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ABSTRACT 

An experimental study has been conducted to validate theoretical solutions for the response of 

a base excited single degree-of-freedom isolation system possessing pure cubic damping. The 

cubic damping characteristic was implemented using an electromagnetic shaker with a simple 

non-linear velocity feedback control. The rig and practical implementation of the active 

damping are described. The base excitation was harmonic at a set of discrete frequencies with 

constant displacement amplitude. Consistent with theoretical predictions, the isolation per-

formance at high excitation frequencies is shown to be worse than either the undamped or 

linear viscously damped isolation system with the displacement transmissibility tending to 

unity. This is contrary to the case of force excitation reported in the literature where cubic 

damping offers improved performance. The physical causes of the distinct behaviours and the 

consequences for isolator design are discussed. 

1. INTRODUCTION 

Vibration isolation is introduced to a mechanical system in order to reduce the severity of the 

response of the system caused by sources of vibration. The isolation system is often modelled 

as a single degree-of-freedom (SDOF) system. The stiffness and damping, which represent 

the physical isolation element, are commonly assumed to be linear and working in parallel to 

each other. These components are also assumed to be massless compared to the actual mass of 

the system. The assumption of linearity is convenient and often valid for low amplitude re-

sponse. 

However, in reality, the stiffness and damping components are non-linear in some aspects. 

Here passive non-linear damping is introduced into the isolation model. The non-linear damp-

ing in this study is characterized by a polynomial of the odd power expansion in terms of the 

velocity. This type of damping characteristic is said to be an anti-symmetric. The applications 

of the anti-symmetric non-linear damping in the force excited isolation model subject to har-

monic excitation were reported to be beneficial to the system. For example, Jing et al. [1] 

included anti-symmetric nonlinear damping into the SDOF force excited isolation model. The 

powers of the velocity were 1 and 3, which is the combination of linear viscous and cubic 

damping. The frequency domain analysis carried out by the Volterra series expansion was 

verified by simulation. The results revealed that the cubic damping provides a significant re-
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duction in the response at the natural frequency but has no effect on the response for the high 

excitation frequencies.  

Peng et al. [2] studied the effect of anti-symmetric damping on the force excited isolation 

system for which the powers of velocity were a combination of 1, 3 and 5. The theoretical 

analysis and the numerical verification revealed that the presence of the non-linear terms re-

sults in a reduction of the responses around the resonance frequency and isolation region. The 

most recent experimental works were reported by Laalej et al. [3] and [4]. The cubic damping 

was incorporated for the case of force excited isolation. The experimental results showed a 

good agreement, the benefit of cubic damping being to reduce the transmitted force for high 

frequency excitation. Moreover, Tang el al. [5] introduced geometrically nonlinear damping 

where the viscous damping was orientated at 90° to the spring. For the case of force excita-

tion, the response for such a system was comparable to that for the conventional system with 

cubic damping. 

The use of cubic damping for base excited isolation has also been widely studied. For ex-

ample, Shekhar et al. [6] studied a variety of isolator and absorber models subject to shock 

excitation. The SDOF system subject to base excitation was one of the models studied. The 

authors concluded that, in this case, cubic damping is detrimental to the system since the level 

of response increased with increasing input severity. Kovacic et al. [7] and Milovanovic et al. 

[8] applied the method of averaging to obtain the theoretical solution for harmonic base exci-

tation. Only the cubic form of damping was included in the isolation model. The results 

showed a higher level for the displacement transmissibility tending towards unity as frequen-

cy increases. Peng et al. [9] examined both the force and base excited isolation model 

possessing linear plus cubic damping using the harmonic balance method. They concluded 

that the influence of cubic damping is dependent on the type and strength of the excitation 

input. 

In addition, the present authors studied the effect of cubic damping in the application of an 

automotive vehicle suspension model [10]. The effect of cubic damping was investigated in 

both SDOF and 2-DOF quarter-car models in comparison to that of the SDOF force excited 

isolation model. It was found that cubic damping produces reduction of the force transmissi-

bility in the isolation region. Conversely, for the case of base excitation, the cubic damping 

causes a high level of displacement transmissibility towards unity as the excitation frequency 

increased. According to the response of the SDOF base excitation, the response of the sprung 

mass around the wheel-hop mode for the 2-DOF model was found to be higher and broader. 

This behaviour was known to result from the cubic damping. 

As far as the present authors are concerned, there has not been any experimental validation 

of the effect of cubic damping on the base excited isolation system. Thus the effect of cubic 

damping for the vibration isolator under harmonic excitation was investigated experimentally 

and is reported in this paper. 

2. THEORETICAL BACKGROUND 

The dynamic behaviour of a SDOF base excited isolation system possessing cubic damping 

has been studied. A dynamical model used in this study is shown in Figure 1. The damping 

component is the combination of linear viscous and cubic damping. An equation of motion 

for the model is given by 
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where z  is the relative motion between the isolated mass, x , and the base excitation, 0x  and 

is defined by 0z x x= − . 

 



 

 

 
Figure 1. A single degree-of-freedom (SDOF) base excited isolation model with the 

combination of linear viscous 1c  and cubic damping 3c  and linear stiffness k . 

 

The harmonic base excitation is given as ( )0 0 cosx X tω φ= −  where 0X  is the amplitude 

of excitation, ω  is the angular excitation frequency. By introducing the non-dimensional pa-

rameters, i.e. 
n

ω

ω
Ω =  and ntτ ω= , equation (1) can be written in non-dimensional form with 

input normalisation as 
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where u  is the normalised relative motion given by 0z uX= . 0w′′  is the normalised accelera-

tion of the base given by 2

0 0 0x w Xω ′′=�� . The non-dimensional form of the cubic damping term 

in equation (2) is given by 
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Equation (3) indicates that the value of the non-dimensional cubic damping term varies 

with the amplitude of the input displacement squared. Approximate solutions for such a model 

were reported in the literature using a variety of methods. For example, the concept of output 

frequency response functions (OFRFs) was applied, see  [2] and [11], or the method of aver-

aging was applied in [7] and [8]. Here the approximate solution for equation (2) with 1ζ  = 0 

are obtained using the harmonic balance method and is given by 
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where  U  is the normalised amplitude of the relative motion, 21A = − Ω  and 3

3

3

4
B ζ= Ω . The 

normalised absolute motion of the isolated mass is subsequently determined from 
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The approximate result shown in equation (5) is plotted numerically in comparison with 

the experimental results later in section 5. In addition, the approximate solution obtained was 

analysed analytically for four excitation frequency regions. The analytical approximations are 

briefly shown in Table 1. These results represent the displacement amplitude ratio of an iso-



 

 

lated mass and a base excitation. Thus a term amplitude ratio is used throughout this paper. 

The results for the linear viscously damped system are listed for comparison with those for 

the cubic damping system. These analytical results will be compared and discussed with the 

experimental results in section 5. 
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Table 1 :  Approximate expressions of the amplitude ratio in four excitation  

frequency regions where T  is the amplitude ratio for the linear  

viscously damped system and W is the amplitude ratio for the pure cubic 

damping system when 1ζ  = 0. 

 

3. EXPERIMENTAL RIG DESIGN AND SET UP 

An experimental rig was designed as a simple SDOF base excitation system. The damping 

component was implemented using an electromagnetic shaker LDS model V101. Initially, an 

isolated mass was considered to be an assembly of a shaker and a mounting plate and was 

supported by two helical springs as shown in Figure 2 (a).  
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Figure 2.  (a) The experimental rig for a SDOF base excited isolation system and  

(b) dynamical representation of the experimental system. 

  

Figure 2 (b) shows that the isolated mass is also supported by the suspension of the shaker. 

Thus an axial stiffness of the shaker is included into the total stiffness of the system. The ap-

proximate stiffness values of the helical spring and axial stiffness of the shaker are provided 
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in the specifications which are 1.00 kN/m and 3.15 kN/m respectively. Hence the total stiff-

ness for the vertical direction is about 5.15 kN/m, and the frequency of the bounce mode 

could be estimated.  

For the steel helical spring which is placed between two flat and parallel surfaces, internal 

resonances can be expected. These frequencies can be estimated by [12] 
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where hk  is the static stiffness of a helical spring  and hm  is the mass of the helical spring. 

These parameters are respectively given by 
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where G  is the shear modulus, d  is the wire diameter, D  is the mean diameter of the coil, 

L
N  and N are the number of loaded coils and complete coils respectively and ρ is the densi-

ty of the spring material. The predicted frequency for the first internal resonance is 204 Hz. 

Thus the most suitable frequency range for the measurement should be lower than this fre-

quency. 

In addition, the lowest frequency for the measurement is limited by the ability of the 

equipment, e.g. accelerometers and power amplifiers. Some equipment cannot perform very 

well for very low frequency. The low frequency limit was initially desired to be 5 Hz. Then 

the bounce frequency was chosen to be about 10 Hz. Thus a total mass of 1.3 kilograms for 

the isolated mass was required.  

Moreover, as the isolated mass was being supported by the two helical springs, there 

should exist a pitch frequency. The frequency of the pitch mode is dependent upon the dis-

tance between the centres of the two helical springs. Thus the distance between the centres of 

two helical springs was designed to produce a corresponding pitching frequency lower than 

5 Hz. The mounting plate was then manufactured and the complete experimental rig is as 

shown in Figure 2 (a). Figure 2 (b) illustrates how the isolated mass is suspended.  

The frequency response of the rig without any additional active damping appeared to re-

semble well the SDOF system in the frequency range of 7-100 Hz, as shown in Figure 3 with 

no noticeable contribution due to the pitching mode. The appearance of small peak around 20 

Hz is likely to be an additional rigid body mode, possibly a rolling mode. The symmetric de-

sign of the experimental rig produced, as far as possible, uncoupled rigid body modes for the 

mounting plate. The occurrence of the resonance peaks around 200 Hz were identifiable as the 

internal resonances of the isolator springs.  

The bounce mode natural frequency and passive damping ratio were determined from the 

measured transfer functions. These parameters were calculated using two different tools, i.e. 

the circle fit method [13] and the MATLAB function ‘invfreqs’ [14]. The calculated bounce 

natural frequency was about 11 Hz and the corresponding linear viscous damping ratio was 

about 0.04. The plot shown in Figure 3 includes the mathematical estimation of the linear sys-

tem which fits the experimental data reasonably well. 

A mathematical estimation of the linear system shown in Figure 3 was initially obtained 

using the model illustrated in Figure 1. The equation of motion for such a model can be repre-

sented by a simple SDOF vibration isolation system. To incorporate the dynamics and the 



 

 

mass of the base, for the experimental rig shown in Figure 2 (b), the system is represented us-

ing a two degree-of-freedom (2DOF) system. The equations of motion are given by 

 

 ( ) ( )( )0 0 0 1 0 1s h s d e
m x c x x k k x x f f+ − + + − + =�� � �  (9) 
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s h s d
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where 0m  is the mass of the base excitation, 1m  is the isolated mass, s
c  is the passive damp-

ing coefficient for the shaker suspension, s
k  is the stiffness of the shaker suspension, h

k  is the 

total stiffness of the helical springs, d
f  is the damping force to be produced or additional 

damping force and e
f  is an external force applied to the base. 

 

 
Figure 3.  Displacement amplitude ratio of the SDOF base excited isolation  

system subject to white noise (0–20 kHz) with no damping control;          

(     ) experimental results, (     ) a fit to the data using a SDOF linearly 

damped model 

 

In order to simulate an additional damping characteristic such as linear damping or cubic 

damping, a feedback control unit was required. The control process was implemented using 

velocity feedback control. The control diagram is shown in Figure 4. The velocity signals of 

the base excitation and isolated mass were obtained from the charge amplifiers which inte-

grated the acquired acceleration signals. The relative velocity was calculated within the 

control unit. The control unit has the ability to process an arbitrary damping configuration, in 

this instance linear and cubic damping configurations were considered. The data processing 

unit sampled the signal at a sample rate of 6 kHz. As a result, with the highest excitation fre-

quency of 100 Hz, there was no effect from the delay of the feedback signals. 
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Figure 4.  Block diagram of the feedback loop; x��  and 0x��  are acceleration, x�  and 0x�  

are velocity of the isolated mass and base input, α  and A  are the gains 

from the charge amplifier and shaker amplifier respectively 
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4. EXPERIMENTAL CONDITIONS 

As mentioned in the previous section, the data processing unit is able to produce an arbitrary 

damping characteristic. The additional linear damping and cubic damping were respectively 

produced as in this case study. The excitation for both cases was considered initially as a set 

of discrete frequencies ranging from 7-100 Hz with constant displacement amplitude. Two 

amplitude levels were chosen for the applied displacement excitation, i.e. 0.04 mm and 0.06 mm.  

The maximum excitation amplitude was calculated referring to the response of the passive 

system as shown in Figure 3. The level of amplitude ratio around resonance is about 20 dB 

hence the amplitude of the isolated mass would be about 10 times higher than the amplitude 

of the input. The peak to peak displacement of the active damper is limited to 2.5 mm. To 

avoid damage and unwanted force from the end-stop, the peak to peak amplitude of relative 

displacement was considered to be less than 50% of the limitation. Thus the peak to peak rela-

tive displacement should not exceed 1.25 mm. Therefore an input amplitude of 0.06 mm was 

chosen. This level of the input amplitude resulted in a peak to peak relative displacement of 

around 1.24 mm. However, practically, a constant input amplitude of 0.06 mm for the excita-

tion frequencies higher than 80 Hz could not be achieved. This was limited by the base shaker 

excitation. Thus the maximum excitation frequency was set to 80 Hz. 

The measurements for both linear and cubic damping cases were done in two separate sce-

narios, namely when (a) the input base amplitude was specified and controlled and when (b) 

the damping level was specified and controlled. For the first scenario, for a given fixed value 

of damping the amplitude of the base displacement was chosen to be at two different levels. 

Case (b) was done by exciting at one constant level for the base displacement input and se-

lecting the level of the damping. In order to obtain reasonable results, the peak values of the 

amplitude ratio (transmissibility) around resonance were chosen to be approximately 15 dB 

for lower damping and 10 dB for higher damping. By doing this the effect of cubic damping 

can be distinguished from the case of the linearly damped system for the given peak levels. 

5. IMPLEMENTATION OF ADDITIONAL DAMPING AND RESULTS 

The results obtained from the measurements are described in the format of the displacement 

amplitude ratio. This quantity represents the ratio of the displacement amplitude between the 

isolated mass and base excitation. The amplitude ratio for the experimental results can be con-

structed using either root mean square (RMS) values or the Fourier coefficients at the 

excitation frequency. Both quantities can be calculated from the acquired time histories. 

However, the reader might note that, in this paper, only the amplitude ratio constructed using 

Fourier coefficients at the excitation frequencies are used. The plots of these two quantities 

were very similar in the frequency range of interest and the comparison between these plots is 

omitted for brevity. 

5.1 Linear damping implementation 

The response for the system without an additional or active damping is described in Section 3. 

It is seen that the system has an apparent passive damping which is equivalent to a linear vis-

cous damping ratio of 0.04. In this section, the responses when the active linear damping was 

implemented are shown. The active linear damping was built up using velocity feedback ac-

cording to the control schematic shown in Figure 4. The amplitude of the gain Aα  represents 

the value of damping coefficient. Adjusting the gain Aα  yields the change of the amplitude 

ratio. In this experiment, the level of the amplitude ratio around resonance frequency was 

fixed at two levels as mentioned in Section 4. 

Theoretically, the change in amplitude of the input does not affect the amplitude ratio of 

the linear system as long as the value of damping is constant. The level of the amplitude ratio 

at resonance for the linearly damped system depends only upon the value of the damping ra-

tio. Figure 5 (a) shows the plots of the amplitude spectra for the fixed higher value of 



 

 

damping but two different excitation levels, i.e. 0.04 mm and 0.06 mm. Figure 5 (b) shows the 

amplitude ratios obtained from both excitation levels in comparison with the theoretical esti-

mation. These plots clearly show that, for the linearly damped system, the amplitude of input 

excitation does not have an influence on the amplitude ratio.  

   
 (a) (b) 

Figure 5.  Plots of the measured base and isolated mass displacement amplitudes and 

the transmissibility (amplitude ratio) for linearly damped isolation at two ex-

citation amplitudes and discrete frequency excitation. (a) Amplitude spectra 

and (b) Displacement amplitude ratio. ���� represents the responses for the 

0.04 mm excitation, ���� response for the 0.06 mm excitation, (     ) base dis-

placement excitation, and (     ) theoretical result with 1ζ  ≈ 0.18. 

 

For the second scenario, the amplitude of excitation was kept constant at 0.04 mm but the 

value of damping was adjusted for two different values corresponding to the peaks values of 

the amplitude ratio. The amplitude ratios are plotted in comparison to the theoretical estimate 

as shown in Figure 6. These are consistent with the theoretical results listed in Table 1 which 

show that increasing the value of damping reduces the response around resonance but raises 

the level of the amplitude ratio in the isolation region. This is the classic characteristic of line-

ar viscous damping.  

   
 (a) (b) 

Figure 6.  Plots of the measured base and isolated mass displacement amplitudes and 

the transmissibility (amplitude ratio) for linearly damped isolation at one ex-

citation amplitude (0.04 mm) for two levels of linear damping and discrete 

frequency excitation. (a) Amplitude spectra and (b) Displacement amplitude 

ratio. • represent response for lower damping, ���� response for the higher 

damping, (     ) base displacement excitation and (     ) theoretical results. 
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5.2 Cubic damping implementation 

The cubic damping was set up by raising the relative velocity to the power of three. The cubic 

damping coefficient was determined by the amplifier gain. The cubic damping was added to 

the system as an additional damping to the linear passive damping of the system. The meas-

urements were done in the same way as that for the case of the linearly damped 

configurations. The values of the cubic damping terms were determined by referring to the 

levels of the response around resonance, i.e. around 15 dB re 1 and 10 dB re 1 for lower and 

higher damping respectively.  

The experimental investigation into the effect of cubic damping began by increasing the 

displacement amplitude of the base excitation. The displacement amplitude was increased to 

be 0.06 mm, whilst the lower value of cubic damping coefficient was applied. The amplitude 

spectra for the two different base displacement input excitation levels are shown in Fig-

ure 7 (a). Apparently the amplitude spectrum of the response for the higher excitation 

amplitude is higher. This appeared similar to that for the case of linearly damped system in 

which the higher excitation amplitude results in a higher level of response.   

However, considering the plot of the amplitude ratios as shown in Figure 7 (b), it is seen 

that these ratios are different. The amplitude ratio for the higher excitation amplitude ap-

peared to be lower in the region of resonance frequency and higher for the high excitation 

frequencies above resonance. It can be concluded that increasing excitation amplitude results 

in a higher value of effective cubic damping. This is consistent with the theoretical expression 

given in equation (3) which shows that the non-dimensional cubic damping is proportional to 

the excitation amplitude squared. As a result that the effective value of cubic damping is de-

fined by the excitation amplitude, the response of the system is also dependent on the 

excitation amplitude. 

 

   
 (a) (b) 

Figure 7. Plots of the measured base and isolated mass displacement amplitudes and 

the transmissibility (amplitude ratio) for the cubic damped isolation at two 

excitation amplitudes (0.04 and 0.06 mm) for one level of cubic damping 

and discrete frequency excitation.  (a) Amplitude spectra of base excitation 

and isolated mass and (b) Displacement amplitude ratio. ���� represent re-

sponse for the 0.04 mm, ���� response for the 0.06 mm excitations, (     ) base 

displacement excitation and (     ) theoretical responses. 

 

The amplitude spectra of responses for the system with two different values of cubic damp-

ing coefficient subject to constant input amplitude of 0.04 mm are plotted in Figure 8 (a). 

These results fit fairly well the approximate solution obtained using equations (4) and (5). 

Figure 8 (b) shows the plots of amplitude ratio in comparison with the linearly damped re-

sponses. These plots show that for a similar level of the response around resonance, the 
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responses for the systems with cubic damping appeared to be higher than those for the linearly 

damped system in the isolation region. 

This is also shown by the approximate expressions listed in Table 1 as for 1Ω� . For high-

er excitation frequencies the displacement amplitude ratio tends towards unity. The value of 

the cubic damping controls the rate at which the response increases, i.e. a higher value of the 

cubic damping coefficient causes a more rapid increase towards a displacement ratio of unity.  

 

    
 (a) (b) 

Figure 8.  Plots of the measured base and isolated mass displacement amplitudes and 

the transmissibility (amplitude ratio) for the cubic damped isolation at one 

excitation amplitude (0.04 mm) for two levels of cubic damping and discrete 

frequency excitation.  (a) Amplitude spectra and (b) Displacement amplitude 

ratio. ���� responses for lower level cubic damping, • responses for higher cu-

bic damping, (     ) base excitation, (     ) theoretical nonlinear results, 

(     ) theoretical linear results for 1 0.1ζ ≈   and 1 0.18ζ ≈ , and (     ) ap-

proximate responses for n
ω ω≈  and 2

n
ω ω≈  given by Table 1. 

5.3 The theoretical and measured forces 

In order to compare and validate the model for the linear and nonlinear damping cases, which 

were produced by the secondary actuator and incorporated its dynamics, the study considered 

the measured forces produced by the helical isolation springs and also the force produced by 

the secondary actuator.   

Apart from the theoretical approximations obtained using the harmonic balance method, 

numerical integration was also applied to obtain numerical results. Equations (9) and (10) 

were integrated numerically using ODE45 in MATLAB. The results obtained can be used to 

determine the theoretical forces. Referring to the model illustrated in Figure 2 (b), the forces 

can be considered as follows; 

-  The sum of the restoring forces resulting from the helical springs is given by 

 ( )1 0h h
f k x x= −  (11) 

 

-  The sum of the forces (internal passive actuator restoring forces and the active damping 

force) being produced by an active damper is given by 

 ( ) ( )1 0 1 0s s s d
f c x x k x x f= − + − +� �  (12) 

 

where d
f  is the additional damping force which can be considered as linear damping, i.e.

( )1 1 0d
f c x x= −� � , or cubic damping, i.e. ( )

3

3 1 0d
f c x x= −� � . In addition to the expressions given 
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in equations (11) and (12), the inertia force must be taken into account. This is because the 

mass of equipment involved is not negligible with respect to the isolated mass [15], i.e. the 

mass of the force transducers and of the spring washers. 

Figure 2 (a) shows the three force transducers that were used to acquire the actual forces. 

The forces acquired using the force transducers A and B can be referred to as the restoring 

forces which were the result of the helical springs. The sum of these forces is equivalent to h
f  

given in equation (11). Figure 9 shows the comparison of the restoring forces directly ac-

quired from transducers A and B and the calculated forces given in equation (11). Note that, 

the calculated force includes the force of inertia resulting from the mass of force transducers 

and spring washers. This shows consistency with the measured results. 

The force transducer C in the middle measured the force produced from the secondary ac-

tuator which produces the cubic damping. The force acquired is equivalent to s
f  given in 

equation (12). The mass of the force transducer is not negligible with respect to the mass of 

the system. So inertia forces must be considered. This means that the forces acquired by 

transducer C include the inertia force resulting from the mass of transducer C. The theoretical 

and measured forces are plotted as a function of frequency as shown in Figure 10. Note that, 

the plots of forces shown in Figures 9 and 10 correspond to the case of higher value of damp-

ing which the amplitude ratio was controlled to be about 10 dB.  

Figures 10 (a) and (b) show the forces acquired by transducer C for the cases of linear and 

cubic damping respectively. One can see that the level of force around the resonance frequen-

cy is about the same for both cases. This is a consequence of keeping the level of the 

amplitude ratio around resonance to be the same. The difference in the force level is noticea-

ble for excitation frequencies above 30 Hz. At this frequency, the amplitude ratio for the 

system with higher cubic damping starts to increase and diverge from the linear response. 

This can be ascribed to the higher level of the damping force.  

The level of damping force is dependent upon the relative velocity across the damper. For 

the SDOF linear base excited isolation system, the relative velocity across the damper is pro-

portional to the excitation frequency. Hence at higher excitation frequencies this results in a 

higher relative velocity. So the damping force is higher as consequent result. It is evident in 

Figure 10 that the force for the system with cubic damping is much higher than for the linear 

damping for the excitation frequencies high above resonance. Eventually, the damping com-

ponent can be considered as a rigid-link. 

 

   
 (a) (b) 

Figure 9. The total measured helical springs’ isolation restoring force for isolation 

with an approximate level for the peak amplitude ratio of 10 dB for (a) linear 

damping and (b) cubic damping with • representing the measured forces  and 

(     ) represent the calculated forces using the measured relative velocity, 

which is integrated and substituted into equation (11) 
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 (a) (b) 

Figure 10. The measured secondary actuator force for isolation with an approximate 

level for the peak amplitude ratio of 10 dB for (a) linear damping and  

(b) cubic damping with • representing the measured forces and            

(     ) represent the theoretical force s
f  evaluated using equation (12) and the 

measured relative velocity. 

 

6. CONCLUSIONS 

An experimental study on a SDOF base excited isolation system was conducted in order to 

investigate and validate the effect of cubic damping, which has been reported theoretically in 

the literature. A set of discrete frequency harmonic base excitation was applied. The ampli-

tude of the base excitation was controlled to produce a constant displacement amplitude. Two 

damping configurations, linear and cubic damping, were implemented using an active damper 

with velocity feedback. The investigation in the effect of cubic damping was done by compar-

ing the responses to that for the linear damping configuration. The responses around 

resonance for both scenarios were controlled to have similar levels in order to distinguish the 

effect of cubic damping from the linear damping at high excitation frequencies. The experi-

mental results appeared to be in agreement with the theoretical results. The cubic damping 

produces large damping forces for the excitation frequencies high above resonance compared 

to that for the linear case. This characteristic causes a high amplitude in the isolated mass. 

One might thus conclude that using cubic damping in the SDOF base excited isolation model 

subject to discrete harmonic excitation, with constant displacement amplitude is not benefi-

cial. 
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