction tunnelling leakage is

an order of magnitude less than gate leakage and sub-threshold leakage for the recent

technology generation [33], therefore it will not be discussed in detail in this work.

A circuit has two states: an active state where it is doing useful work and an idle state

where it is not doing any work. Numerous approaches have been proposed to minimise

the leakage power, which can be categorised into active circuit leakage power reduction

and idle circuit leakage power reduction. The active circuit leakage reduction technique

includes high-k metal gate [34], dual-threshold standard cells [35]. The high-K metal gate

was proposed [34] to reduce the gate leakage, which has been implemented in technology

nodes of 45nm and below [36]. To reduce the sub-threshold leakage while maintaining

the performance, dual threshold standard cell synthesis was proposed [35] to reduce

the sub-threshold leakage of the gates in the non-critical path by replacing low-Vt high

performance transistors with the high-Vt less leaky transistors. These slower high-Vt

transistors are not in the critical path so they will not affect the performance of the

circuit.

A circuit’s leakage power can be further reduced by cutting off or scaling its power

supply when the circuit is in an idle state. There are three leakage reduction techniques

involved powering off/down a idle circuit. If a chip is idle for a long time and there

is no constraint on the wake-up delay, then its external power supply can be turned

off completely during sleep mode; in this way the maximum leakage reduction can be

achieved. However, the switching of the external power supply takes relatively long

time, and some energy and time are wasted in initializing the circuit when it wakes

up. If a device has a relatively short idle time and requires fast wake-up, cutting off

the chip power supply will reduce its reaction speed. Therefore power gating [37] was

proposed to reduce the leakage power of a circuit in sleep mode but maintain a fairly

short wake-up latency. In a power-gated circuit, the logic blocks are connected to power

supply through high-Vt power transistors shown in Figure 1.2. When the circuit is idle

the power transistors are turned off and the leakage power of the logic blocks is limited

by those power transistors, it was reported that power gating achieves 95% of leakage

power reduction for ARM926EJTM [38].

Power gating turns off logic and registers, so the states of registers are lost. For energy

efficiency the state of registers can be preserved while logic is powered down so-called

State Retention Power Gating (SRPG). To support this, a state retention latch [39] can

be added which is kept powered during power gating of the rest of the circuit. Figure 1.3

shows a specially designed flip-flop incorporating state retention latch. The master flip-

flop is connected to Vdd through a power transistor and the slave retention latch is kept



6 Chapter 1 Introduction

Figure 1.2: Power gating design architecture

Figure 1.3: State Retention Flip-Flop

always-on. The master flip-flop consists of low-Vt transistors for fast switching during

active mode. The slave retention latch consists of high-Vt transistors for low leakage

during sleep mode. In addition to the data and clock input the state retention flip-flop

has a control signal, RETAIN. When the power-gated circuit is switched to sleep mode,

RETAIN is set to ‘1’ to transfer data from the master flip-flop to the slave retention

latch, and before the power-gated circuit is switched to active mode, RETAIN is set to

‘0’ to restore data back to the master flip-flop.

The other idle circuit leakage power reduction technique is voltage scaling. The supply

voltage of idle circuit can be scaled down aggressively to the point where the storage

cells still retain their data [40–42]. The architecture of scaled voltage state retention is

shown in Figure 1.4. In active mode signal ‘Sleep’ is 0, sleep transistor M1 is on and M2

is off, and the logic block is connected to nominal Vdd and clocked with full speed. In

sleep mode signal ‘Sleep’ is 1, sleep transistor M1 is off and M2 is on, and the logic block

is connected to scaled Vdd to achieve leakage saving. This technique does not require



Chapter 1 Introduction 7

Gnd

V-Vdd

Vdd=1V

Logic block

Vdd_drowsy=0.3V

SleepSleep M1M2

Figure 1.4: Scaled voltage leakage reduction

additional state retention latches and has a smaller wake-up delay; however, the leakage

power saving is less than power gating.

Figure 1.5 demonstrates the effect of supply voltage scaling on leakage power, where

the x-axis represents the supply voltage and the y-axis represents the leakage power

in log-scale. The result covers 3 process corners: the slow(NMOS)-slow(PMOS) corner

is represented using cross markers, the fast-fast corner is represented using diamond

markers and the typical-typical corner is represented using square markers. The power

is measured during idle mode where no switching activities are present, and is measured

for a range of supply voltages ranging from 0.5V to 1.1V. It can be seen that the leakage

power reduces exponentially with the reduction in supply voltage, and 15% reduction of

supply voltage results in 50% reduction in leakage power.

Leakage power reduction techniques are summarised in Figure 1.6. The left column

shows active circuit leakage reduction techniques, where gate leakage can be reduced

by using high-k metal gate transistors, and sub-threshold leakage can be addressed by

using dual threshold standard cell design. The right column shows the idle circuit leakage

reduction techniques: turning off the power supply, power gating and voltage scaling.

Turning off the power supply has the lowest leakage but longer wake-up latency, while

voltage scaling has the highest leakage and shortest wake-up latency.

1.3 Reliability of Digital Designs

There are different types of faults affecting the reliability of integrated circuits that

can be classified into two categories: permanent faults which have lasting effects on the

system reliability and transient errors which just affect the system reliability temporarily.



8 Chapter 1 Introduction

1.000

10.000

100.000
Le

a
k

a
g

e
 P

o
w

e
r 

(m
W

)

SS HALT Power (mW)

FF HALT Power (mW)

TT HALT Power (mW)

0.100

1.000

10.000

100.000

0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

Le
a

k
a

g
e

 P
o

w
e

r 
(m

W
)

Supply Voltage (V)

SS HALT Power (mW)

FF HALT Power (mW)

TT HALT Power (mW)

Figure 1.5: Relation between leakage power and supply voltage when ARM926
processor is in idle mode for 65nm technology

leakage

Wake-up 

efforts & 

latency

Power supply off

Power gating

Voltage scalingHigh-k Metal gate

Gate leakage

Dual threshold 

standard cell

Sub-threshold 

leakage

(a)  Active circuit leakage reduction (b)  Idle circuit leakage reduction

Figure 1.6: Available leakage reduction techniques and their trade-offs

1.3.1 Permanent Faults

All permanent faults can be either related to a manufacturing defect where the devices

are damaged during the manufacturing process, or related to ageing effects where the

devices degrade gradually during their lifetime. The fabrication of integrated circuit is

very complex. Imperfect process manufacturing such as foreign particles or impurities in

the silicon wafer may cause bridged connections or missing features [43,44]. In modern

ICs, the most common defects are bridges “shorts” where unintended connections form

between circuit nodes, and “opens” where intended connections between circuit nodes

are missing. For resistive bridge and open defects, the unintended connections are



Chapter 1 Introduction 9

not fully short-circuit, and for resistive-opens the broken connection is not fully open-

circuit. Fault models have been developed to emulate how defects affect the operation of

a circuit: the popular fault models are gate level “stuck-at” fault model [45], transistor

level “stuck-at” fault model [46], bridging fault models [47] and delay fault models [48].

Automatic test pattern generation (ATPG) [44,46] algorithms are used to generate the

test patterns, and the fault coverage statistics are collected by using fault simulation.

Scan chains can be used to shift the test pattern into the registers of a digital circuit.

Internal scan design is the most popular design-for-test (DFT) technique which can

achieve high fault coverage by isolating the combinational logic block for a complex

sequential design [46].

An IC degrades gradually during its lifetime due to the various stresses it experiences in

normal operations. Technology scaling reduces the feature sizes but increases the power

densities and accelerates the wear-out based failures [10]. Various wear-out effects have

been reported: Negative bias temperature instability (NBTI) is due to the positive

charge created at the SiO2/Si interface and in the oxide under negative bias stressing,

thereby causing the threshold voltage to shift and decrease the channel mobility which

leads to an increase in transistor delay [49]. Gate oxide breakdown is caused by the

traps formed in the gate oxide under the influence of gate-to-channel electric field. The

traps accumulates and forms a resistive conduction path from gate to channel and the

phenomenon is soft oxide breakdown (SBD). Once the conductive path is formed, more

traps appear at an increasing pace and finally lead to hard oxide breakdown (HBD),

which will increase gate leakage, delay and energy, and lower critical charge [12, 50].

Electro-migration is caused by the momentum transfer from collisions between conduct-

ing electrons and diffusing metal atoms leading to biased transport of metal atoms,

which creates voids in the metal wires. It results in increased resistance which creates

resistive shorts or opens in wires [51, 52]. Stress migration is due to the difference in

thermal expansion coefficient between metal, silicon and oxide. When cooled from high

temperatures, metal shrinks more than the surrounding medium. Therefore metal is

left in a state of very high tensile stress. Coupled with electro-migration, it accelerates

void creation [53]. Thermal cycling is the name given to the cyclic thermal strains due

to power cycling, which can lead to the thermal fatigue failure in packaging such as

short-circuit in the bonding and solder joints [54,55].

1.3.2 Transient Errors

Transient errors are caused by electrical noise or external radiation rather than design

or manufacturing defects [56]. The effects of transient errors are temporary. Inductive

effects have long been known to cause problems at various levels of the system such as

chip package and board level. In modern IC technology generation the inductive noise

becomes an increasing concern due to the faster switching speed and higher levels of



10 Chapter 1 Introduction

integration [57]. Inductive noise is generated from the switching current in neighbouring

circuits, it starts to cause problems in the 0.25µm technology node [58], and the problem

has increased for more advanced technology nodes [59, 60]. Inductive noise also occurs

in the power supply lines due to simultaneous switching noise generated by core logic

and input/output circuitry, that can also impact the performance and data integrity of

the electronic circuit [61].

The other source of transient errors is “soft errors” or Single Event Upset (SEU) induced

by particles strikes. Most modern digital systems use synchronised designs consisting of

sequential logics and combinational logics. Sequential logics are used to store the current

state of the system while combinational logics are used to evaluate the next state of the

system in each clock cycle. Due to the fundamental difference in their functionality the

radiation event will have different effects on them.

When an ionised particle strikes a combinational logic node it generates a current pulse.

The current pulse may propagate through the combinational logic tree and finally be

captured by the sequential logic, which leads to state corruption. However the current

pulse may not always be captured by sequential logic. There are three types of masking

effects [56]: firstly, if the current pulse is small it will be attenuated by the logic tree and

the pulse seen in the output will be too small to be captured by sequential logic; this is

called electrical masking. Secondly, when a particle strikes a combinational logic in the

early phase of the clock cycle, by the time sequential logic is clocked and the next state

recorded at the output of the combinational logic tree, the current pulse generated may

already faded away; this is called latching window masking. Lastly some logic gates can

also mask the current pulse at one of its inputs because the output is determined by its

other input values; for example if one input of an NAND gate is connected to logic ‘0’

then the output of the gate will still be logic ‘1’ despite the particle strike affecting the

other input. In this case the particle strike has no effect on the output; this is called

logic masking.

The sequential logic consists of many storage nodes; each storage node is comprised of a

feedback circuit for holding the last state. When a storage node is struck by an ionised

particle a current pulse is generated. If this current pulse overcomes the feedback current

and exceeds the stored charge of the node, the state of this storage node is flipped so

the data is corrupted. The sensitivity of a transistor to radiation-induced soft errors is

dependant on its node capacitance and the supply voltage [13], both of which decrease

with technology scaling. The reduction of supply voltage reduces the noise margin; the

noise in the power supply rails may also impact device reliability. The failure rate of a

system is the accumulation of each component’s failure rate, and the increasing scale of

system integration exacerbates the system reliability problem [11]. In addition, power

reduction techniques such as dynamic voltage frequency scaling and power gating [37]

also tend to impact the system reliability.



Chapter 1 Introduction 11

In this work the state integrity of digital circuit storage elements such as flip-flops or

memory cells is studied. State integrity is referred as the capability of retaining the

storage elements’ original logic value.

1.4 Error Control Coding

Error Control Coding (ECC) is concerned with methods for delivering information from

a source to a destination with minimum errors [62]. ECC provides forms of protec-

tion by introducing redundancy, in theory error rate can be reduced to a desired level

with enough redundancy. ECC is also widely used for the protection of data storage

elements in processors. High performance coding schemes have been developed to pro-

tect noisy communication channels; these coding schemes may need complex encoding

and decoding which is not suitable for protecting an embedded processor. Hamming

code and CRC code are used in this work (Chapter 3) due to the simplicity of their

encoder and decoder which means smaller area, power and latency overheads. Ham-

ming code and CRC code are both systematic codes where the original message is part

of the codeword. In this section, all addition, subtraction, multiplication and division

operations are GF(2) arithmetic or modulo 2 arithmetic. In GF(2) arithmetic, addi-

tion and subtraction are identical which can be implemented using an XOR gate. The

implementation of multiplication uses an AND gate.

1.4.1 Hamming Code

Hamming code is a single error correcting and double error detecting code which is

capable of correcting one error and detecting two errors in a codeword. For any positive

integer m >= 3 there exists a Hamming code with the following parameters [63]:

• Code length: n = 2m − 1

• Information bits: k = 2m −m− 1

• Check bits: n− k = m

Hamming code is commonly expressed as Hamming (n, k). The encoding and decoding

can be represented by generator matrix and parity check matrix. The parity check

matrix H is arranged as:

H = [Im Q] (1.5)



12 Chapter 1 Introduction

where Im is an identity matrix of size m. Q consist of k columns; each column is size m

with Hamming weight 2 or more. For example, the parity check matrix for Hamming(7,4)

is:

H =







1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1






(1.6)

The columns of Q can be arranged in any order without affecting the property of the

code. The parity generation matrix G is arranged as:

G = [QT Ik] (1.7)

where QT is the transpose of Q and Ik is an identity matrix of size k. The process of

encoding can be represented by:

v = u ·G (1.8)

where u is the information vector, v is the generated codeword vector, and G is the

generation matrix. The process of decoding can be represented by:

s = (v + e) ·HT (1.9)

where s is the syndrome vector which indicates the error location, e is the error added

to the original codeword v, and H is the parity check matrix. If there is no error, the

syndrome vector s will be all zeros.

1.4.2 CRC Code

Cyclic Redundancy Code (CRC) is a linear block code with high error detection capa-

bility and low redundancy. If the information vector is interpreted as polynomial m(x),

the encoding can be explained as:

r(x) = m(x) mod g(x) (1.10)

where g(x) is the generator polynomial, and r(x) is the CRC check bits which is the

remainder of m(x) divided by g(x). The decoding is the same as encoding where another

set of CRC check bits r′(x) is generated. Both sets of CRC check bits are compared;



Chapter 1 Introduction 13

g1

�r0 �(�)
c(
�

�
2

�
n�k��

�r� �r2
�rn�k��

Figure 1.7: CRC generation using Linear Feedback Shift Register (LFSR) [64].

if r(x) 6= r′(x), then an error is detected. The implementation can be done using an

Linear Feedback Shift Register LFSR as shown in Figure 1.7. At every clock cycle, the

input data is shifted into the registers; when all input bits have been processed the data

remain in the registers are the CRC check bits.

1.5 Low Power Reliable Design Challenges

Figure 1.8 shows how CMOS technology scaling affects the performance, power and reli-

ability of integrated circuits. The solid arrows represent the positive influences and the

hollow arrows represent the negative influences. As can be seen, three factors are scaled

with each technology generation: transistor size, supply voltage and threshold voltage.

Transistor size scaling increases the performance and reduces dynamic power; at the

same time it increases the static power consumption and power density and reduces the

reliability. Supply voltage scaling is used to further reduce the dynamic power; how-

ever it decreases the performance and reliability. Threshold voltage reduction is used

to improve the device performance but increases the static power at the same time.

The power density of the chip increases with the reduction of transistor size, and it

also increases with device dynamic and static power. The increase of the power density

leads to higher temperature, which will further increase the power consumption [38]. To

summarise, the transistor performance and dynamic power consumption benefit from

technology scaling while static power consumption and system reliability are affected

negatively. These technology scaling associated problems such as increase in leakage

power, worsened process variation, and resulting in degradation in reliability and in-

creasing levels of complexity need to be addressed. Power reduction techniques have

been extensively used to address the increasing power density problem; however they

have detrimental effects on reliability. Therefore maintaining reliability while reducing

power consumption with minimum cost is the aim of this research.



14 Chapter 1 Introduction

Supply voltage 

scaling

Transistor size 

scaling

Power density

Temperature

Threshold 

voltage scaling

Dynamic power Static powerPerformance Reliability

Negative effect

Positive effect

Figure 1.8: Technology scaling and its effects on performance, power and relia-
bility

1.6 Thesis Organisation

This thesis presents three complimentary but orthogonal contributions. Chapter 3

presents the first contribution that deals with improving reliability of states stored in

state retention registers, which are affected by fluctuations in the supply rail due to rush

current in the power supply network when power gating logic is turned on from sleep

mode. It is shown that this problem is further exacerbated because the critical charge

of a storage node is affected by the combined effect of process variation and supply

voltage scaling. To improve state protection, a combination of hardware and software

based error monitoring and recovery method is proposed for single and multi-bit error

recovery. Through two case studies, including implementation of a commercial embed-

ded processor (ARM CortexTM -M0), it is shown that it is possible to achieve more than

2 orders of magnitude improvement in system reliability compared to a design without

error protection, when considering maximum soft error rate observed at normal operat-

ing conditions. Area overhead is minimised through reuse of the scan chains for state

encoding using ECC codes.

Chapter 4 presents the second contribution that uses measured results from 82 test

chips to characterise state integrity challenges of voltage scaled flip-flops in the presence

of process, voltage and temperature (PVT) variations. Measured results show that

the minimum retention voltage of a design varies across dies and therefore a single

retention voltage for all dies lead to overall higher leakage power consumption during

sleep mode. A novel solution is presented to address this state integrity challenge, while

minimizing leakage power of flip-flops during sleep mode. The proposed solution uses

a characterisation algorithm to minimise data retention voltage for each die thereby

reducing leakage power and uses a control flow for error detection and single bit error

recovery. Silicon results show that at characterised data retention voltage, state integrity

is preserved, while achieving up to 17.6% reduction in retention voltage across the 82

dies, thereby saving leakage power.



Chapter 1 Introduction 15

Chapter 5 presents the last contribution that deals with the reliability of the complete

memory system and describes an architectural simulation-based framework for joint op-

timisation of reliability, energy consumption and performance. Memory systems are

highly susceptible to soft errors and blanket protection of every part of memory sys-

tem through ECC is not cost effective. Therefore, an accurate estimation of memory

reliability with targeted protection is proposed. The proposed solution identifies and

protects the most vulnerable part of the memory system to minimise protection cost.

Furthermore, local level-1, L1 resizing together with voltage and frequency scaling is

proposed for further energy savings while maintaining performance and reliability of an

embedded processor system. Detailed evaluation shows that energy reduction is possible

for most applications in a reliability constrained design.

These three contributions presented in this thesis are supported by detailed analysis

using state-of-the-art design automation tools, and in-house software tools and, where

necessary, are validated through FPGA implementation of commercial low power em-

bedded processors and measured results from fabricated designs.

1.7 Publications

The contributions of the research presented in this thesis have been published as follows:

1.7.1 Journal Publications

1. Sheng Yang, Saqib Khursheed, Bashir M. Al-Hashimi, David Flynn and Sachin Id-

gunji, “Reliable State Retention-Based Embedded Processors Through Monitoring

and Recovery”, Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol.30, no.12, pp.1773-1785, Dec. 2011

2. Sheng Yang, Saqib Khursheed, Bashir M. Al-Hashimi, David Flynn and Geoff

V. Merrett, “Improved State Integrity of Flip-Flops for Voltage Scaled Retention

under PVT Variation”, Circuit and Systems-I, IEEE Transaction on (In press)

3. Sheng Yang, Saqib Khursheed, Bashir M. Al-Hashimi, David Flynn, “Modeling

Framework to Optimise Memory System Reliability”, ACM Transactions on Em-

bedded Computing Systems (Under preparation)

1.7.2 Conference Publication

1. Sheng Yang, Saqib Khursheed, Bashir M. Al-Hashimi and David Flynn, “Scan

Based Methodology for Reliable State Retention Power Gating Designs”, Design,

Automation & Test in Europe Conference & Exhibition (DATE), pp.69-74, 8-12

March 2010





Chapter 2

Literature Review

This chapter provides a broad overview of the state-of-the-art research that is related

to this thesis research topic. To complement this literature review, each of Chap-

ters 3, 4 and 5 has its own literature review, placing the contributions described in

these chapters in the context of the relevant research. Section 2.1 reviews the unre-

liability source of power-gated designs and discusses the principles of some of the key

reported techniques in addressing this reliability issue. Section 2.2 reviews the reliabil-

ity in supply voltage scaled designs and outlines briefly the main techniques reported in

improving the reliability of such designs. Analysing the reliability of processors requires

the availability of metrics that quantify their susceptibility to failure. Recent research

efforts indicate that process, voltage and temperature (PVT) variation is affecting the re-

liability of digital designs, Section 2.3 discusses briefly why this is the case and describes

some of the reported techniques in mitigating theses variation. Part of transient errors

referred to as soft error is induced by particle strike, Section 2.4 describes the source

of soft errors, its impact on digital circuit reliability and existing mitigation techniques.

Section 2.5 reviews the metrics proposed and some of the architectural innovations re-

ported to improve the reliability of embedded processors. Finally, this chapter includes

the objectives for the research described in subsequent chapters in light of the reviewed

research.

2.1 Reliability of Power-gated Designs

In Chapter 1 Section 1.2.2 various leakage reduction techniques were described. Power

gating is effective in reducing leakage power, but switching on/off the power supply of a

logic block can cause voltage fluctuation in the supply and ground rail; this phenomenon

is also called ground bounce. The power supply rails of an integrated circuit are not

ideal, as wires have resistance and there are capacitance and inductance between the

wires. Figure 2.1 shows a simplified model of power supply rails in a power-gated design.

17



18 Chapter 2 Literature Review

Figure 2.1: Ground bounce in power-gated design [65].

In sleep mode, when the power gating transistors (power switches) are off, the internal

capacitance of the power-gated logic blocks are discharged near ground level and the

leakage currents is limited by the power switches. When the power-gated logic blocks

are reactivated, the power switches are turned on, the internal capacitance of these

logic blocks are rapidly charged up. The rapid charge of the logic block causes a large

in-rush current, and the sudden change of current induces a voltage across the wires’

inductance, which can be modelled as step response of an RLC circuit [65, 66]. The

voltage fluctuation at the power supply rails may corrupt the state retention elements

that hold the circuit states during sleep mode, which leads to a potential reliability

problem.

Several techniques were used to reduce the amount of ground bounce cause by power

switches [65]. Figure 2.2.(a) is the conventional power switches arrangement, where a

control signal TURN ON is connected to an array of power switches. In this arrangement

all power switches are turned on at the same time, causing a large in-rush current.

To reduce this in-rush current, Figure 2.2.(b) shows the voltage level of control signal

TURN ON increases over time in a step wise manner. Figure 2.2.(c) shows that the

control signals of power switches are connected in a buffer chain; the power switch at

the beginning of the buffer chain is turned on first and the subsequent switches are



Chapter 2 Literature Review 19

(a) Conventional power switches arrangement

(b) Power switches with step wise control

(c) Power switches with delayed control signals

Figure 2.2: Change power switches arrangement for ground bounce reduc-
tion [65].

then turned on one by one. The interval is controlled by the delay of the buffers. This

method has been incorporated by foundries into standard cell libraries where the power

switches’ control can be connected in a daisy chain. Pump capacitors was proposed

to slowly turn on the power switches and use a voltage monitor circuit to detect the

end of the activation process [67]. Other techniques are stacking power switches [68],

raising voltage level of virtual ground and virtual supply [69, 70], and controlling the

input vector of logic block [71]. These works protect the power-gated design by reducing

the ground bounce through in-rush current reduction.



20 Chapter 2 Literature Review

Figure 2.3: Energy dissipation under different supply voltage [74].

2.2 Reliability of Voltage Scaled Designs

As discussed in Chapter 1 Section 1.2, supply voltage scaling is an effective power re-

duction technique for both dynamic power and leakage power. Recent studies have seen

dynamic power reduction of 20% [72] and 32% [73] using DVFS. For low performance

applications requiring energy minimization, a CMOS circuit can be designed to operate

in the sub-threshold region [74]. Figure 2.3 shows the energy dissipation under voltage

and frequency scaling. It can be seen that the minimum energy point is under 350-mV

supply voltage, at which point the energy efficiency is 4x better compared to 0.9-V sup-

ply voltage. However, to operate under sub-threshold voltage, specially designed gate

libraries are required [74]. Sub-threshold operation exacerbates the impact of process

variations on gate delay which is as high as 300% [75].

Supply voltage scaling is also an effective technique for leakage power reduction. Power

minimisation through supply voltage scaling during sleep state has been proposed in [41,

76], where voltage scaling is implemented by using IR-drop of diode to reduce power sup-

ply. Recent studies have shown that voltage scaling effectively reduces sub-threshold and

gate-leakage power in Deep Sub-Micron (DSM) designs [38, 77]. This is because of the

negative exponential relationship of leakage power and supply voltage (Chapter 1, Sec-

tion 1.1, Equation 1.4). Unlike sub-threshold designs, when voltage scaling is used for

leakage reduction, the most energy efficient point is the minimum supply voltage re-

quired to hold the data in storage elements of a circuit. Data Retention Voltage (DRV)

is the voltage point at which a SRAM cell can still hold its original value [78, 79]. A

recent study using Monte-Carlo simulations showed that within-die process variation

causes the distribution of DRV for 90nm and 45nm SRAM cells [78]; and the studies on

cache showed the same trend [80–82]. For correct operation the supply voltage should be



Chapter 2 Literature Review 21

Figure 2.4: Archiecture of the Canary-based feedback loop for SRAM standby
VDD scaling [79].

kept above the highest DRV of all SRAM cells, which is 150-mV for 90-nm and 320-mV

for 45-nm (Figure ??).

Canary cells were proposed to provide a safety margin for voltage scaling [78,79,83,84].

Canary cells are an array of specially designed storage cells which fail at higher supply

voltage than the protected design. Figure 2.4 shows the architecture of a canary-based

design. The voltage regulator is used to control the supply voltage of the core cells which

can be lowered to reduce leakage power. Banks of canary cells are designed to fail across a

range of voltages which is above the highest DRV of the core cells. The failure of Canary

cells is monitored by the failure detector which is compared to the failure threshold. If

the failure voltage exceeds the pre-set margin, the controller raises the supply voltage

to the last working value. Figure 2.5 shows the schematic of Canary cells, which must

fail before the core cells to prevent the loss of data; so a PMOS transistor M8 is inserted

between the supply rail and Canary cell to provide additional IR drop, the resistance of

M8 can be controlled by signal VCTRL. Canary design provides 11x leakage power saving

compared to nominal supply voltage. Other techniques using supply voltage scaling for

leakage reduction are post silicon characterisation method for fine-grain cache line supply

voltage control [80] and for SRAM retention voltage adjustment in individual die [81,82].

2.3 Impacts of Process Variation on Reliability

In DSM technology, the gate oxide is only a few atoms thick, channels contain countable

dopant atoms [85], and the size of transistor is an order of magnitude smaller than the

wavelength of the light used in lithography to create these devices [86]. The uneven



22 Chapter 2 Literature Review

Figure 2.5: Schematic of Canary cell (a) for storing ‘1’ and (b) for storing
‘0’ [79].

distribution of dopant atoms or the uneven surface of gate oxide will cause a significant

difference in the electrical property of a transistor. The difference between geometries

drawn in CAD systems and the implemented devices will cause uncertainty in terms of

performance, power and reliability. This uncertainty will continue to grow as the scaling

trend continues [30].

The main causes of process variation are random dopant distribution, sub-wavelength

lithography and line edge roughness [87]. The result is the variation in the transistor’s

oxide thickness, carrier mobility, channel length and threshold voltage [88–91]. The num-

ber of dopants in the depletion region of a DSM technology is in the order of hundreds;

therefore the microscopic dopant distribution in the MOSFET channel will influence

the device electrical performance [92]. The effect of random dopant distribution on

threshold voltage can be tens of millivolts when the supply voltage and threshold volt-

age of DSM are about 1.2-V and 400-mV respectively [93]. Lithography is the process

of printing circuits by shining light through photomask to the surface of silicon wafer

coated with a photosensitive material (resist); therefore it transfers the mask pattern

into the wafer [86]. The main problem in sub-wavelength lithography is diffraction and

interference, which makes lines printed on the wafer shorter or wider than those on

the mask [94]. Line edge roughness is roughness along the transistor channel caused

by number of statistically fluctuating effects in the lithography and chemical etching

processes such as photon flux variations, distribution of chemical species in the resist,

random walk nature of acid diffusion and resist polymers being dissolved during de-

velopment [95]. Line edge roughness reduces transistor channel length by about 5-nm

when technology scaled below 100-nm [96], which can lead to threshold variation of up

to 20-mV [97, 98]. From measurement results of 65-nm test chip, a recent study has

shown that threshold voltage (Vth), effective gate length (Leff ) and carrier mobility (µ)

are the main parameters affecting the performance of CMOS transistors. The results

are shown in Figure 2.6; the variation of Vth, Leff and µ follows Gaussian distribution

with standard distribution (σ) of 5%, 4% and 21% respectively.



Chapter 2 Literature Review 23

Figure 2.6: Variations of threshold voltage, effective channel length and carrier
mobility for 65nm CMOS [90].



24 Chapter 2 Literature Review

Figure 2.7: Charge collection in a silicon junction (a) after an ion strike, (b)
during drift collection, (c) during diffusion collection, and (d) junction current
induced as function of time [13].

2.4 Impacts of Soft Errors on Reliability

Ionised particles can cause temporary data corruption in digital ICs [13]. Ionised particle

strike leaves a track of electron-hole pairs with high carrier concentration as shown in

Figure 2.7.(a). After the strike the electric field in the depletion region quickly (within

tens of picoseconds) collects carriers creating large drift current at the node as shown in

Figure 2.7.(b). Lastly, the remaining carriers will diffuse into the depletion region over a

longer time period (hundreds of nanoseconds) as shown in Figure 2.7.(c). Figure 2.7.(d)

shows the junction current pulse as the result of the particle strike as the function of

time, and the x-axis is in log-scale. The short current pulse with large magnitude is cre-

ated by the drift current and the following long current pulse is the result of the carrier

diffusion. There are three radiation sources [13, 99] that produce ionised particles: Al-

pha particles emitted by trace uranium and thorium impurities in packaging materials;

high-energy neutrons from cosmic radiation which react with silicon nuclei producing

ionised particle, and low-energy neutrons from cosmic radiation which interact with iso-

tope boron-10 in IC materials, specifically in borophosphosilicate glass (BPSG). Alpha

particle radiation has been reduced by using high purity materials and by physically

separating and shielding the sensitive circuit components from the alpha particle emit-

ting material. The BPSG insulator layers have been replaced with dielectric material

free of boron-10, which eliminates the problem caused by low-energy neutrons. The

ionised particle produced by the high-energy neutron is the major contributor to soft

errors in modern digital IC technology. A recent study has shown that soft error can be

1000 times more likely to happen than hard failures in modern electronics systems [13].

The reduction of transistor size and the ever-increasing integration scale exacerbate the

problem.



Chapter 2 Literature Review 25

When a storage node is struck by an ionised particle, a current pulse is generated; if

this current pulse overcomes the feedback current and exceeds the stored charge of the

node, the state of this storage node is flipped so the data is corrupted. The amount of

the charge required by the current pulse to flip a storage node is known as its critical

charge [100]. Therefore the reliability of sequential logics can be obtained through the

study of its critical charge. This transient error that is induced by particle strike is also

call soft error. For an individual device, Soft Error Rate (SER) is usually represented

by λ with the unit of failures/s · bit. A method for estimating Soft Error Rate (SER)

in CMOS SRAM cell was proposed [101]:

λ ∝ F ×A× exp(−
Qcrit

Qs
) (2.1)

where F is the high energy (> 1MeV ) neutron flux, A is the area of the circuit sensitive

to particle strikes, Qs is the charge collection efficiency of the device, and critical charge

(Qcrit) is the amount of charge required to change the original value in a storage element

resulting a transient error called soft error or single event upset (SEU) [102]. Therefore

the critical charge of a storage node determines its sensitivity to environmental noises.

In recent studies [103,104], critical charge has been modelled as:

Qcrit = CN · VDD + IDP · TF (2.2)

where CN is the storage node capacitance, VDD is the supply voltage, IDP is the maxi-

mum current of the on PMOS transistor and TF is the cell flipping time. Clearly, critical

charge of a storage node reduces linearly with supply voltage and node capacitance. Crit-

ical charge also reduces with the advance in technology scaling; a flip-flop designed using

45-nm technology showed lower critical charge than the one designed with 65-nm tech-

nology when comparing them at their respective nominal operating voltages [12]. In

Section 2.3, it was shown that process variation has significant impacts on Deep Sub-

Micron (DSM) designs. The effect of supply voltage scaling and process variation on

critical charge of a flip-flop was investigated using 40-nm CMOS technology. The results

are shown in Figure 2.8. Two observations can be made: firstly, the critical charge of

a flip-flop reduces with the reduction in supply voltage; and secondly, the graph also

shows the worst-case critical charge of a flip-flop reduces further under 1σ, 2σ and 3σ

process variations. These results demonstrate that the critical charge of a flip-flop is not

only reduced by supply voltage reduction but also by process variation. The reduction

in critical charge can lead to the increase in soft error rate [105], therefore affecting the

reliability of digital designs.

Soft error mitigation techniques for storage elements can be classified into circuit level

hardening, hardware redundancy and time redundancy [11]. Circuit level hardening

involves adding resistance [106], capacitance [107] or feedback loop [108] to the storage



26 Chapter 2 Literature Review

0.5

1

1.5

2

2.5

3

3.5

4

C
ri

ti
ca

l 
C

h
a

rg
e

 (
fC

)

0 sigma

1 sigma

2 sigma

3 sigma

0

0.5

1

1.5

2

2.5

3

3.5

4

0.60V 0.72V 0.76V 0.81V

C
ri

ti
ca

l 
C

h
a

rg
e

 (
fC

)

Supply Voltage

0 sigma

1 sigma

2 sigma

3 sigma

Figure 2.8: Critical charge and supply voltage in the presence of process varia-
tion.

node or combining the above techniques [109]. Hardware redundancy either duplicates

the storage elements [11] or uses error control coding [110]. Time redundancy is achieved

through re-execution of software programs [111,112].

2.5 Embedded Processor Reliability

There are two ways to analyse the reliability of a system: Statistical fault-injection injects

faults into random part of the system and analyses the output of the system [113–116],

and a Architectural vulnerability analysis calculates the probability that a fault in the

system will result in an erroneous output [117–119]. Fault-injection models the be-

haviour of faults and emulates the problems a system will experience when faults occur.

It is a useful tool to study how a system behaves under faulty conditions and to evaluate

its fault tolerance capability. The limitation of faults injection is very long simulation

time if the fault rate is low, which is the case for most systems under normal operat-

ing conditions. To address this problem, Architectural Vulnerability Factors (AVF) is

proposed [117] to indicate the probability that an bit-flip of a storage cell will result

in an visible external error. The system error rate can be estimated by the product of

its raw fault rate and its AVF. There are some limitations: firstly, to undertake AVF

analysis of a underlining system, knowledge of its architecture is required; secondly, it

can estimate the probability of erroneous output but cannot predict the impacts of these

faults. Therefore fault-injection and AVF analysis are two complementary techniques in

system reliability analysis.

In a processor system, storage elements hold circuit states and program data. Micro-

architectural registers, register files and memory system including caches and main mem-

ory are some examples. Logic faults in storage elements may lead to unpredictable sys-

tem behaviour. Using AVF analysis, the reliability of processor core was investigated



Chapter 2 Literature Review 27

in a number of studies [117–120]; and the reliability of caches was examined in other

studies [121–124]. To protect register files, inherent redundant resource of a proces-

sor is commonly utilised. In [125], the values in active used registers are duplicated in

the unused registers; whereas in another study [126], when 64-bit registers are used to

store 32-bit values, the 32-bit values are duplicated and stored in both halves of the

64-bit registers. Two redundancy techniques are combined in a further study [127].

In modern processors, multi-threading and out-of-order execution are commonly used.

Multi-threading is used to improve processor reliability by duplicating process and thread

execution [128–132]. Multiple execution units in an out-of-order processor are used for

instruction level redundant execution [133–137]. In cache memory, parity caching was

proposed to protect the most used cache lines [138]. Different coding schemes are used

to protect clean and dirty cache lines [139]. Two dimensional error coding was proposed

to provide multi-bit error tolerance in cache memory [140]. Inactive cache block is used

to provide redundancy for active cache block [141].

2.6 Research Objectives

There is little doubt from this literature review that performance, power and reliability

are tightly coupled particularly for Deep Sub-Micron (DSM) technology nodes. For

DSM technology nodes, power density is a constricting factor limiting the performance

and future scaling. In the past decade, digital circuit power reduction has attracted

a large amount of research efforts targeting both dynamic power and leakage power.

For dynamic power reduction, reducing switching activity and supply voltage scaling

are the main focus. For leakage power reduction, tuning transistor threshold voltage,

cutting off power supply and supply voltage scaling are popular tools. The manipulation

of supply voltage is very effective in power reduction; at the same time it affects the

state integrity of storage elements. Process variation has been kept under sufficient

control for 40 years until silicon manufacturing was scaled down to DSM such as 65nm

node [85]. Process variation is also affecting the reliability of digital circuit due to the

mismatching of electrical property between the final product and the intended design,

and the difference grows with the reduction in transistor size. This means that, in future

technology generations, process variation can only get worse and the behaviour of digital

circuits is becoming less predictable. The combination of process variation and power

reduction techniques has detrimental effects on the reliability of digital circuits.

The main focus of this thesis is to investigate the impact of power reduction techniques

on digital circuit reliability in the presence of PVT variation, and to develop low-cost

and effective protection techniques to improve reliability. EDA tools are heavily used

in modern digital circuit designs, because of the increased complexity which makes

automation an essential component of design flow. The developed techniques should

be compatible with commercially available EDA tools and should avoid the manual



28 Chapter 2 Literature Review

insertion of protection circuitry. This is vitally important to minimise design effort

which helps to reduce time to market, risk and cost associated with development and

implementation. To study the effectiveness and the cost of the proposed techniques,

FPGA implementation and test chip fabrication are needed.

The objectives of the research reported in this thesis are summarised as follows:

• Investigate the impact of power reduction techniques on the reliability of embedded

processors in the presence of soft error and PVT variation.

• Develop effective mitigation techniques to improve the reliability of low-power

embedded processors registers and memory systems, including the development of

modelling framework for joint optimisation of reliability, energy and performance.

• Validate the developed techniques using simulations and experiments through

FPGA implementation and chip fabrication based on commercial processors.

• Incorporate the developed techniques into industry standard EDA design flows

with the aim to produce automated design flow for reliable and low-power processor

designs.



Chapter 3

Improving The Reliability of

State Retention Designs

In Chapter 1 Section 1.1, the impact of technology scaling was discussed such as the fact

that transistor size scaling reduces node capacitance which in turn reduces critical charge

making it more sensitive to external noise sources. In embedded applications, idle time

power reduction is frequently exploited to minimise energy consumption [142,143], which

is referred to as sleep mode in this work. In Chapter 1 Section 1.2.2, it was shown that

state retention power gating [37] and supply voltage scaling [41] are two state retention

design techniques for effective idle circuit leakage power reduction. During sleep mode,

circuit states are stored in a retention latch structure (referred to as balloon circuit [144]

in the case of power gating; circuit states are stored in flip-flops but with reduced supply

voltage in the case of supply voltage scaling. Circuit states may be corrupted due to

supply voltage fluctuation in the case of power gating, or critical charge reduction in the

case of supply voltage scaling. A number of techniques exist to reduce voltage fluctuation

of power gating design in order to reduce the impact on circuit reliability as discussed in

Chapter 2, Section 2.1. However, voltage fluctuation cannot be eliminated completely

and circuit states are essential for correct operations. Furthermore, some applications

may have low duty cycle [145], where the processor spends most of its time in sleep mode.

For these applications power-gated circuit states are more vulnerable than active circuit

states because the error rate is proportional to the exposure time. Concurrent ECC

protection on unstructured flip-flops such as control registers and finite state machines

has high area and power overheads particulary for error correcting code [146,147]. This

motivates the need to develop cost-effective techniques to ensure power-gated circuit

state integrity.

The key objective of this research is to develop effective mitigation techniques to improve

the reliability of embedded process registers. This chapter proposes a novel method for

improving reliability of state retention registers in low power designs that is compatible

29



30 Chapter 3 Improving The Reliability of State Retention Designs

with standard EDA tools, and uses two case studies to show the effectiveness and the

cost of the proposed method. The rest of the chapter is organised as follows: Section 3.1

proposes scan-based state monitoring and recovery method for state retention designs,

including state monitoring and recovery architecture, inserting state monitoring control

into conventional state retention flow and integrating the protection circuitry using con-

ventional synthesis flow. Section 3.2 and Section 3.3 describe two case studies to improve

the reliability of a FIFO circuit and an embedded processor (ARM CortexTM -M0) using

the proposed method. Both design are validated using FPGA and synthesised using ST

65nm technology library for implementation trade-offs analysis. Section 3.4 concludes

this chapter.

3.1 Proposed Method

Error detection and correction codes have been used extensively to improve the reliability

of memory circuits [148]. This is achieved by generating parity bits when writing data

into memory and checking the data against saved parity bits when they are read out

of memory. For a given design, flip-flops are not as structured as memory blocks; they

are scattered physically. These flip-flops do not have a unified input and output channel

which is required to access their data and generate parity bits like memories. Scan

chains [46] which connect flip-flops into long shift registers for performing manufacturing

test provide the channel for parity bits generation. Scan chains insertion is normally

automated by EDA tools, and involves replacing the system flip-flops with scan-enabled

flip-flops and creating scan-in, scan-out ports and a scan-enable signal without affecting

the functionality of the original design. Only when the scan-enable signal is active are

the flip-flops reconfigured into a daisy chain and the scan-in and scan-out ports are the

input and output of these chains.

The scan chains of a design are exploited for the purpose of protecting its state integrity.

This is achieved by monitoring the states through scan chain encoding and decoding.

The method consists of three main steps. Firstly, the state monitoring and recovery ar-

chitecture is described (Section 3.1.1). Secondly, a controller is designed to generate the

control signals for state monitoring and recovery (Section 3.1.2), Finally a synthesis flow

is developed to incorporate the first two steps into conventional state retention designs

by automatic generation of protection circuitry and control signals (Section 3.1.3).

3.1.1 Step 1: Architecture

The architecture of a circuit under protection (CUP) with state monitoring and recovery

block (SMRB) is shown in Figure 3.1, which consists of a state monitoring block and a

error correction block. The scan chain inputs to the CUP are controlled by a multiplexer



Chapter 3 Improving The Reliability of State Retention Designs 31

Test 

Scan In T
e
s
t 

S
c
a
n
 O
u
t

Circuit Under Protection 

(CUP) in scan mode

State 

Monitoring 

Block

Error 

Correction 

Block

Error Location

sel

C
o
rr
e
c
ti
o
n
 F
e
e
d
b
a
c
k

S
c
a
n
 O
u
t

Scan In 

ports

Scan Out 

ports

0

1

2

se=1

Figure 3.1: Architecture of State Monitoring and Recovery Block (SMRB).

with a ‘sel’ signal, which allows the scan chains to be recirculated or conditionally cor-

rected (inverted), or used as conventional manufacturing scan inputs. The scan enable,

‘se’, to the CUP is asserted to configure all the registers into scan-shift mode rather than

functional mode. Before switching to sleep mode, the state monitoring block encodes

the CUP states, where signal ‘sel’ is set to ‘0’ and ‘se’ is set to ‘1’. The CUP is put

into scan mode, and its scan-out ports are connected to its scan-in ports and the state

monitoring block. Assuming that each scan chain contains ‘l’ flip-flops, by circulating

the scan chains for ‘l’ clock cycles, the state monitoring block generates and stores the

parity bits of the CUP states. After switching to active mode, the state monitor de-

codes the states, where signal ‘sel’ is ‘1’ and ‘se’ is ‘1’. The CUP is put into scan mode,

and its scan-in ports are connected to the error correction block, its scan-out ports are

connected to the state monitoring block and the error correction block. The state mon-

itoring block checks the states of the CUP against the stored parity bits. When errors

are detected, the state monitoring block sends the error locations to the error correction

block which corrects the corrupted states and feeds back to the circuit. In manufac-

turing test mode, the control signal ’sel’ is set to ‘2’, and the scan enable signal ‘se’ is

controlled by the tester; the CUP’s scan-in ports are connected to the test scan-in ports

and its scan-out ports are connected to the test scan-out ports. The proposed approach

benefits from reusing the manufacturing scan chains for system state monitoring and

recovery as demonstrated next.

State monitoring is done using hardware error detection code (CRC or Hamming) [63]

and state recovery is done using either hardware error correction code (Hamming) or

software state recovery. The method has no impact on the design’s timing (critical

path) in normal mode. This is because all state monitoring is done in scan mode and

the scan path is not part of the critical path. However it has a cost in terms of area

overhead, wake-up latency and energy consumption (details are shown in Section 3.2.3

and Section 3.3.4). In terms of power consumption, the main contributor is the scan



32 Chapter 3 Improving The Reliability of State Retention Designs

chain switching power, which is CPU-state pattern dependent and in the worst case

can result in every flip-flop toggling in every clock cycle. The scan power needs to be

analysed and scan power reduction techniques for toggle suppression [149] can also be

used to reduce the state monitoring power dissipation to avoid exceeding the power

distribution integrity for the CUP. For the state monitoring block to generate parity

bits, the circuit’s states need to be circulated through the scan chains. If the number of

registers in each scan chain is ‘l’ and the clock period is ‘T ’, the encoding and decoding

time will be ‘l×T ’. If ‘l’ is large, each encoding and decoding cycle can take a long time

and therefore consume a significant amount of energy.

The scan chains can be configured to reduce encoding and decoding time but also can be

reconfigured for the standard manufacturing test. An example is shown in Figure 3.2,

where a long serial manufacturing test scan chain can be partitioned into 4 parallel scan

chains using 4 multiplexers. Signals ‘SI’ and ‘SO’ are connected to manufacturing test

scan-in and scan-out port; manufacturing test is enabled by setting ‘TE’ to ‘1’. When

‘TE’ is set to ‘0’, the scan chains are reused for state monitoring and recovery. In another

example, assuming the test scan width (I/O width for manufacturing test) is 4-bits, and

the state monitoring block employs Hamming (7,4) code to monitor circuit’s states with

input width of 4-bits per state monitoring block; originally, a circuit had 128 flip-flops

connected in 4-scan chains, and since state monitoring block’s width is 4-bits, it will

take (128 ÷ 4) = 32 clock cycles for encoding and decoding the data. Next, consider

that 128 flip-flops are re-ordered into 16 scan chains allowing 4 state monitoring blocks

to work in parallel. The number of encoding and decoding clock cycles will then be (128

÷ 16) = 8, resulting in 4x speed-up. The latter 16 scan chain configuration is shown

in Figure 3.3 (a); as can be seen, 4 state monitoring blocks are operating in parallel

taking data from 128 flip-flops configured in 16 scan chains. Figure 3.3 (b) shows how

this configuration can be re-used for 4-bit scan chain operation during manufacturing

test: the output of So[3:0] is fed back to Si[7:4] and so on, until test data is scanned

out through So[15:12]. To reduce latency and energy consumption, shorter scan chains

are needed; but at the same time, this will increase the area overhead due to additional

state monitoring blocks. To make each scan chain shorter, the number of scan chains

can be increased. The detailed area, energy and latency trade-offs related to scan chain

configuration are discussed in Section 3.2.3.

3.1.2 Step 2: Controller

A state monitoring and recovery controller is designed to provide the controls for the

scan enable signal ‘se’ and the input multiplexer selection signals ‘sel’ (Figure 3.1) for

encoding where ‘se’ is set to ‘1’ and ‘sel’ is set to ‘0’, and for decoding where ‘se’ is

set to ‘1’ and ‘sel’ is set to ‘1’. The method targets state retention designs with two

different operation modes: active mode and sleep mode. Active mode (normal mode of



Chapter 3 Improving The Reliability of State Retention Designs 33

S
ta

te
 m

o
n
it
o
ri
n
g
 b

lo
c
k

0

1

TE

0

1

TE

0

1

TE

0

1

TE

SI

SO

Figure 3.2: Reuse and partition manufacturing test scan chain for state moni-
toring.

(a) (b) 

Circuit Under Protection 

(PGC) States 

monitoring 

block (1)

Hamming(7,4)

Error 

Correction 

Block

Error Location

Sel=0 or 1

Correction Feedback

So[3:0]

Si[3:0] So[3:0]
test

Se=1

States 

monitoring 

block (4)

Hamming(7,4)

0

1

2

Si[15:12] So[15:12]

Circuit Under Protection 

(PGC) 

Si[3:0] So[3:0]

Si[15:12] So[15:12]

Test 

Scan In

Test 

Scan out

Se=1

So[15:12]

test

0

1

2

Sel=0 or 1

......

......

......

Si[7:4] So[7:4]

Si[11:8] So[11:8]

......
Test=1

Figure 3.3: Scan chain configurations (a) state monitoring (b) manufacturing
test.

operation) is the same for both power gating and supply voltage scaling. For sleep mode,

in the case of power-gating, the state is saved in retention registers and power supply of

the design is turned off, in the case of supply voltage scaling the supply voltage of the

design is reduced aggressively to the retention voltage where the registers of the design

can still hold their states. The sleep-active mode transition control is similar for both

power gating and supply voltage scaling, except that power gating requires additional

control for saving and restoring circuit states. In this implementation power gating is

demonstrated.

The state monitoring and recovery control can be integrated into a conventional sleep-

active mode transition control flow which is illustrated in Figure 3.4. Figure 3.4 (a)

shows the conventional sleep control flow. Assume a circuit starts from active mode.

When signal ‘sleep’ is ‘1’, the sleep controller starts the sleep sequence, for power gating

design it includes saving the circuit’s states and turning off the sleep transistors while



34 Chapter 3 Improving The Reliability of State Retention Designs

Sleep sequence

(a) Conventional power 

control sequence

Sleep?

Sleep?

0

1

1

0

Sleep?
0

1

(b) Power and State Monitoring 

Control (PSMC)

Sleep Mode

Active Mode

Sleep Mode

Active Mode

Save states

Power off

Wake-up sequence

Restore states

Power on

Sleep sequence

Save states

Power off

Wake-up sequence

Restore states

Power on

Encoding

Parity bits 

generation

Decoding

Parity bits 

generation

Error detection

State recovery

Sleep?
1

0

Figure 3.4: Control sequence (a) conventional (b) proposed Power and State
Monitoring Controller (PSMC)

for drowsy logic the supply voltage is scaled down, then the circuit enters the sleep

mode. When signal ‘sleep’ is ‘0’ it starts the wake-up sequence, for power gating design

it includes turning on the power transistors and restoring the circuit’s states when the

power supply become stable while for drowsy logic the power supply is restored and the

circuit enters active mode. Figure 3.4 (b) shows the power and state monitoring control

(PSMC) that is integrated into the conventional sleep control flow, where parity bits

are generated and stored before the sleep sequence, and the circuit’s states are checked

against the stored parity bits after the wake-up sequence.

Figure 3.5 shows the timing diagram of the power and state monitoring controller, where

‘sleep’ is the external active high signal that triggers the sleep and wake-up sequence:

when ‘sleep’ is set high, the controller isolates the outputs of the power-gated circuit;

signal ‘encode’ is set high for a number of clock cycles depending on the length of the

scan chains to enable the generation of parity bits; clock is stopped when encoding is

finished; Signal ‘retain’ is set to low to transfer data from the flip-flop’s slave latch to

its retention latch and active low signal ‘reset’ is set to ‘0’ to clear the content of the

slave latch before powering off. The wake-up sequence is: when external signal ‘sleep’ is

set low, the power controller first turns on the power then de-asserts ‘reset’; retain is set



Chapter 3 Improving The Reliability of State Retention Designs 35

clock

encode

isolate

decode

retain

reset

power

sleep

Figure 3.5: Power and State Monitoring Control timing diagram

Power and State Monitoring Controller

Power Gating 

Controller

Power Switch 

Controller

Error Coding 

Controller

n_pwr_req

n_pwr_ack

n
_
e
c
c
_
re
q

n
_
e
c
c
_
a
c
k

se

enc

dec

power

clk

sleep

clk_en

ctrl_n_rst

n_ret

n_isolate

Figure 3.6: Power and State Monitoring Controller block diagram

high to transfer data back from the retention latch to the flip-flop’s slave latch; the clock

is enabled and the signal ‘decode’ is set high for number of clock cycles depending on the

length of the scan chains to check the parity bits; at the end, output isolation is lifted

and circuit returns to functional mode. The schematic of power and state monitoring

controller is shown in Figure 3.6: the power-gating controller controls clock, reset, output

isolation and saving/restoring circuit states; the power switch controller controls power

switches; and the error coding controller is in charge of state monitoring and recovery.

These controllers communicate using handshaking signals, so different coding schemes

can be used without changing the power gating controller.

Figure 3.7 shows example implementations of state machine transition for (a) power

gating control and (b) scan-based ECC control using Verilog. There are six main stages

in power-gating control flow as shown in Figure 3.7.(a):



36 Chapter 3 Improving The Reliability of State Retention Designs

1. In active mode, the controller waits for sleep request. Right after sleep request is

received, it then sends ECC generation request to ECC controller and waits for

the acknowledge signal.

2. The standard sleep sequences before turning off power switches.

3. It sends power-down request and waits for the circuit to be powered off.

4. It powers up the circuit when receiving wake-up request.

5. The standard wake-up sequences after turning on power switches.

6. Error detecting and correcting using stored ECC code.

Only stage 1 and stage 6 are created for state monitoring and recovery; the rest of stages

are identical to standard state retention power gating design.

3.1.3 Step 3: Synthesis Flow

Figure 3.8 shows the design synthesis flow for incorporating the proposed state moni-

toring and recovery method using a conventional design flow. It has three inputs, which

includes the original design, the scan chain configuration file, and templates for SMRB

(Figure 3.1) and PSMC (Figure 3.4). The synthesis flow consists of four main steps:

it first inserts scan chains into the design through Design For Test (DFT) tool; it then

instantiates the SMRB and PSMC through the template and the configuration file, and

finally the design is synthesised using the RTL synthesis tool. Synopsys DFT Compiler

and Design Compiler are used in this case study.

3.2 Case Study 1: FIFO

In this case study, the proposed method is used to improve the reliability of an FIFO

circuit. The design is functionally validated using the Xilinx Virtex-5 FPGA on Xilinx

ML505 evaluation board shown in Figure 3.9. Although there is no power switching

and scan chains insertion in FPGAs, the reliable power control sequence (Figure 3.4) is

emulated and the scan chains insertion is done in RTL level using a Perl script. To verify

the proposed method a 32x32 bit FIFO circuit is created as a case study because it has a

high density of flip-flops. 80 scan chains (selected for demonstration purpose) are created

in the FIFO with 13 flip-flops in each scan chain. The state monitoring block (Figure 3.1)

uses both Hamming code and CRC code; these are chosen because of their effectiveness

in error detection and correction and simple encoding and decoding circuitry (small

circuit area overhead). The testbench setup is shown in Figure 3.10. There are five

components: FIFO A consists of a FIFO module using proposed reliable power-gated



Chapter 3 Improving The Reliability of State Retention Designs 37

//pg_ecc_ctrl.v

always @ (posedge clk, negedge n_rst) begin

if(!n_rst) state <= AWAKE;

else begin

case (state)

AWAKE: begin

if (!n_ecc_req) state <= CLEAR_CHECKSUM;

else state <= AWAKE;

end

CLEAR_CHECKSUM: state <= ENCODING;

ENCODING: begin

if (cnt >= ECC_CODE_ST_DEPTH-1) 

state <= ASLEEP;

else state <= ENCODING;

end

ASLEEP: begin

if (n_ecc_req) state <= DECODING;

else state <= ASLEEP;

end

DECODING: begin

if(cnt >= ECC_CODE_ST_DEPTH-1) 

state <= AWAKE;

else state <= DECODING;

end

endcase // case (state)

end

end

(b) Scan based ECC control

//pg_ctrl.v

always @ (posedge clk, negedge n_rst) begin

if(!n_rst) begin

state <= INITIALIZATION;

end

else begin

case (state)

INITIALIZATION: state <= INITIALIZATION2;

INITIALIZATION2: state <= AWAKE;

AWAKE: begin

if (sleep_req) state <= ECC_GEN;

else state <= AWAKE;

end

ECC_GEN: begin

if (!n_ecc_ack) state <= STOP_CLK;

else state <= ECC_GEN;

end

STOP_CLK: state <= ISOLATE;

ISOLATE: state <= SAVE_STATE1;

SAVE_STATE1: state <= SAVE_STATE2;

SAVE_STATE2: state <= N_RST_ON;

N_RST_ON: state <= PWR_DOWN_REQ;

PWR_DOWN_REQ: begin

if(!n_pwr_ack) state <= ASLEEP;

else state <= PWR_DOWN_REQ;

end

ASLEEP: begin

if (!sleep_req) state <= PWR_UP_REQ;

else state <= ASLEEP;

end

PWR_UP_REQ: begin

if(n_pwr_ack) state <= N_RST_OFF;

else state <= PWR_UP_REQ;

end

N_RST_OFF: state <= RESTORE1;

RESTORE1: state <= RESTORE2;

RESTORE2: state <= DE_ISOLATE;

DE_ISOLATE: state <= START_CLK;

START_CLK:  state <= ECC_CHECK;

ECC_CHECK: begin

if (n_ecc_ack) state <= AWAKE;

else state <= ECC_CHECK;

end

default: state <= AWAKE;

endcase // case (state)

end // else: !if(n_rst)

end

(a) power gating control

Waiting 

for sleep 

request

Waiting for 

ECC 

generation

Sleep 

sequences

Waiting for 

waik-up 

request

Wake-up 

sequences

Waiting for 

ECC checks

Waiting 

for ECC 

request

ECC 

generation

Waiting for 

ECC check 

request

ECC 

checks

Figure 3.7: Example code snippet for (a) power gating control and (b) scan
based ECC control

design and an error injection circuit; FIFO B is the error-free reference FIFO module;

Stimulus generates and writes random data to both FIFO A and FIFO B; Comparator

reads the data from both FIFO A and FIFO B and compares them. Counters record

each event when the errors are reported by FIFO A and when the mismatches are

reported by comparator. The test bench test sequence has five stages:

1. Reset both FIFO A and FIFO B to ensure they start in the same state.

2. Write to both FIFO A and FIFO B with the same random data.

3. Send sleep signal to FIFO A and stop the clock to FIFO B

4. Wait until FIFO A is in sleep mode, then send wake-up signal to FIFO A.

5. Read both FIFO A and FIFO B and compare the outputs.



38 Chapter 3 Improving The Reliability of State Retention Designs

Reliability Aware Synthesizer

Tools

Templates

Original Design

1. Test scan width

2. State monitor input width

3. Number of state monitors

Configuration file

State monitoring and 

state recovery block 

(SMRB)

Insert scan chains into the 

design

power and state 

monitoring controller

(PSMC)

Synthesized Design

(reliability aware)

Synopsys 

Design Compiler

Synopsys DFT 

Compiler

Instantiate state monitoring 

and recovery circuit

Instantiate power and state 

monitoring controller

Synthesis design

1

2

3

4

Figure 3.8: Proposed design flow for reliable state retention power gating design

Repeat the test sequence for a required number of times before sending the result to PC

through RS-232 serial port.

3.2.1 Error Generation and Injection

Figure 3.11 shows a hardware error injection circuit used for injecting random errors.

The error injection circuit consist of a column error injector and a row error injector,

which target the error injection location. Each fault injection cycle consist of two stages:

It first generates random errors by setting the column and row injector using linear

feedback shift registers; then the injection circuit injects errors through scan chains by

flipping the scan-out data and feed back into the scan-in ports. For example to inject a

single error into the flip-flop in the 3rd row and 4th column shown in Figure 3.11, the

row injector is set to ‘0010000’ (top→ down). Then set the column injector to ‘0001000’

(left → right) and set the circuit in scan mode. The column fault injector shifts in the

same direction (to the right) as the scan chains. When the column injector’s output is

‘0’ the fault injection is disabled by the ‘AND’ gates. After three clock cycles the column

injector’s output is shifted to ‘1’, which enables the fault injection of the 4th column.

Then the row injector will flip the 3rd bit of the column using ‘XOR’ gates. In the 4th

clock cycle the error is latched into the circuit.

The error injection location can be described with the following equation:

Error location =
m
∑

i=1

xi ·
n
∑

j=1

yj (3.1)



Chapter 3 Improving The Reliability of State Retention Designs 39

JTAG interface for 

programming the 

FPGA

RS232 interface for 

communicating with 

workstation

Figure 3.9: Xinlinx ML505 FPGA evaluation board for functional verification
of the method

FIFO_A

Scan Chains

State 

monitoring 

Circuit

Fault 

injection 

circuit

M

U

X

FIFO_B

Comparator

Stimulus

error

m
is
m
a
tc
h

Counter

enc

dec

Figure 3.10: FPGA test bench for functional verification of the method

where xi is the value of the bits in the column injector and m is the total number of

bits in the column injector, yi is the bits in the row injector and n is the total number

of bits in the row injector. The error location is the n × m bit map produced by the

bitwise multiplication of xi and yi, for each bit on the bit map 1 indicates an error and

0 indicates an error-free state.



40 Chapter 3 Improving The Reliability of State Retention Designs

Figure 3.11: Error injection architecture.

Figure 3.12 shows four different error patterns that are generated for each test run of

the experiment:

a) One error location is generated in the row(y) and column(x) injector; a single error

is injected at location (x,y).

b) Set all column injectors to ‘1’s and set the 1st bit of row injector to ‘1’. In each

clock cycle shift the row injectors downwards, so that one error per scan slice is

injected in each row.

c) The beginning and the end of error location are generated in both row(y1 to y2)

and column(x1 to x2) injector, so that errors are injected in the area of (x1,y1 to

x2,y2).

d) Random bit patterns are generated in each row(y1,y2,y2...,yn) and column(x1,x2,x3...,xm),

so that errors are injected in the location (
∑m

i=1
xi ·

∑n
j=1

yj).

Figure. 3.13 shows Linear Feedback Shift Registers (LFSR) of length ‘n’ are used to

generate random locations for the error injector. For the error pattern shown in Fig-

ure 3.12.(a) the single error location in both column and row injector is indicated by the

value of the column and row LFSR respectively; if the length of column injector is ‘m’,

then the length of column LFSR is n = log2(m). Similarly the length of row LFSR can

be decided. LFSR is not needed for the error pattern shown in Figure 3.12.(b), because

this pattern is not random. For the error pattern shown in Figure 3.12.(c) the beginning

and the end of error location in column injector are indicated by the value of 2 LFSRs,

same rule applies for the row injector. For error pattern shown in Figure 3.12.(d) the

bit locations on both column and row injector are mapped from the column and row

LFSR, and the length of LFSR is equal to the corresponding injector.



Chapter 3 Improving The Reliability of State Retention Designs 41

(c) Burst errors (d) multiple errors

0 0 0 0 00 0

0 1 0 0 00

1

0

0

0

0

0

0

(a) Single error

1 1 1 1 11 1

(b) correctable errors

s
h
if
t

0

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

0 1 0 0 00 0

0 0 0 0 01 0

0 0 0 0 00 1

0 0 0 1 00 0

0 0 0 0 10 0

0 1 0 0 00 0

0 0 1 0 00 0

1 0 0 0 00 0

1

0

0

0

0

0

0

x

y

y

x

1 1 1 0 000

x

1

1

1

0

0

0

0

y

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

1 1 1 0 00 0

1 1 1 0 00 0

1 1 1 0 00 0

1 1 0 0 001

x

1

0

1

0

0

0

0

y

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

0 0 0 0 00 0

1 1 0 0 01 0

1 1 0 0 01 0

Figure 3.12: Error injection patterns.

1 0 0 1 1 0 1 0

0 n1

......

Figure 3.13: Linear Feedback Shift Registers

3.2.2 Experimental Results

To evaluate the effectiveness of the proposed method in improving the reliability of

FIFO design, four experiments were performed using 1× 106 test sequences, where each

test sequence performs fault injection. In each experiment, one error pattern (from

Figure 3.12) is used for fault injection. The result is shown in Table. 3.1, where the

first column shows the number of injection runs for each experiment, the second column

shows the number of test runs in which all injected errors are corrected using Hamming



42 Chapter 3 Improving The Reliability of State Retention Designs

code, the third column shows the number of test runs where not all errors are corrected

by Hamming code but are detected using CRC and the fourth column shows the number

of test runs where the output of FIFO A is different from the output of reference design

FIFO B. There are four key observations:

1. The result of the first experiment (Figure 3.12.(a)) is shown in the first row of

Table 3.1; the error correction circuitry detected and corrected all single errors per

test sequence and therefore no error was reported by FIFO A. This was further

verified by comparing the outputs of FIFO A and FIFO B using a comparator.

2. The result of the second experiment (Figure 3.12.(b)) is shown in the second row

of Table 3.1; the error correction circuitry detected and corrected all errors per

test sequence. This is because there is only one error in each column, each column

contains one or more code word which mean there is no more than one error in each

codeword, and Hamming code is capable of correcting one error per code word.

Therefore no error was reported by FIFO A which was verified by comparing the

outputs of FIFO A and FIFO B.

3. The result of the third experiment (Figure 3.12.(c)) is shown in the third row of

Table 3.1; injected errors are corrected in some test runs where only one error per

column is injected due to the upper bound and lower bound of error locations in

the row injector are the same. The uncorrectable errors are all detected by the

CRC error detection circuitry, which was verified by comparing the outputs of

FIFO A and FIFO B using a comparator.

4. The result of the last experiment (Figure 3.12.(d)) is shown in the fourth row

of Table 3.1; injected errors are corrected in some test runs where only one er-

ror per column is injected due to single error location in the row injector. The

uncorrectable errors are all detected by the CRC error detection circuitry.

To summarise, errors can be corrected using Hamming code if there is only one error

per column and all uncorrectable errors are accurately detected due to the fact that the

high error coverage of CRC-16 code. Only certain error patterns can escape CRC-16

error detection and the fault injection method used in this experiment does not cover

those pathological error patterns, so that CRC error correction can correctly detect all

injected errors. More rigorous experimental coverage of error injection to cover the full

state space is described in Section 3.3.2.

3.2.3 Trade-off Analysis

In this section the trade-offs are studied in terms of the area overhead of state monitoring

circuitry, encoding/decoding time and power related to the implementation of two types



Chapter 3 Improving The Reliability of State Retention Designs 43

Table 3.1: FPGA fault injection, error detection and correction result

Injection pattern Injection run Corrected Detected Comparator output

single error 1000000 1000000 0 0

correctable error 1000000 1000000 0 0

burst error 1000000 55552 944448 944448

multiple error 1000000 3626 996374 996374

of coding (Hamming code and CRC code) with different scan chain configurations. In

this section the terms ‘latency’ and ‘encoding/decoding times’ are used interchangeably.

The design is synthesised using 120nm CMOS technology. The area overhead is gener-

ated from Synopsys Design Compiler. The gate level netlist of the power-gated design is

simulated in the Cadence simulator, and the encoding/decoding power is calculated by

Synopsys Prime Time PX. The circuit is clocked at 100MHz for demonstration purposes.

Table 3.2: Encoding and decoding circuit area overhead, power, latency and
energy consumption for CRC-16 code with different scan chain configurations

32x32 FIFO, CRC-16 code, 120nm CMOS, clock=100MHz

Width Length Area Power(mW ) Time(ns) Energy(nJ)
µm2 % encode decode encode decode

4 260 73658 2.8 4.99 4.99 2600 12.97 12.97

8 130 73928 3.2 4.96 4.97 1300 6.45 6.46

16 65 74614 4.2 4.96 4.98 650 3.22 3.24

40 26 75762 5.8 5.13 5.17 260 1.33 1.34

80 13 78208 9.2 5.14 5.25 130 0.67 0.68

Table 3.2 shows the area, power, latency and energy when implementing the reliable

power-gated FIFO using CRC-16 code. The first column shows the number of scan

chains created, the second column shows the length of each scan chain, followed by the

area of FIFO circuit, the 4th column shows the power consumption, the 5th column

shows the timing performance, and the last column shows energy consumption. As the

number of scan chains increases (from 4 to 80), the length of scan chains decreases from

260 to 13, and the encoding/decoding time decreases from 2600 ns to 130 ns. This

is because encoding/decoding time is equal to the product of the length of scan chain

and clock period, and longer scan chains lead to longer encoding/decoding time. This

increase in the number of scan chains (from 4 to 80) results in area overhead (from

2.8% to 9.2%). This is because a higher number of scan chains requires additional

state monitoring blocks (Figure 3.3 (a)) for encoding/decoding. Power consumption

slightly increases (from 4.99 mW to 5.14 mW) with an increase in area; this is due to

additional state monitoring blocks that consume extra power. The encoding/decoding

energy decreases (from 12.97 nJ to 0.67 nJ) with the increase in the number of scan

chains, because energy is the product of power and time; the number of scan chains

increase the power by only 3% (relative difference from 4 to 80 scan chains) while latency



44 Chapter 3 Improving The Reliability of State Retention Designs

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90

ar
ea

 o
ve

rh
ea

d 
(%

)

number of scan chains

(a) CRC area overhead

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90

po
w

er
 (

m
W

)

number of scan chains

(b) CRC coding power

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  10  20  30  40  50  60  70  80  90

tim
e 

(n
s)

number of scan chains

(c) CRC coding time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80  90

en
er

gy
 (

nJ
)

number of scan chains

(d) CRC coding energy

Figure 3.14: FIFO case study: CRC code implementation trades offs

decreases by 95%, which results in overall reduction in energy consumption. The CRC

code implementation trade-offs are shown graphically in Figure 3.14.

Table 3.3: Encoding and decoding circuit area overhead, power, latency and
energy consumption for Hamming (7,4) code with different scan chain configu-
rations

32x32 FIFO, Hamming (7,4) code, 120nm CMOS, clock=100MHz

Width Length Area Power(mW ) Time(ns) E(nJ)
µm2 % encode decode encode decode

4 260 120594 68.4 6.76 6.72 2600 17.58 17.47

8 130 121552 69.7 6.91 6.86 1300 8.98 8.92

16 65 123303 72.1 7.11 7.00 650 4.62 4.55

40 26 126811 77.0 7.72 7.45 260 2.00 1.94

80 13 134141 87.3 8.43 8.05 130 1.08 1.05

Similarly Table.3.3 shows the area, power, latency and energy performance by using

Hamming (7,4) code on reliable power gated FIFO. It shows a similar trend in terms of

different scan chains configurations. When increasing the number of scan chains (from 4

to 80), the area overhead and encoding/decoding power increases (from 68% to 87% and

from 6.76 mW to 8.43 mW respectively), but the encoding/decoding time and energy

is reduced (from 2600 ns to 130 ns and from 17.58 nJ to 1.08 nJ respectively). The

Hamming code implementation trade-offs are also shown in Figure 3.15.



Chapter 3 Improving The Reliability of State Retention Designs 45

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90

ar
ea

 o
ve

rh
ea

d 
(%

)

number of scan chains

(a) Hamming area overhead

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90

po
w

er
 (

m
W

)

number of scan chains

(b) Hamming coding power

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  10  20  30  40  50  60  70  80  90

tim
e 

(n
s)

number of scan chains

(c) Hamming coding time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  10  20  30  40  50  60  70  80  90

en
er

gy
 (

nJ
)

number of scan chains

(d) Hamming coding energy

Figure 3.15: FIFO case study: Hamming code implementation trades offs

The area overhead of Hamming (7,4) code is significantly higher, at around 10 times more

than the CRC-16 code (68% and 2.8% with 4 scan chains and 87% against 9.2% with 80

scan chains) as can be seen in Tables 3.2 and 3.3. This is because Hamming (7,4) code

requires much larger parity bits storage than the CRC-16 code. The encoding/decoding

power of Hamming (7,4) code is around 20% to 40% higher than CRC-16 code. The

difference between power is not as significant as the area overhead because the majority

of encoding/decoding power is due to the switching of scan chains, which is common in

both implementations. The encoding and decoding time for both schemes are the same

because latency is only affected by the scan chains length. The encoding and decoding of

Hamming (7,4) code consumes around 20% to 40% more energy than the CRC-16 code

due to Hamming (7,4) code’s higher encoding/decoding power. For both the CRC-16

code and Hamming code, the encoding/decoding time and energy reduces significantly

by increasing the number of scan chains at the cost of a relatively small increase in area

and power.

Power-gated FIFOs using different Hamming codes are also implemented. Table 3.4

shows the area overhead and power consumption of different Hamming codes. The first

column specifies implemented Hamming code, the 2nd column shows the number of

scan chains inserted, the 3rd column shows the area overhead, the 4th column shows the

power consumption, and the last column shows the maximum error correction ability

of each implementation. As can be seen, the area overhead is minimum with Hamming

(63,57) code but has least error correcting ability (1.59%). In general, area overhead can



46 Chapter 3 Improving The Reliability of State Retention Designs

Table 3.4: Encoding and decoding circuit area overhead, power, latency and
correction capability of code to protect state for different Hamming codes

32x32 FIFO, Hamming code, 120nm CMOS, clock=100MHz

code Width Area(µm2) Power(mW ) Correction
FIFO total % enc dec capability(%)

(7,4) 56 71628 132338 84.8% 8.21 7.84 14.3%

(15,11) 55 71628 101681 42.0% 6.52 6.34 6.67%

(31,26) 52 71628 88311 23.2% 5.89 5.82 3.23%

(63,57) 57 71628 82987 15.9% 5.64 5.62 1.59%

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12

er
ro

no
us

 te
st

 s
eq

ue
nc

e 
af

te
r 

er
ro

r 
co

rr
ec

tio
n 

%

number of injected errors in each test sequence of 1000 flip-flops

erronous test sequnce vs injected errors

Hamming(7,4)
Hamming(15,11)
Hamming(31,26)
Hamming(63,57)

Figure 3.16: The probability of erroneous test sequence after error correction
when multiple errors injected in each test sequence of 1000 flip-flops

be reduced (from 84.8% to 15.9%) using different Hamming codes at the cost of error

correction ability that decreases from 14.3% to 1.59%.

The effectiveness of four types of Hamming codes used in this work were investigated.

For this study, errors are randomly injected with even distribution in a test sequence

of 1000-bits emulating 1000 flip-flops, up to 10 errors are injected in each test sequence

and one million test sequences are simulated in total. The test sequence is then passed

through four types of Hamming code implementation separately and the outcome is

shown in Figure 3.16. As can be seen, Hamming (7,4) code has best error correction

capability; it corrects all errors in 75.89% of test sequences when each test sequence

contains 10 errors. Hamming (63,57) code has least error correction capability; it corrects

all errors in only 3.9% of test sequences when each test sequence contains 10 errors.



Chapter 3 Improving The Reliability of State Retention Designs 47

3.3 Case Study 2: ARM Cortex-M0

For the second case study, an embedded microprocessor is chosen as a more complex test

case, due to the need to support an additional software state recovery approach. ARM

Cortex-M0 is an energy efficient and low cost 32-bit micro-controller [150], whose details

are described in Appendix A. This section demonstrates how the proposed method can

be incorporated in the embedded processor. A Cortex-M0 based processor platform is

built and implemented in FGPA for this experiment, whose architecture is shown in

Figure 3.17. Processor core Cortex-M0 is connected to AHB Lite bus as bus master,

SRAM controller and ROM controller are connected to AHB Lite bus directly as bus

slaves. GPIO (General Purpose Input and Output) and UART (Universal Asynchronous

Receiver and Transmitter) are connected to APB bus which is connected to AHB bus

as a bus slave. The UART is used for communication between the processor and the

workstation. The programmer retrieves programs from the workstation through UART

and writing them to the ROM. The interrupt controller senses the input buffer of UART

and sends out interrupts to the processor core and notifies sleep controller when the

input buffer is not empty. The sleep controller monitors the processor’s operating mode

(active or sleeping) using the “Sleeping” signal from the processor core and the “wake-

up” signal from the interrupt controller. The processor core uses an Wait-For-interrupt

(WFI) instruction as the software mechanism to request entry to sleep mode, while

hardware interrupts wake up the processor.

Figure 3.18 shows the modified architecture for the ECC-protected Cortex-M0 based

processor platform. Compared to the original system shown in Figure 3.17, three new

components are created: State Monitoring and Recovery Block (SMRB), Power and

State Monitoring Controller (PSMC), and error register. The State Monitoring and

Recovery Block (SMRB) is connected to the scan chain of the processor core. The fault

injection circuitry which is connected in the scan chains is used to validate the error

detection and correction capability. The power controller is modified slightly to accom-

modate the state monitoring and recovery, referred to as Power and State Monitoring

Controller (PSMC). The error register is inserted in the memory map to give the user

program the access to the error information. Parity bits are generated by SMRB before

the power down of the processor core and error detection and correction is undertaken

after the power up of the processor core. The processor platform is implemented in

several power domains to minimise the power consumption.

Figure 3.19 shows that the components of the embedded system are divided into three

main power domains (PD). PD-1 is associated with functional blocks that are always-

ON, which includes SRAM, error register, data bus, I/O peripherals, power and state

monitoring controller (PSMC) and interrupt controller. PSMC and interrupt controller

are required to be active during sleep mode to respond to external interrupt requests.

In the case study SRAM, error register, data bus and I/O peripherals are not protected



48
C
h
a
p
te
r
3
Im

p
ro
v
in
g
T
h
e
R
el
ia
b
il
it
y
o
f
S
ta
te

R
et
en
ti
o
n
D
es
ig
n
s

Cortex-M0 Micro-controller Top

CORE

Cortex-M0

SRAM Controller

ROM Controller

SRAM

ROM

GPIO

UART

Interrupt 

controller

Sleep 

controller

IRQ

O
u
tp
u
t 
is
o
la
ti
o
n

Power 

controller

S
le
e
p

Programmer

AHB Lite 

BUS

APB BUS

Sleeping

se, Clken, iso

interrupt request

Input Buffer not empty

Figure 3.17: ARM Cortex-M0 processor platform block diagram



C
h
a
p
ter

3
Im

p
ro
v
in
g
T
h
e
R
elia

b
ility

o
f
S
ta
te

R
eten

tio
n
D
esig

n
s

49

Cortex-M0 Micro-controller with state monitoring and recovery Top

CORE

Cortex-M0
SRAM Controller

ROM Controller

SRAM

ROM

GPIO

UART

Interrupt 

Controller

Sleep Controller

IRQ, NMI

O
u
tp
u
t 

is
o
la
ti
o
n

State 

Monitoriing 

and 

recovery

Fault 

injection

Power and 

State 

Monitoring 

Controller

enc,dec InjReq

si

S
le
e
p

fe
e
d
b
a
c
k

Programmer

Error Register

so

error

Injection mode

AHB Lite

BUS

APB BUS

Input buffer empty

Interrupt request

Sleeping

Se, Clken, iso

Figure 3.18: ARM Cortex-M0 processor platform with state monitoring and recovery block diagram



50 Chapter 3 Improving The Reliability of State Retention Designs

Power Domain 2Power Domain 3

ARM Cortex-M0

Processor Core

Interrupt 

Control

State monitoring 

and recovery 

block

(SMRB)

Power and 

State 

Monitoring 

Control

(PSMC)

SRAM

Error 

register

Scan enable,

Clock enable,

Output isolation

Sleep request

Wakeup request

IRQ

E
n
c
o
d
in
g

D
e
c
o
d
in
g

Record Error

Scan out

Scan in

Peripheral

D
A
T
A
 B
U
S

Power Domain 1

(Always ON)

Figure 3.19: Block diagram of the proposed state monitoring and recovery tech-
nique using ARM Cortex-M0 as a case study.

by the SMRB. To guarantee their correct operation, they are placed in the always-on

power domain (PD-1). PD-2 is associated with functional blocks that are powered-

up only during active mode, which applies to the processor core. Finally, PD-3 is

associated with the state monitoring and recovery block (SMRB), which is active only

during encoding and decoding to ensure the processor’s state integrity. PSMC controls

the power up and power down sequence of the whole embedded system (Figure 3.19).

It also controls the SMRB, which monitors the processor states during sleep mode and

recovers the faulty states when an error is detected. All errors detected by the state

monitoring block, but which are not correctable using hardware are recorded in the

memory-mapped error register, so the processor has access to it through the data bus.

The power domains are annotated onto the structrual RTL design and are described in

detail using Unified Power Format (UPF) in Appendix. B.

In addition to the generic state monitoring and recovery control flow shown in Fig-

ure 3.4.(b), There are additional steps for incorporating software state recovery in the

embedded processor, which are saving architectural states before encoding and restoring

architectural states if hardware correction failed. Figure 3.20 shows the detailed control

flow, the wake-up sequence is initiated by the “Peripherals” which sends an interrupt

request through the “Interrupt Controller” to the PSMC. The PSMC first turns on the

power supply of PD-2 and PD-3, and then initiates the state “Decoding” through the

SMRB. SMRB re-generates the parity of the processor states and compares it with the



Chapter 3 Improving The Reliability of State Retention Designs 51

Active 

mode

Start

Encoding 

Hamming/

CRC

Power 

down

Sleep 

mode

Save 

architectur

al states

Power up

Hardware 

detection 

hamming

Hardware 

correction 

hamming

Hardware 

detection 

CRC

Software 

recovery

Error?

Error?

IRQ?

Sleep 

request?

1

0

0

0

1

1

CORE

SMRB

SMRB

SMRB

SMRB

SMRB

PSMC

IntC

1

0

PSMC

PSMC

SMRB

CORE

Figure 3.20: Control flow of error detection and state recovery mechanism.

stored parity bits (generated before going to sleep mode). In the case of a mismatch

(error detection), the following sequence of events occur: Firstly, an attempt is made to

recover the states through Hamming code, and if successful, the corrected states are fed

back through the processor scan-in port. Secondly, the state integrity is checked by com-

paring the parity generated by the CRC code of the corrected states (through Hamming)

with the one generated before going to sleep mode. In the case of a mismatch, which

indicates that the hardware error correction is not successful, this event is registered in

an error register. Now the processor core is in an unreliable state so it must be reset; the

reset handler will check the reset entry reason by examining the error register, and if it

is due to state corruption it will branch to the software recovery routine before servicing

the wake-up event. The detail descriptions of software recovery firmware is presented

in Appendix C. After the processor’s architectural states are recovered, the processor is

redirected to the appropriate instruction for the active mode of operation.



52 Chapter 3 Improving The Reliability of State Retention Designs

PIN

0

1

DDR

PORTR

PINR

D Q

D Q

D Q

W
D
A
T
A
B
U
S

R
D
A
T
A
B
U
S

clk

Figure 3.21: General purpose input and output port schematic

3.3.1 Processor System Components

This section shows the detailed implementation of processor system components. Gen-

eral purpose input and output (GPIO) is used in most processor platforms to provide

digital control signals or software reconfigurable interface. The schematic of the 1-bit

GPIO unit is shown in Figure 3.21. The port register (PORTR) takes the data from the

data bus and make it available to the output pin. The pin register (PINR) samples the

data from the input pin which then can be read by the data bus. The data direction

register (DDR) controls the function of a particular pin, which can be set by the data

bus. When DDR is set to ‘0’, the tristate buffer disables the output and the multiplexer

directs the input data to the pin registers; the pin becomes an input pin. When DDR

is set to ‘1’, the multiplexer selects the data from port register and the tristate buffer is

enabled; the pin becomes an output pin.

The universal asynchronous receiver and transmitter (UART) is implemented to provide

simple communication between the workstation and the processor using the RS-232

standard. There are two major functions; first it helps the programmer to download

binary program code to the system ROM, and secondly it provides the remote access

console interface. Figure 3.22 shows the schematic of the UART unit. It has a receiver

which covert bit-stream from the RS-232 interface to bytes and stored in receiving buffer

which can then be read by the data bus. When new data are read, the receiver sends

an interrupt signal to the interrupt controller that notifies the processor core. The

transmitter takes the data from the transmitting buffer and converts it into bit-stream

which can then be sent to the workstation through the RS-232 interface.

The ARM Cortex-M0 has built-in support for power gating. It has two operational mode

active mode and sleep mode; in sleep mode, the processor core can be safely powered

off. A sleep controller is implemented to control the sleep and wake-up sequence. The



Chapter 3 Improving The Reliability of State Retention Designs 53

receiver

transmitter

buffer

buffer

D
A
T
A
 B
U
S

RS232

workstation

interrupt

Figure 3.22: Universal asynchronous receiver and transmitter schematic

sleep controller is initialised to the “ACTIVE” state from reset where the processor

core is running a normal program. The WFI (wait for interrupt) instruction signals

the processor to stop program execution and enter sleep mode where it is safe to stop

the clock, save the states and turn off the power. Figure 3.23 shows the state machine

of the sleep controller. The processor core sets The “Sleeping” signal of the processor

core is set high to indicate that the processor core is ready to be powered down. The

sleep controller enters the “TRANSITION TO SLEEP” state and the sleep controller

signals the power controller to turn off the power. After the power down sequence is

completed, the power controller sends an acknowledge signal to the sleep controller by

setting “pwr down ack” high; the sleep controller enter the “SLEEPING” state. When

the sleep controller senses the interrupt from the interrupt controller in “SLEEPING”

state, it holds the interrupt signal and sends power-up request to the power controller

to initiate the wake-up sequence. Then the power controller powers up the processor

core, enables the clock and sends an acknowledge signal to the sleep controller by setting

“pwr up ack” high. The sleep controller goes back to the “ACTIVE” state and passes

the interrupt signal to processor to process the pending interrupt.

The interrupt controller is used to coordinate the interrupt events from the devices which

require the attention of the processor core. Figure. 3.24 shows the schematic of interrupt

controller. In this system there are two devices that require interrupt services: error

register and UART; these are shown on the right hand side of Figure. 3.24. When a new

byte of data is received by the UART, it sends an interrupt requesting processor core

to read the newly arrived data. When the error register records the uncorrectable error

event, it sends an interrupt and asks for immediate attention to cope with the error

(roll back to the clean state through software checkpoint), and the interrupt controller

gives the error register a higher priority over UART. When an interrupt is received, the

interrupt controller first checks the operation mode of the processor core by checking

the state stored in the sleep controller. If the processor core is in active mode, the

interrupt controller sends the interrupt to the processor core; if the processor core is



54 Chapter 3 Improving The Reliability of State Retention Designs

ACTIVE

SLEEPING

TRANSITION 

TO SLEEP

TRANSITION 

TO ACTIVE

~SLEEPING

SLEEPING

~pwr_down_ack
pwr_down_ack

~interrupt

interrupt

~pwr_up_ackpwr_up_ack

Figure 3.23: Sleep controller state machine

Processor 

core

Interrupt 

controller

Sleep 

controller

UART

interrupt

New data

notify

Operation 

mode

Error 

registererror

Figure 3.24: Interrupt controller

in sleep mode, the interrupt controller holds the interrupt event and notifies the sleep

controller to wake up the processor core. As soon as the processor core is back to active

mode, the interrupt controller sends the interrupt to the processor core.

Figure 3.25 shows the state machine of the interrupt controller. It starts in state ‘S0’

waiting for the interrupt event from peripheral devices. When interrupt is detected, it

goes to state ‘S1’ and checks the processor states. If the processor is not in sleep mode,

it goes to state ‘S3’ and sends the interrupt to processor. If the processor is in sleep

mode, it goes to state ‘S2’ and notifies the sleep controller to wake up the processor, and

waits for the processor to be powered up. When the processor is powered up, it goes to

state ‘S3’ and sends the interrupt to the processor.



Chapter 3 Improving The Reliability of State Retention Designs 55

Wait for 

interrupt

Waiting 

system 

power

Checking 

operation 

mode

Sending 

interrupt

~interrupt

interrupt

~sleeping

sleeping

sleeping

~sleeping

S0 S3

S1 S2

Figure 3.25: Interrupt controller state machine

Figure 3.26 shows an example of the text file containing a program that is transmitted

to the system through UART. When the processor system is in programming mode, the

programmer downloads the program through UART, converts it to hex numbers and

writes it to the program memory “ROM”. For example, the programmer reads data

from the UART receiving buffer. When the character ‘p’ is detected, the programmer

converts the following 8 characters from 8-bits ASCII code to 4-bits binary numbers,

then it combines 8 sets of 4-bit binary numbers into 32-bits word to be written into the

“ROM”.

Figure 3.27 shows the memory map for the processor platform. The private peripherals

are the control registers of the processor core, such as system timer register, interrupt

control register and system control register [150]. The error register holds the error

flag and controls the error injections. The UART TXD and UART RXD are UART

transmitting and receiving buffer entry. The GPIO DDR and GIPO DATA are GPIO

data direction registers and data registers. SRAM is used for storing intermediate data

and program stack. ROM holds the program instructions.

3.3.2 Error Generation and Injection

Error rate is application, environment and implementation dependent [151]; this is why

a wide range of bit error rate is considered in this work, which is from 10−12 to 10−1

errors per bit-hour. When considering soft errors, a study has reported that the error

rate is in the range of 10−12 to 10−7 errors per bit-hour [152]. It is observed in a recent

publication [153] that soft error rate (SER) is exponentially increasing mainly due to

reduction in critical charge and supply voltage. In addition, power supply fluctuations

and rush currents may also induce clustered errors, which may lead to higher error rates.



56 Chapter 3 Improving The Reliability of State Retention Designs

......

20003FF0

00000343

00000321

00000323

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000325

00000000

00000000

00000327

000004BC

00000004

00000168

00000120

00000000

......

0x00000000

0x0000003C

0x000004A8

0x000004BC

Text file ROM

Figure 3.26: Programmer converts text file to data in ROM

This is why error rates up to 10−1 per bit-hour and clustered errors are considered in

this work, represented by bit error rate (BER). This is used to develop a robust system

for state integrity, which is applicable for future technology nodes.

In Section 3.2.1, a simple LFSR was used to generate random error locations for fault in-

jection, which provides limited sets of error patterns. In this work, the Mersenne Twister

algorithm [154] is used to provide higher randomness (longer repeating period) for error

injection. Radiation-induced soft errors are evenly distributed and the available soft er-

ror injection model uses uniform distribution [155]. The proposed method also protects

the embedded processor from clustered errors caused by power supply fluctuations and

rush currents. Clustered errors are generated using a model presented in [156]:

Pi = γ ·

Nini
∑

j=1

(

1

dij

)α

(3.2)

where Pi is the error probability of each node, dij is the distance between two flip-flops

i and j, α is the clustering factor, and higher α implies higher clustering. α was varied

from 0 to 2 in these experiments, where 0 represents uniform distribution of errors

(Figure 3.29a) and α > 0 represents clustered errors (Figure 3.29b), Nini is the number

of initial errors and γ is the normalisation factor, which is calculated using the following

equation:



Chapter 3 Improving The Reliability of State Retention Designs 57

GPIO_DATA

GPIO_DDR

Reserve

UART_RXD

UART_TXD

Reserve

Error Register

0x40000000

0x40000004

0x40000008

0x40000800

0x40000801

0x40000802

0x40001000

Reserve

SRAM

0x20000000

0x20004000

Reserve

ROM

0x00004000

0x00000000

Reserve

Private Peripheral

0x40001004

0xE000E000

0xE000EE00

Reserve

0xE000EE00

Figure 3.27: Processor Memory Map

γ =
ǫtg

1
Nrst
·
∑Nrst

i=1

∑Nini

j=1

(

1
dij

)α (3.3)

where ǫtg is the target error rate, and Nrst is the number of uncorrupted bits after initial

error injection. The number of clusters is decided by the initial injected errors Nini,

given a specific error rate for a design, Nini is inversely proportional to the number of

errors per cluster. In the case-study, Nini is chosen to be 10% of total errors.

The error injection method is shown in Algorithm 1 and the example implementation is

shown in Figure 3.28, which consists of two stages. First initial errors Nini are evenly

injected (step-1 to step-7), which is kept at 10% of target error rate ǫtg. Next, in the

second phase, the error probability Pi of all the flip-flops in the system is recalculated,

and clustered errors are injected (step-8 to step-14).

The C code implementation for generating cluster error distribution is shown in Fig-

ure 3.28. The injection stage is straightforward given the bit error rate of each node,

only the stages that calculate the error probability are shown here. The first stage calcu-

lates the error-occurring probability for each bit in relation to the cluster centres (initial

injection). The second stage scales the probability by the normalisation factor γ.



58 Chapter 3 Improving The Reliability of State Retention Designs

Algorithm 1 Method for Error Injection

1: for i = 1 to N do
2: Pinit = ǫtg · β

// Pinit is the initial error probability
// ǫtg is target error rate, β is the initial injection ratio
// N represents the total number of flip-flops

3: Ri ← Generate a random number
4: if Ri < Pinit then
5: Inject error at node i
6: end if
7: end for
8: for i = 1 to Nrst do
9: Calculate Pi

// Pi is calculated using Equation (3.2) and Equation (3.3)
10: Ri ← Generate a random number
11: if Ri < Pi then
12: Inject error at node i
13: end if
14: end for

Calculates the 

error probability 

based on the 

distance from the 

cluster center

Normalize the 

error probability 

so it does not 

exceed the target 

error rate

Figure 3.28: Cluster error injection implementation



Chapter 3 Improving The Reliability of State Retention Designs 59

 20

 40

 60

 80

 100

 120

 140

 20  40  60  80  100  120  140

(a) Unclustered Errors α = 0

 20

 40

 60

 80

 100

 120

 140

 20  40  60  80  100  120  140

(b) Clustered Errors α = 2

Figure 3.29: Error distribution using error injection method shown in Algo-
rithm 1

Workstation

Random error 

generation 

program

W x L

Bit map

U
A
R
T

FPGA Test Bench

U
A
R
T

W x L

Fault injection 

Register array

Device

(fault to be 

injected)

si

so

Figure 3.30: Hardware error injection architecture

These error distribution patterns are generated on a workstation in the form of memory

maps indicating error locations. To inject errors at specific locations in the design,

the memory map is transferred into the FPGA test bench through UART as shown in

Figure 3.30, where fault injection registers hold the error location map, which is XORed

with the states of the protected circuit through scan chains.

3.3.3 Experimental Results

Three experiments are performed to evaluate the effectiveness of the proposed method in

improving the reliability of embedded processor implementations, in terms of hardware

error detection, hardware error correction and software state recovery. CRC is well-

known for its high detection capability, low area overhead and simple design [157]. An

experiment is conducted to compare the detection capability of CRC-8 and CRC-16

under different bit error rates ranging from 10−1 to 10−6 errors/bit. Using the hardware

setup shown in Figure 3.19, errors were injected evenly across all 768 flip-flops in the

processor core for 10 thousand test runs at each bit error rate. The results are shown



60 Chapter 3 Improving The Reliability of State Retention Designs

Figure 3.31: Detection Capability of CRC-8 and CRC-16 on Cortex-M0 as a
case study

in Figure 3.31. As can be seen, both codes exhibit nearly 100% error detection capability

when the bit error rate is less than or equal to 10−4 errors/bit. However, the detection

rate of CRC-8 dropped down to 99.6% under 10−2 or higher bit error rates, while CRC-

16 continued to detect nearly 100% of all injected errors. For this reason, CRC-16 is

used in this work for hardware error detection. The polynomial used in this work is the

same as the one used to encode data in USB 2.0 [158]; that is (x16 + x15 + x2 + 1). To

enable faster execution a parallel-CRC implementation [159] is used.

The effect of radiation on 65-nm memory has been studied [160], where 44 upset events

and 70 bit flips per Mbits are observed in 2.5× 107 hours, 25% of which are multiple-bit

upsets and always affect the adjacent bits. This implies that these multiple-bits upsets

are caused by the same partical strike. The flip-flops in a circuit are not clustered as

memory cells and therefore the chance of radiation event corrupting multiple flip-flops

is much lower than corrupting multiple memory cells. If the bit error rate is λ and there

are R flip-flops in the system, the unprotected system failure rate is:

System Failure Rate = λ · R (3.4)

Hamming code can achieve single error tolerance in each codeword and it can correct

multiple errors in a circuit if these errors are not in the same codeword. It has small

encoder and decoder area overheads and fast encoding and decoding. The number of

times a state is checked affects state integrity of a storage element; state integrity of a

flip-flop that is checked once a day is lower than the one checked every minute. This

concept is called ECC scrubbing [161] and the checking period is termed as scrubbing

interval. In this work scrubbing interval is equal to sleep duration. Assuming every



Chapter 3 Improving The Reliability of State Retention Designs 61

particle strike only causes a single bit upset and at sleep frequency of 0.1 Hz (average

sleep duration or scrubbing interval up to 10 seconds), the system failure rate of a

protected system is given by [161]:

Protected System Failure Rate = 0.5 ·
R

k
· λ2n2 (3.5)

Using Equations 3.4 and 3.5, the system failure rate (SFR) can be estimated, Figure 3.32

shows how Hamming (63,57) code reduces the SFR under different soft error rates (SER)

with the range between 10−12 to 10−7 (err/bit-hr), this range is based on findings from a

previous study [152]. Supply voltage scaling increases the soft error rate due to reduction

in critical charge [162]. Using the proposed technique, the reliability of the idle circuit

can be improved to compensate for the reduction in reliability due to supply voltage

scaling. This can be demonstrated through the following example. In the case study

of Cortex-M0, the system failure rate (SFR) is plotted against bit error rate (BER)

in Figure 3.32. It is assumed that a system operating at 1V supply and its bit error rate

λ1V is 10−7. From Figure 3.32 it can be seen that for an unprotected system BER λ1V

of 10−7 corresponds to SFR f of 10−4. A previous study has shown that BER increases

by 3 times when supply voltage is reduced from 1V to 0.5V for a 65-nm technology

node [153], which means the BER at 0.5V is λ0.5V = 3 × 10−7. Using the proposed

hardware correction through Hamming (63,57) code, it can be seen that even at BER

λ0.5V of 3× 10−7 the SFR fp is significantly lower (10−8) than the SFR f at 1V (10−4)

of an unprotected system. The impact of the proposed protection method on circuit

idle power is also analysed in Section 3.3.4. It is shown in Figure 3.32 that Hamming

code is effective in protecting the system when SER is between 10−12 to 10−7; however

it starts to lose effectiveness for bit error rate above 10−5. It should be noted that the

reliability of the stored parity bits is taken into account by the error detection (CRC)

and correction (Hamming and software state recovery) and therefore they are protected.

Software state recovery is invoked when errors correction through Hamming fails due to

more than one bit error in the same codeword. An experiment is conducted to analyse

the effect of higher error rates (5 x 10−3 to 55 x 10−3) on error detection capability of

CRC-16 and error detection and correction capability of different Hamming codes. Two

different error distribution coefficients were used (Equation 3.2). Figure 3.33a shows

the case of evenly distributed errors using α = 0 and Figure 3.33b shows the effect

of clustered errors that are generated using α = 2. From the two figures, it can be

seen that the error detection capability of CRC-16 remains unaffected across higher

error rates and different clustering coefficients, however error detection and correction

capability of all Hamming codes reduce significantly as error rate increases all the more

strongly when clustered errors are injected as shown in Figure 3.33b. It should be noted

that conventional scan chain configuration is used in this work, where neighbouring

flip-flops are connected together. The impact of clustered errors can be reduced by



62 Chapter 3 Improving The Reliability of State Retention Designs

λ1V λ0.5V

f

fp

Figure 3.32: The system failure rate with and without hardware error recovery
on Cortex-M0 as a case study

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

C
o

rr
ec

ti
o

n
 o

r 
D

et
ec

ti
o

n
 C

ap
ab

il
it

y
 (

%
)

Bit Error Probability errs/bit

Hamming (7,4)
Hamming (15,11)
Hamming (31,26)
Hamming (63,57)

CRC16

(a) Evenly distributed errors α = 0

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

C
o

rr
ec

ti
o

n
 o

r 
D

et
ec

ti
o

n
 C

ap
ab

il
it

y
 (

%
)

Bit Error Probability errs/bit

Hamming (7,4)
Hamming (15,11)
Hamming (31,26)
Hamming (63,57)

CRC16

(b) Clustered errors α = 2

Figure 3.33: Error correction capability of Hamming codes and error detection
capability of CRC-16 at bit error probability of 0.005 to 0.05 errors/bit.

configuring scan chains to achieve maximum physical separation between consecutive

flops. In this work clustered errors are dealt with using CRC detection and software

state recovery. For software state recovery, the corrupted states are recovered through

software checkpoints [163]. This is implemented by saving the architectural states before

going to sleep mode. The states are placed in the ECC-protected SRAM for software

state recovery, which is in “Always ON” power domain as shown in Figure 3.19. In

the case of multiple errors in the same codeword, the software recovery is invoked that

restores the saved states of the processor. Figure 3.31 shows that CRC-16 can detect

99.9978% of errors and subsequently all detected errors can be corrected by software

state recovery. This clearly demonstrates the effectiveness of the proposed software

state recovery method.



Chapter 3 Improving The Reliability of State Retention Designs 63

This work exploits the advantages of both techniques (hardware error correction and

software state recovery) to achieve an effective state monitoring and recovery. For ex-

ample, hardware error correction (Hamming code) is faster than the software state re-

covery technique. On the other hand, the software recovery technique has negligible area

overhead and it can be used to recover burst errors, which cannot be corrected using

Hamming code. It should be noted that, in the case of software recovery, the correction

energy and latency cost is incurred only when errors are detected. The detailed trade-off

analysis of the two techniques is discussed in the next section.

3.3.4 Trade-off Analysis

To protect a design with the proposed state monitoring and recovery technique, there

is a trade-off between wake-up latency, area overhead and energy consumption. In this

section, the trade-offs are analysed on the embedded processor shown in Figure 3.19.

The effect of sleep rate on leakage power savings are examined. The deep sleep mode

is not considered, because the whole circuit is completely powered down and there is

no state integrity problem. The embedded system with the proposed state monitoring

and recovery technique (Figure 3.19) is synthesised using a 65-nm STMicroelectronics

gate library and Synopsys design compiler. Errors are injected in the system using the

algorithm presented in Section 3.3.2 for evenly distributed errors (α = 0) as well as for

clustered errors (α = 2).

The proposed scan-based state protection method incurs three costs for a design: firstly,

it increases wake-up latency that is the time required for the circuit to switch from sleep

mode to active mode; secondly, it incurs some area overhead due to the additional coding

circuitry and parity storage; lastly, it consumes energy in every sleep and wake-up cycle.

The generalised relation between coding scheme selection, scan chain configuration and

the overhead is shown in this section.

For both Hamming and CRC protection, additional coding circuitry and parity storage

lead to area overhead, which can be estimated using the following equation

Aov = Nc ×Ac +Ns ×As +APSMC (3.6)

where Ac is the area of a single coder, Nc is the number of coders used, As is the area

of a single storage unit, Ns is the number of parity storage units, and APSMC is the

area of the PSMC (Power and State Monitoring Control) block. The number of coders

is proportional to the number of parallel scan chains. The number of parity storage

units is proportional to the number of flip-flops in a design and the coding scheme used.

Equation (3.6) can be rewritten as



64 Chapter 3 Improving The Reliability of State Retention Designs

Aov =
Wsc

k
×Ac +

Nff · d

k
×As +APSMC (3.7)

where Wsc is the number of parallel scan chains created, and Nff is the number of

flip-flops in a design. For any error correction code, a codeword consists of data bits

for storing information and parity bits for protecting the information, k is the number

of data bits and d is the number of parity bits in a codeword. It shows that the area

overhead increases with the number of parallel scan chainsWsc, due to additional encoder

and decoder. The area overhead also increases with the ratio of parity bit to data bit

of the selected coding scheme due to redundancy storage (5th column in Table 3.6 and

Table 3.7).

The scan chains need to be circulated to generate parity bits, and the number of clock

cycles required are equal to the number of flip-flops in each scan chain Lsc. If the clock

period is Tclk, the increase in wake-up latency can be calculated with

Tov = Tclk × Lsc (3.8)

As expected, the hardware error detection and correction latency increases with the

number of flip-flops in each scan chain. The power overhead for hardware error detection

and correction has four components: scan shifting of circuit states Psc, the operation of

encoder and decoder Pc, parity storage power per bit Ps and the PSMC block PPSMC

Pov = Psc +Nc × Pc +Ns × Ps + PPSMC (3.9)

= Psc +
Wsc

k
× Pc +

Nff · d

k
× Ps + PPSMC (3.10)

The power overhead increases with the number of parallel scan chains because more

coders are working in parallel. From Equations (3.8) and (3.10), energy consumed in

each sleep and wake-up cycle can be calculated by

Eov = Pov × Tov (3.11)

The above equation shows that the total energy is proportional to the number of flip-

flops Lsc in each scan chain; this is further evaluated in the last column of Table 3.6

and Table 3.7. The above set of equations can be solved for any embedded processor to

determine the overhead in terms of area, power, latency and energy. Table 3.5 shows the

values of these parameters for hardware corrections (synthesised using 65-nm STMicro-

electronics gate library) for all different Hamming codes used in this work. For example,



Chapter 3 Improving The Reliability of State Retention Designs 65

Hamming (63,57) has 57 data bits (k) and 6 parity bits (p). The area and power of the

coder (Ac and Pc) reduces with each Hamming code; that is, from Hamming (63,57) to

Hamming (7,4) due to reduction in parity generation tree. The rest of the variables are

constant across all Hamming codes and their approximate values are shown in the last

row of Table 3.5.

As discussed in Section 3.3.3, CRC-16 is chosen for error detection because of higher

detection capability, low redundancy and simple encoder and decoder implementation.

Table 3.6 shows the overhead on timing, area and energy consumption using four dif-

ferent scan chain configurations in comparison to a design without CRC unit. It can be

seen that the area overhead increases linearly with the number of parallel scan chains

(“Width”), from 3.5% to 6.1% as in the case of 16 scan chains to 80 scan chains re-

spectively. This is because additional logic is required for encoding and decoding each

additional scan chain through state monitoring and recovery block as shown in Fig-

ure 3.1. For all four scan chain configurations, the critical path length remains the same

in comparison to a design without the CRC unit. The CRC unit does not increase

the logic depth of the critical path because the system core is separated from the CRC

unit (state monitoring block as shown in Figure 3.3(a)) through a clamp gate which is

Table 3.5: Parameters for calculating area, latency, power and energy consump-
tion for hardware corrections

Code k d Ac(µm
2) Pc (µW/MHz)

Hamming (63,57) 57 6 665 0.47

Hamming (31,26) 26 5 282 0.25

Hamming (15,11) 11 4 119 0.15

Hamming (7,4) 4 3 36 0.06

As ≈ 19.5 µm2/bit, APSMC ≈ 900 µm2, Nff=768 bits

Ps ≈ 9.8 nW/MHz.bit, Psc ≈ 25.8 µW per MHz, PPSMC ≈ 0.3 µW per MHz

k → Data bits, d → Parity bits, Ac → Coder Area, Pc → Coder Power

Ps → Storage Power, APSMC → PSMC Area, PPSMC → PSMC Power

Table 3.6: Error detection (CRC-16) overhead on timing, area, latency, power
and energy consumption using different scan chain configurations

Code Scan Chain Time Cell Area Latency Power Energy

W L (ns) (µm2) inc(%) cycles µW/MHz (nJ)

Unprotected 11.9 37814

CRC-16

16 49 11.9 39122 3.5 49 26.9 1.27

32 25 11.9 39345 4.0 25 27.04 0.67

57 14 11.9 39823 5.3 14 27.29 0.37

80 10 11.9 40120 6.1 10 27.52 0.27



66 Chapter 3 Improving The Reliability of State Retention Designs

inactive during functional mode and adds negligible load capacitance on flip-flops con-

nected to the state monitoring block. The next column (“Latency”) shows the sleep and

wake-up latency in number of clock cycles, which depends on scan chain length, longer

scan chains require longer time to encode and decode the circuit’s states. As expected

the coding latency reduces from 49 to 10 at the cost of area overhead, which increases

from 3.5% to 6.1%. The next column shows the power consumption of the CRC unit,

which is estimated by Synopsys PrimeTime PX. The power consumed by the CRC unit

increases with the number of scan chains due to additional gates in state monitoring

blocks to encode more scan chains in parallel. The last column shows the overall energy

consumed by the CRC protected system. It can be seen that the energy consumption

reduces from 1.27-nJ to 0.27-nJ with reduction in scan chain length from 49 to 10. This

is because energy consumption reduces with latency (number of clock cycles), which is

dependent on scan chain length, clearly showing a trade-off between energy consumption

and area overhead across different scan chain configurations.

Next, the implementation trade-off is analysed using four different Hamming codes where

each is implemented with different scan chain configurations. The results are shown in

Table 3.7. The critical path length is shown in the third column, which stays the same

for all configurations with or without Hamming code. This confirms that the state

monitoring does not affect the timing of the design. The next column shows the sleep

and wake-up latency in the number of clock cycles; as expected the coding latency varies

with the scan chain length from 7 to 196 as in the case of Hamming (63,57) and Hamming

(7,4). Area overhead is shown in the next column; it can be seen that Hamming (63,57)

has the smallest area overhead (8.6%) in comparison to a design without error correction

capability. Hamming code requires redundancy for code storage, which increases from

Hamming (63,57) to Hamming (7,4) resulting in higher area overhead (up to 30.9%).

The power consumption of the ECC unit is shown next, which is lowest (27.69 µW

per MHz) in the case of Hamming (63,57) code, but increases with different Hamming

codes due to additional load capacitance of redundant storage elements; that is, when

the redundancy increases from 8.6% to 30.9% as in the case of Hamming (63,57) to

Hamming (7,4). The last column shows the energy consumption; as expected this varies

with the scan chain length resulting in lower latency and energy consumed for encoding

and decoding. It can be seen that the lowest and the highest energy consumption are

0.2-nJ and 6.09-nJ, for scan chain lengths of 7 and 196 respectively.

The results presented in Table 3.6 and Table 3.7 demonstrate the trade-off between en-

ergy consumption, latency and area overhead across different scan chain configurations.

Increasing the number of scan chains increases the area overhead and coding power;

however the wake-up latency and energy consumption is reduced. From the two tables

it can be observed that a scan chain configuration of 57x14 gives the best results. Area

overhead is 8.6% as in the case of Hamming (63,57) (Table 3.7) and 5.3% as in the

case of CRC-16 (Table 3.6). Since this configuration requires only 14 clock cycles for



Chapter 3 Improving The Reliability of State Retention Designs 67

Table 3.7: Error correction (Hamming) overhead on timing, area and energy
consumption using different scan chains configuration

Code Scan Chain Time Cell Area Latency Power Energy

W L (ns) µm2 inc(%) cycles µW/MHz (nJ)

Unprotected 11.9 37814

Hamming (63,57)
57 14 11.9 41070 8.6 14 27.69 0.39

114 7 11.9 41734 10.4 7 28.46 0.2

Hamming (31,26)

26 31 11.9 42861 13.4 31 28.15 0.86

52 16 11.9 43145 14.1 16 28.46 0.46

104 8 11.9 43997 16.4 8 29.38 0.24

Hamming (15,11)

11 72 11.9 43829 15.9 72 28.92 2.10

22 36 11.9 43948 16.2 36 29.53 1.03

44 18 11.9 44305 17.2 18 29.84 0.54

Hamming (7,4)

4 196 11.9 49357 30.5 196 31.07 6.09

8 98 11.9 49393 30.6 98 31.38 3.04

16 49 11.9 49501 30.9 49 32.15 1.57

state monitoring and recovery, the energy overhead is 0.39-nJ and 0.37-nJ in the case of

Hamming (63,57) and CRC-16 respectively.

Next the overhead of software state recovery is discussed and compared with Hamming

(63,57) code when using the same scan chain configuration (57x14). In terms of area it

has 5.3% overhead due to using CRC-16 for error detection and the state recovery power

is 13.69-µW per MHz (calculated using Synopsys PrimeTime PX). The software state

recovery has high wake-up latency of 184 clock cycles and energy overhead of 2.67-nJ. In

comparison to Hamming (63,57), software state recovery introduces 13x higher wake-up

latency and consumes about 7x more energy.

Error correction has encoding and decoding energy overheads in each sleep cycle and

leakage power overhead due to the additional circuitry for coder and code storage, adding

to the idle power of the design. Figure 3.34 shows the trade-off between idle power

and sleep frequency (number of sleep and wake-up cycles per second) of the processor

core with and without protection, taking into account all sources of leakage in the

design, including the storage of parity bits during sleep mode. For illustration purposes,

20% duty cycles (activity factors) are used, and activity factor is calculated by taking

the ratio of total active time to total runtime of the processor. The leakage power

of the processor core in sleep mode is estimated by using Synopsys PrimeTime PX.

Figure 3.34 shows the relation between idle power and sleep frequency for retention

voltage Vret of 1V and 0.5V with and without protection. Four different scenarios are

created: Vret = 1V without protection, Vret = 0.5V without protection, Vret = 0.5V

with hardware error correction and Vret = 0.5V with software state recovery. The idle



68 Chapter 3 Improving The Reliability of State Retention Designs

power was normalised to that of the unprotected system with Vret = 1V . It can be

observed that the idle power is lowest for an unprotected system with retention voltage

Vret = 0.5V when compared with hardware error correction and software state recovery.

This is because hardware error correction and software state recovery require additional

circuitry to improve system reliability. When comparing the two recovery methods,

software recovery has higher idle power, which is due to its higher latency (number

of clock cycles for state recovery) in comparison to hardware recovery method. For

example, at sleep frequency of 100 Hz, Figure 3.34 shows that hardware error correction

has 0.21 idle power while software recovery has 0.4 idle power. For these two error

recovery methods, idle power is also related to sleep frequencies. Idle power is similar

with or without protection until sleep frequency is greater than 10-Hz; this is because

when number of sleep and wake-up cycles is small, the energy used for error checking is

negligible. For software state recovery, when the sleep frequency is higher than 400-Hz,

its idle power is greater than the unprotected system with Vret = 1V (without voltage

scaling), which means it consumes more energy than it saved.

0.40

0.60

0.80

1.00

1.20

1.40

N
o

rm
a

li
ze

d
 I

d
le

 P
o

w
e

r 

1V unprotected 0.5V unprotected 0.5V hardware protected 0.5V software protected

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.1 1 10 100 1000

N
o

rm
a

li
ze

d
 I

d
le

 P
o

w
e

r 

Sleeping Frequency (Hz)

1V unprotected 0.5V unprotected 0.5V hardware protected 0.5V software protected

Figure 3.34: Trade-off analysis between leakage power saving and sleep fre-
quency of the processor core at 0.5-V supply voltage

3.4 Concluding Remarks

In this chapter an efficient design method is proposed to improve the reliability of state

retention design by protecting state retention registers through monitoring and recovery.

This is achieved by exploiting the available scan chain infrastructure without affecting

manufacturing test and critical paths of state retention designs. Using synthesised de-

signs and various scan chain configurations, it is shown that the proposed method can

be incorporated into the state retention design flow. To study the effectiveness of the

proposed method, it is first used to improve the reliability of FIFO design implemented



Chapter 3 Improving The Reliability of State Retention Designs 69

in FPGA and shows 100% error detection both for single error and burst error injection.

In addition, it achieves 100% error correction in the case of single errors. The proposed

method is further validated using a commercial microprocessor ARM Cortex-M0 im-

plemented in FPGA, and additional software recovery is used together with hardware

detection for burst error correction. Under low bit error rate (10−5 to 10−12) hardware

error correction can improve system error rate by at least 2 order of magnitude, under

high error probability (0.5 to 10−5) hardware error detection can detect 99.6% errors

and software recovery can be used. Finally both FIFO and microprocessor design were

synthesised using ST 65nm standard cell library to analyse the implementation trade-

offs of the proposed method. In the case of FIFO design, the area overhead of hardware

error detection is between 2.8% and 9.2% depends on scan chain configurations and

hardware error detection and correction using Hamming (63,57) is 15.9%. In the case

of the microprocessor design, the area overhead of hardware error detection is between

3.5% and 6.1% depends on scan chain configurations and hardware error detection and

correction using Hamming (63,57) is 8.6%.





Chapter 4

Improving the State Integrity of

Flip-flops under PVT Variation

In Chapter 1 Section 1.2.2, it was shown that power gating [37] and supply voltage

scaling [41] are two state retention design techniques for effective standby circuit leak-

age power reduction. In Chapter 2 Section 2.3, it was shown that process variation

significantly impacts critical charge of storage elements, supply voltage scaling further

exacerbating the problem. In Chapter 3 a method was proposed for improving reliability

of state retention designs, which was validated using two case studies. An important

objective of the research is to investigate the impact of process, voltage and tempera-

ture (PVT) variations on the reliability of state retention registers in low power designs.

The research aim of this chapter is to maximise the leakage saving using supply voltage

scaling while improving the reliability of flip-flops under PVT variation. Monte-Carlo

simulations and measured results on 82 dies are used to demonstrate flip-flop state

integrity sensitivity due to PVT variation. Binary search based Minimum Retention

Voltage (MRV) characterisation is proposed to determine the MRV of individual die in

the presence of PVT variation for aggressive leakage power reduction. A control flow

is proposed for state monitoring and protection of flip-flops, which uses horizontal and

vertical parity checks for multi-bit error detection and single bit error correction. Sili-

con results show that state integrity is preserved, while reducing leakage power during

standby mode.

This chapter is organised as follows: In Section 4.1, Monte-Carlo simulations and test

chip measurement results are used to demonstrate that state integrity of flip-flops are sen-

sitive to PVT variations. The new MRV characterisation and flip-flop state-protection

technique are presented in Section 4.2. The test chip implementation is presented in

Section 4.3. Experimental results to demonstrate leakage power saving with state reten-

tion integrity are presented in Section 4.4. Conclusions on the approach are drawn in

Section 4.5.

71



72 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

4.1 State Integrity Challenges under PVT Variation

Supply voltage scaling is an effective technique for reducing standby mode leakage power,

and is frequently used in energy-constrained designs [38]. Recent research has shown

that it effectively reduces sub-threshold and gate-leakage power in deep-submicron de-

signs [38,77]. This is because of the negative exponential relationship of leakage power

and supply voltage, when Vgs ≈ 0 [164]. Power minimization through supply voltage

scaling during sleep state was proposed [41, 76]. Maximum leakage power saving is

achieved under the lowest supply voltage where flip-flops can still retain their states;

this voltage is referred to as Minimum Retention Voltage (MRV).

State integrity is referred to as the capability of flip-flops to retain their logic value

last clocked-in. To analyse state integrity of voltage scaled state retention flip-flops,

two identical register arrays of 8192 flip-flops referred to as retention register block

is implemented in TSMC 65nm “LP” low leakage technology with nominal operating

voltage of 1.2V using Unified Power Format (UPF) design flow refer to latest IEEE 1801-

2013 (UPF 2.1) Standard [165] and standard EDA tools (Synopsys Inc, Mentor Graphics

Inc). The test chip is shown in Figure 4.1, where Figure 4.1-(a) shows the die photo of

the test chip with detailed implementation presented in Section 4.3, and Figure 4.1-(b)

shows the test board photo. Measurements presented in this work are based on 82 test

chips. As shown in Figure 4.1-(a), the retention register blocks are located on the bottom

left-hand side of the die, and the parity storage is placed above the register block. A

Cortex-M0 micro-controller from ARM Ltd (referred to as CM0) is used in this work for

state monitoring and it can be seen on the left-hand side of the register block. The detail

description of CM0 is in Appendix A A pair of oscillators has also been used to measure

delay variation due to process, voltage and temperature variations, when considering

inter-die and intra-die process variation. The oscillators are located next to the parity

storage unit. Due to the small size, these are not marked explicitly on the die photo.

The layout is part of a 2x2-mm system on chip (SoC), and the rest of the SoC is made

up of SRAM for instruction and data storage. The test board is shown in Figure 4.1-(b),

which provides voltage rail probe-points, power supply connections and USB interface

to communicate with the host computer through an ASCII debug protocol.

In this work, the First Failure Voltage (FFV) of a flip-flop is defined, such that scaling

down supply voltage to FFV leads to the first bit(s) failure in a design consisting of

n flip-flops, where bit-failure refers to the change in stored logic value from the initial

(or correct) value. Note, that single or multiple bits failures are possible at FFV. Due

to process, voltage and temperature variation, the FFV of a given design varies from

die to die. To ensure state integrity, it is important to analyse this change in FFV of

state-retention flip-flops. Using measured results from 82 dies, this section analyses the

change in FFV due to process, voltage and temperature variation. Section 4.1.1 shows

FFV distribution from 82 dies. Section 4.1.2 analyses change in FFV due to within die



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 73

USB

Test 

Chip

Power 

Supply

Rail probes

s

CM0L1

Status registers

SRAM

CM0L0 & 

Peripherals

2000µm

2
0
0
0
µ
m

Register 

array

Bank 0

(a) Die photo (b) Test board

Register 

array

Bank 0

OSC

Figure 4.1: Test silicon fabricated and packaged for evaluation.

TG

OUT

CLK

EI1

I2

CLK

I1

CLKCLK

EI2

EI0

Master 

Latch
Slave Latch

IN

Inverter with 

enable
Transmission 

gate

N1 N2 N3

I3

N4

Figure 4.2: Schematic of master-slave flip-flop.

process and voltage variation, and finally Section 4.1.3 analyses change in FFV due to

temperature variation.

Figure 4.2 shows the schematic of master-slave flip-flop commonly used in modern digital

designs. The master latch is transparent when the clock is low and the slave latch is

transparent when the clock is high. The slave latch that is made of two cross-coupled

inverters is used for state retention at low supply voltage. In theory, the latch is capable

of retaining its state at a very low supply voltage, given that the design is not affected

by process variation; that is both PMOS and NMOS of the two cross-coupled inverters

(I2 and EI2) have the same drive strength; and there is no noise for example, due to

supply voltage fluctuation and radiation-induced soft error. This is because transistor

ON-current is always higher than its OFF-current.

In real-life digital circuit designs, however, there are environmental noises and PVT

variation. It was shown in Section 2.4 that process variation reduces the critical charge



74 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

V
o

lt
a

g
e

 a
t 

N
o

d
e

 "
N

4
"

Voltage at Node "N3"

"I2" INV

"EI2" INV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

V
o

lt
a

g
e

 a
t 

N
o

d
e

 "
N

4
"

Voltage at Node "N3"

"I2" INV

"EI2" INV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

V
o

lt
a

g
e

 a
t 

N
o

d
e

 "
N

4
"

Voltage at Node "N3"

"I2" INV

"EI2" INV

(a) Typical Process at 0.3‐V

(b) 3σ Fast‐Slow process corner at 0.3‐V

(c) 3σ Slow‐Fast process corner at 0.3‐V

Figure 4.3: Simulated results showing noise margins of a typical flip-flop for state
retention (Figure 4.2) when operating at 0.3-V, and reduced noise margins due
to process variation at fast-slow and slow-fast corners.



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 75

of flip-flops makes them more sensible to soft errors. PVT variation also reduces the FFV

of flip-flops. To get an insight into FFV spread of state-retention flip-flops, HSPICE was

used to simulate the effect of process variation on state-retention capability of a flip-flop.

The simulation was carried out on the slave latch (Figure 4.2), using design parameters

from typical, fast-slow and slow-fast process corners of TSMC 65-nm Low-Power design

library. The results are shown in Figure 4.3. In all three plots, the voltage transfer

curve of inverter ‘I2’ is represented by circular dots, and that of ‘EI2’ is represented by

black crosses. X-axes show voltage at node ‘N3’ and y-axes show voltage at node ‘N4’

(output, Figure 4.2). Figure 4.3-(a) shows a typical design operating at 0.3-V. It can

be seen that the logic threshold voltages of both inverters are equal at about 0.5 ∗ Vdd,

leading to symmetric noise margins for storing both logic values in the slave latch.

However, when considering a fast-slow process corner, operating at 0.3-V (Figure 4.3-

(b)), the logic threshold voltages of both inverters reduce to about 0.23 ∗ Vdd, leading

to asymmetric noise margins for storing logic-0 on both nodes ‘N3’ and ‘N4’. This

means that a small noise can convert logic-0 to logic-1 on ‘N3’ and ‘N4’, leading to

data corruption of stored states at low-supply voltage. Similarly, when considering a

slow-fast process corner, operating at 0.3-V (Figure 4.3-(c)), the logic threshold voltages

of both inverters increase to about 0.7 ∗ Vdd, again leading to asymmetric noise margins

for storing logic-1 on both nodes ‘N3’ and ‘N4’, and a small noise can convert logic-

1 to logic-0 on both nodes, leading to state corruption at low-supply voltage. These

results clearly demonstrate that the state-retention capability of a voltage-scaled flip-

flop is affected by process variation, and simulated results (Figure 4.3) reveal that due

to process variation, the noise margin of a flip-flop gets skewed leading to variation in

FFV (First Failure Voltage).

4.1.1 Measuring Inter-die Process Variation Impact on State Reten-

tion

Measurements were taken for 82 packaged dies and the FFV results are shown plotted

in Figure 4.4-(a). The spread in FFV is clearly visible. This measurement was carried

out at room temperature (25◦C) using 82 dies, each with 8192 flip-flops, and with the

implementation set-up shown in Figure 4.1. For this measurement, a test board was

connected with a host computer through USB interface, and a control program written

in Python script was used to communicate between the host computer and the test

board. The FFV is found using a binary search algorithm with resolution of 1-mV per

iteration, starting from 400-mV, until first bit failure is observed (Figure 4.11). Each

iteration consisted of the following five steps:

1. Voltage of the design was set to 1.2-V.

2. A single logic value (logic-0 or logic-1) was stored in all 8192 flip-flops, referred to

as initial logic state.



76 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

0

5

10

15

20

25

30

35

245 255 265 275 285 295 305 315

N
u

m
b

e
r 

o
f 

D
ie

s

First Failure Voltage (mV)

0

5

10

15

20

25

30

35

150 160 170 180 190 200 210 220 230 240

N
u

m
b

e
r
 o

f 
D

ie
s

First Failure Voltage (mV)

0

5

10

15

20

25

30

305 315 325 335 345 355 365 375

N
u

m
b

e
r 

o
f 

D
Ie

s

First Failure Voltage (mV)

(a) 65nm Test-chip Measured Results

(b) Monte-Carlo Simulation for 65nm

(c) Monte-Carlo Simulation for 45nm

Figure 4.4: Results from 82 dies and Monte-Carlo simulations showing the
spread of first failure voltage point of voltage-scaled flip-flop for state reten-
tion in room temperature (25◦C).



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 77

(a) failure voltage map from 220-270 mV 

of retention register block

0.27V

0.27V

0.22

0.27

0.240

0.270

(b) failure voltage map from 240-270 mV 

of retention register block

Figure 4.5: Measured results showing failure bit locations mapped on the circuit
physical layout in the retention register block of the test chip.



78 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

3. Supply voltage was reduced to a lower voltage with a fall-time of 40-µs and this

was held for 10-sec.

4. Supply voltage was raised back to 1.2-V with a rise-time of 40-µs.

5. The flip-flop state values were read out and compared with the initial logic state

to determine if FFV has been observed.

Each iteration was executed 10-times to minimise the effect of jitter and most common

value was recorded. The maximum jitter of 2-mV was observed when charge time

was 40-µs and this value increased to 18-mV with a shorter charging time (≤ 4-µs).

From Figure 4.4-(a), it can be seen that the First Failure Voltage (FFV) point of each

design varies from die to die, and for these 82 dies FFV is in between 245-mV to 315-

mV, with 95% dies exhibiting their FFV below 285-mV. The measured results shown

in this work use Standard Vth (SVT) cell. Simulation results using Low Vth (LVT)

and High Vth (HVT) cells show that LVT cell has the lowest FFV and HVT cell has

the highest FFV. Figure 4.4-(b) shows the Monte-Carlo simulation result for the same

65-nm TSMC technology library. The HSPICE script used to generate this result is

described in Appendix D. This is used to analyse how well simulated results correlate

with measured results (Figure 4.4-(a)). The effect of process variation is incorporated

by varying three parameters, which include: gate length (L), threshold voltage (Vth),

and mobility (µeff ) (Mobility varies due to variation in effective strain in a strained

silicon process [90]). These parameters follow Gaussian distribution (±3σ variation)

with standard deviations of 4% for L, 5% for Vth and 21% for µeff . It can be seen

that the overall distribution trend remains the same while the mean FFV has shifted to

lower voltage. This is because simulation results do not take into account environmental

noise and inductive effects. It can also be observed that the spread of FFV is slightly

wider in simulation than measured results; this is because the effect of process variation

on fabricated devices is less than simulated results. Similarly, the FFV for a 45-nm

technology library [166] was simulated. Results are shown in Figure 4.4-(c). When

comparing it with simulated results of 65-nm technology library (Figure 4.4-(b)), it can

be observed that the overall distribution trend remains the same, however the mean

FFV has shifted to a higher voltage due to higher process variation.

4.1.2 Effect of within Die Process and Voltage Variation

To analyse failure voltage across 8192 flip-flops within a single die, a die exhibiting

nominal process characteristic is used and measurement set-up outlined in Section 4.1.1.

Figure 4.5 shows measured results from the test chip to demonstrate the failure voltage

behaviour of 8192 flip-flops and their individual XY co-ordinates within the design layout

(Figure 4.1-(a)). Figure 4.5 shows the location of failed flip-flops as observed on the test

chip. The ‘X’ and ‘Y’ axes show physical location of each flip-flop and indicate the



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 79

3000

4000

5000

6000

7000

8000

9000

N
u

m
b

e
r 

o
f 

fa
il

e
d

 b
it

s

0

1000

2000

3000

0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29

N
u

m
b

e
r 

o
f 

fa
il

e
d

 b
it

s

Supply voltage

Figure 4.6: Measured results showing the distribution of failing voltage point of
flip-flops at reduced supply voltage.

distance (in µm) from the bottom left corner of the retention register block (Figure 4.1).

The Z-axis shows the supply voltage during retention mode. It can be observed that

the First Failure Voltage (FFV) occurs at 270-mV, and this flip-flop continues to fail

with further reduction in supply voltage. A few subsequent failure points are at about

260-mV. In general, over all flip-flops, when the supply voltage is ≤ 240-mV, increasing

numbers of flip-flops start to fail, and this is shown in Figure 4.6 using 5-mV step size.

For this measurement (Figure 4.6), ten test runs were conducted, and the plot shows the

average number of failed bits over all test runs. Figure 4.6 shows that the first bit failure

is observed at 270-mV, and the number of failed bits increase with further reduction in

supply voltage until the supply voltage is reduced to 190-mV, where all flip-flops failed

to retain initially stored logic values.

To get an insight into failure pattern across all 82 dies, a measurement is taken at room

temperature (25◦C) to determine the FFV of each die, and voltage difference between

the first and subsequent failing flip-flops. The results are shown in Figure 4.7, where

X-axis show FFV of each die, and Y-axis show the voltage difference between the first

and subsequent failing flip-flop for each die. For example, in the case of Die-3, FFV is

observed at about 250-mV, and the voltage difference (Y-axis) is 0, representing multi-bit

failure (two or more flip-flops) at FFV. Similarly, in the case of Die-2, FFV is observed at

about 270-mV, but the difference between the first bit failure and subsequent bit failure

is about 9-mV. As can be seen, the voltage difference between first and subsequent flip-

flop failures is highest (66-mV) in the case of Die-1. In general, when using a discrete

step size of 5-mV, across all dies it was found that 20.73% of all dies show multiple bit

failure at First Failure Voltage (FFV) point and the rest (79.27%) show only single bit

failure at FFV. This finding is exploited in our proposed technique (Section 4.2), which



80 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

0

10

20

30

40

50

60

70

240 250 260 270 280 290 300 310 320

V
o

lt
a

g
e

 D
if

fe
r

e
n

c
e

 (
m

V
)

First Failure Voltage (mV)

Die # 2

Die # 1

Die # 3

Figure 4.7: Measured results from 82 dies showing voltage difference between
flip-flop’s first failure voltage and subsequent failure voltages, three dies were
selected from the population and re-numbered 1-2-3.

employs a simple parity-based error detection and correction technique for multi-bit

error detection and single bit error correction.

4.1.3 Effect of Temperature Variation

The effect of temperature variation on state retention voltage of a flip-flop was also ex-

amined for three dies marked in Figure 4.7. These three dies represent both nominal and

corner cases. First Failure Voltage (FFV) on the following four temperatures are mea-

sured: 25◦C, 41◦C, 56◦C, and 79◦C. The temperature of the test chip was raised using a

temperature chamber. Figure 4.8 shows the relationship between FFV and temperature.

For all three dies, as expected, it was found that FFV increases with temperature. This

is because transistor leakage current increases with temperature, while drive current

(Ion) decreases [164]. In the case of the master-slave flip-flop shown in Figure 4.2, the

state integrity of a storage node (N3 or N4) depends on the charge stored and the feed-

back current. As temperature increases, this feedback current reduces due to increase in

leakage current and reduction in drive current, which negatively affects state retention

capability of storage node at higher temperatures. This means that the state retention

voltage of a flip-flop has to be raised at higher temperatures to ensure state integrity.

To get an insight into the combined effect of process, voltage, and temperature variation

on a given design. Using Die-2 (Figure 4.7), within-die delay variation is measured by

changing the supply voltage and temperature, using two identical ring oscillator chains



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 81

240

260

280

300

320

340

360

20 30 40 50 60 70 80

F
ir

st
 F

a
il

u
re

 V
o

lt
a

g
e

 (
m

V
)

Temperature (°C)

Die-1 Die-2 Die-3

Figure 4.8: Measured results showing the first failing voltage point of flip-flops
due to within-die temperature variation.

(OSC) each with 95 NAND gates. The results are shown plotted in Figure 4.9, where X-

axis show supply voltage and Y-axis show normalised delay variation at four temperature

points. Normalised delay variation is calculated by taking the relative mean difference

of measured delay between the pair of OSC, at each temperature and supply voltage

point, and it is normalised with that of 1.2-V supply voltage at 25◦C temperature. It

can be seen that normalised delay variation is smallest at nominal supply (1.2-V) and

room temperature (25◦C). It increases by up to 15x at 79◦C when supply voltage is

reduced from 1.2-V to 0.5-V. This shows that at lower voltage and higher temperature,

the effect of Vth variation has greater impact at oscillator frequency variation [167].

This means that due to process variation, the state integrity of a flip-flop (Figure 4.2)

is more vulnerable at reduced supply voltage and higher temperature. Note that these

results (Figure 4.8 and Figure 4.9) are specific to this technology library and are shown

for illustration purposes only. For smaller geometry (below 65-nm), temperature spread

and delay variation may be more strongly affected by, for example, additional mobility

caused by increased mechanical strain process engineering and reduced threshold voltage.

As shown in Figure 4.8, First Failure Voltage (FFV) point of a flip-flop increases with

increase in temperature. This means “Sleep State” voltage should take temperature

variation into account to ensure state integrity. This has an effect on leakage power

consumption of a design in “Sleep State”. To get an insight into voltage scaling and

leakage power, Figure 4.10 shows “Sleep State” leakage power by measuring Ids, and

varying the supply voltage after setting Vgs = 0. The measurements were carried out

on a test chip (Die-2, Figure 4.7) under four different temperature settings: 25◦C, 41◦C,

56◦C, and 79◦C. The x-axis shows the supply voltage ranging from 0.3-V to 1.2-V. The

y-axis shows the normalised leakage power plotted on a log-scale. It can be observed

that leakage power reduces exponentially with reduction in supply voltage, and 97.5%

leakage power minimization is possible by reducing the supply voltage from 1.2-V to



82 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

6

8

10

12

14

16

N
o

rm
a

li
z

e
d

 D
e

la
y

 V
a

ri
a

ti
o

n

79 °C

56 °C

41 °C

25 °C

0

2

4

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
o

rm
a

li
ze

d
 D

e
la

y
 

Supply Voltage (V)

Figure 4.9: Measured results of Intra-Die PVT Variation on delay of the test
chip. These results demonstrate that due to change in temperature the effect of
within die process variation gets worse as shown by within die higher normalised
delay variation.

0.3-V. The effect of temperature variation can also be observed: as can be seen, at a

given voltage, leakage power increases with temperature. The leakage power at 79◦C is

an order of magnitude higher than at room temperature (25◦C).

In this work, Minimum Retention Voltage (MRV) is defined as the scaled supply voltage

value, at which all flip-flops in a given design can still preserve their state integrity. For

a given technology and flip-flop design, the minimum retention voltage of a design has

to be characterised across all process and temperature corners to ensure state integrity.

From the trend shown in Figure 4.7 (Section 4.1.2) and Figure 4.8 (Section 4.1.3), an

important observation can be made. Due to process variation, MRV varies from die to

die and characterizing each die separately will not only ensure state integrity but can

also minimise retention voltage per die, thus reducing leakage power. In this case, MRV

can be calculated by adding a voltage margin (referred to as Retention Voltage Margin

(RVM)) to First Failure Voltage (FFV) of the given die, that is MRV = FFV +RVM .

For example setting RVM to 54-mV for all dies (see Section 4.2.1 for details of calculating

RVM), the MRV of Die-1 is 315+54 = 369-mV, and that of Die-3 is 249+54 = 303-mV.

Therefore setting MRV for each individual die separately is beneficial to leakage power

minimization, when compared to a technique that sets the MRV of all dies using worst-

case process and temperature corners. This observation is exploited in the proposed

technique (Section 4.2), which employs a characterisation algorithm to identify the MRV

of each die to minimise leakage power.



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 83

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.20 0.40 0.60 0.80 1.00 1.20

N
o

rm
a

li
ze

d
 L

e
a

k
a

g
e

 P
o

w
e

r

supply voltage (V)

79C

56c

41c

25c

Normalization

reference point

Figure 4.10: Measured test chip leakage power normalised to 1.2V nominal
supply voltage at 25◦C.

4.2 PVT Aware State Protection Technique

PVT variation analysis discussed in the previous section shows two important obser-

vations. Firstly, 79% of all dies exhibit single bit failure at FFV (when using 5-mV

discrete voltage steps), while the rest show multi-bit failure. Secondly, MRV charac-

terisation per die is beneficial for leakage power minimization. These two observations

are used to develop a simple and effective technique to improve state-integrity of volt-

age scaled flip-flops under process, voltage and temperature variation. The proposed

technique consists of the following two parts:

1. Section 4.2.1 presents a characterisation algorithm that is used to determine the

MRV of a given die; this is because the MRV of each die varies due to process

variation as observed in Figure 4.7. The characterisation is an offline process and

is performed before the die is used.

2. Section 4.2.2 presents a control flow for error detection and single-bit error correc-

tion, which relies on horizontal and vertical parity; The control flow is an online

process which monitors the flip-flops states. If any errors are detected, it raises the

pre-characterised MRV to reduce subsequent error possibility. This is because the

MRV can change with the operating environment such as rising temperature. The

prototype of the proposed control flow is implemented in the host computer using

Python script, which provides voltage scaling by controlling an external power

supply to the test chip (Figure 4.1-(b)).



84 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

Input: Initial Retention Voltage (IRV), Voltage Scaling Resolution (VSR), Retention
Voltage Margin (RVM)

Output: Minimum Retention Voltage (MRV)
1: Vcorrect = IRV; Vfail = 0

// Vcorrect is the lower bound of supply voltage for correct state retention and Vfail

is the upper bound of supply voltage for failed state retention
2: Current Supply Voltage =

Vcorrect+Vfail

2

3: while Vcorrect − Vfail >VSR do
4: if error detected then
5: Vfail = Current Supply Voltage
6: else
7: Vcorrect = Current Supply Voltage
8: end if
9: Current Supply Voltage =

Vcorrect+Vfail

2

10: end while
11: FFV = Vfail

12: MRV = FFV + RVM
13: return MRV

Figure 4.11: Process and Temperature Variation Aware Minimum Retention
Voltage (MRV) Characterisation Algorithm at 25◦C.

4.2.1 MRV Characterisation Algorithm

For each die, First Failure Voltage (FFV), is determined through voltage scaling, and

then a Retention Voltage Margin (RVM) is added to FFV to get the minimum retention

voltage (MRV) of each die; that is, MRV = FFV + RVM . The added Retention

Voltage Margin (RVM), is the sum of Temperature Variation Margin (TVM) and Safety

Margin (SM). Temperature Variation Margin is the worst case difference in FFV at

the highest and the lowest operating temperatures for a given technology and flip-flop

design when considering process variation. In this work, TVM is set to 30-mV by using

the maximum FFV difference of three corner case dies (Die-2; Figure 4.7), as shown

in Figure 4.8. Safety Margin is set to 2% of nominal supply voltage. In this work

nominal supply voltage is 1.2-V, and therefore safety margin is set to 24-mV. Therefore

the retention voltage margin (RVM) is set to 30 + 24 = 54-mV.

For each one of the test chips, MRV is determined through a characterisation algorithm

(at room temperature 25◦C) shown in Figure 4.11. It requires three inputs:

1. Initial Retention Voltage (IRV), as a starting point to determine FFV.

2. Voltage Scaling Resolution (VSR).

3. Retention Voltage Margin (RVM).

IRV, VSR and RVM are determined through the following criteria: Figure 4.7 shows

measured results to determine the difference between first and second failure voltage



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 85

1. Active  

State

3. Sleep 

State

Parity Generation

(Fig. 13)

Voltage Scaling to 

Minimum Retention 

Voltage (MRV; Fig. 11)

Sleep

Wakeup
Raise Supply Voltage for

Error Correction

MRV = MRV + SM

Error

2. Idle 

State

Figure 4.12: Control Flow for State Monitoring and Protection of Flip-Flops
for Voltage-Scaled State Retention.

points across all test chips. These measurements are used to set the value of IRV to

400-mV. This is because none of the dies fail at this voltage. The VSR is set to 1-mV,

which is the smallest step size supported by the external power supply source (Agilent

U3606A). Finally, RVM is set to 54-mV to accommodate safety margin and the effect

of temperature variations.

As can be seen in Figure 4.11, the algorithm starts by setting Vcorrect to IRV, and Vfail

to 0-V. Vcorrect is the lower bound of supply voltage for correct state retention, and

Vfail is the upper bound of supply voltage for failed state retention. Next, to determine

First Failure Voltage (FFV), the algorithm reduces the difference Vcorrect (correct state

retention) and Vfail (failed state retention) by iterating until the difference between

these two variables is smaller than VSR, which is the minimum resolution of the power

supply. In line-2 of the algorithm, the current supply voltage is set to the mid-point of

Vcorrect and Vfail. In each iteration, the two variables are updated; if state corruption

is detected, Vfail is raised to the current supply voltage, otherwise Vcorrect is reduced

to current supply voltage. This process is repeated by changing current supply voltage

to the mid-point of updated Vcorrect and Vfail. The loop exits with Vfail holding First

Failure Voltage (FFV) value (line-11). Finally, the algorithm adds Retention Voltage

Margin (RVM) to the observed FFV to calculate Minimum Retention Voltage (MRV)

of the given test chip.



86 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

4.2.2 MRV Control Flow

The control flow is implemented using a Python script running on the host computer

to communicate with the test chip through USB interface, and the test chip is powered

by an external power supply (Figure 4.1-(b)). Figure 4.12 shows the control flow of the

proposed technique. It consists of three states: Active State, Idle State, and Sleep State.

It can be seen that as soon as ‘sleep’ signal is received from the host computer during

“Active State”, the parity is generated from the current flip-flop data and is stored in

parity storage unit (Figure 4.1-(a)). Parity generation and its storage is controlled by a

micro-controller (ARM C-M0) integrated in the SoC. This is why the micro-controller

and parity storage unit is placed in always-on power domain (Figure 4.13). Once parity

is stored, the design goes to “Idle State”, after which the clock is stopped, the output of

retention register block is isolated, and supply voltage is scaled down to pre-characterised

Minimum Retention Voltage (MRV; Figure 4.11). The design then goes to “Sleep State”.

During “Sleep State”, the flip-flop states are continuously monitored and compared with

the stored parity bits. In the case of a mismatch, an ‘Error’ signal is generated in the

form of hardware interrupt, which is received by the micro-controller. In response to

that interrupt, the micro-controller raises the supply voltage to nominal supply voltage

(1.2-V) and uses parity information (computed and saved) for single-bit error correction.

In the case error correction fails due to multi-bit errors, the control software is notified

through USB interface. Software state recovery such as check-pointing can be used [168];

however such well-known techniques are treated as out of the scope of this work. In the

case of an error, the pre-computed Minimum Retention Voltage (MRV) is raised by

Safety Margin (SM) which is set to 2% of nominal supply voltage (24-mV) to avoid

subsequent errors. The updated value of MRV is stored in the host computer, which is

used in subsequent “Sleep State”. After increasing the MRV, the control is transferred

to “Idle State”, which in turn reduces the supply voltage to newly calculated MRV,

and the design enters “Sleep State”. Finally, upon receiving a ‘wake-up’ request during

“Sleep State”, the supply voltage is raised to nominal supply voltage, and the design

enters “Active State”.

4.2.3 Two-dimensional Parity for Improving Flip-flops State Integrity

Figure 4.13 shows the schematic of the retention register block that is protected using

horizontal and vertical parity logic. The register block (Figure 4.1-(a)) contains 8192

flip-flops, which are divided into 8 blocks, each with (32X32) 1024 flip-flops. The control

of the parity logic is provided by CM0 micro-controller, which is a 32-bit 3-stages pipeline

RISC processor. There are two power domains (PD) in the design (Figure 4.13). Power

Domain 1 (PD-1) is used for register block, which can be scaled down during state

retention mode through external Power Supply. Power Domain 2 (PD-2) is used for

parity storage and micro-controller, which is kept in always-on power domain (always



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 87

32x32

bits

32x32

bits

Vertical Parity Storage (128 bits)

H
o
riz

o
n
ta

l P
a
rity

 S
to

ra
g
e
 (6

4
 b

its
)

L
e
v
e
l S

h
ifte

r

Level Shifter

Cortex-M0

Power Domain 2 (Always On)

Power Domain 1 (Voltage Scaled)

Register Bank  

32x32

bits

32x32

bits

32x32

bits

32x32

bits

32x32

bits

32x32

bits

Vertical Parity Logic

XOR(b0,m, b1,m, b2,m….b63,m); ∀m ϵ [0,127]

H
o

ri
zo

n
ta

l 
P

a
ri

ty
 L

o
g

ic

X
O

R
(b

n
,0

, b
n

,1
, b

n
,2

…
.b

n
,6

3
);

 ∀
n

 ϵ
 [

0
,6

3
]

Figure 4.13: Vertical and horizontal parity protected retention register block.

operating at nominal supply voltage of 1.2-V) for continuous state monitoring of register

block.

To automate the insertion of 2D parity logics, an additional step in digital circuit design

flow is needed as shown in Figure 4.14. In a conventional design, firstly the RTL of

a circuit is converted to gate level netlist through logic synthesis, which is followed by

scan chain insertion for manufacturing test. The last stage is placement and routing.

For the proposed design flow, an additional step is needed after scan chain insertion

for horizontal and vertical parity insertion. This is because the scan chain converts

distributed flip-flops to structured arrays. A TCL script is used to read the output of

Design For Test (DFT) tool after scan chains have been inserted, and it connects all flip-

flops along the scan chains for horizontal parity generation. Similarly for vertical parity

generation, all flip-flops at the same depth of each scan chain are connected together.

This concept is elaborated in Figure 4.14, which shows how flip-flops are connected for

horizontal and vertical parity generation. Scan chains may have different numbers of

flip-flops, in which case the missing flip-flop (Horizontally or Vertically) is replaced by

using a direct connection. An example with two scan chains is shown in Figure 4.14,

where the first scan chains has three flip-flops and the second scan chain has two flip-

flops. It can be seen that the first horizontal parity is generated by using two XOR gates,

while the second horizontal parity is generated by using only one XOR gate. Likewise,

the last vertical parity is generated without using any XOR gate. The 2D parity logics



88 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

Synthesis

Scan Chain 

Insertion

Placement and 

Route

Horizontal and 

Vertical Parity 

Insertion

Scan Chain 1

Scan Chain 2

HP1

HP2

VP1 VP2 VP3

Figure 4.14: Vertical and horizontal parity insertion synthesis flow.

insertion flow is applicable for any digital circuit designs where the flip-flops organisation

is not structural. For structural flip-flops such as register-banks shown in Figure 4.13,

2D parity logics were inserted into registers array in the RTL design stage.

The implementation cost of 2D parity in terms of area, power and delay needs to be

analysed. The proposed technique requires two XOR gates per flip-flop. This imple-

mentation has 8192 flip-flops and the parity logic is about 51% of the flip-flop area. The

parity logic used in this work incurs about 2.7 additional nets per flip-flop. From Fig-

ure 4.13, it can be observed that the number of horizontal parity storage registers is

equal to the number of scan chains and the number of vertical parity storage registers is

equal to the depth of the longest scan chain in the design. One level-shifter is needed for

each of the parity storage registers. There is a negligible increase in delay and dynamic

power in normal mode of operation; this is because the parity logic is disabled during

that mode. However, the leakage power increases, which is proportional to the area

overhead.

4.3 Test Chip

To study flip-flop state integrity and test the proposed PVT aware state protection

technique, a test chip is designed and fabricated. Figure 4.15 shows the test chip top level

architecture, which is divided into two system layers: System layer 0 (provided by our

industry partner ARM Ltd) controls clock, power, communication with workstation and

software program downloads; System layer 1 is for the flip-flop state integrity experiment.



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 89

System Layer 1 for State Integrity Experiment

CM0L0

SRAM

CM0L1

Registers 

Array

Status 

Registers

Control 

Registers

ADP

A
s
y
n
 I
n
te
rf
a
c
e

AHB Lite 

BUS

Layer 1

System Layer 0 for SoC Control

AHB Lite 

BUS

Layer 0

PDM

Workstation

Figure 4.15: Test chip architecture.

The components are described next: components in the left-hand side of buses are bus

masters and those in the right-hand side of buses are bus slaves. Bus masters only send

requests and bus slaves only respond to requests, a component has read and write access

to the components in its right-hand side only. ASCII Debug Protocol (ADP) provides

character-based read and write access to the entire memory map; it is used to download

software programs to SRAM and to send back test results to workstation. The ARM

Cortex M0 in Layer 0 (CM0L0) is used for general SoC control. Control registers stores

clock and power control signal. Pulse Density Modulation (PDM) of the power-switches

with the feed back from the ring-oscillator is used as the on-chip voltage regulator. The

Registers array is used for for flip-flop state integrity experiments. ARM Cortex M0 in

Layer 1 (CM0L1) is used to control the test sequence of registers array. Status registers

are used to control the function of registers array and store parity information.

The main component for flip-flop state integrity experiment is the array(s) of registers

which has two modes of operations as shown in Figure 4.16. Figure 4.16.(a) shows

that 8192 flip-flops are divided into 8 blocks of 32x32-bit register sub-arrays, acting as

memory with single cycle synchronous write and asynchronous read. To minimise circuit

area, flip-flops without asynchronous reset functionality were densely constrained in the

layout; and the array had to be initialised by software. Figure 4.16.(b) shows the barrel



90 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

MUX

(a) Memory access mode

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

128 byte 

block

(b) Barrel rotating mode

Figure 4.16: 8192 flip-flops divided into 8 blocks register array each with 128
flip-flops, there are two mode of operations

shifting mode that allows data in register array to be rotated at clock rate, which allows

a programmable switching pattern to generate controllable simultaneous switching noise.

Under barrel rotation mode the 8 blocks appear as a contiguous block of shift register

array.

Figure 4.17 shows the power configuration of the flip-flop state integrity experiment,

two banks of registers arrays are created each with 8192 flip-flops. Both banks can

be used for voltage scaled state retention or switching noise generation through barrel

rotation mode (Figure 4.16.(b)). They are power-gated using header switches created

between main supply rail VDD and its virtual rail (VVDD). By rapidly switching on

and off the header switches, Pulse Density Modulation (PDM) is used to scale voltage

on-chip. The retention voltage can be observed in the virtual rails VVDD; however

there is no analogue pad available for this experiment and VVDD is not visible outside

the chip. Therefore two ring oscillators are employed to measure VDD and VVDD B0.

Parity bits and control signals of both banks are stored in status registers, and level

shifters are created between registers array and status registers because under retention

mode the supply voltage of registers arrays is different from that of status registers.

Microprocessor (CM0L1) monitors registers arrays state integrity through status register



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 91

Registers 

array

(bank 1)

Registers 

array 

(bank 0)

L
e
v
e
l 
S
h
if
te
r Status 

registers

CM0L1

PDM

osc_l

VDD

VSS

VVDD_B1VVDD_B0

L
e
v
e
l 
S
h
if
te
r

osc_h

PWRn_B0 PWRn_B1

Figure 4.17: Power configuration of flip-flop state integrity experiment.

Address Register Name Description

0x600000000 - 0x6000003FF SREG_B0 Registers array bank 0

0x600000400 - 0x6000007FF SREG_B1 Registers array bank 1

0x680000000 SREG_CTRL Registers arrays operational mode control

0x680000004 2DPAR_ERR Parity error

0x680000008 2DPAR_INT Parity interrupt

0x68000000C 2DPAR_PARGEN_B0 Bank 0 parity generation

0x680000010 2DPAR_PARGEN_B1 Bank 1 parity generation

0x680000014 - 0x680000020 2DPAR_VPAR_B0 Bank 0 Vertical parity storage

0x680000024 - 0x680000028 2DPAR_HPAR_B0 Bank 0 Horizontal parity storage

0x68000002C - 0x680000038 2DPAR_VPAR_B1 Bank 1 Vertical parity storage

0x68000003C - 0x680000040 2DPAR_HPAR_B1 Bank 1 Horizontal parity storage

0x680000044 OSC_H_CNT osc_h counter

0x680000048 OSC_L_CNT osc_l counter

0x68000004C OSC_CTRL Ring oscillator control

0x680000050 - 0x68000005C 2DPAR_VERR_B0 Bank 0 Vertical parity error

0x680000060 - 0x680000064 2DPAR_HERR_B0 Bank 0 Horizontal parity error

0x680000068 - 0x680000074 2DPAR_VERR_B1 Bank 1 Vertical parity error

0x680000078 - 0x68000007C 2DPAR_HERR_B1 Bank 1 Horizontal parity error0x680000078 - 0x68000007C 2DPAR_HERR_B1 Bank 1 Horizontal parity error

0xC000000C0 PDM_CTRL Pulse Density Modulation (PDM) control

Figure 4.18: Memory map of components used for flip-flop state integrity ex-
periments.



92 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

which generates hardware interrupt when parities change from the stored value. CM0L1

controls the functions of register array by setting status registers. The memory map

of register array, status registers, ring oscillator control and PDM control are shown in

Figure 4.18.

Figure 4.19 shows a visualisation of the power intent of flip-flop state integrity experi-

ment. The top level power domain is SREG PD whose UPF description is:

create_power_domain SREG_PD -include_scope

set_domain_supply_net SREG_PD

-primary_power_net VDD -primary_ground_net VSS

Power supply ports are created for connections with external power supply. Supply ports

are connected to corresponding supply nets which are the internal supply rails:

create_supply_port VDD

create_supply_net VDD -domain SREG_PD

connect_supply_net VDD -ports VDD

create_supply_port VSS

create_supply_net VSS -domain SREG_PD

connect_supply_net VSS -ports VSS

SREG B0 PD and SREG B0 PD are power domains for 2 banks of registers array, For

demonstration purposes, only bank 0 is described:

create_power_domain SREG_B0_PD -elements {SREG_B0}

set_domain_supply_net SREG_B0_PD

-primary_power_net VVDD_B0 -primary_ground_net VSS

The option -elements assigns RTL instantiation of registers array to the corresponding

power domains. Two banks of registers arrays have identical internal physical structures.

Supply and ground nets of SREG B0 PD are created:

create_supply_net VDD -domain SREG_B0_PD -reuse

create_supply_net VSS -domain SREG_B0_PD -reuse

The option -reuse is to extend existing supply nets from top power domain SREG PD

to the hierarchical power domain SREG B0 PD. Power-gating transistors are inserted

between primary supply rail VDD and power-gated virtual supply rail VVDD B0. As

shown in Figure 4.17, Pulse Density Modulation (PDM) controls supply voltage of regis-

ters array by rapidly switching power-gating transistors, PWRn B0 is the control signal

from PDM to power gating transistors. The description in UPF is:



C
h
a
p
ter

4
Im

p
ro
v
in
g
th
e
S
ta
te

In
teg

rity
o
f
F
lip

-fl
o
p
s
u
n
d
er

P
V
T

V
a
ria

tio
n

93

VVDD_B0

VDD

VSS

INL

SREG_B0_PD SREG_STATUS_PD

VDDL VDDH

Level shifter

OUTH

PWRn_B0

CLAMPn

Parity tree

Isolation 

cell Parity 

storage
Flip-flop Flip-flop

Parity
Parity_B0

osc_l osc_h

SREG_B1_PD

SREG_PD

Figure 4.19: Power intent of flip-flop state integrity experiment.



94 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

���
�
DDH

�
DDL

INL

OUTH

Figure 4.20: Level shifter schematic [38].

create_supply_net VVDD_B0 -resolve parallel

create_power_switch VVDD_B0_SW -domain SREG_B0_PD \

-input_supply_port {VDD VDD} -output_supply_port {VVDD VVDD_B0} \

-control_port {sleep PWRn_B0} -on_state {on_state VDD {!sleep}}

The parity tree is located inside register array for 2D parity generation. The output of

parity chains are connected to flip-flops in status registers for storage and comparison.

The comparison circuit is a simple XOR gate as comparator which is omitted in the

figure. The power domain of status registers is SREG STATUS PD:

create_power_domain SREG_STATUS_PD -elements {SREG_STATUS}

set_domain_supply_net SREG_STATUS_PD

-primary_power_net VDD -primary_ground_net VSS

Under retention mode, parity signals from SREG B0 PD and SREG B1 PD are at a

different voltage level to the parity storage unit of SREG STATUS PD. In a multi-

voltage design a level shifter is required especially when the signal is coming from lower

voltage region to higher voltage region, this is because when the CMOS gate’s input is

lower than its supply voltage but higher than ground, both NMOS and PMOS transistor

are half turned on creating large crossbar current [38]. Therefore level shifting is required

to increase voltage level of parity signal before capturing it. The schematic of level shifter

is shown in Figure 4.20 [38]. It takes a buffered and an inverted from the lower voltage

signal and uses this to drive a cross-coupled transistor structure running at the higher

voltage. Up-converting level shifters requires two supply rails, one from the lower voltage

region of input signal and one from the higher voltage region of output signal. Therefore,

beside primary supply rails VDD and VSS, virtual supply rails from SREG B0 PD and

SREG B1 PD are extended to SREG STATUS PD:

create_supply_net VDD -domain SREG_STATUS_PD -reuse



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 95

create_supply_net VSS -domain SREG_STATUS_PD -reuse

create_supply_net VVDD_B0 -domain SREG_STATUS_PD -reuse

create_supply_net VVDD_B1 -domain SREG_STATUS_PD -reuse

Input isolation and level shifting are:

set_isolation SREG_B0_iso -domain SREG_B0_PD

-isolation_power_net VDD -isolation_ground_net VSS \

-clamp_value 0 -elements {SREG_B0/VPO SREG_B0/HPO}

set_isolation_control SREG_B0_iso -domain SREG_STATUS_PD \

-isolation_signal CLAMPn_B0 -isolation_sense low -location parent

set_level_shifter SREG_B0_shift_up -domain SREG_B0_PD \

-applies_to outputs -threshold 0.0 -rule low_to_high \

-location fanout -elements {SREG_B0/HPO SREG_B0/VPO}

Signal isolation is integrated into level shifter in the cell library. Although they are

defined in SREG B0 PD, the physical location is in SREG STATUS PD due to option

-location fanout. One ring oscillator is placed in SREG B0 PD to measure the voltage

of virtual rail VVDD B0 and one ring-oscillator is placed in SREG STATUS PD to

measure the voltage of supply rail VDD.

Figure 4.21 shows the test chip synthesis and physical implementation flow. One input

of the flow is Register Transfer Level (RTL) of the design written in Verilog. The other

input is power intent file which defines power domains, power-gating transistors and

isolation strategy of power gating techniques used in this design. The power intent is

described by universal power format (UPF). The design is first validated through RTL

functional simulation. After passing RTL functional tests, the design is synthesised

using Synopsys design compiler and TSMC 65nm standard cell library. To fit the design

into a restricted chip area, clock timing is constrained to 100-MHz to reduce excessive

buffers insertion, because the focus of this study is not on high performance circuits.

The synthesis stage generates gate level net list and delay description file in Standard

Delay Format (SDF), which are used for post-synthesis simulation with clock speed of

100-MHz. Physical implementation of the design is done through Synopsys IC compiler.

The inputs are post synthesis netlist and power description (UPF file) of the design. The

physical implemenation is divided into two stages: design planning and place & route.

The design planning stage includes voltage area definition, power switches placement

and power grid creation. The place & route stage includes standard cell placement,

clock tree synthesis and routing. Standard cell placement places the gates from the

post-synthesis netlist into defined area, after which clock buffering is created to balance

the clock tree to remove clock skews. Routing connects all standard cell signal lines.

The placement and routing generates the final GDSII layout file that is required for



96 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

RTL
Power intent: 

UPF

Standard cell 

library

Synthesis 

& DFT insertion

Design planning
Define voltage area

Insert power switches

Place power rails

Place & Route
Place standard cells

Create clock tree

Routing

Post P&R 

simulation

RTL simulation

Post synthesis 

simulation

Sign-off
DRC & LVS checks

pass

fail

Final design for 

silicon fabrication

pass

fail

pass

fail

pass

fail

Gate level 

netlist

P&R netlist

and GDSII

Figure 4.21: Synthesis and physical implementation flow.



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 97

Registers 

array 

(bank 0)
CM0L1

Status registers

Registers 

array 

(bank 1)
O
S
C

SRAM

CM0L0 & 

Peripherals

Figure 4.22: Final layout of test chip.

fabrication and delay description file for final post placement and routed simulation.

Post placement and routed timing and functional simulation is done to make sure the

design has been correctly constrained and implemented with extracted parasitic loads

and capacitance. The final stage is silicon sign-off verification using Mentor Graphic’s

Calibre tool, Design Rules Checking (DRC) is done to ensure no design rule violations

and Logic Versus Schematic (LVS) checking is done to ensure the function of the final

schematic matches its gate level description.

The physical layout of the chip implemented using TSMC 65nm technology is shown

in Figure 4.22. The flip-flop state integrity experiment only uses part of the chip area,

which is highlighted on the bottom left corner of the chip. There are two blocks of

register arrays each consists of 8192 flip-flops and corresponding parity check circuitry.

Both blocks can be configured to study flip-flops data integrity under different supply

voltage or to generate power supply noises. Status registers are implemented and used

to control the register arrays and to provide parity storage. Two ring oscillators are

created to monitor the voltage of supply rail and virtual rail. ARM CM0 processor core

is used to set or read the status registers and react to the interrupt event when error

is detected. SRAM is used to store the code and data for the software programs that

control the experiment.



98 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

4.4 Experimental Results

Two experiments have been conducted to demonstrate improved state integrity of flip-

flops with aggressive supply voltage scaling in “sleep state” that is possible through the

proposed technique. The first experiment demonstrates improved state integrity of flip-

flops in “sleep state”, and the second experiment demonstrates the effect of aggressive

supply voltage scaling on leakage power savings.

4.4.1 Improved State Integrity

The first experiment was conducted using three dies (Figure 4.7); the operating temper-

ature was set to 79◦C by using a temperature chamber. For this measurement, the test

board was connected with a host computer through a USB interface, and Python script

was used to communicate between the computer and the test board. For each die, the

following five steps are repeated:

1. Voltage of the design was set to 1.2-V.

2. A single logic value (logic-1) was stored in all 8192 flip-flops, referred to as initial

logic state. This is because our experiments indicate that Logic-1 state retention

is about 3-times more vulnerable to bit failure than logic-0.

3. Supply voltage was reduced to respective characterised Minimum Retention Volt-

age (MRV) of each die for 30-minutes.

4. Supply voltage was raised back to 1.2-V.

5. Flip-flop states were compared with the initial logic state to determine if bit failure

has been observed.

Results are shown in Table 4.1, which shows First Failure Voltage (FFV) and Minimum

Retention Voltage (MRV) of each die. The fourth column shows the number of errors

observed in each die, and the last column shows the response of the proposed technique.

For all three representative dies, no error was detected at MRV. It is important to note

that when using conventional techniques (Canary [83] and open-loop [76]), the flip-flop

state is unknown. However, through this technique, it is possible to detect multi-bit

errors and correct single bit error; thus it improves overall confidence on flip-flop state

integrity at reduced supply voltage. When discussing measured results across 82-dies

shown in Figure 4.7, it was highlighted that almost 80% of the dies exhibited only single

bit failure at FFV. This is why parity logic capable of single bit error correction is used

in the proposed technique to improve state integrity at reduced supply voltage. At FFV,

multi-bit errors were observed in the case of just over 20% of the dies, which can be



Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation 99

Table 4.1: Measured results for three selected dies shown in Figure 4.7 at 79◦C
in “Sleep State”.

# of Errors Proposed Technique
Die # FFV (mv) MRV (mV) Detected Response

Die-1 315 369 0 No Error Detected

Die-2 285 339 0 No Error Detected

Die-3 250 304 0 No Error Detected

0.01

0.10

1.00

0.20 0.40 0.60 0.80 1.00 1.20

N
o

rm
a

li
z

e
d

 L
e

a
k

a
g

e
 P

o
w

e
r

Supply Voltage (V)

With-ECC Without-ECC

S
a
v
in
g

0.036

0.096

2.67X

Normalization 

reference point

Figure 4.23: Measured Leakage Power at room temperature normalised to 1.2 V
supply voltage: With ECC vs. Without ECC.

detected through the proposed technique, and can be dealt via a software check-point

technique as explored in recent publications [168].

4.4.2 Aggressive Voltage Scaling

Table 4.1 shows that the difference in MRV of Die-1 and Die-3 is 65-mV, while still

preserving state integrity. In comparison to using worst-case MRV across all dies, the

improvement in MRV is different for each individual die. The proposed characterisation

algorithm (Figure 4.11) achieves up to over 17.5% improvement in MRV in the best

case (Die-1 compared with Die-3). This improvement is lower in the most common case

(represented by Die-2), which is 8% lower (30-mV) than the worst-case MRV. To get

an insight into potential leakage saving using this technique, a further experiment was

conducted with a design without ECC, which computes Minimum Retention Voltage

(MRV) across all process and temperature corners and uses that single MRV across all

dies. For example, in the case of the open-loop technique, voltage is reduced to 0.6-V

for all dies. On the other hand, the proposed technique employs a self-characterisation

algorithm (Figure 4.11), which allows aggressive voltage scaling and each die has its own

individual MRV. Figure 4.23 shows normalised leakage power with and without using



100 Chapter 4 Improving the State Integrity of Flip-flops under PVT Variation

ECC. This measurement is taken at 25◦C using Die-2 (Figure 4.7). As can be seen, at a

given voltage, the normalised leakage power of the proposed technique is higher than that

of a design without ECC. This is because of 33% area overhead of parity logic. However,

the proposed technique is capable of state retention at much lower voltage leading to

overall lower leakage power in “Sleep State”, due to using the characterisation algorithm

(Figure 4.11). For example, in comparison to a design without ECC and state retention

at 0.6-V, the proposed technique can retain states at 339-mV (for Die-2) leading to

2.67-times additional leakage power savings.

4.5 Concluding Remarks

This chapter presented measured results from silicon to show that the state integrity of

flip-flops is affected by process, voltage and temperature (PVT) variation. By designing

and implementing special register integrity test structures and integrating these into

a 65nm test chip, detailed and specific measurements have been possible to compare

and contrast voltage-scaled retention techniques and approaches. Measurements from a

districution of packaged test chips, each with 8192 flip-flops, showed that even at 25◦C,

state integrity of a flip-flop is affected by process variation leading to spread of First

Failure Voltage (FFV), from 245-mV to 315-mV, with 79% of total dies exhibiting sin-

gle bit failure at FFV, while the rest show multi-bit failure. Furthermore, at elevated

temperatures the variation is even more pronounced, it is found that FFV increases by

up to 30-mV with increase in temperature from 25◦C to 79◦C. The effect of process

variation with geometry scaling has also been studied using a 45-nm technology node

through Monte-Carlo simulation, when compared with 65-nm technology, it is found

that the overall distribution trend remains the same; however the mean FFV has shifted

to a higher voltage. The effect of PVT variation on state integrity of flip-flops is ad-

dressed through development of a PVT-aware state protection technique that ensures

state integrity, while minimizing state retention voltage per die. The proposed technique

consists of characterisation algorithm to determine Minimum Retention Voltage (MRV)

of each die, and employs horizontal and vertical parity for real-time error detection and

single bit error correction. In the case of error detection, it enables dynamic adjustment

of MRV per die to avoid subsequent errors. Silicon results show that at characterised

MRV, the flip-flop state integrity is preserved, while achieving up to 17.6% reduction in

retention voltage across 82-dies.



Chapter 5

Modelling Framework to

Optimise Memory System

Reliability

The previous chapters of this thesis have focused on the reliability of flip-flops, which

are sequential elements of a processor core. In Chapter 3, a cost effective methodology

is proposed to improve the reliability of the processor core when in sleep mode in the

presence of supply noise and soft errors. Low cost protection is achieved through the

reuse of scan chains for state monitoring and recovery. In Chapter 4, the state integrity

of flip-flops has been studied using HSPICE simulations and measurements taken from

82 fabricated test chips. An algorithm was proposed to determine Minimum Retention

Voltage (MRV) of each test chip to ensure state-integrity, while reducing leakage and

state retention power. It also incorporated horizontal and vertical parity circuit for

state protection under reduced supply voltage. The techniques presented in Chapter 3

and Chapter 4 have improved the reliability of the flip-flop based storage elements of

processor cores. This chapter describes an architectural simulation-based framework for

analysing complete processor memory system in terms of reliability, performance and

energy consumption. Through the analysis, a cost effective reliable design methodol-

ogy is proposed to minimise energy consumption for reliability-constrained low-power

embedded processor system designs.

This chapter is organised as follows. Section 5.1 provides the motivation for this work.

Section 5.2 describes the architectural simulation-based framework for estimation of

memory reliability, processor performance and energy consumption. Section 5.3 shows

the analysis of memory system reliability using the constructed framework. The pro-

posed cost effective reliable design methodology and reliability aware joint optimisation

is presented in Section 5.4 and Section 5.5 draws conclusions for the application of the

proposed methodology.

101



102 Chapter 5 Modelling Framework to Optimise Memory System Reliability

0�20�	
0�

0��0��00�

E
D
C

E
C
D
E
D

D
E
C
TE
D

Q
E
C
E
D

O
E
C
N
E
D

E
x
tr

a
 M

e
m

o
ry

 S
to

ra
g
e 
�b�or�

2�
b�or�
0��
0��00���0�200�2
�
0�

ED
C

E
C
D
ED

D
E
C
TE
D

Q
E
C
ED

O
EC
N
ED

E
x
tr

a
 E

n
e
rg

y
 p

e
r 

R
e
a
d ��b�or� � ��k� arra�

2��b�or� � ��� arra�

(c) En�r� o!�r"�a# of ECC(b) Ar�a o!�r"�a# of ECC
Figure 5.1: ECC overhead in terms of (a) area (b) energy [169].

5.1 Motivation

Soft errors also called Single Event Upset (SEU) are radiation-induced transient er-

rors caused by neutrons from cosmic rays and alpha particles from material used for

IC packaging. Traditionally soft errors were only a concern for space applications, but

for advanced technology nodes, system level soft errors are much more frequent due to

lower critical charge and higher integration density [11]. The induced charge from a

particle strike will flip the state of the memory cell, which can propagate and cause

erroneous outputs. Together with performance and power, reliability has become an

important design parameter for many embedded processors such as micro-controllers,

servers and networking devices. To protect a system against soft errors, redundancy is

usually required which has a cost in chip area, power and performance [161, 169, 170].

Figure 5.1 shows Error Control Coding (ECC) area and energy overhead for various

coding schemes, where the overhead increases exponentially with error correction capa-

bility. ECC protection is costly; therefore excessive protection may make the product

uncompetitive in terms of cost and energy consumption. On the other hand, inadequate

protection from soft errors may lead to unreliable in-field operation, which is undesir-

able. In a processor, the memory system is particularly susceptible to soft error because

it occupies the largest fraction of the chip area [171]. Therefore, appropriate protection

of a memory system is necessary, which is only possible through careful evaluation of

soft error susceptibility.

There are two main types of random access memories Static RAM (SRAM) and Dynamic

RAM (DRAM), which are commonly used in processor systems. SRAM is expensive but

fast and it is used as cache memory to reduce access latency. DRAM requires dynamic

memory cell refresh, has longer access time but is lower-cost for bulk memory and it is

used as main memory to provide large memory size. A typical example of the modern

processor memory hierarchy is shown in Figure 5.2, which consists of two levels of cache

and a main memory. Level-1 (L1) cache normally provides both data and instruction



Chapter 5 Modelling Framework to Optimise Memory System Reliability 103

L1 Cache

on-chip SRAM

Registers

L2 Cache

off-chip SRAM

Main memory

DRAM

S
m
a
lle
r 
b
u
t 
fa
s
te
r

L
a
rg
e
r 
b
u
t 
s
lo
w
e
r

Figure 5.2: Low-medium performance microprocessor memory hierarchy

caching which connected directly to the processor core. The speed of L1-cache has the

highest impact on the processor’s performance and typically SRAM latency is within a

few nano-seconds [172, 173]. It is usually integrated on the same die as the processor

core to reduce access latency. Increasing cache size has a negative impact on access

latency due to a more complex address decoder. For this reason, the maximum size

of L1-cache is limited to 32kB in most modern processors such as POWER7 [174] and

OMAP4460 [175]. When larger cache memory is needed, it is usually divided into

two levels, a smaller L1-cache and a larger but slower L2-cache. In high performance

processors level-3 cache is also used to reduce access to the main memory. The focus of

this research is on low power embedded processors and therefore only two cache levels

are considered together with the main memory as shown in Figure 5.2, although in some

systems the L2 cache could be on-chip or off-chip.

To accurately analyse the reliability of each memory component with consideration of

performance and energy consumption, an analysis framework is developed and described

in the next section. This framework is used for joint-optimisation of reliability, perfor-

mance and energy consumption when considering a given embedded processor using a

wide variety of benchmark applications and soft error rates.

5.2 Framework for Memory System Reliability Analysis

Figure 5.3 shows the analysis framework for the application-aware joint analysis of reli-

ability, performance and energy of an embedded processor system. The analysis frame-

work is based on an architectural simulator, which is available as an open-source software



104 Chapter 5 Modelling Framework to Optimise Memory System Reliability

that models the processor system’s behaviour to predict performance matrices for a given

input. Such a simulator is often used in the design process to allow easy design space ex-

ploration and early software development. The architectural simulator used in this work

is GEM5 [176]. It is an open source and highly configurable simulator that supports

most modern processor models including ARM and x86. GEM5 is an instruction level

accurate simulator but can be configured to run at near cycle accuracy at the cost of

simulation speed. The inputs to this analysis framework (Figure 5.3) consist of processor

system configuration files and benchmark applications. A processor system consist of

hardware and software, and configuration files that define the hardware set-up such as

computing resources available for processor core and memory system. Table 5.1 shows

an example configuration. Benchmark applications are compiled to software binaries

using MiBench benchmark suite [177] as a case study. To estimate reliability, a memory

read and write access monitor is embedded into GEM5 simulator. To analyse system

energy consumption an activity-based power analysis tool McPAT [178] is used, which

uses the system configuration to estimate chip area and static power consumption. It

uses activity statistics generated by GEM5 simulation to produce dynamic power con-

sumption. A python script is used to post-process GEM5 statistics to be compatible

with McPAT. For performance analysis, the built-in features of GEM5 have been used

to generate detailed performance statistics. This simulation set up runs on an Iridis

computer cluster so multiple simulations can run in parallel. A python script is used

to setup the analysis framework and initiate simulations. In this case study the de-

sign space consists of 24 configurations and 24 benchmark applications, which leads to

24×24 = 576 simulations running simultaneously. Each simulation generates reliability,

performance and energy consumption profiles for the corresponding configuration and

application, which are used for joint optimisation. Each component of the framework is

discussed in detail in the rest of this section.

5.2.1 Hardware Configuration Method

One of the inputs to the analysis framework (Figure 5.3) is the hardware system config-

uration. In this work, an ARM low power embedded processor is modeled using GEM5.

Table 5.1 shows the processor configuration used in this work. As can be seen, it has two

integer adders, one integer multiplier and divider, two floating point ALUs, one load and

one store unit. It can fetch 3 instructions every clock cycle, and the issue and commit

widths are 8 instructions. There are 2 levels of caches: Level-1 consist of 2-way set asso-

ciative instruction and data caches with single CPU clock cycle access latency, the size

of both instruction cache and data cache are 32-KB; L2-cache is 8-way set associative

and has an access latency of 8ns, the size of L2-cache is 256-KB. The size of DRAM is

512-MB which has an access latency of 100ns. Hardware components are implemented

as modules written in C++. A Python interpreter is embedded in GEM5 simulator so

the configuration of hardware components is set through Python scripts. This approach



Chapter 5 Modelling Framework to Optimise Memory System Reliability 105

Processor System 

Configuration files 

(fig. 5.4)

Reliability, performance and power

analysis (RPPA) framework

(Based on GEM5 simulator)

Activity based 

energy estimation 

(fig. 5.11)

Memory reliability 

monitoring

(fig. 5.8)

Performance 

statistics

Ir
id
is
 C
o
m
p
u
te
r 
C
lu
s
te
r

Parallel simulations

Reliability, performance 

and power (RPP) profiles

(fig. 5.31)

Initiate one simulation per configuration 

per benchmark application (python script)

Benchmark application

(Section 5.2.2)

Figure 5.3: Proposed framework to analyse reliability, performance and energy
consumption

combines the flexibility of Python scripting for configuration with the performance of

C++ programs for execution. Figure 5.4 shows how the configuration from Table 5.1

is implemented in GEM5 using a Python script. Figure 5.4.(a) shows the configuration

of functional units in the processor core, as can be seen operation latency is defined

here in order to model timing information. Figure 5.4.(b) shows the configuration of

the cache memory, which includes access latency, block size, associativity and size. This

configuration is used for demonstration for the analysis presented in Section 5.3.



106 Chapter 5 Modelling Framework to Optimise Memory System Reliability

Table 5.1: System configuration used in analysis

Configuration Value

Processor Core

ALU
2 Integer Add/Sub
1 integer Mul/Div

2 float point

Fetch/Decode Width 3/3 instructions/cycle

Issue/Commit Width 8/8 instructions/cycle

Memory Hierarchy

Instruction cache
2 ways, 1 cycle latency

Data cache

L2 cache 8 ways, 8-ns latency

DRAM 100-ns latency

//O3_ARM_v7a.py

class O3_ARM_v7a_Simple_Int(FUDesc):

opList = [ OpDesc(opClass='IntAlu', opLat=1) ]

count = 2 

class O3_ARM_v7a_Complex_Int(FUDesc):

opList = [ OpDesc(opClass='IntMult', opLat=3, issueLat=1),

OpDesc(opClass='IntDiv', opLat=12, issueLat=12),

OpDesc(opClass='IprAccess', opLat=3, issueLat=1) ]

count = 1 

class O3_ARM_v7a_FP(FUDesc):

opList = [ OpDesc(opClass='SimdAdd', opLat=4),

OpDesc(opClass='SimdAddAcc', opLat=4),

OpDesc(opClass='SimdAlu', opLat=4),

OpDesc(opClass='SimdCmp', opLat=4),

OpDesc(opClass='SimdCvt', opLat=3),

...............................

OpDesc(opClass='FloatMult', opLat=4) ]

count = 2

class O3_ARM_v7a_Load(FUDesc):

opList = [ OpDesc(opClass='MemRead',opLat=2) ]

count = 1 

class O3_ARM_v7a_Store(FUDesc):

opList = [OpDesc(opClass='MemWrite',opLat=2) ]

count = 1 

class O3_ARM_v7a_FUP(FUPool):

FUList = [O3_ARM_v7a_Simple_Int(),

O3_ARM_v7a_Complex_Int(),

O3_ARM_v7a_Load(), 

O3_ARM_v7a_Store(), 

O3_ARM_v7a_FP()]

//O3_ARM_v7a.py

class O3_ARM_v7a_ICache(BaseCache):

hit_latency = 1

response_latency = 1

block_size = 64

mshrs = 2

tgts_per_mshr = 8

size = '32kB' 

assoc = 2

is_top_level = 'true'

class O3_ARM_v7a_DCache(BaseCache):

hit_latency = 1

response_latency = 1

block_size = 64

mshrs = 6

tgts_per_mshr = 8

size = '32kB'

assoc = 2

write_buffers = 16

is_top_level = 'true'

class O3_ARM_v7aL2(BaseCache):

hit_latency = 8

response_latency = 8

block_size = 64

mshrs = 16

tgts_per_mshr = 8

size = '256kB'

assoc = 8

write_buffers = 8

prefetch_on_access = 'true'

prefetcher = StridePrefetcher(degree=8, latency = 1)

Integer 

Add/Sub

Integer 

Mul/Div

Floating 

point

Instruction 

cache

Data cache

L2 cache

(a) processor core (b) cache memory

Load/

Store

Functional 

units

Figure 5.4: Example Python script for GEM5 used to configure (a) processor
core (b) cache memory



Chapter 5 Modelling Framework to Optimise Memory System Reliability 107

5.2.2 Benchmark Applications

The second input required for the analysis framework (Figure 5.3) is one or more bench-

mark applications. The benchmark suite used in this work (Section 5.3) is Mibench,

which assembles a set of commercially representative embedded programs [177]. The

benchmark applications are written in C, and the Linaro GCC toolchain is used to cross

compile the benchmark applications to ARM program binary with optimisation level

3 [179]. As shown in Table 5.2, the benchmark applications are divided into 6 groups:

automotive, consumer, office, network, security and telecommunication.

1. Automotive category is intended to demonstrate the use of embedded processors

in control system: “basicmath” performs simple mathematical calculations. “bit-

count” tests the bit manipulation abilities of a processor by counting the number

of bits in integers. “qsort” sorts a large array of strings into ascending order us-

ing quick sort algorithm. “susan” is an image recognition package for recognising

corners and edges in MRI of the brain, it can also smooth an image.

2. Consumer benchmarks applications are intended for consumer devices such as scan-

ners and digital cameras: “jpeg” is a lossy image compression and decompression

program often used to view images embedded in documents. “lame” is an MP3

audio encoder with constant, average and variable bit-rate encoding. “typeset” is

a typesetting tool that often used in web browsers.

3. Office category is mainly text manipulation applications: “ispell” is a fast spelling

checker, it supports contextual spell checking and correction suggestions. “rsynth”

is a text-to-speech synthesis program. “stringsearch” is a string searching program

using a case insensitive comparison algorithm.

4. Network applications are used in network devices such as switches and routers:

“dijkstra” is a routing application that constructs a graph using adjacency matrix

and then calculates the shortest path between each node. “patricia” is used to

maintain a tree-like data structure for routers; it collapses sparse leaf nodes to

reduce the depth of the tree and therefore reduces traversal time.

5. Security category is intended for data encryption: “rijndael” is used for Advanced

Encryption Standard (AES) encryption and decryption. It is a block cipher with

key size upto 256-bits. “sha” is a secure hash algorithm often used in the secure

exchange of cryptographic keys.

6. Telecommunication category contains the applications used in wireless communi-

cation: “crc” is an error detection algorithm widely used to ensure data integrity

in transmission channels. “fft” is a digital signal processing algorithm used to find

the frequencies in a given signal. “adpcm” is a compression algorithm for Pulse



108 Chapter 5 Modelling Framework to Optimise Memory System Reliability

Table 5.2: MiBench benchmarks [177]

Automotive Consumer Office Network Security Telecomm

basicmath djpeg ispell dijkstra rijndael enc crc

bitcount cjpeg rsynth patricia rijndael dec fft

qsort lame stringsearch sha ifft

susan corners typeset cadpcm

susan edges dadpcm

susan smoothing gsm toast

Table 5.3: Benchmarks size

Benchmark Instructions Benchmark Instructions Benchmark Instructions

basicmath 2,600,804,178 lame 970,864,188 rijndael dec 437,332,579

bitcount 712,165,746 typeset 405,142,439 sha 116,047,916

qsort 323,236,108 ispell 736,368,473 crc 1,889,808,493

susan corners 22,414,640 rsynth 1,769,029,529 fft 409,203,364

susan edges 61,108,467 stringsearch 4,242,318 ifft 223,879,382

susan smoothing 270,208,654 dijkstra 200,914,997 cadpcm 732,592,451

djpeg 21,833,323 patricia 591,388,089 dadpcm 526,377,589

cjpeg 95,590,130 rijndael enc 449,518,458 gsm toast 1,018,773,440

Code Modulation (PCM) with compression ration of 4 to 1. “gsm” is the standard

of voice encoding and decoding for mobile communication.

Table 5.3 shows the number of instructions simulated for each benchmark application,

which were extracted from the statistics generated by GEM5. Figure 5.5 shows the code

size (the size of cross-compiled program binary) and data size (the size of input files for

benchmark applications).

5.2.3 Reliability, Performance and Energy Profiling

In this chapter, the impact of soft errors on memory reliability is studied. Bit error

rate (BER) is defined as the soft error rate for one storage node (bit) in a memory,

represented by symbol λbit. BER is decided by the fabrication process and influenced

by its operation environment. The error rates of unprotected memory can be roughly

estimated using the following equation [161]:

λmem = λbit ×N (5.1)

where N is the size of the memory in bits. This gives the worst case memory system

failure rate estimation and over-engineering is normally used for safety-critical applica-

tions. This is based on the assumption that a system will fail if any storage node is

corrupted, which is not always true. This is because some memory cells are not used



Chapter 5 Modelling Framework to Optimise Memory System Reliability 109

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

B
y
te
s

code data

Figure 5.5: Code and data size of MiBench benchmark applications (Memory
footprints)

during application runtime and even when data corruption occurs in the occupied mem-

ory cell, it may be overwritten. For example Figure 5.6 shows the data lifetime of one

byte of storage cells (8 bits). At time t0 data ‘x’ is written into the storage cells. At time

t1 a particle strike causes bit-flip corrupting the stored data. At time t2 the corrupted

data ‘xe’ are from the storage cells and propagate to the processor core or other memory

components, which may lead to erroneous output. Therefore the data lifetime between

t0 and t2, which is vulnerable to corruption is referred to as Vulnerable Time (VT). At

time t3 data ‘y’ are written into the same storage cells and mask data corruption, so

data lifetime between t2 and t3 is not vulnerable to erroneous output. Therefore, data

lifetime of a memory component can be divided into vulnerable time and invulnerable

time. Total vulnerable time is calculated by summing up the vulnerable time of each

storage cell as shown in Figure 5.7. Equivalent vulnerable storage of an application is

calculated by:

N ′ =
∑

i

∑

j

V Tij/Runtime (5.2)

where ’j’ represents the vulnerable time slice of one byte storage and ’i’ represents storage

nodes (Figure 5.7). Therefore more accurate estimation of memory reliability can be

expressed as:

λ′

mem = λbit ×N ′ (5.3)



110 Chapter 5 Modelling Framework to Optimise Memory System Reliability

t0 t1 t2

1.write ‘x’ 3.read ‘xe’

2.bit flip due to 

particle strike

byte[i]

t3

4.write ‘y’

t

Vulnerable Time (VT) Invulnerable Time

Figure 5.6: Storage cells data lifetime

where λbit is the bit error rate of the storage node. ’N ′’ is the vulnerable storage that

can be calculated through architectural simulation of a processor system.

Vulnerable storage is used to estimate the reliability of the memory system. The amount

of vulnerable storage varies across different applications. In other words, reliability is

application-dependent. Architectural simulation is needed to accurately estimate the

memory system reliability for a target application. GEM5 can be configured to run

cycle accurate simulation, but does not generate reliability statistics directly. According

to Figure 5.7 and Equation 5.2, to calculate vulnerable storage N ′, read and write

accesses on each storage unit (the basic storage unit for memory access is one byte)

needed to be monitored. Because GEM5 is an open source software, the source code of

the GEM5 simulator is modified to incorporate memory access monitoring for vulnerable

time collection, which will be discussed next.

Figure 5.8 shows the memory system architecture and read/write monitoring for analysing

the access information of each memory component and calculating the vulnerable stor-

age. There are read and write ports in each memory component; for the Instruction

ReadWrite ReadWrite

t

WriteWrite ReadRead

VT[i][0]

t

byte [0]

byte [i]

Write Read

Write Read

..............

VT[i][1] VT [i][j]

VT[0][0] VT[0][1] VT[0][j]

Figure 5.7: Collection of vulnerable time slices.



Chapter 5 Modelling Framework to Optimise Memory System Reliability 111

ARMv7

Core

Instruction

Cache

Data

Cache

Level 2 

Cache

B

U

S

B

U

S

DRAM

R W

W

R

R

W

R

W

W

R

W

R

Read and write monitor

Figure 5.8: Memory system architecture and read/write access monitor

cache (I-Cache), the read port is connected to processor core to fetch instructions and

write port is connected to the level-1 bus that fills the cache lines with instructions. the

data cache has both read and write ports connected to processor core to enable caching

of application data. Another set of read and write ports are connected to higher memory

hierarchy for read and write. L2-cache provides the buffer between DRAM and L1-cache,

therefore it has read and write ports connected to both level-1 and level-2 buses. The

final level of memory hierarchy is DRAM which also has read and write ports connected

to the level-2 bus. The read and write ports are implemented as functions in the GEM5

simulator; therefore read and write monitors are a group of functions that are embedded

inside read and write ports to extract the address of memory cells accessed. Figure 5.9

shows the example code for the main memory access monitoring functions. Firstly, three

variables are created: “lstAccTime” is used to store the last access time for each memory

unit (1 byte of storage cells), “vulTime” is used to accumulate the vulnerable time slices

(Figure 5.7), and “vulStore” is used to store the vulnerable storage calculated using

Equation 5.2. Secondly, two monitoring functions are created: “writeTrace()” is used to

monitor write access, and “readTrace()” is used to monitor read access. At the end of

each access the monitor updates the last access time to the current time. If the access is

a write operation, any error is masked and no action is needed. If the access is a read,

the data are vulnerable to soft errors, and the vulnerable time (the difference between

current access time and last access time) is stored into accumulator “vulTime”. Lastly,

the memory access monitor functions are inserted into the memory access port. Simi-

larly, the example code for cache access monitoring is shown in Figure 5.10. Four cache

accesses are monitored: write, read, cache fill and write back. Cache read and write

access from the CPU is monitored in function “satisfyCpuSideRequest()”, the cache fill

is monitored in function “handleFill()” and the cache write back is monitored in function

“writebackBlk()”.

Performance statistics are generated by GEM5 directly, while power estimation is gen-

erated using McPAT to post process the dynamic activity produced by GEM5. McPAT

is a power, timing and area estimation tool for the architectural simulator and the block

diagram is shown in Figure 5.11. McPAT uses an XML-based interface to fetch in-

formation about hardware configuration and dynamic activity from the architectural



112 Chapter 5 Modelling Framework to Optimise Memory System Reliability

//abstract_mem.cc

void AbstractMemory::writeTrace(Addr addr, int size)

{

      for(int i=addr; i<addr+size; i++)

            lstAccTime[i] = curTick();

}

void AbstractMemory::readTrace(Addr addr, int size)

{

      for(int i=addr; i<addr+size; i++) {   

            vulTime += curTick() - lstAccTime[i];

            lstAccTime[i] = curTick();

      }   

}

void AbstractMemory::access(PacketPtr pkt)

{

      if  (pkt->cmd == MemCmd::SwapReq) {

             std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());

             std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());             

             std::memcpy(hostAddr, &overwrite_val, pkt->getSize());

             readTrace(pkt->getAddr(), pkt->getSize());             

             writeTrace(pkt->getAddr(), pkt->getSize());

      }

      else if (pkt->isRead()) {

             memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());

             readTrace(pkt->getAddr(), pkt->getSize());

      }

      else if (pkt->isWrite()) {

             memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());

             writeTrace(pkt->getAddr(), pkt->getSize());

      }

}

Function for

monitoring

write access 

Function for 

monitoring

read access 

Insert the 

monitoring 

functions in 

memory 

access ports

//abstract_mem.hh

class AbstractMemory : public MemObject

{

      std::map<int, Tick> lstAccTime;

      Stats::Scalar vulTime;

      Stats::Formula vulStore;

      void regStats()

      {

            vulStore = vulTime/simTicks;

      }

}

Variables for 

vulnerable time 

collection

Calculate 

vulnerable 

storage

Figure 5.9: Example code for main memory (DRAM) read and write monitoring



Chapter 5 Modelling Framework to Optimise Memory System Reliability 113

//cache_impl.hh

void Cache<TagStore>::writeTrace(Addr addr, int size)

{

      for(int i=addr; i<addr+size; i++)

            lstAccTime[i] = curTick();

}

void Cache<TagStore>::readTrace(Addr addr, int size)

{

      for(int i=addr; i<addr+size; i++) {   

            vulTime += curTick() - lstAccTime[i];

            lstAccTime[i] = curTick();

      }   

}

void Cache<TagStore>::satisfyCpuSideRequest(PacketPtr pkt, BlkType *blk)

{

      if  (pkt->cmd == MemCmd::SwapReq) {

             cmpAndSwap(blk, pkt);

             readTrace(blk->blkAddr|(pkt->getAddr()&(blk->size-1)),pkt->getSize());             

             writeTrace(blk->blkAddr|(pkt->getAddr()&(blk->size-1)),pkt->getSize());

      }

      else if (pkt->isRead()) {

             pkt->setDataFromBlock(blk->data, blkSize);

             readTrace(blk->blkAddr|(pkt->getAddr()&(blk->size-1)),pkt->getSize());

      }

      else if (pkt->isWrite()) {

             pkt->writeDataToBlock(blk->data, blkSize);

             blk->status |= BlkDirty;

             writeTrace(blk->blkAddr|(pkt->getAddr()&(blk->size-1)),pkt->getSize());

      }

}

typename Cache<TagStore>::BlkType*

Cache<TagStore>::handleFill(PacketPtr pkt, BlkType *blk)

{

      std::memcpy(blk->data, pkt->getPtr<uint8_t>(), blkSize);

      writeTrace(blk->blkAddr, blkSize);

      return blk;

}

PacketPtr

Cache<TagStore>::writebackBlk(BlkType *blk)

{

      std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);

      writebackTrace(blk->blkAddr, blkSize);

}

Function for

monitoring

write access 

Function for 

monitoring

read access 

Insert the 

monitoring 

functions in 

cache access 

ports

//cache.hh

class Cache : public BaseCache

{

      std::map<int, Tick> lstAccTime;

      Stats::Scalar vulTime;

      Stats::Formula vulStore;

      void regStats()

      {

            vulStore = vulTime/simTicks;

      }

}

Variables for 

vulnerable time 

collection

Calculate 

vulnerable 

storage

Figure 5.10: Example code for cache (L1 and L2) read and write monitoring



114 Chapter 5 Modelling Framework to Optimise Memory System Reliability

C$ip%&pr&'&n(a( ion
Op
(
i)i*&r Ti)in+

Ar
&
a,- a- .

C
o
n
fi

/0 r1 2C3AT 3o4&r5Ar&a5
Ti)in+ 2o6& lArc$7 Circ8i( T

&
c$7 3o4&r D

9
na)ic

L
&
aka
+&:$or(-circ8i(

;<L In=>rfac>

O
p

- i? i@ a- ion

(Micro)Architecture Param
Fr
ABCA

nc
D EFGG E In-orGAr E

OoO ECacHA IiJA NoC KDpA
Cor
A
co
C
n
K ELClKiKHrAaGAGM N

Circuit ParametersIO
A
L EDOALEDFF ECroPPbar KDpA QQQ

Tech Parameters

D
AR
ic
A
(H
S E LITS E LOS) E TirA TDpA

Optimization TargetL
a
U
ar
A
a
V
po
WA
r D
AR
ia
K
ion

Op
K
i
X
i
J
a
K
ion f
C
nc
K
ion

Machine Stats

Har
GW
ar
A CK

ili
J
a
K
ionS

-
IK
a
KA V

C-
PK
a
KA
Confi

Y
Runtime Power Stats

Thermal Stats 

If
KHA
r
X
al
L
o
GA
l pl
CYYAG

in

U
PA
r Inp

CK
C
D
cl
A
-b
D
-c
D
cl
A

p
A
rfor
X
anc
AP

i
XC
la
K
or

Figure 5.11: Block diagram of McPAT [178]

simulator. However, the output of GEM5 simulator is not in XML format, thus an

additional Python script is used to convert GEM5 statistics to XML format.

5.2.4 Modelling voltage and frequency scaling

Voltage and frequency scaling (VFS) is an effective low-power design technique, which

is widely used in modern processors. Various high efficiency on-chip and off-chip volt-

age regulators are available to support multiple power domains with different supply

voltages [180, 181]. The TSMC low power 65nm technology library (used in test chip

implementation in Chapter 4) uses 1.2-V as the nominal supply voltage, so in this work,

it is assumed that the nominal supply voltage is 1.2-V which is reduced to 1-V, 0.85-V

and 0.75-V for voltage scaling and the design is at room temperature. Further scaling

of supply voltage may cause cache memory malfunction [38]; therefore 0.75-V is the

minimum supply voltage chosen for this work. With additional circuitry SRAMs can

be designed to operate under much lower supply voltage [182, 183]. This is beyond the

scope of this work as only commercial standard cell library is considered. Table 5.4

shows corresponding processor core operating frequency, soft error rate, dynamic and

leakage power at each supply voltage point, where the value are normalised to nominal

supply voltage of 1.2-V. An empirical model based on the measurements from test chips

(Chapter 4) is used to estimate the relationship between delay and supply voltage. From

the test chip, Figure 5.12.(a) shows measurement results of normalised ring oscillator

frequency under supply voltage scaling, which is used to select clock frequencies at each

supply voltage point, as shown in Table 5.4. The impact of technology and voltage scal-

ing on soft error susceptibility has been studied [111,184], from which the corresponding

soft error rate for each operating voltage is calculated. McPAT is used to parse the

output of architectural simulation for power estimation [178], and the result generated

by McPAT is multiplied by the power scaling ratio from Table 5.4 to incorporate voltage

scaling. Dynamic power is calculated by using the following equation [185]:



Chapter 5 Modelling Framework to Optimise Memory System Reliability 115

Table 5.4: Normalised voltage and frequency scaling table

1.2V 1V 0.85V 0.75V

Processor core clock [185] 1 0.5 0.25 0.125

Bit error rate [184] 1 1.7 2.56 3.34

Dynamic power [185] 1 0.347 0.126 0.049

Leakage power [74] 1 0.532 0.328 0.235

(a). Clock frequency scaling (b). Leakage power scaling

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

N
o

rm
a

li
ze

d
 f

re
q

u
e

n
cy

Supply voltage (V)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

N
o

rm
a

li
ze

d
 l

e
a

k
a

g
e

 p
o

w
e

r

Supply voltage (V)

Figure 5.12: (a) Measured clock frequency under supply voltage scaling for
65nm low-power technology library, (b) Measured leakage power under supply
voltage scaling for 65nm low-power technology library at room temperature.

Pdyn ∝ fCV 2 (5.4)

where f is switching activity, C is circuit capacitance and V is supply voltage. The

leakage power scaling ratio is technology-dependent [74]; therefore its calculation needs

an empirical model. Figure 5.12.(b) shows measurements from the same test chips

(Chapter 4) describing the relationship between leakage power and supply voltage, which

is used to determine the leakage power scaling ratio.

In this experiment (Section 5.3) the microprocessor (Figure 5.8) is divided into two power

domains as shown in Figure 5.13: Processor core and L1-cache including instruction

and data caches are located in power domain PD CORE, L2-cache is placed in power

domain PD SOC. DRAM is normally off-chip but placed in PD SOC for simplicity.

This is because the processor core and L1-cache are usually the most power-hungry

components [186], these are often located physically close to each other on the same die

and shared the same power domain to meet timing at the high speed processor clock

rate.

For comprehensive analysis, hundreds of simulations are needed. Architectural simu-

lation is slow; for example, it may take days to complete a single simulation. GEM5



116 Chapter 5 Modelling Framework to Optimise Memory System Reliability

PD_SOC (Always on)

PD_CORE (Voltage Scaling)

ARMv7

L1 Instruction

Cache

L1 Data

Cache

Level 2 

Cache
DRAM

Figure 5.13: Power domains

is not multi-threaded; however, multiple simulations can be executed in parallel to re-

duce overall simulation time. A Python script is used to run multiple simulations on

Southampton University’s Iridis computer cluster simultaneously.

5.3 Reliability, Performance and Power Analysis

Using the analysis framework developed in Section 5.2, the processors’ reliability, perfor-

mance and power can be analysed. This analysis is used to develop a cost efficient and

reliable design methodology, which is described in Section 5.4. In this section, memory

system reliability is studied using error rate, which is calculated using the Bit Error

Rate (BER) of memory storage cells. BER (defined in Section 5.2.3) varies between

10−7 to 10−12 depending on environment and fabrication process [152, 155, 160]. The

error rate shown in this section is expressed as a multiplication of vulnerable storage

(N ′) and BER (λbit) as described in Equation 5.3. This is because the proposed analysis

framework is not limited to a specific fabrication process or environment.

Figure 5.14 shows the vulnerable storage of memory components measured across bench-

mark applications. It can be seen that the reliability of each memory component

varies with application. For the Instruction Cache (I-Cache), the highest error rate

is 1.9 × 105λbit in the case of “gsm toast”and the lowest error rate is 1.1 × 104λbit

in the case of “dadpcm”. For the Data Cache (D-Cache), the error rate ranges from

2.4 × 105λbit in the case of “susan smoothing” to 6, 500λbit in the case of “bitcount”.

For the L2-cache, the highest error rate is 1.8 × 106λbit when running “patricia”, while

the lowest error rate is 3, 000λbit when running “cadpcm”. Similarly for DRAM, the

error rate ranges from 2.3 × 107λbit in the case of “typeset” to 2.2× 104λbit in the case

of “stringsearch”. Figure 5.15 compares the vulnerable storage of memory components.

The bar shows average error rate, and the error shows the range between minimum and

maximum error rate. The I-Cache has the lowest average and worst case error rate,



Chapter 5 Modelling Framework to Optimise Memory System Reliability 117

while main memory (DRAM) has the highest average and worst case error rate. The

spread between the highest and the lowest error rate is around one order of magnitude

for L1-cache and about three orders of magnitude for L2-cache and DRAM. Comparing

worst case reliability, DRAM is the least reliable memory component with worst case

error rate of 2.3×107λbit, followed by L2-cache with worst case error rate of 1.8×106λbit.

This indicates that L2-cache and DRAM are more susceptible to failures in the presence

of soft errors. Furthermore, the reliability of the memory system varies with software

applications. Figure 5.16 shows the cumulative distribution of applications with differ-

ent error rates. The x-axis shows the error rate normalised to worst case error rate,

and the y-axis shows the number of applications. In the case of the I-Cache, three ap-

plications have error rates within 90% of the worst case while most applications have

error rates much lower than the worst case. This spread is even greater for the D-Cache.

For the L2 cache, half of the applications experience less than 10% of worst case error

rate. For DRAM, 23 of applications experience less than 10% of worst case error rate.

For smaller memory sizes, such as L1-cache, the spread is more even because applica-

tions tend to utilise most of the memory space. For larger memory size such as L2

cache and DRAM, applications use only part of the memory space, and the error rate

is more related to the memory usage. Error rate changes significantly with application

especially for larger memory such as L2 cache and DRAM. Blanket protection usually

provides over-protection in terms of chip area, performance and power consumption.

Cost effective protection can be achieved through fine grain protection by targeting the

most vulnerable components and most vulnerable applications, this will be discussed in

Section 5.4.

5.3.1 Impact of VFS on reliability, performance and energy

In a processor system, the highest level of performance is not required all the time, so

there are opportunities to save power and energy through VFS when the demand for

performance is reduced. Figure 5.17 shows the power distribution of the processor system

under nominal supply voltage of 1.2V. The power consumption of the processor core and

the L1-cache in power domain PD CORE (Figure 5.13) dominates the system power

consumption, with some variation across applications: the highest is 96% in the case of

“cadpcm” and the lowest is 77% in the case of “typeset”. Therefore applying voltage

and frequency scaling on just the processor core and L1-cache can achieve significant

power and energy saving.

Figure 5.18 shows the power reduction when supply voltage is scaled from the nominal

supply voltage of 1.2V. When the supply voltage is 1V the power reduction ranges from

52% for “typeset” to 66% for “susan smoothing”. The average power reduction is 62%

across applications. Further scaling of the supply voltage to 0.85V gives more power

reduction of 85% on average, while the least saving is 75% from “typeset” and the



118 Chapter 5 Modelling Framework to Optimise Memory System Reliability

10,000

100,000

1,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

(a) Instruction cache

1,000

10,000

100,000

1,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

1,000

(b)  L1 Data cache

10,000

100,000

1,000,000

10,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

1,000

10,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

(c) L2 cache

1,000,000

10,000,000

100,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

10,000

100,000

1,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

(d) Main memory (DRAM)

Figure 5.14: Memory components vulnerable storage



Chapter 5 Modelling Framework to Optimise Memory System Reliability 119

100,000

1,000,000

10,000,000

100,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

1,000

10,000

iCache dCache L2 Cache DRAM

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

Figure 5.15: Average, minimum and maximum vulnerable storage of memory
components across applications.

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n
u

m
b

e
r 

o
f 

a
p

p
li

ca
ti

o
n

s

Normalized error eate

(a). Instruction cache 

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n
u

m
b

e
r 

o
f 

a
p

p
li

ca
ti

o
n

s

Normalized error rate

(b). Data cache

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n
u

m
b

e
r 

o
f 

a
p

p
li

ca
ti

o
n

s

Normalized error rate

(c). L2 cache

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

n
u

m
b

e
r 

o
f 

a
p

p
li

ca
ti

o
n

s

Normalized error rate

(d). DRAM

Figure 5.16: Distribution of memory component error rate for MiBench bench-
mark applications: (a) L1 Instruction Cache (I-Cache), (b) L1 Data Cache
(D-Cache), (c) L2 cache and (d) DRAM. The error rate is normalised to the
worst case error rate of each memory component.

most saving is 88% from “rijndael enc”. When the supply voltage is reduced to 0.75V,

only a small amount of power saving is observed which is 90% on average. For each

application, the effectiveness of VFS on the processor core and L1-cache is affected by

the power distribution of power domains shown in Figure 5.17; more power saving is

observed for the application where power consumption is dominated by the processor

core and L1-cache (PD CORE). Figure 5.19 shows the change of power distribution as

a result of VFS. It can be seen that the percentage of PD CORE power consumption

reduces with supply voltage. At 0.75V the percentage of PD CORE power consumption

is only 56% on average, further power reduction is limited by L2-cache and DRAM power



120 Chapter 5 Modelling Framework to Optimise Memory System Reliability

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

processor core & L1-cache L2-cache & DRAM

0.0%

Figure 5.17: Processor system power distribution at nominal supply voltage of
1.2V

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

1v 0.85v 0.75V

50%

Figure 5.18: The power reduction through VFS when compared with nominal
supply voltage of 1.2V.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1v 0.85v 0.75v

Figure 5.19: The processor core and L1-cache power consumption as a percent-
age of system power.

consumption.

The performance metric used in this work is Instructions Per Cycle (IPC), and higher

IPC means more work done in one clock cycle. It measures the relative performance or

efficiency of the processor core. The speed difference between L2-cache and L1-cache

affects the performance of the processor core and creates a bottleneck for memory-

intensive applications. Lower processor core clock frequency reduces the difference in

L2-cache and L1-cache speed, which leads to higher IPC especially for applications



Chapter 5 Modelling Framework to Optimise Memory System Reliability 121

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

IP
C

1.2V 1V 0.85V 0.75V

Figure 5.20: The impact of VFS on performance measured with Instruction Per
Cycle (IPC).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

1.2v 1v 0.85v 0.75v

Figure 5.21: The L1-cache miss latency expressed as percentage of runtime
under VFS.

demanding higher L2 cache bandwidth. Figure 5.20 shows the impact of VFS on the

processor’s IPC. When the supply voltage is reduced from 1.2V to 0.75V and the core

clock frequency is reduced from 1GHz to 125MHz, IPC increases for applications such

as “djpeg”, “lame”, “typeset” and “ispell”. This is because the reduction in speed

difference between L2-cache and L1-cache reduces the penalty for L1-cache misses as

shown in Figure 5.21, where L1-cache miss latency is expressed as the percentage of

application runtime. Under nominal supply voltage of 1.2V, most applications have less

than 20% of L1-cache miss latency, while applications such as “djpeg”, “lame”, “typeset”

and “ispell” spend more than 40% of their time waiting for data due to L1-cache misses.

For the applications with high L1-cache miss latency, the processor core efficiency is

severely affected, however the impact can be reduced by applying VFS on the processor

core and L1-cache, which in turn leads to the increase in processor core efficiency.

For an energy-constrained system, minimising energy consumption is an important de-

sign goal, while ensuring that the target performance has been met. Figure 5.22 shows

energy savings achieved through VFS. Energy consumption is the lowest under supply

voltage of 0.85V for all applications and the average energy saving is 50%. The supply



122 Chapter 5 Modelling Framework to Optimise Memory System Reliability

0%

10%

20%

30%

40%

50%

60%

1v 0.85v 0.75V

Figure 5.22: Energy reduction through VFS when compared with nominal sup-
ply voltage of 1.2V.

10,000

100,000

1,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
) 

1.2V 1V 0.85V 0.75V

10,000

Figure 5.23: The impact of voltage and frequency scaling on L1-cache reliability.

voltage for the second lowest energy consumption varies across applications. Computa-

tional intensive applications with high IPC (Figure 5.20) have lower energy consump-

tion at 0.75V than at 1V, such applications are “bitcout”, “susan smoothing”, “djpeg”,

“rijndael enc”, “rijndael dec”, “sha”, “cadpcm” and “dadpcm”. All the remaining ap-

plications have higher energy consumption at 0.75V than at 1V.

Voltage and frequency scaling is effective in reducing power consumption and minimum

energy consumption is possible through careful selection of supply voltage. However,

reduced supply voltage also causes reliability problems as it lowers critical charge of the

memory storage. Figure 5.23 shows, using logarithmic scaling, that the error rate in

L1-cache increases across applications when the supply voltage is lowered, due to VFS

on Processor core and L1-cache. L1-cache resizing is proposed to mitigate the negative

impact of VFS on reliability, which is described in Section 5.4.

5.4 Cost Effective Reliable Design Methodology

There are three important observations from Section 5.3:



Chapter 5 Modelling Framework to Optimise Memory System Reliability 123

1. L1-cache has the lowest worst case error rate followed by L2-cache and DRAM has

the highest worst case error rate (Figure 5.15). This is because data are mainly

stored in a larger memory component, especially for applications with a bigger

data set.

2. The error rate varies significantly with application depending on its memory access

pattern. The difference in error rate across applications is 2-3 orders of magnitude

in L2 cache and DRAM (Figure 5.14).

3. Voltage and frequency scaling can achieve significant energy reduction but relia-

bility is also reduced due to reduction in critical charge of storage nodes.

These three observations are exploited to develop a cost-effective reliable design method,

which is shown in Figure 5.24. The right hand side of the figure shows a conventional

design implementation flow in three stages: firstly, in the design stage, the processor

architecture and system configuration is based on specifications; secondly, in the imple-

mentation stage, the processor components are synthesised and integrated; and finally,

software programs are loaded into the hardware system for execution. The proposed

methodology is shown in the left hand side of this figure. The design of the processor

system and target software applications are inputs to this framework, which incorporates

reliability, performance and power analysis (RPPA) (Figure 5.3). The RPPA framework

generates worst case reliability metrics of memory components. For each memory com-

ponent, if the worst case reliability is lower than the requirement, hardware redundancy

is inserted during the synthesis stage. The RPPA framework also generates application

reliability, performance and power profile (RPPP), which can be used for dynamic pro-

tection during runtime by enabling a protection circuit only when it is needed. This

section first describes how cache resizing can be used to improve reliability and sec-

ondly, it shows a case study to demonstrate joint optimisation of energy, performance

and reliability.

5.4.1 Improve L1-cache Reliability through Resizing

In low power designs, the processor core and L1-cache are often subjected to voltage

and frequency scaling (Section 5.2.4), which reduces L1-cache reliability (Section 5.3.1).

ECC protection is a popular solution for improving memory reliability; however it is not

usually a chosen solution for L1-cache because the overhead of additional delay impacts

on the critical need for low latency. L1-cache resizing is proposed to reduce the error

rate under reduced supply voltage without significant impact on performance and energy

consumption. Figure 5.25 shows how cache resizing reduces L1-cache error rate while

slightly increasing L2 cache error rate. Figure 5.25.(a) shows that the L1-cache error

rate is almost halved when reducing the cache size by half. For example when cache

size reduces from 32kB to 1kB, error rate reduces from 2.1× 105λbit to 8000λbit at 1.2V



124 Chapter 5 Modelling Framework to Optimise Memory System Reliability

Design

Synthesis

Hardware

System

RPPA framework 

(Figure 5.3)

Worst case 

reliability

Application 

RPP profile

Specification

D
e
s
ig
n

Im
p
le
m
e
n
ta
ti
o
n

R
u
n
ti
m
e

Hardware 

redundancy 

Insertion

Dynamic 

ECC 

protection

Execution

Software

application

Conventional 

design & implementation

Software

application

Reliability analysis & 

cost effective protection

Figure 5.24: Cost effective and reliable processor system design flow.

and from 7.0 × 105λbit to 2.7 × 104λbit at 0.75V. Figure 5.25.(b) shows the increment

in L2 cache error rate is less than the reduction in L1-cache error rate, this is because

the storage cells of L1-cache under supply voltage scaling is less reliable than that of L2

cache and vulnerable data is moved from L1-cache to L2 cache. It can also be observed

that, even under nominal supply voltage settings, the increase in L2 cache error rate is

slightly less than the reduction in L1-cache error rate, which is explained next.

It was shown that memory error rate is proportional to the data vulnerable time (Equa-

tion 5.2 and Equation 5.3). Figure 5.26 shows the impacts of L1-cache resizing on data

vulnerable time in both L1-cache and L2 cache. In the context of cache memory, a

cache line marked as clean means the stored data has not been modified and a cache

line marked as dirty means the data has been modified by processor core. Figure 5.26.(a)

shows when data is clean, data vulnerable time is duplicated on both L1 and L2 cache.

When the cache line needs to be replaced, it simply evacuates the data from L1-cache.

Therefore L1-cache vulnerable time reduces and L2 cache vulnerable time stays the same.

Figure 5.26.(b) shows that in the case of dirty data, dirty cache line replacement triggers

a write-back, which moves the vulnerable time from L1-cache to L2 cache. Therefore

the reduction of L1-cache vulnerable time increases the vulnerable time of L2 cache.



Chapter 5 Modelling Framework to Optimise Memory System Reliability 125

Figure 5.27 shows that L1-cache resizing has a significant impact on performance under

nominal supply voltage (1.2V), but voltage and frequency scaling on the processor core

(including L1-cache) reduces the impact of L1-cache resizing on the processor core per-

formance. This is because the impact of L1-cache miss latency reduces with the supply

voltage as shown in Figure 5.21.

10,000

100,000

1,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

1kB 2kB 4kB 8kB 16kB 32kB

1,000

10,000

1.2V 1v 0.85V 0.75V

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

(a) L1-cache reliability

80,000

85,000

90,000

95,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

1kB 2kB 4kB 8kB 16kB 32kB

70,000

75,000

1.2V 1v 0.85V 0.75V

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

(b) L2 cache reliability

Figure 5.25: L1-cache resizing impact on (a) L1-cache reliability and (b) L2
cache reliability.

Figure 5.28 shows the impact of L1-cache resizing on reliability, performance and energy

for different benchmark application at 0.85V supply voltage, which is the most energy

efficient operating voltage (Figure 5.22) in this simulation setup. L1-cache configurations

are chosen for demonstration purposes. Figure 5.28.(a) shows the the effect of L1-

cache resizing on L1-cache reliability. When L1-cache size is reduced from 32kB to

8kB, there is up to 7x error rate reduction in the case of “patrica”, and the average

error reduction is 3x. When L1-cache size is reduced from 32kB to 1kB, the error rate

reduction is up to 100x in the case of “rijndael dec” and the average reduction in error

rate is 30x. Figure 5.28.(b) shows the effect of L1-cache resizing on the performance

of the processor core. When L1-cache size is reduced from 32kB to 8kB there is some

reduction in performance for 13 applications; however 11 applications exhibit negligible

reduction in performance. When L1-cache size is reduced from 32kB to 1kB the impact



126 Chapter 5 Modelling Framework to Optimise Memory System Reliability

L2 cache

L1 cache

Registers

duplicated vulnerable data

(a) the data in L1 cache is clean

L2 cache

L1 cache

Registers

L1 cache resizing moves the 

vulerable data to L2 cache

(b) the data in L1 cache is dirty

L1 cache resizing removes part of 

the duplicated vulnerable data due 

to more frequent replacement

Vulnerable Time

Figure 5.26: The impact of L1-cache resizing on vulnerable time.

1.2

1.3

1.4

1.5

1.6

P
e

rf
o

rm
a

n
ce

 (
IP

C
)

1kB 2kB 4kB 8kB 16kB 32kB

1

1.1

1.2

1.2V 1v 0.85V 0.75V

P
e

rf
o

rm
a

n
ce

 (
IP

C
)

Figure 5.27: The impact of L1-cache resizing on performance.

on performance is higher, but for 5 applications this impact is still negligible. As can

be seen, 1kB of L1-cache is not sufficient and 8kB of L1-cache is a better choice for

most applications to maintain processor performance under reduced processor core clock

speed. The impact of L1-cache resizing on performance also depends on the supply

voltage. At 1.2V nominal supply voltage, the clock frequency of the processor core

is 1GHz, the L1-cache latency is 1ns and L2-cache latency is 8ns, and the processor

core needs to wait on average 8 clock cycles for each L1-cache miss. When the supply

voltage of a processor core (including L1-cache) is reduced to 0.85V, clock frequency



Chapter 5 Modelling Framework to Optimise Memory System Reliability 127

of the processor core must be 250-MHz, the L1-cache latency increases to 4ns and L2-

cache latency stays at 8ns. Each L1-cache miss requires only two clock cycles. The

impact of L1-cache miss on performance is reduced so smaller cache size does not cause

significant performance loss. Figure 5.28.(c) shows the effect of L1-cache resizing on

energy consumption. When L1-cache size is reduced from 32kB to 8kB the impact on

energy consumption is small (up to 13%); this is because L1-cache resizing has little

impact on both performance and power consumption at 0.85V supply voltage. However

when the L1-cache size is reduced to 1kB, the energy consumption increases significantly

(up to 60%). When voltage scaling is used on the processor core, L1-cache resizing has

little impact on performance and energy consumption for some applications. This is

because the penalty of L1-cache miss is relatively lower when the difference in speed

is reduced. At the same time reducing L1-cache size can increase its reliability and

mitigate the negative impact on reliability due to voltage scaling.

Figure 5.29 shows L1-cache resizing can be used together with voltage and frequency

scaling to reduce the energy consumption while maintaining reliability. Figure 5.29.(a)

shows energy consumption of a system when subjected to VFS and L1-cache resizing.

As observed earlier, VFS is effective in reducing energy consumption for all applications.

When L1-cache resizing is used, energy consumption increases slightly; however when

combined with VFS, energy reduction is on average at about 50%. Figure 5.29.(b) shows

reliability of L1-cache under VFS and L1-cache resizing. VFS has a negative impact on

reliability of L1-cache, but with L1-cache resizing this reliability is restored for most

applications.

5.4.2 Energy Minimization through Dynamic ECC Protection and Cache

Resizing

This section demonstrates the benefit of using the proposed methodology (dynamic

ECC protection and cache resizing) for reliability and performance-constrained designs

in terms of energy savings. It was shown in Section 5.3 that DRAM is the least reliable

memory component followed by L2 cache. Therefore we assume that the ECC code

used for DRAM is stronger than L2 cache. For demonstration purposes, DECTED

code with 50% energy overhead is used for DRAM and SECDEC code with 25% energy

overhead is used for L2 cache, the energy overhead is derived from Figure 5.1. L1-

cache is protected by resizing as discussed in Section 5.4.1. Figure 5.30 shows the

reliability and performance constrained energy optimisation algorithm by using dynamic

protection, cache resizing, voltage and frequency scaling. As can be seen the inputs are:

Reliability, Performance and Power Profile (RPPP), Dynamic Timing Constrains (DTC)

and Dynamic Reliability Constrains (DRC). It is assumed that the dynamic timing

and reliability constraints does not exceed the design time constraints. The RPPP is

generated by the analysis framework (Figure 5.3) for each application under different



128 Chapter 5 Modelling Framework to Optimise Memory System Reliability

1.0E+03

1.0E+04

1.0E+05

1.0E+06

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

32kB 8kB 1kB

1.0E+03

(a) Reliability

0.5

1

1.5

2

2.5

P
e

rf
o

rm
a

n
ce

 (
IP

C
)

32kB 8kB 1kB

0

(b) Performance

0.001

0.010

0.100

1.000

10.000

E
n

e
rg

y
 (

J)

32kB 8kB 1kB

0.001

(c) Energy

Figure 5.28: The impact of L1-cache resizing on (a) reliability, (b) performance,
(c) energy under 0.85V supply voltage across applications.



Chapter 5 Modelling Framework to Optimise Memory System Reliability 129

0.001

0.01

0.1

1

10

E
n

e
rg

y
 (

J)

baseline VFS VFS+Resizing

0.001

(a) Energy

100,000

1,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

baseline VFS VFS+Resizing

10,000

(b) Reliability

Figure 5.29: Combined effects of VFS and L1-cache resizing on (a) energy (b)
reliability.

supply voltage and L1-cache size. Some example RPPP used in this case study are

shown in Figure 5.31. The algorithm begins by setting the supply voltage to 1.2V, and

checks whether the processor meets the timing constraint. The reliability of L1-cache is

checked next and L1-cache size is reduced until L1-cache passes the reliability constraint.

The example implementation of the optimisation algorithm is described in Appendix E.

Similarly, reliability of L2-cache and DRAM is checked against reliability constraints. If

it fails, dynamic ECC protection is enabled by setting L2EccEn = 1 and dramEccEn =

1 for L2 cache and DRAM respectively. The ECC energy cost is added to the overall

energy. If the energy cost is minimum, then the current configuration is stored. Note

that at this point, processor timing constraint is checked again because cache resizing

may effect processor performance. This is followed by reducing the supply voltage and

this process is repeated (line 2 to line 20) until the most energy efficient operating point

is found. Figure 5.32 shows the example of joint optimisation for application “lame”.

Supply voltage and L1-cache size influences runtime (x-axis), L1-cache error rate (y-axis)



130 Chapter 5 Modelling Framework to Optimise Memory System Reliability

Input: Reliability, Performance and Power profile, Dynamic Timing Constrain (DTC),
Dynamic Reliability Constraint (DRC)

Output: Minimum Energy (minEnergy), Supply Voltage (vdd), L1-cache size (L1Size),
L2 ECC enable (L2EccEn), DRAM ECC enable (dramEccEn)

1: supply voltage = nominal supply voltage
2: while processor pass DTC check do
3: while L1-cache fails DRC check do
4: reduce L1-cache size

// Ensures L1-cache satisfies reliability constraint
5: end while
6: if L2 cache fails DRC check then
7: L2EccEn = 1
8: Energy = Energy + L2 cache ECC energy
9: end if

10: if DRAM fails DRC check then
11: dramEccEn = 1
12: Energy = Energy + DRAM ECC energy
13: end if
14: if Energy < minEnergy AND processor pass DTC check then
15: minEnergy = Energy
16: L1Size = current L1-cache size
17: vdd = current supply voltage

// Store the configuration with minimum energy consumption while meeting
timing and reliability constraints

18: end if
19: reduce supply voltage
20: end while
21: return cSize, vdd, L2EccEn, dramEccEn

Figure 5.30: Reliability and performance constrained energy optimisation algo-
rithm.

and energy consumption (color coded). The rectangle defines the region of timing and

reliability constrains, the configuration with the lowest energy consumption is selected

inside the constraints rectangle (darker color represents lower energy consumption).

The proposed methodology can optimise the power and energy consumption for a re-

liability constrained processor system. Lowering the supply voltage of processor core

and L1-cache reduces both the power consumption and reliability. L1-cache resizing

is proposed to mitigate the impact of VFS on L1-cache reliability and dynamic ECC

protection is used on L2-cache and DRAM to further reduce energy consumption. Ta-

ble 5.5 shows under the reliability constraint of 2.5×105λbit, the energy saving achieved

by using both L1-cache resizing and dynamic protection of L2-cache and DRAM. The

first column shows the benchmark application; the second main column shows mini-

mum energy consumption under VFS and its corresponding supply voltage which was

limited by reliability constraints; the third main column shows the minimum energy

consumption under VFS when L1-cache resizing and dynamic ECC protection are used



Chapter 5 Modelling Framework to Optimise Memory System Reliability 131

L1ErrRate, L2ErrRate, 

memErrRate, IPC, 

corePwr, L1Pwr, 

L2Pwr, memPwr, 

runtime

Supply voltage

L
1
 c
a
c
h
e
 s
iz
e

1.2V 0.75V

32kB

1kB

..........

..........

..........

..........

L1ErrRate, L2ErrRate, 

memErrRate, IPC, 

corePwr, L1Pwr, 

L2Pwr, memPwr, 

runtime

L1ErrRate, L2ErrRate, 

memErrRate, IPC, 

corePwr, L1Pwr, 

L2Pwr, memPwr, 

runtime

L1ErrRate, L2ErrRate, 

memErrRate, IPC, 

corePwr, L1Pwr, 

L2Pwr, memPwr, 

runtime

Profiles

Configurations

Figure 5.31: Example of Reliability, Power and Performance Profiles (RPPP).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

8

9

10
x 10

5

runtime

V
ul

ne
ra

bl
e 

st
or

ag
e 

(b
it)

 

 

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Energy

1.2V

1.0V

0.75V

0.85V

Available energy efficient operating point

Reliability & Timing
constrain boxL1 cache

reduction

Figure 5.32: Example of reliability and performance constrained energy optimi-
sation for application “lame”.



132 Chapter 5 Modelling Framework to Optimise Memory System Reliability

Table 5.5: Energy saving by combining VFS, L1-cache resizing and dynamic
protection under memory components reliability constraint of 2.5× 105λbit, the
constraint is chosen for demonstration purposes

VFS VFS, L1-cache resizing,
dynamic protection

Vdd Energy Vdd L1 ECC Energy
Application (V) (J) (V) (kB) L2 DRAM (J) saving

basicmath 0.85v 1.696 0.85v 32kB 0 0 1.568 7.5%
bitcount 0.85v 0.376 0.85v 1kB 0 0 0.342 9.0%

qsort 1.2v 0.292 0.85v 16kB 1 1 0.202 31.1%
susan corners 1.2v 0.020 0.85v 4kB 1 1 0.013 34.5%
susan edges 1v 0.039 0.85v 8kB 1 1 0.035 10.4%

susan smoothing 1.2v 0.229 0.85v 8kB 1 0 0.135 40.9%
djpeg 1v 0.015 0.85v 16kB 1 0 0.012 19.0%
cjpeg 0.85v 0.056 0.85v 32kB 1 1 0.056 0.0%
lame 1.2v 0.951 0.85v 16kB 1 1 0.648 31.9%

typeset 1.2v 0.421 0.85v 16kB 1 1 0.345 18.1%
dijkstra 1.2v 0.159 0.85v 8kB 1 0 0.111 30.4%
patricia 1.2v 0.596 0.85v 16kB 1 1 0.474 20.4%

ispell 1.2v 0.803 0.85v 16kB 1 1 0.606 24.6%
rsynth 1.2v 1.696 0.85v 8kB 1 1 1.252 26.2%

stringsearch 0.85v 0.003 0.85v 16kB 0 0 0.003 7.1%
rijndael enc 1v 0.281 0.85v 16kB 0 0 0.230 18.3%
rijndael dec 1v 0.271 0.85v 8kB 0 0 0.232 14.3%

sha 0.85v 0.063 0.85v 2kB 0 0 0.058 8.3%
crc 1v 1.580 1v 2kB 0 0 1.445 8.5%
fft 1.2v 0.421 0.85v 16kB 1 1 0.311 26.2%
ifft 1.2v 0.232 0.85v 16kB 1 1 0.173 25.6%

cadpcm 0.85v 0.362 0.85v 4kB 0 0 0.332 8.1%
dadpcm 0.85v 0.259 0.85v 4kB 0 0 0.239 8.0%

gsm toast 1.2v 0.880 0.85v 16kB 0 0 0.588 33.2%

to improve the reliability of cache memory which allows the processor to operate un-

der a more energy efficient supply voltage point; and the last column shows the energy

saving in percentage terms. For some applications, supply voltage scaling is limited by

the reliability constraints of L1-cache, which is shown in the second column. L1-cache

resizing mitigates the impact of VFS on reliability; thus for all applications the supply

voltage for minimum energy consumption can be used as shown in the fourth column.

The 6th and 7th columns show the enable signals for ECC protection of L2-cache and

DRAM: ‘1’ means enabling and ‘0’ means disabling protection. It shows that L2 cache

and DRAM ECC protection are only enabled in the applications where their reliabil-

ity is lower than 2.5 × 105λbit. Comparing to the processor system with only VFS,

the proposed methodology achieves energy saving for most applications under reliability

constraint. The average saving is 19% and the maximum saving is 40% .



Chapter 5 Modelling Framework to Optimise Memory System Reliability 133

5.5 Concluding Remarks

The reliability of memory systems is critical for the correct operation of processors as

memory occupies most of the chip area, which is increasingly susceptible to soft errors as

transistor size scaling reduces critical charge and increases device density. Furthermore

low power techniques such as voltage and frequency scaling exacerbate the problems.

ECC protection requires hardware redundancy and consumes energy, and blanket protec-

tion can be costly especially for energy sensitive designs. Therefore accurate estimation

of memory reliability with targeted protection is needed.

This chapter demonstrates an analysis framework that supports co-optimisation of pro-

cessor’s performance, energy and reliability. Through the analysis of memory system

reliability, it was shown that the L1-cache is the most reliable memory component follow

by the L2 cache, and DRAM is the least reliable memory component. A cost effective

reliable design methodology is proposed to help hardware redundancy insertion and dy-

namic ECC protection against soft error. The impact of voltage scaling on memory

system reliability has also been studied. L1-cache resizing was proposed to mitigate

the impact of voltage and frequency scaling on memory reliability, which itself has little

impact on performance and energy consumption under reduced supply voltage. A relia-

bility aware joint optimisation flow utilizing both dynamic ECC protection and L1-cache

resizing has been proposed for energy minimisation. Finally, it has been demonstrated

through joint optimisation examples that, energy reduction can be achieved for most

applications in a reliability-constrained design.





Chapter 6

Conclusion and Future Work

With technology scaling, leakage and dynamic power reduction techniques continue to

evolve as power minimization is an essential part of modern electronic system design.

Power gating and voltage scaling are two popular power reduction techniques, which

are effective in reducing power consumption but exacerbate reliability problems. The

contributions presented in this thesis provided novel and cost effective techniques to

improve the reliability of storage elements of modern low power electronic systems, in-

cluding processor registers and memory systems, which not only constitute up to 70%

of total silicon area but play a central role in reducing power consumption. These tech-

niques have been implemented using standard EDA tools and validated on commercial

low power processors. The contributions are summarised in the next section followed by

proposed future work.

6.1 Thesis Contributions

All the objectives of this thesis are listed in Chapter 2, Section 2.6. The first objective

is achieved by studying register designs and technology:

1. An in-depth analysis of critical charge of flip-flop register storage node was given

in Chapter 2, Section 2.3. The effect of supply voltage scaling on critical charge of

flip-flops in the presence of process variation was investigated through SPICE sim-

ulations using 45-nm CMOS technology with 0.9-V nominal supply voltage setting.

It was found that the critical charge of the flip-flops reduces with the reduction

in supply voltage and it further deteriorates due to the effect of process varia-

tion. These results demonstrated that the critical charge of flip-flops is negatively

affected not only because of reduction in supply voltage but also due to process

variation. Therefore supply voltage scaling and process variation can significantly

increase transient error rate.

135



136 Chapter 6 Conclusion and Future Work

2. Chapter 4, Section 4.1 presented an analysis based on measurement results from

a total of 82 test chips, which were used to characterise state integrity challenges

due to voltage and temperature variations, for the baseline silicon process and its

inherent variability. It was shown that even at 25◦C, the state integrity of flip-

flops is affected by process variation leading to spread measurement of First Failure

Voltage (FFV), from 245-mV to 315-mV, with 79% of total dies exhibiting single

bit failure at FFV, while the rest showing multi-bit failure at FFV. Furthermore,

at elevated temperatures the variation is even more pronounced. It was found that

FFV increases by up to 30-mV with increase in temperature from 25◦C to 79◦C.

The effect of process variation with geometry scaling has also been studied using

a 45-nm technology node through Monte-Carlo simulation; when compared with

65-nm technology, it was found that the overall distribution trend remained the

same, however the mean FFV moved to a higher voltage. An important observation

from these results was that using a fixed state retention voltage across all dies is

sub-optimal because it fails to minimise the leakage power of all dies during sleep

mode.

The second objective is achieved by the following:

1. Chapter 3, Section 3.1 presented a technique to mitigate the impact of power

gating and supply voltage scaling on the reliability of embedded processors. The

proposed technique is effective because it uses two methods of error recovery. The

first method of error recovery is through hardware implementation of Hamming

code that is capable of 1-bit error correction per codeword; to recover multi-bit

(clustered) errors, it employs hardware implementation of CRC for error detection

and software state recovery to restore the last known good states of the design.

The proposed technique is low-cost because it reuses scan chains that are used

in manufacturing test and it is energy efficient because it partitions scan chains

to minimise the time needed for state monitoring and recovery. It was shown

that the hardware-based Hamming error correction improved system reliability by

more than 2 order of magnitude compared to a design without error protection,

when considering maximum soft error rate observed at normal operating conditions

(<= 10?7 errors per bit-hour). The system failure rate increases significantly at

higher bit error rate (> 10?7 errors per bit-hour) and in the case of clustered errors.

For such a high failure rate, a software state recovery method is used for efficient

state recovery.

2. An important finding from the analysis in Chapter 4, Section 4.1 is that using

a fixed state retention voltage across all dies is sub-optimal because it fails to

minimise the leakage power of all dies during sleep mode. To minimise leakage

power while ensuring state integrity, minimum retention voltage (MRV) of each

individual die should be characterised. Chapter 4 Section 4.2 presented an effective



Chapter 6 Conclusion and Future Work 137

technique to improve the minimum retention power and state-integrity of voltage

scaled flip-flops under process, voltage and temperature variation. The proposed

technique consists of the following two steps. Firstly, a characterisation algorithm

is used to determine MRV of a given die, as it varies due to process variation.

The characterisation step of a die is an offline process and is performed only once

per die. Secondly, a control flow for error detection and single-bit error correction

is proposed, which relies on horizontal and vertical parity; whenever an error is

detected, it raises the characterised minimum retention voltage to reduce subse-

quent error possibility. The prototype of the proposed control flow is implemented

in a host computer using a script written in Python, which provides voltage scal-

ing by controlling the test chip through an external power supply. Silicon results

show that at characterised MRV, the flip-flop state integrity is preserved, while

achieving up to 17.6% reduction in retention voltage across 82-dies.

3. The reliability of memory system hierarchy is critical for the correct operation of

processors as memory occupies most of the chip area, which is increasingly suscep-

tible to soft errors as transistor size scaling reduces critical charge and increases

device density. Furthermore, low power techniques such as voltage and frequency

scaling exacerbate the problem by reducing critical charge. ECC protection re-

quires hardware redundancy and consumes energy, and blanket protection can be

costly particularly for energy conscious designs. Therefore accurate estimation of

memory reliability with targeted protection is needed. Chapter 5 described an

architectural simulation-based framework, which enables joint analysis of reliabil-

ity, performance and energy consumption of embedded processor memory systems.

Through this analysis, a cost effective reliable design methodology is proposed to

guide hardware redundancy insertion and dynamic ECC protection against soft

error. Level 1 cache resizing is proposed to mitigate the impact of voltage and

frequency scaling on reliability, which itself has little impact on performance and

energy consumption under reduced supply voltage. A joint flow optimisation ap-

proach to reliability aware is proposed for energy minimization which utilizes both

dynamic ECC protection and L1 cache resizing. It is demonstrated through the

joint optimisation examples that energy reduction can be achieved for most appli-

cations in a reliability constrained design.

The third objective is achieved by the following:

1. The technique presented in Chapter 3, Section 3.1 was validated through two case

studies. The first case study used FPGA implementation of a register-rich FIFO

design and it was shown that hardware based implementation of Hamming code is

capable of effective multiple bit error detection and single bit error recovery. The

second case study implemented the complete solution (Hardware and Software

based recovery) applied to an industry standard embedded microprocessor ARM



138 Chapter 6 Conclusion and Future Work

Cortex-M0, and it was validated on an FPGA and further synthesised using 65-nm

technology library and Synopsys EDA tool.

2. Using 65-nm test chip implementation, Chapter 4, Section 4.4 described two ex-

periments conducted to demonstrate improved state integrity of flip-flops with

aggressive supply voltage scaling that is possible through the technique presented

in Chapter 4, Section 4.2. The first experiment demonstrates improved state in-

tegrity of flip-flops in “sleep state”, and the second experiment demonstrates the

effect of aggressive supply voltage scaling on leakage power savings. Silicon results

show that at characterised MRV, the flip-flop state integrity is preserved, while

achieving up to 17.6% reduction in retention voltage across 82-dies.

The final objective is achieved by the following:

1. The technique presented in Chapter 3, Section 3.1 can be incorporated into the

existing power gating and voltage scaling design synthesis flow which was described

in Chapter 3, Sections 3.1.2 and 3.1.3.

2. The technique presented in Chapter 4, Section 4.2 can be incorporated in conven-

tional design synthesis flow. Chapter 4, Section 4.2.3 described an additional step

needed to automate the insertion of horizontal and vertical parity logics

These three contributions presented in this thesis provide novel, relevant and cost-

effective reliability solutions for different types of storage elements that are widely used

in low power designs including register files and memory systems. The conclusions drawn

in this thesis are supported by extensive analysis using state-of-the-art EDA tools, in-

house software specifically developed to generate realistic data and workloads, FPGA

implementation of commercial low power embedded processors and measured results

from fabricated chip designs to meet the last objective of this thesis. It is hoped that

the low cost and effective reliability solutions proposed in this thesis will make useful

contributions towards the development of future low-power design methods and EDA

tools.

6.2 Future Work Directions

Based on the research presented in this thesis, a number of directions for future studies

have been identified and are outlined in the following:



Chapter 6 Conclusion and Future Work 139

6.2.1 Improving Reliability of Power Management Hardware

In Chapter 3, the concept of on-chip reuse is introduced to provide resilience to energy-

efficient embedded processors at low-cost (area, energy) and with little impact on func-

tional performance. Further research could be conducted to investigate and develop a

low-cost, on-line soft-error monitoring and correction method and its associated imple-

mentation circuitry for power management hardware. Power controllers, state retention

registers and isolation cells are more vulnerable to soft errors than other power manage-

ment hardware and therefore more emphasis will be given to these power management

components. Currently, there are no reported on-line soft-error monitoring and cor-

rection methods for power management hardware; making it impossible to isolate and

correct errors and leaving them vulnerable during operation. Special consideration will

be given to the concept of on-chip reuse to reduce the implementation cost (area and

energy) of on-line soft error monitoring. A good starting point to achieve this is reusing

the circuitry of built-in self-test (traditionally used for permanent manufacturing defects

testing) consisting of pattern generators and comparators for on-line test error-detection.

In this way it may be possible to lower the implementation cost of protecting the power

management hardware from soft errors. For error correction, the use of error correction

codes and software state recovery will be investigated, thereby providing an effective

and low-cost on-line monitoring and correction method. The contributions described in

Chapter 3 and Chapter 4 of this thesis will be the starting point for this work.

6.2.2 Reliability Enhancement of Multi-core Processors through

Hardware-Software Co-design

Balancing trade-offs between performance, energy consumption and reliability is essen-

tial for embedded processors. In Chapter 5, a joint optimisation technique was proposed

to minimise energy consumption while meeting reliability constraint for a single-core

embedded processor. For multi-core embedded processors, energy minimization can be

achieved through careful scheduling, whilst reliability can be improved through mon-

itoring and targeted protection. By combining scheduling, reliability monitoring and

targeted protection, further energy reduction can be achieved within the performance

and reliability constraints. Analysis framework for multi-core processors similar to the

one reported in Chapter 5 is required for hardware-software design space exploration

and investigating various scheduling algorithms and reliability monitoring techniques.

This thesis focused on improving reliability of processors against transient errors. Per-

manent faults due to various ageing effects as shown in Figure 6.1 can cause digital

circuits to malfunction prematurely. In addition to soft errors, further research could be

conducted to develop techniques for predicting and detecting faults occurrence due to

ageing effect with the aim of slowing down the ageing process; as an example, placing



140 Chapter 6 Conclusion and Future Work

Negative Bias 

Temperature 

Instability (NBTI)

Positive charge are created 

at the SiO2/Si interface and 

in the oxide under negative 

bias stressing, thereby 

cause the threshold voltage 

to shift and the channel 

mobility to decrease

Electro 

migration

The biased transport of metal 

atoms due to the momentum 

transfer from collisions 

between conducting 

electrons and diffusing metal 

atoms. It creates void in the 

metal wires.

Stress 

migration

The coefficient of thermal 

expansion of a metal is 

much greater than that of Si 

or an oxide. When cooled 

from high deposition 

temperatures, metal shrink 

more than the surrounding 

medium. it accelerates void 

creation

Gate oxide 

breakdown

Under the influence of gate to 

channel electric field, traps 

begin to form in the gate oxide. 

The traps overlap and form a 

resistive conduction path from 

gate to channel. Once the 

conduction path is formed, more 

traps appear due to thermal 

damage 

Increase 

transistor delay
Increase 

wire resistance

Aging effects
T
y
p
e

C
a
u
s
e
s

E
ff
e
c
ts

increase 

leakage 

lower 

critical charge

Figure 6.1: Various Aging Effects

processor cores in recovery mode when they are not in use and balancing work-loads

across various processor cores. To achieve this, statistical analysis, similar to the one

reported in Chapter 5 Section 5.3 is required to understand the work-load distribution

and low cost circuitry or design techniques that are required for work-load balancing.



Appendix A

Low Power Embedded Processors

This appendix gives an overview of the ARM Cortex-M0 microprocessor used in Chap-

ter 3 and 4. In Chapter 3, it was used as a case study to validate the proposed state

monitoring and recovery technique. In Chapter 4, it was implemented in test chips to

provide state monitoring for PVT aware state protection techniques. The content of

this section is gathered from the ARM Cortex-M0 Technical Reference Manual [187].

Embedded processors are designed to perform some specific functions and it is embed-

ded in a integrated system that often includes electronics and mechanical parts. Low

power and high energy efficiency are the key design parameters for embedded proces-

sors. In lower power embedded processors, processors can be powered off when it is

idle. ARM Cortex-M0 (CM0) is a modern energy-efficient ARM microprocessor, which

is used in many low power embedded applications such as medical devices, e-metering,

power and motor control [150]. The processor uses Thumb-2 instruction set, which is

the extension of 16-bit Thumb instruction by adding some 32-bit instructions to achieve

balance between code density and performance. It achieve energy efficiency while im-

prove performance over 8-bit micro-controllers, the throughput is 3x better than the

Texas Instruments MSP430 and 2x better than the Microchip PIC24 [188].

Figure A.1 shows the block diagram of CM0 processor [187]. The essential units of

the processor are processor core, Nested Vector Interrupt Controller (NVIC) and bus

matrix. The processor core is based on the ARMv6-MTM architecture with 3 stages

pipeline including instruction fetch, instruction decode and excution. The processor core

consist of a register bank, a ALU, a datapath and control logics. In the register bank,

there are 12 general purpose registers, a stack pointer, a link register and a program

counter. In addition, there are special purpose registers: program status register contains

the programs information in terms of application, interrupt and execution. Control

registers controls the stack used when processor is in thread mode. The ALU is made

of integer adder and optional single cycle hardware multiplier (without it multiplication

is done using software emulation). The NVIC can be configured to handle upto 32

interrupt requests with configurable priority system, in addition to a non-maskable NMI

interrupt. The purpose of NMI interrupt controller is to handle nested interrupts and

141



142 Appendix A Low Power Embedded Processors

Cortex-M0 processor

Cortex-M0

processor

core

Bus matrix

Nested

Vectored

Interrupt

Controller

(NVIC)

Interrupts

‡Wakeup

Interrupt

Controller (WIC)

‡Debug

Access Port

(DAP)

AHB-Lite interface ‡Serial Wire or JTAG debug port

Debug

‡Debugger

interface

‡Breakpoint

and

watchpoint

unit

Cortex-M0 components

Figure A.1: ARM Cortex-M0 processor block diagram [187].

CORE

Cortex-M0

SRAM 

Controller

ROM 

Controller

SRAM

ROM

GPIO

UART

Interrupt 

controller

IRQ

O
u
tp

u
t 
is

o
la

ti
o
n

Power 

controller

AHB Lite 

BUS

Sleep

se, Clken, iso

W
a
k
e

-u
p

APB BUS

Figure A.2: ARM Cortex-M0 based embedded processor system block diagram.

ensure the correct excutions of Interrupt Searvice Routines (ISR). In this work, this

interrupt controller is used to handle the wake-up request (Chatper 3 Section 3.3) and

error detection event (Chatper 4 Section 4.2.2). CM0 uses Von Neumann architecture,

therefore the bus matrix has a unified 32-bit bus for both instruction and data. The bus

interface uses Advanced Microcontroller Bus Architecture AHB-Lite specification.

Figure A.2 shows the example implementation a lower power embedded processor system

based on the ARM Cortex-M0 processor. The processor core is connected to both ROM

and SRAM controller through the AHB-Lite bus. In lower power embedded processors

system, processor core can be powered off when it is idle. The power controller and

interrupt controller are used to control the power cycles of the processor core. The

General Purpose Input and Output (GPIO) and the Universal Asynchronous Receiver

and Transmitter (UART) are connected to processor core through the APB bus to

provide communication to workstation.



Appendix B

Embedded Processor Power

Domain Description

This appendix describes the power domain arrangement for Cortex-M0 low power em-

bedded processor implementation in Chapter 3, whose graphical representation is shown

in Chapter 3, Figure 3.19. The power domain is described in universal power format

(UPF). Three power domains are created: TOP PD, CORE PD and SMRB PD. Pro-

cessor core is located in CORE PD, which can be power down during sleep mode. State

Monitoring and Recovery Block (SMRB) is located in SMRB PD, which is only powered

when encoding before sleep mode and decoding after sleep mode. The rest of processor

system is placed in TOP PD that is kept always-on. The UPF description is divided

into the following parts:

1. Power Domains: creates power domains.

2. Power Supply Nets: creates power supply nets.

3. Assign Primary Power Supply Nets to Power Domains.

4. Power Switches: creates power switches and connecting them to supply rails and

control signals.

5. Isolation Strategy: creates signal isolations across power domains to prevent the

prorogation of floating signals from the power downed block.

6. State Retention: Instructs synthesis tool to create state retention enabled flip-flops,

and connecting them to state preserving supply rails and control signals

143



144 Appendix B Embedded Processor Power Domain Description

#--------------------------------------------------------------

# System Power Domain Description Using UPF

#--------------------------------------------------------------

# Part 1: Power Domains

create_power_domain TOP_PD

create_power_domain CORE_PD -elements {MINISWIFT}

create_power_domain SMRB_PD -elements {SMRB}

# Part 2: Power Supply Nets

create_supply_port PAD_VDD

create_supply_net VDD -domain TOP_PD

create_supply_net VDD -domain CORE_PD -reuse

connect_supply_net VDD -ports PAD_VDD

create_supply_port PAD_VSS

create_supply_net VSS -domain TOP_PD

create_supply_net VSS -domain CORE_PD -reuse

connect_supply_net VSS -ports PAD_VSS

create_supply_net CORE_VDD -domain CORE_PD

create_supply_net SMRB_VDD -domain SMRB_PD

# Part 3: Assign Primary Power Supply Nets to Power Domains

set_domain_supply_net TOP_PD \

-primary_power_net VDD \

-primary_ground_net VSS

set_domain_supply_net CORE_PD \

-primary_power_net CORE_VDD \

-primary_ground_net VSS

set_domain_supply_net SMRB_PD \

-primary_power_net SMRB_VDD \

-primary_ground_net VSS

# Part 4: Power Switches



Appendix B Embedded Processor Power Domain Description 145

create_power_switch core_switch -domain CORE_PD \

-input_supply_port {VDD VDD} \

-output_supply_port {CORE_VDD CORE_VDD} \

-control_port {power pg_ctrl/core_power} \

-on_state {on_state VDD {core_power}} \

-off_state {off_state {!core_power}}

create_power_switch smrb_switch -domain SMRB_PD \

-input_supply_port {VDD VDD} \

-output_supply_port {SMRB_VDD SMRB_VDD} \

-control_port {power pg_ctrl/smrb_power} \

-on_state {on_state VDD {smrb_power}} \

-off_state {off_state {!smrb_power}}

# Part 5: Isolation Strategy

set_isolation core_iso -domain CORE_PD \

-isolation_power_net VDD \

-isolation_ground_net VSS \

-clamp_value 0 \

-applies_to outputs

set_isolation_control core_iso -domain CORE_PD \

-isolation_signal pg_ctrl/core_nclamp \

-isolation_sense low \

-location self

set_isolation smrb_iso -domain SMRB_PD \

-isolation_power_net VDD \

-isolation_ground_net VSS \

-clamp_value 0 \

-applies_to outputs

set_isolation_control smrb_iso -domain SMRB_PD \

-isolation_signal pg_ctrl/smrb_nclamp \

-isolation_sense low \

-location self

# Part 6: State Retention

set_retention core_ret -domain CORE_PD \



146 Appendix B Embedded Processor Power Domain Description

-retention_power_net VDD \

-retention_ground_net VSS

set_retention_control core_ret -domain CORE_PD \

-save_signal {pg_ctrl/core_retain high} \

-restore_signal {pg_ctrl/core_retain low}

set_retention smrb_ret -domain SMRB_PD \

-retention_power_net VDD \

-retention_ground_net VSS

set_retention_control smrb_ret -domain SMRB_PD \

-save_signal {pg_ctrl/smrb_retain high} \

-restore_signal {pg_ctrl/smrb_retain low}



Appendix C

Firmware For Software Recovery

This appendix describes the software recovery firmware used in Chapter 3, Section ??.

There are two main functions: Function save state() is used to save architectural states

before going to sleep mode, and Function restore state() is used to restore the original

architectural states if state corruption is detected during sleep mode. The test function

main() is an infinite loop with the following steps:

1. Processor operates in normal functional mode.

2. Before going to sleep, save architectural states.

3. Function WFI() puts processor into sleep mode and waiting for interrupts.

4. CRC is used to check the state integrity of the processor upon receiving an interrupt

and before waking up the processor.

5. If errors are detected, reset the processor invoking initiation function Reset Handler().

6. Fuction Reset Handler() first checks what caused the reset. If the reason is state

corruption, it calls function restore state() to restore architectural states.

Step 4 is carried out in hardware, which is not shown in this appendix.

//--------------------------------------------------------------

// Processor architectural states saving and restoring firmware

//--------------------------------------------------------------

//main function

int main(){

while(1){

//do some thing ...........

147



148 Appendix C Firmware For Software Recovery

//save architectural states into memory before going to sleep

save_state();

__WFI(); //put processor into sleep and waiting for interrupt

}

}

//function for saving the status and control registers of processor core

void save_state(void){

save_reg[0x0] = NVIC->ISER[0];

save_reg[0x1] = NVIC->ISPR[0];

save_reg[0x2] = NVIC->IP[0];

save_reg[0x3] = NVIC->IP[1];

save_reg[0x4] = NVIC->IP[2];

save_reg[0x5] = NVIC->IP[3];

save_reg[0x6] = SCB->ICSR;

save_reg[0x7] = SCB->AIRCR;

save_reg[0x8] = SCB->SCR;

save_reg[0x9] = SCB->CCR;

save_reg[0xa] = SCB->SHP[0];

save_reg[0xb] = SCB->SHP[1];

save_reg[0xc] = SysTick->CTRL;

save_reg[0xd] = SysTick->LOAD;

save_reg[0xe] = SysTick->VAL;

save_regfile(&save_reg[0xf]);

}

// assembly function for saving register file

// register r0 stores the input parameter of the function

__ASM void save_regfile(uint32_t *preg){

//save r1-r3

STM r0!,{r1-r3}

//get r4 from stack

LDR r4,[sp,#0x0]

//save r4-r7

STM r0!,{r4-r7}

//save r8-r12, primask, control

//the storing instruction can only access r0-r7

//other registers value needs to be moved to r1-r7 first

MOV r1,r8

MOV r2,r9

MOV r3,r10



Appendix C Firmware For Software Recovery 149

MOV r4,r11

MOV r5,r12

MRS r6,primask

MRS r7,control

STM r0!,{r1-r7}

MRS r1,psr

MRS r2,psp

MRS r3,msp

//get link register value from the stack and keep in r4

//the link register stored the current value of the this function,

//the previous link register was moved to stack

LDR r4,[sp,#0x4]

STM r0!,{r1-r4}

//restore r1-r7

MOVS r1,#0x48

SUBS r0,r0,r1

LDM r0!,{r1-r7}

BX lr

}

//restor states if the reset is caused by error event

void Reset_Handler(void)

{

if(STAT_REG->ERR_DETECT_HALFWORD != 0x0000){

increase_stack(8);

restore_state();

}

__main();

}

__ASM void increase_stack(uint32_t offset){

MRS r1,msp

ADDS r1,r0

MSR msp,r1

BX lr

}

//function to restore private registers of processor core

void restore_state(void){

NVIC->I

SER[0] = save_reg[0x0];



150 Appendix C Firmware For Software Recovery

NVIC->ISPR[0] = save_reg[0x1];

NVIC->IP[0] = save_reg[0x2];

NVIC->IP[1] = save_reg[0x3];

NVIC->IP[2] = save_reg[0x4];

NVIC->IP[3] = save_reg[0x5];

SCB->ICSR = save_reg[0x6];

SCB->AIRCR = save_reg[0x7];

SCB->SCR = save_reg[0x8];

SCB->CCR = save_reg[0x9];

SCB->SHP[0] = save_reg[0xa];

SCB->SHP[1] = save_reg[0xb];

SysTick->CTRL = save_reg[0xc];

SysTick->LOAD = save_reg[0xd];

SysTick->VAL = save_reg[0xe];

restore_regfile(&save_reg[0xf]);

STAT_REG->ERR_DETECT_HALFWORD = 0x0000;

}

//assembly function to restore register file

__ASM void restore_regfile(uint32_t *preg){

//restore r8-r12,primask,control

//instruction can only access r0-r7,

//so other registers values are load into r1-r7 first

MOVS r1,#0x1c

ADDS r0,r0,r1

LDM r0!,{r1-r7}

MOV r8,r1

MOV r9,r2

MOV r10,r3

MOV r11,r4

MOV r12,r5

MSR primask,r6

MSR control,r7

//restore psr,psp,msp,lr

LDM r0!,{r1-r4}

//move stack information to recovered stack top

//get the value of original r4 and keep in r6

MOVS r5,#0x48

SUBS r0,r0,r5

LDR r6,[r5,#0xc]

//increase original lr by 2



Appendix C Firmware For Software Recovery 151

MOVS r7,#0x2

ADDS r4,r4,r7

MSR psr,r1

MSR psp,r2

//restore main stack pointer

MSR msp,r3

//save r4 and modified lr in restored stack

STR r6,[sp,#0x0]

STR r4,[sp,#0x4]

//restore r1-r7

LDM r0!,{r1-r7}

BX lr

}





Appendix D

HSPICE Monte-Carlo Simulation

This appendix describes the HSPICE scripts for Monte-Carlo simulation searching bound-

ary condition of 1-to-0 bit-flip. This was used to generate the simulation results presented

in Chapter 4 Figure 4.4.(b) for First Failure Voltage (FFV) analysis. Figure 4.4.(c) was

generated using a similar script, the only difference is in standard cell library. The

change needed to simulate 0-to-1 bit-flip is marked in the script. The scripts is divided

into the following parts:

1. Set supply voltage, retention voltage and retention time.

2. Instruct HSPICE to use Gaussian distribution for Monte-Carlo simulation.

3. Use HSPICE optimisation tool to search the boundary condition where a flip-flop

can barely retain its state.

4. Run transient Monte-Carlo simulation with 8192x82=671744 iterations emulating

8192 flip-flops in 82 chips.

5. Create stimulus to store 1 into flip-flop and switch between supply voltage and

retention voltage

6. Modify original standard cell description to enable the variation of transistor pa-

rameters.

153



154 Appendix D HSPICE Monte-Carlo Simulation

*--------------------------------------------------------------

* HSPICE Monte-Carlo simulation for searching

* First Failure Voltage (FFV) of 1-to-0 bit-flip

*--------------------------------------------------------------

*Setting parameters

*Part 1: Set supply voltage, retention voltage and retention time

.PARAM Supply=1.2

.PARAM RetSupply= Opt1 (0, 0, ’Supply*0.9’)

.PARAM RetTime=300us

.PARAM RunTime=’RetTime+10us’

.PARAM rt=10P

.PARAM ft=10P

*Part 2: Instruct HSPICE to use Gaussian distribution

* for Monte-Carlo simulation

*these parameters will be used in standard cell library

*to emulate transistor process variation

.PARAM monte_l=AGAUSS(0,7.2n,3)

.PARAM monte_vth0=AGAUSS(0,0.023,3)

.PARAM monte_u=AGAUSS(1,0.63,3)

.PARAM monte_tox=AGAUSS(0,0.06n,3)

*Part 3: Use HSPICE optimisation tool to search the boundary

* condition where a flip-flop can barely retain its state

.Model OptMod OPT METHOD=PassFail

.Meas Tran Tprop Trig v(VDD) Val=Supply Rise=1 TD=10ns

+ Targ v(Q) Val=Supply Rise=1

.Model OptMod OPT METHOD=PassFail

.Meas Tran Tprop Trig v(VDD) Val=Supply Rise=1 TD=10ns

+ Targ v(Q) Val=Supply Rise=1

.Option NoMod AutoStop

.Option Seed=random

*Part 4: Run transient Monte-Carlo simulation with 8192x82=671744

* iterations emulating 8192 flip-flops in 82 chips

.TRAN 0.1n RunTime Sweep Optimise=Opt1 Results=Tprop

+ Model=Optmod Monte=671744

.TEMP 25



Appendix D HSPICE Monte-Carlo Simulation 155

*transistor models

.lib ’/home/syang/work/HSPICE/lib/CLN65LP_2d5_lk_v1d3.l’ TT

*65lp spice subckt files

.INCLUDE ’/home/syang/work/HSPICE/lib/MDFFHQ_X1_A8TR_monte.sp’

*Part 5: Create stimulus to store 1 into flip-flop and

* switch between supply voltage and retention voltage

VDD VDD 0 PWL (0 Supply 3ns Supply ’3ns+ft’ RetSupply ’3ns+ft+RetTime’

+ RetSupply ’3ns+ft+RetTime+rt’ Supply)

VCK CK 0 PWL (0 0 1ns 0 ’1ns+rt’ Supply ’2ns+rt’ Supply ’2ns+rt+ft’ 0)

*store ‘1’ to flip-flop

VD0 D0 0 PWL (0 Supply 1.5ns Supply ’1.5ns+ft’ 0)

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

*change required for 0-to-1 bit-flip experiment

*store ‘0’ to flip-flop

*VD0 D0 0 PWL (0 0 3ns 0 ’3ns+ft’ RetSupply ’3ns+ft+RetTime’ RetSupply

*+ ’3ns+ft+RetTime+rt’ Supply)

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Cload Q 0 0.01p

*Device under test

XMDFF Q VDD VDD 0 0 CK D0 0 0 MDFFHQ_X1_A8TR

.END

*-----------------------------------------------------------------------

* Part of standard cell HSPICE description file MDFFHQ_X1_A8TR_monte.sp

* modified for Monte-Carlo simulation

*-----------------------------------------------------------------------

*Part 6: Modify original standard cell description

* to enable the variation of transistor parameters

MMX_T0 BM:F129 C:F130 M:F131 VPW nch_hvt ad=0.038125p as=0.03433p

+ nrd=0.027322 nrs=0.021673 pd=0.6875u ps=0.526786u sa=0.883822u

+ sb=0.313568u sca=16.1064 scb=0.017629 scc=0.001687 w=0.25u

+ l=’0.060168u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MMX_T1 M:F205 CN:F206 BM:F207 VNW pch_hvt ad=0.102p as=0.066764p

+ nrd=0.175 nrs=0.103299 pd=1.42u ps=1.25182u sa=0.2u sb=0.160823u



156 Appendix D HSPICE Monte-Carlo Simulation

+ sca=10.0365 scb=0.010112 scc=0.000839 w=0.51u

+ l=’0.060022u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MXI12/MXNA1 VSS:F139 S:F138 XI12/N1:F137 VPW nch_hvt ad=0.024p

+ as=0.010125p nrd=0.541667 nrs=36.1636 pd=0.62u ps=0.285u

+ sa=1.81441u sb=0.16u sca=17.6981 scb=0.020292 scc=0.001923 w=0.157222u

+ l=’0.060053u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MXI12/MXNOE BM:F133 CN:F134 XI12/N1:F135 VPW nch_hvt ad=0.022875p

+ as=0.010125p nrd=0.006148 nrs=36.1636 pd=0.4125u ps=0.285u

+ sa=1.59323u sb=0.355u sca=17.6854 scb=0.020292 scc=0.001923 w=0.150085u

+ l=’0.06u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MXI12/MXPA1 VDD:F215 S:F214 XI12/P1:F213 VNW pch_hvt ad=0.0255p

+ as=0.01275p nrd=0.509804 nrs=27.2919 pd=0.64u ps=0.32u sa=0.79u sb=0.17u

+ sca=4.73771 scb=0.003293 scc=2.5e-05 w=0.153294u

+ l=’0.06u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MXI12/MXPOEN BM:F209 C:F210 XI12/P1:F211 VNW pch_hvt ad=0.019636p

+ as=0.01275p nrd=0.00434 nrs=27.2919 pd=0.368182u ps=0.32u sa=0.56u

+ sb=0.4u sca=4.71936 scb=0.003293 scc=2.5e-05 w=0.15u

+ l=’0.06u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MX_G2/MXNA1 S:F145 BM:F146 VSS:F147 VPW nch_hvt ad=0.02625p as=0.015886p

+ nrd=0.028571 nrs=0.01073 pd=0.65u ps=0.354545u sa=0.175u

+ sb=0.43u sca=11.0038 scb=0.013065 scc=0.000623 w=0.151381u

+ l=’0.06u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox

MX_G2/MXPA1 S:F217 BM:F218 VDD:F219 VNW pch_hvt ad=0.02625p as=0.022821p

+ nrd=0.028571 nrs=0.004401 pd=0.65u ps=0.391071u sa=0.175u

+ sb=0.195258u sca=20.7887 scb=0.022682 scc=0.00261 w=0.155118u

+ l=’0.06u+monte_l’ delvt0=monte_vth0 mulu0=monte_u deltox=monte_tox



Appendix E

Example Script for Joint

Optimisation

This appendix describes the example script of joint optimisation algorithm written in

Python, which was used to minimise energy consumption under performance and re-

liability constraints for processor memory system. The corresponding algorithm was

described in Chapter 3 Figure 5.30. The script is divided into the following parts:

1. Fetch Reliability, Power and Performance Profiles (RPPP) from pre-characterised

optimisation table.

2. Filter RPPP by performance and reliability constraints.

3. looking for a RPPP with minimum energy.

#--------------------------------------------------------

# Joint optimisation script written in Python

#--------------------------------------------------------

def joinOpt():

infile = open(’joinOptTable.dat’, ’rb’)

joinOptTable = pickle.load(infile)

infile.close()

l2EccCost = 1.25

memEccCost = 1.5

maxErrRate = 260000

maxRuntime = ’inf’

maxErrRate = maxErrRateFloor

for app in benchmarks:

maxErrRate = maxErrRateFloor

minEnergy = float(’inf’)

157



158 Appendix E Example Script for Joint Optimisation

minPower = float(’inf’)

minEnergyNoResize = float(’inf’)

minPowerNoResize = float(’inf’)

for vol in voltages:

for csize in caches:

#Part 1: Fetch RPPP

pwrCore = joinOptTable[app][vol][csize][’pwrCore’]

pwrL2 = joinOptTable[app][vol][csize][’pwrL2’]

pwrMem = joinOptTable[app][vol][csize][’pwrMem’]

l1SER = joinOptTable[app][vol][csize][’l1SER’]

l1iSER = joinOptTable[app][vol][csize][’l1iSER’]

l1dSER = joinOptTable[app][vol][csize][’l1dSER’]

l2SER = joinOptTable[app][vol][csize][’l2SER’]

memSER = joinOptTable[app][vol][csize][’memSER’]

runtime = joinOptTable[app][vol][csize][’runtime’]

power = pwrCore + pwrL2 + pwrMem

energy = power * runtime

#Part 2: Filter RPPP by performance and reliability constraints

if (runtime <= maxRuntime ):

if (l1iSER <= maxErrRate and l1dSER <= maxErrRate):

if (l2SER > maxErrRate):

pwrL2Prot = pwrL2*l2EccCost

l2Prot = 1

else:

pwrL2Prot = pwrL2

l2Prot = 0

if (memSER > maxErrRate):

pwrMemProt = pwrMem*memEccCost

memProt = 1

else:

pwrMemProt = pwrMem

memProt = 0

power = pwrCore + pwrL2Prot + pwrMemProt

energy = power * runtime

#Part 3: looking for a RPPP with minimum energy

if energy < minEnergy:

minEnergy = energy

appConfVol = vol

appConfCsize = csize

appConfL2Prot = l2Prot

appConfMemProt = memProt



References

[1] S. Borkar, “Design challenges of technology scaling,” Micro, IEEE, vol. 19, no. 4,

pp. 23–29, Jul-Aug 1999.

[2] J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor sizing issues and tool

for multi-threshold cmos technology,” in DAC ’97: Proceedings of the 34th annual

Design Automation Conference. ACM, 1997, pp. 409–414.

[3] P. A. Chandrakasan, Low Power Digital CMOS Design. Kluwer Academic, 1995.

[4] S.-H. Lo, D. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling

of electron tunneling current from the inversion layer of ultra-thin-oxide nMOS-

FET’s,” Electron Device Letters, IEEE, vol. 18, no. 5, pp. 209–211, May. 1997.

[5] M. Green, E. Gusev, R. Degraeve, and E. Garfunkel, “Ultrathin (< 4nm) SiO2 and

Si-O-N gate dielectric layers for silicon microelectronics: Understanding the pro-

cessing, structure, and physical and electrical limits,” Journal of Applied Physics,

vol. 90, no. 5, pp. 2057–2121, 2001.

[6] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vin-

cent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” Device

and Materials Reliability, IEEE Transactions on, vol. 5, no. 1, pp. 5–19, 2005.

[7] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technolo-

gies,” Device and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, pp.

305 – 316, Sep. 2005.

[8] D. Hocevar, P. Cox, and P. Yang, “Parametric yield optimization for mos cir-

cuit blocks,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 7, no. 6, pp. 645 –658, jun 1988.

[9] X. Tang, V. De, and J. Meindl, “Intrinsic MOSFET parameter fluctuations due to

random dopant placement,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 5, no. 4, pp. 369 –376, dec. 1997.

[10] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Lifetime reliability: Toward

an architectural solution,” IEEE Micro, vol. 25, no. 3, pp. 70–80, 2005.

159



160 REFERENCES

[11] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system design

with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp. 43–52, 2005.

[12] V. Chandra and R. Aitken, “Impact of voltage scaling on nanoscale sram reliabil-

ity,” in DATE 2009., Apr. 2009, pp. 387–392.

[13] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design & Test

of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[14] G. Tellez, A. Farrahi, and M. Sarrafzadeh, “Activity-driven clock design for low

power circuits,” in Computer-Aided Design, 1995. ICCAD-95. Digest of Technical

Papers., 1995 IEEE/ACM International Conference on, 1995, pp. 62–65.

[15] L. Benini and G. De Micheli, “Transformation and synthesis of fsms for low-power

gated-clock implementation,” in ISLPED ’95: Proc. international symposium on

Low power design. New York, NY, USA: ACM, 1995, pp. 21–26.

[16] V. Tiwari, D. Singh, S. Rajgopal, R. Mehta, Gauravand Patel, and F. Baez, “Re-

ducing power in high-performance microprocessors,” in DAC ’98: Proceedings of

the 35th annual Design Automation Conference. ACM, 1998, pp. 732–737.

[17] Q. Wu, P. Juang, M. Martonosi, and W. Clark, Douglas, “Formal online methods

for voltage/frequency control in multiple clock domain microprocessors,” SIGOPS

Oper. Syst. Rev., vol. 38, no. 5, pp. 248–259, 2004.

[18] H. Mahmoodi, V. Tirumalashetty, M. Cooke, and K. Roy, “Ultra low-power clock-

ing scheme using energy recovery and clock gating,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 17, no. 1, pp. 33–44, 2009.

[19] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi, “Symbolic synthesis

of clock-gating logic for power optimization of synchronous controllers,” ACM

Trans. Des. Autom. Electron. Syst., vol. 4, no. 4, pp. 351–375, 1999.

[20] M. Donno, A. Ivaldi, L. Benini, and E. Macii, “Clock-tree power optimization

based on rtl clock-gating,” in DAC ’03: Proceedings of the 40th annual Design

Automation Conference. ACM, 2003, pp. 622–627.

[21] J. J. Chen, X. Wei, Y. J. Jiang, and Q. Zhou, “Improve clock gating through

power-optimal enable function selection,” in Design and Diagnostics of Electronic

Circuits & Systems, 2009. DDECS ’09. 12th International Symposium on, Apr.

2009, pp. 30–33.

[22] Synopsys, Power Compiler User Guide, 2011.

[23] Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices. Cambridge Uni-

versity Press, 2009.



REFERENCES 161

[24] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled

microprocessor system,” Solid-State Circuits, IEEE Journal of, vol. 35, no. 11, pp.

1571–1580, Nov. 2000.

[25] M. T. Schmitz and B. M. Al-Hashimi, “Considering power variations of dvs pro-

cessing elements for energy minimisation in distributed systems,” in ISSS ’01:

Proceedings of the 14th international symposium on Systems synthesis. New

York, NY, USA: ACM, 2001, pp. 250–255.

[26] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis, S. Dwarkadas, and

M. L. Scott, “Dynamic frequency and voltage control for a multiple clock domain

microarchitecture,” in MICRO 35: Proceedings of the 35th annual ACM/IEEE

international symposium on Microarchitecture. Los Alamitos, CA, USA: IEEE

Computer Society Press, 2002, pp. 356–367.

[27] E. Talpes and D. Marculescu, “Toward a multiple clock/voltage island design style

for power-aware processors,” IEEE Trans. Very Large Scale Integr. Syst., vol. 13,

no. 5, pp. 591–603, 2005.

[28] Y. Zhu, D. Albonesi, and A. Buyuktosunoglu, “A high performance, energy effi-

cient gals processor microarchitecture with reduced implementation complexity,”

in Performance Analysis of Systems and Software, IEEE International Symposium

on, Mar. 2005, pp. 42–53.

[29] G. Magklis, P. Chaparro, J. González, and A. González, “Independent front-end

and back-end dynamic voltage scaling for a gals microarchitecture,” in ISLPED

’06: Proceedings of the 2006 international symposium on Low power electronics

and design. New York, NY, USA: ACM, 2006, pp. 49–54.

[30] ESIA, JEITA, KSIA, TSIA, and SIA, “International technology roadmap for pro-

cess integration, devices and structures,” 2011.

[31] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and

G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides,”

Nature, vol. 399, pp. 758–761, Jun. 1999.

[32] S. Max, “The end of the road for silicon,” Nature, vol. 399, pp. 729–730, Jun.

1999.

[33] S. G. Narendra and A. Chandrakasan, Leakage in Nanometer CMOS Technologies.

Springer, 2005.

[34] J. Robertson, “High dielectric constant gate oxides for metal oxide si transistors,”

Reports on Progress in Physics, vol. 69, no. 2, pp. 327–396, 2006.

[35] L. Q. Wei, Z. P. Chen, M. Johnson, K. Roy, and V. De, “Design and optimization of

low voltage high performance dual threshold cmos circuits,” in Design Automation

Conference, 1998. Proceedings, Jun. 1998, pp. 489–494.



162 REFERENCES

[36] R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin,

M. Metz, A. Majumdar, and M. Radosavljevic, “Application of high-k gate di-

electrics and metal gate electrodes to enable silicon and non-silicon logic nan-

otechnology,” Microelectronics Engineering, pp. 1–6, Jun. 2005.

[37] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-v high-

speed mtcmos circuit scheme for power-down application circuits,” Solid-State

circuits, IEEE Journal of, vol. 32, no. 6, pp. 861–869, 1997.

[38] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology

Manual for System-on-Chip Design. Springer, 2007.

[39] L. T. Clark, M. Kabir, and J. E. Knudsen, “A low standby power flip-flop with

reduced circuit and control complexity,” in Proc. IEEE Custom Integrated Circuits

Conference CICC ’07, 2007, pp. 571–574.

[40] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction caches.

leakage power reduction using dynamic voltage scaling and cache sub-bank predic-

tion,” in Proc. 35th Annual IEEE/ACM International Symposium on (MICRO-

35)Microarchitecture, 2002, pp. 219–230.

[41] K. Kumagai, H. Iwaki, H. Yoshida, H. Suzuki, T. Yamada, and S. Kurosawa, “A

novel powering-down scheme for low vt cmos circuits,” in VLSI Circuits, 1998.

Digest of Technical Papers. 1998 Symposium on, Jun. 1998, pp. 44–45.

[42] K. Agarwal, H. Deogun, D. Sylvester, and K. Nowka, “Power gating with multiple

sleep modes,” in proc. Quality Electronic Design, 7th International Symposium on,

Mar. 2006, pp. 5pp.–637.

[43] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley

Pub. Co., 1993.

[44] M. Abriamovici, M. Breuer, and A. Friedman, Digital Systems Testing and Testable

Design. Wiley-Blackwell, 1994.

[45] R. Wadsack, “Fault modeling and logic simulation of cmos and mos integrated

circuits,” AT T Technical Journal, vol. 57, pp. 1449–1474, 1978.

[46] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory,

and mixed-signal VLSI circuits. Springer Netherlands, 2000.

[47] J. Emmert, C. Stroud, and J. Bailey, “A new bridging fault model for more accu-

rate fault behavior,” in Proc. of the Design Automation Conf., 2000, pp. 481–485.

[48] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and S. Kajihara,

“Invisible delay quality-sdqm model lights up what could not be seen,” in Proc.

of the International Test Conf., Nov. 2005, pp. 9 pp. – 1210.



REFERENCES 163

[49] S. Zafar, “A model for negative bias temperature instability in oxide and high

k pfets,” in Integrated Circuit Design and Technology, 2007. ICICDT ’07. IEEE

International Conference on, May. 2007, pp. 1 –5.

[50] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. Roussel, and G. Groe-

seneken, “Impact of mosfet gate oxide breakdown on digital circuit operation and

reliability,” Electron Devices, IEEE Transactions on, vol. 49, no. 3, pp. 500 –506,

Mar. 2002.

[51] J. Black, “Electromigration failure modes in aluminum metallization for semicon-

ductor devices,” Proceedings of the IEEE, vol. 57, no. 9, pp. 1587 – 1594, sept.

1969.

[52] K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of

interconnects,” Journal of Applied Physics, vol. 94, no. 9, pp. 5451 –5473, Nov

2003.

[53] C.-Y. Li, P. Borgesen, and T. D. Sullivan, “Stress migration related electromi-

gration damage mechanism in passivated, narrow interconnects,” Applied Physics

Letters, vol. 59, no. 12, pp. 1464 –1466, sep 1991.

[54] J. Pang, K. H. Tan, X. Shi, and Z. Wang, “Thermal cycling aging effects on

microstructural and mechanical properties of a single pbga solder joint specimen,”

Components and Packaging Technologies, IEEE Transactions on, vol. 24, no. 1,

pp. 10 –15, Mar. 2001.

[55] Y.-S. Lai, T. H. Wang, and C.-C. Lee, “Thermal mechanical coupling analysis for

coupled power- and thermal-cycling reliability of board-level electronic packages,”

Device and Materials Reliability, IEEE Transactions on, vol. 8, no. 1, pp. 122

–128, march 2008.

[56] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling

the effect of technology trends on the soft error rate of combinational logic,” in

Proc. International Conference on Dependable Systems and Networks DSN 2002,

2002, pp. 389–398.

[57] K. Gala, D. Blaauw, J. Wang, V. Zolotov, and M. Zhao, “Inductance 101: analysis

and design issues,” in Design Automation Conference, 2001. Proceedings, 2001, pp.

329 – 334.

[58] B. Kleveland, X. Qi, L. Madden, R. Dutton, and S. Wong, “Line inductance ex-

traction and modeling in a real chip with power grid,” in Electron Devices Meeting,

1999. IEDM Technical Digest. International, 1999, pp. 901 –904.

[59] N. Arora, L. Song, S. Shah, A. Sinha, and V. Chang, “Test chip for inductance

characterisation and modeling for sub-100nm x architecture and manhattan chip



164 REFERENCES

design,” in Microelectronic Test Structures, 2005. ICMTS 2005. Proceedings of the

2005 International Conference on, april 2005, pp. 251 – 255.

[60] M. Elzinga, E. Chiprout, C. Dike, M. Wolfe, and M. Kobrinsky, “An active 90nm

inductive signal noise testchip with realistic microprocessor signal buses,” in In-

tegrated Circuit Design and Technology, 2006. ICICDT ’06. 2006 IEEE Interna-

tional Conference on, 0-0 2006, pp. 1 –5.

[61] M. Pant, P. Pant, D. Wills, and V. Tiwari, “Inductive noise reduction at the

architectural level,” in VLSI Design, 2000. Thirteenth International Conference

on, 2000, pp. 162 –167.

[62] P. Sweeney, Error Control Coding: From Theory to Practice. Wiley, 2002.

[63] S. Lin and J. D. Costello, Error Control Coding. Prentice Hall, 2004.

[64] TSMC, Cyclic Redundancy Check Computation: An Implementation Using the

TMS320C54x, 1999.

[65] S. Kim, S. V. Kosonocky, and D. R. Knebel, “Understanding and minimizing

ground bounce during mode transition of power gating structures,” in Proc. In-

ternational Symposium on Low Power Electronics and Design ISLPED ’03, 2003,

pp. 22–25.

[66] S. Kim, S. V. Kosonocky, D. R. Knebel, and K. Stawiasz, “Experimental mea-

surement of a novel power gating structure with intermediatepower saving mode,”

in ISLPED ’04: Proceedings of the 2004 international symposium on Low power

electronics and design. New York, NY, USA: ACM, 2004, pp. 20–25.

[67] S. Henzler, G. Georgakos, J. Berthold, and M. Eireiner, “Activation technique

for sleep-transistor circuits for reduced powersupply noise,” in Solid-State Circuits

Conference, 2006. ESSCIRC 2006. Proceedingsof the 32nd European, Sep. 2006,

pp. 102–105.

[68] R. Bhanuprakash, M. Pattanaik, S. Rajput, and K. Mazumdar, “Analysis and

reduction of ground bounce noise and leakage current during mode transition of

stacking power gating logic circuits,” in TENCON 2009 - 2009 IEEE Region 10

Conference, Jan. 2009, pp. 1 –6.

[69] M. H. Chowdhury, J. Gjanci, and P. Khaled, “Controlling ground bounce noise

in power gating scheme for system-on-a-chip,” in Symposium on VLSI, 2008.

ISVLSI’08. IEEE Computer Society Annual. IEEE, 2008, pp. 437–440.

[70] H. Jiao and V. Kursun, “Ground bouncing noise suppression techniques for data

preserving sequential mtcmos circuits,” Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, vol. 19, no. 5, pp. 763–773, 2011.



REFERENCES 165

[71] Y. Sun, L. Xiao, and Y. Liu, “Ground bounce reduction in power gating circuits

using input vector control,” in Laser Physics and Laser Technologies (RCSLPLT)

and 2010 Academic Symposium on Optoelectronics Technology (ASOT), 2010 10th

Russian-Chinese Symposium on, 2010, pp. 345–348.

[72] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Enhancing the efficiency of

energy-constrained dvfs designs,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2012.

[73] P. Pillamari, K. Naidu, and H. Kittur, “Power reduction using dvfs with a

producer-consumer fifo,” in Signal Processing, Communication, Computing and

Networking Technologies (ICSCCN), 2011 International Conference on, 2011, pp.

454–458.

[74] A. Wang and A. Chandrakasan, “A 180-mv subthreshold fft processor using a min-

imum energy design methodology,” Solid-State Circuits, IEEE Journal of, vol. 40,

no. 1, pp. 310–319, Jan. 2005.

[75] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “Analysis and mitigation of

variability in subthreshold design,” in Low Power Electronics and Design, 2005.

ISLPED ’05. Proceedings of the 2005 International Symposium on, 2005, pp. 20–

25.

[76] T. Enomoto, T. Oka, and H. Shikano, “A self-controllable voltage lavel (svl) circuit

and its low-power high-speed cmos circuit applications,” JSSC, vol. 38, no. 7, pp.

1220–1226, 2003.

[77] R. Krishnamurthy, A. Alvandpour, V. De, and S. Borkar, “High-performance and

low-power chanllenges for sub-70nm microprocessor circuits,” in CICC 2002, 2002,

pp. 125–128.

[78] J. Wang and B. Calhoun, “Canary replica feedback for near-drv standby vdd

scaling in a 90nm sram,” in Custom Integrated Circuits Conference, 2007. CICC

’07. IEEE, 2007, pp. 29–32.

[79] J. Wang and B. H. Calhoun, “Techniques to extend canary-based standby scaling

for srams to 45 nm and beyond,” Solid-State Circuits, IEEE Journal of, vol. 43,

no. 11, pp. 2514–2523, 2008.

[80] A. Sasan, K. Amiri, H. Homayoun, A. M. Eltawil, and F. J. Kurdahi, “Variation

trained drowsy cache (vtd-cache): A history trained variaion aware drowsy cache

for fine grain voltage scaling,” TVLSI, no. 4, pp. 630–642, April 2012.

[81] A. Nourivand, A. J. Al-Khalili, and Y. Savaria, “Postsilicon tuning of standby

supply voltage in srams to reduce yield losses due to parametric data-retention

failure,” TVLSI, no. 1, pp. 29–41, Jan 2012.



166 REFERENCES

[82] A. Kumar, H. Qin, P. Ishwar, J. Rabaey, and K. Ramchandran, “Fundamental

data retention limits in sram standby experimental results,” in Quality Electronic

Design, 2008. ISQED 2008. 9th International Symposium on, march 2008, pp. 92

–97.

[83] B. Calhoun and A. Chandrakasan, “Standby power reduction using dynamic volt-

age scaling and canary flip-flop structures,” Solid-State Circuits, IEEE Journal of,

vol. 39, no. 9, pp. 1504 – 1511, Sept. 2004.

[84] B. H. Calhoun and A. P. Chandrakasan, “A 256-kb 65-nm sub-threshold sram de-

sign for ultra-low-voltage operation,” Solid-State circuits, IEEE Journal of, vol. 42,

no. 3, pp. 680–688, 2007.

[85] T. M. Mak and S. Nassif, “Guest editors’ introduction: Process variation and

stochastic design and test,” Design Test of Computers, IEEE, vol. 23, no. 6, pp.

436–437, 2006.

[86] L. R. Harriott, “Limits of lithography,” Proceedings of the IEEE, vol. 89, no. 3,

pp. 366–374, 2001.

[87] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die pa-

rameter fluctuations on the maximum clock frequency distribution for gigascale

integration,” Solid-State Circuits, IEEE Journal of, vol. 37, no. 2, pp. 183 –190,

Feb. 2002.

[88] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak,

D. Pearson, and N. Rohrer, “High performance cmos variability in the 65nm regime

and beyond,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International,

2007, pp. 569–571.

[89] D. Reid, C. Millar, G. Roy, S. Roy, and A. Asenov, “Analysis of threshold voltage

distribution due to random dopants: A 100 2009,000-sample 3-d simulation study,”

Electron Devices, IEEE Transactions on, vol. 56, no. 10, pp. 2255–2263, 2009.

[90] W. Zhao and et al., “Rigorous extraction of process variations for 65-nm CMOS

design,” Semi. Manufac., IEEE Trans., vol. 22, no. 1, pp. 196–203, Feb. 2009.

[91] D. Reid, C. Millar, S. Roy, and A. Asenov, “Understanding ler-induced mosfet

variability;part i: Three-dimensional simulation of large statistical samples,” Elec-

tron Devices, IEEE Transactions on, vol. 57, no. 11, pp. 2801–2807, 2010.

[92] H. Wong, Y. Taur, and D. Frank, “Discrete random dopant distri-

bution effects in nanometer-scale {MOSFETs},” Microelectronics Reli-

ability, vol. 38, no. 9, pp. 1447 – 1456, 1998. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0026271498000535

http://www.sciencedirect.com/science/article/pii/S0026271498000535


REFERENCES 167

[93] K. Nishinohara, N. Shigyo, and T. Wada, “Effects of microscopic fluctuations in

dopant distributions on mosfet threshold voltage,” Electron Devices, IEEE Trans-

actions on, vol. 39, no. 3, pp. 634–639, 1992.

[94] S. Kundu, A. Sreedhar, and A. Sanyal, “Forbidden pitches in sub-wavelength

lithography and their implications on design,” Journal of computer-aided materials

design, vol. 14, no. 1, pp. 79–89, 2007.

[95] C. A. Mack, Field guide to optical lithography. SPIE Press Bellingham, Washing-

ton, USA, 2006.

[96] P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove, “Mod-

eling line edge roughness effects in sub 100 nanometer gate length devices,” in

Simulation of Semiconductor Processes and Devices, 2000. SISPAD 2000. 2000

International Conference on. IEEE, 2000, pp. 131–134.

[97] Y. Ye, T. Liu, M. Chen, S. Nassif, and Y. Cao, “Statistical modeling and simulation

of threshold variation under random dopant fluctuations and line-edge roughness,”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 19, no. 6,

pp. 987–996, 2011.

[98] A. Asenov, A. Brown, J. Davies, S. Kaya, and G. Slavcheva, “Simulation of in-

trinsic parameter fluctuations in decananometer and nanometer-scale mosfets,”

Electron Devices, IEEE Transactions on, vol. 50, no. 9, pp. 1837–1852, 2003.

[99] F. Wang and V. Agrawal, “Single event upset: An embedded tutorial,” in VLSI

Design, 2008. VLSID 2008. 21st International Conference on, 4-8 2008, pp. 429

–434.

[100] P. E. Dodd and F. W. Sexton, “Critical charge concepts for cmos srams,” Nuclear

Science, IEEE Transactions on, vol. 42, no. 6, pp. 1764–1771, 1995.

[101] P. Hazucha and C. Svensson, “Impact of cmos technology scaling on the atmo-

spheric neutron soft error rate,” Nuclear Science, IEEE Transactions on, vol. 47,

no. 6, pp. 2586 –2594, Dec. 2000.

[102] J. Ziegler and W. Lanford, “Effect of cosmic rays on computer memories,” Science,

vol. 206, no. 4420, p. 776, 1979.

[103] J.-M. Palau, G. Hubert, K. Coulie, B. Sagnes, M.-C. Calvet, and S. Fourtine,

“Device simulation study of the seu sensitivity of srams to internal ion tracks

generated by nuclear reactions,” Nuclear Science, IEEE Transactions on, vol. 48,

no. 2, pp. 225–231, 2001.

[104] P. Roche, J.-M. Palau, G. Bruguier, C. Tavernier, R. Ecoffet, and J. Gasiot, “De-

termination of key parameters for seu occurrence using 3-d full cell sram simu-

lations,” Nuclear Science, IEEE Transactions on, vol. 46, no. 6, pp. 1354–1362,

1999.



168 REFERENCES

[105] Y. Tosaka, H. Kanata, S. Satoh, and T. Itakura, “Simple method for estimating

neutron-induced soft error rates based on modified bgr model,” Electron Device

Letters, IEEE, vol. 20, no. 2, pp. 89 –91, Feb. 1999.

[106] K. Hass, R. Treece, and A. Giddings, “A radiation-hardened 16/32-bit micropro-

cessor,” Nuclear Science, IEEE Transactions on, vol. 36, no. 6, pp. 2252–2257,

1989.

[107] T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha, V. Erraguntla, and

S. Borkar, “Selective node engineering for chip-level soft error rate improvement

[in cmos],” in VLSI Circuits Digest of Technical Papers, 2002. Symposium on,

2002, pp. 204–205.

[108] P. Hazucha, T. Karnik, S. Walstra, B. Bloechel, J. Tschanz, J. Maiz,

K. Soumyanath, G. Dermer, S. Narendra, V. De, and S. Borkar, “Measurements

and analysis of ser-tolerant latch in a 90-nm dual-vt cmos process,” Solid-State

Circuits, IEEE Journal of, vol. 39, no. 9, pp. 1536–1543, Sept. 2004.

[109] S. Shirinzadeh and R. Niarakiasli, “A novel soft error hardened latch design in

90nm cmos,” in Computer Architecture and Digital Systems (CADS), 2012 16th

CSI International Symposium on, 2012, pp. 60–63.

[110] V. Stojanovic, R. Iris Bahar, J. Dworak, and R. Weiss, “A cost-effective imple-

mentation of an ecc-protected instruction queue for out-of-order microprocessors,”

in Proc. 43rd ACM/IEEE Design Automation Conference, 2006, pp. 705–708.

[111] A. Ejlali, B. Al-Hashimi, M. Schmitz, P. Rosinger, and S. Miremadi, “Combined

time and information redundancy for seu-tolerance in energy-efficient real-time

systems,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 14, no. 4, pp. 323 – 335, Apr. 2006.

[112] D. Alnajjar, M. Hashimoto, T. Onoye, and Y. Mitsuyama, “Static voltage over-

scaling and dynamic voltage variation tolerance with replica circuits and time

redundancy in reconfigurable devices,” in Reconfigurable Computing and FPGAs

(ReConFig), 2012 International Conference on, 2012, pp. 1–7.

[113] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection into

vhdl models: the mefisto tool,” in Fault-Tolerant Computing, 1994. FTCS-24.

Digest of Papers., Twenty-Fourth International Symposium on. IEEE, 1994, pp.

66–75.

[114] M. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,” Transaction

on Computers, vol. 30, no. 4, pp. 75–82, 1997.

[115] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber, “Compar-

ison of physical and software-implemented fault injection techniques,” Computers,

IEEE Transactions on, vol. 52, no. 9, pp. 1115 – 1133, sept. 2003.



REFERENCES 169

[116] H. Zarandi, S. Miremadi, and A. Ejlali, “Fault injection into verilog models for

dependability evaluation of digital systems,” in Proceedings of the Second interna-

tional conference on Parallel and distributed computing. IEEE Computer Society,

2003, pp. 281–287.

[117] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A system-

atic methodology to compute the architectural vulnerability factors for a high-

performance microprocessor,” in MICRO 36: Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Computer

Society, 2003, p. 29.

[118] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and R. Rangan,

“Computing architectural vulnerability factors for address-based structures,” in

Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International Sympo-

sium on, 4-8 2005, pp. 532 – 543.

[119] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Computing accurate avfs

using ace analysis on performance models: A rebuttal,” Computer Architecture

Letters, vol. 7, no. 1, pp. 21 –24, january-june 2008.

[120] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Reducing the soft-error

rate of a high-performance microprocessor,” Micro, IEEE, vol. 24, no. 6, pp. 30

–37, Nov.-Dec. 2004.

[121] W. Zhang, “Computing cache vulnerability to transient errors and its implica-

tion,” in Defect and Fault Tolerance in VLSI Systems, 20th IEEE International

Symposium on, Oct. 2005, pp. 427 – 435.

[122] G.-H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli, “Balancing performance

and reliability in the memory hierarchy,” in Performance Analysis of Systems and

Software, 2005. ISPASS 2005. IEEE International Symposium on. IEEE, 2005,

pp. 269–279.

[123] A. Biswas, C. Recchia, S. Mukherjee, V. Ambrose, L. Chan, A. Jaleel, A. Pap-

athanasiou, M. Plaster, and N. Seifert, “Explaining cache ser anomaly using due

avf measurement,” in High Performance Computer Architecture (HPCA), 2010

IEEE 16th International Symposium on, 9-14 2010, pp. 1 –12.

[124] S. Wang, J. Hu, and S. Ziavras, “On the characterisation and optimization of

on-chip cache reliability against soft errors,” Computers, IEEE Transactions on,

vol. 58, no. 9, pp. 1171 –1184, Sep. 2009.

[125] G. Memik, M. Kandemir, and O. Ozturk, “Increasing register file immunity to

transient errors,” in Design, Automation and Test in Europe, 2005. Proceedings,

2005, pp. 586–591 Vol. 1.



170 REFERENCES

[126] J. Hu, S. Wang, and S. Ziavras, “On the exploitation of narrow-width values for

improving register file reliability,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 17, no. 7, pp. 953–963, 2009.

[127] M. Kandala, W. Zhang, and L. Yang, “An area-efficient approach to improving

register file reliability against transient errors,” in Advanced Information Network-

ing and Applications Workshops, 2007, AINAW ’07. 21st International Conference

on, vol. 1, 2007, pp. 798–803.

[128] E. Rotenberg, “Ar-smt: a microarchitectural approach to fault tolerance in micro-

processors,” in Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth

Annual International Symposium on, 1999, pp. 84–91.

[129] S. Reinhardt and S. Mukherjee, “Transient fault detection via simultaneous multi-

threading,” in Computer Architecture, 2000. Proceedings of the 27th International

Symposium on, 2000, pp. 25–36.

[130] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evaluation of

redundant multi-threading alternatives,” in Computer Architecture, 2002. Pro-

ceedings. 29th Annual International Symposium on, 2002, pp. 99–110.

[131] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery using si-

multaneous multithreading,” in Computer Architecture, 2002. Proceedings. 29th

Annual International Symposium on, 2002, pp. 87–98.

[132] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Transient-fault

recovery for chip multiprocessors,” in Computer Architecture, 2003. Proceedings.

30th Annual International Symposium on, 2003, pp. 98–109.

[133] A. Mendelson and N. Suri, “Designing high-performance and reliable superscalar

architectures-the out of order reliable superscalar (o3rs) approach,” in Dependable

Systems and Networks, 2000. DSN 2000. Proceedings International Conference on,

2000, pp. 473–481.

[134] J. Ray, J. Hoe, and B. Falsafi, “Dual use of superscalar datapath for transient-fault

detection and recovery,” in Microarchitecture, 2001. MICRO-34. Proceedings. 34th

ACM/IEEE International Symposium on, 2001, pp. 214–224.

[135] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam, “A complexity-effective ap-

proach to alu bandwidth enhancement for instruction-level temporal redundancy,”

in Computer Architecture, 2004. Proceedings. 31st Annual International Sympo-

sium on, 2004, pp. 376–386.

[136] J. Smolens, J. Kim, J. Hoe, and B. Falsafi, “Efficient resource sharing in concur-

rent error detecting superscalar microarchitectures,” in Microarchitecture, 2004.

MICRO-37 2004. 37th International Symposium on, 2004, pp. 257–268.



REFERENCES 171

[137] M. Gomaa and T. N. Vijaykumar, “Opportunistic transient-fault detection,” Mi-

cro, IEEE, vol. 26, no. 1, pp. 92–99, 2006.

[138] S. Kim and A. Somani, “Area efficient architectures for information integrity in

cache memories,” in Computer Architecture, 1999. Proceedings of the 26th Inter-

national Symposium on, 1999, pp. 246–255.

[139] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “Soft error

and energy consumption interactions: a data cache perspective,” in Low Power

Electronics and Design, 2004. ISLPED ’04. Proceedings of the 2004 International

Symposium on, 2004, pp. 132–137.

[140] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit error tolerant

caches using two-dimensional error coding,” in Microarchitecture, 2007. MICRO

2007. 40th Annual IEEE/ACM International Symposium on, 2007, pp. 197–209.

[141] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam, “Icr: in-

cache replication for enhancing data cache reliability,” in Dependable Systems and

Networks, 2003. Proceedings. 2003 International Conference on, 2003, pp. 291–

300.

[142] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol for wireless

sensor networks,” in INFOCOM 2002. Twenty-First Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3,

2002, pp. 1567–1576.

[143] X. Ning and C. G. Cassandras, “Optimal dynamic sleep time control in wireless

sensor networks,” in Decision and Control, 2008. CDC 2008. 47th IEEE Confer-

ence on, 2008, pp. 2332–2337.

[144] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-v high-

speed mtcmos circuit scheme for power-down application circuits,” Solid-State

Circuits, IEEE Journal of, vol. 32, no. 6, pp. 861–869, 1997.

[145] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle mac with scheduled

channel polling,” in Proceedings of the 4th international conference on Embedded

networked sensor systems, 2006, pp. 321–334.

[146] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state machine synthesis with

concurrent error detection,” in Test Conference, 1999. Proceedings. International,

1999, pp. 672–679.

[147] S. Mitra and E. J. McCluskey, “Which concurrent error detection scheme to

choose?” in Test Conference, 2000. Proceedings. International. IEEE, 2000,

pp. 985–994.



172 REFERENCES

[148] K. Furutani, K. Arimoto, H. Miyamoto, K. Kobayashi, T. andYasuda, and

K. Mashiko, “A built-in hamming code ecc circuit for drams,” IEEE Journal of

Solid-State Circuits, vol. 24, no. 1, pp. 50–56, 1989.

[149] S. Gerstendorfer and H.-J. Wunderlich, “Minimised power consumption for scan-

based bist,” in Test Conference, 1999. Proceedings. International, 1999, pp. 77

–84.

[150] ARM, “Arm cortex-m0 description.” [Online]. Available:

http://www.arm.com/products/processors/cortex-m/cortex-m0.php

[151] N. Seifert, V. Ambrose, B. Gill, Q. Shi, R. Allmon, C. Recchia, S. Mukherjee,

N. Nassif, J. Krause, J. Pickholtz, and A. Balasubramanian, “On the radiation-

induced soft error performance of hardened sequential elements in advanced bulk

cmos technologies,” in International Reliability Physics Symposium, 2010.

[152] Tezzaron, “Soft errors in electronic memory a white paper,” Tezzaron, Tech.

Rep., 2004. [Online]. Available: http://www.tezzaron.com/about/papers/soft

errors 1 1 secure.pdf

[153] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookreson, A. Vo,

S. Mitra, and J. Gill, B.and Maiz, “Radiation-induced soft error rates of advanced

cmos bulk devices,” in Reliability Physics Symposium Proceedings, 2006. 44th An-

nual., IEEE International, Mar. 2006, pp. 217 –225.

[154] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator,” ACM Trans. Model. Comput.

Simul., vol. 8, no. 1, pp. 3–30, 1998.

[155] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. Irwin, “Soft error

and energy consumption interactions: a data cache perspective,” in Low Power

Electronics and Design, 2004. ISLPED ’04. Proceedings of the 2004 International

Symposium on, 2004, pp. 132–137.

[156] M. Tahoori, “Defects, yield, and design in sublithographic nano-electronics,” in

Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE Inter-

national Symposium on, 3-5 2005, pp. 3 – 11.

[157] S. Andrew, Computer Networks. Prentics Hall, 1996.

[158] USB-IF, Universal Serial Bus Specification. [Online]. Available:

http://www.usb.org/developers/docs/

[159] G. Albertengo and R. Sisto, “Parallel crc generation,” Micro, IEEE, vol. 10, no. 5,

pp. 63 –71, Oct. 1990.

http://www.arm.com/products/processors/cortex-m/cortex-m0.php
http://www.tezzaron.com/about/papers/soft_errors_1_1_secure.pdf
http://www.usb.org/developers/docs/


REFERENCES 173

[160] J. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo,

and J. Borel, “Altitude and underground real-time ser characterisation of cmos

65nmsram,” Nuclear Science, IEEE Transactions on, vol. 56, no. 4, pp. 2258 –

2266, Aug. 2009.

[161] A. Saleh, J. Serrano, and J. Patel, “Reliability of scrubbing recovery-techniques

for memory systems,” Reliability, IEEE Transactions on, vol. 39, no. 1, pp. 114

–122, Apr. 1990.

[162] V. Chandra and R. Aitken, “Impact of technology and voltage scaling on the soft

error susceptibility in nanoscale cmos,” in Defect and Fault Tolerance of VLSI

Systems, 2008. DFTVS ’08. IEEE International Symposium on, Oct. 2008, pp.

114–122.

[163] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “The impact of technology scaling

on lifetime reliability,” in Dependable Systems and Networks, 2004 International

Conference on, 2-8 2004, pp. 177 – 186.

[164] S. Sze and K. Ng, Physics of Semiconductor Devices. John Wiley & Sons, 2007.

[165] UPF, “Ieee standard for design and verification of low power integrated circuits,”

IEEE Std 1801-2013, pp. 1–218, 2013.

[166] O. Oklahoma State Univ., Stillwater, “Osu freepdk,” 2013,

http://vlsiarch.ecen.okstate.edu/flows/.

[167] S. Sun and P. Tsui, “Limitation of cmos supply-voltage scaling by mosfet

threshold-voltage variation,” Solid-State Circuits, IEEE Journal of, vol. 30, no. 8,

pp. 947–949, 1995.

[168] I. Koren and M. Krishna, Fault-Tolerant Systems. Morgan-Kaufman, 2007.

[169] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit error tolerant

caches using two-dimensional error coding,” in Microarchitecture, 2007. MICRO

2007. 40th Annual IEEE/ACM International Symposium on, 2007, pp. 197–209.

[170] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor memory appli-

cations: A state-of-the-art review,” IBM Journal of Research and Development,

vol. 28, no. 2, pp. 124–134, 1984.

[171] D. Keitel-Schulz and N. Wehn, “Embedded dram development: Technology, phys-

ical design, and application issues,” Design Test of Computers, IEEE, vol. 18,

no. 3, pp. 7–15, 2001.

[172] K. Nii, Y. Tsukamoto, T. Yoshizawa, S. Imaoka, Y. Yamagami, T. Suzuki,

A. Shibayama, H. Makino, and S. Iwade, “A 90-nm low-power 32-kb embedded

sram with gate leakage suppression circuit for mobile applications,” Solid-State

Circuits, IEEE Journal of, vol. 39, no. 4, pp. 684–693, 2004.



174 REFERENCES

[173] Y. Ishii, H. Fujiwara, K. Nii, H. Chigasaki, O. Kuromiya, T. Saiki, A. Miyan-

ishi, and Y. Kihara, “A 28-nm dual-port sram macro with active bitline equalizing

circuitry against write disturb issue,” in VLSI Circuits (VLSIC), 2010 IEEE Sym-

posium on, 2010, pp. 99–100.

[174] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd, “Power7: Ibm’s next-generation

server processor,” Micro, IEEE, vol. 30, no. 2, pp. 7–15, 2010.

[175] T. Instrument, “Omap4460 multimedia device technical reference manual,” 2013,

http://www.ti.com/product/omap4430.

[176] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. Hill, and D. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News,

vol. 39, no. 2, pp. 1–7, Aug. 2011.

[177] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, “Mibench: A free, commercially representative embedded benchmark

suite,” in Workload Characterisation, 2001. WWC-4. 2001 IEEE International

Workshop on. IEEE, 2001, pp. 3–14.

[178] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “Mcpat:

An integrated power, area, and timing modeling framework for multicore and

manycore architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual

IEEE/ACM International Symposium on, dec. 2009, pp. 469 –480.

[179] Linaro, “Linaro gcc toolchain,” https://wiki.linaro.org/WorkingGroups/ToolChain.

[180] P. Hazucha, T. Karnik, B. Bloechel, C. Parsons, D. Finan, and S. Borkar, “Area-

efficient linear regulator with ultra-fast load regulation,” Solid-State Circuits,

IEEE Journal of, vol. 40, no. 4, pp. 933–940, 2005.

[181] R. Milliken, J. Silva-Martinez, and E. Sanchez-Sinencio, “Full on-chip cmos low-

dropout voltage regulator,” Circuits and Systems I: Regular Papers, IEEE Trans-

actions on, vol. 54, no. 9, pp. 1879–1890, 2007.

[182] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H.

Dennard, W. Haensch, and D. Jamsek, “An 8t-sram for variability tolerance and

low-voltage operation in high-performance caches,” Solid-State Circuits, IEEE

Journal of, vol. 43, no. 4, pp. 956–963, 2008.

[183] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu,

“Trading off cache capacity for reliability to enable low voltage operation,” in

Computer Architecture, 2008. ISCA’08. 35th International Symposium on. IEEE,

2008, pp. 203–214.



REFERENCES 175

[184] A. Dixit and A. Wood, “The impact of new technology on soft error rates,” in

Reliability Physics Symposium (IRPS), 2011 IEEE International, april 2011, pp.

5B.4.1 –5B.4.7.

[185] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital design,”

Solid-State Circuits, IEEE Journal of, vol. 27, no. 4, pp. 473 –484, Apr. 1992.

[186] AMD, “Acp the truth about power consumption starts here,”

http://www.amd.com/uk/Documents/43761C ACP WP EE.pdf, 2009.

[187] ARM, ARM Cortex-M0 Technical Reference Manual, ARM, 2009. [Online]. Avail-

able: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C

cortex m0 r0p0 trm.pdf

[188] J. Yiu, The definitive guide to the ARM Cortex-M3. Access Online via Elsevier,

2009.

http://www.amd.com/uk/Documents/43761C_ACP_WP_EE.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf

