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Abstract—Commercial off-the-shelf (COTS) components
are increasingly being employed in embedded systems due
to their high performance at low cost. With emerging reli-
ability requirements, design of these components using tra-
ditional hardware redundancy incur large overheads, time-
demanding re-design and validation. To reduce the design
time with shorter time-to-market requirements, software-
only reliable design techniques can provide with an effec-
tive and low-cost alternative. This paper presents a novel,
architecture-independent software modification tool, SMART
(Software Modification Aided transient eRror Tolerance) for
effective error detection and tolerance. To detect transient
errors in processor datapath, control flow and memory at
reasonable system overheads, the tool incorporates selective
and non-intrusive data duplication and dynamic signature
comparison. Also, to mitigate the impact of the detected er-
rors, it facilitates further software modification implementing
software-based check-pointing. Due to automatic software
based source-to-source modification tailored to a given re-
liability requirement, the tool requires no re-design effort,
hardware- or compiler-level intervention. We evaluate the
effectiveness of the tool using a Xentium R© processor based
system as a case study of COTS based systems. Using various
benchmark applications with single-event upset (SEUs) based
error model, we show that up to 91% of the errors can be
detected or masked with reasonable performance, energy and
memory footprint overheads.

Keywords-Fault Tolerance, Error Detection, Reliable Com-
puting, Embedded Systems

I. INTRODUCTION

Continued technology scaling has enabled the fabri-
cation of ever more efficient and low power electronic
devices for current and future generation of embedded
systems. Examples of such devices include IBM’s 22-
nm [5] and Intel’s emerging 16-nm [17] devices with
promises to provide with unprecedented integration capac-
ity and performance. However, with these technological
advances, design complexity is also increasing significantly
with emerging challenges. A major challenge for such
systems design is the increasing number of transient errors
caused by cross-talk, power supply noise and neutron
or alpha radiation [9]. These errors manifest themselves
as temporary logic upsets, such as single-event upsets
(SEUs), and can affect the signal transfers and stored
values leading to incorrect execution in embedded systems.
Operating reliably in the presence of these errors is a
crucial requirement for many applications, particularly for
high availability, safety-critical systems [7].

To mitigate the impact of these errors, designers typi-
cally have to address two related issues: error detection,
followed by error correction or mitigation. Error detection

deals with identifying the presence of one or more errors in
the system, which are then suitably corrected or mitigated
using various design approaches. Traditionally reliable
design with error detection and tolerance capabilities is
carried out through various approaches, including hardware
redundancy [8], time/information redundancy [4] or radita-
tion hardening [9]. However, these approaches incur large
performance, resource and energy overheads. Moreover,
meeting shorter time-to-market requirements can be highly
challenging as re-design and re-validation are required [1].

Recently, to meet emerging reliability requirements of
current and future embedded systems at low cost, com-
mercial vendors are increasingly employing commercial
off-the-shelf (COTS) components, particularly in avionic
control, implantable/wearable medical and signal process-
ing devices [2]. These components have little or no radi-
ation hardening or hardware customizations and provide
with high performance at low cost [18]. Over the years,
researchers have proposed various other design approaches
to incorporate error tolerance for COTS based systems.
For example, to achieve reliability with low hardware
overheads Rashid et al. proposed a time redundancy
approach using instruction-level re-execution [13]. Using
instruction-level parallelism at compiler-level the perfor-
mance overheads can be reduced in this approach. A sim-
ilar approach using instruction-level duplication technique
for error detection in COTS DSP processors using multiple
execution units has been proposed by Bernardi et al. [1].
The duplicated executions in [1] are generated by hardware
support units in the processor, which are then compared
in a separate unit to detect errors. Pignol proposed another
approach using task-level redundancy for error detection
and tolerance in DMT and DT2 architectures [12]. In this
approach, error detection is achieved through re-execution
of the computation tasks using a memory bridge, followed
by comparisons of the results. Among others, system-level
approaches to re-execution has also been demonstrated
in [18] by Troxel et al. Their approach highlighted the ef-
fectiveness of error mitigation technique using application
check-pointing and roll-back in COTS based systems [18].
To facilitate such check-pointing, a middleware design was
proposed in a COTS based DM system architecture [18].

Hardware and time redundancy approaches require di-
rect hardware modification in the original system (such
as, comparator design [1] or incorporating watchdog
timers [13]). However, in many COTS based systems,
adding or modifying hardware resources may not be
feasible due to time-to-market and low design cost is-



sues. For such systems, an alternative is to use compiler
based optimizations or modification to introduce software
implemented error tolerance. An example of this is in-
struction duplication technique (called EDDI), proposed
by Oh et al. [11]. The instruction duplication in [11] is
facilitated by compiler-generated different registers and
memory locations for each set of duplicated instructions.
The outputs of these instructions are then compared to
detect errors. Reis et al. further enhanced EDDI in their
software implemented fault tolerance (SWIFT) technique
by taking out memory replications with an assumption of
error correction coding enabled memory unit [16]. As a re-
sult, SWIFT achieved lower overall system overheads with
reasonable error detection capabilities. A similar approach
with compiler-assisted data duplication was proposed by
Hu et al. in [6]. In their approach the compiler determines
the instruction schedule by trading off between the per-
formance degradation caused by the degree of duplication
and the achievable reliability.

The above techniques require designers’ direct inter-
vention in hardware design [1], [12] or software com-
pilers [10], [16] to incorporate desired error detection
and tolerance capabilities. However, in many COTS based
systems, this may not be feasible due to intellectual
property (IP) rights and cost control. Hence, software-only
solutions can be highly coveted due to two factors. Firstly,
no time-demanding re-design and validations are required.
Secondly, it comes free of cost as it requires no designers’
intervention in hardware or software compilers [15]. In
this paper, we propose a software-only and architecture-
independent software modification technique implemented
in a novel prototype tool, called SMART. We show that
the proposed technique can automatically incorporate soft-
ware modification for effective error detection through
data duplication and signature comparison, and correction
through software implemented check-pointing. We will
demonstrate that with reliability tailored modification the
tool can achieve high transient error detection coverage
and effective error tolerance at reasonable performance and
memory footprint overheads.

The rest of the paper is organized as follows. Section II
gives the preliminary details including system architecture
and error injection mechanism, while Section III presents
the proposed SMART model using software modification
based error detection and tolerance. Section IV demon-
strates the effectiveness of the proposed technique using a
number of benchmark applications, highlighting the com-
parative advantages and related system overheads. Finally,
Section V concludes the paper.

II. PRELIMINARIES

System architecture and error injection environment
used in this work are briefly described.

A. System Architecture

Figure 1 shows the system architecture used in this
work. The system architecture includes a high-performance
fixed-point Xentium R© DSP processor [19], used as a case

study of COTS components. The processor consists of
the Xentium R© core containing the datapath, control and
instruction cache. The datapath contains ten arithmetic and
logic execution units, supporting instruction-level paral-
lelism (ILP) for 32/40-bit scalar and two 16-bit element
vector operations. The Xentium core is integrated with a
tightly coupled data memory (TCM) for storage, which can
be further extended through data interface connection to
an on-chip data memory unit. The sizes of the instruction
cache, TCM and data memory are configurable. Xentium R©

Figure 1: System architecture employing proposed error detec-
tion and tolerance technique
processor also incorporates an IO interface for enabling in-
terconnections and on-chip communications. In this work,
Xentium R© without hardware error detection capability and
watchdog timer support is considered. To enable storage
of application check-points, the IO port is connected to
an external memory component, interfaced via a direct
memory access controller (DMAC) unit. The memory is
assumed to be sufficiently coded with error detection and
correction (EDAC) codes to facilitate error-free assumption
during check-point saving and retrieval. Similar memory
has also used in [16].

B. Error Injection

Transient errors manifest themselves as temporary logic
upsets at circuit-level. However, at application-level the
impact of these errors depends on the instructions being
executed or datapath/memory activity. For example, if a
transient error takes place during loading of a memory
word into the processor datapath, it can leave the values
being incorrectly processed by that word. Similarly, an
error in the datapath can also render wrong instruction
being executed. To effectively reflect these and various
other manifestations at instruction level, error injections
are carried out through instruction perturbation through
Instruction Set Simulator (ISS) using a separate parser,
as shown in Figure 2(a). Single-event upset (SEU) based
model is used for error injection, similar to [16].

As can be seen, error injection is enabled by instruction-
level (assembly) parser, which adds the original application
instructions. First, a register flag variable fault is incorpo-
rated, which is set to true to enable fault injections or vice
versa. When this flag is set, the impact of error is modeled
through any of the following: errors in datapath (through
change of instruction, replacing the operand values or the
actual operands), errors in program control flow (through
change of jump label or storage registers), errors in mem-



Figure 2: (a) Instruction-level error injection through Xentium R©

ISS, (b) Examples of error injections

ory (through change of value or offset address during
loading from or storing into memory). Figure 2(b) shows
few examples of such instruction-level perturbations. To
ensure the errors are cleared during error injection simu-
lation, the fault variable is reset in the roll-back routine
(SMART-CP, Section III-C). To control timing and random
location of the SEU injection, the original application is
first profiled using the cycle-accurate output trace from the
ISS. The application profiling gives statistics of different
instruction types for a given application, leading to rela-
tive error probabilities for a given fault rate. Section IV
further reports a number of error injection experiments for
different applications.

III. PROPOSED SMART MODEL

Figure 3 shows the proposed Software Modification
Aided transient eRror Tolerance (SMART) prototype tool
organized in three modification steps: high-level mod-
ification to incorporate transient error detection (called
SMART-ED), followed by assembly-level modification to
detect illegal branching (called SMART-SC), and finally
assembly-level modification to mitigate the impact of de-
tected errors through application check-pointing routines
(called SMART-CP). Details of SMART steps follows.

Figure 3: Prototype SMART tool for software implemented error
detection and tolerance

A. SMART-ED: Error Detection through Duplication

Error detection in SMART (SMART-ED) is initiated
by using a high-level parser, which replaces the original

data types to error detection enabler types in the modified
software description (Figure 3). The replacement data
types, which are defined in a separate pre-compiled library,
automatically generate duplicate copies of the original
data. To provide with original functionality with error
detection capability and also to detect errors during compu-
tation, the high-level arithmetic and logical operations are
also replaced by equivalent macro computation functions.
These function, defined in the same pre-compiled library,
compare the duplicate copies during arithmetic or logical
operations to detect transient errors.

To illustrate the software modification in SMART-ED,
Figure 4(a) and (b) show example original and modified
descriptions in C. As can be seen, the original software de-� �
1: //Include Libraries

............
2: int a;
3: long b;
4: long c[10];
5: ......
6: a = 34;
7: b = 29;
8: c[3] = (long) a * b;

............� �
(a)

� �
1: //Include Libraries
2: #include<modify.h>

............
3: FDInt a;
4: FDLOng b;
5: FDLOng c[10];
6: ......
7: AssignVal(a, 34);
8: AssignVal(b, 29);
9: AssignVar(ArrayElement(c,

3), MultiplyVar(a, b));
............� �

(b)
Figure 4: Example C statements of (a) original software descrip-
tion, and (b) modified description generated in SMART-ED
scription undergoes two major changes. First, the original
variable a, b and c declarations with types int and long
in lines 2-4 are modified to FDInt and FDLong types
in lines 3-5 (Figure 4(b)). Then to carry out the original
functionality in lines 6-7 (Figure 4(a)) using the modified
types for a and b, AssignV al macro function is used in
the modified software description in lines 7-8 (Figure 4(b)).
The AssignV al function carries out the assignment of the
variables but also carries out the comparisons between their
respective copies after the assignment operation. Similarly,
for assigning the resulting value of (a ∗ b) in an array
element of c (line 8, Figure 4(a)), AssignV ar macro
function is used to assign variable value generated by
MultiplyV ar in array element of c using ArrayElement
macro function in the modified description (line 9, Fig-
ure 4(b)).

To illustrate how these type replacements and functional
modifications (in Figure 4(b)) enable transient error detec-
tion, Figure 5 shows definitions of type FDInt (in (a))
and macro function MultiplyV ar (in (b)) as examples.
As can be seen, the definition of type FDInt in the
modification library modify.h generates duplicate copies
of the data with the same original int type (lines 3-
4, Figure 5(a)). These duplicate copies (i.e. orig and
copy) are compared during the computation (i.e. multiply
operation defined in modify.h) to detect the presence of one
or more errors in SMART-ED. Note that the comparisons
are carried out in two instances. In the first instance,
comparison is carried out to detect the presence of errors
(through checking any difference between the duplicate
copies) incurred in memory or during loading into registers



� �
// defined in modify.h
1: unsigned short detected = 0;
2: typedef struct _smartedInt{
3: int orig;
4: int copy;
5: } FDInt;� �

(a)� �
// defined in modify.h
1: #define MultiplyVar(op1, op2) ({
2: if(!detected=(op1.orig!=op1.copy||op2.orig!=op2.copy))

{
3: op1.orig = op1.orig * op2.orig;
4: op1.copy = op1.copy * op2.copy; }
5: else {sw_roll-back();}
6: if(detected=(op1.orig!=op1.copy||op2.orig!=op2.copy))
7: {sw_roll-back();}
8: })� �

(b)
Figure 5: (a) Example error detection enabler type FDInt
(replacement of int data type), and (b) Macro function
MultiplyV ar replacing ∗ operation

(line 2, Figure 5(b)). If any error is detected (notified
by detected variable, defined in the modify.h library),
further computation is avoided and software implemented
roll-back routine is invoked (line 5, further details of
software implemented check-pointing and roll-back can be
found in SMART-CP, Section III-C). If no error is detected
in the first comparison, computation (i.e. multiplication
operation) is carried out for the duplicate copies (lines 3-4).
This is then followed by the second comparison to detect
any error incurred in the datapath or its registers after
the actual computation (line 6). If any error is detected
in this instance, software implemented roll-back routine
(sw_roll − back) is invoked (line 7).

The comparisons in two instances have an added advan-
tage apart from saving duplicate computations when one
or more errors are detected (lines 2 and 6). When detected
variable itself is subjected to errors during the first compar-
ison, following the computation can reset detected variable
and trigger sw_roll−back an error is detected. However, if
detected variable is subjected to errors during the second
comparison (line 6), incorrect computations can take place.

To control the potential performance overhead due to
duplication of data and their computations, SMART incor-
porates two different inputs generated by the application
profiler (Figure 3): data usage profile and normalized usage
threshold (UNT ). The data usage profile gives the struc-
tured organization of the various variables and constants
used in an application, together with their usage statistics.
Using such data usage statistics, the tool only duplicates
the original data types and operations of chosen variables
or constants that have usage higher than normalized thresh-
old (i.e. UN ≥ UNT ). Normalized threshold usage (UNT )
is calculated as a ratio of a variable’s usage count to the
maximum usage of any other variable. Details of how
data/register usage is generated can be found in [14].

B. SMART-SC: Dynamic Signature Comparison

Branch instructions are vulnerable components that con-
trol the software flow [16]. Transient errors can affect
the software flow and often cause software to terminate

abruptly or continue execution with unintended function-
ality. Hence, to detect such illegal branch instructions dy-
namic signature comparison is carried out with assembly-
level software modification (Figure 3). SMART-SC proce-
dure is as follows:
(a) The original branch instruction is preceded by instruc-
tions to save the function of target label address (Lsrc).
(b) After each label similar function of current instruction
packet address is saved (Ldst).
(c) Lsrc and Ldst are then XORed to generate a signature
value (S = Lsrc ⊕ Ldst).
(d) If S contains unexpected value, it is considered an
illegal branch.

To incorporate signature saving and checking mech-
anism in an architecture-independent manner using the
above procedure, SMART takes branch instruction syn-
tax for various branch instructions as input (not shown
in Figure 3). Hence, the software goes through further
modifications to detect illegal control flows due to transient
errors. Figure 6 shows an example demonstration of these
procedures to detect illegal branch instructions. For illus-
tration purposes, partial original and modified Xentium R©

assembly descriptions are shown in Figures 6(a) and (b).
As can be seen, the actual branch instruction takes place

� �
1: NOP
2: C0 BR .add
3: NOP 2

;......
4: .add:
5: A0 ADD RA0, RB0
6: RA0 = A0X

;.....
7: C0 BR .multiply
8: NOP 2

;.....
9: .multiply:
10: M0 MUL RA0, RB0
11: NOP

;.....� �
(a)

� �
1: NOP
2: A0 ADD 0, lo16(.add)
3: A0 ADDU A0X, hi16(.add)
4: RA8 = A0X
5: C0 BR .add
6: NOP 2
7: .add:
8: C0 LINK
9: C0 XOR C0X, RA8
10: RA1 = C0X
11: ;save .detected in RA8
12: C0 BRNZ RA1, .detected
13: ;save .multiply in RA8
14: C0 BR .multiply
15: NOP 2
16:.multiply:
17: ;repeat steps 8-13� �

(b)
Figure 6: Example illustration of SMART-SC: (a) Original
Xentium R© assembly instructions, and (b) modified Xentium R©

assembly instructions with SMART-SC
in the original set of instructions in lines 2 to .add label
and in line 7 to .multiply label (Figure 6(a)). To detect
transient errors during branch to .add label in SMART-
SC, first the intended branch label (i.e. .add) address is
stored in reserved register RA8 (lines 2-4, Figure 6(b)).
Later, after each label (for example, .add label), further
instructions are inserted to generate the label address from
program counter (PC) and store in register C0X (line 8).
Then using the stored values in RA8 and C0X , a signature
register value is newly generated using XOR operation
between the two values and stored in RA1 (line 9-10). This
signature value in RA1 is then compared with 0. When an
error takes place in the program counter or in any of the
storage registers (i.e. RA8 or RA1), the signature register
will contain non-zero value and enable the detection of
one or more errors. For example, if a transient error affects
the .multiply label in line 14 and changes it to .add label,



added instructions in SMART-SC (in line 13 and lines 8-
10) will detect an illegal branch as non-zero value will be
generated in register RA1 (Figure 6(b)). Upon detection of
illegal branch instructions, the detection flag is set and the
roll-back routine (sw_roll− back) is invoked in .detected
label (further details in Section III-C).

Figure 7: SMART-CP check-pointing mechanism

C. SMART-CP: Software Implemented Check-pointing

Mitigation of the detected errors (Sections III-A
and III-B) in SMART-CP is performed using pre-compiled
software implemented check-pointing and roll-back (i.e.
saving the system state and restoring it when errors are
detected) libraries incorporated through software modifi-
cation. Since, the system architecture under consideration
(Figure 1) does not provide with any timing or interrupt
support to control executions contexts, the proposed tech-
nique employs a software handshake between DMAC and
processor units to implement the check-pointing mecha-
nism, as shown in Figure 7. The routine is initiated by
the processor sending a status signal indicating that it is
ready to perform check-pointing and waits for IO status
CP_MODE to be written back by the DMAC unit (steps
1-2). When CP_MODE is seen by the DMAC unit, it
notifies by writing CP_MODE back to the processor.
When this status signal is acknowledged by the processor,
it checks to see if one or more errors have been detected
(through the detected flag in the modify.h library). When
errors are detected, software implement roll-back routine
(sw_roll − back) is called up. Otherwise, the system
proceeds with saving the current system state (steps 3-4).

When handshake sub-routine is completed, the
Xentium R© first writes the current program counter

address on the IO port for DMAC to save it in a dedicated
memory location within the separate memory unit during
check-pointing (steps 5). Once it is acknowledged,
the processor unit then waits for a routine completion
status EXE_MODE. The waiting essentially manifests
software based interrupt routine from processor side,
which is required for the DMAC unit to allow saving
or restoring the system state (steps 7, Figure 7). During
this time, the DMAC unit saves the register values and
memory contents from the processor to the CP memory.

When the system state is rolled back due to one or more
transient errors detected (sw_roll − back, Figure 7), the
DMAC unit writes back to the processor the saved PC
address and register/memory contents from the previously
saved check-point (steps 12-15). Similar to check-point
save routine, roll-back routine also implements software
based handshake between the DMAC and processor, while
the DMAC can communicate the system state back to
the processor. During this time, the processor waits for
handshake signal EXE_MODE from the DMAC. When
the DMAC completes the transfer of system states, it
writes the signal EXE_MODE back to the processor.
Upon acknowledgement of this signal, the processor then
proceeds with the updated system state.
Algorithm 1 : Check-point routine insertion in approxi-
mate intervals

1: Assume: Desired check-pointing interval, C cycles
2: for statement type != conditional branch statement do
3: Insert dummy return routine
4: Check approx. Xentium R© cycle count
5: if cycle count <> C then
6: Insert branch instruction to CP routine
7: else
8: continue
9: end if

10: end for

Since execution context in Xentium R© cannot be con-
trolled through hardware interrupts, the check-pointing
routine (Figure 7) is then inserted in the original soft-
ware description (at assembly-level) in suitable locations
implementing a quasi-periodic check-pointing mechanism.
Algorithm 1 shows how this is carried out for a given
application. As can be seen, the check-pointing routine
insertion involves finding convenient locations within the
software description (line 2). In particular, conditional
branch instructions (e.g. BRNZ, BRZ etc.) are skipped,
since such statements can vary the program flow depending
on the conditions. Dummy return statements are inserted
in these potentially convenient locations to find out if the
cycle counts approximately meet the given check-pointing
interval C (lines 4-9). These steps are continued until the
application is sufficiently check-pointed.

IV. EXPERIMENTAL RESULTS

The error detection and tolerance efficiency of the
proposed prototype tool is demonstrated. This is then fol-
lowed by system overhead evaluation of the tool-generated
software specification in terms of performance, energy



Table I: Benchmark applications with injected SEUs in different instructions
App. Avg.

Cycles/run
% SEUs in
STW / LDW

% SEUs in
Branch

% SEUs in Arith
/ Logical

% SEUs in
Others

% Incorrect execution
(without SMART)

% Incorrect execution
(with SMART)

FIR 74953217 34.7 14.3 41.4 9.6 66 13
DWT 98353826 33.4 16.4 42.1 8.1 61 14
FFT-fixed 103505361 35.3 15.6 39.7 9.4 63 11
WHT 97526718 39.3 13.6 37.5 9.6 60 15
Viterbi 89962118 38.9 17.3 35.2 8.6 63 13
JPEG 311822971 41.3 15.9 34.5 8.3 59 12

and memory footprint. Finally, SMART is comparatively
evaluated with other reported techniques.

A. Effectiveness of Error Detection and Tolerance

A number of experiments are carried out in Xentium R©

ISS environment using different signal/image/data condi-
tioning and processing benchmark applications to evaluate
the effectiveness of the proposed SMART tool with system
architecture (Figure 1). To demonstrate the effectiveness
of th tool-generated modified software description, ini-
tially full data duplication with UNT =0 is assumed (Sec-
tion III-A). For each application, an approximate total of
5000 transient errors are injected in consecutive runs using
single-event upset (SEU) based model (Section II-B). An
arbitrary error probability of 10−12 (SEU per cycle) is
assumed. Similar error injection has also been carried out
in [2], [15].

Table II: SEU locations and their impact in software
Location Detection and Impact
Memory SEUs in accessed memory locations are detected; SEUs

in unaccessed memory locations will have no effect (i.e.
masked) at application-level

Memory
Address

SEUs in accessed memory addresses are detected due to
difference in computations in SMART-ED; some SEUs
can generate segmentation fault leading to incorrect
execution

Datapath If SEUs cause instructions or operands to be changed,
they are detected. If, however, modified instructions have
non-equivalent operands, it will cause abrupt termination
and incorrect execution

Registers All SEUs in registers affect currently operating data and
are detected. However, SEUs can also be masked if value
change does not affect arithmetic or logical operation

Control
Flow

SEUs that cause improper branching within known
known control flow will be detected. However, SEUs
that change the jump label to unknown labels will be
undetected, leading to incorrect executions

Table I shows the impact of SEU injections on these
benchmark applications. The average execution cycles per
application for a given test input sequence is shown in
column 2, while the percentage of injected SEUs in dif-
ferent instructions are shown in columns 3-6 (determined
after application profiling through output trace followed by
error injection, as explained in Section II-B). Columns 7-
8 compare the percentage of incorrect executions without
and with SMART technique. From Table I two major
observations can be made. Firstly, it can be seen that
depending on the nature of applications the percentage
SEUs injected in different instructions can vary. However,
the injected SEUs show a general trend of higher SEUs
being injected in load/store (i.e. LDW/STW) and arith-
metic/logical instructions (which is expected as DSP appli-
cations are highly computationally intensive in nature). For
example, for memory and computationally intensive JPEG
application the highest number (41%) of SEUs are injected

in the load/store memory instructions, while about 34%
SEUs are injected in the arithmetic/logical instructions.
The branch instructions are subjected to the next highest
percentage of SEUs injected, which varies depending on
the nature of application. With the given SEUs injected,
the second observation is that proposed SMART technique
can significantly reduce the number of incorrect executions
(by up to 80% in the case of FIR application) through
software implemented error detection and tolerance tech-
nique (Section III). This is because, proposed technique
can effectively detect the SEUs injected and mitigate the
impact of these SEUs through application check-pointing,
enabled through software modification (in SMART-CP).
However, note that up to 15% of the cases can still lead
to incorrect executions (in the case of WHT application)
using SMART technique. This underlines the limitations of
the proposed software-only technique (Section III). Table II
summarizes these limitations, showing the possible SEU
locations and their impact in the form of masking (no
effect of error), detection or even being undetected. As can
be seen, the proposed software modification approach can
deal with errors incurred in various parts of the processor
(datapath, registers and memory). The errors in these parts
can be effectively detected if illegal control or memory
referencing is not caused. However, when such illegal
control flow or memory referencing is caused, incorrect
execution is generated by the software descriptions (as
shown in col 8, Table I).

Figure 8: SMART detection efficiency

To demonstrate the effectiveness of error detection
through SMART technique, Figure 8 shows the effective
percentage of masked (i.e. errors with no effect), detected
(both by SMART-ED and SMART-SC) and undetected
SEUs through SMART technique in the benchmark appli-
cations (Table I) with UNT = 0 (i.e. full duplication of all
data). From Figure 8, two observations can be made. First
observation is that maximum number of injected SEUs
(up to 74% for WHT application) are detected through
the proposed technique, while 17% SEUs can get masked,
summing to an effective total of 91% errors being either
detected or masked. Out of the detected SEUs, up to



85% are detected through the SMART-ED (Section III-A),
while the rest of the SEUs are detected by SMART-
SC (Section III-B). This is expected as SEUs injected
in load/store and arithmetic/logical instruction dominate
(Table I). Note that up to 17% of the SEUs cannot be
detected depending on where SEUs are injected due to
reasons explained in Table II.

B. Performance and Memory Footprint

The inclusion of data duplication, dynamic signature
generation and check-pointing through software modifica-
tion (Section III) imply performance overheads. This is be-
cause SMART-ED generates controlled repetitions of com-
putations through normalized usage threshold, UNT (Fig-
ure 4(b)), while SMART-SC requires signature generation
and comparison cycles as well (Figure 6(b)). Furthermore,
SMART-CP requires processor to software implemented
check-pointing, which incurs more overheads.

Figure 9: SMART performance overheads
To explore the performance overheads incurred due by

SMART generated software modification, Figure 9 shows
the normalized performance overheads of different bench-
mark applications with varied duplication control through
normalized usage threshold (UNT ). An approximate check-
pointing interval of C≈4×106 cycles is chosen arbitrarily
for the applications in comprehensive error injection envi-
ronment (Section II-B). As can be seen SMART technique
can result in a reasonable performance overhead for incor-
porating SEU detection and tolerance depending on the
application and its nature of computation. For example,
up to 83% performance overhead is incurred by Viterbi
application (when all variables and data are duplicated,
i.e. UNT = 0). Note that although the proposed technique
employs duplicate storage and computations, the perfor-
mance overhead is contained. This is because the post
modification compilation steps can employ instruction-
level parallelism (a common feature in high-performance
DSP processors) to reduce the performance overheads.
Comparing the contributions of different SMART steps
(Figure 3), it can be seen that the highest performance
overhead (about 65% for the WHT decoding application) is
caused by SMART-ED (Section III-A). SMART-CP is the
second largest contributor for the performance overheads
(with up to 13% overhead for the JPEG application). This
can, however, vary depending on the approximate check-
pointing interval assumed (the variation of CP sizes and its

impact is studied in detail in [18]). SMART-SC contributes
the lowest performance overheads for the given check-
pointing interval when compared with the other steps.
As expected, with higher normalized usage threshold, the
duplication in the original application (through SMART-
ED) can be controlled and the performance overheads
show a trade-off. For example, when the duplication is
only carried out for variables/constants that have more
than 50% normalized usage (i.e. UN ≥ (UNT = 0.5)),
the performance overhead reduced to as low as 56% for
DWT application. Similar trend can also be observed
from other applications. However, reduction of duplication
comes with a decrease in the detection coverage as well.
For example, in the case of FIR application, the detection
coverage (detected and masked) can reduce to 64% when
UN ≥ (UNT = 0.5) (compared to 91% when UNT = 0).

Figure 10: SMART memory overheads
Due to software modification, software descriptions can

also expand with increased memory footprint. Figure 10
shows the comparative memory footprints of different
applications, showing contributions from different SMART
steps. Since SMART-SC does not use memory resources,
it is not shown. As expected, SMART-ED gives the highest
memory overheads due to duplicated data components
and related comparison instructions for detection of SEUs
(Section III-A). Comparing the different applications, it
can be seen that a reasonable 113% memory footprint
overhead is caused by SMART technique in Viterbi and
WHT applications, for example. This is because these
applications use comparatively larger amount of data stor-
age components (variables and data value holders) at
high-level description, which is further duplicated by the
proposed technique (SMART-ED, Section III-A). From
Figure 10, it can also be seen that with controlled duplica-
tion through SMART-ED using normalized usage threshold
(Section III-A), memory footprint can be reduced.

C. Comparative Evaluation

To further demonstrate the effectiveness of the proposed
SMART technique implemented in a prototype tool, it
is comparatively evaluated against the following reported
techniques that can be implemented for error detection and
correction for COTS components: duplex processing and
comparison [3], triple modular redundancy [8] and high-
level software transformation technique [15]. Hardware- or
compiler-level designs are not feasible for the COTS com-
ponent under consideration and hence are not considered
in the comparisons. Table III shows the comparisons with



various attributes (column 1) and their respective properties
of each technique, including SMART (columns 2-5).

Table III: Comparative evaluations of SMART
Attribute Duplication [3]TMR [8] SW Trans-

form. [15]
SMART
(proposed)

Detect.
coverage

high (≈
100%)

high
(≈ 100%)

low
(≈ 51%)

high
(≈ 74%)

Error tol-
erance

none high (time-
limited)

none high

Area
overhead

> 100% > 200% none DMAC+CP
memory

Perform.
overhead

≈ 12% ≈ 15% ≈ 70%
(with ILP)

≈ 83%
(with ILP)

HW
design

compar.
and sync.

compar.
and sync.

none none

As can be seen, when error detection is considered
both duplication and TMR techniques have high detection
coverage (≈ 100%) as any error that leads to incorrect
execution is detected at the output comparator (row 2). The
software transformation technique [15] suffers from poor
detection coverage of only 51%, since the transformation
only considers computation related errors without taking
into account the larger proportion of errors incurred in
memory. The proposed technique gives higher detection
coverage as errors in processor datapath, registers and
memory are taken into account during software modifica-
tion (through SMART-ED and SMART-SC, Section III).
Note that both duplication [3] and also software transfor-
mation [15] techniques cannot tolerate the detected errors
as no tolerance mechanism is incorporated upon detection
(row 3). Our proposed technique gives high error tolerance
through software implemented check-pointing approach
(giving up to 80% less incorrect execution than the original
software description without any modification). The TMR
approach [8], however, achieves a higher error tolerance
(which is mission time-limited) at the cost of high area
overhead (row 3). The proposed SMART technique, how-
ever, incurs performance overhead, similar to [15], of up
to 83% since extra computation and storage instructions
are incorporated for error detection and tolerance (see
Section IV-B). Finally, when design effort is considered,
the proposed SMART technique outperforms duplication
or TMR approaches, as no extra hardware customization
or design efforts are needed. This underlines a significant
advantage of the proposed technique, making it particu-
larly suitable for COTS components with limited or no
hadrware- or compiler-level access.

V. CONCLUSIONS

A software only and architecture-independent transient
error detection tolerance technique implemented in a pro-
totype tool (called SMART) was presented. The tool incor-
porates controlled data duplication and dynamic signature
comparison in the modified software description to detect
transient errors. To achieve effective error tolerance soft-
ware implemented check-pointing is carried out through
further software modification. We showed that SMART can
achieve high detection coverage and significantly reduce
the incorrect executions (by up to 80%), while provid-
ing a trade-off between design efforts and performance

overheads with controlled duplication. Due to software-
only nature, the proposed technique is particularly suitable
for systems designers with limited access to hardware or
compiler modifications.
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