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Traditional kernel principal component analysis (KPCA) concentrates on the global structure analysis of data sets
but omits the local information which is also important for process monitoring and fault diagnosis. In this paper,
a modified KPCA, referred to as the local KPCA (LKPCA), is proposed based on local structure analysis for
nonlinear process fault diagnosis. In order to extract data feature better, local structure analysis is integrated
within the KPCA, and this results in a new optimisation objective which naturally involves both global and
local structure information. With the application of usual kernel trick, the optimisation problem is transformed
into a generalised eigenvalue decomposition on the kernel matrix. For the purpose of fault detection, two mon-
itoring statistics, known as the T2 and Q statistics, are built based on the LKPCA model and confidence limit is
computed by kernel density estimation. In order to identify fault variables, contribution plots formonitoring sta-
tistics are constructed based on the idea of sensitivity analysis to locate the fault variables. Simulation using the
Tennessee Eastman benchmark process shows that the proposed method outperforms the traditional KPCA, in
terms of fault detection performance. The results obtained also demonstrate the potential of the proposed
fault identification approach.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The demands for improving product quality and ensuring process
safety have stimulated the recent development of fault diagnosis
techniques. As large amounts of data are available in modern pro-
cess industry, data-driven methods based on the statistical process
control theory have been one of the most fascinating topics in the
process fault diagnosis field. Principal component analysis (PCA) is
a classical data-driven multivariate statistical method which has
attracted much attention from researchers [1–3]. However, PCA is
a linear projection method, which cannot effectively capture the
nonlinear features existing in real industrial processes. In order to
cope with this problem, many modified nonlinear PCA methods
have been developed. Krammer [4] first studied a nonlinear PCA
based on an auto-associative neural network. Dong and MacAvoy
[5] proposed the principal curve method as a nonlinear generalisa-
tion of linear PCA. Hiden et al. [6] suggested a nonlinear PCA using
genetic programming, while Geng and Zhu [7] presented an adap-
tive nonlinear PCA based on an improved input training neural
network.
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More recently, the kernel PCA (KPCA) method has gained consid-
erable interests in various research fields. KPCA was firstly proposed
in [8], which applies a kernel function to compute the nonlinear prin-
cipal components. This method has been applied to process fault de-
tection and diagnosis. Lee and co-authors [9,10] proposed the KPCA-
based T2 and Q statistics for the fault detection of continuous and
batch processes. Cho et al. [11] and Choi et al. [12] formulated two
fault identification strategies using KPCA. In order to analyse multi-
scale data, multi-scale KPCA methods were studied by combining
the wavelet analysis and ensemble empirical mode decomposition
[13–16]. To improve the computation efficiency, Tian et al. [17] and
Cui et al. [18] used feature sample selection to reduce the computa-
tional complexity of calculating the kernel matrix in KPCA. Nguyen
and Golinval [19] applied the KPCA to detect mechanical system
faults by comparing the subspace angle between a reference and
the current state. Considering the dynamic property of process
data, Jia and co-authors [20] developed a dynamic KPCA method by
integrating the kernel PCA and ARMAX time series model, while
Zhang et al. [21] discussed a multi-block KPCA for large-scale pro-
cesses. For effective monitoring of nonlinear and nonstationary pro-
cesses, the work [22] proposed a variable window adaptive KPCA
based on a fast block adaptation. Cao et al. [23] formulated the mod-
ularity of kernel methods for chemical data modelling, while Fu et al.
[24] applied KPCA to capture the latent structure of training data for
building a two-step nonlinear classification algorithm. It can be seen
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that KPCA offers a promising tool for nonlinear process fault detec-
tion and diagnosis.

The basic idea of KPCA is to map the input space onto a high-
dimensional feature space via a nonlinear mapping and then to pro-
ject the data along the directions of maximal variances in feature
space. According to this principle, KPCA may be viewed as a global
structure analysis technique because it does not consider the inner
relationship among different data points. In other words, KPCA is a
nonlinear data dimension reduction method which focuses on the
global structure information and ignores the detailed local structure
information in a data set. However, the local structure information is
also important for data mining and feature extraction. Recently, local
structure analysis methods, such as the locally linear embedding
(LLE) [25], Laplacian eigenmaps (LE) [26], and locality preserving
projections (LPP) [27,28], have been proposed in the study of mani-
fold learning and have been proven to be powerful for data mining
and process monitoring. Specifically, Zhang et al. [29] presented an
LLE-based sensor fault detection method, while Li and Zhang [30]
proposed to use the supervised LLE projection for machinery fault di-
agnosis. Jiang and co-authors [31,32] applied the modified LE meth-
od for fault pattern classification, while Hu and Yuan [33] proposed
the multiway LPP (MLPP) method for batch process monitoring
and demonstrated that the MLPP outperforms the conventional
multiway PCA. Shao et al. [34] introduced a nonlinear fault diagnosis
based on the generalized LPP method which imposes orthogonality
constraints on the projection vectors, while Yu [35,36] used the LPP
for bearing performance degradation assessment, combing with an
exponential weighted moving average statistic and Gaussian mix-
ture models, respectively. Furthermore, the work [37] proposed a
global–local structure analysis model, combining the advantages of
LPP and PCA. However, this method is inherently a linear transfor-
mation and it does not consider the nonlinearity of industrial pro-
cesses. It can be seen that, although there exist a large number of
studies on local structure analysis, no nonlinear monitoring method
has been proposed to consider both the global and local data infor-
mation analysis.

Motivated by the above discussion, we propose a modified KPCA
method for nonlinear process fault diagnosis by introducing local
structure analysis. The resulting modified KPCA, referred to as the
local KPCA (LKPCA), performs both the global and local data struc-
ture analysis simultaneously. The main difference between the
LKPCA and the standard KPCA lies in the design of the LKPCA optimi-
sation objective which introduces local data structure analysis into
the global optimisation of KPCA. With the application of usual kernel
trick, the LKPCA optimisation is solved by the generalised eigenvalue
decomposition of kernel matrix, and two monitoring statistics are
built based on the proposed LKPCA model for fault detection. To
tackle the challenging problem of nonlinear data-driven fault identi-
fication, we propose a novel construction of the contribution plot for
the LKPCA to identify fault variables. Simulation results obtained on
the Tennessee Eastman benchmark process demonstrate that the
proposed LKPCA method performs better than the standard KPCA
method, in terms of fault detection. The applicability of the proposed
new fault identification scheme is also demonstrated in the simula-
tion study. The reminder of this paper is organised as follows. We
provide a brief review of the standard KPCA in Section 2. The
proposed LKPCA method is detailed in Section 3. In Section 4, we
present the process monitoring strategy using the proposed LKPCA,
while the simulation study using the Tennessee Eastman benchmark
process is provided in Section 5. Our conclusions are offered in
Section 6.

2. Kernel principal component analysis

KPCA [8] is an unsupervised learning method, which first maps the
data in the original input space onto a high-dimensional feature space
via a nonlinear mapping and then executes linear PCA in the resulting
feature space. Specifically, denoteXn ¼ x1 x2⋯xn½ �T∈Rn�m as the training
data matrix, with the n samples of the process data vectors xi∈Rm�1 ,
1 ≤ i ≤ n. A nonlinearmappingϕ : x∈Rm�1→ϕ xð Þ∈Fmaps the training
data onto a high-dimensional feature space F . Linear PCA is then exe-
cuted in F with the objective of finding a projection vector f so that
the linear transformation

t ¼ ϕ xð Þð ÞT f ð1Þ

has the maximum variance for the training data Xn. Assume that the
feature vector ϕ(xi) has been mean centred and variance scaled. Fur-
ther denote ti = (ϕ(xi))Tf. Then, this optimisation task can be for-
mulated as

max JKPCA fð Þ ¼ max
1

n−1

Xn
i¼1

t2i

¼ max
1

n−1

Xn
i¼1

ϕ xið Þð ÞT f
� �2

;

s:t: f T f ¼ 1:

ð2Þ

The projection vector f is also called the loading vector and tn =
[t1 t2 ⋯ tn]T the score vector of the training data matrix Xn. It is well
known that there exist the coefficients αj, 1 ≤ j ≤ n, such that the load-
ing vector takes the form

f ¼
Xn
j¼1

α jϕ x j

� �
: ð3Þ

Substituting Eq. (3) into Eq. (2) leads to the optimisation problem

max JKPCA αð Þ

¼ max
1

n−1

Xn
i¼1

ϕ xið Þð ÞT
Xn
j¼1

α jϕ x j

� �0@ 1A2

;

s:t:
Xn
i¼1

αiϕ xið Þ
 !T Xn

i¼1

αiϕ xið Þ
 !

¼ 1;

ð4Þ

where α ¼ α1 α2⋯αn½ �T∈Rn�1.
To avoid the difficulty of explicitly defining the nonlinear high-

dimensional mapping, the usual kernel trick is applied. With the intro-
duction of a kernel function k(x,xj) = (ϕ(x))Tϕ(xj) = k(xj,x), which is
symmetric, the optimisation (4) can be expressed as

max JKPCA αð Þ ¼ max
1

n−1

Xn
i¼1

Xn
j¼1

α jk xi; x j

� �0@ 1A2

;

s:t:
Xn
i¼1

Xn
j¼1

αiα jk xi; x j

� �
¼ 1:

ð5Þ

There exist a number of kernel functions that can be utilised for
this purpose, including polynomial kernel, sigmoid kernel and radial
basis kernel. By defining the kernel matrix K whose (i, j)-th element
is [K]i,j = k(xi,xj), we can further express Eq. (5) as

max JKPCA αð Þ ¼ max
1

n−1
αTKKα;

s:t: αTKα ¼ 1:
ð6Þ

The optimal coefficient vector α can be obtained by solving the
eigenvector problem:

KKα ¼ n−1ð ÞλKα; ð7Þ
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with the normalised eigenvectors that satisfy αTKα = 1. The solutions
of Eq. (7) can be found by solving the equivalent problem:

Kα ¼ n−1ð Þλα: ð8Þ

Solving the eigenvalue problem (8) yields theennonzero eigenvalues

λ1Þ≥λ2Þ≥⋯≥λenÞN0 with the corresponding eigenvectors αiÞ;1≤ i≤en,
where all the eigenvectors have been normalised to satisfy

(αi))TKαi) = 1, and the n−en zero eigenvalues λenþ1Þ ¼ ⋯ ¼ λnÞ ¼ 0 .
The dimensionality of the problem can be reduced by only retaining
the first ens ≤enð Þ eigenvectors.

After the KCPA training, the test scores ti, 1≤ i≤en or 1≤ i≤ens, for the
new data x can be extracted by projecting ϕ(x) onto the i-th loading
vector f i) = ∑j = 1

n αj
i)ϕ(xj) in the feature space:

ti ¼ ϕ xð Þð ÞT f iÞ ¼
Xn
j¼1

αiÞ
j ϕ xð Þð ÞTϕ x j

� �
¼ kT

xα
iÞ
; ð9Þ

where kx ¼ k x; x1ð Þk x; x2ð Þ⋯ k x; xnð Þ½ �T∈Rn�1 and αi) = [α1
i)α2

i) ⋯ αn
i)]T.

3. Local kernel principal component analysis

It is clear that the KPCA with the objective of explaining the maxi-
mum variance of the training data does not consider any inner relation-
ship among neighbourhood data points. Therefore, KPCA can be viewed
as a global data structure analysis technique. As discussed in the
Introduction section, many manifold learning methods, such as the
LLE [25], the LE [26] and the LPP [27,28], have been proposed for local
structure analysis. A common similarity among these methods is that
they all analyse the inner relationships of data points and aim at pre-
serving the local neighbourhood structure during data transformation
and feature extraction. This motivates us to introduce local structure in-
formation into the KPCA optimisation.

3.1. Local structure analysis

The high-dimensional data ϕ(x) typically lies on a low-
dimensional manifold embedded in the ambient space, and a
local structure analysis is to find the optimal linear approximation
(1) that makes the neighbouring points to stay as close together as
possible. In other words, if ϕ(xi) and ϕ(xj) are close, then ti =
(ϕ(xi))Tf and tj = (ϕ(xj))Tf should be close as well. A reasonable
criterion for choosing the projection vector f is therefore to mini-
mise the following objective function JLSA( f) under the appropriate
constraints [27]

minJLSA fð Þ ¼ min
Xn
i¼1

Xn
j¼1

ti−t j
� �2

wi; j

¼ min
Xn
i¼1

Xn
j¼1

ϕ xið Þð ÞT f− ϕ x j

� �� �T
f

� �2
wi; j;

ð10Þ

where wi,j is a weighting parameter which incurs a heavy penalty if
the neighbouring points ϕ(xi) and ϕ(xj) are mapped far apart.

The weight parameters wi,j represent the neighbourhood relation-
ships between different data points, and they may be determined
based on the adjacency graph. In the adjacency graph, if nodes ϕ(xi)
and ϕ(xj) are neighbouring points, they are connected by an edge
and the corresponding weight value on this edge is wi,j. By contrast,
if these two nodes are not neighbouring points, there is no edge
between them and the weight value is set to zero. The definition of
“neighbourhood” can be expressed in two ways: K-nearest neigh-
bours (KNN) and ε neighbours. The former puts a neighbourhood
edge between ϕ(xi) and ϕ(xj) if ϕ(xi) is among the K nearest neigh-
bours of ϕ(xj) or ϕ(xj) is among the K nearest neighbours of ϕ(xi),
while the latter connects an edge between ϕ(xi) and ϕ(xj) if ‖ϕ(xi) −
ϕ(xj)‖2 ≤ ε, where ε is a neighbourhood relationship threshold. Again,
the kernel trick allows us to evaluate the Euclidean distance in the
feature space without the need to explicitly specify the nonlinear map-
ping ϕ : x∈Rm�1→ϕ xð Þ∈F . In fact,

ϕ xið Þ−ϕ x j

� ���� ���2 ¼ xi−x j

� �T
xi−x j

� �
¼ k xi; xið Þ−k xi; x j

� �
−k x j; xi
� �

þ k x j; x j

� �
which is only related to the kernel function k(•, •). With the
neighbourhood information from the adjacency graph, a simple way
to select weighting parameters is given by

wi; j ¼
1; if ϕ xið Þ and ϕ x j

� �
are connected;

0; if ϕ xið Þ and ϕ x j

� �
are not connected:

8<: ð11Þ

An alternative way of calculating wi,j is based on the heat kernel
[27].

By defining di = ∑j = 1
n wi,j, the optimisation (10) can be re-arranged

as

min JLSA fð Þ ¼ min
Xn
i¼1

f Tϕ xið Þdi ϕ xið Þð ÞT f−
Xn
i¼1

Xn
j¼1

f Tϕ xið Þwi; j ϕ x j

� �� �T
f

8<:
9=;:

ð12Þ

Further denote the nonlinear mapping matrix of Xn as Φ(Xn) =
[ϕ(x1)ϕ(x2) ⋯ ϕ(xn)]T, the diagonal matrix D = diag{d1, d2,⋯ dn}, and
the weighting matrixWwhose (i, j)-th element is [W]i,j = wi,j. The op-
timisation (12) can be expressed as

min JLSA fð Þ ¼ min f T Φ Xnð Þð ÞT D−Wð ÞΦ Xnð Þf
¼ min f T Φ Xnð Þð ÞTLΦ Xnð Þf ; ð13Þ

where the matrix L = D − W is also called the Laplacian matrix.
As in the KPCA, the projection vector f takes the form (3) based

on the training samples. Substituting f ¼ ∑
n

j¼1
α jϕ x j

� �
¼ Φ Xnð Þð ÞTα

into the optimisation objective in Eq. (13) for local structure analysis
leads to

min JLSA αð Þ ¼ min αTΦ Xnð Þ Φ Xnð Þð ÞTLΦ Xnð Þ Φ Xnð Þð ÞTα
n o

: ð14Þ

Noting that the kernel matrix K = Φ(Xn)(Φ(Xn))T, the above opti-
misation becomes

min JLSA αð Þ ¼ minαTKLKα: ð15Þ

3.2. Modified KPCA based on local structure analysis

It can be seen that the standard KPCA optimisation (6) aims at the
global data structure information as it maximally explains the training
data variance, while the optimisation (15) only aims at the local struc-
ture information as it preserves local neighbourhood relationships. For
data analysis and process monitoring application, both local and global
data information are useful, because the global structure defines the
outer shape of the process dataset while the local structure provides
its inner organisation [37]. Our proposed LKPCA approach incorporates
local structure analysis naturally into the KPCA. In order to extract the
maximal training data variance as well as to preserve the local data
structure between neighbouring data points, the optimisation objective
of the LKPCA is tomaximiseαTKKα (for global variance extraction) and



1 The kernelmatrix has to be centred in both row and column to conserve its symmetry
as well as scaled. This is to ensure that the implicitly mapped data ϕ(xi) in the feature
space is mean centred and variance scaled [10].

198 X. Deng et al. / Chemometrics and Intelligent Laboratory Systems 127 (2013) 195–209
tominimiseαTKLKα (for local structure preserving), simultaneously. In
other words, the goal of the proposed LKPCA is to solve the following
optimisation problem

max JLKPCA αð Þ ¼ max
αTKKα
αTKLKα

;

s:t: αTKα ¼ 1:
ð16Þ

The optimal coefficient vector α can be obtained by solving the gen-
eralised eigenvector problem

KKα ¼ λKLKα: ð17Þ

In order to ensure a nonsingular problem, the regularisationmethod
[34] can be used by substitutingKLKwith KLK + δIn in Eq. (17), where
δ is a small positive regularisation parameter and In denotes the n × n
identitymatrix. A set of theennormalised eigenvectorsα1Þ;α2Þ; ⋯;αenÞ re-
lated to the en nonzero eigenvalues can be obtained by solving (17),
whichmeet αiÞ� �T

KαiÞ ¼ 1; 1≤ i≤en. Again, to reduce the dimensional-
ity of the problem, we may only retain the first ens eigenvectors corre-
sponding to the ens most significant eigenvalues. The test scores of a
test vector ϕ(x) are then extracted by projecting ϕ(x) onto the eigen-
vectors fi) = ∑j = 1

n αj
i)ϕ(xj), yielding for 1≤ i≤en or 1≤ i≤ens

ti ¼
Xn
j¼1

αiÞ
j k x; x j

� �
¼ kT

xα
iÞ
: ð18Þ

4. Process monitoring strategy based on the LKPCA

Like any process monitoring scheme, the process monitoring based
on the LKPCA includes two parts: fault detection and fault identification.
Fault detection is to detect if any fault occurs using the LKPCA based
monitoring statistics. When a fault is detected, fault identification is ac-
tivated to identify which process variable is related to the fault.

4.1. Fault detection based on the LKPCA

The standard KPCA-based monitoring often uses two monitoring
statistics, known as the T2 and Q statistics [9,10]. Similarly, these two
monitoring statistics can be built for the LKPCA-based fault detection
and process monitoring. Specifically, the T2 statistic is built to measure
the dominating data variation in the principal component space, and
is defined as

T2 ¼ tTens
S−1tens

; ð19Þ

where the dominating test score vector tens
¼ t1 t2⋯tens

h iT
, correspond-

ing to the first ens significant eigenvalues, is calculated as in Eq. (18),
while S is the covariancematrix of the first ens training score vectors cal-
culated on the training data set. By contrast, the Q statistic is used to
measure the data variability in the residual space, and is defined as

Q ¼
Xen
i¼1

ti
� �2−Xens

i¼1

ti
� �2 ¼ tTenten−tTens

tens
; ð20Þ

where the test score vector ten ¼ t1t2⋯ tenh iT
, corresponding to all the en

nonzero eigenvalues, is also obtained using Eq. (18) and represents all
the test scores.

After the monitoring statistics are obtained, the confidence limit is
calculated to determine whether the process is in normal operating
regions. Typical confidence limits for the KPCA-basedmonitoring statis-
tics are obtained using the F and weighted χ2 distributions [10]. How-
ever, these two distributions may not be suitable for the LKPCA-based
scheme, because of the introduction of local structure analysis. We
propose to use the well-known kernel density estimation method
[17,38–40] to estimate the distribution of a LKPCA-based monitoring
statistic variable, which will enable us to calculate the confidence limits
of the LKPCA-based monitoring statistics. Assume that the monitoring
statistic variable y is governed by an unknown probability density func-
tion (PDF). Given the sample data set {yl}i = l

L of the variable y, the kernel
estimator for its PDF is given by [39,40]

bp yð Þ ¼ 1
hL

XL
l¼1

φ
y−yl
h

� �
; ð21Þ

where h is known as the kernel width, and φ(•) denotes the chosen
kernel function. Typically the Gaussian kernel function φ uð Þ ¼ e−u2=2

=ffiffiffiffiffiffi
2π

p
is used. The value ey, which is defined by

∫ey−∞
bp uð Þdu ¼ 0:95; ð22Þ

provides the 95% confidence limit.
The fault detection procedure includes two stages: off-line model-

ling and on-line detection. In the off-line modelling stage, the normal
operating model is developed by the LKPCA and the confidence limits
of the monitoring statistics are determined. During the on-line detec-
tion stage, new observed data is collected and the on-line monitoring
statistics are calculated to determine whether the process is under the
normal operation condition. The detailed LKPCA-based fault detection
procedure can now be summarised.

The off-line modelling:

1) Acquire the normal operating data matrix XL ¼ x1 x2⋯xL½ �T∈RL�m ,
where L ≥ n and xi = [x1,i x2,i ⋯ xm,i]T. Use a subset Xn p XL,
where Xn ¼ x1 x2⋯xn½ �T∈Rn�m , to compute the sample mean and
variance for each variable

xj ¼
1
n

Xn
i¼1

xj;i;1≤ j≤m; ð23Þ

σ2
j ¼

1
n−1

Xn
i¼1

xj;i−xj

� �2
;1≤ j≤m: ð24Þ

Then, normalise the training data xi for 1 ≤ i ≤ L using the means
x ¼ x1 x2⋯xm½ �T and the variances {σ1

2,σ2
2,⋯,σm

2 } according to

xc−s
i ¼ diag

1
σ1

;
1
σ2

; ⋯; 1
σm

� 	
xi−xð Þ: ð25Þ

2) Compute the n × n kernel matrix K based on Xn
c − s = [x1c − sx2c − s ⋯

xnc − s]T, and then doubly centre as well as scale K according to1

Kc ¼ K−KZn−ZnK þ ZnKZn; ð26Þ

eKc−s ¼
eKc

trace eKc
� �

= n−1ð Þ
; ð27Þ

where Zn is the n × n matrix whose elements are all equal to 1/n.
3) Solve the generalised eigenvalue problem by replacing K with eKc−s

in Eq. (16) to obtain the en nonzero eigenvalues and the correspond-
ing eigenvectors.

4) Calculate the monitoring statistics, T2(l) and Q(l), for each normal
operating data xlc − s, 1 ≤ l ≤ L, according to Eqs. (18) to (20), and
establish the control limits for the monitoring statistics, T2 and Q,
using the kernel density estimators (21) and (22) based on the sam-
ple data {T2(l)}l = 1

L and {Q(l)}l = 1
L .
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The on-line detection:

1) Obtain the new data xnew, and normalise it with the n-sample train-
ing means and variances of them variables, as in Eq. (25) of the off-
line modelling, to obtain xnewc − s.

2) Compute the test kernel vector kxnew ¼ k xc−s
new; x

c−s
1

� �
k xc−s

new; x
c−s
2

� �

⋯

k xc−s
new; x

c−s
n

� ��T , and apply the double centering as well as scaling
to it

ekc
xnew ¼ kxnew−Znkxnew−Kzn þ ZnKzn; ð28Þ

ekc−s
xnew ¼ ekc

xnew

trace eKc
� �

= n−1ð Þ;
ð29Þ

where zn is the n × 1 vector whose elements are all equal to 1/n,
while Zn, K and eKc

are the matrices given in Eq. (26) of the off-
line modelling.

3) Compute the new scores according to (18) by replacing kxwithekc−s
xnew,

and obtain the twomonitoring statistics, Tnew2 andQnew, according to
Eqs. (19) and (20), respectively.

4) The two statistics of the new observed data, Tnew2 and Qnew, are
compared with the corresponding confidence limits. If the upper
control limits are exceeded, an abnormal behaviour of the process
is detected.

4.2. Fault variable identification using the LKPCA-based contribution plot

As in any fault detection scheme, the LKPCA-basedmonitoring chart
only indicates the deviation of the process from normal operating con-
ditions but does not provide information on which process variable is
the root cause of the fault. Once a fault is detected by themonitoring sta-
tistics, it is the task of fault identification to identify fault variables and to
locate root causes, which is a challenging task in fault diagnosis. In the
previousworks [41,42], contribution plot, which identifies the potential
fault variables by calculating their contributions tomonitoring statistics,
has displayed certain effectiveness to identify fault variable for the line-
ar PCA method. In the contribution plot, the variable with the greatest
contribution value to themonitoring statistic usually is the fault source.
However, the traditional linear contribution plot cannot be directly gen-
eralised to a kernel method because of the use of implicit nonlinear
transformation [9]. Although some methods have been developed
based on reconstruction error calculation [12] and virtual scale factor
analysis [11], fault variable identification and source diagnosis is still
an unsolved open problem for nonlinear data-driven fault diagnosis.

In order to identify fault variables for the LKPCA-based diagnosis, we
present a LKPCA contribution plot method which is easy to implement.
The proposed method is inspired by the sensitivity analysis [43], which
calculates the rates of change in the system output variables, resulting
from small perturbations in the problem parameters. For the observed
vector x = [x1 x2, . . . xm]T with them variables, we design the contribu-
tions of the i-th variable xi to the two monitoring statistics, T2 and Q, as

CT2
i ¼ xi

∂T2

∂xi
; ð30Þ

CQi ¼ xi
∂Q
∂xi

: ð31Þ

Combining Eq. (18)with Eqs. (19) and (20), respectively, we can ex-
press T2 and Q as

T2 ¼ kT
xAns

S−1AT
ns
kx; ð32Þ

Q ¼ kT
x AnA

T
n−Ans

AT
ns

� �
kx; ð33Þ
whereAq = [α1)α2) ⋯ αq)], and kxhas been properly centred and scaled
according to Eqs. (28) and (29). Thus, the contributions of xi to T2 and Q
are given respectively by

CT2
i ¼ 2xi

∂kT
x

∂xi
Ans

S−1AT
ns
kx; ð34Þ

CQi ¼ 2xi
∂kT

x

∂xi
AnA

T
n−Ans

AT
ns

� �
kx: ð35Þ

We now discuss a few important issues related to the use of contri-
bution plot. Firstly, we adopt the relative contribution values of each
variable with respect to some normal operating condition. More spe-
cifically, let CTi,normal

2 and CQi,normal denote the contribution values of
the i-th process variable under the normal operation condition con-
sidered. Further define the mean and standard deviation operations,
mean(•) and std(•), as performing over the whole training data set
XL. Then, the relative contributions, whose expressions are given by

RCT2
i ¼

CT2
i −mean CT2

i;normal

� �
std CT2

i;normal

� � ; ð36Þ

RCQi ¼
CQi−mean CQi;normal

� �
std CQi;normal

� � ; ð37Þ

providemore accurate fault isolation than the original contribution plot.
Secondly, the contributions of a process variable, as computed in (36)
and (37), can be positive or negative. The sign of a contribution value
is not important, and it is the absolute value that reflects the influence
of the process variable. Therefore, we use |RCTi2| and |RCQi| in contribu-
tion graph. Thirdly, the contributions, |RCTi2| and |RCQi|, calculated using
one sample x are stochastic, which are influenced by many uncer-
tainties, such as the measurement noise. Therefore, in practical imple-
mentation, we always use RCT2

i

�� �� and |RCQi|, which are the average
values of |RCTi2| and |RCQi| over several fault data samples, in the contri-
bution plot.

5. Simulation study

The proposed process monitoring and fault diagnosis strategy based
on the LKPCA was tested on the well-known Tennessee Eastman (TE)
process [41], and its achievable performance was compared with that
of the benchmark scheme based on the standard KPCA.

5.1. Process description

The TE process was first introduced by Downs and Vogel [44] which
has since been widely used as a benchmark process for comparison of
various process monitoring strategies [18,22,37,44–46]. This process is
from a realistic, standard model of an industrial plant-wide chemical
operation and consists of fivemajor units: a reactor, a condenser, a com-
pressor, a separator, and a stripper. A flowchart of the TE process is illus-
trated in Fig. 1. The process contains 52 monitoring variables which
include 11 manipulated variables (MVs), 22 continuous process mea-
surements, and 19 composition measurements. All the 52 variables
are listed in Table 1. A TE simulator coded by FORTRAN is provided in
http://brahms.scs.uiuc.edu and allows 21 pre-programmed major pro-
cess faults. All these 21 faults are listed in Table 2. The TE simulator pro-
duces 960 observations for normal and each fault operationmodeswith
a sampling interval of 3 min. The data sets for the 21 fault operations as
well as the normal operation can be downloaded from the above
website. All faults are introduced into the process at the 160-th sample.
More detailed description of the TE process can be found in [41].

http://brahms.scs.uiuc.edu


Fig. 1. Flowchart of Tennessee Eastman process.

Table 1
List of the monitoring variables in Tennessee Eastman process.

No. Process variable

1 A feed (stream 1)
2 D feed (stream 2)
3 E feed (stream 3)
4 Total feed (stream 4)
5 Recycle flow (stream 8)
6 Reactor feed rate (Stream 6)
7 Reactor pressure
8 Reactor level
9 Reactor temperature
10 Purge rate (stream 9)
11 Product separator temperature
12 Product separator level
13 Product separator pressure
14 Product separator underflow (stream 10)
15 Stripper level
16 Stripper pressure
17 Stripper underflow (stream 11)
18 Stripper temperature
19 Stripper steam flow
20 Compressor work
21 Reactor cooling water outlet temperature
22 Separator cooling water outlet temperature
23–28 Components A, B, C, D, E and F in stream 6
29–36 Components A, B, C, D, E, F, G and H in stream 9
37–41 Components D, E, F, G and H in stream 11
42 MV for D feed flow (stream 2)
43 MV for E feed flow (stream 3)
44 MV for A feed flow (stream 1)
45 MV for total feed flow (stream 4)
46 MV for compressor recycle valve
47 MV for purge valve (stream 9)
48 MV for separator pot liquid flow (stream 10)
49 MV for stripper liquid prod flow (stream 11)
50 MV for stripper steam valve
51 MV for reactor cooling water flow
52 MV for condenser cooling water flow
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5.2. Results and discussion

The first 300 samples (n = 300) in the process normal-operation
data set were used for model training, and all the 960 normal-
operation data samples (L = 960) were used to test the model perfor-
mance under the normal operation as well as to build the confidence
limits for monitoring statistics. For the purpose of convenient compari-
son, all monitoring statistics were divided by their respective confi-
dence limits so that alarm limits in all plots were equal to 1. Two
criteria were used to compare fault detection performance, which are
Table 2
Tennessee Eastman process fault patterns.

Fault ID Process variable Fault type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C feed ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss-reduced availability

(stream 4)
Step

IDV(8) A, B and C feed compositions (stream 4) Random
variation

IDV(9) D feed temperature (stream 2) Random
variation

IDV(10) C feed temperature (stream 4) Random
variation

IDV(11) Reactor cooling water inlet temperature Random
variation

IDV(12) Condenser cooling water inlet temperature Random
variation

IDV(13) Reaction kinetics Slow shift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16)–(20) Unknown Unknown
IDV(21) Valve position constant (stream 4) Constant

position
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Fig. 2. On-line monitoring charts of the KPCA under Fault IDV(5).
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fault detection time and fault alarming rate. Fault detection time is
defined as the first sample number after previous eight consecutive
samples have exceeded the confidence limit, while fault alarming rate
is defined as the percentage of the alarming samples in all the fault
samples.

When applying the KPCA and LKPCA models to fault diagnosis, the
dimension of the feature space should be determined carefully. Theoret-
ically, the number of nonzero eigenvalues en is equal to the dimension of
the feature space. However, if the number ofmodel training samples n is
very large, the number of nonzero eigenvalues may also be very large.
According to [12], the dimension of the feature space can be determined
as the smallest number of the ordered eigenvalues whose cumulative
sum is above 99.99% of the sum of all the eigenvalues. In the simulation,
we set en to this smallest number. The Gaussian kernel function

k x; yð Þ ¼ e
− x−yk k2

2σ2
k ; x; y∈Rm�1

; ð38Þ

where σk is the kernel width parameter, is a popular choice of kernel
function, and was used in this study. The kernel width σk can be deter-
mined via cross validation. Alternatively, σk is computed according to
the number of the process variables m in some studies of KPCA
[11,12]. In the simulation, we set σk = 20 m for both the KPCA and
LKPCAmodels. Thirdly, it is important to select the number of the dom-
inant principal componentsens properly. Existingmethods of selectingens

include cumulative percent eigenvalue, SCREE test, parallel analysis and
reconstruction error criterion [41], but there is no consensus as which
technique is best. In the simulation, we simply set ens to the number of
the dominant principal components whose cumulative eigenvalue
sum counted to above 90% of the sum of all the eigenvalues. With this
technique, the values of ens for the KPCA and LKPCA were found to be
30 and 42, respectively, using the normal operation data set. Lastly,
the neighbourhood relationship parameter influences the performance
of the LKPCA, and should be chosen appropriately. In our simulation
study, the KNN method was used to construct the adjacency graph
and the value of K was set to 5. The influence of different K values on
the detection performance of the LKPCA model is further discussed in
Subsection 5.3.
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Fig. 3. On-line monitoring charts of
5.2.1. Fault detection performance
The monitoring results for three fault cases, IDV(5), IDV(10) and

IDV(19), are first used to demonstrate the effectiveness of the proposed
LKPCA-based strategy. Fault IDV(5) is a step change in the condenser
cooling water inlet temperature. The monitoring results obtained
using the KPCA method under Fault IDV(5) are shown in Fig. 2, where
the T2 and Q monitoring statistics are plotted as solid curves, while the
confidence limits are represented by dashed lines. The Q statistic of
the KPCA model detects Fault IDV(5) at the 161-th sample and its T2

statistic detects the fault at the 171-th sample. However, these two sta-
tistics return to below their confidence limits after around the 348-th
sample. This is because there exists a feedback control loop for the con-
denser cooling water outlet temperature, and the feedback control at-
tempts to compensate the step disturbance in the condenser cooling
water inlet temperature. The KPCA-based monitoring statistics shown
in Fig. 2, therefore, give a mistaken information that the fault has
disappeared after the 348-th sample, while in fact, this fault does not
disappear but is only hidden. With the application of the LKPCA, the
resulting monitoring charts are plotted in Fig. 3, where it can be seen
that both the LKPCA-based T2 and Q statistics exceed their thresholds
from the 161-th sample. Moreover, the LKPCA-basedmonitoring statis-
tics correctly indicate the existence of a fault throughout thewhole fault
operation period, and this clearly demonstrates that the LKPCA-based
method is more effective than the KPCA for detecting Fault IDV(5).

The detection results obtained by theKPCA and LKPCAmodels under
Fault IDV(10) are plotted in Figs. 4 and 5, respectively. Fault IDV(10) in-
volves the random variation of C feed temperature. From Fig. 4, we can
see that Fault IDV(10) is detected by the KPCA-based T2 and Q statistics
at the 244-th sample and 208-th sample, respectively. By comparison,
the LKPCA performs better and its two statistics detect the fault at the
same 184-th sample. From the detection results under Fault IDV(10),
it can be seen that the LKPCA is more sensitive than the KPCA in fault
detection.

Due to the proprietary reason, Fault patterns IDV(16) to IDV(20)
were not disclosed, and only the fault data sets were provided. When
the KPCA was applied under Fault IDV(19), the results are shown in
Fig. 6, where it can be seen that the T2 and Q monitoring statistics vary
around the confidence limits with the poor fault alarming rates of
15.88% and 24.75%, respectively. Clearly, the KPCA-based method
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the LKPCA under Fault IDV(5).
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Fig. 4. On-line monitoring charts of the KPCA under Fault IDV(10).
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Fig. 5. On-line monitoring charts of the LKPCA under Fault IDV(10).
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Fig. 6. On-line monitoring charts of the KPCA under Fault IDV(19).
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cannot detect Fault IDV(19) confidently. In comparison, the monitoring
charts obtained by the LKPCA method under Fault IDV(19), depicted in
Fig. 7, show that the LKPCA-based T2 and Q statistics clearly detect Fault
IDV(19) at the 192-th sample and the 170-th sample, respectively, with
the corresponding fault alarming rates of 68.75% and 72.63%. This again
demonstrates the superiority of the LKPCA-based fault detection meth-
od over the standard KPCA-based one.

Next we summarise the fault detection performance for all the 21
fault cases in Tables 3 and 4, in terms of fault alarming rate and fault de-
tection time, respectively. In terms of achievable fault alarming rates
given in Table 3, we observe that both the KPCA-based and LKPCA-
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Fig. 7. On-line monitoring charts of
based schemes provide similar good fault detection performance for
Faults IDV(1), IDV(2), IDV(4), IDV(6), IDV(7), IDV(8), IDV(12),
IDV(13), IDV(14), and IDV(18). However, the two methods both per-
form poorly for Faults IDV(3), IDV(9), and IDV(15). The previous
works [15,41] have also found that these faults prove to be difficult for
data-driven detection methods because there are no observable
changes in the mean or the variance of these fault data sets. For Faults
IDV(5), IDV(10), IDV(11), IDV(16), IDV(17), IDV(19), IDV(20), and
IDV(21), the proposed LKPCA method improves the detection perfor-
mance over the standard KPCA method considerably. For these eight
fault patterns, the average fault alarming rates achieved by the KPCA
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the LKPCA under Fault IDV(19).



Table 3
Comparison of the fault alarming rates (%) achieved by the KPCA and LKPCA methods.

Fault ID KPCA LKPCA

T2 Q T2 Q

IDV(1) 99.38 99.75 99.75 99.63
IDV(2) 98.75 98.50 98.75 98.75
IDV(3) 6.63 8.25 5.50 9.38
IDV(4) 64.38 100.00 99.13 89.88
IDV(5) 30.88 35.50 100.00 100.00
IDV(6) 99.25 100.00 100.00 100.00
IDV(7) 100.00 100.00 100.00 92.25
IDV(8) 97.50 98.00 98.00 96.63
IDV(9) 7.13 7.13 3.88 9.00
IDV(10) 49.50 61.25 85.00 82.75
IDV(11) 60.25 63.50 72.75 56.25
IDV(12) 98.75 97.13 99.63 99.75
IDV(13) 94.63 95.63 95.50 95.63
IDV(14) 99.88 99.88 100.00 99.88
IDV(15) 9.88 9.50 9.50 10.00
IDV(16) 31.63 59.75 88.00 80.75
IDV(17) 81.50 95.00 91.38 97.00
IDV(18) 89.38 90.75 90.00 90.63
IDV(19) 15.88 24.75 68.75 72.63
IDV(20) 42.25 56.75 73.63 80.88
IDV(21) 48.75 53.50 59.63 47.13

Table 4
Comparison of the fault detection time (sample number) achieved by theKPCA and LKPCA
methods.

Fault ID KPCA LKPCA

T2 Q T2 Q

IDV(1) 167 163 163 166
IDV(2) 171 173 171 175
IDV(3) – – – –

IDV(4) 272 161 161 163
IDV(5) 171 161 161 161
IDV(6) 167 161 161 161
IDV(7) 161 161 161 162
IDV(8) 183 177 177 182
IDV(9) 161 – – –

IDV(10) 244 208 184 184
IDV(11) 207 167 167 216
IDV(12) 167 163 163 163
IDV(13) 206 197 197 203
IDV(14) 161 162 161 162
IDV(15) 935 – 911 –

IDV(16) 356 175 167 169
IDV(17) 189 182 185 182
IDV(18) 249 244 244 244
IDV(19) – – 192 170
IDV(20) 247 245 231 227
IDV(21) 435 409 399 666

Note: – indicates that this fault cannot be detected with the monitoring statistic considered.
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Fig. 8.Comparison of the average fault alarming rates achievedby theKPCAand LKPCA schemes
IDV(21), and (b) average over all the 21 fault cases.
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and LKPCA are compared in Fig. 8(a), while the average fault alarming
rates of the two methods over all the 21 fault patterns are compared
in Fig. 8(b). The results of Fig. 8 clearly demonstrate that the LKPCA
based method on average produces higher fault alarming rate and can
detect faults more effectively, in comparison with the standard KPCA
method. From Table 4, it can be seen that the LKPCA based method
has shorter fault detection times for Faults IDV(10), IDV(15), IDV(16),
IDV(19), IDV(20), and IDV(21), than the KPCA based method. For the
other fault patterns except for Fault IDV(9), both the LKPCA and KPCA
schemes achieve similar detection performance. Thus, it can be conclud-
ed that the LKPCA based monitoring scheme performs better than the
KPCA based one for the TE process.

5.2.2. Fault identification performance
After a fault is detected, it is important to identify the process vari-

ables that cause the fault and potentially to help removing the fault. It
should be emphasised that nonlinear data-driven fault variable identifi-
cation is an unsolved open problem. We investigated the potential of
the new LKPCA-based contribution plot for fault identification using
Faults IDV(4) and IDV(6) as two examples.

The LKPCA-based monitoring charts under Fault IDV(4), depicted
in Fig. 9, indicated that the T2 statistic detected this fault at the 161-th
sample. The LKPCA-based T2 and Q contribution plots are illustrated in
Fig. 10 for the fault variable identification, where the contribution
value was averaged over the 161-th to 165-th samples. From Fig. 10, it
can be seen that the largest contribution to both the T2 and Q contribu-
tion plots comes from theNo.51 variablewhich corresponds to the reac-
tor cooling water flow valve. With the help of this indication, operator
can quickly inspect the trend of the reactor cooling water flow valve
which is given in Fig. 11. From Fig. 11, we can see a clear change in
the reactor cooling water flow valve which involves the control loop
for the reactor temperature. Operator can further check the related
variables, such as the reactor cooling water inlet temperature and reac-
tor cooling water inlet flow, that may cause this change. In fact, Fault
IDV(4) results from the reactor cooling water inlet temperature. Be-
cause the reactor cooling water inlet temperature is not included in
the monitoring variable set, the contribution plots correctly indicate
the related reactor cooling water flow valve as the fault variable. There-
fore, the contribution plots of Fig. 10 provide a correct and effective
diagnosis of Fault IDV(4).

Fault IDV(6) involves the component A feed loss in stream 1. This
fault was detected quickly at the 161-th sample by the LKPCA-based
T2 and Q charts, as shown in Fig. 12. Average contribution values over
the 161-th to 165-th samples are plotted in Fig. 13. Both the No.1 and
No.44 variables show the highest contribution to this fault. From
Table 1, we can see that the No.1 variable is the component A feed in
stream 1 and the No.44 variable is the component A feed flow valve in
stream 1. Obviously these two variables are connected closely and we
can conclude that the fault variable is closely linked to the component
T2 Q
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Fig. 9. On-line monitoring charts of the LKPCA under Fault IDV(4).
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Fig. 10. Fault identification using the LKPCA-based T2 and Q contribution plots under Fault IDV(4).
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Fig. 11. The trend of No.51 variable under Fault IDV(4).
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Fig. 12. On-line monitoring charts of the LKPCA under Fault IDV(6).
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Fig. 13. Fault identification using the LKPCA-based T2 and Q contribution plots under Fault IDV(6).
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Fig. 14. The trends of No.1 and No.44 variables under Fault IDV(6).
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Fig. 15. On-line monitoring charts of the KPCA under Fault IDV(4).
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Fig. 16. Fault identification using the KPCA-based T2 and Q contribution plots under Fault IDV(4).
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Fig. 17. On-line monitoring charts of the KPCA under Fault IDV(6).
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Fig. 18. Fault identification using the KPCA-based T2 and Q contribution plots under Fault IDV(6).
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A feed. The trends of both the No.1 and No.44 variables are plotted in
Fig. 14. It is clear that the fault identification results correctly reflect
the changes of these two variables, which is consistent with the real
fault source.

As mentioned in the Introduction section, two fault identification
methods were proposed in [11,12] for the KPCA based fault diagnosis.
The ideapresented in [12] is to use variable reconstruction error to iden-
tify fault variable, and this method needs the recursive iteration for the
reconstructed value of each sample. The method proposed in [11] mea-
sures the contribution of each variable using a virtual scale factor meth-
od which involves the calculation of a matrix trace for each sample.
These twomethods are very complex and time-consuming. By contrast,
our new contribution plot approach proposed in Subsection 4.2 is com-
putationally very simple and extremely easy to implement. Moreover,
our contribution plot method is very general, and is equally applicable
to the KPCA-based scheme. To demonstrate this, we also applied our
method to calculate the KPCA-based T2 and Q contribution plots for
fault identification of Faults IDV(4) and IDV(6).

The KPCA-based monitoring charts under Fault IDV(4) are
depicted in Fig. 15, where it can be seen that the KPCA-based Q sta-
tistic detected this fault at the 161-th sample. Our contribution plot
method of Subsection 4.2 was then used to calculate the KPCA-
0 10 20 30
40

60

80

100

Number of neares

0 10 20 30
Number of neares

0 10 20 30
Number of neares

LK
P

C
A

 P
er

fo
rm

an
ce

 (
%

)

70

80

90

100

110

LK
P

C
A

 P
er

fo
rm

an
ce

 (
%

)

80

85

90

95

LK
P

C
A

 P
er

fo
rm

an
ce

 (
%

)

(a) The result under Fault IDV(4)

(b) The result under Fault IDV(5)

(c) The result under Fault IDV(17)

Fig. 19. The LKPCA-based monitoring performance in terms of the avera
based T2 and Q contribution plots, which are shown in Fig. 16, where
the average contribution value over the 161-th to 165-th samples was
used. The KPCA-based monitoring charts under Fault IDV(6) given in
Fig. 17 shows that the KPCA-based Q statistic indicated a fault at the
161-th sample. The KPCA-based T2 and Q contribution plots, averaged
over the 161-th to 165-th samples, were then constructed and shown
in Fig. 18. The fault identification results of Figs. 16 and 18 are similar
to those of Figs. 10 and 13. More specifically, the quality of the LKPCA-
based T2 contribution plot is slightly better than that of the KPCA-
based T2 contribution plot in these two cases. These results confirm
that our contribution plot approach for fault identification is a general
one, suitable for both the KPCA and LKPCA.

Although the above simulation results have demonstrated the po-
tential of our contribution plot technique in locating fault variables,
the power of this technique should not be overstated. For complex
fault cases, it is likely that many process variables will be involved and
these variables may interact in complicated ways. Therefore, many var-
iablesmay exhibit high contribution values, and it may become difficult
to identify real fault variables using the proposed contribution plots.
Clearly, further study is warranted to refine the proposed contribution
plot approach or to develop alternatives for effectively locating the
fault source in complex fault modes.
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Fig. 20. The LKPCA-based monitoring performance in terms of the average fault alarming rate of T2 and Q statistics, averaged over all the 21 fault cases.

208 X. Deng et al. / Chemometrics and Intelligent Laboratory Systems 127 (2013) 195–209
5.3. Selection of K value for adjacency graph

In the LKPCA-based monitoring, the value of K is an important pa-
rameter in determining theweightingswi,j in the optimisation objective
function of local structure analysis. If K is set to zero or a too small value,
the LKPCA optimisation process will not consider the local structure
analysis or will consider the local structure of the data set insufficiently.
By contrast, if K is set to a too large value, the LKPCA optimisation pro-
cess will over-emphasise the importance of the local structure in the
data set. Clearly, there exists an optimal choice ofK value, which is prob-
lem dependant.

In our simulation study of the TEprocess,we choseK = 5empirically.
To elaborate further, this valuewas determined after an experiment of in-
vestigating the influence of K to the LKPCA-based monitoring perfor-
mance, in terms of the average fault alarming rate of T2 and Q statistics.
In particular, the value of K was set to 1, 3, 5, 7, 12, 20, 50 and 80, and
the average fault alarming rates of T2 and Q statistics obtained under
Faults IDV(4), IDV(5) and IDV(17) are shown in Fig. 19(a),(b) and (c),
respectively. It can be seen that the best K values were K = 3, K ≥ 3
and K = 5 under Faults IDV(4), IDV(5) and IDV(17), respectively. The
average LKPCA-based monitoring performance over all the 21 fault
cases was further investigated in Fig. 20, where it can be seen that the
best choice of K was K = 5 on average.
6. Conclusions

A modified kernel principal component analysis, referred to as the
LKPCA, has been proposed for process monitoring and fault diagnosis.
Our novel contribution has been to integrate the local structure analysis,
which is also important for process monitoring and fault diagnosis,
into the global optimisation of the standard KPCA technique naturally.
Monitoring statistics based on the proposed LKPCA method have been
derived for fault detection. Extensive simulation results obtained on
the Tennessee Eastman benchmark process have demonstrated that
the proposed LKPCA method outperforms the standard KPCA method
significantly, in terms of fault detection performance. Furthermore, a
contribution plot technique has been developed based on sensitivity
analysis of the LKPCA monitoring statistics to identify fault variables.
This fault identification technique is computationally very simple and
easy to implement, and its potential in locating fault source has been
demonstrated in the simulation study. Moreover, the proposed contri-
bution plot approach has been shown to be a general method, equally
applicable to the standard KPCA based fault diagnosis.

Fault source diagnosis is the most difficult and challenging problem
in nonlinear data-driven fault diagnosis, and identifying fault variables
in complex fault modes remains an unsolved open problem. Future
study is warranted to further enhance the proposed contribution plot
approach and to develop more effective fault identification techniques.
In particular, it is worth investigating an alternative fault identification
approach based on the method of [47,48].
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